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Abstract

We propose a simple, general, and unified framework for constructing unique ring signatures
that simplify and capture the spirit of linkable ring signatures. The framework, which can be
efficiently instantiated in the random oracle and the standard model, is obtained by generalizing
the Bellare-Goldwasser “PRF made public” paradigm. Security of the first instantiation can be
tightly related to the DDH problem. The scheme leads to the most efficient linkable/unique ring
signature in the random oracle model, for a given level of provable security. The second one
based on stronger assumptions partly simplifies and slightly improves sublinear size traceable
ring signature of Fujisaki. Both of the improvements would be difficult without the general
framework in hand.

Keywords: anonymity, provable security, ring signature, tight reduction, unique signature,
verifiable random functions.

1 Introduction

Ring signatures [43] are very useful tools for many privacy-preserving applications. However, they
are not adequate in settings where some degree of privacy for users must be balanced against
limited access. For example, a service provider might have the list of public keys that correspond
to all users that have purchased a single access to some confidential service for that day (requiring
anonymous authentication). For this kind of application, a number of restricted-use ring signatures
are proposed. Notable examples include linkable ring signatures [1, 19, 37, 38, 47, 48] and traceable
ring signatures [27, 28].

Linkable ring signature asks that if a user signs any two messages (same or different) with
respect to the same ring, then an efficient public procedure can verify that the signer was the same
(although the user’s identity is not revealed).

Traceable ring signature is a ring signature scheme where each message is signed not only with
respect to a list of ring members, but also with respect to an issue (e.g., identifying label of a
specific election or survey). If a user signs any two different messages with respect to the same list
of ring members and the same issue label, then the user’s identity is revealed by an efficient public
procedure. If a user signs the same message twice with respect to the same list of ring members
and the same issue label, then the two signed messages can be determined to have come from the
same signer by an efficient public procedure (although the signer’s identity remains concealed).
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Both linkable ring signatures and traceable ring signatures admit interesting applications such as
various e-voting systems (e.g., k-candidate, weighted sum, ranked choice, approval, and receipt-free
voting [18], etc.), e-token systems [13] (that generalizes unclonable authentication [22] and k-times
anonymous authentication [41, 45, 46]), and so on. Notably, the e-voting schemes directly from
linkable or traceable ring signatures do not need any central authorities, a unique and desirable
property in sharp contrast to all the schemes from other methods.

Unique ring signatures. We define unique ring signatures that capture the essence of linkable
ring signatures and traceable ring signatures without identity revelation. We may say a ring
signature scheme unique if whenever a signer produces two different ring signatures of the same
message with respect to the same ring, such that both will pass the verification procedure, then these
two ring signatures will always have a large common component (hereinafter unique identifier). For
all the applications introduced in this paper, we further need a non-colliding property for a unique
ring signature. Call a unique ring signature non-colliding if two different signers of the same
message, almost never produce ring signatures with the same unique identifier.

Definitional contributions. Linkable ring signature in essence exploits meaningful linkability
in the setting of ring signature. Intuitively, the security notions, following the refined formulation
due to Bender, Katz, and Morselli [7], include unforgeability, restricted anonymity (due to the
linking procedure), and secure linkability. The last notion, simply speaking, asks that the signatures
by the same user should be linked. This is indeed the perspective that many early papers [37, 38,
47, 48] take. But this alone is not adequate, for an adversary, obtaining the secret key of some user,
might be able to produce a signature that is linked with a given one. This issue, considered by
follow-on work [1, 19] as well as highlighted in [28, Appendix D], can be a serious one.1

Our formulation simplifies the definitions of security for linkable ring signatures without losing
the power and generality of the primitive. We take a different approach, following [26], to formaliz-
ing the overall security notions. In a nutshell, it is required that each signer only sign any message
once. More precisely, a set of signers in a ring cannot produce signatures for any messages with
more unique identifers than the size of the set.

It turns out, however, that besides anonymity and unforgeability, the only definition of security
that we need for unique ring signature is uniqueness. Together with non-collision property (which
is not a security notion), our primitive is as powerful as linkable ring signature.2 It is also easily
seen that insider attacks are avoided if the signatures are unique, since otherwise one can construct
another adversary violating the uniqueness property.

Our technical contributions. We propose a simple, general, and unified construction for
unique ring signature, mainly by extending the “PRF made public” paradigm by Bellare and Gold-
wasser (BG) [4]. The signature scheme simply uses a combination of pseudorandom function (PRF)
and non-interactive zero-knowledge (NIZK) proof system (where the PRF key is committed). The
general framework not only can help explain prior constructions for linkable ring signatures and
traceable ring signatures, but give refined constructions with simpler and more intuitive design and
improved efficiency. We comment that the simple framework is partly motivated by the formula-
tion of the unique ring signature, since both of (certified) PRF and unique ring signature enjoy
uniqueness and pseudorandomness (a notion closely related to“anonymity”).

Given the general framework, we first provide an efficient instantiation in the random oracle

1The corresponding security notion is formally called non-slanderability in [1], while the attack is termed as insider
attacks [28] to indicate that the adversary might obtain a valid signing key.

2Indeed, one can safely regard that unique ring signature is functionally the same as linkable ring signatures, but
definitionally more concise and simple, and furthermore, as shown shortly, more suited for our constructions.
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model (ROM). Security of the scheme can be tightly reduced to the DDH problem (where, by
“tight,” it means that the success probability of some adversary in some time is roughly equal to
the probability of solving some hard problem within almost the same period of time). Despite
the similarities with the linkable ring signature due to Liu, Wei, and Wong [37], our construction
employs a proof technique fundamentally different from the Cramer-Damg̊ard-Schoemaker (CDS)
type of ring signatures [21, 35] which rely on “rewinding”. Namely, our proof does not require
proof of knowledge but heavily relies on zero-knowledge proof of membership. Tight reduction
usually comes at a cost, but it turns out that our scheme from the general framework has a tight
reduction without sacrificing on efficiency (further discussion and credits coming shortly). In toto,
this scheme gives the most efficient linkable/unique ring signature in the ROM, in terms of key
generation, signing, and verification algorithms.

We go on to illustrate the usefulness and generality of our framework by showing how to obtain
a unique ring signature scheme from the traceable ring signature due to Fujisaki [28]. The latter
is the first traceable ring signature (and linkable ring signature) without random oracles, and has
a signature of size O(

√
n) where n is the number of users in the ring. Our scheme is not simply

a weakened version of [28] that removes the extra public tracing functionality. Fujisaki’s scheme
is based on the ring signature due to Chandran, Groth, and Sahai [14], while our scheme follows
exactly our general framework, simplifying and clarifying the overall structure, eliminating the
relatively inefficient one-time signature, employing a solo assumption (i.e., Pseudo-Random DDHI
assumption [28]), and requiring no proofs any more (as impled by the general framework).

Our work improves the state of the art in unique/linkable ring signatures, thus leading to
numerous improved e-voting and e-token systems from them.

Provable secure signatures and Tight reduction—History, Philosophy, and Ap-
proaches. Typically, one evaluates provably secure signature schemes from three perspectives:
efficiency, indicating how fast the scheme can be implemented, which has an immediate impact on
its genuine utility; concrete security reduction, which gives explicit bounds on success probability
of the adversary, enabling meaningful comparisons for a given level of provable security; and cryp-
tographic assumptions, preferably being simple, standard, and well-studied, on which the security
of the scheme relies. A desirable provably secure cryptographic signature, commonly recognized,
whether in the random oracle standard or the standard model, should be at first efficient, and could
be as well tightly related to a reasonable assumption. Of course, it is also desirable to consider
various tradeoffs among the three factors, provided that the scheme is still sufficiently efficient.

For signature schemes based on discrete logarithm problems, the most efficient scheme is the
Schnorr signature [44] that is proven secure in the ROM under the DL assumption by Pointcheval
and Stern [42]. The technique used is the Forking Lemma: by rewinding the forger O(qh/ε) times,
where qh denotes the number of the forger makes to the random oracles and ε denotes its success
probability one can compute the discrete logarithm of the public key. The reduction is unfortunately
too loose. To obtain tight security reductions for the DL-based signature schemes, a number of
constructions that are less efficient or/and under stronger assumptions are proposed, including the
EDL scheme by Goh and Jarecki [32] (under the CDH assumption), subsequent work by Chevallier-
Mames [17] (under the CDH assumption), two schemes by Katz and Wang [36] (from the CDH and
DDH problems respectively), and Fischlin’s scheme [25] (that relies on the DL assumption but is
relatively inefficient).

Turning to the DL-type ring signature schemes, tight reductions are more challenging to achieve.
This is due, first, to the fact that all the DL based ones, to the best of our knowledge, follow the
CDS paradigm [21] whose security seems to inevitably rely on the (generalized) rewinding technique
(see, e.g., [35]). This is further due to the fact that the ring signature runs in the multi-user setting
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such that the reduction might naturally lose a factor of n which denotes the number of users in the
ring. Last, we emphasize that ring signatures (in general) have multiple security notions such as
unforgeability, anonymity, and possibly some others (see [7]). Tight reductions (to possibly different
assumptions) here should be satisfied for all the required security notions. To put it differently, the
security notion with the loosest reduction and the strongest assumption is the benchmark against
which the security of the system can be measured.

The linkable ring signature [37] from the DDH assumption inherit the CDS framework and its
analysis for ordinary ring signatures. In particular, if we let ε be an upper bound on the probability
that the DL problem can be solved, then the success probability of any adversaries attacking the
unforgeability is roughly nqhε, but for anonymity one has to rely on the potentially stronger DDH
assumption. Similar results hold for the traceable ring signature [27], where Fujisaki and Suzuki
therefore consider using Fischlin’s technique [25, Remark 5.7] to improve the reduction tightness
at a notable cost.

Instead, our random oracle based scheme, following the general framework, has security tightly
reduced to the DDH problem for each of the security notions, which implies that the scheme is as
secure as the DDH problem. One main reason our scheme has tight reductions is the use of NIZK
proof of membership, instead of the conventional proof of knowledge such that one has to rewind
the forger for sufficient times. This apparently takes advantage of our framework that relies on
PRF and NIZK proof of membership.

For standard signature and ring signature schemes, to obtain tighter security, they necessarily
become less efficient or rely on stronger assumptions. In contrast, our unique ring signature scheme
is as efficient as the previous scheme [37] with a loose reduction. Notice that the PRF part in
the framework not only enables NIZK proof of membership but happens to serve as the unique
identifier.

Precisely, the unique ring signature in the ROM does not exactly follows the framework (i.e., the
public key, strictly speaking, is not a commitment) and the corresponding proof is thus non-black-
box. But the basic proof strategy is the same. Our scheme also exploits the algebraic property of
the DDH problem, namely, the random self-reducibility (RSR) property (see, e.g., [2]).

Discussion. The general framework and two following instantiations are all based on efficient
signature schemes (in fact, verifiable random function schemes and also the stronger PRF with a
NIZK proof schemes). The underlying signature for the general framework is just the BG signature.
The signature in the ROM is the same as that due to Chaum and Antwerpen [15], which was first
analyzed by Goh and Jarecki [32] who showed that the scheme can be proven secure under the CDH
assumption with a security reduction almost as tight as FDH like schemes [6, 20]. Goh and Jarecki
also designed a “salted” variant leading to a more tight reduction which was further improved by
Katz and Wang [29, 36] (using the selector bit technique), who [36] also gave a more efficient one
based on the DDH assumption. The two schemes due to Katz and Wang and ours all make use of
NIZK proof of membership rather than NIZK proof of knowledge, while only ours can be viewed as
an instantiation of the BG paradigm. Notice, however, ours is not merely a signature scheme but a
verifiable random function [39] (and also a PRF with a NIZK proof) with a tight security reduction
as well, such that the PRF part naturally serves as a linking component — unique identifier.

The deterministic and unique property of our unique ring signature can admit fast processing of
data. For example, a service provider carrying out a “first come, first kept” policy on a stream of `
requests would need only O(` log `) operations (via appropriate tree structures), or O(`) expected
operations (via hash tables). It is (conceptually) in contrast to having to perform Θ(`2) instances
of the linking procedure in the general case to process a stream of ` requests. This is a particularly
useful property when there is a large number of users to be processed. (Note that this essentially
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shares some similarity with public-key deterministic encryption [3].) Also applications using our
methods would greatly save space complexity. Once a signature is verified, it just needs to save
the unique identifier, which is one group element for all of constructions. Note that saving just
these single group elements (or even just their hashes) is sufficient for carrying out the desired
functionality.

In fact, there is one natural alternative, which we call all-ring unique ring signature, requiring
the uniqueness to hold for all the rings (i.e., even with respect to different rings). The corresponding
variant is implicit in the applications of linkable ring signatures (e.g., [48]), and is even considered
as being weak or “flawed” due to its relaxed security. We are sympathetic to this viewpoint for most
of the applications, but do point out some interesting observations. Basically, all-ring unique ring
signature enables flexible ring size choice and dynamic membership, providing greater flexibility to
both users and system providers, for a few certain applications such as the one in the last paragraph.
On the one hand, it allows the signer to choose to hide within an arbitrary ring of authorized users.
For instance, the user may not want to include some other specific users with bad reputation; it is
also entirely possible that the user cares about efficiency issues, since the computational overhead
and even the size of signature are proportional to the number of users in the ring. Therefore, the
signer can choose an appropriate ring size to balance identity privacy concerns with computational
overhead at her will. On the other hand, all-ring unique ring signature admits dynamic membership.
In this setting, the public keys correspond to the membership of the users. The users have to pay
to be maintained in the list of the service provider for some period. Once the time is up for some
user, the provider can simply remove its public key from the list. The user can choose any subsets
of the current list of public keys to form a ring and sign on some message, while the provider only
accepts signatures with respect to rings that are subsets of the current list.

2 Preliminaries

Notations. If x is a string then |x| denotes its length. If S is a set then |S| denotes its size

and s
$← S denotes the operation of selecting an element s of S uniformly at random. ∅ denotes

the empty set, while Ø denotes a vector of empty sets. If n is an integer we write [n] to denote
the set {1, 2, · · · , n}. We let {Bi}ni=1 (or simply {Bi}n1 ) either denote the set {B1, B2, · · · , Bn} or
B1||B2|| · · · ||Bn (the concatenation of B1, B2, · · · , and Bn), where there should be no ambiguity

from context. If A is a randomized algorithm then we write z
$←A(x, y, · · · ) to indicate the op-

eration that runs A on inputs x, y, · · · and a uniformly selected r from an appropriately required

domain and outputs z. We write z
$←AO1,O2,···(x, y, · · · ) to indicate the operation that runs A

having access to oracles O1,O2, · · · on inputs x, y, · · · and outputs z. A function ε(k): N → R is
negligible if, for any positive number d, there exists some constant k0 ∈ N such that ε(k) < (1/k)d

for any k > k0.

2.1 Primitives

Pseudo-random function. We define a pseudo-random function [30] family F : S × X → Y
where S is the key space, X is the message space, and Y is the range. We write Fs(·) to denote a
PRF for every s ∈ S. Let Γ be the set of all functions from X to Y. Define the PRF advantage
of A against F as

Advprf
F (A) = Pr[ s

$←S : AFs = 1 ]− Pr[ f
$← Γ : Af = 1 ].
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Digital signatures. A digital signature DS consists of three algorithms (Gen,Sig,Vrf). A key
generation algorithm Gen takes the security parameter λ and generates a verification key vk and
a signing key sk. A signing algorithm Sig computes a signature σ for input message m us-
ing the signing key sk. A verification algorithm Vrf takes as input vk and a message-signature
pair (m,σ) and outputs a single bit b. It is required that for all the messages m it holds that
Pr[Vrf(vk,m,Sig(sk,m)) = 1] = 1. The standard security notion of a digital signature is existential
unforgeability against adaptive chosen message attacks [31]. Formally, given a signature scheme
DS, we associate to an adversary A the following experiment:

Experiment Expuf
DS(A)

(vk, sk)
$←DS.Gen(1λ)

(m,σ)
$←ASig(sk,·)(vk)

if Vrf(vk,m, σ) = 0 then return 0

return 1

where m was not a query of A. We define the advantage of A in the above experiment as

Advuf
DS(A) = Pr[Expuf

DS(A) = 1].

Verifiable random function. Verifiable random function (VRF), introduced by Micali, Rabin,
and Vadhan [39], combines the properties of PRF and digital signature. Namely, a VRF is a PRF
with a non-interactive proof of the correctness of the input. A VRF VRF consists of four algorithms
(Gen,Eva,Prove,Ver) with input domain X and output range Y. A key generation algorithm Gen
takes the security parameter λ and outputs a pair of keys (vk, sk). An evaluation algorithm Eva
takes as input sk and some x and outputs a value y. A proving algorithm Prove takes as input sk
and some x and outputs ν which is the proof of correctness. A verification algorithm Ver takes as
input vk and (x, y, ν) and outputs a single bit b. Formally, we require:

Provability/Correctness. If y ← Eva(sk, x) and ν
$← Prove(sk, x) then Ver(vk, x, y, ν) = 1.

Unconditional Uniqueness. There do not exist (vk, x, y1, y2, ν1, ν2) such that y1 6= y2, but
Ver(vk, x, y1, ν1) = Ver(vk, x, y2, ν2) = 1. Note that uniqueness in the definition above can be
relaxed so as to hold computationally as opposed to unconditionally.

Pseudorandomness. We associate to an adversary A the following experiment:

Experiment Exppr
VRF (A)

(vk, sk)
$←VRF .Gen(1λ)

(x, s)
$←AEva(sk,·),Prove(sk,·)(pk)

y0 ← Eva(sk, x); y1
$←Y

b
$←{0, 1}; b′ $←A(yb, s)

if b′ 6= b then return 0
return 1

where the adversary did not query its oracles with x. We define the advantage of A in the
above experiment as

Advpr
VRF (A) = Pr[Exppr

VRF (A) = 1]− 1/2.
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A VRF scheme VRF is said to have the pseudorandomness property if for any polynomial-
time adversary A the function Advpr

VRF (A) is negligible in the security parameter. For our
purposes, we need a stronger form of VRF such that the proof is zero-knowledge, i.e., PRF
with a NIZK proof.

Commitment scheme. A commitment scheme CM consists of a randomized committing algorith-
m Com which takes as input a message m and randomness r to return a commitment c; we write

c
$← Com(r,m). It is required that the commitment scheme have hiding and binding properties.

We define the hiding-advantage of A against CM as

Advhide
CM(A) = Pr[(m0,m1)

$←A; c
$← Com(r1,m1) : A(c) = 1]

−Pr[(m0,m1)
$←A; c

$← Com(r0,m0) : A(c) = 1].

We define the binding-advantage of A against CM as

Advbind
CM (A) = Pr[(m0,m1, r0, r1)← A(ck) : m0 6= m1 and Com(r0,m0) = Com(r1,m1)].

Non-interactive zero-knowledge proof systems. We shall use a notion of NIZK proof
of membership in NP languages, introduced by Blum, Feldman, and Micali [8]. Let ρ(·, ·) be a
polynomially bounded binary relation. If (x,w) ∈ ρ then x is a theorem and w is a proof of x.
Let Lρ denote the language associated with the relation ρ: Lρ = {x|∃w[(x,w) ∈ ρ]}. Consider two
polynomial-time algorithms (P, V ), both of which have access to a common reference string η. (If
the string is distributed uniformly at random then we will call it common random string.) Call
(P, V ) is a non-interactive proof system for Lρ if there exists some polynomial l(·) such that it
satisfies the following two conditions:

Completeness: For every λ ∈ N, every (x,w) ∈ ρ,

Pr[η
$←{0, 1}l(λ);π $← P (λ, x, w, η) : V (λ, x, π, η) = 1] = 1.

(Adaptive) soundness: For every λ ∈ N, any prover P̂ , and every x 6∈ Lρ,
Pr[η

$←{0, 1}l(λ); (x, π)
$← P̂ (λ, η) : V (λ, x, π, η) = 1] ≤ ε(λ).

We let Advsound
(P,V )(P̂ ) denote the above soundness advantage of P̂ against a non-interactive proof

system (P, V ).
Given a polynomial time simulator S = (S1, S2), define the zero-knowledge advantage of A a-

gainst a non-interactive proof system (P, V ) as Advzk
(P,V )(A) = Pr[η

$←{0, 1}l(λ); (x,w)
$←A(1λ, η);

π
$← P (λ, x, w, η) : A(λ, x, π, η) = 1]−Pr[(η′, s)

$← S1(1
λ); (x,w)

$←A(1λ, η′);π′
$← S2(x, η

′, s) : A(λ,
x, π′, η′) = 1], where s is the state information. We say a non-interactive proof system (P, V ) for Lρ
is (adaptive) zero-knowledge if there exists a probabilistic polynomial time simulator (S1, S2) such
that for any probabilistic polynomial time adversary A, it holds that Advzk

(P,V )(A) ≤ ε(λ).

Non-interactive witness-indistinguishable proof systems. We also use non-interactive
witness-indistinguishable (NIWI) proof system. We define the WI-advantage of A against a non-

interactive proof system (P, V ) for a language Lρ as Advwi
(P,V )(A) = Pr[η

$←{0, 1}l(λ); (x,w0, w1)
$←A(1λ, η);

π
$← P (λ, x, w0, η) : A(λ, x, π, η) = 1]−Pr[η

$←{0, 1}l(λ); (x,w0, w1)
$←A(1λ, η);π

$← P (λ, x, w1, η) :
A(λ, x, π, η) = 1], where we require that (x,w0), (x,w1) ∈ ρ. We say a non-interactive proof system
(P, V ) witness indistinguishable, if for any probabilistic polynomial time adversaries A it holds that
Advwi

(P,V )(A) ≤ ε(λ).
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2.2 Complexity Assumptions

DDH Assumption. Consider a cyclic group G of prime order q with a generator g. Define

the DDH-advantage of A against G as : Advddh
G (A) = Pr[x, y

$← Zq : A(g, gx, gy, gxy) = 1] −
Pr[x, y, z

$← Zq : A(g, gx, gy, gz) = 1]. The DDH assumption states that for any probabilistic poly-
nomial time adversary A its DDH-advantage is negligible in the security parameter.

BGN bilinear groups. We make use of bilinear groups of composite order introduced by Boneh,
Goh, and Nissim [10] (N,G,GT , e, g) where G is a (multiplicative) cyclic group of composite order N
(N = pq, and p and q are primes), and Gp,Gq are its cyclic subgroup of order p, and subgroup of
order q, respectively, and g, gp, gq are generators of G, Gp and Gq, respectively, and e: G×G→ GT

is an efficiently computable bilinear map. In what follows we shall call this mathematical system a
BGN bilinear group.

Subgroup Decision Assumption. Given a BGN bilinear group as described above, we say
that the subgroup decision assumption holds if random elements from G and Gp are computa-
tionally indistinguishable. We define subgroup decision-advantage of A against BGN system as

Advsda
BGN(A) = Pr[r

$← Z∗N , h← gr: A(N,G,GT , e, g, h) = 1]−Pr[r
$← Z∗p, h← gqr: A(N,G,GT , e, g,

h) = 1].

Pseudo-Random DDHI assumption in Gp. We now recall the pseudo-random DDHI (PR-
DDHI) assumption first formalized by Fujisaki [28]. Given a BGN bilinear group, we define that PR-

DDHI advantage againstA as Advpr-ddhi
Gp

(A) = Pr[x
$← Zp: Aσ(x,·)(p,Gp) = 1]−Pr[f

$← Γ: Af (p,Gp)],

where σ(x, ·) = g
1/(x+ ·)
p and Γ is the set of all functions from Zp to Gp. We say the PR-DDHI

assumption holds in Gp if for all probabilistic polynomial time adversaries A, the above advantage
is negligible.

3 Unique Ring Signature Model

We begin by recalling the definition of a ring signature scheme RS = (RK,RS,RV) that consists of
three algorithms:

RK(1λ). The randomized user key generation algorithm takes as input the security parame-
ter λ and outputs a public key pk and a secret key sk.

RS(sk,R,m). The probabilistic ring signing algorithm takes as input a user secret key sk, a
ring R that is a set of public keys (such that pk ∈ R), and a message m to return a signature σ
on m with respect to the ring R.

RV(R,m, σ). The deterministic ring verification algorithm takes as input a ring R, a mes-
sage m, and a signature σ for m to return a single bit b.

The following correctness condition is required: for any security parameter λ, any integer n,

any {(pki, ski)}n1
$← RK(1λ) (where now R = {pki}n1 ), any i ∈ [n], and any m, it holds that

RV(R,m,RS(R, ski,m)) = 1.

We consider unique ring signature where the signature should have the form of (R,m, σ) =
(R,m, τ, π) where τ is the unique identifier for some message m and some signer i, and π is the
rest of the signature. For our constructions, one may simply consider that τ is the signature, and π
is the corresponding (maybe probabilistic) proof of correctness. Following the recent formulation
for ring signature due to Bender, Katz, and Morselli [7], we define for unique ring signature three
security requirements: uniqueness, anonymity, and unforgeability. The way we define uniqueness
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property largely follows from that for unique group signature [26], where the uniqueness security is
coupled to a non-colliding property.

Notations. Fixing a ring {(pki, ski)}n1 with T = {pki}ni=1, we describe two oracles for defining
the security notions: user secret keys oracle USK(·), which an adversary can call to get the signing
key ski of some user i ∈ [n]; ring signing oracle RS(·, ·, ·), which an adversary can call to get a ring
signature for honest user i with respect to some ring R and some message m, where i ∈ [n], such
that pki ∈ R, and the other public keys in R need not be in T = {pki}ni=1.

Let CU denote a set of corrupted users whose secret signing keys are given to the adversary. Let
RS denote a set of ring, message, and signature triples queried via the RS(·, ·, ·) oracle. We write
RSR,m to denote a set of users with which adversary calls RS(·, R,m). We write RSR,M, where R
is a set of the rings and M is a set of messages queried, to denote a vector of sets with RSR,m for
each R ∈ R and m ∈M.

Uniqueness. In the setting of ring signatures, uniqueness property intuitively means that a
set of colluding signers in a ring cannot produce signatures for any messages with more unique
identifers than the size of the set. The adversary is thus given the user secret keys oracle USK(·)
for an arbitrary set of users, and ring signing oracle RS(·, ·, ·). Given a unique ring signature
RS = (RK,RS,RV), we associate to an adversary A the following experiment:

Experiment Expunique
RS,n (A)

{(pki, ski)}n1
$← RK(1λ); CU← ∅; RSR,M ← Ø where T ← {pki}n1

(m,σ1, · · · , σ|CU∪RST,m|+1)
$←AUSK(·),RS(·,·,·)(T )

for i← 1 to |CU ∪ RST,m|+ 1 do

if RV(T,m, σi) = 0 then return 0

for i, j ← 1 to |CU ∪ RST,m|+ 1 do

if i 6= j and τi = τj then return 0

return 1

where, above, each σi is of the form (τi, πi). We define the advantage of A in the above experiment
as

Advunique
RS,n (A) = Pr[Expunique

RS,n (A) = 1].

In the above experiment, adversary is expected to output exactly |CU ∪ RST,m|+ 1 valid signatures
which have distinct unique identifiers with respect to the same message.

Notice that one could define the uniqueness security property just like that for unique group
signature [26]: namely, adversary would be expected to output new valid signatures. However,
our formulation here turns out to be a weaker one, in the sense that adversary is allowed to
simply output the signatures from the ring signing oracle. While one has to adopt a more complex
uniqueness notion in the setting of group signature (see [26] for detailed discussion), the slightly
weaker uniqueness definition for ring signature is sufficient for all of the applications. Therefore,
we shall use this weak but less restricted uniqueness notion throughout the paper.

Non-colliding property. Following a similar argument as [26], the above uniqueness notion
alone is problematic per se. For example, it is possible that k signers ought to create k − 1 unique
identifiers for some messages as two of them collide, but a collusion of k signers might be able to
output k unique identifiers. Clearly, this does not contradict our uniqueness security, but makes
them sign messages beyond their own.
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We say that a ring signature is non-colliding if any of two different (honest) signers (who follow
the scheme specification) almost never produce the same unique identifier of the same message
with respect to the same ring. One should think of this as a correctness property rather than a

security notion. Formally, for all security parameter λ and integer n, all {(pki, ski)}n1
$← RK(1λ)

with T = {pki}n1 , all i, j ∈ [n] and i 6= j, and all message m ∈ {0, 1}∗, it holds that

Pr[(τi, πi)
$← RS(ski, T,m); (τj , ψj)

$← RS(skj , T,m) : τi = τj ] ≤ ε(λ).

Above, the probability is taken over the coins of the group key generation algorithm and group
signing algorithm.

The uniqueness security notion together with non-colliding property captures the essence of
uniqueness in the multi-user ring signature setting. First, it resolves the problem above: if the
above-mentioned circumstance happens then an adversary who corrupted a set of group members
can always honestly generate signatures again and pick “enough” signatures with different unique
identifiers to attack the uniqueness property. Second, it is easy to verify that uniqueness implies
any linking notions in the literature.

Anonymity. With the restraints of being unique, one cannot achieve the strongest anonymity
notion of Bender, Katz, and Morselli [7]. This is clearly because of the inherent limitations of our
(partly) deterministic signing process. However, we can target for the following notion of anonymity
that is still quite strong. Formally, given a unique ring signature scheme RS = (RK,RS,RV), we
associate to an adversary A the following experiment:

Experiment Expanon
RS,n(A)

{(pki, ski)}n1
$← RK(1λ); CU← ∅; RSR,M ← Ø where T ← {pki}n1

(i0, i1, R,m)
$←AUSK(·),RS(·,·,·)(T )

b
$←{0, 1}; σ $← RS(skib , R,m)

b′
$←AUSK(·),RS(·,·)(guess, σ, s)

if b′ 6= b then return 0

return 1

where it is mandated that for each d ∈ {0, 1} we have id /∈ CU and id /∈ RSR,m. It may be required
that R ⊆ T , but this is optional. We define the advantage of A in the above experiment as

Advanon
RS,n(A) = Pr[Expanon

RS,n(A) = 1]− 1/2.

The formulation provides the strongest possible anonymity definition that we can imagine in the
context of unique ring signature.

Unforgeability. We can achieve the strongest unforgeability notion due to Bender, Katz, and
Morselli [7]. More concretely, given a unique ring signature schemeRS = (RK,RS,RV), we associate
to an adversary A the following experiment:

Experiment Expuf
RS,n(A)

{(pki, ski)}n1
$← RK(1λ); CU← ∅; RSR,M ← Ø where T ← {pki}n1

(m,R, σ)
$←AUSK(·),RS(·,·,·)(T )

if RV(R,m, σ) = 0 then return 0

return 1
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where it is required that R ⊆ T\CU and A never queried RS(·, ·, ·) with (·, R,m). We define the
advantage of A in the above experiment as

Advuf
RS,n(A) = Pr[Expuf

RS,n(A) = 1].

All-ring unique ring signature model. We sketch the security definitions of all-ring unique
ring signature schemes, which no longer asks the uniqueness property to only hold for the prescribed
rings. It is easy to see that the uniqueness notion and non-colliding property can be modified
accordingly. In terms of other security notions, there are two differences from those for regular
unique ring signature: first, in the anonymity experiment, it is required now that A never query the
RS(·, ·, ·) oracle with (i0, ·,m) or (i1, ·,m); second, in the unforgeability experiment, the adversary
is now not allowed to query the RS(·, ·, ·) oracle with (·, ·,m). It is clear that the changes in both
of the unforgeability and anonymity experiments actually impose the adversary more restrictions.

4 Unique Ring Signature from General Assumptions

In this section, we give a general construction of unique ring signature in the common random
string model, mainly by extending the design paradigm of Bellare and Goldwasser (BG) [4].

Some intuition. The basic idea of the BG signature is to make PRF public using a publicly
verifiable NIZK proof. Specifically, the authority pre-selects an encryption scheme Epk(·) and a
family of pseudorandom functions F (·). A signer publishes an encryption C of some randomly
chosen message s using a randomness r (i.e., C = Epk(r, s)). Now, the signer produces a signature
on m as (m, τ, π) where τ ← Fs(m) and π is a NIZK proof such that (pk,C,m, τ) ∈ L where the
language L := {(pk, C,m, τ)|∃(s, r)[C = Epk(r, s) and τ = Fs(m)]}. If the underlying NIZK proof
system (P, V ) is adaptively zero-knowledge then the above scheme is unforgeable against chosen-
message attacks. Note that the signature identifier τ on a message m is not necessarily unique as
the signer may find another pair (r′, s′) such that (r, s) 6= (r′, s′) while Epk(r, s) = Epk(r

′, s′). This
problem can be easily solved by replacing the encryption scheme with a commitment scheme. We
extend this scheme to construct a unique ring signature. The idea is a simple one. Every user
now commits to its own public key. Given a pre-selected ring R, it simply produces a signature on
message m as (R,m, τ, π), where τ ← Fs(m||R) is the unique identifier and π is a NIZK proof for
an “or” language such that there exists one user who indeed uses its committed message as a key
to apply the PRF to m||R. The construction is detailed in Figure 1.
Notice that the NIZK proof system must be zero-knowledge in adaptive, multi-prover, multi-
theorem setting [4, 23]. We follow the terminology of [23] to call it adaptive NIZK. The following
theorem establishes the security of the scheme in Figure 1 (proof in Appendix A):

Theorem 1 If F is a PRF family, CM is a commitment scheme, and the underlying NIZK for
NP-languages is adaptively zero-knowledge then the scheme described in Figure 1 is a secure unique
ring signature scheme.

All-ring unique ring signature. The above unique ring signature can be rather easily con-
verted to an all-ring unique ring signature. The input into the PRF should now not contain the
ring information R. That is, user i with secret key (ri, si) gets the ring signature as (R,m, τ, π)
where τ = Fsi(m) and π is an adaptive NIZK proof that ({Cj}nj=1,m, τ) ∈ LOR where LOR =
{({Cj}nj=1,m, τ)|∃(j, sj , rj)[Cj = Com(rj , sj) and τ = Fsj (m)]}. The verification algorithm can be
modified accordingly. Looking ahead, the following two unique ring signature constructions that
we shall describe shortly can be likewise modified to be all-ring unique ring signature schemes.
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Setup(1λ).

The setup algorithm selects a common random string η
$←{0, 1}l(λ), a PRF family F : S×X → Y where

S is the key space, X is the message space, and Y is the range, and a string commitment scheme CM
with a committing algorithm Com. It outputs the public parameters as

pp = (λ, η, F, CM).

RG(1λ, pp).
The key generation algorithm for user i takes as input the parameter pp and computes a string

commitment Ci on a randomly chosen si using randomness ri (i.e., Ci = Com(ri, si)), and outputs the
public key as pki = (pp, Ci) and the secret key as ski = (pp, si, ri).

RS(ski, R,m).
To sign the message m in the ring R = (pk1, ..., pkn), the signer i uses its secret key (si, ri) to produce

a signature as
(R,m, σ),

where σ = (τ, π) in which τ ← Fsi(m||R) is the unique identifier and π is a publicly verifiable NIZK
proof that ({Cj}nj=1, R,m, τ) ∈ LOR where LOR := {({Cj}nj=1, R,m, τ)|∃(j, sj , rj)[Cj = Com(rj , sj) and
τ = Fsj (m||R)]}.
RV(R,m, σ).

The verification algorithm first parses σ as (τ, π) and checks if π is a correct NIZK proof for the
language LOR.

Figure 1: Unique ring signature from general assumptions in the common random string model.
In particular, X is the ring signature space, and Y is the unique identifier range.

5 Unique Ring Signature in Random Oracle Model

We start by describing our basic underlying signature/VRF scheme, and then give the construction
of unique ring signature. Notice that our proof techniques do not require proof of knowledge but
heavily rely on zero-knowledge proof of membership. This is one of the main reason our signature
enjoys tight security reductions and thereby admits an improvement in efficiency for a given level
of provable security.

5.1 The Underlying VRF Scheme.

The signature we shall describe is first predicated on a (well-known) observation that given a
random public group element y = gx, the function F (m) := H(m)x is a PRF, if we model the hash
function H(·) as a random oracle.

Our scheme is furthermore based on a well-known zero-knowledge proof system for equality of
discrete logarithm due to Chaum and Pederson [16]:
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A prover and a verifier both know (g, h, y1, y2) with g, h 6= 1 and y1 = gx and y2 = hx for an
exponent x ∈ Zq. A prover also knows the exponent x. They run the following protocol:

1. The prover chooses r
$← Zq and sends a← gr, b← hr to the verifier.

2. The verifier sends a challenge c
$← Zq to the prover.3

3. The prover sends t← r − cx mod q to the verifier.

4. The verifier accepts iff a = gtyc1 and b = htyc2.

The above protocol is a sound proof system but also honest-verifier zero-knowledge (HVZK). By
using Fiat-Shamir transformation [27], it becomes a NIZK proof system if we model the hash
function as a random oracle.

Setup(1λ).
The setup algorithm takes as input the security parameter λ and outputs a multiplicative group G of

prime order q and a randomly chosen generator g of G. It also provides two hash functions H: {0, 1}∗ → G
and H ′: {0, 1}∗ → Zq. It outputs the public parameters as

pp = (λ, q,G, H,H ′).
Gen(1λ, pp).

The key generation algorithm takes as input the parameter pp and chooses x
$← Zq and computes

y ← gx. It outputs the public key as pk = y and the secret key as sk = x.

Sig(sk,m).

To sign the message m, the signer selects r
$← Zq and computes

(m,H(m)x, c, t),

where c← H ′(m, gr, H(m)r) and t← r − cx mod q.

Vrf(sk,m, σ) .
The verification algorithm first parses σ as (m, τ, c, t) and checks if

c = H ′(m, gtyc, H(m)tτ c).

Figure 2: Efficient Signature/VRF from the DDH assumption in the random oracle mod-
el. The algorithms are described in the context of digital signature. It is also a VRF scheme, where
VRF .Eva(sk,m) = H(m)x, VRF .Prove(sk,m) = (c, t), and VRF .Ver(m,σ) = DS.Vrf(m,σ).

Given the above PRF and NIZK proof system, we apply the BG paradigm to obtain a VRF scheme
depicted in Figure 2. (The scheme is in fact a PRF with a NIZK proof and of course a secure
signature scheme.) Of course, the function that maps x to gx is not a commitment scheme: the
binding property is satisfied while the hiding property is not. This prevents us from following the
general NIZK construction’s proof strategy exactly. However, under the DDH assumption, this can
be proven secure with a rather similar proof as that for the BG signature.

We can show that the advantage of an adversary attacking the signature unforgeability property
is bounded by the DDH advantage, the soundness error, and the zero-knowledge advantage. We

3More precisely, one can choose c from {0, 1}k where k < dlog qe is a security parameter related to the tightness
of reduction.
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omit the proof since in a moment we will be proving, by analogous but more involved means, what
is essentially a stronger result for the following unique ring signature scheme.

5.2 Extending the VRF to Unique Ring Signature

Extending the underlying proof system. With the general framework for unique ring sig-
nature, the core protocol is to extend the underlying NIZK proof to an “or” language — a proof
system that a unique identifier τ (for a message m and a ring R) has the same logarithm with
respect to base H(m||R) as one of the public keys yj := gxj (j ∈ [n]) with respect to base g.
Assume, without loss of generality, logH(m||R) τ = logg yi and the prover knows xi. In particular,
we use the following proof system between a prover and a verifier.

1. For j ∈ [n] and j 6= i, the prover selects cj , tj
$← Zq and computes aj ← gtjy

cj
j and bj ←

H(m)tj (H(m)xi)cj ; for j = i, the prover selects ri
$← Zq and computes ai ← gri and

bi ← H(m)ri . It sends {aj , bj}n1 to the verifier.

2. The verifier sends a challenge c
$← Zq to the prover.

3. The prover computes ci ← c−
∑

j 6=i cj and t← r − cixi mod q, and sends c1, t1, · · · , cn, tn
to the verifier.

4. The verifier accepts iff aj = gtjy
cj
j and bj = H(m)tjτ cj for every j ∈ [n].

The above protocol combines the Chaum-Pederson (CP) technique for proving the equality of two
discrete logarithms of [16] and Cramer-Damg̊ard-Schoenmakers (CDS) transformation [21]. Since
both of the conversions “preserve” the properties of Σ -protocols, the above system is a sound proof
system,4 and also an interactive honest-verifier zero-knowledge of membership. However, as far as
we are concerned, its soundness property has never been used in any signature schemes related
to the above proof system. (This is perhaps due to the fact no one needs this property in these
schemes anyway.) We now prove that the above proof system is sound;5 in particular, even an
arbitrarily malicious prover P ∗ cannot convince the verifier to accept a false statement.

Proof: The goal is to show that if logH(m) τ 6= logg yj for every j ∈ [n], then given any {aj , bj}n1
sent by P ∗ there is at most one value c for which P ∗ can respond correctly. Recall above that we
let x0 denote logH(m) τ and xj denote logg yj for every j ∈ [n]. In this case, we have that x0 6= xj

(j ∈ [n]). Given any {aj , bj}n1 (where we assume aj = grj and bj = H(m)r
′
j ) sent to the verifier by

a cheating prover, we have the following: if the verifier is to accept, then we must have that

c =

n∑
1

cj , (1)

4Strictly speaking, Σ -protocols can be divided into two categories: Σ -protocols for proof of knowledge, and Σ -
protocols for proof of membership. In particular, we can formally show, in the setting of proof of membership, the
special soundness property implies that a Σ -protocol is always an interactive proof system.

5This is needed, since in a moment, we shall be providing the exact bound on the soundness property in the
random oracle model.
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and for every j ∈ [n],

aj = gt1y
cj
j , (2)

bj = H(m)tjτ cj . (3)

By (2) and (3) we obtain that for every j ∈ [n],

rj = tj + xjcj , (4)

r′j = tj + x0cj . (5)

Noting that x0 6= xj for every j ∈ [n], we have cj ← (rj − r′j)(xo − xj)−1 mod q. According to
equation (1), we can now conclude that there is at most one challenge which the cheating prover
can respond to. Therefore, the verifier generates this challenge with probability 1/q and the proof
for soundness now follows.

If we turn the above system into a NIZK proof system by following Fiat-Shamir transformation
through a hash function H ′ then one can check that the soundness property is bounded by qh/q,
where qh denotes the number of times the adversary makes to the random oracle H ′. Indeed, in
this case, for any {aj , bj}n1 and any query H(m, {aj , bj}n1 ) made by an adversary P ∗, it follows from
the above proof that there is at most one possible value of c satisfying the verification equations.

The unique ring signature (from the DDH assumption in the ROM) is described in Figure 3.

Setup(1λ).6

The setup algorithm takes as input the security parameter λ and outputs a multiplicative group G of
prime order q and a randomly chosen generator g of G. It also provides two hash functions H: {0, 1}∗ → G
and H ′: {0, 1}∗ → Zq. It outputs the public parameters as

pp = (λ, q,G, H,H ′).
RG(1λ, pp).

The key generation algorithm for user i takes as input the parameter pp and selects an element xi
$← Zq

and computes yi ← gxi . It outputs the public key as pki = (pp, yi) and the secret key as ski = (pp, xi).

RS(ski, R,m).
To sign the message m in the ring R = (pk1, ..., pkn), the signer i with the secret key ski = xi generates

the signature in the following way:

1. (Simulation step.) For j ∈ [n] and j 6= i, select cj , tj
$← Zq and compute aj ← gtjy

cj
j and bj ←

H(m||R)tj (H(m||R)xi)cj .

2. For j = i, select ri
$← Zq and compute ai ← gri and bi ← H(m||R)ri .

3. Let ci ← H ′(m,R, {aj , bj}n1 )−
∑
j 6=i cj mod q and ti ← ri − cixi mod q.

4. Return (R,m,H(m||R)xi , c1, t1, · · · , cn, tn).

RV(R,m, σ).
On receiving the signature (R,m, σ), the verification algorithm first parses σ as (τ, c1, t1, · · · , cn, tn)

and checks if ∑n
1 cj = H ′(m,R, {gtjycjj , H(m||R)tjτ cj}n1 ).

Figure 3: Unique ring signature from the DDH assumption in the random oracle model.

6Note that for this unique ring signature, this is not a common reference string setup algorithm. The public
parameters can all be determined by the security parameter. We use this notation only for consistency.
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The following theorem establishes the security of the above scheme (with proof in Appendix B).

Theorem 2 The scheme presented in this section is a unique ring signature in the random oracle
model under the DDH assumption.

Remarks and comparisons. We highlight the main results with respect to all the unique ring
signature definitions of security: if we let Advddh

G be an upper bound on the probability that
the DDH problem in G can be solved and qh denote the number of times the adversary makes
to the random oracle, then we have the following results about the security of our unique ring
signature: Advanon

RS (A) ≤ Advddh
G (A2) + qh/q, Advuf

RS(A) ≤ Advddh
G (A3) + (2qh + n + 1)/q, and

Advunique
RS (A) ≤ Advddh

G (B) + t(qh + 1)/q+ qh/q+ tn/q, where t ≤ n+ 1. 7 Therefore, our scheme
is as secure as the DDH problem. For a given level of provable security, our scheme is thus much
more efficient, concerning the signing and verification algorithms, than the scheme due to Liu, Wei,
and Wong [37] and follow-on works [1, 19, 38, 47, 48] (with additional features but less efficient and
under stronger or exotic assumptions though).

6 Unique Ring Signature without Random Oracles

We now show how to obtain a unique ring signature scheme from the traceable ring signature
of Fujisaki [28]. Fujisaki’s scheme is based on the ring signature due to Chandran, Groth, and
Sahai [14], while our scheme follows exactly our general framework, simplifying and clarifying
the overall structure, eliminating the relatively inefficient one-time signature, employing a solo
assumption (i.e., Pseudo-Random DDHI assumption [28]), and requiring no proofs any more (as
impled by the general framework).

6.1 The Underlying VRF Scheme.

We begin with the description of a verifiable random function (actually a PRF with a NIZK proof)
mainly by modifying the traceable ring signature in [28], based on which we propose a unique ring
signature scheme. Before we proceed, we recall several building blocks from [9–11, 14, 28, 33, 34].

Boneh-Boyen signature. Boneh and Boyen [9] gave a weakly unforgeable signature scheme
based on the strong Diffie-Hellman assumption in Gp [9]. Given a bilinear group of prime order

(p,Gp,GTp , e, gp), the signer chooses x
$← Z∗p as the secret key and takes y ← gxp as the public key.

To sign on m ∈ Zp, the signer produces g
1/(x+m)
p . Given some signature (m,σ), one can verify it

by checking if e(σ, ygmp ) = e(gp, gp). It is easy to give a variant of the Boneh-Boyen signature in
BGN bilinear groups of composite order under the strong DDH assumption in those groups. This
is an essential assumption for the construction of [28], but is not needed for ours.

NIWI proof for LBB [34]. Given a BGN bilinear group (N, p, q,G,GT , e, g), define xp := xq

for every x ∈ G. We now define the following language: LBB := {(V,m, δ) ∈ G × Z∗n × G|∃x ∈
Zn[Vp = gxp and δp = g

1/(x+m)
p ]}. According to [34], the NIWI proof for (V,m, δ) ∈ LBB is given

as follows: given a common reference string (N,G,GT , e, g, h) where h is either randomly chosen
from Gp or G. The witnesses to the prover are (y, σ, r, s) such that V ← yhr and δ ← σhs (BGN
commitment [10]) and e(gmy, σ) = e(g, g) (i.e., σ is the valid signature on m in the composite order
BGN group). The NIWI proof is π0 ← gmysV r. The verifier checks if e(gmy, δ) = e(g, g) · e(h, π0)

7Variable t denotes the number of signatures output by the adversary. See also Appendix A.3.
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and accepts iff it holds. The completeness property easily follows. The NIWI proof is perfectly
sound if h is of order q, and perfectly witness-indistinguishable if h is of order N .

NIWI proof for L1n [14]. Given a BGN bilinear group (N, p, q,G,GT , e, g), we define a lan-
guage L1n := {(V, {Yi}1n)|∃i ∈ [n][Vp = (Yi)p]}. A NIWI proof for this language of size O(

√
n) is

given in [14]. If h has order N it is perfectly witness-indistinguishable; if h has order q it is perfectly
sound. We use this tool in a black-box manner and refer the reader to [14, 28] for details. We also
use a special case of the language L12 to convert a NIWI proof for LBB to a NIZK proof for the
same language.

NIZK proof for LBB. The idea is standard: add two randomly chosen groups elements Y0
and σ0 to the common reference string; give a NIWI proof for LBB; and use the witness of Y0
and σ0 to simulate the proof. Specifically, given a BGN group, to generate a NIZK proof that

(Y,m, σ) ∈ LBB, one selects r, s
$← ZN and computes V ← Y hr and δ ← σhs, and it then produces

a NIWI proof that (V,m, δ) ∈ LBB, a NIWI proof that (V, (Y0, Y )) ∈ L12, and a NIWI proof that
(δ, (σ, σ0)) ∈ L12.

We are ready to present the underlying verifiable random function, as depicted in Figure 4. Under
the PR-DDHI assumption, it is straightforward that the unique identifier τ is pseudorandom. As
in [28], τ̂ is used to make sure that the signer uniquely generates its signature. (Otherwise, there
exists an adversary that can use them to solve the subgroup decision assumption.) We immediately
have the following lemma:

Lemma 1 The scheme presented above is a PRF with a NIZK proof under the subgroup decision
assumption and the PR-DDHI assumption in both Gp and Gq.

6.2 Sublinear Unique Ring Signature in Common Reference String Model

We now give our unique ring signature scheme, detailed in Figure 5, which achieves sublinear size in
the common reference string model. The following theorem establishes the security of the scheme:

Theorem 3 The above scheme presented in this section is a unique ring signature under the sub-
group decision assumption and the PR-DDHI assumption in both Gp and Gq.

7 Concluding Remarks

We define unique ring signature that capture the spirit of linkable ring signature. One should think
of unique ring signature as being functionally the same as linkable ring signature, but definition-
ally more simple, and more suitable for our constructions. Of course, it is safe to compare the
constructions between unique ring signatures and linkable ring signatures in terms of efficiency,
cryptographic assumptions, and security reductions.

We present a general, simple, and unified framework for unique ring signature. It can be viewed
as an extension and generalization of the Bellare-Goldwasser signature [4], combining certified PRF
and NIZK proof of membership.

Security of the first instantiation can be tightly related to the simple and well-studied DDH
problem in the random oracle model. A comparison reveals that the scheme is the most efficient
one, for a given level of provable security, among all the existing linkable/unique ring signature
schemes [1, 19, 37, 38, 47, 48].

We also show how to obtain a unique ring signature scheme from the traceable ring signature
due to Fujisaki [28]. Our scheme is not simply a weakened version of [28] that removes the extra
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Setup(1λ).
The setup algorithm serves to generate the common reference string given the security parameter λ. It

first generates a BGN bilinear group of composite order (N, p, q,G,GT , e, g) where g is a random generator

of G and N = pq. It also selects h, ĥ, Y0, τ0
$←G, where h is used for the commitment scheme, ĥ is used

to ensure the uniqueness of the identifier, Y0 and τ0 is used to convert NIWI proof for LBB to NIZK proof.
It finally outputs the common reference string as

crs = (N,G,GT , e, g, h, ĥ, Y0, τ0).

Gen(1λ, crs).
The key generation algorithm for user i takes as input the common reference string crs and select-

s x, t
$← ZN and computes Y ← gxht where we let y denote gx. It outputs the public key as pk = (crs, Y )

and the secret key as sk = (crs, x, t).

Sig(ski,m).
To sign the message m, the signer i uses its secret key x to produce a signature as

(m,σ),

where σ = (τ, τ̂ , π) in which τ ← g
1

x+m is the unique identifier, τ̂ ← ĥ
1

x+m , and π is a NIZK proof that
(Y,m, τ) ∈ LBB . (Note that we use Y0 and τ0 to convert the Groth-Sahai NIWI proof for LBB to a NIZK
proof.)

Vrf(pki,m, σ).
The verification algorithm first parses σ as (τ, τ̂ , π) and verifies it by checking if π is a correct proof

LBB and e(τ, ĥ) = e(τ̂ , g).

Figure 4: Signature/VRF from the PR-DDHI assumption in the common reference string
model. The algorithms are described in the context of digital signature. It is also a VRF scheme, where
VRF .Eva(sk,m) = τ , VRF .Prove(sk,m) = (τ̂ , π), and VRF .Ver(m,σ) = DS.Vrf(m,σ).

public tracing functionality, but a meaningful simplification, eliminating the relatively inefficient
one-time signature, employing a solo assumption, and requiring no proofs any more. (Despite its
sublinear size, the scheme, however, relies on very strong assumptions and a common reference
string setup, and is not as computationally efficient.)

Both of improved results would be difficult without the general abstraction.
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[35] J. Herranz and G. Sáez. Forking lemmas for ring signature schemes. INDOCRYPT 2003, LNCS

vol. 2904, Springer, pp. 266–279, 2003.
[36] J. Katz and N. Wang. Efficiency improvements for signature schemes with tight security reductions.

CCS 2003, ACM press, pp. 155–164, 2003.
[37] J. Liu, V. Wei, and D. Wong. Linkable spontaneous anonymous group signatures for ad hoc groups.

ACISP 2004, LNCS vol. 3108, Springer, pp. 325–335, 2004.
[38] J. Liu and D. Wong. Linkable ring signatures: Security models and new schemes. ICCSA 2005, LNCS

vol. 3481, Springer, pp. 614–623, 2005.
[39] S. Micali, M. Rabin, and S. Vadhan. Verifiable random functions. FOCS 1999, IEEE Computer Society,

pp. 120–130, 1999.
[40] S. Micali and L. Reyzin. Improving the exact security of digital signature schemes. J. Cryptology,

15(1): 1–18, 2002.
[41] L. Nguyen and R. Safavi-Naini. Dynamic k-Times anonymous authentication. ACNS 2005, LNCS

vol. 3531, Springer, pp. 219–250, 2005.
[42] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. J. Cryp-

tology, 13(3): 361–396, 2000.
[43] R. Rivest, A. Shamir, and Y. Tauman. How to leak a secret: Theory and applications of ring signatures.

Theoretical Computer Science, Essays in Memory of Shimon Even, LNCS vol. 3895, Springer, pp. 164–
186, 2006.

[44] C.-P. Schnorr. Efficient identification and signatures for smart cards. CRYPTO ’89, LNCS vol. 435,
Springer, pp. 239–252, 1990.

20



[45] I. Teranishi, J. Furukawa, and K. Sako. k-times anonymous authentication. ASIACRYPT 2004, LNCS
vol. 3329, Springer, pp. 308–322, 2004.

[46] I. Teranishi, K. Sako. k-times anonymous authentication with a constant proving cost. PKC 2006,
LNCS vol. 3958, Springer, pp. 525–542, 2006.

[47] P. Tsang and V. Wei. Short linkable ring signatures for e-voting, e-cash and attestation. IPSEC 2005,
LNCS vol. 3439, Springer, pp. 48–60, 2005.

[48] P. Tsang, V. Wei, T. Chan, M. Au, J. Liu, and D. Wong. Separable linkable threshold ring signatures.
INDOCRYPT 2004, LNCS vol. 3348, Springer, pp. 389–398, 2004.

A Proof of Theorem 1

A.1 Unforgeability.

Proof: We begin with the unforgeability notion and proceed our proof with a sequence of games.

Game 0. Let Game 0 be the original unforgeability experiment between the challenger and an
adversary A, let (R∗,m∗, σ∗) denote the output of adversary A, and let W0 be the event that A
succeeds (i.e., Ver(R∗,m∗, σ∗) = 1 and R∗ ⊆ T\CU and A never queried RS(·, ·, ·) with (·, R∗,m∗)).
It is clear that

Advuf
RS(A) = Pr[W0]. (6)

Game 1. Let Game 1 be as Game 0, except that the verification algorithm for the final forgery
further checks if there exists at least one integer i ∈ [n] such that pki ∈ R∗ and Fsi(m

∗||R∗)
equals τ∗. Let W1 be the event that A succeeds in Game 1. Following a standard argument, we
get that

Pr[W0]− Pr[W1] ≤ Advsound
(P,V )(A1), (7)

where A1 is an adversary that attacks the adaptive soundness property of the underlying NIZK
proof system (P, V ). Note in Game 1 that the verification algorithm makes use of some components
of the secret keys of the users, while in the original experiment it does not.

Game 2. Let Game 2 be as Game 1, except that when responding to a signing query, the challenger

uses a simulated proof. More formally, the challenger runs (η′, s)
$← S1(1

λ) to prepare the common
random string η′ and keeps the simulation trapdoor s. Given a signing oracle (j,m,R), it runs S2,
using the simulation trapdoor s, to give a simulated NIZK proof π′, such that (R,m,Fsj (m||R)) ∈
LOR, and outputs (R,m,Fsj (m||R), π′).

Let W2 be the event that A succeeds in Game 2. It is easy to show that there exists an adversary
A2 attacking the adaptive zero-knowledge property of the underlying NIZK proof system (P, V )
such that:

Pr[W1]− Pr[W2] ≤ Advzk
(P,V )(A2). (8)

Game 3. Let Game 3 be as Game 2 with the following difference. For any uncorrupted user i ∈
T\CU, the challenger commits to a randomly selected message s′i. When responding to the signing
query with (j,m,R), the challenger still computes the unique identifier as Fsj (m||R) and returns
(R,m,Fsj (m||R), π′), where π′ is a simulated proof. Let W3 be the event that A succeeds in Game 3.
By a standard hybrid argument we claim that:

Pr[W2]− Pr[W3] ≤ n ·Advhide
CM(A3). (9)
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where A3 is some adversary that attacks the hiding property of the commitment scheme. Note that
the reduction loses a factor of n due to the hybrid argument.

Game 4. Let Game 4 be as Game 3 with the following difference. The challenger replaces the
PRF family with a family of random functions. Specifically, the signing algorithm for the challenger
changes as follows: given a signing query (j,m,R), the challenger now provides the adversary A
with (R,m, r′, π′) where r′ is a random value chosen from the range Y of the PRF family, and π′ is
a simulated proof. The verification algorithm for the final forgery changes accordingly: it randomly
chooses a value ri for every uncorrupted user i. The adversary A provides the challenger with its
final forgery (R∗,m∗, σ∗) where σ∗ is (τ∗, π∗). Adversary A succeeds if τ∗ = ri for some uncorrupted
user i and π∗ is a valid NIZK proof. Let W4 be the event that A succeeds in Game 4. Again,
following a standard hybrid argument we have that:

Pr[W3]− Pr[W4] ≤ n ·Advprf
F (A4). (10)

where A4 is some adversary that attacks the PRF property of the function family F .

By construction we also claim that

Pr[W4] ≤ n/|Y|. (11)

Indeed, the probability that the adversary A guesses correctly a random value on a new message
for a random function is equal to 1/|Y|. Pr[W4] is bounded by n/|Y| since there are at most n
uncorrupted users.

By combining (6)-(11), we have that for any probabilistic polynomial time adversary A, there exist
probabilistic polynomial time adversaries A1, A2, A3, and A4, such that the following holds:

Advuf
RS(A) ≤ Advsound

(P,V )(A1) + Advzk
(P,V )(A2) + n ·Advhide

CM(A3) + n ·Advprf
F (A4) + n/|Y|.

The unforgeability now follows.

A.2 Anonymity

We now sketch the proof for the anonymity of the unique ring signature scheme in Figure 1.
The basic idea is that PRF part (i.e., the unique identifier) is really random (with overwhelming
probability) and therefore anonymous, and the NIZK proof part is zero-knowledge.

Let Wi be the event that the adversary A guesses correctly (i.e., b′ = b) in Game i.
Let Game 0 be the original anonymity experiment. It is clear that Advanon

RS (A) = Pr[W0]−1/2.
Let Game 1 be as Game 0 except that when responding to a signing query, the challenger uses a

simulated proof. It is easy to prove that Pr[W0]−Pr[W1] ≤ Advzk
(P,V )(A1) for some adversary A1.

Let Game 2 be as Game 1 with the following difference. For any uncorrupted user i ∈ T\CU,
the challenger commits to a randomly selected message s′i. We have that Pr[W1] − Pr[W2] ≤
n ·Advhide

CM(A2) where A2 is an adversary attacking the hiding property of the commitment scheme.
Game 3 replaces the PRF family with a random function family. In this game, we have Pr[W2]−

Pr[W3] ≤ n ·Advprf
F (A3) for some adversary A3. Also note in Game 3, Pr[W3] = 1/2, since the

unique identifier part is now random and the NIZK part can be simulated.
Combining the above results, we have that for any probabilistic polynomial time adversary A

attacking the anonymity experiment, there exist probabilistic polynomial time adversaries A1, A2,
and A3, such that the following holds:

Advanon
RS (A) ≤ Advzk

(P,V )(A1) + n ·Advhide
CM(A2) + n ·Advprf

F (A3).
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This completes the sketch of the anonymity proof.

A.3 Uniqueness

We sketch the proof that the ring signature satisfies the uniqueness property via game-based tech-
niques. For simplicity, we assume that the commitment scheme is perfectly binding. Let Wi be
the event that the adversary A succeeds in Game i (i.e., adversary A outputs |CU∪ RST,m|+ 1 valid
signatures which have distinct unique identifiers with respect to the same message).

Let Game 0 be the original uniqueness experiment. It is clear that Advunique
RS (A) = Pr[W0].

Game 1 is the same as Game 0, except that, for each signature (T,m, τ, π) by adversary A, the
verification algorithm further checks if there exists at least one integer i ∈ [n] such that pki ∈ T
and Fsi(m||T ) = τ and Com(ri, si) = pki. (Note the difference between this game and Game 1 for
proving unforgeability.) Using a standard argument, it is easy to prove that Pr[W0] − Pr[W1] ≤
t · Advsound

(P,V )(A1), where A1 is an adversary that attacks the adaptive soundness property of the
underlying NIZK proof system (P, V ), and t denotes the number of signatures output by the
adversary A (i.e., t = |CU ∪ RST,m|+ 1, and it is clear that t ≤ n+ 1).

Let Game 2 be as Game 1 except that when responding to a signing query, the challenger uses
a simulated proof. We can prove that Pr[W1] − Pr[W2] ≤ Advzk

(P,V )(A2) for some adversary A2

attacking the adaptive zero-knowledge property of underlying NIZK proof system.
Let Game 3 be as Game 2 with the following difference. For any uncorrupted user i ∈ T\CU,

the challenger commits to a randomly selected message s′i. We have that Pr[W2] − Pr[W3] ≤
n · Advhide

CM(A3) where A3 is an adversary that attacks the hiding property of the commitment
scheme.

Let Game 4 be as Game 3 with the following difference. The challenger replaces the PRF family
with a family of random functions. More concretely, the signing algorithm changes as follows: to
answer a signing query (j,m,R), the challenger now provides the adversary A with (m, r′, π′)
where r′ is a random value chosen from the range Y of the PRF family, and π′ is a simulated
proof. The verification algorithm for the final output of adversary A should change as follows:
randomly chooses a value ri for every uncorrupted user i. We claim that by construction we have
that Pr[W4] ≤ tn/|Y|. This can be justified as follows.

First, the adversary has the queried unique identifiers via the signing queries for a message m.
Since the received signatures are generated by the honest (and partly deterministic) algorithm by
the challenger, the number is at most |RST,m|.

Suppose that adversary A wishes to output a signature of the form (T,m, σ) with a unique
identifier different from the queried signatures. It can use its received secret keys to generate
the valid signatures, and it may forge valid signatures that has a new identifiers besides its own.
However, whatever it generated must pass our new added verification rule: by the assumed perfect
binding property of the commitment scheme, it at most gives |CU| unique identifiers given the
corrupted secret keys and must guess the rest of them (in order to win), which are now in this
game random values. The probability that A can guess a “new” correct unique identifier is at
most n/|Y|. Thus, the probability that adversary A succeeds is at most tn/|Y|.

Meanwhile, following a standard hybrid argument we have that Pr[W3]−Pr[W4] ≤ n·Advprf
F (A4),

where adversary A4 is some adversary that attacks the PRF property of function family F .
Combining all the results, we now have that for any probabilistic polynomial time adversary A,

there exist probabilistic polynomial time adversaries A1, A2, A3, and A4, such that the following
holds:

Advunique
RS (A) ≤ t ·Advsound

(P,V )(A1) + Advzk
(P,V )(A2) + n ·Advhide

CM(A3) + n ·Advprf
F (A4) + tn/|Y|.
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Non-Colliding Property. Recall that a unique ring signature scheme is non-colliding if two
different signers almost never produce the same unique identifier of the same message. The non-
colliding property is bounded by the PRF advantage of F .

B Proof of Theorem 2

The validity of the public key of each user for the scheme in Figure 3 can be publicly verified.
It is easy to check whether the public keys have the same distribution. In this setting, we use
equivalent notions for uniqueness, anonymity, and unforgeability, where, given a target ring of size,
the adversary is not given access to a corruption oracle but can add new public keys to the ring.
This time, we prove the anonymity in details and sketch the unforgeability instead.

B.1 Anonymity

Proof: We proceed with a sequence of games.

Game 0. Let Game 0 be the original anonymity experiment between the challenger and an
adversary A. We assume that A makes at most qh hash queries to either H or H ′, and at most
qs signing queries. Let b′ the output of its “guess”, and let W0 be event that adversary A succeeds
(i.e., b′ = b). In what follows, we give a detailed description.

Generating n Public Keys. The challenger randomly chooses x, y
$← Zq and computes a DDH tuple

(g,X, Y, Z) such that X = gx, Y = gy, and Z = gxy. For every i ∈ [n], the challenger randomly

selects xi
$← Zq and computes pki ← X · gxi , and gives T = {pki}ni=1 to adversary A. It is easy to

see that all of n public keys are chosen independently at random.

Hash Queries to H. The challenger maintains a set V of the form (m,R, h, u), initially empty. The

challenger first randomly selects d
$← Zq. When responding to a hash query (mj , Rj), it first checks

if (mj , Rj , hj , uj) ∈ V for some hj and some uj . If so, it returns hj ; otherwise, it randomly selects

uj
$← Zq and returns hj ← Y d · guj and adds (mj , Rj , hj , uj) to the set V.

Hash Queries to H ′. The challenger maintains a set V ′ of the form (m,R, {aj , bj}n1 , c), initially
empty. When responding to a hash query (m′, R′, {a′j , b′j}n1 ), it first checks if the output of H ′ on
this input has been previously defined. If this is the case, it returns the assigned value. Otherwise,
it responds with a random value from Zq.
Signing Queries. When adversary A makes a signing query of the form (j, R,m), adversary B
first makes the hash query to H and gets h where h ← Y d · gu. Then, the challenger computes
τ ← Zd ·Xu · Y dxj · gxju, and then faithfully computes the corresponding NIZK proof π using the
secret key of user j (i.e., x+ xj). Finally, the challenger provides A with (m,R, τ, π).

Challenge. Adversary A requests a challenge (i0, i1, R
∗,m∗), where m∗ is to be signed with respect

to the ring R∗, and i0 and i1 ∈ [n] are indices such that pki0 , pki1 ∈ T ∩ R∗. The challenger

randomly chooses b
$←{0, 1}, and provides the challenge signature RS(skib , R

∗,m∗) to A. It is
mandated that A never queried RS(·, ·, ·) with (i0,m

∗, R∗) or (i1,m
∗, R∗).

Output. Adversary A finally outputs b′ as its guess.

This completes the description of Game 0, which captures the original anonymity experiment
between the challenger and the adversary A. It is clear that

Advanon
RS (A) = Pr[W0]− 1/2. (12)

24



Game 1. Game 1 is the same as Game 0, except when responding to a signing query (j,m,R),
the challenger uses a simulated proof. Specifically, the simulator randomly chooses c1, t1, · · · , cn, tn
from Zq, and computes aj = gtjy

cj
j and bj = H(m||R)tjτ cj for every j ∈ [n].

Let W1 be the event that A succeeds in Game 1. Using a standard argument it is easy to show that
there exists a zero-knowledge adversary A1 attacking the adaptive NIZK property of the underlying
NIZK proof system (P, V ):

Pr[W0]− Pr[W1] ≤ Advzk
(P,V )(A1). (13)

We claim that, in the random oracle model, the above zero-knowledge advantage is bounded
by qh/q. Indeed, the simulation is perfect except when the adversary queried H ′ on some input
(m,R, {aj , bj}n1 ) but H ′(m,R, {aj , bj}n1 ) 6=

∑n
1 cj , which is bounded by qh/q.

Game 2. In Game 2, we modify the signing oracle again, so that the DDH tuple is replaced by
a random triple. Adversary A can only notice the difference with negligible probability under the
DDH assumption. Specifically, the challenger simply replaces Z with some Ẑ where Ẑ ← gc and

c
$← Zq. The rest of Game 3 is the same as Game 2. Let W2 be the event that A succeeds in

Game 2. We can show that there exists an adversary A2 such that

Pr[W1]− Pr[W2] ≤ Advddh
G (A2). (14)

We also claim that

Pr[W2] = 1/2. (15)

This is due to the fact that the unique identifier part of the challenge signature is random and the
NIZK part can be simulated.

The anonymity now follows from (12)-(15). Namely, for any probabilistic polynomial time adver-
sary A that attacks the anonymity of the ring signature RS, there exist probabilistic polynomial
time adversaries A2 such that the following holds:

Advanon
RS (A) ≤ Advddh

G (A2) + qh/q.

B.2 Unforgeability

We proceed the proof with a sequence of games. Let Wi be the event that the adversary A succeeds
in Game i.

Let Game 0 be the original unforgeability experiment. The challenger generates the n pairs of
public and secret keys just as in Game 0 in Appendix B.1. We have that Advuf

RS(A) = Pr[W0].
Game 1 is the same as Game 0, except that the verification algorithm for the final forgery

(R∗,m∗, (τ∗, π∗)) further checks if there exists at least one integer i ∈ [n] such that pki ∈ R∗ and
(g, pki, H(m∗||R∗)ski , τ∗) is a DDH tuple. It is easy to prove that Pr[W0]−Pr[W1] ≤ Advsound

(P,V )(A1),
where A1 is an adversary that attacks the adaptive soundness property of the underlying NIZK
proof system. In this setting, one can check that such probability is bounded by (qh + 1)/q, where
the additive factor of 1 occurs if the adversary did not make the H ′-query for its forgery.

We next modify Game 1 to obtain Game 2 that uses the simulator S to simulate the NIZK proof
of queried signatures. We can prove that Pr[W1]−Pr[W2] ≤ Advzk

(P,V )(A2), for some adversary A2
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that attacks the adaptive security of NIZK proof used in Section 4. Game 3 is the same as Game 2
except that the DDH tuple is replaced by a random tuple. Any adversary that noticed the difference
can be converted some adversary A3 to solve the DDH problem. That is, Pr[W2] − Pr[W3] ≤
Advddh

G (A3). Using a similar argument as in the proof of Theorem 1, it is easy to get that
Pr[W3] ≤ n/q.

Therefore, for any probabilistic polynomial time adversary A attacking the unforgeability ex-
periment, there exist probabilistic polynomial time adversaries A3, such that the following holds:

Advuf
RS(A) ≤ Advddh

G (A3) + (2qh + n+ 1)/q.

This completes the sketch of the unforgeability proof.

B.3 Uniqueness and Non-Colliding Property

In this section, we briefly show the uniqueness notion and non-colliding property of the ring signa-
ture scheme in Section 5. The uniqueness is guaranteed under the DDH assumption in the random
oracle model. The proof for uniqueness largely resemble the proof for unforgeability. Here we only
give the security result and omit the proof. For any probabilistic polynomial time adversary A
attacking the unforgeability experiment, there exist probabilistic polynomial time adversaries B,
such that the following holds:

Advunique
RS (A) ≤ Advddh

G (B) + t(qh + 1)/q + qh/q + tn/q.

Non-Colliding Property. The non-colliding property is bounded by the PRF advantage of F .
For the specific unique ring signature, it is perfectly non-colliding, assuming the minimal PKI
requirement that users should have distinct public keys.
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