
Enforcing IRM Security Policies: Two Case Studies*

Micah Jones
University of Texas at Dallas

Email: micah.jones1@student.utdallas.edu

Kevin W. Hamlen
University of Texas at Dallas
Email: hamlen@utdallas.edu

Abstract—SPoX (Security Policy XML) is a declarative lan-
guage for specifying application security policies for enforcement
by In-lined Reference Monitors. Two case studies are presented
that demonstrate how this language can be used to effectively
enforce application-specific security policies for untrusted Java
applications in the absence of source code.

I. INTRODUCTION

In-lined Reference Monitors (IRM’s) [15] are an emerging
paradigm for enforcing a powerful and versatile class of
software security policies in the absence of source code. In an
IRM framework, a rewriter automatically transforms untrusted
applications (e.g., Java bytecode binaries) in accordance with a
client-specified security policy. The rewriting process involves
inserting dynamic security guards around potentially security-
relevant operations in the untrusted code. The inserted guards
preserve policy-adherent behavior but detect and prevent
policy violations at runtime; impending violations trigger a
remedial action (e.g., premature termination).

IRM’s are useful for enforcing safety policies [9], [13]. In-
formally, a safety policy is any policy that prohibits untrusted
applications from exhibiting “bad” events. This includes all
access control policies (where “bad” events are unauthorized
accesses of security-relevant resources), as well as time-
bounded availability policies (where “bad” events are a failure
to make progress after a certain number of seconds or cycles).1

Traditionally, safety policies are enforced at the operating
system, virtual machine, or hardware levels; however, this
approach can be impractical when policies are application-
specific or when they refer to fine-grained events that are not
efficiently observable from outside the untrusted process. For
example, an access control policy that constrains system calls
performed by a web browser plug-in is not easily enforceable
by the operating system when both the plug-in and the browser
run in the same address space. Furthermore, enforcing such a
policy traditionally requires modifying the operating system or
virtual machine to support it, which is time-consuming, error-
prone, and can introduce compatibility problems. In contrast,
IRM systems yield rewritten, self-monitoring applications
without modifying the operating system, system libraries, or
virtual machine. This makes them highly flexible and well-
suited to enforcing such policies with minimal overhead.

∗This research was supported by AFOSR YIP award number FA9550-08-
1-0044 and a grant from Texas Enterprise Funds.

1Safety policies are sometimes contrasted with liveness policies, which
instead say that some “good” event must eventually happen. Non-time-
bounded availability policies are examples of liveness policies.

Much of the past work on IRM’s has relied upon spec-
ification languages in which policies are expressed partly
imperatively, such as those that include code fragments for the
rewriter to insert into the untrusted code (e.g., [3], [4], [6]).
Such policies are extremely difficult to analyze and reason
about because they specify code-transformations instead of
code properties. Other work has expressed policies purely
declaratively, but at the cost of significantly reduced power
(e.g., by limiting the language of security-relevant events to
method calls [1], [7], [10]). Specifying and enforcing more
powerful classes of declaratively specified security policies
using IRM’s has remained an open problem in the field.

To address this deficiency, we have been developing Secu-
rity Policy XML (SPoX)—a purely declarative yet powerful
IRM policy specification language that supports the following:

• An Aspect-oriented event language: Security-relevant
events are specified in SPoX using pointcuts from Aspect-
Oriented Programming (AOP) [11]. A pointcut defines a
set of machine instructions. Our Java implementation of
SPoX uses a pointcut language based on AspectJ [12] to
specify security-relevant operations. This allows policy-
writers to enforce policies that regard dynamic method
calls and their arguments, memory usage limits, numeri-
cal computations, and other important security properties
observable at the bytecode instruction level.

• History-based policies: Many security policies constrain
event histories rather than individual events. For example,
to enforce data confidentiality a policy might constrain
only those network send operations that occur after read-
ing a confidential file. SPoX expresses history-based poli-
cies with security automata [15]—finite state automata
that accept permissible event sequences. Since the state
space of real security policies is often large, SPoX uses a
linear constraint system to efficiently represent resource
counters and other common policy primitives.

• Separation of concerns: In order to keep the language
purely declarative, SPoX specifications encode only the
policy to be enforced and not a particular enforcement
strategy. This makes it easier both to write the policy
and to derive meaningful guarantees for the enforcement
system. In past work [8] this has allowed us to derive
a formal denotational semantics for SPoX that could be
used to formally verify rewriting algorithms and the code
they produce. Such verification is important for applying
IRM certification systems [2], [10].



In this article we relate some preliminary experiences using
SPoX to enforce security policies for real-world Java bytecode
applications. While our present implementation is limited
to Java, we believe that the language design can be easily
adapted to many other languages and platforms. Our Java-
based rewriter parses SPoX policies and applies them to
arbitrary Java binaries. In section II, we discuss two interesting
case studies. Section III concludes by summarizing what we
have learned and suggesting future work.

II. CASE STUDIES

In this section we discuss two case studies. For the first, we
created a file-oriented access control policy and enforced it on
the Columba email client [5]. For the second, we applied an
anti-freeriding policy to the XNap p2p file sharing client [14].

A. Columba Email Client

Columba is an open-source Java email application. We
enforced a policy that prohibits Columba from creating or ac-
cessing files whose names end in .exe. Such a policy is useful
for inhibiting virus propagation through email attachments.

Effectively enforcing this policy requires constraining calls
to Java library methods that access the file system. The
number of such methods is surprisingly vast; it includes
methods that stream data, those that create and manipulate
SQL databases (since those databases reside in files that could
have a prohibited name), etc. Listing all such methods would
be difficult (and error-prone) for the average administrator, so
we developed a pointcut library that identifies these method
calls. The following is an excerpt:
(pointcut name="fileMethods"

(or
(call "java.io.File.new")
(call "java.io.FileWriter.new")
(call "java.io.FileReader.new")
...

SPoX’s aspect-oriented design allows such libraries to be
maintained modularly by a trusted expert. Policy-writers
can then refer to these libraries to compose higher-level,
application-specific policies. The disjunctive pointcut above
was stored under the name fileMethods.

To precisely enforce the policy, the specification must
constrain the runtime arguments to these calls. For this we
use SPoX’s argval predicate:
(or (and (pointcutid name="fileMethods")

(or (argval num="1" (streq ".*\.exe.*"))
(argval num="2" (streq ".*\.exe.*"))))

(call "java.lang.Runtime.exec"))

Our rewriter dynamically decides these predicates by injecting
code that calls the toString() member of each argu-
ment and performs the requested regular expression com-
parison. Note that this policy also prohibits access to Java’s
java.lang.Runtime.exec method, which could be used
by an attacker to execute an arbitrary (untrusted) external
application.

Our rewriter required about 28 seconds on an Intel 2.66GHz
Core 2 Duo processor and increased the original 2.8MB

Columba binary by 3.6%. The runtime performance of the
rewritten code could not be measured formally because
Columba requires user interaction when executed; however,
we did not observe any noticeable performance overhead due
to the inserted security checks. Likewise, no behavioral change
to the application was observed except in the event of a policy
violation—accessing a file with a .exe extension forced a
premature termination of the application.

Our policy did have the unexpected side-effect of disabling
Columba’s spell-checker. Upon investigation, we found that
this feature used Runtime.exec to launch an external spell
check application, which was blocked by the policy. Had we
wished to allow this program to run anyway, we could have
modified the policy to whitelist certain application names as
follows:
(and (call "java.lang.Runtime.exec" )

(not (argval num="1" (streq "filename"))))

where filename is a regular expression denoting names of
trusted external applications. For modularity, the list of trusted
executables could be maintained as a separate pointcut library.

The policy specification above defends against certain mal-
ware propagation attacks, but has several deficiencies that
could be remedied by a more sophisticated specification. For
example, one could easily extend the regular expressions
to prohibit other dangerous file extensions. In addition, our
fileMethods library was somewhat informally derived. A
more rigorous examination of the Java runtime libraries would
likely uncover additions to the library that would be necessary
to rule out all possible violations.

B. XNap Peer-to-peer File Sharing Client

XNap is an open-source file-sharing client implemented in
Java. We enforced an anti-freeriding policy that requires the
number of downloads to be at most two larger than the number
of uploads during a given session. This is an interesting policy
because it is both history-based and application-specific. In
addition, the security state space is potentially large—one
security state for each possible difference between the number
of downloads and uploads.

To enforce the policy, we wrote the following specification:
(pointcut name="download"
(execution "xnap.net.MultiDownload.download"))

(pointcut name="upload"
(and (execution "xnap.util.UploadQueue.add")

(argtyp num="1"
"xnap.net.IUploadContainer")))

(state name="s")
(forall var="i" from=-2147483646 to=2

(edge name="queue_download"
(nodes var="s" "i,i+1")
(pointcutid name="download"))

(edge name="queue_upload"
(nodes var="s" "i,i-1")
(pointcutid name="upload")))

(edge name="too_many_downloads"
(nodes var="s" "2,#")
(pointcutid name="download"))



The policy above essentially creates a counter where down-
loads increment the value of state variable s and uploads (or,
more precisely, additions to the upload queue) decrement it.
A user is allowed to download two more files than he has
uploaded; additional downloads trigger a policy violation and
the program halts. The details of the policy can be understood
in terms of the following policy components:

• The execution pointcut is like call, but matches
method entrypoints rather than call sites.

• argtyp matches a method’s (possibly dynamic) param-
eter types. This allows the policy to distinguish between
identically-named methods that differ only by signature.

• The state structure defines a state variable that tracks
the current security state. In the above policy, the security
state is global, but SPoX also supports per-instance secu-
rity state for enforcement of per-object security policies.

• Each edge declaration defines how the security state
changes in response to security-relevant events.

• Within each edge, the nodes specify the starting and
ending security states for the transition. For example, if s
is in state 2 and an instruction matching the download
pointcut is about to be executed, the final edge will
change s to “#”, which is a reserved state value that
represents a policy violation (i.e., no permitted transition).

• forall structures enclose edges (and possibly nested
foralls) to declare a large collection of similar edges.
This strategy both shortens policy specifications and aids
in efficient policy enforcement and policy analysis [8].
Here we declare edges that increment and decrement state
s as downloads and uploads occur.

Since this is an application-specific policy, its formulation
required some knowledge of the internal structure of the
application; however, this was easily gleaned without any
access to the application source code. We pinpointed the
relevant methods for download and upload operations via a
cursory examination of the bytecode disassembly.

We’re aware of at least two important deficiencies in this
policy as we’ve defined it here. First, since the security state
does not persist across application instances, users can exit
out of the application and restart it after every two downloads
to reset the counter, and thereby increase downloads over
uploads over time. Previous work has demonstrated how to
implement a persistent security state in an IRM to remedy such
vulnerabilities [1]. We intend to explore such an extension to
our work in the future. Second, our policy only tallies queued
uploads but not completed uploads. A malicious user could
freeride by cancelling queued uploads before completion. To
close this vulnerability, we could have added extra logic to
dictate how download completions and cancellations affect the
current security state.

III. CONCLUSION

We have here presented a powerful yet purely declarative
language for encoding security policies for enforcement by
IRM’s. Some preliminary experiences with our IRM frame-
work were related in the form of two case studies. Each case

study enforced a realistic security policy over a pre-existing
production-level application. The policies illustrate several
of the more interesting components of our policy language,
highlighting its versatility.

There are two primary kinds of policies that we have devel-
oped during our experiments: those that are general-purpose,
usually pinpointing specific Java library method calls (e.g., the
Columba policy); and those that are application-specific (e.g.,
the XNap policy). Formulating each poses unique challenges.
General-purpose policies tend to require comprehensive ar-
chitectural knowledge, such as identifying all system library
methods that can access security-relevant resources. This has
led us to develop a modular specification language in which
common policy components can be separated into external
libraries compiled by a system expert. Application-specific
policies tend to require at least a superficial understanding
of the underlying program structure. This points to a need for
good disassembly and visualization tools.

In future work we intend to leverage SPoX’s purely declara-
tive formulation to develop tools for analyzing and optimizing
security policies. Our past work has indicated that such formal
analysis is more tractable than with specification languages
that include imperative components [8]. This will lead to ro-
bust certification systems [2], [10] for SPoX implementations.

REFERENCES

[1] I. Aktug and K. Naliuka. ConSpec: A formal language for policy
specification. In Proc. of the 1st Int. Workshop on Run Time Enforcement
for Mobile and Distributed Systems (REM’07), pages 45–58, 2007.

[2] I. Aktug, M. Dam, and D. Gurov. Provably correct runtime monitoring.
In Proc. of the Int. Sym. on Formal Methods (FM), 2008.

[3] L. Bauer, J. Ligatti, and D. Walker. Composing security policies with
Polymer. In Proc. of the ACM Conf. on Prog. Lang. Design and
Implementation (PLDI), pages 305–314, 2005.

[4] F. Chen and G. Roşu. Java-MOP: A Monitoring Oriented Programming
environment for Java. In Proc. of the 11th Int. Conf. on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), pages
546–550, 2005.

[5] F. Dietz and T. Stich. Columba (v1.4). www.columbamail.org.
[6] Ú. Erlingsson and F. B. Schneider. IRM Enforcement of Java Stack

Inspection. In Proc. of the IEEE Symp. on Security and Privacy, 2000.
[7] Ú. Erlingsson and F. B. Schneider. SASI enforcement of security

policies: A retrospective. In Proc. of the New Security Paradigms
Workshop (NSPW), pages 87–95, 1999.

[8] K. W. Hamlen and M. Jones. Aspect-Oriented In-lined Reference
Monitors. In Proc. of the 3rd ACM Workshop on Prog. Lang. and
Analysis for Security (PLAS), 2008.

[9] K. W. Hamlen, G. Morrisett, and F. B. Schneider. Computability classes
for enforcement mechanisms. ACM Trans. On Prog. Lang. and Systems
(TOPLAS), 28(1):175–205, 2006.

[10] K. W. Hamlen, G. Morrisett, and F. B. Schneider. Certified in-lined
reference monitoring on .NET. In Proc. of the 1st ACM Workshop on
Prog. Lang. and Analysis for Security (PLAS), pages 7–15, 2006.

[11] G. Kiczales, J. Lamping, A. Medhdhekar, C. Maeda, C. Lopes, J.M. Lo-
ingtier, and J. Irwin. Aspect-Oriented Programming. In Proc. of the
11th European Conf. on Object-Oriented Prog. (ECOOP), volume 1241,
pages 220–242, 1997.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold. An overview of AspectJ. In Proc. of the 15th European
Conf. on Object-Oriented Prog. (ECOOP), volume 2072, pages 327–
355, 2001.

[13] L. Lamport. Proving the Correctness of Multiprocess Programs. IEEE
Trans. on Software Engineering (TSE), 3(2):125–143, 1977.

[14] Y. J. Leist and S. Pingel. XNap (v2.5r3). xnap.sourceforge.net.
[15] F. B. Schneider. Enforceable security policies. ACM Trans. on Info. and

System Security (TISSEC), 3(1):30–50, 2000.


