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ABSTRACT

Non-Linear Analysis of Jack-Up Structures Subjected to Random Waves

A thesis submitted for the degree of Doctor of Philosophy

Mark Jason Cassidy
New College, Oxford

Trinity Term 1999

There is a steadily increasing demand for the use of jack-up units in deeper water and
harsher environments. Confidence in their use in these environments requires jack-up
analysis techniques to reflect accurately the physical processes occurring. This thesis is
concerned with the models appropriate for the dynamic assessment of jack-ups, an
important issue in long-term reliability considerations. The motivation is to achieve a
balanced approach in considering the non-linearities in the structure, foundations and
wave loading.

A work hardening plasticity model is outlined for the combined vertical, moment and
horizontal loading of spudcan footings on dense sand. Empirical expressions for the
yield surface in combined load space and a flow rule for prediction of footing
displacements during yield are given. Theoretical lower bound bearing capacity factors
for conical footings in sand have been derived and are used in a strain-hardening law to
define the variation in size of the yield surface with the plastic component of vertical
penetration. The complete incremental numerical model has been implemented into a
plane frame analysis program named JAKUP.

The spectral content of wave loading is considered using NewWave theory, and the
importance of random wave histories shown by constraining the deterministic
NewWave into a completely random surface elevation. Using this technique, a method
for determining short-term extreme response statistics for a sea-state is demonstrated. A
numerical experiment on an example jack-up and central North Sea location is shown
to emphasise the difference in long-term extreme response according to various footing
assumptions. The role of sea-state severity in the variation of short-term extreme
response statistics is also highlighted.

Finally, probabilistic methods are used to develop further understanding of the response
behaviour of jack-ups. A sensitivity study of influential variables (with probabilistic
formulations as opposed to deterministic values) has been conducted using the response
surface methodology.
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Notation

Nomenclature used in thesis (excluding those which only appear once). Symbols have been
placed under chapter headings.

Chapter 1:

H horizontal load
M moment load
u horizontal footing displacement
V vertical load
w vertical footing displacement

θ rotational footing displacement

Chapter 2:

hA , EhA hydrodynamic area and equivalent hydrodynamic area respectively
C system damping matrix

dC drag coefficient

mC inertia coefficient

hD , EhD hydrodynamic diameter and equivalent hydrodynamic diameter respectively
F force per unit length on a member (defined by the Morison equation)
K system stiffness matrix
M system mass matrix
N number of degrees of freedom in the system
P vector of nodal loads
s& , s&& structural velocity and acceleration of a point on a member respectively
t time

tu horizontal water particle velocity normal to member
u& horizontal wave acceleration
x vector of nodal displacements
x& vector of nodal velocities
x&& vector of nodal accelerations
z vertical displacement

β stability parameter in Newmark method
δ dissipation parameter in Newmark method
ρ density of water
ψ shape function

Chapters 3 and 4:

a eccentricity of the yield surface
A plan area of footing
B width of strip footing
B′ effective width of footing

1C elastic flexibility factor (vertical)

2C elastic flexibility factor (moment)

3C elastic flexibility factor (horizontal)



Notation

4C elastic flexibility factor (coupled)
d (as prefix) increment in value
e eccentricity of applied load on footing [= VM ]
f dimensionless initial plastic stiffness factor
f yield function

pf factor determining limiting magnitude of vertical load as ∞→pw

g plastic potential function
g non-dimensional shear modulus factor
G elastic shear modulus

0h dimension of yield surface (horizontal)
H horizontal load

InterH intercept of the ellipse on the H co-ordinate axis

γi inclination factor in bearing capacity formulation
k initial plastic stiffness
k ′ rate of change of association factors

hk ′ , mk ′ rate of change of association factors hα  and mα  respectively

1k elastic stiffness factor (vertical)

2k elastic stiffness factor (moment)

3k elastic stiffness factor (horizontal)

4k elastic stiffness factor (coupled)

vK vertical experimental stiffness

0m dimension of yield surface (moment)
M moment load

InterM intercept of the ellipse on the M co-ordinate axis

γN vertical bearing capacity factor

ap atmospheric pressure

dampingP vector of damping force component of the dynamic equation of motion

extP vector of externally applied loads

inertialP vector of inertial force component of the dynamic equation of motion

intP vector of internal structural loads

pq plastic deviator displacement

Q general deviator force
r radius at the surface of a partially penetrated conical footing
R radius of circular footing

fps experimental vertical load normalised by the theoretical maximum 0V

γs shape factor in bearing capacity formulation
t time
u horizontal footing displacement

pu plastic horizontal footing displacement
V vertical load

0V maximum vertical load capacity when 0=H  and 0=M
mV0 peak value of 0V  in strain hardening law

0V ′ maximum vertical load for the current plastic potential shape

peakV maximum vertical bearing capacity
w vertical footing displacement



Notation

pw plastic vertical footing displacement

pmw value of plastic vertical displacement at the peak value of 0V  (i.e. at mV0 )
x vector of nodal displacements

α roughness factor
0α value of the association factor without any displacements

∞α value of the association factor as displacements tend to infinity

hα , mα horizontal and moment association factor respectively

0hα , 0mα value of association without any horizontal displacement or rotation respectively

∞hα , ∞mα association factor as horizontal displacement or rotation tend to infinity respectively

vα general association factor
β cone apex angle
β exponent in equation for modified parabola

1β , 2β exponents in equation for doubly modified parabola

1β , 2β curvature factor exponents in equation for yield surface

3β , 4β curvature factor exponents in equation for plastic potential

pδ dimensionless vertical plastic displacement at mV0 [ Rw pm 2= ]

φ friction angle of sand
γ , γ ′ unit weight and submerged unit weight of soil
λ multiplication factor determining the magnitude of plastic displacement increments
µ , µ ′ coefficient in equation for modified parabola (horizontal and moment respectively)
θ rotational footing displacement

pθ plastic rotational footing displacement

ν Poisson's ratio
aζ association parameter for determining vertical plastic displacements

Subscripts:
e elastic
ep elasto-plastic
exp represents experimental values from the swipe tests (Chapter 3)
Exp represents experimental evidence of flat circular plates (Chapter 4)
p plastic

loadpre − condition of variable immediately following vertical pre-loading of the spudcans
start value at the commencement of the swipe test
theory represents theoretical values from the swipe tests (Chapter 3)
Theory represents theoretical bearing capacity approach (Chapter 4)

Chapters 5 and 6:

nn ba , independent random variable Fourier components

nc amplitude of wavelet
d water depth (measured vertically from mean water-level to sea bed)
d (as prefix) increment in value

[]E the mean or expected value
)(zFn horizontal attenuation factor at depth z for the nth  wavelet

sH significant wave height



Notation

j integer representing sea-state occurrence (i.e. 1 in j10  year sea-state)
k wave number

pk wave number corresponding to the peak in the wave energy spectrum
n wavelet number (between 1 and N )
N number of increments (Fourier components or wavelets)

crestN number of crests in short-term time period
Q , R random coefficients used in NewWave constraining procedure

)(xQ cumulative probability (probability of non-exceedence of x)
)(τr autocorrelation function for ocean surface elevation
)(τr& differentiation of autocorrelation function with respect to time

rn random number

%50R 50% exceedence value of response

8.02.0 , sfsf factors used to scale 100-year short-term statistics to other return period statistics

ηηS wave energy spectrum
t time
T time period

pT period representing the peak frequency in the sea-state spectrum

zT mean zero crossing period
u , u& horizontal wave velocity and acceleration respectively

loadpre
V

−0 initial vertical load value per spudcan immediately following pre-load

x response value
x spatial distance relative to the numerical analysis reference point
X spatial distance relative to the initial position of the crest respectively
z vertical displacement

α crest elevation (measured vertically from mean water-level to wave maximum)
α& gradient of surface elevation at crest

deckδ horizontal displacement of the deck
∇ delta stretching parameter
ε spectral bandwidth
φ random phase angle
γ peak enhancement factor (in JONSWAP spectrum)
η ocean surface elevation
η& gradient of ocean surface elevation
λ factor in second spectral moment
µ mean value of random variables
σ standard deviation of random variables
τ time lag
ω angular frequency

.maxω maximum defined angular frequency

Subscripts:
c constrained process
r random process

Chapter 7:

ijii dcba ,,, components of second-order response surface with mixed terms



Notation

dC drag coefficient

mC inertia coefficient
d (as prefix) increment in value
f dimensionless initial plastic stiffness factor

pf δ− combination of hardening law parameters f  and pδ

Xf density function of set [ X ]

XF distribution function of set [ X ]
g non-dimensional shear modulus factor

)(XG failure function for set of basic variables [ X ]

sH significant wave height
k number of basic random variables in set

0m dimension of yield surface (moment)

η0m zeroth spectral moment

crestN number of crests in short-term time period

γN vertical bearing capacity factor

fP probability of failure

)(xQ cumulative probability (probability of non-exceedence of x)
SR, component’s resistance and service response respectively

Ŝ service response predicted by the response surface

iX
Sµ sensitivity measure of the ith basic random variable

zT mean zero crossing period
u horizontal current velocity
wind total wind force on jack-up hull
X set of basic variables
Z basic variable in standardised Gaussian space

α unit vector defining direction of the design point in standardised Gaussian space
α crest elevation (measured vertically from mean water-level to wave maximum)

meanαα ,.mod modal and mean most probable wave crest elevation respectively in short-term sea-state
β reliability index

deckδ horizontal displacement of the deck

deckδ̂ response surface prediction of horizontal deck displacement

pδ dimensionless vertical plastic displacement at mV0

.relε measure of relative error (used to compare the response surface and JAKUP deckδ
predictions)

µ mean value of random variables
σ standard deviation of random variables
Φ standard normal distribution function

iζ omission sensitivity factor
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 Chapter 1 – Introduction

1.1 Jack-Up Units

1.1.1 General

Most of the world’s offshore drilling in water depths up to 120m is performed from self-

elevating mobile units, commonly known as jack-ups. Typical units consist of a buoyant

triangular platform resting on three independent truss-work legs, with the weight of the deck

and equipment more or less equally distributed. A rack and pinion system is used to jack the

legs up and down through the deck. An example of such a unit is shown in Fig.1.1.

Jack-ups are towed to site floating on the hull with the legs elevated out of the water. On

location, the legs are lowered to the sea-bed, where they continue to be jacked until

adequate bearing capacity exists for the hull to climb out of the water. The foundations are

then pre-loaded by pumping sea-water into ballast tanks in the hull. This ‘proof tests’ the

foundations by exposing them to a larger vertical load than would be expected during

service. The ballast tanks are emptied before operations on the jack-up begin. It is usual for

the total combined pre-load (i.e. jack-up mass and sea-water) to be about double the mass

of the jack-up.

1.1.2 History

The earliest reference to a jack-up platform is in the description of a United States patent

application filed by Samuel Lewis in 1869 (Veldman and Lagers, 1997). It wasn’t until 85

years later in 1954 that Delong McDermott No. 1 became the first unit to utilise the jack-up

principle for offshore drilling. Delong McDermott No. 1 was a conversion of one of the

successful ‘Delong Docks’: a pontoon with a number of tubular legs which could be moved

up and down through cut-outs in the pontoon. The Delong Docks, which were mostly used as



Chapter 1 – Introduction 1-2

mobile wharves for industrial purposes during the 1940s, could be towed into location with

their legs drawn up. Once in position their legs could be lowered and the pontoon elevated

off the water using the same principle as the modern jack-up. Interestingly, Delong Docks

were used in World War II as mobile docks by the United States Army after the invasion of

Normandy and before the major harbours of Western Europe were liberated (Veldman and

Lagers, 1997).

Like many of the early jack-ups to follow, Delong McDermott No. 1 resembled a standard

drilling barge with attached legs and jacks, which were often many in number. In 1956 R.G.

LeTourneau, a former entrepreneur in earthmoving equipment (Ackland, 1949),

revolutionised the design of jack-ups by reducing the number of legs to three (Stiff et al.,

1997). Another innovative design change was the electrically driven rack and pinion

jacking system which allowed for continuous motion in any jacking operation. This replaced

‘gripper’ jacks where slippage often occurred on the smooth leg surface (Veldman and

Lagers, 1997). Both revolutionary features are common on today’s rigs. Zepata’s

“Scorpian”, used in water depths up to 25 m in the Gulf of Mexico, was the first of many

operated by the company Marathon LeTourneau. They dominated early jack-up design

during the 1960s and 1970s with rigs of increasing size.

Since their first employment, jack-ups have continued to be used in deeper waters (Carlsen

et al., 1986). Other companies, including Bethlehem, Friede and Goldman, Marine

Structures Consultants and Mitsui have contributed to the rise in water depth capacity

(Veldman and Lagers, 1997). This development is continuing with some of the largest units

being used in about 120m of water in the relatively harsh North Sea environment (Hambly

and Nicholson, 1991; Veldman and Lagers, 1997). Furthermore, jack-ups are now operating

for extended periods at one location, often in the role of a production unit (Bennett and

Sharples, 1987). An example of the long-term use of jack-ups is in the Siri marginal field
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development in the Danish sector of the North Sea. A purpose built jack-up is being used in

60 m water depths as a production platform with an expected life of ten years (Baerheim et

al., 1997). A further example is the Shearwater development, where jack-up drilling is

planned to continue for two and a half years at a 90 m water depth in the Northern North Sea

(Offshore Technology, 1999).

1.1.3 Considerations in Jack-Up Analysis Modelling

Before a jack-up can operate at a given site, an assessment of its capacity to withstand a

design storm, usually for a 50-year return period, must be performed. In the past, with jack-

ups used in relatively shallow and calm waters, it has been possible to use overly simplistic

and conservative jack-up analysis techniques for this assessment. However, as jack-ups

have moved into deeper and harsher environments, there has been an increased need to

understand jack-up behaviour and develop analysis techniques. The publication of the

‘Guidelines for the Site Specific Assessment of Mobile Jack-Up Units’ (SNAME, 1994)

was an attempt by the offshore industry to standardise jack-up assessment procedures. The

guidelines also detail categories of jack-up modelling sophistication based on the latest

research. A brief introduction to some aspects of jack-up modelling is given below, while

expanded explanations, including state-of-the-art practices, are detailed in Chapter 2.

1.1.3.1 Structural Modelling

As illustrated by the example unit in Fig. 1.1, a jack-up consists of a large number of

members with intricate structural detail. It is conventional, however, to analyse jack-ups

using a mathematical model which simplifies this structural detail considerably. (Hoyle,

1992). One representative example is Brekke et al. (1990), who calibrated a simplified

model with only six structural nodes per leg against structural measurements of a North Sea

jack-up in firm sandy conditions. Other examples include Daghigh et al. (1997), who used a

three-dimensional finite element model with legs discretised to fourteen nodes each, and
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Manuel and Cornell (1996), who used a plane frame model with loading in the jack-up’s

axis of symmetry. For the latter two-dimensional model, two legs were assumed to act as

the same upwave leg with relevant properties doubled. In both cases the detailed lattice

legs were assumed as equivalent beam elements.

The use of jack-up units in deeper water has several detrimental effects on their structural

response, including:

• increased flexibility caused by longer effective leg length. This increases the natural

period of the jack-up and in most situations moves the structure’s principal natural

period closer to the dominant wave periods of the sea-state. Consequently, inclusion of

dynamic effects in the modelling of jack-up response is critical.

• the assumption of small displacement behaviour is no longer valid, with structural non-

linearities occurring due to large axial loads in the legs caused by the deck’s weight.

Even with knowledge of these considerations, linear structural behaviour and quasi-static

analyses are still inappropriately applied in jack-up assessments; they will be discussed

further in Chapter 2.

1.1.3.2 Modelling of Foundation Behaviour

The foundations of independent-leg jack-up platforms approximate large inverted cones

known as ‘spudcans’. Roughly circular in plan, they typically have a shallow conical

underside with a sharp protruding spigot, as shown in Fig. 1.2. For the larger units operating

in the North Sea spudcan diameters in excess of 20 m have become common.

In a perfectly calm sea vertical self-weight is the only loading on the spudcans. During a

storm, however, environmental wind and wave forces impose additional horizontal and

moment loads onto the foundations of the jack-up, as well as alter the vertical load. An
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understanding of spudcan performance under these combined load conditions is essential to

the analysis of jack-up response.

In a conventional jack-up site assessment, the maximum vertical footing reaction produced

from the structural analysis (factored for safety and usually made with the foundations

modelled as pinned footings) is used to determine the amount of pre-load required during

the installation of the unit (Reardon, 1986). In a calculation of foundation capacity, the

semi-empirical methods developed by Meyerhof (1951, 1953), Brinch Hansen (1961, 1970)

and Vesic (1975) may be used to consider the detrimental effect of concurrent vertical,

moment and horizontal load on vertical bearing capacity. These methods are not amenable

to implementation into dynamic structural analysis programs, thus limiting their application

to single checks on design capacity.

1.2 The Need for Further Research

From their introduction, the accident rate involving jack-ups has exceeded that of other

offshore installations. (Young et al., 1984; Sharples et al., 1989; Leijten and Efthymiou,

1989; Boon et al., 1997). Young et al. attribute about one third of accidents to foundation

failure whilst Leijten and Efthymiou attribute over half of the accidents resulting in total rig

loss to structural or foundation failure. Furthermore, the failure rate for jack-ups can be

interpreted as increasing with the harshness of conditions. Structural and foundation

behaviour are areas where the understanding of jack-up behaviour needs to be improved in

an attempt to reduce the number of accidents.

Due to the demand for longer commitment of jack-ups to a single location, as well as their

use in deeper water and harsher conditions, long-term reliability calculations are becoming

increasingly important. As the results of any reliability analysis can only be judged on the
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accuracy of the individual components used in the analysis, the understanding of jack-up

behaviour and the ability to model it confidently is paramount. With analysis techniques that

reflect accurately the physical processes occurring, a reduction of failure rates is possible.

1.3 Research Aims

This thesis is concerned with extreme response modelling of jack-up units on sand when

subjected to random ocean waves. Whilst maintaining a balanced approach to jack-up

modelling, it aims to extend knowledge of analysis techniques in three key areas:

• foundation modelling,

• random wave loading,

• and the probabilistic approach to developing extreme response statistics.

The purpose of this approach is to achieve understanding and confidence in all the

components affecting jack-up response.

1.3.1 Foundation Modelling

The use of strain hardening plasticity theory is seen as the best approach to modelling soil

behaviour with a terminology amenable to numerical analysis. A major objective of this

project was to develop an elasto-plastic model for spudcan behaviour on sand and fully

integrate it into a dynamic structural analysis program.

1.3.2 Random Wave Modelling

Hydrodynamic loading on jack-up platforms can be calculated by integrating wave forces

on the leg from the seabed to the instantaneous free-water level. This can be achieved by

using the Morison equation, which is discussed further in Chapter 2. Variation of the free-

water surface, as well as other non-linearities such as drag dominated loading and relative

motion effects, can be accounted for in the time domain. In the jack-up industry regular
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wave theories such as the linear Airy wave and the higher-order Stokes’ fifth theory are

widely accepted methods of determining the kinematics required in the Morison equation

(SNAME, 1994). Based on one frequency component, these theories do not account for the

random nature of the ocean environment and give an unrepresentative response.

For dynamically responding structures such as jack-ups, it is important to simulate all of the

random, spectral and non-linear properties of wave loading. The investigation of these

properties as applied to jack-up response analysis is an aim of this thesis. NewWave

theory, a “deterministic random”1 wave theory developed by Tromans et al. (1991), is used

in this investigation.

In this project, both foundation and random wave modelling are constrained to behaviour

within a single vertical plane. This confines the foundation model to a three degrees of

freedom problem, i.e. the model needs to define the load:displacement relationship for a

spudcan for three loads ( )HMV ,,  and their corresponding displacements ( )uw ,,θ , as

shown in Fig. 1.3. Though a foundation model with six degrees of freedom could be

developed and implemented into a three-dimensional structural jack-up model, this was

considered outside the scope of this investigation. The wave model is bound to uniaxial

loading conditions along the jack-up’s axis of symmetry. With a three-dimensional model,

however, the multidirectional nature of the sea could be considered.

                                                
1 By itself NewWave is deterministic and accounts for the spectral content of the sea. However, by
constraining a NewWave within a completely random background, the random properties of wave loading
can be investigated (Taylor et al., 1995).
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1.3.3 Probabilistic Approach

One of the primary project aims was to investigate the dynamic response of jack-ups within

a consistent theoretical framework. The probabilistic modelling of variables achieves this

not only for singular loading examples but also for long-term conditionsa necessity if the

reliability of jack-ups is to be evaluated. Using this consistent framework, a quantitative

comparison of modelling assumptions (especially for foundations) and among input

variables was a research objective.

1.4 Thesis Outline

The outline of this thesis broadly follows four topics described in section 1.1.3 and 1.3:

jack-up analysis techniques (and structural modelling), foundation models, account of

random wave loading and probabilistic modelling. As these topics are distinctively varied,

a review of literature on the separate topics is included at the beginning of each chapter

rather than having one chapter devoted solely to literature reviews.

Jack-Up Analysis Techniques (and Structural Modelling): Chapter 2 contains a literature

review of analysis techniques relevant to the overall analysis of the structural response of

jack-up units. Whilst the state-of-the-art procedures in each modelling area are highlighted,

emphasis is also placed on determining, for an individual study of jack-up response, the

level of complexity in each model component used. The dynamic analysis program JAKUP

and the example structure used in this thesis are also introduced.

Foundation Model: Chapters 3 and 4 concentrate on foundation models of jack-up spudcan

footings in sand. Following an introduction to existing knowledge of combined loading on

flat circular footings, Chapter 3 describes the development of Model C, a work hardening

plasticity model for circular footings on dense sand. The numerical formulation of Model C



Chapter 1 – Introduction 1-9

is detailed in Chapter 4 and retrospective prediction of experimental data shows this

formulation in practice. Model C is extended by a description of a numerical model

accounting for the conical features of spudcan footings and the incorporation of Model C

into the dynamic structural analysis program JAKUP is also presented.

Wave Model: Chapter 5 focuses on wave loading models suitable for the analysis of jack-

up units. NewWave theory is described as a deterministic alternative to regular wave

theories and its theoretical background and implementation into JAKUP are detailed.

Example JAKUP analyses are shown, to emphasise differences in predicted response due to

linear wave theory stretching procedures, second-order effects in NewWave and various

footing assumptions. In Chapter 6 the importance of random wave histories is shown by

constraining a deterministic NewWave into a completely random surface elevation. Extreme

response statistics for an example jack-up in the Central North Sea are evaluated utilising

this ‘Constrained NewWave’ in a simplified method of full random time domain simulation.

The quantitative differences between footing assumptions are outlined for example long-

term conditions.

Probabilistic Modelling: Chapter 7 concentrates on probabilistic modelling of jack-up

extreme response calculations. Variables which influence the dynamic response of jack-ups

are investigated by attributing their inherent statistical variability to a probabilistic

distribution. Comparisons between using deterministic mean values and probabilistic

distributions for these variables are drawn.

Chapter 8 summarises the main findings of the thesis, indicating achievement of the

research aims and outlining areas and topics where further research would be beneficial.
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 Chapter 2 – Analysis of Jack-Up Units

2.1 Introduction

This chapter reviews literature relevant to the analysis of jack-up units, with particular

reference to areas of analysis where techniques have improved to reflect more accurately

aspects of non-linear behaviours. Interaction between these areas is investigated for

individual studies found in the literature. This chapter also presents the dynamic analysis

program named JAKUP and the example structure used in this thesis.

2.2 Literature Review of Jack-Up Analysis Techniques

Jack-ups were originally designed for use in the relatively shallow waters of parts of the

Gulf of Mexico. Due to their economic importance within the offshore industry, there has

been a steady increase in demand for their use in deeper water and harsher environments

(Carlsen et al., 1986). There is also a desire for a longer-lasting commitment of a jack-up at

a single location, especially in the role of a production unit (Bennett and Sharples, 1987).

To be confident of their use in these environments, there has been a need for changes in

analysis techniques to make them more accurate, avoiding unnecessary conservatisms

which were once commonplace.

More realistic modelling of jack-ups based upon the relevant physical processes has been

developed in a number of areas, the most significant being:

• dynamic effects,

• geometric non-linearities in structural modelling,

• environmental wave loading,

• models for foundation response.
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Many individual studies have been published on jack-up response. Rather than detailing the

strengths and weaknesses of each assessment, a review of the development of each area,

highlighting the current state-of-the-art procedures will be given. In section 2.2.5, a table

summarising the application of these developments in a representative set of jack-up

studies is presented. It is shown that while many studies utilise state-of-the-art procedures

for one or two aspects, there are few which bring all components to the same level of

complexity.

2.2.1 Dynamic Effects

Conventionally, jack-up assessments have used the same quasi-static analysis methods

employed for fixed structures (Hambly and Nicholson, 1991); however, the need to

consider dynamic effects has long been acknowledged (Hattori et al., 1982; Grenda, 1986;

Bradshaw, 1987). With use in deeper water, the contribution of dynamic effects to the total

response has become more important as the natural period of the jack-up approaches the

peak wave periods in the sea-state.

Debate exists as to the appropriate method of accounting for the dynamic effects in a

representative and practical manner. The main techniques that have been employed are (i)

time domain, (ii) frequency spectral domain, and (iii) simplified empirical methods in

conjunction with a quasi-static analysis. Time domain techniques provide the most

complete analysis option with the ability to reflect the actual physical processes and non-

linearities within the system; however, they are computationally time-consuming. The

frequency spectral domain method offers a more numerically efficient solution, but as the

behaviour of the jack-up must be linearised, some physical processes become inaccurately

modelled. These include the non-linearities in loading from the Morison drag term and free

surface inundation effects. In addition, only a linear structure and foundations can be
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implemented. Indirect solution techniques do exist to factor in the non-linearities in the

frequency domainsee Naess and Pisano (1997) amongst others; however, the ability to

reflect non-linearities directly is still forfeited. The third method accounts for dynamic

effects by using empirical factors to scale the quasi-static wave load amplitude. These

global response Dynamic Amplification Factors (DAFs) are usually calculated based on a

single degree of freedom oscillator, subjected to harmonic loading. This simplified method

makes no attempt to model accurately the physical response process and provides no clear

picture of the factors controlling the response. Therefore, although DAFs are supposedly

calibrated to give conservative results, there can be no confidence in this under all

conditions.

In summary: due to their ability to model all non-linearities, the time domain techniques are

the most versatile methods in the analysis of the extreme response of jack-ups and will

therefore be the focus of this thesis.

2.2.2 Geometric Non-Linearities in Structural Modelling

For non-conservative modelling of jack-up response, structural non-linearities must be

taken into account. Additional moments are developed due to load eccentricities and are

commonly referred to as ∆−P  effects. Also, the axial loads reduce flexural stiffness in the

leg elements, simultaneously increasing the natural period and dynamic amplifications in

the sway mode. Methods with varying degrees of sophistication exist to account for both of

these features, from simple linear analysis (Brekke et al., 1990) to full large displacement

non-linear formulations which trace the load-deflection path (Karunakaran et al., 1992;

Martin, 1994). For efficiency, dynamic analysis of jack-ups typically make use of

equivalent beam models rather than attempt to model the complex lattice structure.
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2.2.3 Environmental Wave Loading

For dynamically responding structures such as jack-ups it is important to simulate all of the

random, spectral and non-linear properties of wave loading. The extreme dynamic response

depends not only on the load being currently applied, but also on the load history.

Therefore, the most accurate methods of estimating extreme response are based on random

time domain simulation of the ocean surface and corresponding kinematics. For severe

storm conditions, response statistics are typically evaluated over a three-hour period.

Acquiring confidence in random time domain simulation results is, however,

computationally time-consuming; and for the sake of convenience, deterministic wave

theories, which include Airy and Stokes V, are still widely used for calculating wave

loading on jack-ups (SNAME, 1994). However, comparisons of deterministic regular wave

and validated random wave theories show that the regular wave theories tend to

overestimate wave kinematics and thereby the fluid load (Tromans et al., 1991). Moreover,

regular wave theories assume all the wave energy is concentrated in one frequency

component rather than the broad spectrum of the ocean environment and hence give an

unrepresentative dynamic response.

2.2.3.1 NewWave Theory

NewWave theory, a deterministic method described by Tromans et al. (1991), accounts for

the spectral composition of the sea, and can be used as an alternative to both regular wave

and full random time domain simulations of lengthy time periods. By assuming that the

surface elevation can be modelled as a Gaussian random process, the expected elevation at

an extreme event (for example a crest) can be theoretically derived. The surface elevation

around this extreme event is modelled by the statistically most probable shape associated

with its occurrence, and is given by the autocorrelation function of the Gaussian process
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defining the sea-state. Further theoretical details of NewWave theory are presented in

Chapter 5.

For structures which respond quasi-statically, NewWave theory has been used successfully

in the prediction of global response (Tromans and van de Graaf, 1992; Winterstein et al.,

1998). It has also been validated against both measured global loading and conventional

random wave modelling on a real platform by Elzinga and Tromans (1992) and on standard

column examples (Tromans et al., 1991).

2.2.3.2 Constrained NewWave

NewWave theory can be used within a random time series of surface elevation by

mathematically incorporating the NewWave (of pre-determined height) into the random

background (Taylor et al., 1995). This is performed in a rigorous manner such that the

constrained sequence is statistically indistinguishable from the original random sequence.

Constrained NewWave allows for easy and efficient evaluation of extreme response

statistics. This is achievable without the need to simulate many hours of real time random

seas, most of which is of no interest. This is provided the required extreme response

correlates, on average, with the occurrence of a large wave within a random sea-state. Use

of Constrained NewWave for the calculation of extreme response is shown for a simplified

jack-up in a study by Harland (1994). The application of Constrained NewWave to the

study of jack-up response is discussed further in Chapter 6.

2.2.3.3 Alternative Methods for Full Random Time Domain Simulation

Other methods to reduce computation time whilst maintaining accuracy in obtaining

extreme response statistics have been suggested. Reducing the simulation time period in a

time domain analysis and then extrapolating the extreme response to the duration required

is one common method; see, for example, Kjeøy et al. (1989) or Karunakaran et al. (1992).
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However, by fitting a general probabilistic model to the extremes, bias can be introduced to

the results, and furthermore, there is much uncertainty as to the amount of bias present.

Other researchers have attempted to find “design wave” segments. It is believed that a

segment of random sea can be chosen such that the response to it is directly correlated to

the response of the entire period. Within the jack-up industry, for example, Hoyle and Snell

(1997) identified 200-second segments from their base case three-hour simulation. They

concluded that for further variations in the analyses only the segments needed to be used

and could be linearly scaled according to the load required. Unfortunately, there is little

guarantee that when the analysis conditions change from the base case the chosen segments

will be representative of the extreme response, especially in a highly non-linear jack-up

analysis.

2.2.4 Spudcan Footings – Models for Foundation Response

There has been much interest in recent years in the level of foundation fixity developed by

spudcan footings. If some foundation fixity is taken into account, critical member stresses

(usually at the leg/hull connection) and other response values are reduced (Chiba et al.,

1986; Norris and Aldridge, 1992). With higher levels of moment restraint, the natural

period of the jack-up is also reduced, usually improving the dynamic characteristics of the

rig. It is still widely accepted practice, however, to assume pinned footings (infinite

horizontal and vertical and no moment restraint) in the analysis of jack-ups (Reardon, 1986;

Frieze et al., 1995). This creates overly conservative results. Another approach used, and an

improvement on pinned footings, is the use of linear springs. Brekke et al. (1990) for

example, calibrated linear springs with offshore measurements and reported a 40%

reduction in critical member stresses in comparison to pinned cases. Unfortunately, while

linear springs are easy to implement into structural analysis programs, they do not account
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for the complexities and non-linearities of spudcan behaviour, and this simplistic approach

can produce unrealistic results which may also be unconservative.

Various authors have attempted to implement non-linear springs in their structural analysis.

For example, Hambly et al. (1990) and Hambly and Nicholson (1991) calibrated their

springs against measurements in the North Sea with spring stiffnesses calculated at each

instantaneous time step. To achieve this, however, the structural analysis was minimised to

a single degree of freedom problem, which did not allow for consideration of other non-

linearities (such as variation in the application of wave loading).

Another approach widely used is the non-linear stiffness model recommended in the

SNAME (1994) procedures and based on the findings described by Osborne et al. (1991).

Using the yield surface principle, a locus of vertical, moment and horizontal forces define a

boundary at which loads can be applied without significant penetration of the footing. The

size of this surface is fixed and relates to the vertical pre-load value. Within this surface a

pseudo-elastic stiffness is assumed, with the rotational stiffness non-linearly reduced from

its original elastic stiffness according to how close the load combination is to the yield

surface. For spudcans on sand the horizontal elastic stiffness is also reduced. Hoyle and

Snell (1997), for example, implemented this model; however, it does not account for any

work-hardening of the soil with stiffness reducing to zero at the yield surface boundary.

Furthermore, cross coupling effects are not implemented.

Manuel and Cornell (1996) compared the sensitivity of the dynamic response statistics at

two sea-states to different support modelling conditions: pinned, fixed, linear springs, and a

non-linear rotational spring model based on two parameters fitting a non-linear curve (the

horizontal and vertical springs were still linear). They noted that not only were there large

differences in the response extremes, but also that the model employed at the soil/structural
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interface significantly affected the root-mean-squared (rms) response statistics (six samples

were taken for a duration of 0.57 hours each). Manuel and Cornell concluded that the stiffer

foundation models, whilst predicting smaller rms response, exhibited more non-Gaussian

behaviour due to smaller dynamic forcing components (i.e. with more foundation fixity the

natural period of the structure moved away from the peak period of the two sea-states

investigated).

The use of strain-hardening plasticity theory has emerged as the best approach to model

soil behaviour with a methodology amenable to numerical analysis. This is because the

response of the foundation is expressed purely in terms of force resultants. Though first

used as a geotechnical solution to another problem by Roscoe and Schofield (1956), it has

recently been used in the examination of jack-up performance (for instance by Schotman

(1989), Martin (1994) and Thompson (1996)).

2.2.5 Overall Jack-Up Analysis – A Summary of Models Used

Table 2.1 details the level of complexity used in the analysis of jack-up response in a

representative set of studies published in the last fifteen years, with the four areas

previously highlighted as conventionally conservative broken into components of

increasing degrees of sophistication (and accuracy). This table demonstrates the

considerable diversity in the level of complexity used in jack-up analyses with no standard

approach dominating. All of the components in Table 2.1 have been assessed for

appropriate modelling of the physical processes and graded with a three category system: α

represents state-of-the-art practice, β a compromise solution (adequate under some

circumstances) and γ an inadequate method (which usually produces overly conservative

response).
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Some general comments on each of the four areas are:

Structural:  Most of the studies performed in recent years have implemented structural non-

linearities. This is an area where the application of advances in structural theory have been

successfully applied to jack-up modelling and techniques have reached a sophisticated

level. Other advances, for example plasticity of space frame structures (Al-Bermani and

Kitipornchai, 1990) or the use of super finite elements (Lewis et al., 1992) could give more

accurate results in a more detailed manner, but without the same high level of accuracy

being shown in the other areas, the advantages are ineffectual.

Foundations:  Single studies are often complex in one or two of the areas but have the

simplest of assumptions in the others. This is especially true for foundation modelling, with

many studies using detailed structural models or advanced wave mechanics whilst still

using the simplest of foundation assumptions (i.e. pinned footings).

Dynamics:  Within the published works used in Table 2.1, time domain simulation occurs

more often than frequency domain dynamic analysis and can be assumed as the only

generally accepted method which captures the non-linear characteristics of a jack-up

analysis accurately.

Wave loading:  The use of point loads or regular wave theories does not adequately

represent wave loading on jack-ups. However, when used, the level of sophistication in

random wave loading is highly variable. For example, the number and length of simulations

used to estimate response levels differ widely. Most studies use simplifying assumptions

due to the extensive computational time needed to perform random time domain simulation

properly.
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2.3 Overview of JAKUP – The Analysis Program used in Thesis

An overview of the components of the dynamic structural analysis program used in this

thesis are described here. Named JAKUP, it is capable of considering the major non-

linearities in jack-up response. The initial development of JAKUP was by Martin (1994)

and Thompson (1996).1 Further developments of the foundation and wave models of

JAKUP resulting from this thesis are outlined in sections 2.3.3 and 2.3.4.

2.3.1 Dynamic Analysis

To analyse the results of jack-up unit response against time, the dynamic equation of

motion must be solved. In this instance this equation can be expressed for a N degree of

freedom system as

)()()()()()()( tPtxtKtxtCtxtM =++ &&& (2.1)

where )(tM , )(tC  and )(tK  are the mass, damping and stiffness matrices at time t

respectively. )(tP  represents the externally applied forces at the nodal positions, and )(tx&& ,

)(tx&  and )(tx  the nodal accelerations, velocities and displacements at time  t. As discussed

in section 2.2.1, because of the need to model non-linearities, analysis in the time domain

using numerical step-by-step direct integration techniques provides the most versatile

method to solve Eqn 2.1 (and analyse jack-ups). Within this thesis, the Newmark 25.0=β ,

5.0=δ  method is used, since it is an unconditionally stable and highly accurate solution

algorithm. For further details see Thompson (1996), who reviewed methods for solving the

equations of motion in a discretized system.

                                                
1 Martin (1994) initially developed a structural model including his elasto-plastic model for spudcan
behaviour on clay (entitled Model B and further detailed in Chapter 3). Thompson (1996) extended JAKUP to
consider dynamic behaviour and regular wave loading.
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2.3.2 The Structural Model

For the modelling of jack-up response, structural non-linearities must be considered if

reasonable accuracy is to be achieved. Euler and ∆−P  effects are both accounted for in

JAKUP by using Oran’s (1973[a]) formulation of beam column theory to specify the

stiffness matrix. The load-deflection path is traced according to Kassimali (1983), except

the consideration of plastic hinge formation has not been implemented. Further

modifications to produce the additional end rotations on the beam due to the presence of

shear are also implemented (Martin, 1994). Both the mass and damping matrix of Eqn 2.1

are time invariant with the former derived as a consistent mass matrix using cubic

Hermitian polynomial shape functions and the latter by use of Rayleigh damping. Structural

damping coefficients are defined for the lowest two modes, i.e. surge and sway in a jack-

up. This creates artificially high damping in the higher modes. Implementation of the

structural model of JAKUP was performed by Martin (1994) and Thompson (1996), where

further details of the formulations can be found.

2.3.3  The Foundation Model

JAKUP has the capabilities of modelling pinned, fixed or linear springs as the foundations

of the jack-up. Furthermore, a strain hardening plasticity model for spudcan footings on

dense sand has been developed and its numerical formulation implemented into JAKUP.

This is discussed in Chapters 3 and 4.

2.3.4 Environmental Loading Models

2.3.4.1 Wave Loading

Linear NewWave theory, second-order NewWave formulations, Constrained NewWave

and a method for full random wave analysis have been implemented in JAKUP to evaluate

surface elevations and wave kinematics, as is described in Chapters 5 and 6. JAKUP then
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uses the extended Morison equation to calculate the hydrodynamic loads on the jack-up

legs. As used here to calculate the horizontal loads on the vertical member, the equation

consists of a drag and an inertia component and incorporates current and relative motion

between the structure and the fluid. The horizontal force per unit length on the member can

be expressed as

( ) ( ) sACuACsusuDCtzxF hmhmtthd &&&&& ρρρ 1)(
2
1,, −−+−−= (2.2)

where hD  and hA  are the hydrodynamic cross sectional diameter and area respectively, tu

the velocity vector sum of current and wave resolved normal to the members axis, u&  the

acceleration of the wave and s&  and s&&  the structural velocity and acceleration respectively

at the point with horizontal position x  and vertical elevation z . dC  and mC  are the drag

and inertia coefficients respectively. The drag term is entirely empirical and is due to

vortices created as flow passes the member, while the inertia term is due to the pressure

gradient in an accelerating fluid.

In a number of jack-up studies, the relative motion between the structure and the water is

considered, either explicitly in the relative Morison formulation (Kjeøy et al., 1989; Chen

et al., 1990; Karunakaran et al., 1992; Manuel and Cornell, 1996) or as additional

hydrodynamic damping combined with the structural damping in the dynamic analysis

(Carlsen et al., 1986). Chen et al. (1990) and Manuel and Cornell (1996) have shown that

significantly larger response is predicted if relative velocity effects are ignored (i.e. there is

an absence of hydrodynamic damping). This difference may be as much as 40% in the root-

mean-squared (rms) levels of response under random loading (Manuel and Cornell, 1996).

However, because the relative Morison formulation predicts stronger non-Gaussian

behaviour, this difference is not as large for extreme response estimates.
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Details of the formulation of the relative motion Morison equation in JAKUP can be found

in Thompson (1996). Horizontal particle kinematics are calculated at the undeflected beam

position, with the equivalent nodal load, ijP , found by integrating the distributed load with

the corresponding shape function:

∫=
length ijij dztzxFzP ),,()(ψ . (2.3)

( )zijψ  is the shape function evaluated at elevation z. In Thompson (1996), seven point

Gauss integration was used. However, the number of Gauss points is now user-defined for

each member, allowing more accurate measurement of kinematics, especially close to the

free surface.

2.3.4.2 Wind Loading

Wind loads on the hull make up a small but nevertheless significant proportion of the

loading on a jack-up (Vugts, 1990; Patel, 1989). Wind forces acting on the jack-up hull are

applied as constant point loads at the relevant nodes within a JAKUP numerical analysis.

However, wind loading on the exposed surface of the jack-up legs was not deemed

necessary. More details of wind force values are given when used in Chapter 6 and 7.

2.4 Example Structure used in Analyses

Fig. 2.1 shows a schematic diagram of the idealised plane frame jack-up used in all

analyses in this thesis. The mean water depth was assumed to be 90 m with the rig size

typical of a three-legged jack-up used in harsh North Sea conditions. Fig. 2.1 represents an

equivalent beam model, with the corresponding stiffnesses and masses of the beams shown.

The hull is also represented as a beam element with a rigid leg/hull connection. Though

non-linearities in the leg/hull jack houses are recognised as significant (Grundlehner, 1989;
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Spidsøe and Karunakaran, 1993), they were not included in the analyses. Example

structural node locations on the legs are shown in Fig. 2.1.

The hydrodynamic modelling of the leg is performed by idealising the detailed lattice leg to

comprise one “equivalent” vertical tubular section located at the geometric centroid of the

actual leg according to the SNAME procedures (1994). The detailed leg section used is one

described by Nielsen et al. (1994) and is shown in Fig. 2.2. Table 2.2 represents the

calculation procedure used to determine the equivalent hydrodynamic diameter EhD  and the

equivalent area EhA , with values calculated as 8.50 m and 3.66 m2 respectively. A marine

growth of 10 mm on all members has been assumed, similar to growths used in other jack-

up studies. Recently, Hoyle and Snell (1997) used 25 mm and Karunakaran (1993) between

10 and 40 mm depending on depth. Hydrodynamic coefficient values for tubular sections of

1.1=dC  and 0.2=mC  are utilised.2 Use of the equivalent leg members assumes that no

shielding or blockage occurs.

                                                
2 There is considerable uncertainty in the dC  and mC  values appropriate for the calculation of leg forces
offshore, with many values in publication. As the coefficients need to be empirically derived, they are based
on the analysis of both the measurement of force and of the kinematics. Uncertainty in the kinematics is one
reason for many different results found in different investigations of force coefficients (Vugts, 1990). When
choosing coefficients, the parameters to be considered are the Keulegan-Carpenter and Reynolds numbers and
the relative roughness. Consideration must also be given to the wave model being used. For extreme response
analysis of jack-ups, post-critical Reynold numbers ( 66 105.4100.1 ×−× ) and high Keulegan-Carpenter
numbers are expected (SNAME, 1994); however, the amount of roughness is uncertain. The values chosen
here reflect recommended values in SNAME for tubular sections (for rough sections 0.1=dC  and 8.1=mC
and for smooth 7.0=dC  and 0.2=mC ). In a joint industry project led by Shell Offshore Inc., forcing
coefficients were obtained using a one meter diameter instrumented cylinder (Rodenbusch and Kallstrom,
1986). Reynolds numbers greater than 106, as well as forced oscillations and random waves, were studied. For
high Keulegan-Carpenter numbers, dC  values approached 1.2 and 0.7 for rough and smooth cylinders
respectively. Tromans et al. use coefficients detailed by Rodenbusch (1986) with the NewWave model with
values of 63.0=dC  and 1.17 for smooth and rough cylinders respectively and a mC  of 1.8. Other values
used in published studies of jack-ups include Løseth and Hague (1992) 0.1=dC  and 75.1=mC  and
Karunakaran (1993) 0.1=dC  and 0.2=mC .
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 Chapter 3 - Strain Hardening Plasticity Model for Spudcans

on Dense Sand

3.1 Introduction

In this chapter an incremental work hardening plasticity model (Model C) is described. It

has been developed for flat circular footings on dense sand subjected to a combination of

vertical, moment and horizontal loading (V, M, H). Model C is based on a series of

experimental tests performed at the University of Oxford by Gottardi and Houlsby (1995).

Circular footings are representative of spudcans, typical pad footings found on jack-up

drilling platforms. A description of the incorporation of the conical features of spudcan

footings into Model C is presented in Chapter 4. The model follows “Model B” described

by Martin (1994) for spudcans on clay.

3.2 Literature Review

3.2.1 Introduction - Combined Loading on Foundations

Bearing capacity methods have been commonly used to calculate the ultimate capacity of

spudcan footings under combined loading, with failure evaluated from inclined and

eccentric load conditions. Recently a number of experimentally based studies have led to

the development of an alternative to bearing capacity methods for foundations subjected to

combined loads. These studies have led to the development of complete plasticity models to

replace bearing capacity factors.
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3.2.2 Traditional Bearing Capacity Theories

In the offshore industry, the calculation of the bearing capacity of foundations on frictional

material generally uses procedures described by Meyerhof (1951, 1953), Brinch Hansen

(1961, 1970) and Vesic (1975). For a surface strip footing, the maximum vertical bearing

capacity is calculated as

ABNVpeak γγ ′= 5.0 (3.1)

where γ ′  is the submerged unit weight of the soil, B and A the width and plan area of the

footing respectively, and γN the bearing capacity factor.

In the application of these procedures to jack-ups, the vertical capacity is reduced by the

assumption that a spudcan behaves as a flat circular footing. A shape factor is applied and

usually takes the value of 6.0=γs . Furthermore, it is well known that the bearing capacity

of a foundation subjected to pure vertical load is reduced when concurrent horizontal and/or

moment loads are applied. In a calm sea vertical self-weight is the sole load on the

foundations of a jack-up. During a storm, however, environmental forces impose horizontal

and moment loads onto the foundations.

Meyerhof (1953) proposed that inclination factors be used to scale the reduction of vertical

bearing capacity caused by simultaneous horizontal loading, as shown in Fig. 3.1(a).

Applying the same shape factors as for the pure vertical loading, for a circular footing of

radius R, the bearing capacity becomes

ANRisVpeak γγγ γ )2(5.0 ′= (3.2)

where γi  is the inclination factor defined, for a soil of friction angle φ, as
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Brinch Hansen (1963, 1970) retained Meyerhof’s basic approach, but defined the

inclination factor in terms of a ratio of horizontal to vertical load, unconditional on soil

properties:
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For eccentric loading as shown in Fig. 3.1(b), Meyerhof (1953) suggested that for

calculating bearing capacities an “effective area” concept should be used. The load carrying

contact area, and thus the bearing capacity, is reduced such that the centroid of the effective

area coincides with the applied vertical load. For a strip footing Meyerhof defined the

effective width as B′ = B - 2e, where e is the eccentricity of the applied load as depicted in

Fig. 3.2(a). For circular footings he did not specify a B′ value explicitly, only drawing the

effective area graphically (Fig. 3.2(b)). Brinch Hansen (1970) retains this effective area

approach, as does Vesic (1975), although modifying the area capable of carrying load for

circular footings to be as shown in Fig. 3.3. The American Petroleum Institute (API, 1993)

recommends procedures for determining the effective foundation dimensions as







−−−=′′=′ −

R
eReReRLBA 12222 sin22π     and
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B
L
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′
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A locus of limiting behaviour can be established in V:M:H space by combining these three

empirical formulations, i.e. vertical, eccentric and inclined loading. “Failure” is predicted
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for any foundation design load state exceeding this capacity criterion. If the maximum

vertical load is defined as the pure vertical bearing capacity, ARNsVpeak γγγ 25.0 ′= , and

assuming the moment load M = Ve, the failure interaction surfaces can be derived as
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                                                             (Meyerhof, 1953) (3.5b)

In the derivation of these failure surfaces, the shape factors defined by Brinch Hansen and

Meyerhof have been used:

)(4.01 LBis ′′−= γγ                                                         (Brinch Hansen, 1970) (3.6a)

))(245(tan1.01 2 LBs ′′++= φγ
o .                                 (Meyerhof, 1953) (3.6b)

Fig. 3.4 shows both Brinch Hansen and Meyerhof curves for a typical sand (for this

example φ = 43°), with all loads normalised by the maximum vertical load peakV . Figs

3.4(a) and (b), represent planar cuts through the three dimensional surfaces along the

peakVV  axes under the conditions M = 0 and H = 0 respectively, whereas Fig. 3.4(c)

shows the shape in the peakpeak VHRVM :2  plane at three peakVV  load levels.

In the peakpeak VVVH :  plane, both Brinch Hansen’s and Meyerhof’s curves are parabolic

in shape, starting with no horizontal and vertical load, i.e. 0=peakVH  and 0=peakVV ,
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and finishing at 0=peakVH  and 1=peakVV . Both are skewed with peak horizontal load

values occurring at 5.0<peakVV . Fig. 3.4(b) shows that both curves are skewed parabolic

in shape in the peakpeak VVRVM :)2(  plane, with a maximum moment occurring at

50 .VV peak < . This is a similar result to Fig. 3.4(a). The yield loci defined from

Meyerhof’s and Brinch Hansen’s theories are considered conservative compared with

existing experimental evidence for strip and circular footings (Dean et al., 1993).

Comparisons with the experimental results of Gottardi and Houlsby (1995) will be

described in section 3.3.5.

Moment can be developed on a footing with either positive or negative eccentricity, as

depicted in Fig. 3.5. In Fig. 3.4(c) quadrant (A) represents positive eccentricity and (B)

negative. For the analysis of jack-up platforms, the expectation is that the largest loading on

the foundations would be with positive eccentricity. Nonetheless, it is important in the

development of a model to consider all (V, M, H) load cases. Meyerhof commented on the

differences between the two cases, but only developed a solution for the positive case, with

no indication of a procedure to solve for negative eccentricity. Zaharescu (1961) made a

detailed investigation of the difference between negative and positive eccentricity, using a

flat strip footing on sand. He found that there is a larger moment capacity in the negative

eccentricity case for the same H and V loading. Despite this finding, Brinch Hansen and

Vesic retained Meyerhof’s approach, and their results are based only on positive

eccentricity. This is illustrated in Fig. 3.4(c) where the capacity is assumed symmetric for

both negative moment and horizontal load, contrary to Zaharescu’s findings.

3.2.3 Alternative Yield Surface Loci

As an alternative failure envelope in the V:M:H plane, Butterfield and Ticof (1979)

suggested for strip footings on sand a yield surface parabolic along the V axis, but elliptical
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perpendicular to it. Fig. 3.6 shows their surface, which they described as “cigar-shaped”.

The surface was based solely on the interpretation of a large number of load controlled

tests, not relying on any empirical bearing capacity formula. Butterfield and Ticof

recommended that the size of their yield surface be determined by fixed dimensionless peak

loads, with values 1.0/ 0 ≈BVM  and 12.00 ≈VH , where 0V  is the maximum vertical

load experienced. The surface is symmetric about all axes and peaks at 5.00 =VV . Nova

and Montrasio (1991) gave additional verification of this surface as a good description of

combined load bearing capacity for surface strip footings on sand.

Research performed at Cambridge University has also shown the cigar-shaped surface

suitable for modelling the combined load bearing capacity of conical and spudcan footings

on sand. This work was co-ordinated by Noble Denton and Associates (1987) and is also

summarised by Dean et al. (1993). For this surface the peak loads were retained at

5.00 =VV , but values of 0875.02 0 =RVM  and 14.00 =VH  were suggested. (Note: for

conical footings, compared with strip footings, 2R replaces B.)

3.2.4 Concluding Remarks - Combined Loading on Foundations

The bearing capacity formulations and yield surface loci described in sections 3.2.2 and

3.2.3 have been developed empirically and verified experimentally in sand mainly for strip

and square footings, with only a small number of experiments on circular footings or actual

spudcans. The original intended use was for onshore conventional shallow foundation

designs, where horizontal loads and moment are relatively small when compared with

vertical load. These formulae have been adequate, though usually overly conservative for

predicting failure under combined loads, but because of their empirical nature they cannot

be applied within numerical analysis.
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3.2.5 Use of Plasticity Theory for Combined Loading of Offshore

Foundations

Recent research has not used the procedures of conventional bearing capacity factors but

has relied on the interpretation of experimental data in terms of the concepts of plasticity

theory. The exploration of the shape of the yield surface within three dimensional space

(V:M:H) allows for consistent procedures amenable to numerical analysis. This approach

was pioneered by Roscoe and Schofield (1956) when they discussed the design of short

pier foundations in sand in terms of the plastic moment resistance of the footing in M:V

space.

Schotman (1989) was first in describing a complete non-linear spudcan foundation

load:displacement model which he implemented into a relatively simple structural analysis

of a jack-up. The model was framed within plasticity theory in (V:M:H) load space, though

it still relied heavily on numerous empirical assumptions. For instance, the yield surface

shape was not defined experimentally, but was a limiting condition of empirical vertical

bearing capacity formula. The elasticity constants and plastic potential were calibrated

using limited finite element analysis. By factoring the environmental load, Schotman

investigated the load distribution between the footings when yield occurs, as well as its

effect on structural stability. Loading was applied as a point load at a set location on each

leg.

Tan (1990) made a detailed investigation of the H:V yield loci for various conical and

spudcan footings on saturated sand. His physical model tests were performed in a

geotechnical centrifuge at Cambridge University. Tan found that for spudcan footings on

sand, the H:V yield locus was not symmetric about 5.00 =VV , and suggested that the peak

horizontal load occurred at about 4.00 ≈VV . Although Tan did not develop a full
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plasticity model, he did combine his yield locus and plastic potential with theoretical

elasticity behaviour and a semi-empirical hardening law based on bearing capacity theory.

The resulting model was verified with retrospective simulation of both load and

displacement controlled tests. Though Tan modelled experimental data with an incremental

plasticity method, it was in two dimensional H:V space with no moment component.

Martin (1994) investigated spudcan footing behaviour on cohesive soil with a programme

of physical model tests involving combined loading on reconstituted speswhite kaolin. The

test results were interpreted and theoretically modelled in terms of a work hardening

plasticity theory in three dimensions, which was named Model B. Martin used theoretical

stiffness factors to define elastic behaviour, and theoretical lower bound bearing capacity

solutions to define vertical bearing capacity with vertical penetration. He found from his

physical experiments on clay that the general shape of the HRMV :2:  yield surface

remained constant while expanding with increased penetration. This allowed the definition

of the yield surface to be normalised in one expression by 0V , the pure vertical load

capacity at any depth. A modified cigar-shaped yield surface similar to Butterfield and

Ticof (1979) was used.

Martin (1994) found that the shape of the yield surface could be modelled as roughly

parabolic in the 00 =VH  and 02 0 =RVM  planes, with adjustments made to the

curvature at relatively high and low stresses. The surface was found to be elliptical in the

plane of constant 0VV , with a rotation such that the major and minor axes of the ellipse do

not coincide with the 0VH  and 02RVM  co-ordinate axes. Gottardi and Butterfield

(1993) also found this to be the case for their tests on surface strip footings on dense sand.

Their study concentrated on a load level of 5.00 =VV . However, in contradiction to

Gottardi and Butterfield, Martin found that for a spudcan footing (rather than a flat footing)
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the yield surface had a positive eccentricity. This implies that the maximum horizontal and

moment capacity occurs in the positive quadrants in 00 :2 VHRVM  space. Gottardi and

Butterfield’s study confirmed Zaharescu’s (1961) observation that maximum moment

capacity occurs with negative eccentricity. Martin attributed the difference in Model B to

the use of spudcans with an angular underside profile rather than a flat footing.

3.3 Development of Model C

3.3.1 Introduction to Experimental Tests and Data

The combined loading of a footing results in a complex state of stresses in the underlying

soil. By expressing the response of the footing purely in terms of force resultants (V, M, H)

the model defined can be coupled directly to a numerical analysis of a structure. Fig. 3.7

outlines the positive directions of force resultants, (V, M, H) and the corresponding

displacements (w, θ, u), with directions and notations for the combined loading problem as

recommended by Butterfield et al. (1997). For dimensional consistency, the model will be

formulated with moment and rotation described as RM 2  and θR2  respectively.

The numerical model described in this chapter is based on a series of 29 loading tests

performed by Gottardi and Houlsby (1995) on a rough, rigid, flat circular footing resting on

dry, dense Yellow Leighton-Buzzard sand. The tests were carried out using the

displacement controlled load cell device designed and constructed by Martin (1994) and

located in the University of Oxford laboratory. The footings were subjected to a variety of

vertical translations, horizontal translations and rotation combinations with the

corresponding loads being measured. By varying the applied displacement path, the

load:displacement behaviour of a strain hardening plasticity model could be investigated
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and theoretically modelled. The major components of a strain hardening plasticity model

are:

• An empirical expression for the yield surface in ),2,( HRMV  space. This failure

envelope represents a yield locus defining permissible load states.

• A strain hardening expression to define the variation of vertical load with vertical

displacement. The yield surface expands and contracts with vertical plastic penetration

and plastic heave respectively, with its size determined by 0V , the vertical load

capacity.

• A suitable flow rule to allow predictions of the footing displacements during yield.

• A model for elastic load:displacement behaviour within the yield surface.

To develop these components, the experimental displacement paths required were as

follows, with the expected load path directions depicted in Fig. 3.8:

• Swipe Tests. The footing is subjected to a horizontal displacement or rotation after

being penetrated vertically to a prescribed level, in this case V = 1600 N. The load path

followed can be assumed to be a track of the yield surface appropriate to that

penetration. Tan (1990) first argued this assumption when he made his detailed

investigation of the (H:V) yield loci for various conical and spudcan footings on

saturated sand. Investigation of the yield surface at low stress is achieved by vertically

loading to the same vertical penetration then unloading to a low stress, in this case

200=V N before making a swipe. The swipe tests could be thought of as constant

vertical penetration tests.

• Constant V Tests. Similar to a swipe test except rather than holding the vertical

penetration constant, the vertical load is fixed while the footing is driven horizontally

and/or rotated. According to plasticity theory, the yield surface should expand or
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contract according to the strain hardening relationship, with the tests providing

information on the load:displacement relationship (flow rule) at yield.

• Radial Displacement Tests. Straight paths of different combinations of vertical,

horizontal and rotational displacements are applied to the footing to provide information

about the hardening law and flow rule. Vertical loading tests, where the footing is

purely penetrated in the vertical direction, are one specific example; these can be used

to deduce a vertical strain hardening law.

• Elastic Stiffness Tests. Though the elastic stiffness matrix may be derived using

numerical methods (for example, finite element analysis of a footing), experimental

footing tests with small excursions in all three directions, after unloading from a

prescribed vertical load, can be used to establish approximate elastic stiffness

coefficients. With these the validity of any numerical selections can be determined.

3.3.2 Elastic Response: Choice of an Elastic Stiffness Matrix

Elastic response of the soil needs to be defined for any increments within the yield surface,

with existing theoretical and numerical elastic solutions considered for use in Model C.

The American Petroleum Institute (API) (1993) has recommended elastic solutions for rigid

circular footings on the surface of a homogeneous elastic half space subjected to vertical,

horizontal or moment loads. These closed form solutions are referenced in Poulos and

Davis (1974) and can be written in uncoupled matrix form as
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where G and ν  are the shear modulus and Poisson ratio of the soil respectively. The terms

were derived with contradictory assumptions, with the vertical and moment solutions

developed for smooth footings while the horizontal term assumed a rough footing with no

vertical deflections. Bell (1991) showed that these solutions are exact only for

incompressible soils (ν = 0.5). For these soils the smooth and rough cases equate and cross

coupling does not exist. However, as most sands have ν < 0.5, the API recommendations

are imprecise for use in the analysis of jack-up foundations.

In response to limited consistent information on the elastic response of flat circular footings,

Bell (1991) conducted extensive research using finite element methods. He investigated the

effects of footing embedment for a full range of Poisson ratios concluding that vertical,

rotational and horizontal stiffness increase with depth of penetration. His work also showed

that cross coupling between the horizontal and rotational footing displacements is important.

Bell expressed this mathematically as
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and set out tabulated values of 1k … 4k  for flat footings. As footings on dense sand are

usually considered as shallow footings, the results for the surface condition can be assumed,

allowing for constant k values. For elastic behaviour within the yield surface in Model C,

Bell’s results for ν = 0.2 were used,1 with the values as follows:

65.21 =k ; 46.02 =k ; 30.23 =k ; 14.04 −=k .

                                                
1 Lade (1977) found that a Poisson’s ratio of 0.2 is appropriate for a wide range of sands.
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These stiffness coefficients have been adjusted for rotations normalised by 2R rather than R

as in Bell’s thesis. Ngo-Tran (1996) furthered Bell’s finite element investigation deriving

factors for Eqn 3.8, considering the effects of the cone angle of conical footings, footing

penetration, and Poisson’s ratio.

The elastic stiffness tests and the vertical unload-reload loops provide information on the

stiffness coefficients observed during Gottardi and Houlsby’s (1995) experiments. Vertical

unload and reload loops were performed nine times on the vertical load tests, as shown in

Fig. 3.9, and seventeen times in the pre-peak region of the swipe and vertical load tests.

Though non-linear behaviour was observed, by averaging the unload section of the loops,

the vertical stiffness can be estimated as 93.14=vK kN/mm. A large scatter in elastic

stiffness was observed, with a normal standard deviation for the 26 tests of 3.5 kN/mm.

Horizontal and moment elastic stiffness were estimated from the elastic stiffness tests. The

values were calculated as 85.1=hK  and 54.0=mK  kN/mm respectively. However, as

only two pilot elasticity tests and one fully successful test were performed, and given the

scatter seen in the vertical case, some doubt should be cast over these results. In the

horizontal and moment excursions cross coupling was evident, with rotation about the axis

normal to the direction of the horizontal load observed, and similarly, horizontal

displacements during moment loading. It is of interest to note that small amounts of positive

vertical displacements were recorded throughout the duration of these excursions,

suggesting the existence of plastic behaviour within a region that will be theoretically

modelled as fully elastic.

3.3.3 Development of a Strain Hardening Law

The following empirical formula defines the vertical bearing capacity with plastic

embedment ( pw ):
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where k is the initial plastic stiffness, mV0  is the peak value of 0V , and pmw  the value of

plastic vertical penetration at this peak. This formula was developed as a closed form

solution to fit the data from two vertical load tests by Gottardi et al. (1997). However, by

extending the fit to all the vertical load tests, and minimising the error squared between the

experimental and theoretical values, the parameters have been defined as

2175=k N/mm; 20500 =mV N; 16.3=pmw mm

with the best fit shown in Fig. 3.9.

A formula that models post-peak work softening as well as pre-peak performance was

essential, however, Eqn 3.9 unrealistically implies 00 →V  as ∞→pw . Therefore, it can

only be used for a limited range of penetrations. For jack-ups in dense sand, loading post-

peak would not be expected; however, for a complete foundation model, Eqn 3.9 can be

altered to
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where pf  is a dimensionless constant that describes the limiting magnitude of vertical load

as a proportion of mV0  (i.e. mpVfV 00 →  as ∞→pw  (see Fig. 3.10)). It is possible to use

the same parametric values of k , mV0  and pmw  in Eqn 3.10.

3.3.4 Development of a Three-Dimensional Normalised Yield Surface

The swipe test load paths are used to determine a three-dimensional yield surface with

loads normalised by 0V , the ultimate bearing capacity. All swipe tests outlined in Gottardi

and Houlsby (1995) are used, with Fig. 3.11 showing the basic shape mapped out in the

deviatoric/normal planes ( 00 : VVVH and 00 :2 VVRVM ). Initially 0V  has been

assumed as the vertical load at the start of the swipe, therefore all tests begin at 10 =VV .

However, the load paths of the swipe tests do not follow a yield surface of constant 0V ;

with a steady increase in vertical plastic penetration, slight expansion of the yield surface

occurs. This penetration is partly the result of elasticity in the soil, but more importantly,

due to a testing rig of finite stiffness. Therefore, as the vertical load reduces during the

course of the swipe, by calculating the additional plastic penetration due to the rig stiffness,

a correction to 0V  can be computed using the theoretical hardening law. This can be

explained in more detail using Fig. 3.12, noting that plastic vertical displacements have

been already evaluated by subtracting the theoretical elastic component from the

experimental results according to Eqn 3.8. At the commencement of the swipe, 
start

V0  is

known and 
startpw  can be calculated by solving the quadratic equation
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which has been formulated by rearranging the hardening law of Eqn 3.10. As all swipes

started on the rising section of the hardening curve, the lower root of Eqn 3.11 is the

solution for 
startpw . For each experimental data point, the vertical load expV  and the

experimental penetration 
exppw  are known, with the theoretical yield surface size 

theory
V0

and its corresponding theoretical plastic penetration 
theorypw  requiring evaluation. As

depicted in Fig. 3.12, 
theorypw  may be written as

v
ppp K

VV
dwww theory

starttheory

exp0 −
++= (3.12)

where 93.14=vK kN/mm as evaluated by using the vertical unload-reload loops. By

substituting 
theorypw  into Eqn 3.11, a solution for 

theory
V0  can be evaluated, thus determining

the theoretical size of the yield surface at that experimental point.

The shape of the yield surface in the 00 :2 VHRVM  plane is difficult to visualise from

Fig. 3.11. However, by taking the yield points at varying 0VV  positions and plotting them

in the π plane ( 00 :2 VHRVM ), as in Fig. 3.13, a clearer picture can be seen. The yield

points map out a parabolic section in the deviatoric/normal planes (Fig. 3.11) and a rotated

elliptical section in the π plane, as shown in Fig. 3.13 by the highlighted 0VV = 0.2, 0.5

and 0.8 values. The cigar-shaped yield surface as used by Houlsby and Martin (1992) and

Gottardi et al. (1997) is a good first estimate of the basic shapes presented in Figs 3.11 and

3.13, and can be written as
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The first three terms (the H  and RM 2  terms), for constant 0VV  values, map out a

rotated ellipse in the π plane whilst the fourth term (the V  term) represents the parabolic

section in the deviatoric/normal planes. The parameters 0h  and 0m  are the intercepts of the

ellipse with the respective co-ordinate axes, whilst a determines the eccentricity of the

ellipse.

Eqn 3.13 incorrectly predicts a peak at 5.00 =VV , which can be seen in Fig. 3.14 to be an

overestimate. In Fig. 3.14 the force relationships in the 00 : VVVH  and the

00 :2 VVRVM  planes have been collapsed onto a single plane by defining a general

deviator force as

00

2

0

2
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2 222
mh

RMaH
m

RM
h
HQ −





+





= .  (3.14)

Additionally, the theoretical curve underestimates the yield surface location at both low and

high stress levels ( 3.00 <VV  and 8.00 >VV ). A correction needs to be introduced to

yield surface Eqn 3.13 to account for both of these features.

While investigating the interaction diagram for strip footings on sand, Nova and Monstrasio

(1991) used a modified parabola of the form

β

µ 





−=

000
1

V
V

V
V

V
H Inter  (3.15)

where InterH  is the intercept of the ellipse on the H co-ordinate axis and µ  scales the

magnitude of the peak load. Nova and Monstrasio noted that with β = 0.95 an improved fit

of their data occurred. The choice of β controls the vertical load level at which the peak
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horizontal load occurs, and in this form, with β < 1, the peak horizontal load shifts to a

vertical load value of 5.00 >VV . In addition, with β < 1, the tip of the parabola is rounded

off, implying the slope at 10 =VV  is vertical. This allows differentiation of the yield

surface at that pointa numerically desirable condition if associated flow is assumed. The

analogous expression in terms of moment is

β

µ 
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V

V
V
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where B is the width of the strip footing. Nova and Monstrasio (1991) and Gottardi and

Butterfield (1993) both described Eqn 3.16 as a good fit for experimental strip footing data

on sand.

As seen in Fig. 3.14, experimental data shows that the peak horizontal and moment loads

occur at vertical loads of 5.00 <VV . Unfortunately, Eqns 3.15 and 3.16 are only capable

of shifting the peak from 5.00 =VV  towards 10 =VV  if a rounded parabola at 10 =VV

is to be maintained. Therefore with only one β defined, the experimental data cannot be

successfully modelled. For the same reason, Martin (1994) in his analysis of combined

loading on clay, proposed the introduction of a second β factor and adjusted µ to preserve

the magnitude of the desired peak load. Martin’s modifications can be written as
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( )( ) 21

21

21

0021

21
0

0
1

2

ββ

ββ

ββ

ββ

ββ








−



















 +
=

+

V
V

V
Vm

RV
M Inter .  (3.18)



Chapter 3 - Strain Hardening Plasticity Model for Spudcans on Dense Sand 3-19

These expressions allow the peak to be shifted along the 0VV  by varying the 1β  and 2β

values, whilst maintaining the peak horizontal and moment load at 00Vh  and 00 2RVm

respectively. For the conditions 121 << ββ , the peak horizontal load will occur at

5.00 <VV , with the parabola rounded off and differentiable at both 00 =VV  and

10 =VV .

An expression for the fully normalised 000 :2: VHRVMVV  yield surface can be

obtained by substituting Eqns 3.17 and 3.18, the expressions relating the 00 : VHVV  and

00 2: RVMVV  interaction, into the general elliptical equation relating the

00 :2 VHRVM  interaction:
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This equation defines the yield surface of Model C.

With the yield surface equation defined as f = 0, the parametric values of 0h , 0m , a, 1β  and

2β  were derived to minimise the deviation of experimental ( HRMV ,2, ) load states from

this theoretical surface. A FORTRAN program was written to quantify this deviation for

different permutations of the yield surface parameters. A total error value was evaluated as

the sum of the theoretical values of f 2 for all the data points equally weighted, for all the

swipe tests. As previously outlined, adjustments were made to the experimental values

when calculating 0V  to take soil elasticity and rig stiffness into consideration. The minimal
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total error was found, establishing the following combination of yield surface parameters as

the best fit:

11600 .h = ; 086.00 =m ; 20.a −= ; 901 .=β ; 9902 .=β  or 1.0.

The Model C yield surface shape is shown in three-dimensions in Fig. 3.15. The

parameter 2β  could either be defined as 0.99 or 1.0 depending on whether it is essential to

have a rounded off yield surface at 10 =VV , with little difference in the overall yield

surface shape. However, if the differential is not needed to be defined at 10 =VV , as is the

case when a separate plastic potential is defined, then 012 .=β  allows for a mathematically

less complex yield surface expression. The value of a = -0.2 implies an anti-clockwise

rotation of the axes and agrees with both Zaherescu’s (1961) and Gottardi and Butterfield’s

(1993) observation on sands that the failure locus in the 002 VH:RVM  plane is not

symmetric with respect to the co-ordinate axes but is rotated with a negative sense of

eccentricity.

3.3.5 Comparisons with Other Yield Surfaces

In this section comparisons are made between various planar sections of the Model C yield

surface (Eqn 3.19) and the predictions of some other yield surfaces described in the

literature review. The experimental value of φ = 43° is used in all theoretical formulations.

3.3.5.1 The Deviatoric/Normal Plane (H/V0:V/V0, M/2RV0:V/V0 or Q/V0:V/V0)

Figs 3.16(a) and (b) shows Eqn 3.19 for comparison with the experimental values and also

Brinch Hansen’s (1970) and Meyerhof’s (1953) bearing capacity predictions. The

assumption that the peak bearing capacity peakV  is equivalent to 0V  is made to determine the
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adequacy of the bearing capacity interaction curves as yield surface models. Both in the

horizontal and moment directions Eqn 3.19 fits the experimental values consistently well.

The maximum size of the yield surface occurs when 47400 .VV = , agreeing with Tan’s

(1990) assessment that the maximum size of the yield surface in the H:V plane occurs at

500 .VV < . For most conditions, Fig. 3.16 confirms that both Meyerhof’s and Brinch

Hansen’s results would be conservative if used as a yield surface in this context. The

deviatoric/normal plane of 02 =RM  is an exception, with Fig. 3.16(a) showing that

Brinch Hansen’s results are not conservative when compared with the Model C surface.

Fig. 3.14 compares Eqn 3.19 with the experimental data in the 00 VV:VQ plane, and

shows that the use of the two β  factors does provide a justifiably better fit, especially at

the peak and low load levels.

3.3.5.2 The ππ Plane (M/2RV0:H/V0)

Fig. 3.16(c) shows interaction in the π plane for three representative load levels 0VV  =

0.2, 0.5 and 0.8, for both Eqn 3.20 and for Brinch Hansen and Meyerhof’s solutions. The

experimental data points derived from the six sideswipe tests and their reflections have also

been plotted and can be seen to fit Eqn 3.19 well, especially for the 0VV = 0.5 case. Again,

it is evident that Brinch Hansen’s and Meyerhof’s solutions are conservative for all load

levels compared to Model C and the experimental data. They are, however, more accurate

in the positive quadrants of 002 VH:RVM  space, an understandable result given that the

Brinch Hansen solution is based on positive eccentricities and ignores negative eccentricity

loading.
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3.3.6 Development of the Plastic Potential

To model load-deflection behaviour, incremental plastic displacements at yield are used to

define a suitable flow rule. To achieve this, the displacements were investigated on two

planes: the π plane ( 002 VH:RVM ) and the deviatoric/normal planes ( 00 VV:VH and

002 VV:RVM ). Swipe and constant V tests provide information about the flow rule in the

π plane, with the tests designed to explore all loading directions. Constant V tests also

provide data in the deviatoric plane as they contain substantial plastic displacements in the

vertical as well as the radial direction. In addition, the plastic displacements of the radial

displacement tests present information on flow in the deviatoric/normal plane at one ratio of

incremental displacements per test.

3.3.6.1 Incremental Plastic Displacements at Yield: ππ Plane

Within plasticity theory, if associated flow is assumed in the π plane, the theoretical change

in horizontal displacement and rotation can be derived for the yield surface of Eqn 3.19 as
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where λ is a multiplier which can be derived from the condition of continuity with the strain

hardening law. The ratio of plastic strain rate can be written in terms of the current load

state as
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The incremental experimental plastic displacement ratios for the six swipe tests and four

constant V tests have been plotted against their load state in Fig. 3.17. The plastic

displacements were evaluated by subtracting the theoretical elastic displacement component

from the total experimental displacements using the matrix of Eqn 3.8. This introduces

uncertainty due to doubt in the magnitude of the estimated elastic components and especially

their dependence on choice of shear modulus. However, with the value of 8.59=G MN/m2

(based upon Eqn 4.1 with the dimensionless shear modulus factor 4000=g , a typical value

recommended for use in Model C) used in this computation there is only a relative

difference of up to 16% between the evaluated plastic displacements and the total

experimental displacements. The theoretical associated flow curve has been presented in

Fig. 3.17. With the experimental data falling both sides of the curve, the assumption of

associated flow in the π plane is reasonable. As the experimental displacements are for a

large range of vertical load levels, associated flow can be justified in the π plane along the

entire yield surface.

3.3.6.2 Incremental Plastic Displacements at Yield: Deviatoric/Normal Plane

By using the general deviator force, Q as defined in Eqn 3.14, the plastic displacements in

this radial direction are defined according to plasticity theory as

Q
Q
fdq p 2λ

∂
∂

λ == .  (3.23)

Combining Eqns 3.14, 3.20, 3.21 and 3.23, pdq  can be written in terms of horizontal

displacements and moment rotations as
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For the constant V tests, the arrows in Fig. 3.18 show the incremental plastic displacement

directions in the Q:V plane for a number of yield points at various 0V  values. The

theoretical yield surfaces are calculated using Eqn 3.19, and as in the π plane, plastic

displacements are evaluated by subtracting the estimated elastic component from the raw

experimental data. In constant V tests, the yield surface expands and then contracts

according to the hardening law. In Fig. 3.18, crosses indicate the flow directions on the

expanding yield surface, while circles represent contraction. Fig. 3.18 indicates non-

association in the deviatoric/normal plane, with the displacement directions containing a

larger vertical displacement component than if associated flow was assumed, in which case

displacements would be perpendicular to the yield surface. As the yield surface expands

with increasing load Q, the incremental plastic displacement directions remain almost

constant, implying that on this load path the displacement ratios are insensitive to the force

ratio. This was an observation also made for constant V type tests by Gottardi and

Butterfield (1995) in their series of model tests on a surface strip footing on dense sand, and

mentioned in Gottardi et al. (1997). After reaching a peak radial load, and with the yield

surface contracting, Fig. 3.18 shows the displacement directions contain a slightly larger

component of vertical displacement when compared with the expanding surface; an

explanation for this will be explored later.

The direction of plastic flow in the deviatoric/normal plane for the radial displacement tests

is shown by the arrows in Fig. 3.19, with yield points selected at 4000 =V N intervals.

Strong non-association in the deviatoric/normal plane is also clear from these tests. With

each test providing information at one ratio of Q to V, it is evident that for increasing VQ ,

the ratio of radial to vertical displacements pp dwdq  also increases. Test gg22 shows that
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there is still a prediction of vertical penetration rather than heave at 3≈VQ , even though

this is in the region of the theoretical yield surface to the left of the peak in Q. Interestingly,

though the displacement vectors of test gg22 are pointing into the yield surface, this

phenomenon is a function of mapping the angle )(tan 1
pp dwdq−  onto the Q:V plane. A

displacement vector directed inwards from a yield surface is unusual, but can occur on

certain mappings of non-associated flow (irrespective of the mapping, an associated flow

vector will, however, always point in the direction of the outward normal to the yield

surface). It should not be confused with an inward directed force vector, which would

indicate elasticity. If the displacement directions were plotted against the yield surface in

the three dimensional ( 000 :2: VHRVMVV ) plane, the vector would not be inward

directed.

With non-association so clearly visible, a plastic potential g, differing from the yield

surface, must be defined to model the force-displacement relationship. The simplest plastic

potential would be one based upon the shape of the yield surface.

Martin (1994) developed a work-hardening elasto-plastic model for clay assuming

associated flow in the π plane. He used an “association parameter” aζ  to adjust vertical

displacements to match those observed experimentally, with

associatedpap ww ∂ζ∂ = .  (3.25)

This association parameter took on two different values, both less than one, depending on

the direction of the vertical displacement. This simplified model, which requires no

separate plastic potential to be defined, works adequately for Martin’s experiments on clay,

but would not model the sand tests well. For example, for load states at V values less than

that at the peak in Q on the yield surface, the prediction of heave is not appropriate for
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dense sand. This can be seen in test gg22 in Fig. 3.19, where vertical penetration is still

being observed.

In investigating the H:V yield loci for spudcan footings on saturated sand, Tan (1990)

suggested a plastic potential that used the same yield surface equations, but with a “plastic

potential parameter” to distort the peak of the surface in the deviatoric/normal plane. In the

three dimensional case for Model C, based on the yield surface described by Eqn 3.19 this

concept could be formulated as
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where 0V ′  defines the value of maximum vertical load for the current plastic potential shape

(that is, 0=H  and 02 =RM ). The association parameter vα  allows for variation of the

vertical displacement magnitude and location of the “parallel point”2 at a desired vertical

load level. However, these two requirements are linked and with only one parameter it is

difficult to model both adequately.

Increasing 0h  or 0m  with two association factors, rather than scaling the vertical

component, enables the plastic potential’s shape to change in the radial plane. This

consequently reduces radial plastic displacements. This method has the advantage of more

                                                
2 At the peak of the plastic potential a parallel point exists where continuous radial distortion occurs with
no change in vertical plastic displacements and consequently no change in the yield surface size. Accurate
prediction of this point is important as it describes the transition between settlement and heave of the
footing and where sliding failures will occur.
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flexibility in modelling subtle differences between horizontal and moment loading results.

Using two association factors the plastic potential may be defined as
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If hα  and mα  are constant and equal, Eqn 3.27 is equivalent to Eqn 3.26 for the same value

of vα . Fig. 3.20 indicates how factoring 0h  and 0m  by scalars hα  and mα  affects the

theoretical predictions of force to displacement ratios. If hα , mα  = 1 , the plastic potential

and yield surface coincide and associated flow is implied. If hα , mα  < 1, the intersection

of the plastic potential and the yield surface creates a flattened plastic potential with

00 VV >′  (plastic potential (1) in Fig. 3.20). This increases the ratio of radial to vertical

displacement when compared with associated flow at that force level. Conversely, if hα ,

mα  > 1, the surface expands in the Q plane with 00 VV <′  and the amount of radial to

vertical displacement is reduced (plastic potential (2) in Fig. 3.20).

Fig. 3.21 shows for all constant V and radial displacement tests the ratio of radial to

vertical plastic displacements, pp dwdq , for their current force ratio, VQ . The figure is

formulated in terms of the angle of the force ratio tan-1( VQ ) and the angle of the

displacement ratio tan-1( pp dwdq ) as depicted in Fig. 3.22. A value of tan-1( pp dwdq ) =

90° indicates the transition from vertical penetration to heave and is marked on Fig. 3.21(a).

Unfortunately, all of the constant V and radial displacement test data is concentrated in the

region of tan-1( pp dwdq ) < 30°; this area is highlighted in Fig. 3.21(b). The difference in
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horizontal and moment loading has been indicated in Fig. 3.21(b), with moment loading

consistently showing higher ratios of pp dwdq for the same load level. Eqn 3.27 with

mh αα ≠  allows for this difference to be theoretically modelled. Additionally, Fig. 3.11

indicates that the parallel point of sideswipe tests is not located at the same 0VV  level, but

varies for different loading positions in the π plane. This too can be modelled by Eqn 3.27.

In Fig. 3.23, a theoretical plot of associated flow corresponding to

Vf
Q

dw
dq

p

p

∂∂
2

= (3.28)

has been added for comparison with the experimental results, and as expected substantially

overestimates pp dwdq for all force ratios. By systematically increasing hα  and mα  in

Eqn 3.27 the increasing degree of non-association can be compared with the experimental

results. Values between 1.75 and 3.0 correspond to sections of the results, but no single

value fits all. By simply replacing the yield surface parameters 1β  and 2β  in Eqn 3.27 with

two new values, 3β  and 4β , to allow for different variations in curvature at the minimum

and maximum vertical stress levels respectively, a better fit can be achieved. The new

plastic potential may be written as
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Fig. 3.24 compares the experimental displacement directions with theoretical predictions

with 3β  = 0.55 and 4β = 0.65. By reducing 3β  and 4β  from their equivalent yield surface
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values, the plastic potential is steepened with respect to the V axis at both low and high

stress levels, allowing for a substantial decrease in the ratio of radial to vertical

displacements at small and large VQ  values. Two separate theoretical curves are needed

to fit adequately the constant V and radial displacement tests and are shown in Fig. 3.24

( 75.1== mh αα  and 4.2== mh αα  respectively). Due to the differences in the

experimental displacement directions, one solution encompassing both constant V and radial

displacement tests could not be found with uniform hα  and mα  values, though a

compromise solution has been shown in Fig. 3.24 ( 05.2== mh αα ).

Given the variance in the two types of experimental tests, the question of which loading

directions are important for the foundation modelling of jack-up rigs needs to be addressed.

Jack-ups are preloaded vertically to approximately twice their service vertical load before

being subjected to any radial loading. For Model C this expands the yield surface to the size

of the pre-load as shown along A→B→C in Fig. 3.25. When subjected to environmental

loads on the legs, radial load on the footings will naturally increase with vertical load being

shed from the upwave leg to the downwave leg. This creates load paths as shown by C→D

and C→E in Fig. 3.25. The downwave leg’s path contains elements of both the constant V

and radial displacement tests and could be seen as a combination of the two. However, no

experiments directly explored the surface subjected to a loading path similar to the upwave

leg at low vertical load levels. It is imperative for the modelling of jack-ups that the flow

rule is consistent for both constant V and radial displacement tests and justifiable at low

vertical load levels.

Fig. 3.21(b) shows that for an expanding yield surface in the constant V tests (pre-peak of

the strain hardening law), the displacement ratio remains relatively constant with increasing

force ratio. For a contracting surface (post-peak of the strain hardening law), pp dwdq



Chapter 3 - Strain Hardening Plasticity Model for Spudcans on Dense Sand 3-30

reduces, indicating that proportionately less radial displacement was measured than for the

same radial loads when the surface was previously expanding. Both expanding and

contracting behaviour in the constant V tests indicate “stiffening” occurring in the radial

force-displacement relationships. This implies that in the horizontal plane, to continue the

same rate of horizontal displacements increasing levels of horizontal load must be applied.

The same is true for moment rotation. To model this behaviour, the association factors hα

and mα  could increase with horizontal and moment displacements, indicating a greater

degree of non-association, rather than remaining constant. An appropriate form of variation

could be similar to the pre-peak region of the vertical hardening law, a hyperbolic function,

but with limiting hα  and mα  values, written as

)(
)(0

ph

phhh
h uk

uk
+′
+′

= ∞αα
α (3.30)

)2(
)2(0

pm

pmmm
m Rk

Rk
θ

θαα
α

+′
+′

= ∞ (3.31)

where 0hα  and 0mα  represent the association factors with no previous plastic radial

displacements. As indicated in Fig. 3.26, hk ′  and mk ′  relate the rate at which hα  and mα

approach their limiting values of ∞hα  and ∞mα  respectively.

Fig. 3.27(a) indicates how Eqns 3.30 and 3.31 will map onto the )(tan 1 VQ− :

)(tan 1
pp dwdq−  plane for a typical constant V test. Commencing at the origin A, under the

application of radial load, the test will start by tracking close to the 0α  curve. With

increasing plastic radial displacements the test will move across the lines of increasing

constant α to B, the position of a fully expanding yield surface at the peak of the strain

hardening law. As it would be unusual for a jack-up in dense sand to load past point B, it is
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important to fit this load:displacement gradient between A→B reasonably well. The rate at

which the plastic potential expands controls this gradient and is determined by the

parameter hk ′  or mk ′ . For a contracting yield surface, B→C on Fig. 3.27(a), radial load is

decreasing and the test path will asymptotically approach the ∞α  curve.

Each of the six radial displacement tests provides an accurate picture of the force ratio at

one rate of displacement and, as shown in Fig. 3.21, the displacement ratios pp dwdq  are

consistently lower than those of the constant V tests. The reduction of the displacement ratio

with radial displacement, as seen in the behaviour of the constant V tests, is also not

consistent with the radial displacement results. This implies that the force-displacement

flow is sensitive to the direction of loading and any plastic potential must take this

difference into account if it is to model all loading combinations adequately. One

explanation for the disparity is that the constant V tests were loaded primarily in the vertical

direction (to V = 1600 N) before any radial displacements were applied to the footing. This

contrasts with the radial displacement tests, where radial displacements were applied

immediately at V = 0. If radial stiffness were to vary with horizontal and moment

displacement, as postulated about the constant V tests, an assumption that this rate is

proportional to the vertical displacement history of the footing would be physically sound.

If the footing has been loaded vertically to a higher level, compacting the underlying soil

under vertical stress, the radial displacements needed to expand the plastic potential fully

would be proportionally greater. To account for this, radial displacements can be

normalised by the plastic vertical displacements, allowing Eqns 3.30 and 3.31 to be written

as

( )
( )pph

pphhh
h wuk

wuk
+′
+′

= ∞αα
α 0 (3.32)
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The effect on the path of the constant V test described in Fig. 3.27(a) is minimal, although

different k ′  values need to be selected. Fig. 3.27(b) shows the expected theoretical position

of radial displacement tests of different force ratios. As pw  starts at zero, the theoretical

displacement ratios can be assumed to be close to the ∞α  curve. Therefore, for the two load

paths, Eqns 3.32 and 3.33 allow different theoretical flow paths to be followed.

The parametric values of the plastic potential relationships have been derived by

minimising the least squared error of the difference between the experimental angular

direction in the deviatoric/normal plane and the theoretical direction, as depicted in Fig.

3.28. Eqns 3.32 and 3.33 contain six new parameters; however, this can be rationalised to

three. If the initial 0hα  and 0mα  curves are assumed as the associated conditions, 0hα  and

0mα  can be replaced in Eqns 3.32 and 3.33 with the numerical value one. This assumption

is supported by the constant V experimental data shown in Fig. 3.24. Furthermore, the rate

of variation of hα  and mα  can be assumed the same, reducing hk ′  and mk ′  to the one term,

k ′ . With the plastic potential defined as in Eqn 3.29, the following values were evaluated:

55.03 =β ; 65.04 =β ; 5.2=∞hα ; 15.2=∞mα ;  125.0=′k .

Fig. 3.29 shows that the theoretical displacement ratios calculated using the expanding

plastic potential are close to the experimental ratios for both the constant V and radial

displacement tests. The theoretical hα  and mα  values were calculated assuming the

experimental plastic displacements.
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3.3.6.3 Numerical Evaluation of Plastic Potential Size

To evaluate the size of the plastic potential (i.e. the magnitude of 0V ′  in Eqn 3.29), a factor

00 VVx ′=  can be defined to relate the primed (plastic potential) and non-primed (yield

surface) values. The value of x for a certain load 0VV can be obtained from the numerical

solution of
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3.3.6.4 Comments on Model C's Plastic Potential

The experimental evidence did not support the application of associated flow in Model C

and a plastic potential function g was defined. Plastic displacements occur when the force

point is located on the yield surface and in the direction normal to the plastic potential

shape, as defined by Eqn 3.29. The non-dimensional association factors hα  and mα  relate

the size of the yield surface to the shape of the plastic potential and are formulated as

hyperbolic functions in terms of plastic displacements. The rates which hα  and mα  vary in

Model C are depicted in Fig. 3.30.
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Model C’s plastic potential is defined by five parameters, arguably an overly complex

arrangement to explain the flow rule of shallow circular footings. However, systematic

variation of the association factors makes modelling the differences caused by the loading

direction possible, resulting in greater confidence in the ability to model a real jack-up load

path. Furthermore, with uncoupled horizontal and moment association factors, greater

flexibility in the modelling of the location of the parallel point is possible. For different

radial load paths, the point may occur at unique 0VV  levels, the importance of which will

be highlighted in the retrospective predictions of the experimental swipe tests in Chapter 4.

As a less complicated alternative, with only three parameters, the compromise solution

shown in Fig. 3.24 could be used (i.e. 3β  = 0.55, 4β  = 0.65 and hα  = mα  = 2.05). Further

physical experimentation, especially at low Q/V load levels could lead to a more accurately

defined, and perhaps a less complex, flow rule.
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 Chapter 4 – Numerical Formulation of Model C for the

Analysis of Jack-Up Units

4.1 Introduction

The numerical formulation of Model C is described in this chapter. Retrospective prediction

of the Gottardi and Houlsby (1995) experiments has been performed, with examples

showing the capabilities of Model C detailed. A description of a numerical model

accounting for the conical features of spudcan footings is also presented. Finally, the

formulation used to incorporate Model C into the dynamic structural analysis program

JAKUP is detailed.

4.2 Features of Model C

4.2.1 General Structure of Model C

Model C is defined by twenty parameters, most of which are dimensionless. There are three

quantities, however, which define the dimensions of the model. These factors are the footing

radius R, the effective unit weight of the soil γ, and the shear modulus G; R and γ are user-

defined, whereas G is estimated using the expression

aa p
Rg

p
G γ2= (4.1)

where ap  is atmospheric pressure and g is a non-dimensional shear modulus factor. This

equation is derived from the empirical observation that the shear modulus depends

approximately on the square root of the stress level, with γR2  a representative estimate

(Wroth and Houlsby, 1985). Table 4.1 outlines the twenty Model C parameters and gives

typical values.
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The vertical strain hardening law for Model C, as formulated in Eqn 3.10, describes the

isotropic variation of the yield surface size. Numerical values of k, mV0  and pmw  were

derived for the experimental conditions based on one radius and one sand. Assuming the

same shape of the vertical strain hardening law, k and pmw  can be defined for different sized

footings by introducing the dimensionless parameters f and pδ , where

12RGkfk = (4.2)

and

ppm Rw δ2= . (4.3)

The values of f and pδ were determined from the experimental results as 0.144 and 0.0316

respectively. mV0  can be calculated for different sands from bearing capacity theory as

3
0 RNV m πγ γ= (4.4)

where γN  is the dimensionless bearing capacity for a circular footing (for example values

see Bolton and Lau (1993) or section 4.4.1).

4.2.2 Numerical Formulation of Model C

If the loading increment is entirely within the yield surface, then elastic displacements are

described by Eqn 3.8. However, when the footing is yielding, plastic displacements are in

the direction normal to the plastic potential with a multiplication factor λ  determining the

magnitude of the plastic displacement increment according to
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Since the flow rule is defined in terms of plastic displacements, Model C has been

formulated in terms of flexibility rather than stiffness. Therefore, for an elasto-plastic

increment during yielding, the elastic and plastic components are summed to give
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where 1C  … 4C  are the elastic flexibility factors given by
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For any incremental load or displacement through yield, any change in the value of f must be

zero (df = 0) so that the force point (V, M/2R, H) remains on the yield surface. For

compatibility with the strain hardening law a solution for λ, the magnitude of plastic

displacements, exists and may be determined from the condition df = 0, where
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As 0V  and 0dV  are dependent on the vertical penetration pw , using the chain law and the

plastic potential relationship Vgdw p ∂∂= λ , Eqn 4.8 can be rewritten and solved for λ:
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The overall increment form of Model C can therefore be represented as
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where 7,7B  is derived from Eqn 4.9 and equates to

0

0
7,7 V

f
w
V

V
gB

p ∂
∂

∂
∂

∂
∂
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Expressions for Vf ∂∂ , )2( RMf ∂∂ , Hf ∂∂  and 0Vf ∂∂  can be evaluated in closed

form by differentiating the yield surface Eqn 3.19, and Vg ∂∂ , )2( RMg ∂∂  and Hg ∂∂

by differentiating the plastic potential Eqn 3.29 and pwV ∂∂ 0  from the strain hardening law

of Eqn 3.10. These processes are uncomplicated; however, the somewhat lengthy results

will not be presented here.

With the incremental plasticity solution described by Eqn 4.10, any combination of control

commands can be used. An increment may have full displacement, full load or a mixture of



Chapter 4 – Numerical Formulation of Model C for the Analysis of Jack-Up Units 4-5

displacement/load control, with the matrix adjusted so that the numerical value 1 aligns with

that row’s control type. For calculations inside the yield surface the elastic matrix consists

of the first six rows and columns of Eqn 4.10.

4.2.3 Implementation of Model C in the FORTRAN Program OXC

The strain hardening plasticity theory of Model C has been implemented in a FORTRAN

program named OXC, which, for any load, displacement or combinational path can evaluate

the resulting loads/displacements. In OXC the input path is broken up into a number of

stages, in which the numerical increments and type of control are described.

For each stage in sequence, a trial solution of Eqn 4.10 is evaluated. Whether an elastic or

an elasto-plastic formulation is used depends on where the previous step’s load state

finished. If it finished on the yield surface (f = 0), an elasto-plastic increment is used,

whereas if it finished within the yield surface (f < 0), an elastic increment is used. An elasto-

plastic increment is used for the first step.

An UPDATE routine is then applied to control this trial load/displacement solution

according to the numerical formulation of Model C. The UPDATE subroutine is

displacement controlled, using the change in displacement calculated for one entire stage.

Initially UPDATE assumes that the increment is elastic and makes a trial solution of the load

state based on this assumption. The location of this trial load state with respect to the

existing yield surface is then checked with three possible cases arising:

Case 1: If ftrial < 0, the trial load space is located within the yield surface, implying an

elastic increment. The trial load space values are accepted as the final load state.

Case 2: If ftrial = 0, the trial load space is located on the yield surface. This also implies an

elastic increment and the trial load state is accepted as the final load state.
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Case 3: If ftrial > 0, the trial load space is located outside the existing yield surface and the

increment is elasto-plastic.

For Case 3 the trial load state is incorrect, with the correct solution being defined by an

elasto-plastic step. To account for non-linearities in this calculation, the displacement

increment is divided into a number of equal substeps. For each substep, the change in load is

calculated and the total load updated for that increment. Using that updated load state, a new

0V  is evaluated so that the requirement f = 0 is satisfied. Therefore, the yield surface

expands over that substep increment and the new yield surface size is calculated before the

next substep.

It would not be pertinent to describe all subroutines found within OXC here. Further details

of the key subroutines, solver techniques and tolerance values can be found in Cassidy

(1996).

4.3 Retrospective Prediction of Experimental Tests

To investigate the capabilities of Model C to model footing behaviour, numerical

simulations were carried out for a number of representative experiments using OXC. In each

of these simulations the values of three of the experimentally measured quantities (e.g. the

displacements) were taken as input, and the other three quantities (e.g. the loads) were

calculated for comparison with the experiments. No idealisation of the experimental input

data was carried out, so that the input values contain all the minor fluctuations associated

with experimental measurements, with OXC able to handle such perturbations. As the

simulations were carried out on the same tests as were used for the development of Model

C, the quality of the fit is of course expected to be good. The purpose of this exercise is,

however, twofold: (a) to demonstrate that Model C can be implemented numerically and
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used to simulate footing behaviour and (b) to assess the overall capability of the model to

capture the salient features of the original data.

4.3.1 Vertical Penetration Test

Fig. 4.1(a) shows the experimental results for a vertical penetration test. Fig. 4.1(b) is a

simulation of this same test in which the measured displacement is taken as input and the

vertical load calculated. Model C gives loads that accurately represent the original test and

this is principally a test of the chosen strain hardening law. The three vertical unload/reload

loops pre-peak are modelled well, although Model C does not reflect the hysteresis which

occur in the experimental results. This does make a slight, but not too significant, reduction

in the displacements compared to their corresponding loads. It can be seen that OXC has the

ability to predict the location of the existing yield surface when being reloaded in an unload-

reload loop. It does not overshoot the yield surface because a bisection algorithm is used to

determine the proportion of the increment that is elastic, with the remaining proportion

allocated as elasto-plastic.

In Figs 4.2 to 4.6, (a) and (b) represent the measured experimental data, whilst (c) and (d)

are Model C simulations.

4.3.2 Moment and Horizontal Swipe Tests from V≈≈1600 N

In a swipe test the footing is load controlled in the vertical direction until it reaches a

prescribed load, in this case V ≈ 1600 N. Rotation or horizontal displacement is then

applied to the footing with the trace corresponding to a track along the yield surface,

appropriate for that embedment.

Fig. 4.2 represents a moment swipe starting at V ≈ 1600 N. Prior to the swipe the footing is

loaded in the purely vertical direction with only small amounts of horizontal and moment
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load being developed. However, for clarity, only the swipe has been plotted. Model C

simulates the magnitude of peak moment adequately, reaching a value just over M/2R = 150

N. The numerical peak moment in Fig. 4.2(d) and the experimental peak moment in Fig.

4.2(b) occurred at the same vertical load. Additionally, Figs 4.2(a) and (c) show that the

amount of rotation before the peak was modelled accurately. However, in this test Model C

locates the parallel point slightly lower than the experiment (point A in Fig. 4.2(d)). In the

Model C simulation in Fig. 4.2(d), movement back along the yield surface can be seen to

occur, for instance at V ≈ 800 N and again at V ≈ 600 N.

Fig. 4.3 represents an equivalent swipe, but in the horizontal direction, with Model C load

controlled to V ≈ 1600 N and then displacement controlled for the swipe. OXC models the

track along the yield surface very well, with the peak horizontal load almost exactly

matching that of the experiment at just over 200 N. Fig. 4.3(c) shows Model C predicting a

very similar displacement path to the experiments (Fig. 4.3(a)), verifying the flow rule for

this case. The simulation stops tracking at around the same horizontal and vertical load

levels, indicating accurate prediction of the parallel point in the horizontal plane. Further

justification of the use of two independent association factors ( hα  and mα ) in the flow rule

is given by the more accurate prediction of the parallel point for both the moment and

horizontal swipes than would be possible if there were only one.

4.3.3 Moment and Horizontal Swipe Tests from V≈≈200 N

Fig. 4.4 represents moment and horizontal swipes starting at V ≈ 200 N, highlighting the

yield surface at low vertical loads. In order to depict the experiments, Model C is load

controlled to V ≈ 1600 N, then unloaded to V ≈ 200 N, before displacement controlled

throughout the swipe. Figs 4.4(a) and (c) show that at low vertical loads both the

experimental results and Model C depict work hardening, with Model C simulating the
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experiment well. This was not the case horizontally. Fig. 4.4(b) shows that the experiment

elastically loads in the horizontal direction before yielding occurs at H ≈ 80 N (A→B), then

tracks along the yield surface with a reduction in vertical and horizontal load (B→C). This

implies work-softening of the sample. Model C simulates the elastic horizontal loading very

well, predicting the yield surface at the same position (line segment A→B on Fig. 4.4(d)).

However, it then predicts that work hardening will occur, with increasing vertical and

horizontal load tracking up around the yield surface. This is consistent with, and entirely

related to, Model C’s prediction of the parallel point from a swipe at 1600 N. Nevertheless,

it does indicate that Model C’s flow rule will not always follow the experimental

performance.

4.3.4 Constant Vertical Load Tests

The constant V tests as shown in Figs 4.5 and 4.6 are simulated with full load control to

1600≈V N, before the vertical load is held constant at around that value (with slight

fluctuations according to the experimental data), whilst horizontal and moment displacement

control models an excursion. The constant V tests model the expansion and then later

contraction of the yield surface relative to the 0V  value. Figs 4.5(c) and 4.6(c) show that

Model C models expanding yield surfaces reasonably well, reaching a similar peak for

horizontal and moment load to the experimental values. Once the peak value has been

reached, the Model C surfaces then contract back as predicted by the post-peak performance

of the hardening law. Fig. 4.5(c) shows that for the predominately moment case this post-

peak performance is adequately modelled, although the experimental data did not continue

until M/2R = 0. However, in the horizontal constant V test the experiment did continue until

H = 0, but this was not reproduced by the OXC simulation, with the unexpected result of

increasing H occurring at the end of the test ( 4>du mm at point A in Fig. 4.6(c)). The cause

of this rise in H in the numerical simulation is due to a rapid decrease in the experimentally

recorded vertical load, which was used as input. Between point A and the end of the test, V
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falls from approximately 1600 N to 1400 N. If V was held constant at 1600 N, Model C

would simulate the horizontal load decreasing back to zero, as would be theoretically

expected during a constant V test. This is a good example showing that prediction in Model

C is very sensitive to the value of V near the peak value of capacity.

Figs 4.5(d) and 4.6(d) show that the flow rule satisfactorily predicts the vertical

displacements when compared with the horizontal or rotational displacements, which are

part of the input. Fig. 4.5(d) shows a slight over-prediction in vertical displacements,

indicating that for this case the plastic potential's surface is too steep, or too normal when

compared to the V ′ axis. However, with Fig. 4.6(d) showing a slight under-prediction, the

flow rule is predicting balanced results.

4.3.5 Radial Displacement Tests

Constant gradients of moment to vertical and horizontal to vertical displacement were used

as inputs to simulate horizontal and moment radial displacement tests. The resultant

experimental moment and horizontal loads and Model C predictions are shown in Figs 4.7

and 4.8 respectively, noting that (a) represents the measured experimental data and (b) the

Model C simulation. The simulations are of similar gradient, implying that the Model C flow

rule is performing well. The noise that can be seen in Figs 4.7(b) and 4.8(b) is due to the

fluctuations that occur in the real experimental input data.

4.4 Considering the Conical Shape of Spudcans

4.4.1 Vertical Bearing Capacity of Conical Footings

So far Model C has been derived for flat footings. In order to account for the conical shape

of spudcans, a numerical study was performed to evaluate a comprehensive set of bearing

capacity factors for various conical shapes, roughnesses and soil conditions. These factors
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are used in section 4.4.2 to define a more realistic hardening law for spudcan footings. The

investigation was carried out on Prof. G.T. Houlsby’s existing FORTRAN program FIELDS,

with lower bound collapse loads calculated for the axisymmetric problem using the Method

of Characteristics. The theoretical methods used in FIELDS, as well as a sample numerical

study of conical footings on clay, can be found in Houlsby (1982) and Houlsby and Wroth

(1983). Within the study performed here, the sand was assumed to be rigid-plastic and to

obey the Mohr-Coulomb yield criterion. Furthermore, change in geometry effects were not

taken into account.

Fig. 4.9 defines the problem and notation used for the 360 combinations of the three

dimensionless parameters investigated:

cone apex angle: β = 30°, 60°, 90°, 120°, 150°, 180°

roughness factor: α = 0, 0.2, 0.4, 0.6, 0.8, 1.0

friction angle: φ = 5°, 10°, 15°, 20°, 25°, 30°, 35°, 40°, 45°, 50°

A roughness factor of α = 0 represents a smooth footing, whilst α = 1.0 represents a rough

one. For spudcans on dense sand a roughness factor close to one is appropriate, and the

friction angle would lie in the range 40-50°. Fig. 4.10 shows a typical general shear failure

mechanism generated by the program FIELDS. Lower bound bearing capacity factors for all

combinations of the dimensionless parameters are shown in Fig. 4.11.

4.4.2 Adaptation of Model C for Conical Shape of Spudcans

The development of Model C was based on experiments on flat circular footings. Its strain

hardening law differs from the load-penetration curve theoretically expected for flat plates.

A new “combined” theory is needed to consider the differences in a manner consistent with

both the experimental observations and the theoretical predictions.
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4.4.2.1 Flat Plates

Theory:  For a flat plate of radius R , as shown in Fig. 4.12(a), the theoretical vertical

bearing capacity is considered constant with penetration as depicted in Fig. 4.12(b), and

written as

3
0 RNV

Theorym πγ γ= . (4.12)

Experimental Evidence:  For the same situation, with the experimental evidence used in the

derivation of the strain hardening law of Model C, a different picture is seen. With

increasing vertical penetration, vertical load increases with decreasing stiffness until a peak

load is reached at a derived fraction of the footing diameter, as specified in Eqn 3.10 and

shown in Fig. 4.12(d). With increasing penetration, work softening occurs in the sand and

vertical load carrying capacity decreases. The peak vertical capacity in the model is defined

as in the theoretical case as

3
0 RNV

Expm πγ γ= . (4.13)

The experimental load penetration curve was derived for a flat footing with one set of

surface roughness and soil condition values. For different values, the shape would be similar

but with vertical load scaled according to an appropriate bearing capacity (from Fig. 4.11).

4.4.2.2 Conical Spudcans

Theory:  The theoretical case of a conical footing, as depicted in Fig. 4.12(e), can be split

into two parts: firstly, a conical section of varying radius (r) and penetration

( ( )2tan βRwp < ); and secondly, after full penetration of the conical section

( ( )2tan βRwp ≥ ). Before full penetration of the conical section, theoretically the vertical
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load is proportional to the cube of the current radius of the penetrated section. This is

represented by segment A→B in Fig. 4.12(f), and written as:

( )( )33
0 2tan βπγπγ γγ pTheory

wNrNV == . (4.14)

With the conical section of the footing fully penetrated, the footing is assumed to penetrate at

a constant load according to Eqn 4.12, as shown between B→C on Fig. 4.12(f) (neglecting

the geometrical effects of embedment).

A Combined Method:  By combining these theoretical and experimental ideas, a more

realistic strain hardening law can be derived for spudcans in dense sand. Figs 4.12(g) and

(h) outline this new model. Using a γN  value (from Fig. 4.11) appropriate for the geometry1

and roughness of the spudcans and friction angle of the sand, the experimental flat footing

curve shape (Eqn 3.10) can be normalised by the theoretical maximum 
TheorymV0 , as shown in

Fig. 4.12(g), and written as
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where 
ExpmTheorym VV 00 = (as given by Eqns 4.12 and 4.13). It should be noted that the plastic

penetration has been normalised by the vertical penetration at peak load (Eqn 4.3).

Until full penetration of the conical footing, the appropriate value of pp Rw δ2  is a constant

and equal to ( )2tan21 βδ p . From this value a constant factor TheorymExpfp VVs 00=  can be
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determined from Eqn 4.15, as indicated in Fig. 4.12(g). Before full penetration of the cone

( ( )2tan βRwp < ), the load penetration curve from the theoretical model is used, but scaled

by fps , thereby consistently combining the two methods. This is shown as section A→B in

Fig. 4.12(h) and can be written as

( )33
0 )2tan(V βπγπγ γγ pfpfp wNsrNs == . (4.16)

After full penetration of the conical section, Eqn 4.16 can still be applied; however, sfp will

now vary according to Eqn 4.15, thus following the original Model C experimental shape. If

( )2tan βRwpm ≥ , the shape of the experimental hardening law will result in a peak load at

pp Rw δ2= . This is illustrated as section B→C of Fig. 4.12(h). Conversely, if

( )2tan βRwpm < , the entire response after embedment is predicted from the post-peak

section of the experimental curve. The maximum load occurs just as full embedment is

reached, as shown in section B→D of Fig. 4.12(h). For realistic values of the parameters it

appears that the latter case is more usual.

4.5 Implementation of Model C into JAKUP

Slight modification of the Model C numerical formulation described in section 4.2.2 (and

implemented in OXC) allowed it to be independently incorporated into the dynamic

structural analysis program JAKUP. The structural model within JAKUP uses a Eulerian

approach where equilibrium, compatibility and stiffness equations are expressed in terms of

the deformed geometry of the structure. JAKUP uses an incremental loading approach and

Newton-Rhapson iteration to account for non-linearities (see Martin, 1994 and Thompson,

1996).

                                                                                                                                                   
1 The embedded part of the underside of the spudcan is treated as an “equivalent conical footing”, i.e. a
conical footing with equal radius and volume as the embedded spudcan.
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At the start of any new time increment the external applied loads ( t
extP ) are in equilibrium

with the members’ internal load state ( tPint these correspond to the deformation of the

structure ( tx )), that is:

t
damping

t
inertial

tt
ext PPPP ++= int (4.17)

where inertialP  and dampingP  represent the inertial and damping components of the dynamic

equation of motion. With the application of a new load increment (dP ), a new deformation

( dttx + ) needs to be defined such that the new internal and external loads are in equilibrium.

This is achieved by summing the incremental displacement vector ( dx calculated by

solving the dynamic equations of motion with a global stiffness matrix defined for the initial

set-up) with the existing displacement vector. The new internal force vector corresponding

to the internal state of stress can then be evaluated. Generally, dttP +
int  does not satisfy the

conditions of force equilibrium, and iteration is needed to correct the displacement vector.

In order to do this, an out-of-balance force is evaluated as

dtt
damping

dtt
inertial

dttdtt
extbalanceofout PPPPP ++++

−− −−−= int (4.18)

and used to find a new displacement correction vector ( .corrdx ). For each iteration step, a

new tangent stiffness matrix is used, representing the latest configuration of the structural

system. The iterative process is repeated until convergence of solution is achieved. The

convergence criterion compares the size of the displacement correction vector with the

actual displacement vector, and is as defined in Martin (1994) and Thompson (1996).

The contribution of the Model C foundations is included by combining their stiffness

matrices with those of the general structural members when assembling the global stiffness
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matrix. Furthermore, the reactions of the foundations are included when compiling the

internal load conditions. To achieve the formulation outlined, Model C must operate in two

modes:

• At the beginning of the timestep, the position of the spudcans is known and the footing

stiffness matrix (3×3 in size) is evaluated. If the combined force state ( HRMV ,2, ) at

the beginning of the time increment lies within the current yield surface (“initially

elastic”), an elastic footing stiffness matrix is returned; however, if the force state lies on

the surface then an elasto-plastic stiffness matrix is calculated (“initially elasto-

plastic”).

• During the iterations, due to incremental changes in footing displacement (displacement

correction), the incremental changes in footing loads need to be evaluated. The spudcan

displacements are extracted from the change in structural displacements at the footing

node. The stiffness matrix used represents the current configuration. If the footing is

initially elastic, an elastic matrix is used for the foundation stiffness component until

yielding is detected, at which time an elasto-plastic configuration is used for all of the

remaining iterations during that timestep. For the initially elasto-plastic case, the footing

remains elasto-plastic unless it is calculated to lie within the yield surface (i.e. 0<f

using Eqn 3.19) for the first equilibrium iteration.

At the initial numerical set-up, all structural elements are assumed free of stress and all

joints have zero displacement. The spudcans are embedded to the vertical plastic penetration

corresponding to their initial vertical pre-load value. The load in the foundations is assumed

to be zero, with the rotational and horizontal translations zero and the vertical displacement

equal to 
loadprepw

−
. The initial size of the yield surface is equivalent to the vertical pre-load

per spudcan, i.e. loadpreVV −=0 . The foundations are, therefore, in an elastic condition

before the vertical weight of the hull is applied as the first step in a numerical analysis.
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4.6 Concluding Remarks

An elasto-plastic model, entitled Model C, appropriate for the modelling of spudcan

foundations for jack-up units on sand has been detailed. The major advantages of Model C in

the analysis of jack-up response include:

• Its formulation is amenable to numerical analysis, allowing it to be implemented into

structural analysis programs.

• It accounts for the non-linearities of combined loading on sand in a consistent manner.

• It provides a direct indication of yielding. Furthermore, movement of the spudcan

footings can be evaluated, with differentiation between upwave and dowwave leg

behaviour possible. Sliding of spudcan footings, therefore, can be evaluated directly.

• A “realistic” interpretation of spudcan fixity allows for more accurate dynamic analysis.

Model C gives significantly different dynamic response to pinned and fixed footing

assumptions.

All of these advantages are highlighted in the following chapters of this thesis.
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Chapter 5 - Application of NewWave Theory in the Analysis

of Jack-Up Units

5.1 Introduction

Wave theories suitable for the analysis of jack-up platforms are discussed in this chapter.

Emphasis is placed on NewWave theory as an alternative to widely used regular wave

theories, such as Stokes’ fifth-order waves. The theoretical basis of NewWave is described

and verification of its implementation into JAKUP outlined. Appropriate stretching

procedures and extensions of NewWave theory to account for second-order effects are

discussed. Examples are shown to emphasise the differences in predicted extreme response

due to various footing assumptions: pinned, linear springs and Model C.

5.2 Theoretical Background

5.2.1 Linear Random Wave Theory

By generating surface elevations and corresponding kinematics over short storm periods,

for example three hours, the response of a jack-up to random wave loading may be analysed

for that one sea-state. Analysis of wave data suggests the assumption that the ocean surface

within a certain physical area is statistically a stationary Gaussian random process can

generally be made. A description of this surface is given by the superposition of wavelets of

different wavelengths, amplitudes and periods travelling at varying speeds and directions.

For a uni-directional wave, the instantaneous surface elevation above the mean water-level

)(tη  at a point in space can be written as

)cos()(
1

nn

N

n
n tct φωη += ∑

=

(5.1)
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where nω  and nφ  are the frequency and random phase angle of the nth wavelet respectively.

The amplitudes of the individual wavelets nc  are described by the spectral decomposition

of the ocean as

( ) ωωηη dSc nn 2= (5.2)

where ( )nS ωηη  is the nth component of the (one-sided) wave spectrum and dω  the discrete

frequency interval. This summation of all the coefficients (N in total) produces a wave

record for a period t = 0 to T, where T = 2π/dω. The random nature of the ocean surface is

introduced by the phase angle nφ  associated with each sinusoidal component, with nφ

uniformly distributed between 0 and 2π. Further discussion of the generation of random

surface elevations is given in Chapter 6 (section 6.2.1).

5.2.2 NewWave Theory

As an alternative to simulating many hours of random time domain simulation, Tromans et

al. (1991) describe a first order wave that is deterministic but still accounts for the spectral

composition of the sea. The method, entitled NewWave, involves the superposition of

directional linear wavelets with an extreme crest associated with the superposition of all

the wavelet crests at a specific point in space or time. The surface elevation around this

extreme wave event is then modelled by the most probable wave shape conditional on this

extreme crest. It is shown by Tromans et al. that the surface elevation is normally

distributed about this most probable shape, with the surface elevation described by two

terms, one deterministic and one random. As a function of time, the surface elevation can be

written as

)2()1(
)()()( ττατη gr += (5.3)
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where τ = −t t1 , the time relative to the initial position of the crest (i.e. 1t  is the time when

the wavelet forms). In Eqn 5.3, term(1) describes the most probable value, where α is the

crest elevation defined as the vertical distance between the wave maximum and the mean

water-level, and )(τr  the autocorrelation function for the ocean surface elevation. For the

random surface elevation, the autocorrelation function is defined as the mean value of the

product )().( τηη +tt , where τ  is the time lag. For a stationary process this will depend

only on τ . The autocorrelation function is proportional to the inverse Fourier Transform of

the surface energy spectrum (known as the Wiener-Khintchine relationship), allowing the

surface elevation to be determined efficiently. Further explanation is given below.

Term(2) of Eqn 5.3 is a non-stationary Gaussian process with a mean of zero and a standard

deviation that increases from zero at the crest to σ, the standard deviation of the underlying

sea at a distance away from the crest. Therefore, as the crest elevation increases, term(1)

becomes dominant and can be used alone in the derivation of surface elevation and wave

kinematics.

The continuous time autocorrelation function is defined as

( ) ∫
∞

=
02

)(1 ωω
σ

τ ωτ
ηη deSr i (5.4)

with the time history of the extreme wave group proportional to )(τr  at the region around

0=τ . An important property of )(ωηηS  for a time lag 0=τ  is that the autocorrelation

function of Eqn 5.4 reduces to

∫
∞

==
02

)(1)0( ωω
σ

τ ηη dSr (5.5)
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with the integral equal to the second moment of area of the wave data, i.e. E[ ])(2 tη .

Since the mean value of )(tη  is zero, )0( =τr  is equal to one:

[ ] 1)(1)0( 2
2

=== tEr η
σ

τ (5.6)

This allows the surface elevation of the NewWave to be scaled efficiently, as shown below

in Eqn 5.7.

The NewWave shape as defined by the autocorrelation function (Eqn 5.4) can be

discretised by a finite number (N) of wavelets. As there exists a unique relationship

between wave number and frequency, spatial dependency can also be included, leading to

the discrete form:

∑
=

−=
N

n
nnn XkdSX

1
2 )cos(])([),( τωωω

σ
α

τη ηη (5.7)

where nk  is the wavenumber of the nth wavelet. As defined previously, α is the crest

elevation, ωωηη dS n )(  the surface elevation spectrum and σ the standard deviation

corresponding to that wave spectrum. X = x - x1 is the distance relative to the initial position

with X = 0 representing the wave crest. This allows the positioning of the spatial field such

that the crest occurs at a user-defined position relative to the structure, a useful tool for time

domain analysis. The kinematics are then calculated as a function of time. Eqn 5.7 generates

a NewWave as the summation of infinitesimal wavelets coming into phase, with their

amplitudes proportional to ωωηη dS n )( .
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5.2.3 Wave Energy Spectrum

Appropriate choice of wave energy spectrum shape varies with location and conditions,

depending on variables such as the wind duration and fetch length. The Pierson-Moskowitz

(Pierson and Moskowitz, 1964) and the JONSWAP (Hasselmann et al., 1973) spectra are

widely used examples. The sea-states are usually described by just two terms, the

significant wave height Hs and the mean zero crossing period Tz. The significant wave

height is the average height of waves typically reported from usual observations. Such

observations, however, are found to be biased towards the higher waves in a sea-state, and

Hs can be defined more precisely as the mean of the highest third of the waves. The mean

zero crossing period is defined as the average time between up-crossings of the surface

elevation through the mean water-level.

The Pierson-Moskowitz spectrum derived from measured data for fully developed seas has

the form







−

=
4

5)( ω
ηη ω

ω
B

eAS (5.8)

where A and B are constants that can be evaluated for Hs and Tz, giving the one-sided wave

spectrum

( )
44
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2 2
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π

ηη ω
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s e
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H
S

−







= . (5.9)

Though developed from wave data in the North Sea, the Pierson-Moskowitz spectrum has

the theoretical basis of wave energy spectrum formulated by Phillips (see, for instance,

Phillips, 1958). Theoretically the spectrum frequency ranges between zero and ∞, with the
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zeroth spectral moment (the area under ηηS ) equal to the mean square deviation of the water

surface from the mean level. This is proportional to the wave energy in that sea-state.

It has been found that in the North Sea, with its limited fetch conditions and mainly wind-

generated seas, the spectra are more “peaky” than the Pierson-Moskowitz shape

(Hasselmann et al., 1973). After measurements were taken in the North Sea, the JONSWAP

spectrum was developed and can be described by adjusting the Pierson-Moskowitz

spectrum. For an equivalent Hs and Tz, the JONSWAP spectrum gives a higher but narrower

peak elevation, with the peak’s amplitude and frequency conditioned by a frequency

dependent factor γ, known as the peak enhancement factor. As the fetch length of the wind

increases, the sea-state becomes fully developed and the JONSWAP spectrum approaches

the Pierson-Moskowitz shape. Various authors have suggested formulations of the

JONSWAP spectrum in terms of parameters commonly measured or predicted, usually

wave height and period (see, for example, Houmb and Overvik, 1976 or Carter, 1982).

Within this thesis, however, the JONSWAP spectrum described by Ochi (1979) has been

implemented into JAKUP and used. Ochi suggested a mean value of the peak shape

parameter γ  of 3.3 with a standard deviation of 0.79. To describe the JONSWAP spectrum

the following variables need to be defined:

3.3=γ ; (5.10a)

4085.1=bk ; (5.10b)

17.1327.0 315.0 += − γek p ; (5.10c)

)ln(285.01 γγ −=k (5.10d)

where bk  is the value of zp TT  when γ = 1  (the Pierson-Moskowitz spectrum) and pk

defines the relationship between the mean zero crossing period and the period
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corresponding to peak spectral frequency pT , such that zpp TkT = . The parameter γk  is a

normalising factor. The JONSWAP spectrum, as described by Ochi, can therefore be

written as

( ) aT
k

p

bs p

b

e
T

kkH
S γ

ω
π
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and where pω  represents the peak spectral frequency. As consistent with Hasselmann et al.

(1973), σ  has the numerical values 0.07 and 0.09 for pTπω 2≤  and pTπω 2>

respectively.

5.3 Implementation of NewWave into JAKUP

NewWave theory has been implemented into JAKUP with the choice of either the Pierson-

Moskowitz (Eqn 5.9) or JONSWAP (Eqn 5.11) as the wave energy spectrum. Fig. 5.1

shows the difference in the spectral shape for a sample sea-state characterised by

12=sH m and 10=zT s. The development of the extreme NewWave surface elevation in

the time domain assuming a Pierson-Moskowitz spectrum is illustrated in Fig 5.2. In this

example, the crest elevation α  has been set at 12m. A spectral bandwidth (ε ) of 0.6 was

achieved by cutting the tail of the spectral density function at 405.1=ω rad/s. The

bandwidth parameter characterises the frequency over which most of the wave energy

exists, and for an unbounded spectrum ε = 1. The Nyquist frequency was assumed as

405.1=ω rad/s and for frequencies larger than this a spectral density of zero was used for

padding up to the maximum frequency of 81.22max == nyωω rad/s. This ensures no

corruption of the spectrum at high frequencies, a process known as aliasing. The number of

frequency components (N) is user-defined; in this example N = 512, giving a ωd

component of 005488.0 rad/s. While describing a second-order theory, Jensen et al. (1995)
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published the values of the surface elevation of a linear NewWave for the equivalent sea-

state and spectral shape. Fig. 5.2 shows these values, which correspond to the profile

evaluated by JAKUP. The wave profiles derived from the Pierson-Moskowitz and

JONSWAP spectra for the same sea-state are shown in Fig. 5.3, with the JONSWAP

spectrum showing evidence of a narrower banded spectrum as its autocorrelation decays

less rapidly.

5.3.1 Wave Dispersion Relationship

A spatial profile of NewWave similar in shape to Fig. 5.2 can be obtained from the wave

number spectrum. Due to the dispersive nature of ocean waves, however, a more rapid

decay in the wave profile as a function of distance than as a function of time can be

expected. Though a spatially variable NewWave at a constant time is not needed to analyse

jack-ups, due to the substantial separation of their legs (51.96 m in the example structure

used in this thesis), the ability to evaluate accurately the time varying surface elevation and

kinematics at two spatial positions is significant. Therefore, the relationship between space

and time will be further explored.

Angular frequency ω, and wave number k are related by the dispersion relation for plane

waves, and in water of constant depth d this can be written as

( )kdgk tanh2 =ω . (5.12)

The usual approach to solving Eqn 5.12 for the unknown wave number, when the frequency

is specified, is to ‘guess’ a first approximation and iterate with an appropriate algorithm

such as Newton’s method. However, this is a computational burden and care is required to

ensure a robust algorithm for all values of ω. To avoid this calculation, the deep water

approximation of gk=2ω  is often used, but for JAKUP to be versatile under all conditions
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this assumption was not deemed appropriate, and Eqn 5.12 is invariably used in the

evaluation of wave number spectrum.

An approximate solution method of Eqn 5.12, as outlined by Newman (1990), has been

implemented in JAKUP. Newman derived polynomial approximations valid for all water

depths and accurate to seven or eight significant figures. Furthermore, with only two

iterations of a conventional Newton-Rhapson approach, double precision accuracy

(fourteen significant figures) can be achieved. The solution is separated into two water

depth ranges, the first representing shallow water )20( ≤≤ kd  and the second deep water

conditions )2( ≥kd , with Newman stating that the partition at 2=kd  is “somewhat

arbitrary”.

In both cases, the solution of the water wave dispersion relationship can be found as a

summation of known polynomial values. For the lower range, representing shallow water

)20( ≤≤ kd , this can be written as

∑
=









≅
8

0 2
1

i

i

ni

n
n

xc

x
y (5.13)

where dky nn = , gdx nn
2ω= . For the upper range representing deep water )2( ≥kd  it

can be written as

∑
=

− 





+≅

5

0

)24(

2
1

i

i
x

ninn
nexbxy . (5.14)

The values of ic , i = 0, 1, …, 8 and ib , i = 0, 1, …, 5 are presented in Table 5.1.
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5.3.1.1 Implementation of NewWave in JAKUP - Dispersion Relationship

Fig. 5.4 shows the NewWave surface elevation profile evaluated by JAKUP for the upwave

and downwave legs of the example structure for the same spectral conditions as used in Fig.

5.2. The co-ordinate x-axis has been defined as shown in Fig. 5.4, with 0=x m and

96.51=x m representing the upwave and downwave legs respectively. The peak crest of

the NewWave has been focused on the upwave leg at 0=t s. For all of the analyses in this

thesis, the rig is orientated with two upwave legs and one downwave leg. From a series of

simulations focussing the wave in various positions, this rig orientation and wave position

was interpreted as the critical condition.

5.4 NewWave Kinematics

5.4.1 Theory

As NewWave is based on linear wave theory, the water particle kinematics can be easily

obtained once the water surface is established. Though vertical kinematics can be derived,

for the analysis of jack-up units only the horizontal kinematics are necessary and for

unidirectional waves they can be written as

)cos()(])([),,(
1

2 τωωωω
σ
α

τ ηη nn

N

n
nnn XkzFdSzXu −= ∑

=

(5.15)

)sin()(])([),,(
1

2
2 τωωωω

σ
α

τ ηη nn

N

n
nnn XkzFdSzXu −= ∑

=

& (5.16)

where u and &u  are the horizontal water particle velocity and acceleration respectively. nF

is the horizontal attenuation factor and, as a function of depth z, is given by linear theory as

( ) ( )( )
)sinh(

cosh
dk

zdkzF
n

n
n

+
= . (5.17)
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As the kinematics in Eqns 5.15 and 5.16 are derived from linear wave theory, they have no

theoretical validity above the mean water-level and care must be taken in describing their

values in a crest. A number of extrapolation or stretching approaches are commonly used,

such as delta stretching (Rodenbusch and Forristall, 1986) or Wheeler stretching (Wheeler,

1970).

Fig. 5.5 shows both extrapolation and stretching procedures widely used to evaluate wave

kinematics in a crest. A straight extrapolation (linear extrapolation) above the mean surface

can be used; however, this will over-predict wave kinematics. Vertical extrapolation uses

linear theory up to the mean water-level and then uses the kinematics at the mean level up to

the free surface. Wheeler stretching also uses the mean water-level kinematics as the free

surface kinematics, but stretches the entire profile by modifying the depth attenuation

function nF  to become

( )
)sinh(

1
)(cosh

dk
d
zdk

zF
n

n

n









+

+

=
η

(5.18)

where η  is the instantaneous surface elevation. Wheeler stretching and linear extrapolation

provide a lower and upper bound respectively for horizontal particle velocities in the crest

of waves (Forristall, 1981). Delta stretching interpolates between the two, whilst

maintaining some of the smooth non-linearities of a stretched profile (Rodenbusch and

Forristall, 1986). This is achieved by stretching the vertical axis by replacing the depth z in

the attenuation factor with sz , at any height above half the significant wave height

( 2ss HD = ) below the mean water-level, according to

( ) ( )
( ) s

s

s
ss D

D
DDzz −

+
+∇

+=
η
η     for sDz −>  and 0>η
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zzs =                                        otherwise (5.19)

where ∇  is the stretching parameter (usually set as 0.3). All of these procedures are

approximations and all break linear wave theory (namely the Laplace equation or the free

surface boundary conditions).

In linear theory, a procedure for stretching (or extrapolation) is more important for steeper

waves where the shorter wave components tend to over-predict wave kinematics in the

crest. Compared with a single periodic model, NewWave being broad banded makes it less

sensitive to over-prediction of wave kinematics; nevertheless, the difference in kinematics

is significant and stretching (or extrapolation) should always be used with NewWave.

Although there are numerous methods described in the literature, there is no clear preferred

option. Stretching and extrapolation techniques with example calculations are further

discussed in section 5.5.1.

5.4.2 Example of NewWave Kinematics in JAKUP

Fig. 5.6 shows the horizontal particle velocities calculated by JAKUP for an extreme wave

under a crest for the example conditions used to generate the wave surface elevation in Fig.

5.2 (i.e. 12=sH m, 10=zT s and 6.0=ε ). The water depth was 200 m. The difference

between the horizontal velocities with and without the use of Wheeler stretching is

highlighted. The horizontal velocities below the first and largest trough (located at

62.5±=x m) are also shown in Fig. 5.6. The horizontal velocities evaluated by JAKUP for

the non-stretched case again correspond to the results published by Jensen et al. (1995) for

the same conditions.
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5.4.3 Example Response of a Jack-Up Subjected to NewWave Loading

The extended Morison equation (Eqn 2.2) is used in JAKUP to relate the horizontal

kinematics to the hydrodynamic loads on the jack-up legs, as outlined in section 2.3.2. Fig.

5.8 indicates the wave forces calculated on each leg in the time domain for the NewWave

used in the above example (the surface elevation at both legs is again shown in Fig 5.7).

The example jack-up unit used here, and also for the rest of the thesis, is shown in Fig. 2.1.

The forces at a given time are the sum of the loads applied at each node on the leg at that

time. The rig is assumed to have two legs upwave, so for the ‘upwave legs’ the values

shown are the total for two legs. For this example, the environmental force is purely wave

loading, with no wind or current included. As the hydrodynamic loading includes relative

velocity effects, it should be noted that Fig. 5.8 represents the Model C foundation case.

The corresponding horizontal deck displacements due to this NewWave are shown in Fig.

5.9, for three foundation cases: pinned, Model C and linear springs. Pinned footings

represent infinite horizontal and vertical, but no rotational stiffness. Model C is the strain

hardening plasticity model described in Chapters 3 and 4, whilst linear springs represents

finite stiffness of equivalent formulation and values to the elastic region of the Model C

case (Eqn 3.8). The parameters of Model C used are as outlined in Table 4.1 (an γN  value

of 250 was used). Though only horizontal deck displacements have been shown, any

measure of structural response can be determined by JAKUP. After the NewWave passes,

the structure can be seen to be vibrating in its natural mode. With increased rotational fixity

the natural periods decrease, with approximate values of 9, 5, and 5 seconds for the pinned,

Model C and linear spring footings respectively. As expected, the pinned footings give the

largest horizontal deck displacement over the time period. The pinned case for this example

is rather conservative compared with the Model C footings, with a peak displacement close
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to a factor of four greater (as would be expected from a quasi-static linear model of a

simplified jack-up).

For the example in Figs 5.7 to 5.9, the load combinations on the Model C footings were

contained entirely within the yield surface, giving a response equivalent to the linear spring

case. By increasing the crest amplitude to 15=α m or 18=α m, as shown in Fig. 5.10, the

increased loading caused plastic displacements in the Model C footings, shifting the entire

foundations and leaving a permanent offset in the displacement of the deck.  This yielding of

the sand footings occurred during the peak of the NewWave. The natural period during this

event may also be modified by the plastic behaviour. These examples have shown

NewWave theory conveniently and efficiently implemented into a structural analysis

program.

5.5 Discussion of NewWave

5.5.1 Calculation of Kinematics – Linear Stretching/Extrapolation

Procedures

For the analysis of jack-ups, interest lies not so much in the kinematics but the forces they

translate onto the jack-up’s legs, and then the dynamic response to them. To demonstrate the

difference in the stretching procedures an example calculation was performed for wave

conditions that a large jack-up in the North Sea could expect. Model C foundations were

used, with the peak period of the sea-state chosen as three times the natural period of the

structure (i.e. 153 ≈= structurep TT s). NewWave elevations were scaled to represent

increasing wave steepness, with elevations given in Table 5.2.

The forces on the upwave leg and corresponding horizontal deck displacements are shown

in Fig. 5.11 and Fig. 5.12 respectively. The linear extrapolation and Wheeler stretching give
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upper and lower limits to the largest forces and dynamic response respectively, with similar

response evaluated for delta stretching and vertical extrapolation. The choice of procedure

is clearly more important with increasing wave steepness, with significant differences in

deck displacements shown for the kpα = 0.3 case.

5.5.2 Second-Order NewWave Theory

Stokes (1847) demonstrated the non-linearity of finite amplitude water waves, and today

design waves used to evaluate loads on offshore structures are usually Stokes’ fifth-order

waves (i.e. a deterministic non-linear regular wave). With the only free parameters being

wave height and period, the spectral content of the waves is not considered. In NewWave,

however, the spectral content is considered, but only by using linear waves. Second-order

corrections to NewWave, which would account for both the spectral content and some non-

linearities, have been suggested by several authors (Taylor, 1992; Jensen et al., 1995;

Jensen 1996); a discussion of these theories follows in sections 5.5.2.1 and 5.5.2.2. By

accounting for the effects of short waves riding on longer waves, both the free surface

elevation and the horizontal fluid velocities (within the extreme crest where the

uncertainties are greatest) can be modelled to second-order.

5.5.2.1 The Second-Order Correction Suggested by Taylor (1992)

Taylor (1992) suggested a semi-empirical second-order extension to NewWave, making use

of Longuet-Higgins and Stewart’s (1964) theories about the effect of superposition of two

sets of regular waves of different frequencies and wavelength. Longuet-Higgins and Stewart

showed that there was a significant change in both the amplitude and the wavenumber of a

short wave due to the presence of a long one, but not vice versa. They wrote this amplitude

modulation and wave number variation as

)cos(1
00

KxAK
k
k

+==
α
α (5.20)
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where α  and k are the varying amplitude and wavenumber of the shorter wave respectively,

and 0α  and 0k  are the shorter wave’s amplitude and wave number in the absence of the

longer wave. The parameters A and K are the amplitude and wave number of the longer

wave. The modulations in Eqns 5.20 emphasise the physical causes of non-linearity, i.e. the

vertical straining and horizontal propagation respectively.

In his second-order correction to NewWave, Taylor (1992) assumed that the mean wave-

profile is identical with the profile obtained by taking all phase lags in the individual wave

components to be equal to zero at the extreme wave crest, with the effects of Eqn 5.20

added to the formulation. With the individual wave component amplitudes being taken from

the linear result, Taylor’s formulation is only an empirical correction for second-order and

does not have a well defined second-order stochastic definition. Just as the free surface is

modified by second-order wave interaction, the velocity fields of the individual wavelets

are affected, with Taylor also detailing a second-order extension for horizontal velocities.

5.5.2.2 Second-Order NewWaves Suggested by Jensen (1996)

Jensen (1996) has outlined explicit second-order formulae for the conditional mean value of

the wave profile and the wave kinematics. These formulae are derived from Stokes’

second-order unidirectional waves in deep water. However, any moderate non-linear wave

theory could be used to generate the statistical moments needed to depict the conditional

mean wave description. The mean values are determined for slightly non-Gaussian

correlated processes and are conditional on both the value and slope of the surface

elevation at a particular point. For the largest wave this is taken as being the extreme wave
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crest with a slope of zero. Explicit details will not be given here; however, their

development and formulation can be found in Jensen et al. (1995) and Jensen (1996).1

5.5.2.3 Comparisons of the Second-Order Formulations with Linear Kinematics

Both Taylor’s (1992) and Jensen’s (1996) formulations have been independently

implemented in JAKUP, allowing surface elevations and kinematics (at both legs) to be

evaluated to second-order. For the steepest condition in Table 5.2 (Tp = 15s and linear

NewWave amplitude = 79.16 m), the surface elevations for linear NewWave theory,

Taylor’s second-order extension and Jensen’s formulation are shown in Fig. 5.13. The

horizontal particle kinematics are also shown in Fig. 5.14, with comparisons with Wheeler

and delta stretching of the linear profile given. Both Wheeler stretching and Jensen’s

second-order formulation give a smooth velocity profile, whereas delta stretching and

Taylor’s second-order formulation are disjointed at or just below the mean water-level.

The second-order surface elevation profile developed by Jensen (1996) gives steeper

slopes above the still water level and shallower troughs than those predicted by linear

NewWave theory and also Taylor’s (1992) second-order correction. The predictions also

reduce the horizontal velocity of the wave kinematics, a result which is consistent with the

conventional Stokes’ fifth-order wave (Jensen, 1996). Furthermore, the kinematics can be

evaluated without the need for stretching; therefore, no further assumptions are introduced.

The kinematics are, however, sensitive to the bandwidth parameter (or cut-off frequency).

For the same conditions, Fig. 5.15 shows the horizontal deck displacements estimated by

JAKUP for the second-order theories and compares them with a linear NewWave with

delta and Wheeler stretching. For this example, Taylor’s (1992) second-order formulation

                                                
1 Jensen (1996) is an extension of the second-order formulation of Jensen et al. (1995). Taking the
formulation further, it assumes that the wave elevation at a particular point in space or time is actually a
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gives a similar response to the delta stretching method. Although there are significant

differences in the kinematics and predicted forces at different depths on the jack-up legs, i.e.

Taylor’s second order is predicting larger forces around the crest but lower below the mean

sea-level, these differences have averaged out over the entire leg. Jensen’s (1996) second-

order formulation has given the smallest response, though it is similar to Wheeler stretching.

Fig. 5.15 shows that there is as much difference in response caused by the choice of

stretching procedure in a linear theory as by choosing a second-order formulation.

In Chapter 6 linear NewWaves are constrained within a random background to evaluate

extreme response statistics of jack-ups in random seas. It is possible to constrain second-

order waves in a similar way; however, considering the additional computational burden,

this was not performed in this thesis.

                                                                                                                                                  
crest.
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 Chapter 6 - Evaluation of Extreme Response Statistics

using Constrained NewWave

6.1 Introduction

Much computation is needed to evaluate extreme response statistics using full random time

domain simulations with only a few of the waves in each time series capable of producing

the extreme result. In contrast to this, by constraining a NewWave with a predetermined

large crest in an arbitrary random time series, Taylor et al. (1995) devised a method that

allows for the calculation of extreme statistics without the same degree of computational

burden.

This chapter is concerned with the evaluation of extreme response statistics of jack-up

units using the Constrained NewWave methodology. Firstly, the theoretical derivations

and implementation of both full random simulation and Constrained NewWave are

detailed, with example calculations highlighting the importance of a random background in

the analysis of jack-ups. Following this, a method of generating short- and long-term

response statistics using JAKUP is examined. The short-term is based on individual sea-

state activity over a short discrete time period, whilst the long-term is based on the

response to many sea-states over extended periods of time. The term sea-state as used

here defines the set of parameters that describe statistically the wave conditions at a given

time (typically three hours) and location. An example calculation based on a jack-up

located in the central North Sea is detailed.
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6.2 Theoretical Background

6.2.1 Numerical Random Wave Simulation

The numerical method widely used to evaluate a random instantaneous elevation of the sea

surface from a given wave energy spectrum is based on the summation of a finite number

of Fourier components, as described by Eqns 5.1 and 5.2. This method, however, only

correctly simulates a Gaussian random process at the limits dω → 0 and N → ∞ (see

Rice, 1944 and Tucker et al., 1984), i.e. when the summation becomes an integration. For

finite values of N, by using deterministic values of the amplitude components nc , n = 1, 2,

…, N, the variability of a Gaussian random process is not truly modelled. Tucker et al.

suggest an alternative method where the amplitude components are themselves random

variables.

For use in this procedure, Eqn 5.1 can alternatively be written as

( ) ( )( )∑
=

+=
2

1
sincos)(

N

n
nnnn tbtat ωωη (6.1)

where na  and nb  are Fourier components which are themselves independent Gaussian

random variables with zero mean and a variance related to the wave energy spectrum at

the corresponding discrete frequency:

( ) ωωσ ηηηη dS nn =2
, . (6.2)

Therefore, na  (and nb ) can be easily simulated by finding the product of a standardised

normally distributed random variable 
narn (or 

nbrn ) with zero mean and the standard

deviation n,ηησ  as
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ωωηη dSrna nan n
)(=     and    ωωηη dSrnb nbn n

)(= (6.3)

noting that 
narn  and 

nbrn are independent.

6.2.1.1 Implementation in JAKUP

The method of evaluating a random surface elevation established by Tucker et al. (1984)

has been implemented into JAKUP, allowing the capability of full random time domain

analysis. As an example of this implementation, the calculation of one random surface

elevation for the sea-state characterised by Hs = 12 m and Tz = 10 s will be described. The

JONSWAP spectrum with the frequency cut at ω = π/2 rad/s is used with 512 summation

components. Fig. 6.1 shows the randomly generated Fourier coefficients na  and nb  for a

typical realisation, whilst Fig. 6.2 illustrates the surface elevation for these components.

The timesteps are marked by crosses with dt = 2π/ωmax. The unsmoothed power spectral

density of this realisation is shown in Fig. 6.3 for comparison with the standard

JONSWAP spectrum for the same sea-state. The variance of the JONSWAP spectrum was

calculated as 8.979 compared with 8.750 for this random realisation. By repeating the

process and averaging the ensembled realisations, or by smoothing a single realisation, a

closer fit to the JONSWAP spectrum would be achieved.

6.2.2 Constraining a NewWave into a Random Background

It is important when constraining a NewWave into a random sequence that the constrained

sequence is statistically indistinguishable from the original random sequence. The details

of a procedure achieving this (as outlined by Taylor et al. (1995)) follow. The

constrained surface elevation )(tcη  could be considered as

)()()()( tRftQett rc ++= ηη (6.4)
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where )(trη  is the random surface of Eqn 6.1 and e(t) and f(t) are two non-random

functions of the form

∑
=

=
2

1
)cos()(

N

n
nn tcte ω     and    ∑

=

=
2

1
)sin()(

N

n
nn tdtf ω (6.5)

where nc  and nd  at 0=t  have the same statistical properties as na  and nb  in Eqn 6.1.

The values of nc  and nd , and the forms of Q and R, are selected to constrain )(tcη  at t =

0 to the criteria αη =)0(c  and αη && =)0(c , where α is the predetermined crest elevation

and α&  the gradient. For a crest α&  is naturally set to zero. Therefore, Q and R can be

evaluated as
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As stated by Taylor et al., there is an infinite set of solutions of )(te  and )(tf  that can

constrain this process to satisfy the criteria. However, the desired choice should minimise

the variance of the constrained process, allowing the profile )(tcη  to be as similar as

possible to the expected profile [ ])(tE cη , where

[ ] [ ] [ ] [ ]
d
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c

teREtfQEtetEtE rc
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ηη
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+=++= . (6.7)

The one solution which achieves this is
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where )(tr  is the autocorrelation function (or the unit NewWave), and )(tr&  the

differentiation of the autocorrelation function with respect to time (or the slope of the unit

NewWave). 2λ  is obtained from the second spectral moment of the wave energy spectrum

( )22
2 σλ=m .

By substituting these solutions into Eqn 6.4, the solution of the constrained surface

elevation is derived as
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where the terms have the following meanings:

term (1) - the original random surface elevation;

term (2) - the unit NewWave;

term (3) - the predetermined constrained amplitude (α);

term (4) - the original random surface elevation at t = 0 (or )0(rη );

term (5) - the slope of the unit NewWave;

term (6) - the predetermined constrained slope; for a crest, 0=α& ;

term (7) - the original random surface’s slope at t = 0 (or )0(rη& ).

6.2.2.1 Example Response of a Jack-Up Subjected to a Constrained NewWave

Fig. 6.4 illustrates the surface elevation of a NewWave with a crest elevation of 15m

embedded in a random sea-state characterised by 12=sH m and 10=zT s. The wave has

been constrained such that at about 34.59 s its peak collides with the upwave leg of the

jack-up. It is shown in Fig. 6.4 that, for this example, the influence of the NewWave on the

surface elevation is contained to within 40 s of the constrained peak. The surface

elevation for the downwave as well as the upwave leg, as evaluated in JAKUP, is

                              (1)             (2)          (3)           (4)                         (5)               (6)                 (7)
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displayed in Fig. 6.5. The corresponding deck displacements with time are shown in Fig.

6.6 for the linear springs, Model C and pinned foundation assumptions. For this example

embedment, the peak displacements have been increased compared with just the

equivalent NewWave (Fig. 5.10). This is due to the random background and the structural

memory caused, indicating that for dynamically sensitive structures, such as jack-ups, the

response is not only conditional on the present applied load, but also on the load history.

As was the case for a jack-up loaded exclusively by a NewWave, the assumption of

pinned footings is clearly illustrated in Fig. 6.6 as overly conservative. The linear springs

can be seen to yield lower displacements than the Model C footing due to the greater

stiffness exhibited. In addition, Model C indicates a permanent horizontal displacement

occurring in the jack-up.

6.3 Using Constrained NewWave in the Evaluation of Response

Statistics of Jack-Ups

6.3.1 Overview

Though only one Constrained NewWave example has so far been shown here, one of the

main benefits of the constraining technique is that the probability distribution of the

extreme response can be estimated without the need to simulate many hours of real time,

most of which is of no interest. For a storm associated with one sea-state, shorter time

periods can be used with a logical combination of crest elevations to simulate responses

for the expected wave sizes within that sea-state. Convolution with the probability of

occurrences of crest elevations allows for the compilation of response statistics. With

knowledge of long-term sea conditions, long-term extreme exceedence probabilities for

response design properties of interest in the reliability of jack-ups (for example lower

leg-guide moments or deck displacement) can be evaluated.
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6.3.2 Methodology Adopted for the Evaluation of Short-Term Statistics

Within this thesis, simulations of 75 s duration, with the crests constrained at 60 s, are

used to estimate the time history response associated with one crest height. A lead time of

60 s was considered to have the same statistical response properties due to the crest when

compared with longer time periods. For five discrete crest elevations representative of

the full range of wave heights in a three hour storm, 200 simulations per crest elevation

were performed using JAKUP. The largest response caused by the constrained peak was

recorded for each simulation. The extreme response distributions were evaluated by

convolving responses from the five constrained crest elevations with the Rayleigh

distribution of crest heights. This was accomplished numerically using Monte Carlo

techniques. The steps followed are outlined below and are also shown in Fig. 6.7:

Step 1:For a short time period (for example three hours), crest heights may be randomly

derived assuming a Rayleigh distribution.1 One crest elevation is predicted as

)1ln().2( 2 rnpred −−= σα (6.10)

where rn is a random number generated from a uniform distribution between 0 and 1.

Therefore, a set of wave crests iα , i = 1, 2, …, Ncrest, can be estimated from a Monte

Carlo simulation (Ncrest is the number of wave crests, assumed as the time period divided

by Tz).

Step 2: Using the response information from the 5 sets of 200 JAKUP runs, lines of

constant probability are constructed by firstly sorting the response at each of the five

                                                
1 This is based on the assumption of a Gaussian sea and a narrow-banded process (see Longuet-Higgins
(1952)). The Gaussian sea assumption depends on the water depth of the jack-up and for many shallow
water cases it would not be appropriate.
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NewWave crest elevations into order from the lowest (or 1st) response to the highest (or

200th) response. Following this, polynomial curve fitting of the five responses

representing the five NewWave elevations at each response level )2001( →  gives 200

lines of constant probability.2 These lines allow response values to be estimated for crest

elevations between the five NewWave amplitudes used in JAKUP. Construction of the

lines of constant probability will be shown in an example in section 6.3.3.

For each crest elevation in step 1, i.e. αi, i = 1, 2, …, Ncrest, a response corresponding to

its elevation is “randomly” chosen. By simulating a number between 1 → 200 (the number

of JAKUP runs per NewWave crest elevation), interpolation along that number’s line of

constant probability gives the “random” response for that one crest. Repeating for all Ncrest

elevations completes a set of responses for that time period. This is shown in step 2 of

Fig. 6.7. Therefore, for one random three-hour event, the distribution of responses within

that sea-state have been calculated and the extreme event can be extracted.

Step 3:  By repeating steps 1 and 2, responses for different three-hour events are

evaluated and, by using the maximum of each, the distribution of extreme response can be

compiled. This is shown in step 3 of Fig. 6.7. In the numerical experiments in this thesis,

distributions are based on 2500 of these samples.

6.3.3 Example Numerical Results for One Sea-State ( 12==sH s and

805.10==zT s)

An example of the methodology described in section 6.3.2 to compile short-term extreme

response statistics is outlined here. The sea-state described by the JONSWAP wave

                                                
2 The 200 lines of constant probability need to be constructed only once and contain all of the response
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energy spectrum with parameters Hs = 12 m and Tz = 10.805 s has been chosen. This is the

base condition on which the long-term numerical experiments in section 6.4 are contingent

and is assumed to be representative of the 100 year sea-state in a central North Sea

location.

Fig. 6.8 shows the deck displacements calculated by JAKUP for the five crest elevations:

3.5, 7, 10, 12 and 15 m. Though Fig. 6.8 seems to illustrate larger variation of deck

displacements as the NewWave crest elevation increases, this is not the case. When the

coefficient of variation is calculated, defined in the usual way as

x

x
xCoV

µ
σ

= (6.11)

where xσ  and xµ  are the standard deviation and mean of set x respectively, there is

actually a reduction in CoV with increasing elevation. This implies that as the crest

elevations become higher, they also become more dominant in the calculation of global

response, thereby reducing the response’s variation.

Constructed by simple polynomial curve fitting, Fig. 6.9 shows five example lines of

constant probability between the levels of evaluated response. This was performed using

standard MATLAB functions and was necessary for the interpolation of intermediate

crests. The actual number of lines of constant probability used is not five, as implied in

Fig. 6.9, but is the number of simulations at each crest elevation performed by JAKUP (in

this case 200).

                                                                                                                                               
information from the JAKUP runs.
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The extreme response distribution for deck displacement, evaluated using the convolution

procedure described in section 6.3.2, is shown in Fig. 6.10. The mean and 50%

exceedence values are 0.251 and 0.241 m respectively and the distribution has a CoV of

22.26%.

6.3.4 Verification of Short-Term Extreme Response Results

The accuracy of this method has been examined by repeating the calculations. Four new

sets of 200 extreme responses per crest elevation were evaluated by JAKUP and the

convolution procedures repeated. With little difference between the resulting statistics,

uniformity in successive tests is shown in Fig. 6.11. The question of whether 200

responses per crest elevation is a large enough sample has also been answered. With

convolution performed on all the data (1000 JAKUP responses per crest elevation), the

extreme response statistics evaluated are consistent with results evaluated from the 200

JAKUP response data. This is shown in Fig. 6.11 and validates the use of only 200

extreme responses per crest elevation.

Consistency is also shown in Fig. 6.11 for a more extreme sea-state, 45.16=sH m and

66.12=zT s (the 1 in 610  year sea-state used in the long-term calculations of section 6.4).

This is an important outcome, as the method used is validated for large amounts of

plasticity and non-linearities in the Model C calculation and, moreover, the results for the

more ‘linear’ pinned and linear spring cases can therefore also be accepted.

The results have also been verified by “brute force” random wave simulation for both

sea-states. As shown in Fig. 6.12, one hundred full three-hour simulations correspond

well with the Constrained NewWave results.
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Comparisons of the values for the maximum horizontal force on the jack-up legs for the

repeated calculations and the full random domain simulation are shown in Fig. 6.13.

Again, the Constrained NewWave procedure used with a sample of 200 response data for

five crest elevations is satisfactory.

6.4 Evaluation of Long-Term Statistics: A Numerical Experiment on an

Example Jack-Up

6.4.1 Overview

An understanding of long-term meteorological and oceanographic (met-ocean) conditions

is needed before any convolution of short-term statistics into long-term probabilities can

be performed. Difficulties arise, however, in extrapolating measured or hindcast time

series data, which in the North Sea are usually only of length 5-25 years, to longer return

periods. A short review of extrapolation methods used will be given here, and then the

approach taken for the numerical experiments in this chapter will be highlighted.

6.4.1.1 Review of Extrapolation Methods

In an effort to derive long-term design conditions, one widely used method is to derive a

“design wave”, an individual wave with a height which is exceeded on average only once

in a specified return period (for example, 100 years) (see Durning (1971), Hogben (1990)

or Tucker (1991)). The design wave is evaluated by finding the 100-year return value of

Hs from either a measured or predicted cumulative distribution (usually log-normal,

Weibull or Fisher Tippett Type 1) and then for that 100-year Hs, the most probable

maximum wave height in a three-hour period (Tucker, 1991). Wind and current are

assumed to act independently and similar procedures are used to calculate design wind

and current velocities for the return period in question. This is unnecessarily conservative

as the extreme events are not expected to occur at precisely the same time (Forristall et
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al., 1991). Uncertainty in the extreme wave in a sea-state is neglected, with only most

probable values calculated. As sea-state is defined as the independent variable,

correlation between successive sea-states is also neglected.

For dynamically sensitive structures, the design wave does not always represent the

situation producing the greatest force on the structure, making the design wave approach

inadequate in reliability calculations of jack-up units. As an alternative, Tromans and

Vanderschuren (1995) demonstrated a method for the prediction of extreme waves and

long-term load statistics based on the assumption of “storms” as individual events. Here a

storm is defined as a continuous period of severe sea with Hs at over 30-40% of the peak

Hs in the database record for the particular location. In the North Sea the NESS hindcast

database can be used (Peters et al., 1993). Typically lasting from 12 to 36 hours, a storm

has a period of increasing Hs, a peak and then a decaying phase. For a typical location

several hundred storms might be extracted from 25 years of data (Tromans and

Vanderschuren, 1995), and these results can be used to develop short- and long-term

statistics.

Short-term: By characterising each storm in the database by its most probable extreme

individual wave, a model for the uncertainty of an extreme within a short time scale (or

storm) can be achieved.

Long-term: Compiling all the most probable extreme wave heights for each individual

storm provides a picture of the long-term distribution of that variable. However, with

limited data available, extrapolation to large values of most probable extreme wave

height requires an assumption of the distribution the data follows. Convolution of the

short- and long-term models provides a complete storm-based long-term distribution,

accounting for uncertainty of the extreme within a storm and the uncertainty in storm

severity.
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6.4.1.2 Response-Based Design Conditions

Using generic load models (for drag-dominated quasi-static structures) that combine the

environmental variables into a structural response, such as base shear force, Tromans and

Vanderschuren (1995) describe a method of evaluating response-based joint ocean design

conditions. By using a similar procedure to that of wave height (see section 6.4.1.1),

Tromans and Vanderschuren deduce the distribution of long-term extreme loads (for

instance base shear force and overturning moment). For any return period, therefore, the

design wave parameters of interest (crest elevation, current and wind) can be evaluated as

the solutions which equate the same loads in the generic model. This approach has the

advantage of accounting for joint probabilities of occurrence and evaluating design

conditions based on the response of a structure. Example normalised load versus return

period for the northern, central and southern North Sea, as well as the Gulf of Mexico,

produced by Tromans and Vanderschuren, are shown in Fig. 6.14 (the loads have been

normalised by the 100-year result). The central North Sea results presented here are used

as the basis for scaling of sea-states in the long-term evaluations in this chapter (see

section 6.4.2 below).

6.4.2 Example Calculations for a Central North Sea Jack-Up

To describe the long-term behaviour of the jack-up in this investigation, assumptions

about the condition of the wave environment had to be made. The three major assumptions

were:

1. The 1 in 100 year value of Hs was assumed to be 12 m. This is a value which could be

derived from NESS for a specific site; however, for most positions in the central

North Sea it is believed to be reasonable.
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2. From this base condition, Hs was scaled to other return periods ranging between 1

year and 106 years. The scaling is based on the normalised load versus return period

of Fig. 6.14 for the central North Sea, i.e. a 22% increase in load per factor of 10 on

return period. With load approximately estimated as proportional to the crest

elevation squared (α2) in drag-dominated structures, and with α proportional to Hs, Hs

was scaled by 22.1  per factor of 10 on return period. This can be written as

( ) ( )( )2..log22.01.. 10100
−+=

−
prHprH

yearss (6.12)

where r.p. is the return period and 
yearsH

−100
 the 100 year return period value of Hs

(i.e. 12m). Table 6.1 outlines the return periods and corresponding Hs values used. It

is acknowledged that this assumption is based on a curve derived on a generic quasi-

static structure; however, the Hs values deduced will give reasonable results to study

long-term jack-up response.

3. For all the experiments, wave steepness was assumed constant at kpHs = 0.25, with

values of Tz and Tp also given in Table 6.1

These conditions are a simplification of a real environment. With a known location and

access to a hindcast database a more accurate analysis could be performed in practice.

The methodology of determining long-term statistics, however, would be the same as the

procedure detailed in this chapter. Two numerical experiments were performed, one

excluding and one including wind and current effects. As mentioned previously, Fig. 2.1

shows the example jack-up used in a water depth of 90 m.
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6.4.3 First Long-Term Numerical Experiment - Wave Loading Only

For the first numerical experiment, wave loading was the only environmental force, with

no wind or current applied. For seven return periods, Table 6.1 outlines the sea-states and

five crest elevations at which the NewWave peak was constrained.

Implicit in this statistical approach is the assumption that it is not possible to determine a

meaningful upper limit of sea-state wave conditions. However, the limiting size of a sea-

state in the North Sea must depend on the geographical fetch limits and wind duration.

Therefore, the physical possibility of the larger sea-states should be questioned. For

example, is the 1 in 610  year sea-state used here possible? Moreover, even if it is

possible, for the results to be credible all of the components of the analysis (i.e. the

structural, foundation and wave models) must remain accurate at this sea-state severity.

The contribution of this sea-state, however, to probability levels of interest ( 410− → 610− )

is negligible.3 Nonetheless, it has been included to complete the trends occurring, and to

show what might be expected in extrapolation to very low levels of probabilities (for

instance 910− ). The reality of a sea-state of this severity and the physical bounds of any

analysis, however, must be kept in mind in the interpretation and discussion of the results

presented.

Following the procedures in section 6.3.3, seven short-term extreme response

distributions were evaluated. The distributions of maximum deck displacement for Model

C footings are shown in Fig. 6.15. With increasing severity of the short-term conditions,

Fig. 6.15 indicates increasing variation in the levels of response. Hypotheses explaining

                                                
3 Fjeld (1977) in a summary of probabilities of failure used in recognised codes quotes an accepted
failure level of 10-4-10-6 in the offshore industry compared with a level of 10-6-10-7 onshore. The
Canadian Standards Association sets the target annual probability of failure at 10-3 when there is a small
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this are investigated here. As the sea-states become more severe, the CoVs of load

increase. This is because drag loading on the jack-up will be increasingly dominant

compared with inertia loading and, due to the horizontal particle velocity squared term in

the drag component of the Morison equation (Eqn 2.2), CoVs also increase. This is shown

in Figs 6.16(a) and (b), where the values of maximum force CoVs exemplify this well.

However, this does not fully explain the higher levels of variation found in the deck

displacement extreme response distributions, and other factors must be contributing.

With increasing severity, the amount of plasticity in the Model C calculation must add to

the variation in the levels of extreme deck displacement response. The amount of

plasticity in any simulation can be represented by the 0V  value to which the yield surface

has expanded. In Model C, as the loading on a footing reaches the yield surface, it expands

according to the hardening law, with its size described by 0V . Therefore, the 0V  value

normalised by the initial 
loadpre

V
−0  can be used as a descriptive measure of the level of

plasticity in the calculation. The extreme response 
loadpre

VV
−00  values for the upwave

and downwave footings are shown in Figs 6.17(a) and (b) respectively. For the 1 in 1

year sea-state in both footings, 100 =
−loadpre

VV , indicating that all loading was within the

initial yield surface and only elastic behaviour occurred. However, as the sea-states

became more severe, the levels of 
loadpre

VV
−00  and their variation both increase. This

must contribute to the variation of global response of the jack-up as indicated in the

increasing CoVs of deck displacement.

                                                                                                                                               
risk to life and a low potential for environmental damage, and at 10-5 for situations of great risk to life or
high potential for environmental damage (Sharples et al., 1989).
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Both the mean and CoV values of 
loadpre

VV
−00  are larger for the downwave footing than

for the upwave footing. This is due to the combination of larger vertical loads pushing the

downwave footing into the sand, and the sliding occurring in the upwave footing due to the

NewWave’s peak being focussed on the upwave leg.

6.4.3.1 Methodology Adopted to Numerically Scale Short-Term Extreme Response

Distributions

With the extreme response distribution evaluated for each sea-state (i.e. 1 in j10  year, j =

0, 1, …, 6), convolution with the logarithmic distribution of sea-state occurrences gives

long-term probability predictions of response. However, as sea-states do not occur in

discrete intervals, the extreme response distribution of any intermediate sea-state must be

adequately estimated to evaluate this convolution numerically. Though numerous

techniques would be satisfactory, a method based on the scaling of the “normalised” 1 in

100 year distribution has been chosen here due to its ease of implementation.

By normalising each curve by its 50% exceedence value ( %50R ), a point common in all

short-term sea-states is achieved. This is shown for all three footing assumptions in Fig.

6.18. Two scale factors, 8.0sf  and 2.0sf one for the upper tail ( 0.1)(5.0 ≤≤ xQ ) and

one for the lower tail ( 5.0)(0 <≤ xQ )are evaluated at 8.0)( =xQ  and 2.0)( =xQ

respectively. The scale factors represent the difference in normalised response (at

8.0)( =xQ  and 2.0)( =xQ ) between each return period and the 100 year sea-state. Each

return period distribution is weighted according to its relation in logarithmic time to the 1

in 100 year (j = 2) distribution, i.e. each integer increase in j (for example 1 in 100 → 1 in

101 or 1 in 103 → 1 in 104) is equivalent to one order of magnitude of the scale factor.

Therefore, 8.0sf  is evaluated as the sum of the difference between all of the normalised
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curves compared with the 100 year curve at 8.0)( =xQ , scaled according to the number

of integers in logarithmic time (values of j) they are from the 100 year curve ( 2=j ). In

numerical form this can be written as:

[ ]

∑

∑

=

=
=

−

−

=
6

0

6

0
2%50%50

8.0

2
j

j
jj

j

RRRR
sf (6.13)

where %50RR  is the normalised measured response at 8.0)( =xQ  and j the power

integer describing the sea-state occurrence. The numerator represents the sum of the

difference in the normalised curves’ response values at 8.0)( =xQ  and the denominator

the sum of the integer differences (remembering that 8.0sf  represents one step of the power

integer). This calculation is also summarised in Fig. 6.19. A similar calculation can be

performed on the lower tail to evaluate 2.0sf . Fig. 6.20 shows the 50% response

exceedence values ( %50R ) used in the normalisation process for each sea-state. The

curves of best fit indicate the 50% exceedence values to be used to re-scale at any

intermediate level.

With the scale factors calculated, the extreme response can be estimated for any return

period and cumulative probability value ( )(xQ ). For the return period of value j , using

the appropriate %50R  value and the normalised 1 in 102 distribution (i.e. [ ] 2%50 =jRR ),

the extreme response can be evaluated at the 8.0)( =xQ  level as

[ ] [ ] ( ) 




 −+=

== 8.028.0)(%50%50 .2. sfjRRRx
jxQjj    for 8.0)( =xQ . (6.14a)



Chapter 6 - Evaluation of Extreme Response Statistics using Constrained NewWave 6-19

Assuming a linear scaling of 8.0sf  from 5.0)( =xQ  to 0.1)( =xQ  (i.e. at 5.0)( =xQ ,

08.0 =sf  and at 8.0)( =xQ , 8.08.0 sfsf = ), at any value of )(xQ  the extreme response can

be evaluated as

[ ] [ ] ( ) 







−






 −

+=
= 8.02)(%50%50 .2.

3.0
5.0)(. sfjxQRRRx

jxQjj  for 5.0)( ≥xQ (6.14b)

For the lower tail, the formulation of Eqn 6.14 is the same, except that 2.0sf  replaces

8.0sf . For the Model C case, the equivalent scaled values for j = 0, 1, …, 6 are shown in

Fig. 6.21, for comparison with the original distributions. Throughout the distributions, the

scaled curves approximate the original curves closely.

6.4.3.2 Monte Carlo Sampling of Long-Term Extreme Exceedence Probabilities

Using the scaling and convolution procedures described in section 6.4.3.1, long-term

extreme exceedence probabilities for the horizontal deck displacement have been

evaluated for the example jack-up and are shown in Fig. 6.22. All three foundation cases

are presented, with the additional variation in the short-term Model C distributions

creating a more non-linear long-term curve. As expected, for large annual exceedence

probabilities )1010( 10 −→ , the linear springs and the Model C cases are equivalent.

However, as the probabilities get smaller, the Model C deck displacements become

relatively larger and there is a significant difference between the Model C and linear

spring displacements. For annual exceedence values of 410−  and 510−  (probability levels

of interest in an offshore reliability analysis), the Model C displacements are 33% and

50% greater respectively; this indicates the importance of the plasticity component of the

model to the level of response.
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The pinned case is again shown to be conservative compared to Model C for all annual

probabilities of exceedence, although with enough extrapolation the Model C curve could

be expected to cross the pinned curve. This is possible as horizontal plastic displacements

are accounted for in the Model C formulation. In this analysis with no wind or current,

however, this would not occur at any significant level of probability.

There is a little less than a factor of four difference between the pinned and the linear

springs cases. This is expected as non-linearities in both the structure and loading are

included, and the linear springs case, though very stiff, is not fully fixed. Theoretically, if

non-linear and dynamic amplification effects were not considered, there would be a factor

of four difference between a pinned and fixed case for a jack-up with a very stiff hull.

6.4.3.3 Long-Term Loads on the Jack-Up Legs

Fig. 6.23 shows the long-term annual probabilities of exceedence for forces on the legs of

a jack-up. It is of interest to compare these results with the initial assumption upon which

the scaling of Hs was based (Eqn 6.12). Rather than giving a steady linear increase in

force of 22% per factor of 10 on the return period (as in Fig. 6.14), the loads increase

non-linearly. The assumption that force is proportional to wave amplitude squared, and

thus Hs
2, is overestimating the force due to the NewWaves. This could be due to the fact

that:

• The force on the legs is not completely drag-dominated, as the assumption suggests,

with the level of inertia compared with drag loading changing the CoVs for each short-

term sea-state. The inclusion of other non-linearities in the loading also changes the

results from the initial “linear” assumption.

• Force is not only proportional to Hs, but as Tz increases with more extreme sea-states,

loading varies in a non-linear manner. This is due to changes in the wave energy

spectrum influencing the wave kinematics formulation, the depth dependency function
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and also the load on the downwave legs (affected because of the dispersive nature of

waves).

It has been shown that the initial assumption, which was based on a generic load model of

a quasi-static structure, has not held for the non-linearities associated with the analyses in

JAKUP. However, as discussed in section 6.4.2, the sea-states and associated return

periods are not for a specific location, but a general assumption of what could occur in the

central North Sea. Therefore, though not consistent with Fig. 6.14, the long-term loads on

the legs are still representative of the example location described by Table 6.1.

6.4.4 Second Long-term Numerical Experiment - All Environmental

Forces

During a second numerical experiment with the same wave loading, wind and current

loading was applied as outlined in Table 6.2. The wind force was assumed as point loads

on the nodes of the deck with two thirds applied at the upwave and one third at the

downwave node. The wind loading was assumed as 15% of the constrained NewWave

loading on all legs at the 100-year condition (as shown in Table 6.3) and then scaled for

the other sea-states according to Fig. 6.14.4 A uniform current of 0.8 m/s was chosen for

the base 100-year case and also scaled to give the same force ratio per time of occurrence

as the wave and wind loading.

The value of current is similar to values used in previous studies of jack-up response (see,

for example, Morandi et al. (1997) and Karunakaran et al. (1994)). It is assumed here to

be an independent variable and its level might be highly conservative if joint contributions

were considered. Peters et al. (1993) suggest that widely used current values based on

                                                
4 The proportion of 15% was chosen as a representative level of wind load that could be expected on the
jack-up (see, for instance, Patel (1989))
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guidance notes (such as SNAME) could be more than double the magnitude of currents

associated with extreme waves based on NESS.

Fig. 6.24 shows the maximum deck displacement distributions normalised by their 50%

exceedence values for three hour periods of the seven sea-states. As was the case for the

experiment with no wind or current loading, all three foundation cases exhibit an increase

in variation with sea-state severity, with the increase larger for the Model C case.

However, the magnitudes of all the CoVs are less than they are with no wind or current

(see Fig. 6.18). This is to be expected as the wind and current do not act with any

variation. In the numerical experiments detailed here, wind is a steady force which for

each realisation causes a consistent deck offset. Moreover, current adds to the magnitude

of horizontal particle velocity by the same amount for each realisation. Therefore, both

wind and current reduce the CoVs of the force and deck displacement calculations; Table

6.3 outlines the magnitude and variation of force both with and without wind and current.

The predicted long-term horizontal deck displacements are shown in Fig. 6.25. The

difference in Model C and the linear springs is evident and more significant with the

additional wind and current loading. At the 410−  and 510−  levels, the increase in deck

displacement is about 75% and 100% respectively. Furthermore, this difference increases

to 233% for an annual probability of exceedence of 910− , where the Model C case has

nearly crossed the pinned footing curve.

6.4.5 Measuring the Relative Importance of the Random Background

It has been shown for one realisation in Fig. 6.6 that the random background in which a

NewWave is constrained affects the force on and response of the jack-up. It is therefore

significant to evaluate the relative importance of this background and determine if there is
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a need to perform random time domain analysis in the calculation of long-term statistics of

jack-up response.

To address this, the two long-term numerical experiments were repeated for the same

environmental conditions, except that the NewWaves were not constrained in a random

sea, but acted on their own. For all the NewWave elevations, the results of horizontal

deck displacement are shown in Fig. 6.26. Although only results for Model C are shown,

similar trends occur for the linear spring and pinned cases. Using the same convolution

and scaling procedures, short-term maximum response distributions and long-term

probability estimates were evaluated.

Table 6.4 contains the mean and CoV values for the three-hour maximum deck

displacement distributions, and Table 6.3 presents the respective force results. Assuming

a fixed relation between wave force and wave height (H), an estimate of a CoV for the

extreme wave force can be calculated from the Rayleigh distribution (R(H)) of wave

heights raised to the power of  the number of waves (Ncrest) in the sea state:

[ ] crestN
ssextr HHRHHP )/()/( . = . (6.15)

By assuming that the extreme force is proportional to H for inertia-dominated structures

and H2 for drag-dominated, Harland et al. (1997) estimated CoVs of 8.5% and 17%

respectively in a single three-hour sea-state. On this basis, the force CoVs in Table 6.3

are clearly more drag-dominated. The additional variation is probably due to the

assumptions made by Harland et al. and the use of the extended Morison equation in

JAKUP.

In Fig. 6.27 the long-term deck displacement estimates are compared with the fully

constrained results. For all annual probability of exceedence levels, the random
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background sea increases the deck displacement response. The percentage increase at a

number of levels is shown in Table 6.5. The linear spring and pinned cases have similar

differences, steady for the range of probabilities at around 6% to 8%. However, for

Model C, rather than maintaining a constant difference, the estimates of response for the

Constrained NewWave case become proportionately larger relative to just the NewWave

case. At the 54 1010 −− →  probability levels, they are around double that of the linear and

pinned case, and at the more unreliable 810−  level, they have increased to a multiple of

around two and a half. This implies that the random background noise is more significant

when using plasticity footing models than when using linear springs or pinned footings. In

general, however, for all three foundation assumptions investigated, the levels of

difference are high enough to necessitate the need for full random analysis, especially as

they are non-conservative in nature.

The comparison of the force applied to the jack-up due to the Constrained NewWave and

just the NewWave is shown in Fig. 6.28 for the cases without and with wind and current

respectively. As for hull displacement, the Constrained NewWave gives a significantly

larger probability of exceedence level.

6.4.6 Further Discussion of Long-Term Results

Although jack-up leg forces and deck displacement have been the only responses shown

so far, the same methodology could be used to evaluate long-term statistics for any jack-up

response variable. One design property of interest in the reliability of jack-ups is lower

leg-guide moment. From JAKUP this is estimated as the moment at the node linking the

deck element and the highest leg element (one for each leg). Fig. 6.29 shows the long-term

probability of exceedence for lower leg-guide moments for the same example conditions.

As expected, the results follow the same trends as for the horizontal deck displacement,
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and the benefits of using Model C are evident. For example, if a critical design bending

moment was set at 1.0 GNm, using the overly conservative pinned footing assumption, an

annual exceedence probability of around 410−  would be calculated. Conversely, using

Model C as a more realistic interpretation of spudcan fixity, this value is reduced to

around 610− . This could result in the difference between acceptance and non-acceptance

of the rig.



7-1

Chapter 7 - Application of Probabilistic Models in the

Response Analysis of Jack-Ups

7.1 Introduction

In chapter 6 the probabilistic response of jack-up units was introduced through the random

nature of wave loading. The rest of the model was deterministic; i.e. its material properties,

geometric properties and its actions were uniquely specified. It is known, however, that

there are parameters within the models presented that are not unique, but have a range of

possibilities. For example, if the mass of the deck could be measured it would vary in

value. Furthermore, if experimental testing of the structural, wave loading and foundation

models of JAKUP could be performed, they too would give a variable response, even for

the same input conditions. Therefore, by using a probabilistic formulation of one or more of

the material properties, geometric dimensions or even the action of the structure, the

likelihood that the jack-up behaves in a certain way can be more “realistically” evaluated.

This probabilistic approach is an extension of any deterministic analysis, but with a number

of previously deterministic quantities randomly interpreted with specified distributions.

Within this chapter, probabilistic methods are used to develop understanding of the

response behaviour of jack-ups. Variables which influence the dynamic response are

addressed and probabilistic distributions attributed to them. These are known as random

variables. A sensitivity study is described of the important random variables involved in the

evaluation of extreme dynamic response of an example jack-up, using JAKUP and the

Model C foundation model. Within this study, not only has the significance of parameters

within an elasto-plastic foundation model been evaluated, but their relative importance

compared with other random variables commonly used in reliability analyses has also been

calculated.
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7.2 Literature Review

7.2.1 General Reliability Theory

Probabilistic response of jack-up units is most commonly encountered during reliability

evaluations. In structural reliability theory, the failure probability of one component is

defined as

[ ] xdXfXGPP
XG Xf ∫ ≤

=≤=
0)(

)(0)( (7.1)

where G X( )  is the failure function ( G X( ) ≤ 0 is a failure state and G X( ) > 0 a safe state)

and X is a set of k random basic variables, i.e. [ ] [ ]kXXXX ,,, 21 K=  (further details of

random variables used in jack-up analyses can be found in section 7.5). )(Xf X is the multi-

variant density function of X. For a component reliability analysis, failure criteria are

usually set on the limiting factors of strength or behaviour of the jack-up and are of the form:

SRXG −=)( (7.2)

where R is the component’s resistance (or upper limit of strength/behaviour) and S its

serviceability (or calculated response distribution from load effects). This failure region is

shown in Fig 7.1 in a diagrammatic comparison of a deterministic and a probabilistic

analysis.

Confidence in this probabilistic approach depends on the following factors:

• The ability to evaluate the integral in Eqn 7.1 accurately. Techniques to achieve this are

described in section 7.2.2.

• The accuracy of the failure function. In any reliability analysis, the results can only be

judged by the accuracy of the individual modelling components used in the analysis.
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This is especially true for highly interactive and non-linear processes, as seen in jack-

ups. With inappropriate and highly conservative assumptions, such as pinned footings,

not only are the reliability results inaccurate, but the level of uncertainty in them can be

unacceptably high. It is, therefore, important to have confidence in the failure function

derived.

• The probabilistic modelling of the uncertainty in the basic random variables. The

statistical spread assumed for random variables needs to reflect their inherent

variability, and this will be investigated for application to jack-up dynamic response in

section 7.5.

7.2.2 Reliability Calculation Techniques

One method of calculating the integral in Eqn 7.1 is by Monte Carlo simulation. For each

simulated vector of random variables X, a complete numerical experiment needs to be

performed. As the majority of structural analysis problems are complex and computationally

time-consuming, this requires a prohibitively large number of complete runs to produce a

result with statistical confidence. This is especially true for small probabilities of failure.

Alternate methods requiring less computational effort include:

• Response Surface Methods (RSM): If the computational effort is large for each

response calculation in a Monte Carlo simulation, then this calculation can be replaced

by a response surface (RS) that is of simple mathematical form and can be solved more

efficiently. Once the RS is determined it is used to predict the required response,

avoiding the former complicated numerical procedure. In this chapter response surfaces

are used to estimate jack-up horizontal deck displacements (based on results evaluated

by JAKUP); these are further described in section 7.4.

• First Order Reliability Methods (FORM): The failure function (or the RS) is

approximated by a first order function in standardised Gaussian space at the most

probable failure point. In standardised Gaussian space this is the point physically
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closest to the origin (the mean point). More details of FORM, along with a practical

example, are given in section 7.6.1.5.

• Second Order Reliability Methods (SORM): Similar to FORM except that curvature is

considered by fitting a second order function. SORM has not been used in this chapter.

• Importance Sampling in Monte Carlo Simulations: Monte Carlo techniques can be

optimised by organising the sampling procedure around the most probable failure area.

This minimises the amount of sampling required. Though not used here, examples of

importance sampling techniques in structural analysis can be found in Melchers (1989)

or Karunakaran (1993).

7.2.3 Use of Reliability Theory for the Analysis of Jack-Up Units

Difficulties arise when attempting reliability calculations of jack-up platforms, due to their

highly non-linear dynamic response. Dynamic effects change for different response

quantities and sea-states, and various approaches have been used in published studies to

account for the dynamic contribution. For example, in a comparative study of the reliability

of jack-ups and jackets designed according to design assessment procedures (SNAME

(1994) and API (1993) respectively), Morandi et al. (1997) used an additional load set to

account for dynamic effects, i.e. they used a DAF to scale the forces of one “design wave”

from a quasi-static analysis. The design wave was calculated by finding the return period Hs

required from a long-term probability distribution of Hs, and then the short-term most

probable highest wave from the Rayleigh distribution. This method is arguably

unconservative as it assumes the dynamic contribution to response is the same for all sea-

states and response characteristics. Short-term force variability is accounted for by

Morandi et al. as a basic random variable with a COV of 18% (perhaps a little low when

compared with the COVs calculated for short-term force variation in Chapter 6).
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A method which calculates DAFs for short-term sea-states and then applies each in a long-

term evaluation was outlined by Daghigh et al. (1997). Using a simplified jack-up model,

for each short-term sea-state the largest stress response was evaluated in each of the

following three analyses:

• three hours of random sea using a dynamic analysis,

• the same three hours of sea using a quasi-static analysis, and

• a short-term design wave (based on the most probable highest wave from the Rayleigh

distribution) for a quasi-static analysis.

A DAF was then calculated to scale the quasi-static design wave force to a short-term

three-hour dynamic force, through the intermediary three-hour quasi-static analysis. To

calculate short-term reliability values of a more detailed jack-up, Daghigh et al. proceeded

to use simple quasi-static design waves, but with their forces scaled by the DAFs

calculated. Long-term reliability values were calculated by ‘adding the reliabilities for

various short-term sea-states in accordance with the scatter diagram for the area of

operation’ (Daghigh et al., 1997). This method, while accounting for differences in long-

term sea-state dynamics, does not correctly account for the variation within the short-term

seas. As shown in Chapter 6, the variation of force for three-hour short-term seas is

considerable; however, the method used by Daghigh et al. results in only one value for

short-term dynamic force per sea-state.

In both Morandi et al. (1997) and Daghigh et al. (1997), extremely complex finite element

models were used but, with the simplest of foundation assumptions. In the latter the

structural model consisted of 1800 nodes, yet the foundations were assumed to be pinned. It

has been shown in this thesis that the foundation model used can affect the long-term

probability of exceedence of response by an order of magnitude; thus these reliability

results must be interpreted in light of that consideration. The study detailed by Morandi et

al. is, however, part of an ongoing investigation commissioned by the U.K. Health and
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Safety Executive, and will include Martin’s (1994) Model B elasto-plastic model for

spudcans on clay at a later stage.

Karunakaran (1993), in a study of the non-linear dynamic behaviour of jack-up units,

proposed a reliability procedure accounting for long-term response. Noting that traditional

design wave methodology in combination with dynamic amplification factors, as used, for

example, by Morandi et al. (1997), is not capable of predicting the extreme dynamic

response correctly and may even give unconservative results, Karunakaran fit three-

parameter Weibull distributions to maxima calculated for short-term sea-states. However,

he used only 10-20 samples of 45-60 minutes length in the evaluation of these distributions.

By dividing an example scatter diagram of the location into regions of similar dynamic

response and fitting short-term distributions to these blocks, Karunakaran then calculated

long-term reliability values in a consistent manner by convolution of the short-term

distributions and their long-term probabilities of occurrence (as can be determined from the

scatter diagram).

Similarly, the long-term reliability experiments in this chapter will be based upon the

combination of short-term distributions with their long-term expectance. The long-term sea-

states used for the example experiments in Chapter 6 will again be utilised.

7.3 Aims of Numerical Experiments

The aims of the numerical experiments discussed in this chapter are:

• to ascertain and incorporate probabilistic distributions for random variables which

influence the response analysis of jack-up units;

• for short-term sea-states, to fit response surfaces which adequately model an example

jack-up response (in this chapter horizontal deck displacement is investigated);
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• to evaluate the significance of each random variable to this extreme jack-up response;

• for long-term conditions, to compare the probability of exceedence estimates for deck

displacement using probabilistic random variables with the values calculated using just

their deterministic mean values (previously evaluated in Chapter 6). This comparison

will be made for NewWaves without any random background.

7.4 Use of the Response Surface Method (RSM)

As shown in Chapter 6, the calculation of jack-up response probabilities of exceedence

using Monte Carlo techniques requires a significant sample size. For numerical experiments

with probabilistic distributions of random variables, the use of one JAKUP run per

response calculation would be computationally prohibitive. Therefore, to estimate

probability of exceedence values in this chapter, JAKUP is replaced by a RS which can

predict extreme response efficiently.

To create a RS, a suitable mathematical form is chosen with a finite set of parameters to be

uniquely fixed. If there are k free parameters, for instance, then it only requires k different

experiments to fit the surface (or in this case k JAKUP runs). However, with only k

experiments no information is given about error of fit and the possible random error;

therefore, it is usual to make more than k experiments when fitting the surface. In this case,

the surface parameters are chosen by a regression method based on the minimisation of the

total misfit error.

Within this chapter the form of the response surface chosen to model extreme jack-up

response is the versatile second-order polynomial with mixed terms:
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where iX  and jX  are the ith and jth components respectively of the set of random

variables, a, bi, ci and dij the free parameters needing evaluation (a total of

( ) 2121 −++ kkk  parameters) and ε  the error of fit. The term Ŝ  represents the service

response predicted by the RS. This form was chosen for its ability to model response with

significant system curvature. Unfortunately, it carries no formal resemblance to the actual

surface resulting from the mechanical modelling of jack-ups; however, with further

developments a surface shape resembling the physical processes more closely could be

identified.

The free parameters are evaluated by systematic numerical experiments using the central

composite design method (see, for instance, Myers and Montgomery, 1995). There are three

main sets of random variables (X) used to fit the surface, as depicted in Fig. 7.2 (for the

2=k  case). They are:

• The axial points, which largely contribute to the estimation of the quadratic terms, but

not to the interaction terms. There are 2k axial points.

• The factorial points, which contribute to the estimation of linear terms, but also are the

sole contributors to evaluation of the interaction terms. The number of factorial points is

equal to 2k.

• The central runs, which contribute to the estimation of the quadratic terms and provide

an evaluation of pure error. The number of central runs is user-defined, as discussed

below.

Fig. 7.2 depicts an axial “distance”1 of 2  and gives the number of central runs as three.

These are the only components of the method that allow flexibility in the design and both are

important to the RS accuracy. The axial distance chosen is usually in the range of 1 to k
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(for a factorial distance of 1±  standard deviations from the mean), and these points define

the experimental design region (Myers and Montgomery, 1995). The latter forms an equal

distance from the centre, with the factorial points creating a “spherical” design region,

whilst the former creates a ‘cubic’ region. If one chooses an axial distance of k  and an

appropriate number of centre runs (Myers and Montgomery recommend three to five runs),

the prediction variance has the same value at any two locations that are the same distance

from the design centrea notion developed by Box and Hunter (1957) and known as

“rotatability”. Centre runs also reduce the prediction variance within the design region and

can give an estimate of pure error. However, in JAKUP, for NewWaves not constrained in

a random background, all central runs give an equivalent response. For the response

surfaces developed in this chapter the spherical design is used.

As an alternative to regression analysis, “interpolating polynomials” could be used to fit a

RS (Bucher and Bourgund, 1990). Once a first attempt at evaluating an equivalent RS has

been performed, a design point (defined as the point on the failure surface closest to the

mean of the normalised set of basic variables) can be established. This point represents the

set of basic variables most likely to breach the ‘failure’ criteria. As the response surface’s

accuracy might be questionable (the design point could be a distance from the central point

where the surface was fit), further iteration is used to refine the response surface around this

area of ‘most probable failure’. This technique is powerful when evaluating one failure

point rather than a region of values (where re-runs of the iterations for every new failure

point would be required). Interpolating polynomials were used by Morandi et al. (1997) in

a reliability investigation of jack-ups; however, they will not be used here.

                                                                                                                                                  
1 All distances quoted here are in standardised Gaussian space and, therefore, need to be multiplied by σ ,
the standard deviation of the random variable. In this case all variables are assumed to be normally
distributed.
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7.5 Choice of Random Variables and their “Predicted” Variability

To quantify uncertainty in the modelling of jack-ups it is necessary to define a set of basic

variables which govern the dynamic response of the structure. The term basic is used to

emphasise that these quantities represent the most fundamental variables in the analysis

calculation. This process of defining values for all input variables is also performed in a

deterministic calculation with single values attributed. In a probabilistic approach,

however, the uncertainty in the basic variables is specified.

There are distinctive types of uncertainty in the basic random variables to be considered.

These include:

• Physical uncertainty: due to inherent variability of the properties in nature. Loads,

material properties and dimensions are all examples of basic variables which, if

measured, would exhibit physical fluctuation which could be described in terms of a

probabilistic distribution or stochastic process.

• Statistical uncertainty: as the physical variability can only be quantified from example

data, which is often of small sample size, uncertainty arises due to the inferences drawn

from these limited observations.

Besides the randomness and uncertainty associated with the input variables, uncertainty

exists in the mechanical model set up to formulate the response. This modelling uncertainty

includes not only uncertainty of model components, but also the response of the complete

model.

7.5.1 Random Variables Influencing the Dynamic Response of Jack-Ups

Before a set of basic random variables was chosen to represent the loading and physical

uncertainties in JAKUP, an investigation of random variables used in the literature was

undertaken. The aim was to determine which variables might be important in the response

analysis of jack-ups. Table 7.1 outlines the results and gives some indication of possible
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distributions, mean values and CoVs. For clarity the basic random variables have been

divided into four categories: environmental loading, geometric/structural, foundation and

modelling.

Environmental Loading: Many studies formulate this variation in loading as a variation in

the applied load calculated with deterministic values, as opposed to uncertainty in the

individual components of the Morison equation; see, for instance, Morandi et al. (1997) and

Lacasse and Nadim (1994). However, as one of the aims of these experiments is to compare

the components of the models that are used in JAKUP, and not just to reach a probability of

failure answer for one particular case, the most basic components were used.

In experiments, despite the attempt to maintain constant conditions, such as steady flow,

viscosity, temperature, roughness and geometry, the measured values of the Morison drag

and inertia coefficients exhibit considerable scatter (see, for example, Kim and Hibbard,

1975). With even greater complexities in the conditions for offshore jack-ups, such as

interaction of members, marine growth and unsteady flow, any scaled experimental values

would be invalid when applied to a real jack-up. There is therefore considerable

uncertainty in the application of dC  and mC  arising from a large number of effects that are

not fully understood (Thoft-Christensen and Baker, 1982). This uncertainty is reflected in

values previously used in the literature, with CoVs of 20-25%; the drag coefficient is

usually considered to have a larger variation than the inertia coefficient. Distributions used

to describe the effect of marine growth on jack-ups have also been listed in Table 7.1. This

uncertainty could also be included as a component of the uncertainty within the Morison

coefficients.

Wind and current are other variables influencing the force on a jack-up. In reliability

studies, wind can be described either in terms of wind velocity (Thoft-Christensen and
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Baker, 1982) or as a wind force (Morandi et al., 1997). As the wind loading in Chapter 6

was described as a force, the latter approach will be used here.

Geometric/Structural: Important variables found in the literature for the response of jack-

ups are the mass of the deck and the structural damping ratio. Deck mass influences the

dynamic response and geometric non-linearities, as well as the pre-load applied to the

foundations. As Model C is very dependent on the pre-load level (as it determines the

initial yield size), in the numerical experiments described later in this chapter these two

effects have been separated into two variables: deck mass and pre-loading factor.

Foundation: Due to limited data (in terms of both quantity and quality) there is a large

measure of subjective judgement when determining geotechnical uncertainty (Gilbert and

Tang, 1995). In the literature surveyed, jack-up analyses (and reliability studies) generally

contain complex structural or wave models, whilst using simplistic assumptions for the

foundations. When probabilistic methods for geotechnical models have been used, it has

often been as an overall uncertainty on the deterministic model’s results (see for example

Nadim and Lacasse (1992)). There are, however, a number of studies which used

probabilistic distributions for the stiffness of the linear spring representation of spudcans,

with variations shown in Table 7.1.

Modelling: Some typical examples of the types of statistical variations which are placed on

jack-up models in reliability studies are shown in Table 7.1. Modelling uncertainty is

incorporated by introducing variability (and often bias) to represent the ratio between the

“actual” and predicted model response. Use of modelling uncertainty is discussed further in

section 7.5.2.
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7.5.2 Distributions of Random Variables used in Numerical Experiments

Based on the experience of previous studies (Table 7.1) and knowledge gained from the

results of Chapter 5 and 6, eleven basic random variables have been chosen for an initial

numerical experiment using JAKUP. Table 7.2 outlines these variables, their distribution

type (formulations can be found in Appendix A), mean values and CoVs. There are three

types of basic random variables used: environmental loading (current windCCu md ,,),( ),

structural modelling (structural damping, mass of hull) and Model C ( pfNmg δγ −,,, 0 ,

pre-load). All of these variables have been used previously, except the last two Model C

parameters, with further explanation given here.

The basic variable pf δ−  is a combination of the parameters f  (the initial plastic stiffness

factor) and pδ  (the dimensionless plastic penetration at peak), both of which affect the

hardening law of Eqn 3.10. The initial stiffness is proportional to f  (Eqn 4.2), and pδ

affects the location of the peak in plastic vertical displacement (Eqn 4.3). If f  is reduced,

to keep the peak at the same vertical load, pδ  must increase in proportion; therefore, the

product of f  and pδ  must remain constant. The basic variable pf δ−  represents the f

value used, with pδ  calculated as
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The hardening law’s shape is changed by the range of pf δ−  values, but with the peak of

the vertical load remaining at the same level, as depicted in Fig. 7.3. The pre-load factor

determines the amount of vertical pre-load applied to the foundations before operation (or

numerically, before any wave loading is applied). The vertical pre-load per footing is
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determined by the multiplication of this factor and the weight of the hull distributed to each

leg.

Modelling uncertainty has been included as variation in the model’s components (for

instance, the variables g, 0m  and pf δ−  in the Model C category) rather than uncertainty in

the model itself. The idea of incorporating an uncertainty or bias to the calculated response

due to a whole model, for example, Model C, is extremely difficult to quantify and reduces

any attempt to reflect the physical processes occurring. Uncertainty in the fit of the RS has

not been included as it is expected to be minimal (tests of this are described in section

7.6.1.3)

The statistical distributions ascribed to the Model C parameters should be considered as

best judgements for an example numerical experiment, not as definitive results. Part of the

motivation for these probabilistic numerical experiments is the identification of Model C

parameters that are significant for jack-up response. It is hoped that a judgement on

parameters needing more careful consideration in further research (to determine more

representative distributions) and ones which can be thought of as deterministic (as they do

not notably affect the response) will be resolved.

7.6 Short-Term Analysis (100-year return period)

7.6.1 NewWave with Most Probable Highest Amplitude (i.e. αα  = 0.93Hs)

To test the application of a second-order polynomial as a RS for the random variable

distributions outlined in Table 7.2, the 1 in 100 year sea-state of Chapter 6 is used with a

NewWave amplitude held constant at its most probable highest wave elevation. There are

two definitions of most probable highest elevation that could be used: the modal and the

mean. Both will be investigated for the 100-year sea-state, starting with the modal.
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For a narrow-banded sea, where the number of waves is crestN , the modal extreme

amplitude ( .modα ) can be evaluated as

( )
η

α 0.mod ln2 mNcrest= (7.5)

where 
η0m  is the zeroth spectral moment (the area under the wave spectrum).2 For a

narrow-banded spectrum this can be estimated as

2

0 01.4 

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= sHm

η
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Therefore, for three-hours of the example 100-year sea-state (characterised by 12=sH m,

805.10=zT m and with 1000=crestN ), using Eqns 7.5 and 7.6, 16.11.mod =α m. This was

the NewWave amplitude used in the first numerical experiment. The composite design

method described in section 7.4, with 2071 different sets of random input variables, was

used to fit the polynomial. The largest deck displacement was extracted from the

displacement time series for each JAKUP run, and by minimising the error squared,

polynomial coefficients for an extreme deck displacement RS were estimated. Their values

are shown in Table 7.3.

7.6.1.1 Calculating Probability of Exceedence Results from a Monte Carlo Simulation

of the RS

Using the distributions in Table 7.2, a random set of basic variables (X) can be selected and

the corresponding deck displacement calculated from the extreme deck displacement RS. By

                                                
2 η has been placed as a subscript on the zeroth spectral moment of the wave spectrum in this chapter to
distinguish it from the dimension of the Model C yield surface in the moment direction ( 0m ).
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repeating this process an extreme response distribution for deck displacement can be

formulated, as shown in Fig. 7.4 for a NewWave amplitude of 11.16m in the 100-year sea-

state. The number of random variable sets sampled for Fig. 7.4 was 10 000. The 50%

exceedence value was evaluated as 0.369 m and the mean as 0.387 m. As expected, the

50% exceedence value approximates the deck displacement of 0.363 m calculated by

JAKUP when all random variables equal their mean value.

7.6.1.2 The Mean Most Probable Highest Amplitude

For the same sea-state, another RS was evaluated for the mean highest amplitude in a three-

hour sea-state. The NewWave was again held constant, with the same procedure used to

approximate the RS and extreme response statistics. Barltrop and Adams (1991) estimate

the mean extreme wave amplitude ( meanα ) for sea-states with over 100 crests as

η
α 0)ln(2

5772.0)ln(2 m
N

N
crest

crestmean 









+= . (7.7)

Fig. 7.5 compares the extreme response distributions of deck displacement for the modal

highest wave with the mean highest wave. In the latter the NewWave amplitude was

calculated from Eqn 7.7 as 11.60 m. A CoV of 30.32% for the mean distribution is similar

to the modal value of 29.16%. The difference in deck displacements between the mean and

modal distributions is greater in the middle region of the cumulative distribution than at both

the high and low extremes. This indicates that the NewWave amplitude (and the additional

force created) is not as important as the other basic random variables at these extremes.

7.6.1.3 How Precise is the Response Surface Fit?

To investigate the fit of the RS (for .modα ), retrospective simulations of sets of random

variables were performed using JAKUP. The sets of basic variables were recorded from
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the Monte Carlo calculation performed in section 7.6.1.1 and can be divided into two

categories:

1. The first 1000 sets of random variables evaluated irrespective of the displacement

calculated by the RS.

2. Three groups of 200 sets each, where the deck displacement calculated by the RS was

between 0.2 m < deckδ  ≤ 0.4 m, 0.4 m < deckδ  ≤ 0.6 m and 0.6 m < deckδ .

This division was made so that the general random accuracy as well as the accuracy within

bands of response could be gauged. Fig. 7.6 shows the deck displacements calculated by

JAKUP against the predicted response of the RS for the first 1000 random variable sets. By

inspection, the response surface seems to be accurately predicting the JAKUP evaluated

displacements, with no bias evident. Fig. 7.7 has been divided into the response sections

being retrospectively simulated; again the RS surface is indicating a good fit. For both large

and small displacements, the RS is not as accurate as it is around the mean response level;

this is expected as accuracy of the RS decreases as the set of basic variables move away

from the initial central run (in this case 363.0=deckδ m).

A quantitative measure of relative error (
.relε ) has been evaluated as

%100.
ˆ

.
deck

deckdeck
rel δ

δδ
ε

−
= (7.8)

where deckδ̂  and deckδ  are the deck displacements evaluated by the RS and JAKUP

respectively. As shown in Figs 7.6 and 7.7, the relative error for the first 1000 runs was

2.08%, and for the three sets of 200: 2.47%, 1.04% and 2.15%. The relative error

calculations confirm the observation that there is more accurate RS prediction surrounding

the mean value.
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7.6.1.4 Sensitivities of the Basic Random Variables

The relative importance of the random variable iX  can be calculated as 
iXfP µ∂∂

(Karunakaran, 1993). Within a Monte Carlo calculation this sensitivity measure denoted

iX
Sµ  can be evaluated as

( ) ( )

ii

i

iX
XX

XfXXf

d
PdP

S
µµ

µµµ
µ

−+
= (7.9)

where 
iXdµ  is a small change in the mean value of the random variable Xi. In this thesis this

small change was assumed as a 1% increase (or decrease, depending on which change

enlarged the response).

Table 7.4 outlines the sensitivity values calculated at three response levels ( deckδ = 0.3, 0.5

and 0.7 m) for the RS evaluated. The random variables have also been ranked in Table 7.4

according to their 
iX

Sµ  value. The drag coefficient ( dC ) can be interpreted as the most

influential random variable at all levels of response, with current, hull mass, and the Model

C parameters 0m  and the pre-load factor all consistently showing high sensitivity values.

The two Model C variables change in rank at different response levels, and this warrants

further explanation.

At 3.0=deckδ m, a low displacement for this NewWave amplitude (as indicated by the high

exceedence fP  value), the pre-load factor is ranked higher than 0m  (third versus fifth

respectively). As the response level becomes larger, the pre-load factor falls in the rankings

(at 7.0=deckδ m it is ranked 5-7); however, 0m  becomes more important, moving up the

rankings to be nearly as sensitive as dC  at the 7.0=deckδ m level. This shows the influence

of plasticity in the calculation of deck displacement. As the pre-load factor determines the
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initial yield surface size according to the Model C formulation, it directly influences

whether a load combination produces plastic conditions at the footing, and thus the extreme

response. In contrast to this, although 0m  does influence the yield surface shape (it

determines the peak size on the RM 2  axis), it is not as influential in determining whether

plasticity occurs. If the load combination does not reach (and expand) the initial Model C

yield surface, the value of 0m  is insignificant. These factors are reflected in the rankings at

3.0=deckδ m. The opposite is true for the 7.0=deckδ m level, as a calculation including a

plastic component is expected and the influence of 0m  on the surface shape is more

important than whether the surface is reached.

7.6.1.5 Calculations Using First Order Reliability Methods (FORM)

As a practical method of evaluating probabilities of failure, FORM is widely used in

offshore structural applications (see, for example, Baker and Ramachandran (1981), Nadim

and Lacasse (1992) and Morandi et al. (1997)). Its main advantage is the simplification of

computationally difficult analyses. Using the second-order RS outlined, Monte Carlo

simulation is computationally efficient for large samples. Therefore, FORM is not

specifically required in this chapter, but it will be outlined here and used to evaluate fP

and sensitivity values as a comparative method.

The RS of Eqn 7.3 can be mapped into standardised Gaussian space (of k dimensions) by

replacing all uncorrelated normally distributed basic random variables Xi with their

standardised value Zi, where:

i

i

X

Xi
i

X
Z

σ

µ−
= . (7.10)
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An important characteristic of the z-coordinate system is rotational symmetry with respect

to the standard deviations. Therefore, the point on the RS with the highest probability of

occurrence is the point on the surface closest to the origin (the origin represents the mean set

( Xµ ) in a normalised set of basic variables). This point is called the design point and is

shown in Fig. 7.8. Another term commonly used is the reliability index β, which Hasofer

and Lind (1974) defined as the distance between the origin and the design point in

standardised Gaussian space:











= ∑

=

k

i
iZ

1

2minβ . (7.11)

As shown in Fig. 7.8, the original RS is replaced in a FORM calculation by a first-order

surface of the same gradient as the RS at the design point. The probability of failure can

therefore be estimated as

)( β−Φ=fP (7.12)

where Φ  is the standard normal distribution function (see appendix A). In most

circumstances this alternative estimate could be seen as a conservative estimate of fP .

Iterative solution techniques for finding the reliability index and the design point were used

on the RS of section 7.6.1.1 for the failure condition of deck displacements exceeding

5.0 m, i.e. 5.0ˆ >= SS m. Details of these techniques will not be given here but can be

found in Thoft-Christensen and Baker (1982). The log-normal distributions of g  and γN

were incorporated by finding equivalent normal distributions at the design point, as is

recommended in Thoft-Christensen and Baker (1982). In finding the design point the unit

vector α  was defined as the direction of the design point from the origin. As shown in Fig.

7.8, the vector from the origin to the design point is therefore
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βα=OA (7.13)

where O represents the origin and A the design point. The individual components of α

allow for a sensitivity measure of the basic random variables. Firstly, 2
iα  is the fraction of

the variance of the safety margin that originates from Xi. Another measure used is the

omission sensitivity factor ( iζ ), which expresses the relative error in the geometric

reliability index (β ) if an input variable was replaced by a fixed value (Ditlevsen and

Madsen, 1996). For the calculation here, iζ  can be interpreted as the percentage change in

the reliability index when variable i is replaced by its mean value and is evaluated as

21

1

i

i
α

ζ
−

= . (7.14)

Table 7.5 shows the results calculated for the RS of section 7.6.1.1 using FORM. The

reliability index was evaluated as 03.1=β , giving an estimated Pf  of 0.1515; as could be

expected, this value is larger than the value of 0.1479 estimated for the 10 000 samples

using Monte Carlo simulation. Furthermore, the sensitivities to individual random variables

have similar ranking to those given in Table 7.4. The drag coefficient is again dominating

the response, with its proportion of 2
iα  at 0.67. Moreover, if it was replaced by just its

mean value, the reliability index would change by a very significant 74.71%.

7.6.1.6 Using Only 7 Basic Random Variables – Repeat Calculation

As some of the random variables originally chosen were not significantly influencing the

extreme deck displacementas indicated by low 
iX

Sµ  values the number of random

variables was reduced from eleven to seven in order to abridge the computational effort for

the rest of the numerical experiments. Naturally the most influential were left in the

experiments and they are described in Table 7.6. Following the same procedure as in
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sections 7.6.1 to 7.6.1.4, a RS was estimated and a distribution of extreme deck

displacements formulated (from Monte Carlo sample sets of 10 000 random variables). Fig.

7.9 shows a comparison between the eleven- and seven- variable extreme response

distributions. As would be expected for fewer random variables, the seven-variable

distribution shows less variation than the eleven-variable distribution; however, the

difference is small enough to justify using the lower number of random variables.

7.6.2 Short-Term Sea-States with Variable Wave Amplitudes

For short-term conditions, random wave amplitudes follow the Rayleigh distribution as

employed in Chapter 6. Therefore, in this section the variation in wave amplitudes will be

considered, rather than using the most probable maximum wave amplitude.

7.6.2.1 Methodology Adopted

The method adopted to incorporate the variability of extreme wave amplitudes, as well as

the probabilistic occurrence of the random variables in the evaluation of extreme response

distributions, follows these steps:

Step 1: For the five NewWave crest elevations (described for each sea-state in Table 7.7),

a separate RS is estimated using the central composite design and regression analysis. For k

number of random variables this requires (1 + 2k + 2k) JAKUP runs per crest elevation.

Step 2: In a Monte Carlo calculation, for the same set of random variables (X) a response is

calculated for each of the five NewWave elevations and a line of best fit is evaluated for

these five responses. This allows interpolation for intermediate crests.
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Step 3: With an extreme wave elevation randomly calculated,3 one extreme response can be

estimated from the random-set best-fit polynomial of Step 2.

By repeating Step 2 and Step 3 for many sets of X, a statistical distribution of the extreme

response can be formulated. This method adds another random component to the distribution

compared with the calculations using the most probable extreme elevation in section 7.6.1,

i.e. the extreme elevation in a short-term sea-state.

7.6.2.2 Numerical Experiment for 100-Year Return Period

An example of the methodology described in section 7.6.2.1 to compile short-term extreme

response statistics for probabilistic random variables is outlined here. The 100-year sea-

state characterised by the JONSWAP spectrum with parameters Hs = 12 m and Tz = 10.805

s is used again. For each of the five NewWave crest elevations, 3.5, 7, 10, 12 and 15 m (as

utilised in Chapter 6), 143 JAKUP runs were performed (for k = 7) and the maximum deck

displacements extracted. With the five RS polynomials estimated, 10 000 sets of basic

random variables were simulated and 10 000 extreme wave amplitudes used to evaluate the

distribution of extreme deck displacements. Fig. 7.10 shows this distribution and compares

it with the distribution of extreme deck displacements calculated with variable NewWave

amplitudes, but with basic variables at their mean value (as evaluated in Chapter 6). The

additional variation caused by the uncertainty in the basic random variables is clearly

shown. Two more observations from Fig. 7.10 can be made:

• The increase in displacement caused by the basic random variables at large deck

displacements is greater than the reduction at low deck displacement levels. It is

believed this is due to the non-linear response of the basic random variables, and this is

discussed further in section 7.7.1.

                                                
3 Evaluated by Monte Carlo simulation of the number of waves in the short-term time period (Ncrest) using
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• The two curves intersect below the 50% exceedence level, at about 38.0)( ≈xQ  when

36.0≈deckδ m. Again, reasons for this are explored in section 7.7.1.

In Fig. 7.11 a comparison of the extreme deck displacement distributions for variable

NewWave amplitudes and for the mean most probable highest wave amplitude shows the

importance of varying the wave elevations. The extra variation is reflected by the CoV

increasing from 30.32% to 35.66%. The curves cross at around 5.0)( ≈xQ , the expected

mean value (the slight difference might be due to the ‘most probable’ curve being estimated

from eleven random variables as opposed to seven).

7.7 Long-Term Numerical Experiment with Probabilistic Random

Variables

7.7.1 Short-Term Results

Six short-term extreme response distributions have been evaluated based on the long-term

conditions used in Chapter 6 and described again in Table 7.7. The experiments include

wind and current, with their mean and standard deviations also shown in Table 7.7. The

mean values are those used in Chapter 6 and the CoVs are those used in the example 1 in

100 year sea-state previously detailed in this chapter.

Fig. 7.12 shows the extreme deck displacement distributions evaluated with statistical

variation in the basic random variables (or ‘random-variable’ distributions) and compares

them with the short-term distributions calculated for the mean values of the basic variables

(or ‘mean-variable’ distributions). Table 7.8 outlines all of the extreme response

distributions’ statistical properties (mean values and CoVs).  A considerable increase in

                                                                                                                                                  
the Rayleigh distribution of wave elevations (see Eqn 6.10).
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CoVs for the random-variable distributions is observed for all sea-states. Although for a

return period of 1-year the mean deck displacement is the same (for the random-variable

and mean-variable curves), there is a steady increase in the mean response for the random-

variable extreme deck displacement distributions for longer return periods, as is shown by

the percentage increases in Table 7.8.

For the 1-year return period, the intersection of the mean-variable and the random-variable

distributions on the cumulative distribution plot of Fig. 7.12 is at approximately 5.0)( ≈xQ .

For the other short-term distributions, however, as the sea-states become less probable the

intersection is at progressively lower )(xQ  values, crossing at around 26.0)( ≈xQ  for the

510  year sea-state. An explanation considering the linearity of the response to each of the

random variables is explored further here.

Firstly, assume the change in response to all of the random variables is linear, i.e. for the

same probability of occurrence of the random variable’s value at a “distance” from its

mean, either lower or higher, the reduction in response is the same as the increase. This is

shown in Fig. 7.13(a). For this case, the mean-variable and the random-variable extreme

response distributions should intersect at 5.0)( =xQ . Furthermore, as shown in Fig.

7.13(b), the variation of the random-variable curve away from the mean-variable extreme

response distribution should be of the same magnitude for both 5.0)( <xQ  and 5.0)( >xQ .

On the other hand, if the response to a random variable is non-linear, the random-variable

extreme response distribution becomes skewed. If, as in Fig. 7.13(c), the additional

response is relatively larger for the same probability away from the mean as it is smaller,

then the distributions should intersect at 5.0)( <xQ  (assuming more than one random

variable). Additionally, the random-variable distribution will not have the same difference

in variability, but will show a larger change in response at high )(xQ  values, as indicated
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in Fig. 7.13(d). This is a simplistic explanation and one which becomes more complex with

competing non-linearities and cross-term effects.

For the 1-year sea-state the majority of runs used to evaluate the RS were within the initial

Model C yield surface (only a few of the runs for the highest NewWave elevation of 11m

caused expansion of the yield surface). Therefore, the runs were all within the foundation’s

elastic region and the footings were acting as linear springs. In this situation, the Model C

parameters 0m  and the pre-load factor had no effect on the response. The remaining

parameters, especially dC  and wind load, have a more linear effect on the horizontal deck

displacement, and this is reflected in the extreme response distribution for the 1-year sea-

state shown in Fig. 7.12.

As the sea-states become harsher, the Model C parameters become more important and

more non-linear. For example, with all of the other variables at their mean level and only

0m  varied for the 510  sea-state and a NewWave amplitude of 19 m, the deck displacement

calculated by JAKUP is increased by 0.219m for 0m  at two standard deviations below its

mean, but only decreased by 0.122 m for 0m  at two standard deviations above its mean.

This influence would be increased when cross terms are considered, especially due to the

increase in load caused by higher dC  values. It is these non-linear effects which are thought

to create the skewed curves described by Fig. 7.12.

7.7.2 Long-Term Results

As discussed in section 6.4.3.1, the convolution of the short-term distribution with the

logarithmic distribution of sea-state occurrence gives long-term probability predictions of

response. The same method of scaling the normalised (by the 50% exceedence value) 1 in
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100 year distribution as described in section 6.4.3.1 was used to estimate values in

intermediate sea-states.

Long-term extreme exceedence probabilities have been calculated for the horizontal deck

displacement of the example jack-up for the statistical distributions of random variables

outlined in Table 7.7, and are shown in Fig. 7.14. The estimates are significantly larger than

the annual probability of exceedence values calculated in Chapter 6 for the mean

deterministic values of the basic random variables. This can be explained by the increased

variability observed in the short-term random-variable extreme response distributions. For

all sea-states (apart from the 1-year return period) the variations in the basic random

variables caused larger mean deck displacements for the short-term distributions (as

outlined in Table 7.8). This, as well as the fact that the short-term response is relatively

larger at high )(xQ , and that the curves cross at lower )(xQ  levels as the sea-state return

period increases, means that the long-term exceedence prediction is significantly increasing.

For the reasons discussed in section 7.7.1, it is believed that if a linear foundation model

was used, the difference in long-term exceedence estimates would not be as large.
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 Chapter 8 – Concluding Remarks

8.1 Introduction

This thesis is concerned with the modelling of jack-up units on sand when subjected to

random ocean waves. Analysis techniques have been developed in the three main areas

outlined in the research aims: foundation modelling, random wave loading and the

probabilistic approach to developing extreme response statistics. In this chapter the main

findings of the thesis are summarised, conclusions drawn, and some possible directions for

future work presented.

8.2 Conclusions – Main Findings

8.2.1 Foundation Modelling

Based on a series of experiments performed at the University of Oxford by Gottardi and

Houlsby (1995), an incremental work hardening plasticity model entitled Model C has been

developed to represent spudcan footings in the analysis of jack-up units on sand. The yield

surface, flow rule and hardening law of Model C are all empirically determined to fit the

experimental data. Stiffness factors derived from three-dimensional finite element analyses

performed by Bell (1991) are used to describe elastic behaviour within the yield surface.

A complete incremental numerical formulation of Model C describing the combined loading

on spudcan footings was outlined. This was implemented in the FORTRAN program OXC,

which was used to perform retrospective simulations of several footing experiments. The

capability of OXC to simulate the original test data for both load and displacement

controlled stages was demonstrated.
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Using the Method of Characteristics, a theoretical study of the vertical bearing capacity of

conical footings on sand was conducted. Lower bound solutions were evaluated for a range

of cone angles, footing roughness and the angle of friction of sand. Using the results of this

study, a method accounting for the conical shape of spudcan footings in Model C was

suggested. The hardening law relating the size of the yield surface was defined by a

combination of an empirical fit to experimental data for flat circular footings on dense sand

and a theoretical bearing capacity approach for the conical section of the footing.

Model C represents a significant advance to the response analysis of jack-up units. When

compared with techniques widely used in the jack-up industry, a significantly different

response is found, and this was shown in examples in this thesis.

8.2.2 Numerical Modelling of Random Wave Loading

The numerical formulation of Model C was implemented into the plane frame structural

analysis program JAKUP, which is suitable for the dynamic analysis of jack-up units.

NewWave, Constrained NewWave and second-order NewWave theories have all been

independently implemented into JAKUP to consider the random, spectral and non-linear

aspects of wave loading. The following conclusions can be drawn from the numerical

experiments performed:

• Due to the interpretation of spudcan fixity in Model C, a significantly different dynamic

response from the pinned footing assumption was found. Predicted response was shown

for NewWave and Constrained NewWave examples according to various footing

assumptions: pinned, linear springs (using the elastic stiffness matrix of Model C) and

Model C. For the cases shown, the pinned response was arguably over-conservative.
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• The importance of the random background for the dynamic analysis of jack-up units was

shown by comparing an example NewWave with the same NewWave constrained within

a random background.

8.2.3 Probabilistic Approach to Developing Extreme Response Statistics

The probabilistic response of jack-ups was investigated through the random nature of wave

loading. Using an example structure and central North Sea location, a series of numerical

experiments designed to evaluate short- and long-term extreme response statistics produced

the following findings:

• A method for determining short-term extreme response statistics using the Constrained

NewWave was demonstrated. The peak responses due to five Constrained NewWave

elevations (for 200 random backgrounds each) were used to evaluate numerically the

short-term extreme statistics of that sea-state using Monte Carlo methods. This was found

to be computationally efficient and the results comparable with 100 full three-hour

simulations of random seas, even with the inclusion of significant amounts of foundation

non-linearities.

• For the example jack-up, for increasing sea-state severity there was an increasing

variation in the short-term extreme horizontal deck displacements. It was suggested that

more drag-dominant loading behaviour contributed to the increasing CoVs of response.

For the Model C case, increasing levels of yielding of both the upwave and downwave

foundations was also influential.

• For long-term conditions, Model C displayed significantly different extreme response

from both the pinned and linear spring assumptions. For annual failure probability levels

of interest in the offshore industry ( 410− → 610− ), there was over an order of magnitude

difference for the equivalent pinned and Model C deck displacements. It is conceivable

that in certain situations this could be the difference between acceptance or non-



Chapter 8 – Concluding Remarks 8-4

acceptance of the rig. The benefit to the jack-up industry of the more realistic

interpretation of spudcan behaviour in Model C, combined with an efficient long-term

response evaluation method, has been displayed.

• For the three foundation models presented, Model C footings displayed higher variation

in the short-term statistics and a comparatively more non-linear long-term annual

probability of exceedence curve.

• It was found that it is possible for Model C to give larger long-term probability of

exceedence results than pinned footings. This is due to horizontal plastic displacements

being accounted for in the Model C formulation, demonstrating that the indication of

yielding is a major benefit of using a plasticity formulation for spudcan

load:displacement behaviour.

• For long-term probability of exceedence levels, the random background sea significantly

increases the extreme (deck displacement) response, confirming the need for random

time domain analysis of jack-ups.

The influence of a probabilistic analysis approach, as an extension of the deterministic

analysis, was investigated using the response surface methodology. It was found that

accounting for the uncertainty in the values of a set of basic random variables affected the

extreme response statistics. The following conclusions can be drawn:

• For one sea-state investigated (the example 100-year condition), the drag coefficient

used in the extended Morison equation was the most significant basic random variable.

Others, including current, hull mass, 0m  and the amount of pre-load, also notably

affected the extreme deck displacement results. It can therefore be concluded that for

future experimental development of plasticity models, the terms 0m  and the effect of pre-

load (i.e. the vertical loading level) should be modelled accurately.
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• For short-term statistics there was an increase in CoV values. Furthermore, for

increasing sea-state severity, the 50% exceedence response value increased in

comparison with the equivalent deterministic approach. Both of these affected long-term

estimates, giving increased annual probability of exceedence results. Accounting for the

probabilistic distributions of random variables was therefore shown to be important.

8.3 Directions for Future Work

8.3.1 Extension to Three Dimensions

In this thesis JAKUP was used for analyses of plane frames, with wave loading applied

along the axis of symmetry of the jack-up. With much of the structural and wave loading

theory available,1 an extension to a three-dimensional analysis is possible and would

represent a significant advance.

Model C was developed for behaviour constrained within a single vertical plane, i.e. a three

degree of freedom problem. For inclusion in a three-dimensional structural analysis

program, the extension of Model C to six degrees of freedom is required, with the six

loading conditions being horizontal and moment loading in two orthogonal directions,

vertical load and torque. The likely theoretical form of the yield surface for the extension of

Model B to six dimensions was detailed by Martin (1994). However, an experimental

program designed to fit this surface shape (and to develop a suitable flow rule) for the new

Model C would be challenging to perform in the laboratory.

                                                
1 For details of accounting for geometric non-linearities in space frames see Oran (1973[b]) and Chan and
Kitipornchai (1987) for example. Extension of NewWave to spread seas is possible using the theory set out
by Tromans et al. (1991).
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8.3.2 Foundation Theories for Spudcan Footings

Model C has been developed from monotonic loading tests on sand. However, for the

analysis of offshore structures, loading rates and cyclic loading are both important. The

strength of the sand foundation is related to the rate of the applied load and the degree of

drainage of developed pore pressures. Furthermore, reversal of load paths and cyclic

behaviour (as can be expected in an ocean environment) can cause reduction of the strength

in the soil. The next step in formulating a more advanced plasticity model is to account for

these effects.

8.3.3 Physical Validation of Model C

Model C has been used as a macro-model in a numerical analysis to evaluate the response of

a jack-up unit. It would therefore be desirable to substantiate this use with physical

experiments involving both the structural and foundation components. Two types of

experiments could be undertaken:

1. Through the use of a scaled model, including the physical structural components, a

comparison of Model C’s numerically predicted load:displacement path of the spudcans

in service conditions with a physical test could be achieved. Furthermore, response

levels (of lower leg-guide moment, for instance) would help verify the numerical models

used.

2. At the University of Oxford, a Structural Dynamics Laboratory has been built to test

physically a structural element when coupled in real time to a numerical model of the

surrounding structure (see Williams et al., 1997). This equipment could be used with the

overall jack-up numerically modelled in JAKUP, but with one (or both) of the

foundations replaced by a physical model of the spudcan. In the time domain, JAKUP

would calculate the displacements to be applied by the actuators to the physical test

spudcan. The reaction forces generated would then be used as input into the JAKUP
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model for the next displacement increment. Use of the control capacity in the Oxford

University Structural Dynamics Laboratory with this substructure approach offers the

following advantages:

• Not only could verification of the use of Model C for drained cases be investigated;

comparisons with realistic transient loading cases are also feasible. Use of Constrained

NewWave in conjunction with the structural and wave loading non-linearities included

in a JAKUP calculation would allow for a more realistic random load path to use in

laboratory testing of model foundations.

• Performance of various foundation types could be investigated; for instance, varying

cone angles of spudcans and the use of skirts on spudcans.

• The testing for Model C used a footing radius of 50 mm. Through use of larger size

actuators and footing radii, scale effects could also be investigated.

8.3.4 Wave Models

The Constrained NewWave technique provides a powerful tool for numerically analysing

jack-up problems. In this thesis, the effect of only one large peak was investigated as the

basis for development of extreme response statistics. However, there are conceivable

examples of problems caused by a number of large waves following each other. For

instance, if a large wave horizontally displaces the downwave spudcan, less force needs to

be applied to further displace the downwave spudcan due to ∆−P  effects. A detrimental

situation can occur with increasingly smaller waves displacing the footing. This type of

problem could be investigated by constraining a number of successive NewWaves.

Constrained NewWave has the ability to investigate different combinations of waves in a

numerically simple manner (with the inclusion of random backgrounds).
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In further investigation of higher-order NewWave theory, the wave models used to analyse

jack-ups could be refined. However, considering the level of rigour for other components of

the model, this may be overly sophisticated at this time.

8.4 Conclusion

The modelling of jack-ups is challenging due to its complexity in a number of different areas.

Only with confidence in each modelling component can one have confidence in the final

result. In this thesis, several techniques have been combined to achieve what is believed to

be a realistic modelling of a jack-up.



 Appendix A: Statistical Distributions Used

This appendix contains the statistical distributions used to represent the probabilistic
variability of the basic random variables in the numerical experiments of Chapter 7.
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This integral can not be evaluated in closed form, however, by using the substitution
σµ)( −= ts  and dsdt σ= , Eqn A-2 becomes

∫
−

∞−








−

= σ
µ

π

x s

X dsxF
2

2
1

exp
2
1)( (A-3)

The standard normal distribution function used is defined by:
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Log-Normal Distribution
If the random variable )ln( XY =  is normally distributed (and Yµ  is a real number and

0>Yσ ) then X is log-normally distributed.
probability density function:
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cumulative distribution function:
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where Φ  is the standard normal distribution of Eqn A-4.
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Table 2.1 - Level of complexity used in the analysis of jack-up units
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Grenda 86 3 3 3 3 31

Bradshaw 87 3 3 32 3 3 33

Schotman 89 3 3 3 3
Kjeøy  et al. 89 3 3 3 3 34

Brekke et al. 90 3 3 3 3
Chen et al. 90 3 3 3 3 35

Mommass &
Grundlehner

92 3 3 3 3 3 36

Karunakaran et al. 92 3 3 3 3 3
Spidsøe &

Karunakaran
93 3 3 3 3

Harland 94 37 3 3 38

Martin 94 3 3 3 3

Taylor et al. 95 37 3 3 38

Manuel & Cornell 96 3 3 3 3 3 39

Thompson 96 3 3 3 3

Hoyle & Snell (R) 97 3 310 3 311

Morandi et al. (R) 97 3 3 3 3

Daghigh et al. (R) 97 3 3 3 312 3 312

Cassidy13 99 3 3 3 3

1. investigated DAFs for different levels of
damping for 1000 waves (representing one
3hr event)

2. uncoupled springs
3. for random time domain simplified the

structure to a stick model
4. fitted extreme response of 3hr storm with 3

parameter Weibull distribution from one
40min and two 20min simulations

5. ten 2.3hr simulations
6. ten 3hr simulations
7. used single degree of freedom stick model
8. used Constrained NewWave

9. six 0.57hr simulations
10. implemented the non-linear stiffness model

recommended in the SNAME (1994)
procedures

11. used a 200-second segment of one 3hr storm
to scale and represent the extreme case

12. used dynamic analysis of a simplified stick
model to evaluate DAFs at specific Hs
values for use in a quasi static push over
analysis

13. this thesis
(R) studies on jack-up reliability



Table 2.2 - Calculation of equivalent hydrodynamic diameter (D Eh ) and area (A Eh )

s  = 5.16 m = bay height Drag Inertia
Member Number Diameter Marine growth Area Length Σ(Vol.) C d α β a.c.d. C dei C m C m. Vol/s

(m) (m)  (m2) (m) (m3) degrees degrees  (m2)
1 3 0.900 0.01 0.664 5.160 10.285 2 90 90 1 2.557 1 1.993
2 1 0.356 0.01 0.111 6.377 0.706 1 90 44.254 1 0.215 1 0.137

2 0.356 0.01 0.111 6.377 1.412 1 30 44.254 0.48257 0.208 1 0.274
3 1 0.356 0.01 0.111 6.377 0.706 1 90 44.254 1 0.215 1 0.137

2 0.356 0.01 0.111 6.377 1.412 1 30 44.254 0.48257 0.208 1 0.274
4 1 0.406 0.01 0.143 9.700 1.384 1 90 0 1 0.371 1 0.268

2 0.406 0.01 0.143 9.700 2.769 1 30 0 0.125 0.093 1 0.537
5 1 0.114 0.01 0.014 4.712 0.067 1 90 0 1 0.057 1 0.013

2 0.114 0.01 0.014 4.712 0.133 1 30 0 0.125 0.014 1 0.026
D E  = ( 4.Σ(Area.Length/(πs)) )0.5 = 2.159  Σ C de 3.937 ΣC m .Vol/s 3.658

    

note: Both C d  and C m  in this table are unit values (i.e.  to be scaled later in the Morison equation)

         The drag coefficient of the chord member has been estimated as twice that of other circular members.
         Assuming a marine growth of 10mm.
         α  is the angle of the flow direction (see inserted figure); flow is assumed to be perpendicular to the triangular face (see Fig. 2.2). 
         β  is the angle of vertical inclination of the members (90 degrees is vertical and 0 horizontal)
         a.c.d. = angular correction for drag = (sin2β  + cos2β  sin2α )1.5 ; therefore for each member C de  = (Number.C d. (a.c.d.).Vol)/(D E .s ) 

Equivalent D Eh  = (ΣC de .D E ) = 8.50 m    

Equivalent A Eh  = Σ(C me .Vol)/s  = 3.66 m2
 

flow direction

α



Table 4.1 - Parameters for Model C

Constant Dimension  Explanation Constraints Typical
value

 Notes

R L  Footing radius (various)
γ F/L3  Unit weight of soil 10kN/m3  Saturated sand
g -  Shear modulus factor 4000
1k -  Elastic stiffness factor (vertical) 2.65

2k -  Elastic stiffness factor (moment) 0.46

3k -  Elastic stiffness factor (horizontal) 2.3

4k -  Elastic stiffness factor (horizontal/moment
 coupling)

-0.14

0h -  Dimension of yield surface (horizontal) 0.116  Maximum value of 0/VH
 on 0=M

0m -  Dimension of yield surface (moment) 0.086  Maximum value of
 02/ RVM  on 0=H

a -  Eccentricity of yield surface 0.10.1 <<− a -0.2

1β -  Curvature factor for yield surface (low
 stress)

011 .≤β 0.90  121 == ββ  gives
 parabolic section

2β -  Curvature factor for yield surface (high
 stress)

012 .≤β 0.99  121 == ββ  gives
 parabolic section

3β -  Curvature factor for plastic potential (low
 stress)

013 .≤β 0.55

4β -  Curvature factor for plastic potential (high
 stress)

014 .≤β 0.65

hα -  Association factor (horizontal) 1.0-2.5  Variation according to
 Eqn 3.32 and 5.2=∞hα

mα -  Association factor (moment) 1.0-2.15  Variation according to
 Eqn 3.33 and 152.m =∞α

k′ -  Rate of change in association factors 0.125
f -  Initial plastic stiffness factor 0.144

γN -  Bearing capacity factor (peak) 150-300

pδ -  Dimensionless plastic penetration at peak 0.0316

Table 5.1 - Coefficients used in Eqns 5.13 and 5.14 (after Newman, 1990)

i ci  (for Eqn 5.13) bi   (for Eqn 5.14)
0 1.00000000 0.000000122
1 -0.33333372 0.073250017
2 -0.01109668 -0.009899981
3 0.01726435 0.002640863
4 0.01325580 -0.000829239
5 -0.00116594 -0.000176411
6 0.00829006
7 -0.01252603
8 0.00404923

Table 5.2 - NewWave amplitudes used in the sea-state characterised by Tp = 15 s

steepness [kpα] (rad2/(ms)) NewWave amplitude [α] (m)
0.1 5.60
0.2 11.19
0.3 16.79



Table 6.1 - Sea-state characteristics and NewWave elevations used in the long-term
                   numerical experiments

Return Period Hs
(m)

Tz
(s)

Tp
(s)

α1
(m)

α2
(m)

α3
(m)

α4
(m)

α5
(m)

1 8.98 9.35 12.02 2.5 4.5 6.5 8.5 11
1E1 10.60 10.16 13.06 3.0 5.5 7.5 10 14
1E2 12.00 10.81 13.90 3.5 7 10 12 15
1E3 13.25 11.36 14.61 4.0 7.5 10.5 13 17
1E4 14.40 11.84 15.22 4.5 8 11 15 18
1E5 15.46 12.27 15.78 4.75 10 13 16 19
1E6 16.45 12.66 16.27 5.0 12 15 17.5 21

Table 6.2 - Wind and current values used in the long term numerical experiments

Return Period Wind Force (MN) Current (m/s)
1 0.756 0.599

1E1 1.053 0.707
1E2 1.350 0.800
1E3 1.647 0.884
1E4 1.944 0.960
1E5 2.241 1.031
1E6 2.538 1.097

Table 6.3 - Statistical properties of the extreme force distributions

(a) no wind or current
Force on upwave legs Total force on all legs

just
NewWave

Constrained
NewWave

just
NewWave

Constrained
NewWave

probability
of

occurrence
(year)

µ (ΜΝ) CoV (%) µ (ΜΝ) CoV (%) µ (ΜΝ) CoV (%) µ (ΜΝ) CoV (%)
1 in 1E0 3.867 16.81 4.103 17.16 4.292 15.84 4.517 16.43
1 in 1E1 5.637 17.42 5.957 17.72 6.180 16.43 6.653 16.90
1 in 1E2 7.530 17.47 7.985 18.18 8.354 17.03 9.043 17.42
1 in 1E3 9.741 17.66 10.250 18.54 10.954 17.45 11.844 17.64
1 in 1E4 11.986 17.87 12.560 18.31 13.837 17.65 14.988 17.65
1 in 1E5 14.308 18.12 14.849 18.68 17.060 18.09 18.164 18.14
1 in 1E6 16.944 18.53 17.871 19.22 20.673 18.21 22.543 18.37

(b) with wind and current
Force on upwave legs Total force on all legs

just
NewWave

Constrained
NewWave

just
NewWave

Constrained
NewWave

probability
of

occurrence
(year)

µ (ΜΝ) CoV (%) µ (ΜΝ) CoV (%) µ (ΜΝ) CoV (%) µ (ΜΝ) CoV (%)
1 in 1E0 6.029 12.96 6.251 13.66 6.804 12.61 7.125 12.60
1 in 1E1 8.824 13.57 9.197 14.04 9.998 12.54 10.644 12.86
1 in 1E2 11.607 13.84 12.361 14.33 13.642 13.02 14.771 13.31
1 in 1E3 14.986 14.04 15.700 14.77 18.002 13.35 19.038 13.47
1 in 1E4 18.607 14.24 19.317 14.97 22.657 13.60 24.375 13.61
1 in 1E5 22.173 14.49 22.932 15.30 27.860 14.19 29.366 14.35
1 in 1E6 26.041 14.84 27.283 15.71 33.351 14.63 36.001 14.81



Table 6.4 - Statistical properties of the extreme deck displacement distributions for
                   just the NewWave

(a) no wind or current
linear springs Model C pinnedprobability of

occurrence
(year) µ (m) CoV (%) µ (m) CoV (%) µ (m) CoV (%)

1 in 1E0 0.104 16.97 0.104 16.92 0.472 14.91
1 in 1E1 0.159 18.41 0.161 19.29 0.638 15.72
1 in 1E2 0.225 18.54 0.233 20.99 0.823 16.32
1 in 1E3 0.290 18.73 0.326 24.54 1.019 16.97
1 in 1E4 0.356 18.93 0.427 25.64 1.249 17.25
1 in 1E5 0.431 19.03 0.560 27.70 1.478 17.76
1 in 1E6 0.509 19.13 0.703 29.05 1.751 17.91

(b) with wind and current
linear springs Model C pinnedprobability of

occurrence
(year) µ (m) CoV (%) µ (m) CoV (%) µ (m) CoV (%)

1 in 1E0 0.175 12.99 0.175 12.99 0.672 12.85
1 in 1E1 0.257 13.82 0.278 17.81 0.898 13.22
1 in 1E2 0.349 14.13 0.400 20.58 1.137 13.33
1 in 1E3 0.451 14.29 0.596 22.15 1.441 13.52
1 in 1E4 0.547 14.57 0.857 22.68 1.816 13.61
1 in 1E5 0.654 14.62 1.141 22.86 2.205 13.70
1 in 1E6 0.773 14.71 1.503 23.08 2.670 13.64

Table 6.5 - Percentage increase in expected deck displacement at three levels of
                   annual probability of exceedence due to the random background in the
                   Constrained NewWave analysis

no wind or current with wind and currentprobability
of

exceedence
linear

springs
(%)

Model C

(%)

pinned

(%)

linear
springs

(%)

Model C

(%)

pinned

(%)
1.0E-4 7.5 13.0 7.5 6.0 12.0 7.0
1.0E-5 8.0 16.0 8.0 6.5 15.0 7.5
1.0E-8 8.5 21.0 8.0 7.0 16.0 8.0



Table 7.1 – Basic random variables of interest in the probabilistic modelling of jack-up units (table continues over page)

Basic Variable Mean Value Distribution CoV (%) Reference Notes
Env. Loading Cd 0.75 normal 30 Thoft-Christensen and Baker

(1982)
used in an example calculation of a jacket structure

1.0 normal 20 Løseth and Bjerager (1989) for example deep water jacket (over 300m water depth)
1.0 log-normal 20 Løseth and Hauge (1992)1 for example jack-up calculation
1.0 normal 20 Karunakaran (1993) and

Karunakaran et al. (1994)
values used for three-legged jack-up with triangular-trussed
legs

0.75 log-normal 25 Sigurdsson et al. (1994) for example jacket located in the North Sea
0.61 24 Kim and Hibbard (1975) full scale tests on 325mm diameter smooth piles (consistent

for Hs = 0.8-3.0m)
marine growth log-normal 20 Løseth and Hauge (1992) for central North Sea jack-up in 83.7m water depth

25 – 50 mm log-normal 50 Sigurdsson et al. (1994) values are depth dependent and for a jacket platform
(indicating higher values than for a jack-up)

varies normal 10 Shetty et al. (1997) for a jacket structure in North Sea conditions
Cm 1.8 normal 15 Thoft-Christensen and Baker

(1982)
used in an example calculation of a jacket structure

2.0 normal 10 Løseth and Bjerager (1989) for example deep water jacket (over 300m water depth)
1.75 log-normal 10 Løseth and Hauge (1992) for example jack-up calculation
2.0 normal 20 Karunakaran (1993) and

Karunakaran et al. (1994)
values used for three-legged jack-up with triangular-trussed
legs

1.7 log-normal 25 Sigurdsson et al. (1994) for example jacket located in the North Sea
1.2 22 Kim and Hibbard (1975) full scale tests on 325mm diameter piles

wind 12-13 Thoft-Christensen and Baker
(1982)

CoV for annual max. mean-hourly extreme wind levels at
Lerwick (a resonable representation of the Northern North
Sea)

42.40 m/s
40.45 m/s

normal 8
(of force)

Morandi et al. (1997)2 based on 50-year return-period
based on 20-year return-period
variation is included with dead and live loads

current (u) 0.85 m/s log-normal 20.0 Karunakaran (1993) based on observed current data in a central North Sea location
(varies with Hs)

0.2, 0.4, 0.7 m/s log-normal 20.0 Karunakaran et al. (1994) uniform current with value related to increasing Hs
log-normal 15 Puskar et al. (1994) error in current values used for comparison of predicted

platform damage due to a hurricane in the Gulf of Mexico in
1992



Basic Variable Mean Value Distribution CoV (%) Reference Notes
0.86 m/s
0.42 m/s

normal 15 Morandi et al. (1997) based on 50-year return-period
based on 20-year return-period
variation included with wave loading

0.44 m/s log-normal 15 Shetty et al. (1997) based on a 50-year return current in the North Sea
Geometry /
Structural

deck mass normal 5
(10)

Løseth and Bjerager (1989) top mass
(distributed mass in legs and braces)
values are for a jacket and have been included for comparison

16.9E6 kg log-normal 10 Karunakaran (1993) for ‘MSC CJ62’ jack-up platform designed for operation in
108m water depth

normal 8
15

Morandi et al.  (1997) for application as gravity dead load
for application as inertia load set

damping ratio
(structural)

0.03 normal 33.3 Baker and Ramachandran (1981) for an example jacket structure (included for comparison)

0.025 log-normal 25.0 Karunakaran (1993) included as Rayleigh damping with hydrodynamic damping
accounted for in relative Morison equation

0.02 log-normal 25.0 Karunakaran et al. (1994) included as Rayleigh damping with hydrodynamic damping
accounted for in relative Morison equation

0.055 21.8 Weaver and Brinkman (1995) total damping estimated from acceleration record from a jack-
up in the central North Sea (depth = 75m & Hs = 11.7m)

Foundation linear spring stiffness log-normal 20 Løseth and Hauge (1992) on uncorrelated linear springs for vertical, horizontal and
rotation directions

normal 30 Karunakaran (1993) on uncorrelated linear springs (for jack-up in dense sand)
Modelling wave kinematics normal 10 Karunakaran (1993) After using Wheeler stretching on the Airy wave model, a

variation on the kinematics of 10% with a bias of 1.05 is
applied. The reason stated is the under-prediction of wave
kinematics in the crest compared to laboratory experiments.

extreme mudline forces
(global CoVs)

15-30
20-25

Lacasse and Nadim (1994) CoVs quoted for extreme mudline forces in jackets and jack-
ups respectively

pushover analysis normal 12 Morandi et al. (1997) once the failure point is found by push-over analysis, an
additional variation is applied

Notes:
1. Løseth and Hauge (1992) used normal distributions for current and wind velocities based upon Hs values. Deterministic values were used for structural damping (1%) and hull

mass.
2. In modelling forces Morandi et al. (1997) place a normal distribution with CoVs of 15% on the [wave + current] loading and 8% on the [wind + dead + live] loading. 



Table 7.2 – Set of eleven basic random variables used in short-term numerical experiments

Random
variable

number (Xi)

Basic
variable

 Category Mean value
(µX)

Distribution Standard
deviation

(σX)

CoV (%)

1 u  loading 0.8 m/s normal 0.16 20
2 Cd loading 1.1 normal 0.22 20
3 Cm  loading 2.0 normal 0.3 15
4 wind loading 1.35E6 N normal 0.135E6 N 10
5 structural.

damping
 structural 0.02 normal 0.004 20

6 mass of hull structural 16.1E6 kg normal 1.61E6 kg 10
7 g Model C 8.228 (4000) log-normal 0.363 (1500) 37.5
8 m0 Model C 0.086 normal 0.0129 15
9 Nγ Model C 5.502 (250) log-normal 0.198 (50) 20

10 f-δp Model C 0.144 normal 0.0288 20
11 pre-load

factor
Model C 1.925 normal 0.1925 10

Table 7.3 – Polynomial coefficients for a RS of deck displacements

dij   (Xj = ...)Xi a bi ci
1 2 3 4 5 6 7 8 9 10 11

1 -9.97E-3 2.72E-1 9.93E-2 - 3.76E-1 -2.28E-2 1.06E-7 -3.307 -1.12E-8 -1.32E-5 -2.844 -2.05E-4 -3.24E-1 -4.61E-2

2 1.192 1.47E-1 - - -9.08E-3 -7.04E-9 -2.997 -2.31E-8 -1.78E-5 -5.919 -1.18E-4 -4.58E-1 -1.31E-1

3 2.06E-1 -5.23E-4 - - - -1.84E-8 2.91E-1 -4.14E-9 -4.73E-6 -1.97E-1 -5.66E-5 -2.32E-1 -1.20E-3

4 2.47E-7 -1.7E-15 - - - - 2.75E-7 -8.2E-16 -7.1E-12 -1.01E-6 7.0E-11 -1.35E-7 -5.43E-8

5 -5.578 -4.680 - - - - - 5.31E-7 -1.41E-4 1.87E1 -3.28E-3 1.20E1 -5.36E-1

6 -1.48E-8 3.2E-16 - - - - - - -3.3E-13 2.71E-7 7.3E-12 -1.91E-8 3.65E-9

7 4.08E-5 4.9E-10 - - - - - - - 9.61E-5 -1.04E-8 -9.92E-6 1.16E-6

8 -1.11E1 6.40E1 - - - - - - - - 1.47E-3 5.788 1.015

9 4.17E-5 -5.00E-8 - - - - - - - - - 6.27E-4 3.69E-5

10 -2.94E-1 -1.30E-1 - - - - - - - - - - 5.65E-1

11 -2.69E-1 5.93E-2 - - - - - - - - - - -

Table 7.4 – Sensitivity values evaluated at three response levels

R = δdeck  = 0.3 m R = δdeck  = 0.5 m R = δdeck  = 0.7 mN = 10 000

iXµ∆ =  1% Pf = 0.7756 Pf = 0.1479 Pf = 0.0131

Xi Type +/- Pf( iXµ∆ )
iX

Sµ
Rank Pf( iXµ∆ )

iX
Sµ

Rank Pf( iXµ∆ )
iX

Sµ
Rank

1 u + 0.7794 0.38 2 0.1524 0.45 4 0.0134 0.03 3-4
2 Cd + 0.7886 1.3 1 0.1575 0.96 1 0.0147 0.16 1
3 Cm + 0.7759 0.03 7-8 0.1481 0.02 10 0.0131 - 8-11
4 wind + 0.7777 0.21 6 0.1494 0.15 6 0.0132 0.01 5-7
5 damping - 0.7758 0.02 9-10 0.1486 0.07 8 0.0132 0.01 5-7
6 hull mass - 0.7785 0.29 4 0.1527 0.48 3 0.0134 0.03 3-4
7 g - 0.7759 0.03 7-8 0.1487 0.08 7 0.0131 - 8-11
8 m0 - 0.7780 0.24 5 0.1549 0.70 2 0.0145 0.14 2
9 Nγ - 0.7757 0.01 11 0.1480 0.01 11 0.0131 - 8-11
10 f-δp - 0.7758 0.02 9-10 0.1485 0.06 9 0.0131 - 8-11
11 pre-load

factor
- 0.7786 0.30 3 0.1513 0.34 5 0.0132 0.01 5-7

note: +/- indicates whether the basic variable’s mean is being changed by +
iXµ∆ or -

iXµ∆



Table 7.5 – Results from FORM calculation for a response of δdeck = 0.5 m

The reliability index was evaluated as 03.1=β  giving an estimated Pf  of 0.1515.
Xi Type

iα Xdesign point 2
iα iζ (%) Rank Rank from

Monte Carlo
1 u 0.35 0.8577 0.1225 6.75 3 4
2 Cd 0.82 1.2858 0.6724 74.71 1 1
3 Cm 0.0046 2.0014 2.12E-5 0.0011 10 10
4 wind 0.066 1.3592E6 0.004356 0.22 6 6
5 damping -0.032 0.0199 0.001024 0.051 9 8
6 hull mass -0.18 15.8015E6 0.0324 1.66 4 3
7 g -0.061 3656.8 0.003721 0.19 7 7
8 m0 -0.38 0.0810 0.1444 8.11 2 2
9 Nγ -0.0004 245.16 1.6E-7 8.0E-6 11 11
10 f-δp -0.042 0.1428 0.001764 0.088 8 9
11 pre-load

factor
-0.13 1.8992 0.0169 0.86 5 5

Table 7.6 - Set of seven basic random variables used in numerical experiments

Random
variable

number (Xi)

Basic
variable

Category Mean value
(µX)

Distribution Standard
deviation

(σX)

CoV (%)

1 (1) u loading 0.8 m/s normal 0.16 20
2 (2) Cd loading 1.1 normal 0.22 20
3 (4) wind loading 1.35E6 N normal 0.135E6 N 10
4 (6) mass of hull structural 16.1E6 kg normal 1.61E6 kg 10
5 (7) g Model C 8.228 (4000) log-normal 0.363 (1500) 37.5
6 (8) m0 Model C 0.086 normal 0.0129 15
7 (11) pre-load

factor
Model C 1.925 normal 0.1925 10

( ) indicate previous random variable number for 11 random variable experiment

Table 7.7 – Sea-states and NewWave elevations used in the long-term numerical experiments

Return
period

Hs
(m)

Tz
(s)

Tp
(s)

α1
(m)

α2
(m)

α3
(m)

α4
(m)

α5
(m)

windµ
(MN)

windσ
(MN)

currentµ
(m/s)

currentσ
(m/s)

1 8.98 9.35 12.02 2.5 4.5 6.5 8.5 11 0.756 0.0756 0.599 0.1198
1E1 10.60 10.16 13.06 3.0 5.5 7.5 10 14 1.053 0.1053 0.707 0.1414
1E2 12.00 10.81 13.90 3.5 7.0 10 12 15 1.350 0.1350 0.800 0.16
1E3 13.25 11.36 14.61 4.0 7.5 10.5 13 17 1.647 0.1647 0.884 0.1768
1E4 14.40 11.84 15.22 4.5 8.0 11 15 18 1.944 0.1944 0.960 0.1920
1E5 15.46 12.27 15.78 4.75 10 13 16 19 2.241 0.2241 1.031 0.2062

Table 7.8 – Statistical properties of the short-term extreme deck displacement distributions

All Xi with mean values (Ch. 6) All Xi include statistical variabilityReturn
period ( )deckδµ  (m) CoV (%) ( )deckδµ  (m) CoV (%)

Percentage increase
in ( )deckδµ

1 0.175 12.99 0.176 22.38 0.5
1E1 0.278 17.81 0.291 31.59 4.7
1E2 0.400 20.58 0.433 35.66 8.3
1E3 0.596 22.15 0.660 36.67 10.7
1E4 0.857 22.68 0.952 36.82 11.1
1E5 1.141 22.86 1.294 38.72 13.4



Figure 1.1 - Typical three legged jack-up unit (after Reardon, 1986)

Figure 1.2 - Examples of jack-up spudcan footings (after Young et al., 1984)

Figure 1.3 - Loads and displacements defined in a three-dimensional foundation model
                     (after Butterfield et al., 1997)
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Figure 2.1 - General schematic of the idealised jack-up unit used in the analyses

Figure 2.2 - Detailed leg section used in the idealised jack-up unit (after Nielsen et al., 1994)
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Figure 3.4 - Bearing capacity interaction surfaces derived from Meyerhof (1953) and Brinch
                    Hansen (1970)
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Figure 3.21 - Force ratio tan-1(dQ/dV ) vs displacement ratio tan-1(dq p /dw p ) for all constant V 
                      and radial displacement tests
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Figure 4.1 - Retrospective simulation of vertical penetration test
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Figure 4.5 - Retrospective simulation of constant V  test
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Figure 4.10 - Example general shear failure mechanism generated by program FIELDS
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Figure 4.11 - Bearing capacity factors (N γ )
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Figure 5.2 - NewWave surface elevations evaluated by JAKUP
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Figure 5.9 - Horizontal deck displacements due to the NewWave loading

Figure 5.8 - Horizontal force on the jack-up's legs due to the NewWave loading

Figure 5.7 - NewWave surface elevation at the upwave and downwave legs
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Figure 5.11 - Force on the upwave leg for different stretching/extrapolation assumptions
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Figure 5.10 - Horizontal deck displacements due to increasing amplitude NewWaves
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Figure 5.12 - Deck displacements calculated in JAKUP for different stretching/extrapolation 
                      assumptions

(a) k p α  = 0.1

(b) k p α  = 0.2

(c) k p α  = 0.3
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Figure 5.13 - Surface elevations calculated in JAKUP for second-order formulations
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Figure 5.14 - Wave kinematics under the crest calculated in JAKUP for second-order formulations

-0.5

0

0.5

1

1.5

-60 -40 -20 0 20 40 60

time  (s)

ho
riz

on
ta

l d
ec

k 
di

sp
la

ce
m

en
t

(m
) Wheeler stretching

delta stretching
Taylor's (1992) formulation
Jensen's (1996) formulation

Figure 5.15 - Deck displacements calculated in JAKUP for second-order formulations
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Figure 6.5 - Surface elevation at the upwave and downwave legs 
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Figure 6.11 - Repetition of the calculation of extreme response statistics

µ (δ hull ) CoV µ (δ hull ) CoV

(m) (%) (m) (%)
first analysis 0.251 22.26 0.805 29.82

200 0.255 22.47 0.801 29.53
200 0.251 22.56 0.798 29.86
200 0.251 22.33 0.809 30.09
200 0.253 21.94 0.812 29.79
1000 0.254 22.36 0.821 29.60
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Figure 6.12 - Comparison of extreme response statistics evaluated using the Constrained 
                       NewWave method with 100 three-hour random simulations
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Figure 6.13 - Repetition of the calculation of force on the legs of the jack-up 
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µ (force) CoV µ (force) CoV
 (ΜΝ)  (%) (ΜΝ)  (%)

first analysis 7.967 18.35 17.848 19.09
200 7.982 18.39 17.783 19.26
200 7.998 18.33 17.739 19.35
200 7.963 18.08 17.817 19.55
200 7.959 18.25 17.878 19.32

1000 7.994 18.29 17.915 19.33

1 in 1E2 year 1 in 1E6 year 

µ (force) CoV µ (force) CoV
 (ΜΝ)  (%) (ΜΝ)  (%)

first analysis 9.077 17.57 22.466 18.24
200 9.078 17.58 22.048 18.20
200 9.038 17.65 22.190 18.51
200 9.008 17.46 22.470 18.82
200 9.055 17.28 22.561 18.52

1000 9.020 17.52 22.777 18.51
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Figure 6.14 - Normalised load versus return period for different areas (after Tromans and
                       Vanderschuren, 1995)
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Figure 6.15 - Seven short-term extreme deck displacement response distributions for Model C footings 

Figure 6.16 - Extreme force distributions (legend as in Fig. 6.15)

(a) force on upwave legs (b) total force on all legs
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Figure 6.17 - Distribution of  the level of plasticity in the Model C short-term calculations
                       (legend as in Fig. 6.15)

(a) upwave footing (b) downwave footing

µ (δ hull ) (m) CoV (%)
1 in 1E0 year 0.118 17.41
1 in 1E1 year 0.180 20.39
1 in 1E2 year 0.251 22.26
1 in 1E3 year 0.352 26.11
1 in 1E4 year 0.477 27.20
1 in 1E5 year 0.644 27.61
1 in 1E6 year 0.805 29.82

µ (force) (MN) CoV (%)
1 in 1E0 year 4.103 17.16
1 in 1E1 year 5.957 17.72
1 in 1E2 year 7.785 18.18
1 in 1E3 year 10.250 18.54
1 in 1E4 year 12.560 18.31
1 in 1E5 year 14.850 18.68
1 in 1E6 year 17.871 19.22

µ (force) (MN) CoV (%)
1 in 1E0 year 4.517 16.43
1 in 1E1 year 6.653 16.90
1 in 1E2 year 9.043 17.42
1 in 1E3 year 11.844 17.64
1 in 1E4 year 14.988 17.65
1 in 1E5 year 18.164 18.13
1 in 1E6 year 22.543 18.37

µ (V0/V0pre-load) CoV (%)
1 in 1E0 year 1.000 0.00
1 in 1E1 year 1.009 1.44
1 in 1E2 year 1.018 3.43
1 in 1E3 year 1.092 8.09
1 in 1E4 year 1.243 9.74
1 in 1E5 year 1.420 11.73
1 in 1E6 year 1.597 12.40

µ (V0/V0pre-load) CoV (%)
1 in 1E0 year 1.000 0.00
1 in 1E1 year 1.010 1.70
1 in 1E2 year 1.022 4.03
1 in 1E3 year 1.112 9.93
1 in 1E4 year 1.294 11.82
1 in 1E5 year 1.535 14.07
1 in 1E6 year 1.781 16.31
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Figure 6.18 - Normalised extreme response distributions

µ (δ hull ) (m) CoV (%)
1 in 1E0 year 0.117 17.64
1 in 1E1 year 0.177 18.34
1 in 1E2 year 0.241 18.74
1 in 1E3 year 0.313 18.89
1 in 1E4 year 0.385 19.19
1 in 1E5 year 0.455 19.18
1 in 1E6 year 0.539 19.24

µ (δ hull ) (m) CoV (%)
1 in 1E0 year 0.118 17.41
1 in 1E1 year 0.180 20.39
1 in 1E2 year 0.251 22.26
1 in 1E3 year 0.352 26.11
1 in 1E4 year 0.477 27.20
1 in 1E5 year 0.644 27.61
1 in 1E6 year 0.805 29.82

µ (δ hull ) (m) CoV (%)
1 in 1E0 year 0.545 14.98
1 in 1E1 year 0.713 15.85
1 in 1E2 year 0.896 16.60
1 in 1E3 year 1.094 17.16
1 in 1E4 year 1.302 17.35
1 in 1E5 year 1.554 17.89
1 in 1E6 year 1.853 17.74
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Figure 6.20 - 50% exceedence values used to nomalise the extreme deck displacement response
                      distributions
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Figure 6.21 - Comparisons of the scaled and original extreme deck displacement distributions for
                      Model C with no wind or current

0.4

0.5

0.6

0.7

0.8

0.9

1

0.9 1 1.1 1.2 1.3 1.4
x = normalised response (R/R 50% )

Q
(x

) =
 P

(R
/R

50
%

<
 x

)
normalised 1 in 100 year case
other return periods

return period = 10j      j  = 0           j  = 1        j  = 2         j  = 3       j  = 4

all curves 
normalised by 
their R 50% value

 (1)        (2)

 (3)  
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Figure 6.22 - Annual probabilities of exceedence of deck displacements under various foundation
                       assumptions
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Figure 6.23 - Annual probabilities of exceedence of force on the jack-up legs 
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Figure 6.24 - Normalised extreme response distributions (including wind and current in the analysis)

µ (δ hull ) (m) CoV (%)
1 in 1E0 year 0.186 12.95
1 in 1E1 year 0.276 13.88
1 in 1E2 year 0.371 14.34
1 in 1E3 year 0.473 14.63
1 in 1E4 year 0.575 14.69
1 in 1E5 year 0.686 14.72
1 in 1E6 year 0.811 14.82

µ (δ hull ) (m) CoV (%)
1 in 1E0 year 0.185 12.70
1 in 1E1 year 0.295 17.92
1 in 1E2 year 0.447 21.56
1 in 1E3 year 0.650 22.45
1 in 1E4 year 0.957 22.86
1 in 1E5 year 1.292 23.12
1 in 1E6 year 1.657 23.50

µ (δ hull ) (m) CoV (%)
1 in 1E0 year 0.737 13.12
1 in 1E1 year 0.980 13.15
1 in 1E2 year 1.230 13.41
1 in 1E3 year 1.527 13.63
1 in 1E4 year 1.900 13.77
1 in 1E5 year 2.341 13.84
1 in 1E6 year 2.844 13.76
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Figure 6.25 - Annual probabilities of exceedence of deck displacements under various foundation
                      assumptions including wind and current

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.0 5.0 10.0 15.0 20.0
NewWave crest elevation  [α ] (m)

ho
ri

zo
nt

al
 d

ec
k 

di
sp

la
ce

m
en

t 
(m

)

1 in 1E0 year
1 in 1E1 year
1 in 1E2 year
1 in 1E3 year
1 in 1E4 year
1 in 1E5 year
1 in 1E6 year

Figure 6.26 - Horizontal deck displacements for all NewWave elevations 



Figure 6.27 - Comparisons of probabilityof exceedence values with and without the random 
                      background
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Figure 6.28 -  Comparisons of the force on the jack-up
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Figure 6.29 - Long-term probability of exceedence levels for the moment at the leg-hull interface
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Figure 7.1 - Illustration of deterministic and probabilistic methods

Figure 7.2 - Central composite design method for k  = 2
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Figure 7.3 - Definition of f - δ p (based on hardening law of Eqn 3.10)
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Figure 7.4 - Extreme deck displacement distribution for the modal most probable highest wave
                    amplitude in the 100 year sea state

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x = response of deck displacement (m)

Q
(x

) =
 P

(d
ec

k 
di

sp
la

ce
m

en
t <

 x
)

mean most probable highest amplitude

modal most probable highest amplitude

Figure 7.5 - Extreme deck displacement distributions for the mean and modal most probable
                     highest wave amplitudes

H s = 12 m; T z = 10.805 s; 
NewWave amplitude = 11.16 m

For the modal wave case:
µ x = 0.387 m

50% exceedence = 0.369 m
CoV = 29.16% 

For the mean wave case:
NewWave amplitude = 11.60 m

µ x = 0.427 m
50% exceedence = 0.407 m

CoV = 30.32% 
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Figure 7.7 - Comparison of response evaluated by the RS and JAKUP for 200 sets of X at three
                     levels of deck displacement 
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Figure 7.6 - Comparison of deck displacments predicted by the RS and evaluated by JAKUP for
                    1000 sets of basic random variables (X )
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Figure 7.8 - Definitions used in FORM for the two-dimensional case (after Thoft-Christensen and 
                     Baker, 1982)
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Figure 7.9 - Short-term extreme deck displacement distributions for the modal most probable highest
                    wave amplitude in the 100-year sea-state for sets of 11 and 7 random variables
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Figure 7.10 - Extreme deck displacement distributions for the 100-year sea-state with and without
                       variation in the basic variables
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Figure 7.11 - Significance of the inclusion of short-term extreme wave amplitude variation in the
                      extreme deck displacement distributions
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Figure 7.12 - Distributions for six short-term sea-states with and without variation in the basic
                      variables  

re
sp

on
se

re
sp

on
se

pr
ob

. d
en

si
ty

 fu
nc

tio
n

pr
ob

. d
en

si
ty

 fu
nc

tio
n

mean

mean

Q(x)

x = response

Q(x)

x = response

1.0

0.5

1.0

0.5

(a) Linear response

(d)(c) Non-linear response

(b)

intersects at
Q(x) < 0.5

variation from mean
curve is greater at

Q(x) > 0.5

mean curve

random var.
curve

mean curve

random var.
curve

Figure 7.13 - Comparison of linear and non-linear response to short-term statstics  
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Figure 7.14 - Comparison of annual probabilities of exceedence of deck displacements for variable
                       input parameters and their mean values (including wind and current)
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