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Summary

Metabolic models have the potential to impact on genome annotation and on the interpre-
tation of gene expression and other high throughput genome data. The genome ofStrepto-
myces coelicolorgenome has been sequenced and some 30% of the open reading frames
(ORFs) lack any functional annotation. A recently constructed metabolic network model
for S. coelicolorhighlights biochemical functions which should exist to make the metabolic
model complete and consistent. These include 205 reactions for which no ORF is associ-
ated. Here we combine protein functional predictions for the unannotated open reading
frames in the genome with ‘missing but expected’ functions inferred from the metabolic
model. The approach allows function predictions to be evaluated in the context of the bio-
chemical pathway reconstruction, and feed back iteratively into the metabolic model. We
describe the approach and discuss a few illustrative examples.

1 Introduction

Currently available metabolic pathway databases contain hundreds or even thousands of sep-
arate metabolic maps describing different parts of general metabolism [10], [13]. However, it
is still difficult to get an overall picture of metabolic processes and to answer automatically
specific ‘network’ questions, such as: what are viable external substrates? what are the possi-
ble pathways for converting a particular small molecule to its final product? what will be the
consequences of one or multiple gene knockouts? can we identify new gene function to extend
genome annotation and metabolic and signaling pathway reconstruction? Metabolic models of
cellular metabolism help to address these questions.

Metabolic models (or stoichiometric models) are constructed by combining information from
numerous biological resources to collect together reactions and corresponding enzymes in-
volved in cellular function in the organism. The stoichiometric models are based on mass
balances for each of the compounds in the system, which includes both intracellular and ex-
tracellular components. The stoichometric matrixS contains the stoichiometric coefficients in
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the system. Each compound corresponds to a row in the matrix andeach reaction corresponds
to a column in the matrix. The unknown fluxes of each reaction are described by the vector
v. All intracellular compounds can be assumed to be in pseudo-steady state, because the flux
through their pool is much bigger than their pool sizes. The vectorb contains the rates of pro-
duction/consumption of each compound in the system, i.e. zero for intracellular compounds,
negative values for substrate, and positive values for products, which includes biomass. The
stoichiometric matrix, fluxes and rates of production/consumption are related by the equation:

S.v=b

Where possible gene names are assigned to enzyme functions, and, using the stiochiometric
matrix, the models are balanced (e.g. if a compound is produced but not consumed it must be
excreted from the cell, or consumed in another reaction not identified in the organism.)

To make the model consistent it may be necessary to introduce additional functions with no
currently identified genes. This opens up the possibility of using the models as an annotation
tool: as sequence databases grow and with the development of powerful methods for detecting
similarities below the so-called twilight zone of sequence similarity, it may be possible to sug-
gest function for a number of the as-yet unannotated genes. If the predicted function matches
what are believed to be essential functions for which no gene has been identified, this may lend
greater weight to the prediction, and these genes can become candidates for further experimen-
tal investigations. Additionally, if any of the predicted functions have not already been included
in the model, then there is scope to refine the model.

Such metabolic models have been constructed for a number of organisms, includingS. coeli-
color A3(2) [4]. S. coelicolor is a soil bacterium that excretes biologically active compounds
including antibiotics as well as other medically important compounds. Of the 25-30,000 an-
tibiotics known in 2002 about 63% were produced by microbes and about 35% were produced
by higher plants. 70% of the microbial antibiotics were produced by bacteria with the vast ma-
jority of the rest coming from fungi. Of the 11600 bacterial antibiotics, 8700 where produced
by actinomycetes and of these 6550 were produced by a member of the genusStreptomyces,
i.e. 24% of all known antibiotics are produced by a single bacterial genus. Between 100 and
120 of the streptomycete antibiotics are used commercially, which represents about 68% of the
commercial antibiotics that are natural products [3].S. coelicolorA3(2) has a large genome
compared to other sequenced bacteria, with 7825 predicted open reading frames, of which about
5492 have some functional annotation [2]. In the model of Borodina et al. [4], 711 proteins
(outof 926 that have an Enzyme Commission number assigned) were included. Borodina et al.
identified 79 enzyme reactions with no open reading frame (ORF) and then went on to suggest
putative candidate genes that may fill roles in the processes of phospholipid biosynthesis and
polyprenoid biosynthesis.

Here we discuss how the integration of information from metabolic models and sequence anal-
ysis can narrow down the functional hypothesis space for a number of as-yet unannotated ORFs
and can hence lead to enhanced genome annotation and facilitate the discovery of new path-
ways that can be included in the model. We envisage an iterative approach to genome scale
metabolic modelling leading to updated models as new information from prediction and exper-
iment becomes available.
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2 Computational Method

Sequencesfrom S. coelicolorannotated as hypothetical proteins were matched against Pfam [6]
familiesusing the hidden Markov profile-profile matching program HHSEARCH [15]. No pre-
dictedsecondary structure information was used for the query profile. Other sequence database
searching programs could have been used. The PFAM2GO resource was used to attach func-
tional annotation from the Gene Ontology (GO) Database [8] to matches to Pfam families.
Thenthe EC2GO resource was used to identify possible enzyme families that corresponded to
the respective GO identifiers. Out of a total of 3796 total Pfam identifiers, 2630 had no E.C.
mappings. Of the remaining 1166 Pfam identifiers, which had at least one E.C. mapping, 1144
identifiers had 1 E.C. mapping, 12 had mappings to 2 E.C. numbers and 10 mapped to 4 E.C.
numbers. A list of ‘missing but expected enzymes’ was obtained from the supplementary data
in the paper by Borodina et al. [4]. All data was stored in a MySQL database for retrieval.

3 Results

All microbial cells have to be able to form biomass in order to multiply. Biomass is a complex
mixture of mainly different macromolecules,e.g. protein, DNA, RNA, carbohydrate, lipids,
and a stoichiometric model must contain the reactions to form these macromolecules from
precursor metabolites. Precursor metabolites such as amino acids for protein biosynthesis must
either be formed inside the cell or taken up from the external medium.S. coelicolorA3(2) has
the ability to grow on a chemically defined medium with glucose, ammonium, sulphate, and
diverse trace elements, andS. coelicolorA3(2) must therefore be able to form all the precursors
for the macromolecules and thus be able to divide. Reactions that are necessary for precursor
biosynthesis are therefore termedessential.

3.1 Diversity of Missing Enzymes

Why do we expect that sensitive sequence searching might suggest candidates for hitherto
unidentified functions? Many enzymes are part of large and diverse sequence families. Stan-
dard sequence searching methods may fail to detect remote relatives to target sequences and
such weak relationships may become apparent using more powerful search tools such as se-
quence profile matching (e.g. PSIBLAST [1] )or profile-profile matching (e.g. HHSEARCH
[15] ). In order to estimate the utility of such an approach we must firstfind out how many
of the missing functions are orphan enzymes and estimate the diversity associated with the
non-orphan enzyme families (Table1).

An orphan enzyme is an enzyme for which no gene (in any organism) is associated. It has been
estimated that some 36% of enzymes activities represented by E.C. classification numbers have
no associated gene sequences [11] and, for most of these, the absence of sequence information
is real [14]. ORENZA [12], a web resource for orphan enzymes, identifies 3 enzymes inS.
coelicolor as orphans, namely E.C. 1.5.3.2 N-methyl-L-amino-acid oxidase, E.C. 2.1.1.142
cycloartenol 24-C-methyltransferase and E.C. 2.7.1.136 macrolide 2’-kinase. However none of
the missing enzymes from Borodina et. al. [4] correspond to orphan enzymes.
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The missing enzymes of Borodina et. al. fall into three categories:missing essential, missing
non-essential and other missing enzymes. We find that four of the missing essential enzymes
from Borodina et. al [4] do have anS.coelicolorgene associated with them in KEGG, namely
E.C. 2.3.1.157 (glucosamine-1-phosphate N-acetyltransferase) corresponding to SCO3122, E.C.
4.1.1.17(benzoylformate decarboxylase) corresponding to SCO6035, E.C. 4.1.1.36 (phospho-
pantothenoylcysteine decarboxylase) corresponding to SCO1477 and E.C. 6.3.2.5 (phosphopa-
ntothenate-cysteine ligase) corresponding to SCO1477. This perhaps reflects subsequent anno-
tation of the genome. We have used KEGG to identify how many genes are associated with
the missingS. coelicolorenzymes in other organisms. We see, for example, that E.C. 2.5.1.33
(farnesyl pyrophosphate), a missing essential enzyme inS. coelicolor, has an associated gene
in only one other organism, namely the archaeonPicrophilus torridus, whereas another miss-
ing essential enzyme, E.C. 2.7.4.9 ( dTMP kinase ) maps to 647 genes from other organisms.
In order to get an idea of the sequence diversity of these enzyme families, we collected to-
gether the protein sequences of all the genes assigned by KEGG to the missing enzymes, and
clustered them at the level of 50% sequence identity using the program BLASTCLUST from
NCBI. Although the numbers will change as the sequence databases grow, the resulting num-
ber of clusters give a rough indication of sequence diversity (see Table1). We observe that, for
example,the sequence family associated with E.C. 2.7.4.9 ( dTMP kinase ) is very diverse (di-
versity measure 125) whereas that associated with E.C. 4.1.3.36 (naphthoate synthase) which
is also quite a large family, has a much lower diversity (with diversity measure of 9)

3.2 Examples of holes filled

3.2.1 Thymidylate kinase

One essential missing enzyme predicted by the model of Borodina et al. [4] is thymidylate
kinase(E.C. number 2.7.4.9). In order to incorporate thymidylate into the DNA it must first be
activated by two sequential phosphorylation steps. The first phosphorylation step is carried out
by thymidylate kinase and without phosphorylation thymidylate cannot be incorporated into
new DNA and cell multiplication cannot occur.

Sequence searching among the set of unannotated proteins suggests six candidates to fulfill the
functional role of thymidalate kinase: SCO0163, SCO2993, SCO1996, SCO1975, SCO1952,
SCO0723. These proteins match the Pfam family PF02223 (namely thymidylate kinase). An
alignment of SCO0163 (the sequence with the best score), with a representative of the probable
thymidylate kinase related cluster UniRef entry Q8PXV5, KTHYMETMA, is shown below.

As thymidylate kinase describes what is an essential function, the corresponding reactions have
already been included in the model. However the hypothesis space for identifying the correct
gene(s) has been reduced from many fold. The six candidates above can become the focus for
further experimental study, e.g. purification and biochemical characterization or gene disrup-
tion studies.
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Enzyme Enzyme name SCO
gene

N D Putative
candidates

1.2.1.21 glycolaldehyde dehydrogenase 27 5
1.5.1.3 dihydrofolate reductase 461 106 SCO7627,

SCO2813,
SCO5252,
SCO7023

2.3.1.157 glucosamine-1-phosphate
N-acetyltransferase

SCO3122 310 24

2.5.1.11 trans-octaprenyltranstransferase 15 4
2.5.1.33 trans-

pentaprenyltranstransferase
1 1

2.7.4.9 dTMP kinase 647 125 SCO0723,
SCO1952,
SCO1975,
SCO1996,
SCO2993,
SCO0163

2.7.2.23 not in KEGG 0 0
2.7.7.39 glycerol-3-phosphate cytidylyl-

transferase
93 17

2.7.8.12 CDP-glycerol glycerophospho-
transferase

12 7

3.1.3.15 histidinol-phosphatase 227 68
3.1.3.27 phosphatidylglycerophosphatase 287 72
3.1.3.7 3’(2’),5’-bisphosphate nucleoti-

dase
82 41

4.1.1.17 benzoylformate decarboxylase SCO6035 222 47
4.1.1.36 phosphopantothenoylcysteine

decarboxylase
SCO1477 478 53

4.1.3.36 naphthoate synthase 207 9
4.1.3.38 aminodeoxychorismate lyase 260 93
5.4.4.2 isochorismate synthase 241 62
6.2.1.26 o-succinylbenzoate—CoA

ligase
240 105

6.3.2.5 phosphopantothenate—cysteine
ligase

SCO1477 444 39

Table 1: Missing essential enzymes (with four figure E.C. numbers)from Borodina et al. [4],
N is the number of genes associated with the E.C. number from KEGG;D gives a measure of
diversity as described in the text; column 6 suggests putative candidates from searching the as-yet
unannotatedS. coelicolor sequences.
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PF02223 Thymidylate_kin: Thymidylate kinase; InterPro: IPR 000062

Q SCJ1.12, 322 VAGLPGTGKSTLSGALADRLGAVLLSSDRLRKEMAGLSPQQTASADY---GEGLYTPEW---TARTYAELL-------DR 388 (508)
Q Consensus 322 l˜G˜pGSGKSTia˜˜Lae˜lg˜˜˜idtD˜lr˜˜˜˜g˜˜˜˜˜˜˜˜˜˜˜---Ge˜˜˜˜˜˜˜---˜˜˜l˜˜˜l˜-------˜˜ 388 (508)

|-|..|||||||++.|+++|....+..+.++..-.+.++.++...+. +..-.++.. ...++..-+ +.
T Consensus 1 ˜EGiDGsGKtTq˜˜˜L˜˜˜L˜˜˜g˜˜˜˜v˜˜t˜ep˜˜t˜˜g˜˜ir˜˜L˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜lLfaadR˜˜˜˜˜˜˜˜˜ 80 (200)
T PF02223 1 IEGIDGSGKTTQAKLLKERLKEKGLKFVVVLTREPGGTPIGELIRELLLGKKSELDPLTPEAEALLFAADRAEHVEKLKV 80 (200)

Q SCJ1.12, 389 AAALLALGESVVLDATWID---------SAQREAARHTAESAG---ADLVALHCHVPDDVTAARLSTRA------PGASD 450 (508)
Q Consensus 389 ˜˜˜˜l˜˜G˜˜vIlD˜˜˜˜˜---------˜˜˜r˜˜l˜˜l˜˜˜˜g---˜˜˜˜vV˜L˜˜p˜evl˜˜Rl˜˜R˜------˜˜˜˜˜ 450 (508)

++..++.|..||+|.|..+ ....+...++.+... .|+++||||+|+|+..+|+..|+ .+...
T Consensus 81 I˜˜al˜˜g˜˜VI˜DRy˜˜Ss˜AYq˜˜˜˜˜˜˜˜˜˜˜˜˜l˜˜˜˜˜˜˜˜˜PDl˜i˜Ldi˜˜e˜a˜˜R˜˜˜r˜˜˜˜˜˜˜˜˜˜˜˜ 160 (200)
T PF02223 81 IKPALKAGKIVICDRYIDSSIAYQGAKGGLDLDLVYQLNQSAPLPLKPDLTILLDIDPEIALKRIKKRGGREDRDKREEE 160 (200)

Q SCJ1.12, 451 ADLGVAEAMAAEEQPWS-----GAVGVDTGGSLEAAVGQA 485 (508)
Q Consensus 451 ˜˜˜˜˜l˜˜˜˜˜˜˜e˜˜˜-----˜˜˜˜Id˜˜˜˜˜eev˜˜˜I 485 (508)

...+.+++..+.|.... ...+||+++++|++.++|
T Consensus 161 e˜˜˜˜˜˜˜vr˜˜y˜˜l˜˜˜˜˜˜˜˜˜˜ida˜˜˜˜e˜v˜˜˜I 200 (200)
T PF02223 161 ETLEFLEKVREGYLKLAEKEDKRIVIIDATQSIEEVHEEI 200 (200)

Figure 1: An alignment of SCO0163 (the sequence with the best score), with a representative of
the probable thymidylate kinase related cluster UniRef entry Q8PXV5

Although we detect hits to PF02223, the mapping of sequences to functional families may be
one to many. In this case, we note also that SCO0163 also matches proteins annotated as shiki-
mate kinase (E.C. 2.7.1.71), gluconokinase (E.C. 2.7.1.12) and adenylate kinase (E.C. 2.7.4.3).
All three of these enzymes have nucleotide triphosphate binding domains, as they are metabo-
lite kinases. We note the conservation of what may be a possible ATP/GTP-binding site motif
at the beginning of the alignment shown. Shikimate kinase has a similar topology to adenylate
kinase. Could this sequence fulfill the functional role of thmidlylate kinase? The function E.C.
2.7.1.12 is already fulfilled by the gene SCO1679 and the function of E.C. 2.7.1.71 by SCO1495
(aroK), and E.C. 2.7.4.3 by SCO4723 (adk). 5-dehydroquinate synthase (E.C. 4.2.3.4 – AroB
– SCO1494), shikimate 5-dehydrogenase (E.C. 1.1.1.25 – AroD– SCO1498), shikimate ki-
nase (E.C. 2.7.1.71 – AroI(K)– SCO1495) and chorismate synthase (E.C. 4.2.3.5 – AroF –
SCO1496) are four enzymes in the seven-enzyme common aromatic amino acid pathway that
results in the synthesis of chorismate - the common precursor of phenylalanine, tyrosine and
tryptophan. It is therefore unlikely that SCO1495 is involved in thymidylate phosphorylation,
as it is in the middle of a five-gene cluster that contains four genes annotated as involved in
chorismate biosynthesis, i.e. SCO1494-SCO1498aroBI(K)F – aroD.

3.2.2 Dihydrofolate reductase

Another missing essential enzyme is dihydrofolate reductase (DHFR), E.C. 1.5.1.3. Dihydro-
folate is an intermediate in the linear pathway towards folate. Folate is a essential enzyme
cofactor in all living organisms, where it plays a central role in the transfer of carbon atoms be-
tween different metabolites. The enzyme dihydrofolate reductase catalyses the last reaction in
the folate biosynthesis. We find four candidates for this functional role, SCO7627, SCO2813,
SCO5252 and SCO7032.
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3.3 New Pathways

3.3.1 Cobalamin

Examples of genes currently labelled as hypothetical proteins for which database searching re-
veals similarity to proteins of known function are SCO1858 and SCO1116. SCO01858 has
recently appeared in KEGG but not, as yet, SCO01116. The similarity of SCO1858 (and
SCO1116) to CbiX is clear and it appears that this was unannotated in the original annota-
tion of S. coelicolor, perhaps due to very conservative thresholds being set. These genes match
to CbiX, cobalt chelatase (E.C. 4.99.1.3), that acts in the anaerobic cobalamin biosynthesis
pathway (KEGG MAP Porphyrin and chlorophyll metabolism). Cobalamin or vitamin B12
is a complex small molecule that is essential for some organism, e.g. humans. However, it
is not essential forS. coelicolorbecause the organism contains pathways and/or parallel reac-
tions that can carry out the same reactions/pathways as the cobalamin-dependent reactions.S.
coelicolor A3(2) is known to contain several enzymes that use cobalamin (vitamin B12) as a
cofactor. There is a cobalamin-dependent homocysteine methyltransferase (E.C. 2.1.1.13 MetH
SCO1657) and a cobalamin-independent enzyme (E.C. 2.1.1.14 MetE SCO0985) [9]. A similar
situationarises for ribonucleotide reductase with a cobalamin-dependent, oxygen-independent
type II form (E.C. 1.17.4.2 NrdJ SCO5805) and a cobalamin independent, oxygen-dependent
type Ia form (E.C. 1.17.4.1 NrdAB (NrdLM) SCO5225-6) [5]. In addition there are a num-
ber of cobalamin-dependent mutases, e.g. methylmalonyl-CoA mutase (E.C. 5.4.99.2 MutA
SCO6832, MutA2 SCO4869) isobutyryl-CoA mutase (E.C. 5.4.99.13 IcmA SCO5415) and a
unknown mutase (MeaA SCO6472). Borovok et al. [5] identified nine gene transcripts with
cobalamindependent riboswitches in the 5’ untranslated leaders.

Studies on the CbiX proteins [16] suggest the importance of conservation of the two histidine
residues(the catalytic residues) as well as a glycine, proline and aspartic acid. A multiple
sequence alignment of SCO01858, SCO1116 and several other CbiX proteins suggests that
SCO1116 does not have the required patterns of conservation, although a global alignment of
these two SCO proteins does indeed reveal global similarity. It may be the case that SCO1116
is a non-functional paralog.

The E.C. number of CbiX is 4.99.1.3 and the associated reaction is: Sirohydrochlorin + Co(2+)
<=> cobalt-sirohydrochlorin + 2 H(+) This reaction could now be fed back into the model
now that the gene for CbiX has been identified.

Additionally we can now look for other genes inS. coelicolorwhich may participate in the
pathway. One example is SCO0993, which reveals a plausible match to Precorrin-6x reduc-
tase CbiJ/CobK (E.C. 1.3.1.54), which catalyses the reaction: precorrin-6B + NADP+<=>

precorrin-6A + NADPH + H+. The KEGG pathway database reveals that this is the 7th step
in the pathway which coverts sirohydrochlorin to Cob(II)yrinate a,c diamide with CbiX (E.C.
4.99.1.3) catalyzing the first step in this pathway. A search of the annotatedS. coelicolor
genome reveals that most of the enzymes catalyzing the intermediate steps in this pathway have
been annotated (see Figure2). CbiL (E.C. 2.1.1.151, a cobalt-factor II C20-methyltransferase),
which catalyses the second step, has noS. coelicolorgene is associated with its function but
we have detected several putative methyltransferases from our sequence searching among the
hypothetical proteins and proteins of unknown function.

The identification of the enzyme E.C. 4.99.1.3, catalyzing the first step, suggests that this path-
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Figure 2: Pathway for sirohydrochlorin to Cob(II)yrinate a,c diamide. Some steps have no associ-
ated EC number in the KEGG maps. As only biochemically characterised enzymes are assigned
EC numbers, it may be the case that some of the enzymes are theoretical at this stage.
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way can now be included in the metabolic model.

3.3.2 Rhamnose

Another example of an enzyme function not currently included in the metabolic model is E.C.
1.1.1.133. A number of proteins in theS. coelicolorgenome show plausible similarity to
this PFAM family (RmlD substrate binding domain). These include SCO7108, which also
matches the 3-beta hydroxysteroid dehydrogenase/isomerase family and the NAD-dependent
epimerase/dehydratase family, as well as dTDP-4-dehydrorhamnose reductase.

The enzyme function described by E.C. 1.1.1.133 appears in three KEGG maps, map00520
(Nucleotide sugars metabolism), map00521 (Streptomycin biosynthesis),1 map00523 (Polyke-
tide sugar unit biosynthesis). We suggest below a possible role for E.C. 1.1.1.133 inS. coeli-
color.

L-rhamnose is a saccharide required for the cell wall components of some bacteria. Its pre-
cursor, dTDP-L-rhamnose, is synthesised by four different enzymes, the final one of which
is dTDP-4-dehydrorhamnose reductase (RmlD) (E.C. 1.1.1.133). The RmlD substrate bind-
ing domain is responsible for binding a sugar nucleotide. The enzyme catalyzes the reaction:
dTDP-6-deoxy-L-mannose + NADP+<=> dTDP-4-dehydro-6-deoxy-L-mannose + NADPH
+ H+, which the KEGG pathway database reveals as the fifth step in the activation of rhamnose.

The exact function of rhamnose inStreptomycesis not totally known, but in related microor-
ganisms it serves as a linker molecule between the structural part of the bacterial cell wall
and molecules that are exposed to the surrounding environment. The nature and structure of
the cellular envelope ofStreptomyces coelicoloris presently not known to any great extent.
Furthermore several antibiotics consist of rhamnose derived moieties. Although streptomycin
is produced by many different streptomyces strains,S. coelicoloris not one of them. How-
ever, we cannot rule out the possibility thatS. coelicolormight produce a rhamnose derived
compound.

Figure3 shows a schematic diagram of the steps in the pathway and the candidategenes to
fulfill the required functionality. The other enzymes in the pathway (apart from 2.4.2.27) have
all been annotated in theS. coelicolorgenome: E.C 5.4.2.2, phosphoglucomutase (SCO7443,
SCO3028), E.C. 2.7.7.24, glucose-1-phosphate thymidylyltransferase (SCO5208, annotated
as a putative monophosphatase which also shows sequence similarity to glucose-1-phosphate
thymidylyltransferase), E.C. 4.2.1.46, dTDP-glucose 4,6-dehydratase (SCO0395, SCO0749),
E.C. 5.1.3.13, dTDP-4-dehydrorhamnose 3,5-epimerase (SCO0400). E.C. 2.4.2.27, dTDP-
dihydrostreptose streptidine-6-phosphate dihydrostreptosyltransferase, is not, as yet, annotated
in theS. coelicolorgenome.

The identification of the missing enzyme E.C. 1.1.1.133 in the pathway therefore means that it
could now be included in the metabolic model.

1Notethat in KEGG map 00521 this is wrongly annotated as E.C. 1.1.1.13
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Figure 3: Pathway for rhamnose
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3.4 Comparison with the Pathway Hole Filler algorithm

Holesin pathways can also be identified using the Hole Filler algorithm [7] and are these are
available from the SCODB resource (seehttp://scocyc.jic.bbsrc.ac.uk:1555/
SCO/. We compare the list of missing enzymes (generated using Hole Filleralgorithm) with
the missing essential enzymes from Borodina et al. and find the only overlap is E.C. 1.5.1.3
(dihydrofolate reductase). We see that the choice of approach used can affect the predictions
of missing enzymes. Table3.4gives examples of predictions obtained from sensitive sequence
searchingfor putative proteins for the missing enzymes identified by the Hole Filler algorithm.

Enzyme SCOCyc Pathway KEGG pathway Candidate SCO
genes

5.1.3.14 teichoic acid
(poly-glycerol)
biosynthesis

Aminosugars
metabolism
(MAP00530)

SCO1779 SCO0383

1.7.2.1 denitrification
pathway

Nitrogen
metabolism
(MAP00910)

SCO0798 SCO0563
SCO4955SCO5953
SCO0305 SCO6621

1.13.11.20 L-cysteine degra-
dationI

Cysteine
metabolism
(MAP00272)
Taurine and hyper-
taurine metabolism
(MAP0430)

SCO5572 SCO3035

2.9.1.1 selenocystein
biosynthesis

Selinoamino
acid metabolism
(MAP00450)

SCO1868

1.1.1.44 formaldehyde oxi-
dationI

Pentose phos-
phate pathway
(MAP00030)

SCO0965 SCO2482
SCO3384SCO5465

2.7.7.22 colanic acid
building blosks
biosynthesis,
GDP-mannose
metabolism

Fructose and man-
nose metabolism
(MAP00051)

SCO1208 SCO0820
SCO1737SCO3035
SCO3803 SCO3923
SCO4483 SCO4789
SCO6435 SCO7126
SCO7127

1.5.1.3 formylTHF
biosynthesis
I, formylTHF
biosynthesis,
tetrahydrofoli-
ate biosynthesis,
tetrahydrofoliate
biosynthesis I

One carbon
pool by folate
(MAP00670),
Folate biosynthesis
(MAP00790)

SCO7627 SCO2813
SCO5252SCO7032

Table 2: Holes identified by HoleFiller and possible candidatesidentified from sequence searching
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4 Discussion

As sensitive methods for probing into the so-called twilight zone of sequence similarity con-
tinue to develop, and more genome sequences are added to the sequence databases, it is possible
that putative annotation may be assigned to some of the as-yet unannotated genes. This anno-
tation can be evaluated in the context of metabolic networks. The approach described in this
paper has the potential to reduce the potential functional space of the genome: firstly by sug-
gesting candidates for missing functions, and secondly by suggesting new functions that can
be examined in light of known pathways and the extent to which steps in these can be mapped
to genes in the organism. It is probable, using this approach, that a number of candidate genes
can be identified which could encode enzymes to fill primary metabolic pathway gaps. This is
due the presence of redundant primary metabolic pathways and multiple isozymes present in
streptomycetes, possibly a consequence of its oligotrophic lifestyle. However, the presence of
large numbers of genes encoding enzymes involved in secondary metabolism complicate the
issue. These genes are derived from genes encoding primary metabolic enzymes that have been
recruited to secondary metabolism. This is a particular problem when considering fatty acid
synthesis, which is confused with polyketide secondary metabolite synthesis, and amino acid
catabolic enzyme genes which are often recruited to secondary metabolism, for example, lysine
catabolism andβ-lactam biosynthesis [9].

A furthercomplication is that streptomycetes often use metabolic pathways that are different to
more well-studied bacteria such as enteric bacteria andBacillusspecies. For any pathway the
order in which particular reactions are carried out in a pathway is a product of the evolution-
ary history of the bacterium. For example, actinomycetes use arogenate as an intermediate in
tyrosine synthesis instead of hydroxyphenylpyruvate, as used by enteric bacteria. Therefore, a
pathway reconstruction approach that is based on enzyme activity rather than gene homology
would be more likely to yield useful information. Not all bacterial metabolism is the same. Of-
ten there are extra pathways and shunt pathways that do not exist in more well-studied bacteria
e.g. the trans-sulphuration pathway ofStreptomycesis more characteristic of filamentous fungi
than bacteria. This reflects the ecological niche of streptomycetes which are facultative olig-
otrophs, i.e. capable of living in low- nutrient environments, unlike enteric bacteria and bacilli.
Soil, the natural habitat of streptomycetes, is a low-nutrient environment that is carbon-rich and
nitrogen- and phosphate-poor. This is because it is derived from carbon-rich and nitrogen- and
phosphate-poor plants. This explains why streptomycetes have so many genes encoding car-
bon catabolic pathways, again when compared to more well studied bacteria. The metabolism
of filamentous fungi, which inhabit the same ecological niche, are often a better model for
streptomycetes than bacteria [9].

A webserver implementation of the approach is available at
http://cluster.wsbc.warwick.ac.uk/cgi-bin/strep/metagaps.pl
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