
March 20, 2015 Trang Tran

CSE 517 - Winter 2015
Final Project Report

Who Did It?
“Investigating” Detective Fiction Characters

Abstract

We present a preliminary study of an intriguing problem: predicting a character’s guiltiness in Agatha
Christie’s detective stories. Our main goal was to design character representations to be used as features
to a guilty/innocent classifier. We experimented with elementary features such as number of mentions
and typed dependencies, as well as continuous-space features derived from latent semantic analysis (LSA)
and the very recent vector space word embeddings techniques used in word2vec and GloVe. Our results,
while beating an easy baseline in most cases, indicate much more research is needed to make meaningful
conclusions.

1 Introduction

Thanks to the increasingly powerful tools that NLP provides, almost any problem involving language can
now be studied. In particular, recent years have witnessed many exciting applications in the intersection
of NLP and social science/humanities: Feng et al. used syntactic stylometry and distributional patterns to
detect deception in product reviews [1, 2], while Ott et al. looked at the imaginative elements of product
reviews to detect opinion spams [3]. An abundant source of text, literature has naturally become a rich
source for creative NLP tasks. Ashok et al. [4], for example, used statistics of lexical and syntactic rules
to predict success of literary works. Elson et al. used automatic quote attributions [5] in character conver-
sations to build a social network in literary fiction, which ultimately provided evidence that surprisingly
contradicted several literary theories [6]. Also in the literary domain, Bamman et al. modeled character
types in 18th and 19th century novels for several persona comparison tasks, which were evaluated against
preregistered literary hypotheses.

It would be intriguing to take a step further and try to predict a story’s outcome given an author’s writing
patterns, such as predicting a detective story’s ultimate perpetrator. While a good detective story usually
has an unpredictable plot, making these patterns difficult to find, there might however exist potential
writing habits that even the author herself is unaware of, whether it is the writing style around certain
characters, or the personality traits these characters might all share. The idea of this project is attempting
to identify these patterns. The rest of this document is organized as follows: Section 2 describes a recent
work most closely related to what we’re exploring, the software, and the data we have available. In Section
3, we explain the approaches we explored for our “investigative” task. Section 4 presents our findings and
Section 5 proposes possible next directions to which we would expand this project. Finally, concluding
remarks are presented in Section 6.

2 Related Work, Software, and Data

To the best of our knowledge, while there have been many works applying NLP techniques to literary
analysis, no work has directly addressed the task of perpetrator character detection proposed here. Since
our goal is to detect a certain character in the story, the “criminal”, we found Bamman et al.’s work [7]
in persona modeling most related to our task. Though our goal is not necessarily to model personas, we
thought certain aspects of Bamman et al.’s work, in particular how to represent literary characters in

1

March 20, 2015 Trang Tran

topic models, might be applicable to our project.

In [7], Bamman et al. explored the problem of modeling character types, taking into account extra-
linguistic information, such as author and writing period, responsible for generating texts associated
with these characters. The target of modeling, persona, is defined as a distribution over several typed
dependency relations (roles) the characters can take on (agent, patient, possessive, and predicative). Each
tuple of (role, word) is then assumed to be drawn from a log-linear distribution with the feature set:
metadata (author), persona (latent variable), and background (word features), whose parameters are then
learned via stochastic EM and Gibbs sampling. For evaluation, the authors used as gold standard a set
of 29 hypotheses preregistered by literary scholars. These hypotheses take the form “character X is more
similar to character Y than either X or Y is to a distractor character Z”. The model was then tested by
its ability to confirm or failing to confirm the decisions:

distance(X, Y) < distance(X, Z)
distance(X, Y) < distance(Y, Z)

To scale computations to book-length documents, Bamman et al. constructed a preprocessing pipeline1,
which we found very helpful and therefore adopted as our preprocessing pipleline as well. Similar to
the authors, we used this pipeline for essential upstream tasks: POS tagging (Stanford POS tagger [8]),
parsing and dependency parsing (MaltParser [9]), and most importantly character clustering (via NER
[10] and coreference resolution). In addition, we had several toolkits readily available for learning word
embeddings, word2vec2 [11] and GloVe3 [12], which we used as main features in our model (details in
Section 3).

The data we used consists of Agatha Christie’s detective novels (we have not considered her short stories
or plays). Agatha Christie’s work is particularly well-suited for this study since most of her stories involve
one main criminal revealed at the end. Two texts are available free on Project Gutenberg4, many others
were fortunately donated by an acquaintance. We had in total 48 annotated novels (with characters
marked victim or criminal, or neither), 41 of which were used for training and the rest for testing. The
total data size amounted to 4.3 million word tokens, with a vocabulary of 53,000 word types.

3 Methods and Models

Our goal of detecting the main culprit in each story is formulated as a classification task, where each
person-entity in a novel is assigned the label “guilty” (positive sample) or “innocent” (negative sample).
The focus of our work is therefore to design vector representations of characters (which we refer to as
character embeddings), to use as features to our classifier.

3.1 Data Preparation

A significant challenge in learning character embeddings is the issue of new, previously unseen characters,
much like the issue of unknown words in language models. However, in our case, we cannot simply assign
an ‘UNK’ token to new characters, since this strategy would potentially conflate new guilty and innocent
characters. On the other hand, the true identity of the criminal is often revealed in the last few chapters
of each novel, which means we would, to an extent, have access to the true labels were we to include the
last portions of each novel in learning character embeddings. With this in mind, we learned all our models
from two types of data: complete data, where we used all texts available, and incomplete data, where we

1http://www.ark.cs.cmu.edu/literaryCharacter/
2https://code.google.com/p/word2vec/
3http://nlp.stanford.edu/projects/glove/
4http://www.gutenberg.org

2

March 20, 2015 Trang Tran

excluded the last 15% of each story from our model learning – simulating the effect of not knowing the
true culprit until the end of the story. In other words, the complete set character embeddings should cap-
ture all information about the characters, while the incomplete set character embeddings should capture
all information up to 85% of the story the character is in. We therefore posit that the results from the
complete data models would be an upper bound to the quality of our classifier and embedding models.

Using the pipeline provided by Bamman et al. [7], we have processed stories where each token is anno-
tated with its POS tag and typed dependency tag. For named entities and pronouns (both personal and
possessive), each token is additionally assigned a character ID, which was found by clustering coreference-
resolved entities. We define a character mention as any instance labeled with a character ID, thus a
mention could refer to the proper name (and its aliases), the personal and the possessive pronouns refer-
ring to the character. In this work, we did not distinguish between mentions by the narrator and those by
a different character; mentions in narration vs. conversations were treated the same as well (though these
distinctions would be an interesting direction to explore). Feature extraction and character embeddings
are therefore learned from these instances in the text. The example below illustrates what is essentially
done to the original text: in effect, we replace each mention of the character by the corresponding char-
acter ID, annotated with additional information of the story it belongs to.

Mrs. Inglethorp greeted me with effusion. “Why, if it isn’t too delightful to see you again, Mr. Hastings, after
all these years. Alfred, darling, Mr. Hastings—my husband.” I looked with some curiosity at “Alfred darling”.
He certainly struck a rather alien note. I did not wonder at John objecting to his beard. It was one of the
longest and blackest I have ever seen. He wore gold-rimmed pince-nez, and had a curious impassivity of feature.ww�
CHAR00 STYLES CHAR00 STYLES5 greeted me with effusion . “ Why , if it is n’t too delightful to see
you again , CHAR19 STYLES CHAR19 STYLES , after all these years . CHAR33 STYLES , darling ,
CHAR19 STYLES CHAR19 STYLES - - my husband . ” I looked with some curiosity at “ Alfred darling ” .
He certainly struck a rather alien note . I did not wonder at CHAR46 STYLES objecting to CHAR46 STYLES
beard . It was one of the longest and blackest I have ever seen . CHAR46 STYLES wore gold-rimmed pince-nez
, and had a curious impassivity of feature .

The example above illustrates several (interesting) issues: (1) the English honorifics Mrs. and Mr. were
treated as separate mentions from the proper nouns they are attached to; (2) the character clustering
system missed (or could not resolve) certain pronouns (He certainly struck a rather alien note...) while
(3) incorrectly resolved other pronouns (I did not wonder at John objecting to his beard... and He wore
gold-rimmed pince-nez...). Additionally, not shown here are examples where the coref system could not
recognize the same entity with different aliases6. At the time of this work, we did not have a good way of
handling these preprocessing issues7.

We describe our character feature learning in the following sections, note that all these models were learned
separately for both the complete and incomplete data. Also, we should clarify that the train/test split in
terms of stories (41/7 train/test) is only used for learning the classifier. For the embedding learning, due
to ‘UNK’ character issues described above, we used all stories in either the complete or the incomplete
texts. To be more explicit, we learn the embeddings first, then the characters in each complete/incomplete
set are split into training and testing characters for constructing and evaluating the classifier.

5Each mention was converted to the format CHARXX YYYYYY where XX denotes the character ID and YYYYYY denotes
the 6-letter abbreviation of the story this character belongs to. Here the excerpt was taken from The Mysterious Affair at
Styles.

6In one of the other stories, Lord Edgware Dies, Edgware’s wife’s name was Jane Wilkinson, which the system could not
recognize (understandably) as the same entity as Lady Edgware.

7Bamman et al. also noted that their coreference resolution system achieved 82% accuracy, and coreference resolution is
a difficult problem on its own, so this is probably the best we can get for now.

3

March 20, 2015 Trang Tran

3.2 Baseline and Elementary Features

Our baseline classifier is the random guesser: given a story and its characters, we randomly assign one of
the characters the label guilty. We also considered two elementary features on their own and combined:
(1) the number of mentions associated with each character (normalized) and (2) the dependency tags (as
one-hot) vector each mention is annotated with. In particular, we first surveyed our tokenized texts to
find the most common dependency tags attached to a character entity (names and pronouns included).
We then encoded each mention with a 6-dimensional vector representing the 5 most common dependency
tags, reserving an additional dimension for all other tags: [nsubj, poss, pobj, dobj, nsubjpass, other]8. To
represent the dependency features of a character as a whole, we used the sum of all the dependency vectors
of the mentions associated with the character.

3.3 Continuous-Space Embeddings of Characters

3.3.1 Latent Semantic Analysis

The first approach to modeling character features in the semantic space is by using LSA. Our LSA matrix
was constructed as follows. We first created a fixed vocabulary (which included our CHARXX YYYYYY
notations) and performed a few preprocessing steps: (1) converted all rare words (count < 3, except if the
word is one of the CHARXX YYYYYY tokens) to the ‘UNK’ token, and (2) converted all numbered words
to the ‘NUMBER’ token. This effectively halved our vocabulary, resulting in 24,000-26,000 word types.
Table 1 summarizes our data set characteristics. Again, note that each modeling, processing, etc. step is
done twice, once for the complete data and once for the incomplete data.

We then defined a document as a context window around each character mention. We consider 2 types
of windows: 20 words to the left and right of each mention, and 40 words to the left and right of each
mention but counting only content words9. The term-document matrix was then constructed by tallying
accumulated co-occurrence counts of vocab-words in each document. This matrix was then normalized
TF-IDF, and finally rank-reduced via SVD to dimension 100, i.e. each document (character mention)
is represented by a 100-dimensional vector10. Similar to what we did with dependency vectors, we sum
the mention-vectors associated with each character to get the vector representation of the character. We
will refer to these vector features as “LSA” (for the 20-word context window) and “LSA.content” (for the
40-word context window). Additionally, we also considered adding the normed mentions, the dependency
vectors, or both to use as overall features representing each character.

Alternative to using each character-vector as features to our classifier, we considered using each mention-
vector as features to the classifier. In other words, instead of summing the resulted LSA/LSA.content
rank-reduced vectors, we treat them as feature vectors on their own. The reasoning behind this was that
treating each mention-vector as a feature vector gave us more data to learn from, as well as a higher
percentage of positive samples, especially since we have a class imbalance situation (see Table 1)11.

We recognize the fact that these mentions are not independent, therefore also considered performing
classification+voting in experiments using mentions. Specifically, we tried thresholding on the fraction
of positive mention-classifications to get the final decision on the character’s “guiltiness”. For a certain
character Z, let us denote the number of positive predicted labels as pZ and negative predicted labels as

8The full descriptions of all dependency tags can be found in the Stanford typed dependency parser manual.
http://nlp.stanford.edu/software/dependencies_manual.pdf

9We initially considered using previous/following paragraphs as contexts, but these often resulted in very few words, due
to conversations in the story.

10We wrote a Python script to construct the matrix, then performed SVD using Python’s scipy.sparse.linalg package.
11The fact that the percentage of positive samples increased in the case of mention-vectors suggests that the number of

mentions positively correlates with positive samples

4

March 20, 2015 Trang Tran

Table 1: Summary of Data Characteristics

Complete Set Incomplete Set

Number of Tokens 4.3 M 3.7 M

Original Vocabulary 52.7 K 49.9 K

Processed Vocabulary 26.4 K 24.6 K

Number of Characters 2,937 2,736

Number of Positive Samples - Characters

(percentage guilty)

148

(5.0%)

145

(5.2%)

Number of Mentions 236,437 196,489

Number of Positive Samples - Mentions

(percentage guilty)

30,758

(13%)

23,876

(12.2%)

nZ . Then Z is marked “guilty” if pZ

pZ+nZ
> t, where t is a threshold we varied between 0 and 0.5 in 0.1

steps.

3.3.2 Other Continuous-Space Word Embedding Tools

Recently, many powerful tools for continuous-space word representations have proven to outperform LSA
embeddings in various semantic as well as syntactic tasks, such as word2vec by Mikolov et al. [11] and
GloVe by Pennington et al. [12]. Taking advantage of these readily available toolkits, we could also
learn character embeddings in each story by relabeling each character mention in our raw text by the
CHARXX YYYYYY notations. Each of these mentions are then treated as a word in the vocabulary by
the embedding toolkits, and we get the character embeddings by training word2vec and GloVe on our
relabeled data. For both word2vec (Skip-gram model) and GloVe, we set the vector dimension to 100
and the window to the default 11. As with the LSA and LSA.content vectors, we also considered adding
mentions, dependencies, and both to get an overall representation of our characters.

4 Experiments and Results

Since the character (mention) vectors are have continuous values while the dependency features have
discrete values, we considered two standard classifiers: a logistic regression classifier and a decision
tree. We used L2-regularization on logistic regression, where the hyperparameter C was tuned by 5-
fold cross-validation on training data. C was varied in the range [1,1000] in 10 logarithmic steps; i.e.
C ∈ {1, 2.2, 4.6, 10, 21.5, 46.4, 100, 215.4, 464.2, 1000}. For the decision tree, we set the maximum depth to
15 to avoid overfitting (we didn’t tune this parameter on the decision tree because of time constraints; in
fact, the only reason we considered a decision tree was because initial results with the logit were poor).

The baseline and elementary feature (mentions, dependencies) results are shown Table 2 and in Figures
1, 2. The last 2 columns of Table 2 show the confusion matrix for each complete/incomplete data set; the
figures 1 and 2 show the equivalent information in terms of precision, recall, and F1 score. The confusion

matrix is displayed the form:
TN FP
FN TP

.

The baseline random guesser unsurprisingly performed poorly, both in the complete and incomplete data
cases. Using only normed mentions as a feature also did poorly, in both data cases as well as both the
logit and tree classifiers. A difference in performance only arises when we add the dependency features:

5

March 20, 2015 Trang Tran

Table 2: Results on Baseline and Elementary Features

Feature Vector Classifier Model Number Complete Data Incomplete Data

Baseline:

Random
N/A M0.0

381 7

23 0

353 6

20 1

Mentions
Logistic Regression

C=1.0
M0.1,LR

388 0

23 0

359 0

21 0

Dependencies
Logistic Regression

C=1.0
M0.2,LR

388 0

23 0

359 0

21 0

Mentions

+Dependencies

Logistic Regression

C=1.0
M0.3,LR

388 0

23 0

359 0

21 0

Mentions
Decision Tree

max depth=15
M0.1,DT

371 17

21 2

334 25

20 1

Dependencies
Decision Tree

max depth=15
M0.2,DT

364 24

18 5

340 19

15 6

Mentions

+Dependencies

Decision Tree

max depth=15
M0.3,DT

368 20

17 6

337 22

15 6

M0.0 M0.1,LR M0.2,LR M0.3,LR M0.1,DT M0.2,DT M0.3,DT
0.00

0.05

0.10

0.15

0.20

0.25

0.30

S
co

re
s

Baseline and Elementary Models, Complete Data

Precision
Recall
F1

Figure 1: Baselines, Complete Data

M0.0 M0.1,LR M0.2,LR M0.3,LR M0.1,DT M0.2,DT M0.3,DT
0.00

0.05

0.10

0.15

0.20

0.25

0.30

S
co

re
s

Baseline and Elementary Models, Incomplete Data

Precision
Recall
F1

Figure 2: Baselines, Incomplete Data

6

March 20, 2015 Trang Tran

while the logit classifier still didn’t beat the baseline, the decision tree showed some improvement in terms
of precision, recall, and F1 score in both the complete and incomplete data sets. While the absolute score
values are slightly higher in the incomplete data than in the complete data, interestingly, the confusion
matrix values suggest that this difference is probably not meaningful.

Similar results can be seen in Figures 3 through 6, which show the performance of LSA models (the corre-
sponding confusion matrices can be found in Tables 5 through 6 in the Appendix). Models M1.1 through
M1.4 are those using LSA embeddings, LSA+mentions, LSA+dependencies, and LSA+both, respectively.
Models M1.1b through M1.4b are defined similarly, except embeddings are the LSA.content ones. In
both the complete and incomplete data sets, while the logit classifier performs slightly better with the
content embeddings (Models M1.1b through M1.4b), the decision tree results suggest otherwise. Again,
it is surprising that, in terms of F1 score, the LSA-logit results are higher in the incomplete data than in
the complete ones; this is not the case for the decision tree. However, the confusion matrices imply these
differences aren’t too significant either, with the best true positive retrievals of 1 sample (complete) and 2
samples (incomplete) for the logit classifier; 4 samples (both complete, incomplete) for the decision tree.

M0.0 M1.1 M1.2 M1.3 M1.4 M1.1b M1.2b M1.3b M1.4b
0.00

0.05

0.10

0.15

0.20

0.25

0.30

S
co

re
s

LSA Models: Logistic Regression, Complete Data

Precision
Recall
F1

Figure 3: LSA:logit, Complete Data

M0.0 M1.1 M1.2 M1.3 M1.4 M1.1b M1.2b M1.3b M1.4b
0.00

0.05

0.10

0.15

0.20

0.25

0.30
S
co

re
s

LSA Models: Logistic Regression, Incomplete Data

Precision
Recall
F1

Figure 4: LSA:logit, Incomplete Data

The results of classification using word2vec and GloVe embeddings are shown in Figures 7 through 10.
Models M2.1 through M2.4 are those using word2vec embeddings, with and without mentions and de-
pendency features. Models M3.1 through M3.4 are the analogous models using the GloVe embeddings.
In this case, the logit classifier seems to perform better than the decision tree across all models in the
complete data set, however not so much in the incomplete data set.

Compared to LSA, these word2vec and GloVe results look slightly better, when the classifier got any
true positives at all. Again, however, we admit that the differences might not be significant, since the
highest number of true positives found across all cases remains at 6 samples for the complete data, and
4 samples for the incomplete data. In fact, this is the same number of true positives retrieved in the
best-case elementary feature configuration (mentions+dependencies only) using a decision tree. There-
fore, in terms of F1 score, the LSA, word2vec, and GloVe all yield comparable performance to using only
mentions+dependencies as features. However, the precision was highest with word2vec embeddings alone
in the complete data set and with GloVe +mentions+dependencies in the incomplete data set.

Finally, we experimented with using mention-vectors individually as features to the classifier. The confu-
sion matrix results are shown in Table 3. Model M4.1,LR denotes using each LSA mention as a feature

7

March 20, 2015 Trang Tran

M0.0 M1.1 M1.2 M1.3 M1.4 M1.1b M1.2b M1.3b M1.4b
0.00

0.05

0.10

0.15

0.20

0.25

0.30

S
co

re
s

LSA Models: Decision Tree, Complete Data

Precision
Recall
F1

Figure 5: LSA:tree, Complete Data

M0.0 M1.1 M1.2 M1.3 M1.4 M1.1b M1.2b M1.3b M1.4b
0.00

0.05

0.10

0.15

0.20

0.25

0.30

S
co

re
s

LSA Models: Decision Tree, Incomplete Data

Precision
Recall
F1

Figure 6: LSA:tree, Incomplete Data

M0.0 M2.1 M2.2 M2.3 M2.4 M3.1 M3.2 M3.3 M3.4
0.0

0.1

0.2

0.3

0.4

0.5

S
co

re
s

word2vec and GloVe: Logistic Regression, Complete Data

Precision
Recall
F1

Figure 7: w2vec & GloVe: logit, Complete Data

M0.0 M2.1 M2.2 M2.3 M2.4 M3.1 M3.2 M3.3 M3.4
0.0

0.1

0.2

0.3

0.4

0.5

S
co

re
s

word2vec and GloVe: Logistic Regression, Incomplete Data

Precision
Recall
F1

Figure 8: w2vec & GloVe: logit, Incomplete Data

M0.0 M2.1 M2.2 M2.3 M2.4 M3.1 M3.2 M3.3 M3.4
0.0

0.1

0.2

0.3

0.4

0.5

S
co

re
s

word2vec and GloVe: Decision Tree, Complete Data

Precision
Recall
F1

Figure 9: w2vec & GloVe: tree, Complete Data

M0.0 M2.1 M2.2 M2.3 M2.4 M3.1 M3.2 M3.3 M3.4
0.0

0.1

0.2

0.3

0.4

0.5

S
co

re
s

word2vec and GloVe: Decision Tree, Incomplete Data

Precision
Recall
F1

Figure 10: w2vec & GloVe: tree, Incomplete Data

8

March 20, 2015 Trang Tran

Table 3: LSA Results, Classification with Mentions

Feature Vector Classifier Model Number Complete Data Incomplete Data

Baseline:

Random
N/A M0.0

381 7

23 0

353 6

20 1

LSA
Logistic Regression

C=1.0; C=1.0
M4.1,LR

27, 537 3

5, 287 0

23, 780 0

3, 699 0

LSA
Decision Tree

max depth=15
M4.1,DT

25, 330 2, 210

4, 784 503

22, 006 1, 774

3, 366 333

LSA
Decision Tree

max depth=15; t=0
M4.1,vote

180 208

4 19

159 200

4 17

LSA

+Dependencies

Logistic Regression

C=1.0; C=1.0
M4.2,LR

27, 537 3

5, 287 0

23, 780 0

3, 699 0

LSA

+Dependencies

Decision Tree

max depth=15
M4.2,DT

25, 391 2, 149

4, 778 509

21, 936 1, 844

3, 369 330

LSA

+Dependencies

Decision Tree

max depth=15; t=0
M4.2,vote

175 213

4 19

165 194

5 16

LSA.content
Logistic Regression

C=1.0; C=1.0
M4.1b,LR

27, 536 4

5, 287 0

23, 780 0

3, 699 0

LSA.content
Decision Tree

max depth=15
M4.1b,DT

26, 078 1, 462

4, 963 324

21, 722 2, 058

3, 329 370

LSA.content
Decision Tree

max depth=15; t=0
M4.1b,vote

219 169

4 19

167 192

4 17

LSA.content

+Dependencies

Logistic Regression

C=1.0; C=1.0
M4.2b,LR

27, 535 5

5, 287 0

23, 780 0

3, 699 0

LSA.content

+Dependencies

Decision Tree

max depth=15
M4.2b,DT

26, 139 1, 401

4, 979 308

21, 732 2, 048

3, 332 376

LSA.content

+Dependencies

Decision Tree

max depth=15; t=0
M4.2b,vote

219 169

2 21

165 194

5 16

9

March 20, 2015 Trang Tran

vector with a logit classifier. Again, the L2-regularization parameter was found by 5-fold cross validation;
in this experiment all configurations yielded best C = 1.0, for both complete and incomplete data. Sim-
ilarly, model M4.1,DT denotes using LSA mention-vectors as feature vectors with a decision tree, max
depth 15. Model M4.1,vote denotes using LSA mention-vectors as feature vectors with a decision tree as
well, but classifications on mentions are combined to get a final decision on the character. As described in
Section 3, the threshold on the fraction of positive mentions was varied from 0 to 0.5; the table shows only
the results of the threshold yielding best F1 scores (more figures and tables regrading this experiment can
be found in the Appendix).

Interestingly, we always got the best F1 score if we set the threshold t to 0; i.e. the best strategy seems to
be deciding the character is “guilty” if any of its mention was classified as positive. Unsurprisingly, this
time our recall increased significantly, up to 0.91 in the complete data and 0.81 in the incomplete data,
though precision suffered in return. In terms of F1 score, however, this strategy did not bring any win
compared to previous models using one vector per character, with the highest score of 0.2 in the complete
data and 0.15 in the incomplete data, both using the LSA.content embeddings.

Models of 4.2-varieties are defined analogously; here the mention-vectors are concatenated with the men-
tion’s dependencies. Similarly, models of M4.1b- and M4.2b-varieties also alternate between using mention-
vectors and mention-vectors with dependencies, but the embeddings were from the LSA.content configu-
ration. Note that we only did the voting scheme for the decision tree classifier, because unfortunately the
logit consistently yielded 0 scores in all cases.

Overall, the highest F1 score across all models was achieved with word2vec-only embedding for the
complete data (0.29), and with dependencies-only features in the incomplete data (0.26).

5 Future Directions

Before accepting that there aren’t any patterns pointing to the ultimate criminal12, we think the following
directions are worth exploring.

5.1 Modifying the Classifier

We have not yet tried tuning our decision tree classifier, we could try varying the maximum depth or max-
imum nodes allowed in the tree, again using cross validation to select the best parameter. Alternatively,
we could explore a different type of classifier, suitable for both continuous and categorical features, such
as a support vector machine. In this work, we didn’t use an SVM because we would have had to tune
not only regularization parameters but also kernel types, which time did not allow. The main problem
with our poor results, however, most likely lies in the way we represent characters, especially since even
the complete data results weren’t good. We therefore would like to explore other options of designing
character embeddings, as outlined below.

5.2 Modifying Character Representations

As illustrated in the example of Section 3, our character mentions are not of the best quality due to
coreference resolution issues. We could avoid this upstream problem by defining mentions as only named
entities (i.e. excluding pronouns), but this strategy would severely decrease the amount of data available
to us. In fact, Bamman et al. [7] reported that over 70% of references to characters in books are in the
form of pronouns. Therefore, we could try looking for a better coreference resolution system, or find a
larger data source to learn from. In this work, we wanted to keep the author constant, so we have not

12... or celebrating the fact that Agatha Christie was really good at what she did.

10

March 20, 2015 Trang Tran

yet looked into other authors’ detective fiction novels. The variability in authorship might then be a
worthwhile tradeoff for our data sparsity problem.

Additionally, we could experiment with treating mentions of characters differently depending on who is
referring to them or depending on whether the mention appears in a conversation/narrative. Alternatively,
we could study the effects of varying the window sizes in LSA, word2vec, as well as GloVe training.

Another aspect we haven’t had a chance to explore is character appearance order, and how each character
develops over the course of the story. We provide some figures of character timelines (in terms of their
mentions) in the Appendix, though so far we haven’t seen any interesting patterns we could study in more
detail.

Yet as another alternative, we could explore a completely different direction by representing characters
in terms of their relations to each other. This approach was inspired by the word analogy task with the
vector offset method described by Mikolov et al. [13]: to answer the analogy question a : b→ c :?, one first
looks at the corresponding vector space representations wa, wb, and wc and computes y = wb − wa + wc.
The vector y is then the continuous representation most likely to answer the analogy question, so the word
is chosen by d* = arg maxd

wdy
||wd||||y|| ; i.e. choose the word whose vector representation has the highest

cosine similarity with y. We hypothesize that we can similarly find the criminal of a story by performing
the analogy task victim1 : criminal1 → victim2 :?.

Table 4 shows results of initial explorations in this direction. In particular, we chose the pair (victimSTY LES :
criminalSTY LES) as the pivot pair (victim1 : criminal1)13. For each new victim victimx, we look at the
characters’ vector space representations wvictimST Y LES

, wcriminalST Y LES
, wvictimx

and compute the quan-
tity y = wcriminalST Y LES

−wvictimST Y LES
+ wvictimx

. We then iterate over characters in the same story as
victimx, and decide guilty the character whose vector representation has the highest cosine similarity with
y. We actually retrieved the top k (10, 5, and 2) most “suspicious” characters in terms of cosine similarity,
and computed how often the correct criminal appeared in top k, on average (Average Precision @k) for
each of the LSA, word2vec, and GloVe embedding. The Discounted Cumulative Gain (DCG) for each
top k retrieved results was computed as in [14]: DCGk =

∑k
i=1

2reli−1
log2(i+1) where reli ∈ {0, 1} with 1 being

relevant and 0 otherwise.

Table 4: Results of the Vector Offset Experiment

Complete Data Incomplete Data

LSA word2vec GloVe LSA word2vec GloVe

Average Precision @10 0.62 0.51 0.70 0.35 0.54 0.38

Average DCG in top 10 0.33 0.34 0.43 0.22 0.35 0.20

Average Precision @5 0.37 0.37 0.42 0.26 0.33 0.18

Average DCG in top 5 0.23 0.25 0.27 0.18 0.22 0.11

Average Precision @2 0.13 0.13 0.18 0.11 0.14 0.05

Average DCG in top 2 0.10 0.09 0.13 0.10 0.11 0.05

As can be seen in Table 4, GloVe again seems to perform better than others in the complete data set,
while word2vec does better in the incomplete data set. Obviously, this was just a very naive exploratory
experiment; we plan to study more principled approaches of relation extraction in the future. This venue of

13As before, STYLES denotes the story The Mysterious Affair at Styles. The choice of this particular story was arbitrary.

11

March 20, 2015 Trang Tran

relation extraction has the advantage of being relatively well-studied so far (i.e. there is enough literature
on this topic), but on the other hand would be much more involved than our simplistic and ready-to-use
toolkit approaches.

6 Conclusion

In this work, we studied Agatha Christie’s detective novels in an attempt to determine the ultimate
criminal in a story by experimenting with a few NLP methods. In particular, we designed character
embeddings to be used as feature vectors to a logistic regression classifier and a decision tree classifier,
which learn to decide whether a character is “guilty” or “innocent”. For the character embeddings,
we experimented with using rank-reduced LSA representations, as well as word2vec and GloVe trained
embeddings. All these continuous embedding vectors were then augmented with the number-of-mention
and dependencies, to study the effects of these additional elementary features on the classifier performance.
Our results so far are quite poor, with the highest F1 score of 0.29 achieved with word2vec embedding
in the complete data set, and 0.26 with dependency-only in the incomplete data set. Since we consider
the results on the complete set as our upper bound, these results, while disappointing, are perhaps not
surprising. Finally, we presented potential next steps to improve our model and hopefully get more
sensible results, with the relation extraction being the most promising venue. Overall, we are still very
much intrigued by this problem and are excited to develop better approaches to solve it.

References

[1] Song Feng, Ritwik Banerjee, and Yejin Choi. Syntactic Stylometry for Deception Detection. In ACL
(2), pages 171–175. The Association for Computer Linguistics, 2012.

[2] Song Feng, Longfei Xing, Anupam Gogar, and Yejin Choi. Distributional Footprints of Deceptive
Product Reviews. In John G. Breslin, Nicole B. Ellison, James G. Shanahan, and Zeynep Tufekci,
editors, ICWSM. The AAAI Press, 2012.

[3] Myle Ott, Yejin Choi, Claire Cardie, and Jeffrey T. Hancock. Finding Deceptive Opinion Spam
by Any Stretch of the Imagination. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies - Volume 1, HLT ’11, pages 309–319,
Stroudsburg, PA, USA, 2011. Association for Computational Linguistics.

[4] Vikas Ganjigunte Ashok, Song Feng, and Yejin Choi. Success with Style: Using Writing Style to
Predict the Success of Novels. In EMNLP, pages 1753–1764. ACL, 2013.

[5] David K. Elson and Kathleen McKeown. Automatic Attribution of Quoted Speech in Literary Nar-
rative. In Maria Fox and David Poole, editors, AAAI. AAAI Press, 2010.

[6] David K. Elson, Nicholas Dames, and Kathleen McKeown. Extracting Social Networks from Liter-
ary Fiction. In Jan Hajic, Sandra Carberry, and Stephen Clark, editors, ACL, page 138–147. The
Association for Computer Linguistics, 2010.

[7] David Bamman, Ted Underwood, and Noah A. Smith. A Bayesian Mixed Effects Model of Literary
Character. In Proceedings of the 52nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 370–379, Baltimore, Maryland, June 2014. Association for
Computational Linguistics.

[8] Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer. Feature-rich Part-
of-speech Tagging with a Cyclic Dependency Network. In Proceedings of the 2003 Conference of
the North American Chapter of the Association for Computational Linguistics on Human Language

12

March 20, 2015 Trang Tran

Technology - Volume 1, NAACL ’03, pages 173–180, Stroudsburg, PA, USA, 2003. Association for
Computational Linguistics.

[9] Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev, Gülsen Eryigit, Sandra Kübler, Svetoslav
Marinov, and Erwin Marsi. Maltparser: A Language-independent System for Data-driven Depen-
dency Parsing. Natural Language Engineering, 13(2):95–135, 2007.

[10] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. Incorporating Non-local Information
into Information Extraction Systems by Gibbs Sampling. In Proceedings of the 43rd Annual Meeting
on Association for Computational Linguistics, ACL ’05, pages 363–370, Stroudsburg, PA, USA, 2005.
Association for Computational Linguistics.

[11] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word Represen-
tations in Vector Space. CoRR, abs/1301.3781, 2013.

[12] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global Vectors for Word
Representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543. Association for Computational Linguistics, 2014.

[13] Tomas Mikolov, Wen tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word
representations. In HLT-NAACL, pages 746–751. The Association for Computational Linguistics,
2013.

[14] www.kaggle.com/wiki/NormalizedDiscountedCumulativeGain Kaggle. Normalized Discounted Cu-
mulativeGain.

Appendix

In all the tables following, the confusion matrices are shown in the last 2 columns, corresponding to com-

plete and incomplete data sets. The matrices take the form
TN FP
FN TP

.

Results of LSA and LSA.content embeddings using a logistic regression classifier are in Table 5. The L2
regularization parameter C was tuned by 5-fold cross validation; best C values are shown for both the
complete and incomplete data cases in the format Ccomplete = x; Cincomplete = y. Table 6 shows results
of LSA and LSA.content embeddings using a decision tree classifier. Maximum depth of tree was set
to 15 to avoid overfitting. Table 7 presents results using word2vec and GloVe embeddings for the logis-
tic regression classifier. The L2 regularization parameter C was also tuned by 5-fold cross validation and
best C values are shown as with Tables 5 and 6. Table 8 shows similar results for the decision tree classifier.

Table 3 in Section 4 presented confusion matrices for various LSA and LSA.content configurations using
mention-vectors as features. Figures 11 and 12 provide the equivalent information in terms of precision,
recall, and F1 scores. In the classification+vote case, the figures only show the best configuration (setting
threshold t = 0) along side the rest of the models. Figures 13 through 16 show the Precision vs. Recall
plots and the F1 vs. threshold plots to illustrate the effects of varying the voting threshold t.

Finally, figures 17 through 22 show several character timeline plots. Red dots represent mentions of the
criminal while blue dots represent those of the victim; black dots represent other neutral characters.

13

March 20, 2015 Trang Tran

Table 5: LSA Results, Logistic Regression Classifier

Feature Vector Classifier Model Number Complete Data Incomplete Data

Baseline:

Random
N/A M0.0

381 7

23 0

353 6

20 1

LSA
Logistic Regression

C=1.0; C=1.0
M1.1

386 2

23 0

357 2

21 0

LSA

+Mentions

Logistic Regression

C=21.5; C=4.6
M1.2

386 2

23 0

355 4

21 0

LSA

+Dependencies

Logistic Regression

C=1.0; C=1.0
M1.3

386 2

23 0

352 7

19 2

LSA +Mentions

+Dependencies

Logistic Regression

C=1.0; C=1.0
M1.4

386 2

23 0

352 7

19 2

LSA.content
Logistic Regression

C=1.0; C=1.0
M1.1b

384 4

22 1

355 4

20 1

LSA.content

+Mentions

Logistic Regression

C=100; C=1.0
M1.2b

384 4

22 1

355 4

20 1

LSA.content

+Dependencies

Logistic Regression

C=1.0; C=1.0
M1.3b

385 3

22 1

353 6

19 2

LSA.content +Mentions

+Dependencies

Logistic Regression

C=1.0; C=100
M1.4b

385 3

22 1

353 6

19 2

14

March 20, 2015 Trang Tran

Table 6: LSA Results, Decision Tree Classifier

Feature Vector Classifier Model Number Complete Data Incomplete Data

Baseline:

Random
N/A M0.0

381 7

23 0

353 6

20 1

LSA
Decision Tree

max depth=15
M1.1

370 18

20 3

336 23

19 2

LSA

+Mentions

Decision Tree

max depth=15
M1.2

368 20

18 5

329 30

17 4

LSA

+Dependencies

Decision Tree

max depth=15
M1.3

376 12

20 3

335 24

20 1

LSA +Mentions

+Dependencies

Decision Tree

max depth=15
M1.4

370 18

20 3

337 22

20 1

LSA.content
Decision Tree

max depth=15
M1.1b

377 11

19 4

346 13

19 2

LSA.content

+Mentions

Decision Tree

max depth=15
M1.2b

375 13

23 0

334 25

19 2

LSA.content

+Dependencies

Decision Tree

max depth=15
M1.3b

365 23

22 1

345 14

19 2

LSA.content +Mentions

+Dependencies

Decision Tree

max depth=15
M1.4b

367 21

23 0

342 17

20 1

15

March 20, 2015 Trang Tran

Table 7: word2vec and GloVe Results, Logistic Regression Classifier

Feature Vector Classifier Model Number Complete Data Incomplete Data

Baseline:

Random
N/A M0.0

381 7

23 0

353 6

20 1

word2vec
Logistic Regression

C=46.4; C=100
M2.1

382 6

18 5

354 5

21 0

word2vec

+Mentions

Logistic Regression

C=4.6; C=215.4
M2.2

383 5

20 3

354 5

21 0

word2vec

+Dependencies

Logistic Regression

C=10; C=2.2
M2.3

382 6

19 4

352 7

21 0

word2vec +Mentions

+Dependencies

Logistic Regression

C=10; C=2.2
M2.4

386 2

19 4

352 7

21 0

GloVe
Logistic Regression

C=46.4; C=21.5
M3.1

384 4

20 3

353 6

20 1

GloVe

+Mentions

Logistic Regression

C=464.2; C=100
M3.2

384 4

20 3

354 5

20 1

GloVe

+Dependencies

Logistic Regression

C=215.4; C=21.5
M3.3

383 5

21 2

354 5

19 2

GloVe +Mentions

+Dependencies

Logistic Regression

C=464.2; C=21.5
M3.4

382 6

21 2

354 5

19 2

16

March 20, 2015 Trang Tran

Table 8: word2Vec and GloVe Results, Decision Tree Classifier

Feature Vector Classifier Model Number Complete Data Incomplete Data

Baseline:

Random
N/A M0.0

381 7

23 0

353 6

20 1

word2Vec
Decision Tree

max depth=15
M2.1

372 16

17 6

346 13

21 0

word2Vec

+Mentions

Decision Tree

max depth=15
M2.2

364 24

23 0

335 24

19 2

word2Vec

+Dependencies

Decision Tree

max depth=15
M2.3

375 13

19 4

344 15

18 3

word2Vec +Mentions

+Dependencies

Decision Tree

max depth=15
M2.4

361 27

22 1

337 22

19 2

GloVe
Decision Tree

max depth=15
M3.1

377 11

20 3

347 12

18 3

GloVe

+Mentions

Decision Tree

max depth=15
M3.2

366 22

21 2

349 10

18 3

GloVe

+Dependencies

Decision Tree

max depth=15
M3.3

372 16

20 3

348 11

20 1

GloVe +Mentions

+Dependencies

Decision Tree

max depth=15
M3.4

365 23

22 1

345 14

19 2

17

March 20, 2015 Trang Tran

F
ig

ur
e

11
:

L
SA

M
en

ti
on

s
C

la
ss

ifi
ca

ti
on

s,
C

om
pl

et
e

D
at

a

18

March 20, 2015 Trang Tran

F
ig

ur
e

12
:

L
SA

M
en

ti
on

s
C

la
ss

ifi
ca

ti
on

s,
In

co
m

pl
et

e
D

at
a

19

March 20, 2015 Trang Tran

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.00

0.05

0.10

0.15

0.20

0.25

P
re

ci
si

o
n

Precision vs. Recall; Complete Data

LSA only

LSA+dependencies

LSA.content

LSA.content+dependencies

Figure 13: PR curve, Complete Data

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

P
re

ci
si

o
n

Precision vs. Recall; Incomplete Data

LSA only

LSA+dependencies

LSA.content

LSA.content+dependencies

Figure 14: PR curve, Incomplete Data

0.0 0.1 0.2 0.3 0.4 0.5
Threshold

0.00

0.05

0.10

0.15

0.20

0.25

F1
 S

co
re

F1 score vs. Threshold; Complete Data

LSA only

LSA+dependencies

LSA.content

LSA.content+dependencies

Figure 15: F1 curve, Complete Data

0.0 0.1 0.2 0.3 0.4 0.5
Threshold

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

F1
 S

co
re

F1 score vs. Threshold; Incomplete Data

LSA only

LSA+dependencies

LSA.content

LSA.content+dependencies

Figure 16: F1 curve, Incomplete Data

20

March 20, 2015 Trang Tran

0.0 0.2 0.4 0.6 0.8 1.0
Normed Timeline

0

10

20

30

40

C
h
a
ra

ct
e
r

ID
s

STYLES

Figure 17: The Mysterious Affair at Styles

0.0 0.2 0.4 0.6 0.8 1.0
Normed Timeline

0

10

20

30

40

C
h
a
ra

ct
e
r

ID
s

LEDIES

Figure 18: Lord Edgware Dies

0.0 0.2 0.4 0.6 0.8 1.0
Normed Timeline

0

10

20

30

40

50

60

C
h
a
ra

ct
e
r

ID
s

3ACTTR

Figure 19: Three Act Tragedy

0.0 0.2 0.4 0.6 0.8 1.0
Normed Timeline

0

10

20

30

40

50

60

C
h
a
ra

ct
e
r

ID
s

450PAD

Figure 20: 4:50 from Paddington

0.0 0.2 0.4 0.6 0.8 1.0
Normed Timeline

0

10

20

30

40

50

C
h
a
ra

ct
e
r

ID
s

DEAFOL

Figure 21: Dead Man’s Folly

0.0 0.2 0.4 0.6 0.8 1.0
Normed Timeline

0

10

20

30

40

50

C
h
a
ra

ct
e
r

ID
s

TOWARD

Figure 22: Towards Zero

21

