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Abstract— We present a game-theoretic analysis of intrusion
detection in access control systems. A security game between
the attacker and the intrusion detection system is investigated
both in finite and continuous-kernel versions, where in the
latter case players are associated with specific cost functions.
The distributed virtual sensor network based on software
agents with imperfect detection capabilities is also captured
within the model introduced. This model is then extended
to take the dynamic characteristics of the sensor network
into account. Properties of the resulting dynamic system
and repeated games between the players are discussed both
analytically and numerically.

I. INTRODUCTION

The increasing electronic interaction and collaboration
between various organizations and economic entities on a
global scale results in information management systems,
which are today far more complex and sophisticated than
their forerunners. Such systems have to protect the integrity
and confidentiality of stored information, while enabling
individual users to access the allowed data and services.
Achieving these goals is only possible with a proper authen-
tication mechanism for correctly identifying users, which
is part of an access control mechanism determining what
information users are entitled to access. The policy and
role based access control (PRBAC) server developed by
the Boeing company is a good example for this type of
systems. The security of an access control system is of
prime importance and is crucial for a successful operation.
However, static protective measures are not sufficient to
secure a complex networked system. Therefore, access
control systems need intrusion detection (ID) as an integral
part of their operation. Intrusion detection systems (IDSs)
increase security by monitoring the events in the networked
system, analyzing them for signs of security problems [1],
and alerting the system administrators as appropriate.

Majority of the earlier literature on intrusion detection re-
lies on ad-hoc schemes and experimental work. Hence, there
is a need for a quantitative decision and control framework
in order to address issues like attack modeling, analysis of
detected threats, and decision on response actions. A rich
set of tools have been developed within the game theory
discipline to address problems where multiple players with
different objectives compete and interact with each other
on the same system, and they are successfully used in
many disciplines including economics, political science,

Research supported by The Boeing Company.

T. Alpcan and T. Basar are with the Coordinated Science Laboratory,
University of Illinois, 1308 West Main Street, Urbana, IL 61801 USA.
(alpcan, tbasar)@control.csl.uiuc.edu

decision theory, and control. Therefore, game theory is a
strong candidate to provide the much needed mathematical
framework for analysis, modeling, decision, and control
processes for information security and intrusion detection.
Such a mathematical abstraction is useful for generalization
of problems, combining the existing ad-hoc schemes under
a single umbrella, and future research. Consequently, game
theory has been recently proposed by several studies for a
theoretical analysis of ID [2]-[4].

In [2], application of game theory to the network security
area has been discussed with a special focus on information
warfare. Furthermore, several matrix games between an at-
tacker and a defending administrator have been formulated,
and their equilibrium properties investigated. In [3], the
interaction between these players has been modeled as a
two-player stochastic game, and the Nash equilibrium or
best-response strategies have been calculated using a non-
linear program. While the framework considered has been
mathematically comprehensive, the approach suffers from
drawbacks such as scalability and extensive computations
required to find the equilibrium solution. In the study [4], on
the other hand, a game theoretic approach for estimating the
attacker’s intent, objective, and strategies has been discussed
in detail, and a numerical example has been given.

This paper investigates a game theoretic approach for
intrusion detection in access control systems by building
on and extending the concepts proposed in [5]. Our goal
is to establish a quantitative approach with a reasonable
degree of abstraction in order to study the underlying
principles for development of IDSs as well as the best ID
strategies. In the next section we present the underlying
mathematical model considered. The security game, the cost
function, and the existence of a unique Nash equilibrium
are discussed in Section III. In Section IV, we investigate
system dynamics and analyze various strategies numerically,
which is followed by the concluding remarks of Section V.

II. THE MODEL

Building on the framework introduced in [5], consider
a distributed IDS with a network of sensors, & :=
{51,825+, Smaz}» Which we call as a virtual sensor
network in order to distinguish it from physical sensor
networks. A virtual sensor is defined as an autonomous
software agent that monitors the system and collects data
for detection purposes [6]. These sensors report possible
intrusions or anomalies occurring in a subsystem of a
large network using a specific technique like signature
comparison, pattern detection, statistical analysis, etc. The



system monitored by the IDS can be represented as a set of
subsystems, 7 = {t1, 12, ..., tmaz }» Which may be targeted
by an attacker. We note that these subsystems could be
actual computer programs or parts of the network, as well
as abstract processes distributed over multiple hosts. Define
I =A{L,Is,..., I} to be the set of documented threats
and detectable anomalies, which may indicate a possible
intrusion, as well as various types of possible attacks. Let
us associate in this context the generic term “attack” with
two specific attributes: target subsystem, ¢t € 7, and threat
or anomaly type, I € Z. We hence define the set of attacks
A ={ay,a2,... a4, xI,...} as the cross-product of the
setsZand 7, A:=T xT.

III. THE NETWORK SECURITY GAME

We model the interaction between the attacker(s) and the
IDS as a noncooperative non-zero sum game. In addition
to the attacker(s) and the IDS, we introduce the sensor
network as a third “fictitious” player similar to the “nature”
player in standard game theory [7, p. 57]. The strategy
of this player consists of a fixed probability distribution
given a specific attack, and it represents the output of the
sensor network during that attack. This way, we capture the
imperfect conveyance of the attack information to IDS by
the sensors.

A. The Security Game in Extensive Form

The finite version of the security game extends the
ideas of the game in [5] by modeling the general case of
multiple attackers and/or complex attacks. We can explain
and illustrate the finite security game through a specific
example. For simplicity let us consider a network consisting
of a single subsystem and a single detectable threat, i.e.
A = {a}. We also limit the possible actions of the IDS to
“set an alert” or “do nothing”. Thus, the strategy spaces
of the attacker(s) and the IDS are U! = {ul,ul} and
UA = {uf!, us'}, where u3' corresponds to “no attack”. The
strategy space of the sensor network is then U® = {p;, p2}
given u € UA. Here, p = [p1,p2] €R2, p >0, p1+p2 =
1, where p; and p- give the likeliness of an attack and of
no attack at all, respectively. A representation of this game
in extensive form is shown in Figure 1 using the GAMBIT
software [8]. The payoff or benefit values for the IDS and
the attacker are chosen for illustrative purposes and given
by [(RIIL" R{)a RR) (Réqv Ré)]

Let us further explain the game in Figure 1 by describing
a specific scenario step by step, which corresponds to
following a path from left to right in accordance with the
order of players’ actions. The lower left branch in the
figure labeled A indicates an attack by the attacker(s) to the
system. The sensor network labeled as “chance” detecting
this attack is represented by the Sensor_A branch. Finally,
given the information from the sensor network, the IDS
decides in branch U to take a predefined response action.
The outcome of this scenario is quantified by a benefit of
—5 to the attacker and +5 to the IDS.
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Fig. 1. The finite version of the security game example shown in extensive
form.

We next investigate the existence of a Nash equilibrium
(NE) as in [5]. A Nash equilibrium for a 2-player game is
defined as a pair of strategies and the corresponding pair
of costs, with the property that no player can benefit by
modifying its own strategy while the other player keeps
her/his fixed. Hence, NE provides a suitable solution for
the analysis of the security game. This particular game does
not admit any Nash equilibrium solution in pure strategies,
and hence, we extend the analysis by considering mixed
strategies of the attacker and the IDS defined as probability
distributions on the space of their pure strategies [7, p.
23]. Solving the game on this extended strategy space
using GAMBIT, we obtain a unique NE in mixed strategies
which also corresponds to the unique solution in behavioral
strategies. Figure 1 depicts the game in extensive form
and displays the probability values associated with the NE
strategies of the players under the branches. Note that,
unlike the other two players, the sensor network -chance
player- is associated with a predefined probability distribu-
tion, which models the imperfect flow of information from
the attacker to the IDS. In the NE, the attacker(s) target
the system with a probability 0.20. A reason for this low
probability is the discouraging effect of the sensor network’s
capability of correct detection with probability 2/3. We
note that there are two information sets for the IDS, one
indicating an attack and one for no alarm. The NE strategy
of the IDS given this information by the sensor network is
“no response” (N R) with probability 1 if there is no alarm,
and a response (U) with probability 0.86 if an alarm is set.
We can argue that the IDS in this case has a high degree of
trust on the information conveyed by the sensor network.
However, it is important to note that the NE strategies of the
players are very much dependent on the outcome payoffs of
the game [5] as well as the detection probability distribution
of the sensor network. Thus, it is crucial for correct analysis
that the payoff values in the game reflect the trade-offs of
the system at hand. A possible way of achieving this may
be to utilize a supervised learning scheme to approximate
the actual player payoffs and detection capabilities of the
Sensors.

Although the finite version of the security game provides



a detailed visualization of the interaction between the play-
ers, it has some limitations and disadvantages. One draw-
back is the scalability. The strategy spaces of the attacker
and the IDS become too large for a more comprehensive
analysis of a larger system. Another disadvantage is in the
choice of the payoff values, which have to be determined
separately for each branch of the game tree. This process
may become tedious and inaccurate for a large system.
In order to address these limitations, we next investigate
a continuous-kernel version of the security game which is
slightly different from the one above. In this game we adopt
the convention that the players are minimizers (of costs)
rather than being maximizers (of payoffs).

B. The Cost Functions of the Security Game

We address various security tradeoffs and establish the
continuous-kernel security game by associating specific cost
functions with the IDS and the attacker. Given the set of
attacks with cardinality A,,,., the strategy space of the
attacker is defined as U4 := {u? C RAma= : ¢t >
0, i = 1,...,Apar - Similarly, the strategy space of
the IDS is given by U! := {ul c RFme . o >
0, i = 1,...,Rnaz}, Where Ry, is the cardinality of
the set of responses available to the IDS. The actions
of the sensor network, on the other hand, belong to the
space U® = {u® C RAmesxAmae . 0 < yf < 1 Vil,
and can be represented conveniently in matrix form by
P = [py]l, PeU? i,j=1,..., Apnas. The matrix P
represents how well the sensor network detects the attacks
on the average, and maps the actions of the attacker to the
sensor output. Furthermore, we define a simple metric for
the detection of each attack, a € A , monitored by the
sensor network

. Dii .
dq(l) = #’:_, 1= ]., . ,Amaz.
Zj:l Pij
For notational convenience, let us also define the matrix

= —Dg; fi=74
Pi=py)=q9 " P T

pij =pij ifi#]
We now introduce the cost parameters, which we take to
be nonnegative. Let cl = [c{ N cﬁlm_] represent the cost
of each attack for the IDS, whereas ¢/ := [c{',... c2,.]

quantifies the gain of the attacker from the attack, if it
is successful. The nonnegative matrix ) with diagonal
entries greater than or equal to 1 models the vulnerability
of a specific subsystem to attacks. On the other hand, the
matrix Q := [Q]A,,..xR,,.., With entries of ones and zeros
correlates IDS response actions with the attacks. The vectors
a = [og,...,aR,,,,] and 8 = [B1,...,04,,,,] are the
cost of the response and the cost of the effort required to
carry out an attack for the IDS and the attacker, respectively.
The cost of false-alarms and capture as well as the benefit
of detection and deception for the IDS and the attacker are
associated with the scalar value . Consequently, we define

the cost function of the IDS, JI(uA,u[,P), and the one
of the attacker(s), JA(uA, ul, P), as
JH(uA ul, P) = y(u)T PQu’ + (u’)"diag(a)u'
+CI(QuA - Qul)7
)

and

JA(uA ul, P) = —y(u)TPQu’! + (ut)Tdiag(f)u’
+e4(Qu — Qut),
3)
where (2)” denotes the transpose of the vector or matrix,
and diag(x) is a diagonal matrix with the diagonal entries
given by the elements of the vector x.

With these specific structures of the cost functions J! and
J4, we attempt to capture various aspects of the security
game between the attacker and the IDS. The first terms
of each cost function, y(u?)” PQu! and —y(u?)” PQu’
represent the cost of false-alarms and benefit of detection
for the IDS as well as the cost of capture and benefit of de-
ception for the attacker, respectively. Notice that, this part of
the cost is zero sum. The second terms (u’)?'diag(a)u' and
(uM)Tdiag(f)u® quantify the cost of specific responses
and attacks. Depending on the response action, this reflects
the cost of the use of resources, possible restrictions on
system usage, or sensor reconfigurations for the IDS. On
the other hand, it represents for the attacker the cost of
resources required by the attack. The last terms ¢/ (Qu® —
Qu’) and c*(Qu’ —Qu?) give the actual cost or benefit of
a successful attack. False alarms and detection capabilities
of the sensor network at a given time are incorporated into
the values of the matrix P. In the ideal case of the sensor
network functioning perfectly, i.e. no false alarms and 100%
detection, the matrix —P is equal to the identity matrix,
Id = diag([1,...,1]).

For notational convenience, define the vectors
91<CI7 Q7 a) = [(CIQ)I/(QO‘I)’ B (CIQ)RWM/(2O‘R"LM)}
and
04(cA, Q. 8) = [(AQ)1/(2B1); ., (AQ) arnn /28],
The reaction functions of the attacker and the IDS
are obtained by minimizing the respective strictly
convex cost functions (2) and (3). Hence, they are

uniquely given by u/(u*,P) = [uf,...,uf, 1T and
ut(u!, P) = [ufl, ..., ul |7, respectively, where
. 1A +
u'(u?, P) = [0" — y[diag(20)] 'QTPTu] T (@)

and
ut(u!, P) = [07 +~[diag(2)] ' PQuT] . (5)

The function denoted by [z]* maps all negative values of
z to zero. It is desirable for the IDS that the sensor grid is
configured such that all possible threats are covered. It is
also natural to assume a worst-case scenario where for each
attack (type) targeting a subsystem there exists at least one
attacker who finds it beneficial for him to attack. Hence, we
expect in many practical cases uf* > 0 Vi or u]I > 0Vj.



C. Existence and Uniqueness of a Nash Equilibrium

The Nash Equilibrium (NE) which has been widely
utilized in noncooperative game theory is also a useful
concept for the analysis of the continuous-kernel secu-
rity game. Within the context of the security game de-
fined in Section III-B, a pair of strategies (u’*, u?*)
of the IDS and the attacker is in NE if it satis-
fies u/* = argming J/(u?*,u!/,P) and u?* =
arg minga J4(u’*, u!, P).

Theorem IIl.1. There exists a unique NE in the security
game defined in Section IlI-B. Furthermore, if

min; 67

{maxi (diag(2cv)) 71QTPT0A] !

v < min ( ,
min; 84

) (6)
{maxi (diag(Qﬁ))il(—P)Qol} o

then the NE is an inner solution, u'* > 0 and u?* > 0,
and is given by

u = (Id+2)71 - [0 + y[diag(26)] 'PQY] ()
and
u'* = (Id+2)7" - [0 —y[diag(22)]'Q"PT6*], (8)

where Z := ~*|diag(20)]"'PQ[diag(2c)] QT PT,
7 i= +*[diag(2a)] 1 QTP [diag(20)] 1PQ,
and Id is the identity matrix.

Proof. The existence of a NE in the game follows from
the facts that the objective functions are strictly convex,
they grow unbounded as |u| — oo, and the constraint set
is convex [7, p. 174]. We next establish a unique strictly
positive (equivalently inner) NE under the given sufficient
condition. Let V be the pseudo-gradient operator, defined
through its application on the cost vector .J := [J! J4], as
741"
)
and define g(u) := VJ where u := [u! u?]. Let G(u)
be the Jacobian of g(u) with respect to u. Define the sym-
metric matrix G(u) := 3(G(u) + G(uw)T). It immediately
follows that G(u) = diag([« f]), which is positive definite.
Thus, due to the positive definiteness of the Hessian-like
matrix G(u), the game admits a unique NE solution [9].
Note that this result does not use the condition (6) on -,
which however comes into picture if we further look for an
inner solution as discussed below.
We now obtain an analytical description of the inner
NE solution. Let us substitute for u’ in (5) the expression

in (4). Hence, we obtain a fixed-point equation u”*
u?(u! (u*, P), P), given by

VI = [V

Rmax

JE VTV

Amazx

u?* = 04 4 [diag(22)]~1PQH!

ding( 55 PQldiag (%)) QTP u*,

(10)

Solving for u* yields (7) where the inverse exists because
Z is nonnegative definite. The equilibrium solution u’*
in (8), on the other hand, can be derived by simply substi-
tuting for u?* from (7) into (4). It is then straightforward
to show that if (6) holds then u’* > 0, and hence the NE
is strictly positive. Moreover, there cannot be a boundary
solution in this case due to the uniqueness of the NE. As a
result, the game admits a unique inner NE under (6). [

IV. THE SYSTEM DYNAMICS AND REPEATED GAMES

We consider a discrete-time system model in order to cap-
ture dynamic nature of the system and take into account the
interactions between players over a time period. Dynamics
such as varying detection capability and (re)configuration of
the sensor network given the strategies of the attacker and
the IDS are quantified through the entries of the P matrix.

Let us define n as the time variable, and &, §, and ¢ as
(small) scalar positive parameters. We define the random
matrix W = [wy;], ¢ =1,..., Amaz, 7= 1,..., Rinaz
where w;;’s are independent uniformly distributed on the
interval [—1, 1]. Hence, W models the transients and im-
perfect nature of the sensor grid. Similarly, define w as a
scalar random variable uniformly distributed on the interval
[-1,1], and independent of w;;’s. Let us also define an
upper bound, dt,,., < 1, and a lower bound dt,,;, > 0
on the elements of P. In doing so we can model the
cases where sensors have a limited detection capability. A
possible dynamic equation for P is then given by

P(n+1) = |P(n) + 26 (w + ) (diag(diag(u®)Qu')
N
—d col(diag(u®)Qu')) +eW(n)| |,

(1)
where col(x) is an Aqr X A matrix with repeating
x vectors constituting the columns, and the normaliza-
tion function [z]™ maps entries of = onto the interval
[dtmin, Atmaz]. With P generated by (11), P(n) can then be
obtained directly from (1). The dynamics in (11) represent a
somewhat optimistic point of view, as it models a situation
where a past attack and follow-up response result in better
detection capabilities for the sensor network. A justification
for this is the efficient reconfiguration of the sensors or
direct intervention by the system administrator.

We consider repeated games as a simple and suitable
dynamic model where the attacker and the IDS make
instantaneous myopic optimizations given the state of the
system (performance of the sensor network). Consequently,
the set of equations characterizing the dynamic game consist
of (11) and




where P is related to P through (1). Existence of a unique
NE for a fixed P (P) has already been established in The-
orem III.1. Consequently, we investigate the convergence
and stability properties of the system (12). Let us define

Zdlz] = dtnza:c
idls; = dtmin

ifi=j
ifi#j "’
which sets a limit on the best-case scenario in terms of

detection capabilities of the sensor network. It immediately
follows from (11) that

\ﬁij(n + 1) — Idlij| <

Idl .= [’LCH”] = {

Dij(n) — Idlij| + € [wiz(n)|
+0 & |w(n)|
< |]§ij(n)71dlij|+€+5f,

where
¢ := max; j,, |[2diag(diag(u®(n))Qu'(n))
—col(diag(uA)QuI)LJ .
Hence, if ¢ = 0 and w(n) = 0 Vn then as n — oo

P(n) clearly converges to the Idl matrix. Furthermore, for
small fixed 9, € > 0, and starting from any feasible initial

point, P(0) € U®, E[P(n)] converges asymptotically to the
region

Reg(s) = {[ﬁw] € US : dtmam - (5 + 55) S ﬁn S dtmam
and 0 < dtpmin < Dij < dbmin +€+0E Vi # j}.

A. Dynamic Strategies and Numerical Analysis

We analyze some simple strategies available to the at-
tacker and the IDS within the dynamic model (12) in order
to gain further insight into IDS and attacker behaviors. Let
us first consider strategies with fixed actions over a finite
time period. Assume that the attacker starts an attack at a
given time with action u?(n) and sustains it over a fixed
time period N such that ut(n) = u*(n +1) = ... =
u?(n + N). Then, given u(t), t=n,n+1,...,n+ N,
the response of the IDS will be according to (4), as the IDS
cannot know the fact that the attacker has chosen a fixed
strategy. From (12) we immediately conclude that J4(n)
will increase with n and J!(n) will decrease with n. In
other words, it is suboptimal for the attacker to have a
fixed action strategy. Similarly, deploying a fixed response
strategy is suboptimal for the IDS as it gives the attacker
an opportunity to exploit the weaknesses of the sensor
network [10]. Another problem with choosing a fixed action
strategy for both players is determining what this strategy
should be. As we will soon demonstrate, any deviation from
NE response results in higher costs for the player. Therefore,
it is beneficial for both the IDS and the attacker to frequently
update their strategies as part of a multi-step optimization
process.

The conclusions of the discussion above can be illustrated
through numerical analysis. We choose a simple scenario
with three specific attacks monitored by the sensor network.
For comparison purposes cost parameters are chosen to be

the same for both the attacker and the IDS: ¢/ = ¢4 =
[50, 50, 50], « = B = [10, 10, 10], v = 10, ¢ = 0.01,
£ = 0.1, and 6 = 0.001. The responses of the IDS are
also limited to three, and Q = Q = Id for simplicity.
In addition, p;; € [0.3,0.7]. We first simulate the system
described in (12). The costs and actions of the attacker and
the IDS as well as detection quality of sensors are shown

in Figure 2.

Fig. 2. Dynamics of the system (12).

In the next simulation, we fix the IDS response as ul =
[5, 5, 5], which is roughly equal to the NE solution for the
static game. From Figure 3, we observe that the attacker can
exploit this by limiting his/her attack to a short time period.
Furthermore, temporary degradations in sensor detection
quality are utilized by the attacker to decrease his own cost,
while they drive the IDS cost higher. We also investigate
the cases when IDS response is chosen as u! = [8, 8, §]
and u! = [2, 2, 2] respectively. We observe in the former
scenario that the IDS can increase the cost of the attacker
if it accepts a significant cost for itself also. On the other
hand, the latter case where the IDS does not take sufficient
precautions proves to be very costly for it. Clearly, both of
these suboptimal fixed actions result in higher costs for the
IDS while benefiting the attacker.

108 Rasponse Actors 108 and Atcker Cosis

Fig. 3. Simulation of the system (12) with the IDS’s actions fixed as u! =
[53 57 5}

In addition, we analyze the case where the attacker de-
ploys a fixed strategy u” = [5, 5, 5] while the IDS adjusts
its actions according to (12). For clarity of presentation we



choose « = 0.3. It is observed that the cost of the attacker
increases as the quality of sensor detection improves over
time. Thus, it is a better strategy for the attacker to deploy
short high intensity attacks intermittently over a time period.

Next, we investigate what happens if the attacker dis-
covers an inherent vulnerability in the system monitored
by the IDS. In order to capture this scenario within our
model we increase @ to diag([2, 1, 1]) after a fixed time
point. As shown in Figure 4, the cost of the IDS increases
significantly after the discovery of the vulnerability by the
attacker. On the other hand, increased attack intensity on
the first subsystem results in a stronger IDS response. We
note the increased variation in the detection quality of the
specific attack, which is due to the random imperfections
in sensor reconfiguration mechanism.
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Fig. 4. Simulation of the system (12) when @ is modified as Q =
diag([2, 1, 1]) after a time point.

Finally, the inherent assumption that both the attacker and
the IDS have perfect knowledge on the performance of the
sensor network is relaxed. Figure 5a depicts the NE costs
of both players and the difference between the two costs
under the assumption that IDS estimates (from left to right)
a perfectly functioning sensor network (P = Id) to the
worst-case (P = Ones — Id), where Ones is the matrix of
ones. The counterpart of this for the attacker is also depicted
in Figure 5b. Clearly, a correct estimation of P decreases
the difference between the costs, which is beneficial to the
player. We also observe that assuming a perfect detection
the IDS can increase both its and the attacker’s cost, and
hence, discouraging an attack at his own expense. Likewise,
Figure 5b shows that incentive to attack varies inversely
proportionally to how the attacker perceives the success rate
of the sensor network. As expected, IDS having a good
sensor network discourages the attacker.

V. CONCLUSIONS

We have presented a game theoretic approach to in-
trusion detection in access control systems. Modeling the
interaction between the attacker(s) and the IDS as both

Fig. 5. The NE costs of both players under the assumption that the IDS
(the attacker) estimates -from left to right- a perfectly functioning sensor
network(P = Id) to the worst-case (P = Ones — Id).

finite and continuous-kernel noncooperative security games,
we have established a quantitative mathematical framework
which provides insight into and addresses a wide range
of resource allocation problems in intrusion detection. The
imperfect flow of information from the attacker to the IDS
through a virtual sensor network is also captured within
this framework. Existence of a unique Nash equilibrium and
best-response strategies for players under specific cost func-
tions are investigated. In addition, the interaction between
the players over a time period is analyzed using repeated
games and a specific dynamic model for the sensor network.
Finally, some basic strategies for the IDS and the attacker
are discussed through several numerical studies.
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