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ABSTRACT
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There is a steadily increasing demand for the use of jack-up units in deeper water and
harsher environments. Confidence in their use in these environments requires jack-up
analysis techniques to reflect accurately the physical processes occurring. Thisthesisis
concerned with the models appropriate for the dynamic assessment of jack-ups, an
important issue in long-term reliability considerations. The motivation is to achieve a
balanced approach in considering the non-linearities in the structure, foundations and
wave loading.

A work hardening plasticity model is outlined for the combined vertical, moment and
horizontal loading of spudcan footings on dense sand. Empirical expressions for the
yield surface in combined load space and a flow rule for prediction of footing
displacements during yield are given. Theoretical lower bound bearing capacity factors
for conical footings in sand have been derived and are used in a strain-hardening law to
define the variation in size of the yield surface with the plastic component of vertical
penetration. The complete incremental numerical model has been implemented into a
plane frame analysis program named JAKUP.

The spectral content of wave loading is considered using NewWave theory, and the
importance of random wave histories shown by constraining the deterministic
NewWave into a completely random surface elevation. Using this technique, a method
for determining short-term extreme response statistics for a sea-state is demonstrated. A
numerical experiment on an example jack-up and central North Sea location is shown
to emphasise the difference in long-term extreme response according to various footing
assumptions. The role of sea-state severity in the variation of short-term extreme
response statistics is aso highlighted.

Finally, probabilistic methods are used to develop further understanding of the response
behaviour of jack-ups. A sensitivity study of influential variables (with probabilistic
formulations as opposed to deterministic values) has been conducted using the response
surface methodology.
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Notation

Nomenclature used in thesis (excluding those which only appear once). Symbols have been

placed under chapter headings.

Chapter 1:

H horizontal load

M moment load

u horizontal footing displacement

\% vertical load

W vertical footing displacement

q rotational footing displacement

Chapter 2

An, Asn hydrodynamic area and equivalent hydrodynamic area respectively
C system damping matrix

Cq drag coefficient

Cn inertia coefficient

Dy, Dgen hydrodynamic diameter and equivalent hydrodynamic diameter respectively
F force per unit length on a member (defined by the Morison equation)
K system stiffness matrix

M system mass matrix

N number of degrees of freedom in the system

P vector of nodal loads

S,§ structural velocity and acceleration of a point on a member respectively
t time

U, horizontal water particle velocity normal to member

u horizontal wave acceleration

X vector of nodal displacements

X vector of nodal velocities

X vector of nodal accelerations

z vertical displacement

b stability parameter in Newmark method

d dissipation parameter in Newmark method

r density of water

y shape function

Chapters 3 and 4:

a eccentricity of the yield surface

A plan area of footing

B width of strip footing

B¢ effective width of footing

C elastic flexibility factor (vertical)

C, elastic flexibility factor (moment)

elastic flexibility factor (horizontal)
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elastic flexibility factor (coupled)

(as prefix) increment in value

eccentricity of applied load on footing [=M/V ]
dimensionless initial plastic stiffness factor
yield function

factor determining limiting magnitude of vertical load as w, ® ¥
plastic potential function

non-dimensional shear modulus factor

elastic shear modulus

dimension of yield surface (horizontal)
horizontal load

intercept of the ellipse on the H co-ordinate axis

inclination factor in bearing capacity formulation

initial plastic stiffness

rate of change of association factors

rate of change of association factors a, and a ,, respectively
elastic stiffness factor (vertical)

elastic stiffness factor (moment)

elastic stiffness factor (horizontal)

elastic stiffness factor (coupled)

vertical experimental stiffness

dimension of yield surface (moment)

moment load
intercept of the elipse on the M co-ordinate axis

vertical bearing capacity factor
atmospheric pressure
vector of damping force component of the dynamic equation of motion

vector of externally applied |oads

vector of inertial force component of the dynamic equation of motion
vector of internal structural loads

plastic deviator displacement

genera deviator force

radius at the surface of a partially penetrated conical footing

radius of circular footing

experimental vertical load normalised by the theoretical maximum V
shape factor in bearing capacity formulation

time

horizontal footing displacement

plastic horizontal footing displacement

vertical load

maximum vertical load capacity when H=0 and M =0

peak value of Vj in strain hardening law

maximum vertical load for the current plastic potential shape
maximum vertical bearing capacity

vertical footing displacement



Notation

Subscripts:
e

ep

exp

Exp

p

pre- load
Start
theory
Theory

plastic vertical footing displacement
value of plastic vertical displacement at the peak value of V, (i.e. at Vo)
vector of nodal displacements

roughness factor

value of the association factor without any displacements

value of the association factor as displacements tend to infinity

horizontal and moment association factor respectively

value of association without any horizontal displacement or rotation respectively
association factor as horizontal displacement or rotation tend to infinity respectively
general association factor

cone apex angle

exponent in equation for modified parabola

exponents in equation for doubly modified parabola

curvature factor exponents in equation for yield surface

curvature factor exponents in equation for plastic potential

dimensionless vertical plastic displacement at Vo[ = me/ZR]

friction angle of sand

unit weight and submerged unit weight of soil

multiplication factor determining the magnitude of plastic displacement increments
coefficient in equation for modified parabola (horizontal and moment respectively)
rotational footing displacement

plastic rotational footing displacement

Poisson's ratio

association parameter for determining vertical plastic displacements

elagtic

elasto-plastic

represents experimental values from the swipe tests (Chapter 3)

represents experimental evidence of flat circular plates (Chapter 4)

plastic

condition of variable immediately following vertical pre-loading of the spudcans
value at the commencement of the swipe test

represents theoretical values from the swipe tests (Chapter 3)

represents theoretical bearing capacity approach (Chapter 4)

Chapters5 and 6:

a,, b,

independent random variable Fourier components

amplitude of wavelet

water depth (measured vertically from mean water-level to sea bed)
(as prefix) increment in value

the mean or expected value

horizontal attenuation factor at depth z for the n'™ wavelet

significant wave height
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integer representing sea-state occurrence (i.e. 1in 10’ year sea-state)

wave number
wave number corresponding to the peak in the wave energy spectrum

X OX —.
k=]

wavelet number (between 1 and N)
number of increments (Fourier components or wavel ets)

number of crests in short-term time period

zzZ2>

crest
Q. R random coefficients used in NewWave constraining procedure

Q(x) cumulative probability (probability of non-exceedence of X)
ret) autocorrelation function for ocean surface elevation

rt) differentiation of autocorrelation function with respect to time
rn random number

Reoos 50% exceedence value of response

Sfo2s Sfos factors used to scale 100-year short-term statistics to other return period statistics

=4

wave energy spectrum

time

time period

period representing the peak frequency in the sea-state spectrum

-
N  ©

mean zero crossing period
horizontal wave velocity and acceleration respectively
initial vertical load value per spudcan immediately following pre-load

cC
c.

pre- load

response value

spatial distance relative to the numerical analysis reference point
spatial distance relative to the initial position of the crest respectively
vertical displacement

N ox x x <

crest elevation (measured vertically from mean water-level to wave maximum)
gradient of surface elevation at crest

horizontal displacement of the deck

delta stretching parameter

spectral bandwidth
random phase angle

peak enhancement factor (in JONSWAP spectrum)
ocean surface elevation
gradient of ocean surface elevation

factor in second spectral moment
mean value of random variables
standard deviation of random variables
time lag

angular frequency

maximum defined angular frequency

Q.
®
Q
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constrained process

Subscripts:
c
r random process

Chapter 7:

a, Q G, di i components of second-order response surface with mixed terms
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mean

drag coefficient
inertia coefficient

(as prefix) increment in value
dimensionless initial plastic stiffness factor

combination of hardening law parameters f and d,
density function of set [ X ]

distribution function of set [ X ]

non-dimensional shear modulus factor

failure function for set of basic variables[ X ]
significant wave height

number of basic random variables in set

dimension of yield surface (moment)

zeroth spectral moment

number of crests in short-term time period

vertical bearing capacity factor

probability of failure

cumulative probability (probability of non-exceedence of x)
component’ s resistance and service response respectively

service response predicted by the response surface
sensitivity measure of the i'" basic random variable

mean zero crossing period

horizontal current velocity

total wind force on jack-up hull

set of basic variables

basic variable in standardised Gaussian space

unit vector defining direction of the design point in standardised Gaussian space
crest elevation (measured vertically from mean water-level to wave maximum)

modal and mean most probable wave crest elevation respectively in short-term sea-state
reliability index

horizontal displacement of the deck

response surface prediction of horizontal deck displacement

dimensionless vertical plastic displacement at Vg,

measure of relative error (used to compare the response surface and JAKUP d.,
predictions)
mean value of random variables

standard deviation of random variables
standard normal distribution function

omission sensitivity factor
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Chapter 1 —Introduction

1.1 Jack-Up Units

1.1.1 Genera

Most of the world's offshore drilling in water depths up to 120m is performed from self-
elevating mobile units, commonly known as jack-ups. Typica units consist of a buoyant
triangular platform resting on three independent truss-work legs, with the weight of the deck
and equipment more or less equally distributed. A rack and pinion system is used to jack the

legs up and down through the deck. An example of such aunitisshown in Fig.1.1.

Jack-ups are towed to site floating on the hull with the legs elevated out of the water. On
location, the legs are lowered to the sea-bed, where they continue to be jacked until
adequate bearing capacity exists for the hull to climb out of the water. The foundations are
then pre-loaded by pumping sea-water into ballast tanks in the hull. This ‘proof tests' the
foundations by exposing them to a larger vertical load than would be expected during
service. The ballast tanks are emptied before operations on the jack-up begin. It isusual for
the total combined pre-load (i.e. jack-up mass and sea-water) to be about double the mass

of the jack-up.

1.1.2 History

The earliest reference to a jack-up platform is in the description of a United States patent
application filed by Samuel Lewisin 1869 (Veldman and Lagers, 1997). It wasn't until 85
yearslater in 1954 that Delong McDermott No. 1 became the first unit to utilise the jack-up
principle for offshore drilling. Delong McDermott No. 1 was a conversion of one of the
successful ‘ Delong Docks': a pontoon with a number of tubular legs which could be moved

up and down through cut-outs in the pontoon. The Delong Docks, which were mostly used as
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mobile wharves for industrial purposes during the 1940s, could be towed into location with
their legs drawn up. Once in position their legs could be lowered and the pontoon elevated
off the water using the same principle as the modern jack-up. Interestingly, Delong Docks
were used in World War 11 as mobile docks by the United States Army after the invasion of
Normandy and before the major harbours of Western Europe were liberated (Veldman and
Lagers, 1997).

Like many of the early jack-ups to follow, Delong McDermott No. 1 resembled a standard
drilling barge with attached legs and jacks, which were often many in number. In 1956 R.G.
LeTourneau, a former entrepreneur in earthmoving equipment (Ackland, 1949),
revolutionised the design of jack-ups by reducing the number of legs to three (Stiff et al.,
1997). Another innovative design change was the electrically driven rack and pinion
jacking system which allowed for continuous motion in any jacking operation. This replaced
‘gripper’ jacks where dippage often occurred on the smooth leg surface (Veldman and
Lagers, 1997). Both revolutionary features are common on today’s rigs. Zepata's
“Scorpian”, used in water depths up to 25 m in the Gulf of Mexico, was the first of many
operated by the company Marathon LeTourneau. They dominated early jack-up design

during the 1960s and 1970s with rigs of increasing size.

Since their first employment, jack-ups have continued to be used in deeper waters (Carlsen
et al., 1986). Other companies, including Bethlehem, Friede and Goldman, Marine
Structures Consultants and Mitsui have contributed to the rise in water depth capacity
(Veldman and Lagers, 1997). This development is continuing with some of the largest units
being used in about 120m of water in the relatively harsh North Sea environment (Hambly
and Nicholson, 1991; Veldman and Lagers, 1997). Furthermore, jack-ups are now operating
for extended periods a one location, often in the role of a production unit (Bennett and

Sharples, 1987). An example of the long-term use of jack-upsis in the Siri marginal field
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development in the Danish sector of the North Sea. A purpose built jack-up isbeing used in
60 m water depths as a production platform with an expected life of ten years (Baerheim et
al., 1997). A further example is the Shearwater development, where jack-up drilling is
planned to continue for two and a half years at a 90 m water depth in the Northern North Sea

(Offshore Technology, 1999).

1.1.3 Considerationsin Jack-Up Analysis M odelling

Before a jack-up can operate a a given site, an assessment of its capacity to withstand a
design storm, usually for a 50-year return period, must be performed. In the past, with jack-
ups used in relatively shallow and calm waters, it has been possible to use overly smplistic
and conservative jack-up analysis techniques for this assessment. However, as jack-ups
have moved into deeper and harsher environments, there has been an increased need to
understand jack-up behaviour and develop analysis techniques. The publication of the
‘Guidelines for the Site Specific Assessment of Mobile Jack-Up Units (SNAME, 1994)
was an attempt by the offshore industry to standardise jack-up assessment procedures. The
guidelines also detail categories of jack-up modelling sophistication based on the latest
research. A brief introduction to some aspects of jack-up modelling is given below, while

expanded explanations, including state-of-the-art practices, are detailed in Chapter 2.

1.1.3.1 Structural Moddling

As illustrated by the example unit in Fig. 1.1, a jack-up consists of a large number of
members with intricate structural detail. It is conventional, however, to analyse jack-ups
using a mathematical model which simplifies this structural detail considerably. (Hoyle,
1992). One representative example is Brekke et al. (1990), who calibrated a ssmplified
model with only six structural nodes per leg against structural measurements of a North Sea
jack-up in firm sandy conditions. Other examples include Daghigh et al. (1997), who used a

three-dimensiona finite element model with legs discretised to fourteen nodes each, and
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Manuel and Cornell (1996), who used a plane frame model with loading in the jack-up’s
axis of symmetry. For the latter two-dimensiona model, two legs were assumed to act as
the same upwave leg with relevant properties doubled. In both cases the detailed lattice

legs were assumed as equivalent beam elements.

The use of jack-up units in deeper water has several detrimental effects on their structural
response, including:
increased flexibility caused by longer effective leg length. This increases the natural
period of the jack-up and in most situations moves the structure’'s principal natural
period closer to the dominant wave periods of the sea-state. Consequently, inclusion of
dynamic effects in the modelling of jack-up responseiscritical.
the assumption of small displacement behaviour is no longer valid, with structural non-
linearities occurring due to large axial loads in the legs caused by the deck’ s weight.
Even with knowledge of these considerations, linear structural behaviour and quasi-static
analyses are still inappropriately applied in jack-up assessments; they will be discussed

further in Chapter 2.

1.1.3.2 Modeling of Foundation Behaviour

The foundations of independent-leg jack-up platforms approximate large inverted cones
known as ‘spudcans. Roughly circular in plan, they typically have a shallow conicad
underside with a sharp protruding spigot, as shown in Fig. 1.2. For the larger units operating

in the North Sea spudcan diametersin excess of 20 m have become common.

In a perfectly cam sea vertical self-weight is the only loading on the spudcans. During a
storm, however, environmental wind and wave forces impose additiona horizontal and

moment loads onto the foundations of the jack-up, as well as ater the vertical load. An
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understanding of spudcan performance under these combined load conditions is essential to

the analysis of jack-up response.

In a conventiona jack-up site assessment, the maximum vertical footing reaction produced
from the structural analysis (factored for safety and usualy made with the foundations
modelled as pinned footings) is used to determine the amount of pre-load required during
the ingtallation of the unit (Reardon, 1986). In a calculation of foundation capacity, the
semi-empirical methods developed by Meyerhof (1951, 1953), Brinch Hansen (1961, 1970)
and Vesic (1975) may be used to consider the detrimental effect of concurrent vertical,
moment and horizontal load on vertical bearing capacity. These methods are not amenable
to implementation into dynamic structural analysis programs, thus limiting their application

to single checks on design capacity.

1.2 TheNeed for Further Research

From their introduction, the accident rate involving jack-ups has exceeded that of other
offshore instalations. (Young et al., 1984; Sharples et al., 1989; Leijten and Efthymiou,
1989; Boon et al., 1997). Young et al. attribute about one third of accidents to foundation
failure whilst Leijten and Efthymiou attribute over half of the accidents resulting in tota rig
loss to structural or foundation failure. Furthermore, the failure rate for jack-ups can be
interpreted as increasing with the harshness of conditions. Structural and foundation
behaviour are areas where the understanding of jack-up behaviour needs to be improved in

an attempt to reduce the number of accidents.

Due to the demand for longer commitment of jack-ups to a single location, as well as their
use in deeper water and harsher conditions, long-term reliability calculations are becoming

increasingly important. As the results of any reliability analysis can only be judged on the
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accuracy of the individua components used in the analysis, the understanding of jack-up
behaviour and the ability to model it confidently is paramount. With analysis techniques that

reflect accurately the physical processes occurring, areduction of failure ratesis possible.

1.3 Research Aims

This thesis is concerned with extreme response modelling of jack-up units on sand when
subjected to random ocean waves. Whilst maintaining a balanced approach to jack-up
modelling, it aims to extend knowledge of analysis techniques in three key aresas:

foundation modelling,

random wave |loading,

and the probabilistic approach to developing extreme response statistics.
The purpose of this approach is to achieve understanding and confidence in al the

components affecting jack-up response.

1.3.1 Foundation Modelling

The use of strain hardening plasticity theory is seen as the best approach to modelling soil
behaviour with a terminology amenable to numerical analysis. A major objective of this
project was to develop an easto-plastic model for spudcan behaviour on sand and fully

integrate it into a dynamic structural analysis program.

1.3.2 Random Wave Modelling

Hydrodynamic loading on jack-up platforms can be calculated by integrating wave forces
on the leg from the seabed to the instantaneous free-water level. This can be achieved by
using the Morison equation, which is discussed further in Chapter 2. Variation of the free-
water surface, as well as other non-linearities such as drag dominated loading and relative

motion effects, can be accounted for in the time domain. In the jack-up industry regular
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wave theories such as the linear Airy wave and the higher-order Stokes' fifth theory are
widely accepted methods of determining the kinematics required in the Morison equation
(SNAME, 1994). Based on one frequency component, these theories do not account for the

random nature of the ocean environment and give an unrepresentative response.

For dynamically responding structures such as jack-ups, it is important to simulate al of the
random, spectral and non-linear properties of wave loading. The investigation of these
properties as applied to jack-up response analysis is an aim of this thesis. NewWave

w1

theory, a“deterministic random” = wave theory developed by Tromans et al. (1991), is used

in thisinvestigation.

In this project, both foundation and random wave modelling are constrained to behaviour
within a single vertical plane. This confines the foundation model to a three degrees of
freedom problem, i.e. the model needs to define the load:displacement relationship for a
spudcan for three loads (V,M,H) and their corresponding displacements (w,q,u), as
shown in Fig. 1.3. Though a foundation model with six degrees of freedom could be
developed and implemented into a three-dimensional structural jack-up model, this was
considered outside the scope of this investigation. The wave model is bound to uniaxia
loading conditions along the jack-up’s axis of symmetry. With a three-dimensiona model,

however, the multidirectional nature of the sea could be considered.

! By itself NewWave is deterministic and accounts for the spectral content of the sea. However, by
congtraining a NewWave within a completely random background, the random properties of wave loading
can beinvestigated (Taylor et al., 1995).
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1.3.3 Probabilistic Approach

One of the primary project aims was to investigate the dynamic response of jack-ups within
a consistent theoretical framework. The probabilistic modelling of variables achieves this
not only for singular loading examples but also for long-term conditions¥z a necessity if the
reliability of jack-ups is to be evaluated. Using this consistent framework, a quantitative
comparison of modelling assumptions (especialy for foundations) and among input

variables was a research objective.

1.4 ThessOutline

The outline of this thesis broadly follows four topics described in section 1.1.3 and 1.3:
jack-up anaysis techniques (and structural modelling), foundation models, account of
random wave loading and probabilistic modelling. As these topics are distinctively varied,
a review of literature on the separate topics is included at the beginning of each chapter

rather than having one chapter devoted solely to literature reviews.

Jack-Up Analysis Techniques (and Structural Modelling): Chapter 2 contains a literature
review of anaysis techniques relevant to the overall analysis of the structural response of
jack-up units. Whilst the state-of-the-art procedures in each modelling area are highlighted,
emphasis is aso placed on determining, for an individua study of jack-up response, the
level of complexity in each model component used. The dynamic analysis program JAKUP

and the example structure used in thisthesis are al so introduced.

Foundation Model: Chapters 3 and 4 concentrate on foundation models of jack-up spudcan
footings in sand. Following an introduction to existing knowledge of combined loading on
flat circular footings, Chapter 3 describes the development of Model C, a work hardening

plasticity model for circular footings on dense sand. The numerical formulation of Model C
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is detailed in Chapter 4 and retrospective prediction of experimental data shows this
formulation in practice. Model C is extended by a description of a numerical model
accounting for the conical features of spudcan footings and the incorporation of Model C

into the dynamic structural analysis program JAKUP is also presented.

Wave Model: Chapter 5 focuses on wave loading models suitable for the analysis of jack-
up units. NewWave theory is described as a deterministic aternative to regular wave
theories and its theoretical background and implementation into JAKUP are detailed.
Example JAKUP analyses are shown, to emphasise differences in predicted response due to
linear wave theory stretching procedures, second-order effects in NewWave and various
footing assumptions. In Chapter 6 the importance of random wave histories is shown by
constraining a deterministic NewWave into a completely random surface elevation. Extreme
response statistics for an example jack-up in the Central North Sea are evaluated utilising
this * Constrained NewWave' in asimplified method of full random time domain ssimulation.
The quantitative differences between footing assumptions are outlined for example long-

term conditions.

Probabilistic Modelling: Chapter 7 concentrates on probabilistic modelling of jack-up
extreme response calculations. Variables which influence the dynamic response of jack-ups
are investigated by attributing their inherent statistical variability to a probabilistic
distribution. Comparisons between using deterministic mean values and probabilistic

distributions for these variables are drawn.

Chapter 8 summarises the main findings of the thess, indicating achievement of the

research aims and outlining areas and topics where further research would be beneficial.
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Chapter 2 — Analysis of Jack-Up Units

2.1 Introduction

This chapter reviews literature relevant to the analysis of jack-up units, with particular
reference to areas of analysis where techniques have improved to reflect more accurately
aspects of non-linear behaviours. Interaction between these areas is investigated for
individual studies found in the literature. This chapter also presents the dynamic analysis

program named JAKUP and the example structure used in this thesis.

2.2 Literature Review of Jack-Up Analysis Techniques

Jack-ups were originally designed for use in the relatively shallow waters of parts of the
Gulf of Mexico. Due to their economic importance within the offshore industry, there has
been a steady increase in demand for their use in deeper water and harsher environments
(Carlsen et al., 1986). There is aso adesire for alonger-lasting commitment of a jack-up at
a single location, especialy in the role of a production unit (Bennett and Sharples, 1987).
To be confident of their use in these environments, there has been a need for changes in
analysis techniques to make them more accurate, avoiding unnecessary conservatisms

which were once commonplace.

More realistic modelling of jack-ups based upon the relevant physical processes has been
developed in anumber of areas, the most significant being:

dynamic effects,

geometric non-linearities in structural modelling,

environmental wave loading,

models for foundation response.
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Many individual studies have been published on jack-up response. Rather than detailing the
strengths and weaknesses of each assessment, a review of the development of each area,
highlighting the current state-of-the-art procedures will be given. In section 2.2.5, a table
summarising the application of these developments in a representative set of jack-up
studies is presented. It is shown that while many studies utilise state-of-the-art procedures
for one or two aspects, there are few which bring al components to the same level of

complexity.

2.2.1 Dynamic Effects

Conventionally, jack-up assessments have used the same quasi-static analysis methods
employed for fixed structures (Hambly and Nicholson, 1991); however, the need to
consider dynamic effects has long been acknowledged (Hattori et al., 1982; Grenda, 1986;
Bradshaw, 1987). With use in deeper water, the contribution of dynamic effects to the total
response has become more important as the natural period of the jack-up approaches the

peak wave periods in the sea-state.

Debate exists as to the appropriate method of accounting for the dynamic effects in a
representative and practical manner. The main techniques that have been employed are (i)
time domain, (ii) frequency spectra domain, and (iii) simplified empirical methods in
conjunction with a quasi-static analysis. Time domain techniques provide the most
complete analysis option with the ability to reflect the actual physical processes and non-
linearities within the system; however, they are computationally time-consuming. The
frequency spectral domain method offers a more numerically efficient solution, but as the
behaviour of the jack-up must be linearised, some physical processes become inaccurately
modelled. These include the non-linearities in loading from the Morison drag term and free

surface inundation effects. In addition, only a linear structure and foundations can be
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implemented. Indirect solution techniques do exist to factor in the non-linearities in the
frequency domain¥s see Naess and Pisano (1997) amongst others; however, the ability to
reflect non-linearities directly is still forfeited. The third method accounts for dynamic
effects by using empirical factors to scale the quasi-static wave load amplitude. These
global response Dynamic Amplification Factors (DAFs) are usually calculated based on a
single degree of freedom oscillator, subjected to harmonic loading. This simplified method
makes no attempt to model accurately the physical response process and provides no clear
picture of the factors controlling the response. Therefore, although DAFs are supposedly
calibrated to give conservative results, there can be no confidence in this under al

conditions.

In summary: due to their ability to model all non-linearities, the time domain techniques are
the most versatile methods in the analysis of the extreme response of jack-ups and will

therefore be the focus of thisthesis.

2.2.2 Geometric Non-Linearitiesin Structural Modelling

For non-conservative modelling of jack-up response, structural non-linearities must be
taken into account. Additional moments are developed due to load eccentricities and are
commonly referred to as P- D effects. Also, the axial loads reduce flexura stiffness in the
leg elements, simultaneoudly increasing the natural period and dynamic amplifications in
the sway mode. Methods with varying degrees of sophistication exist to account for both of
these features, from simple linear analysis (Brekke et al., 1990) to full large displacement
non-linear formulations which trace the load-deflection path (Karunakaran et al., 1992;
Martin, 1994). For efficiency, dynamic analysis of jack-ups typically make use of

equivalent beam models rather than attempt to model the complex lattice structure.
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2.2.3 Environmental Wave L oading

For dynamically responding structures such as jack-ups it is important to smulate all of the
random, spectral and non-linear properties of wave loading. The extreme dynamic response
depends not only on the load being currently applied, but also on the load history.
Therefore, the most accurate methods of estimating extreme response are based on random
time domain simulation of the ocean surface and corresponding kinematics. For severe
storm conditions, response statistics are typicaly evaluated over a three-hour period.
Acquiring confidence in random time domain simulation results is, however,
computationally time-consuming; and for the sake of convenience, deterministic wave
theories, which include Airy and Stokes V, are still widely used for calculating wave
loading on jack-ups (SNAME, 1994). However, comparisons of deterministic regular wave
and validated random wave theories show that the regular wave theories tend to
overestimate wave kinematics and thereby the fluid load (Tromans et al., 1991). Moreover,
regular wave theories assume all the wave energy is concentrated in one frequency
component rather than the broad spectrum of the ocean environment and hence give an

unrepresentative dynamic response.

2.2.3.1 NewWave Theory

NewWave theory, a deterministic method described by Tromans et al. (1991), accounts for
the spectral composition of the sea, and can be used as an alternative to both regular wave
and full random time domain simulations of lengthy time periods. By assuming that the
surface elevation can be modelled as a Gaussian random process, the expected elevation at
an extreme event (for example a crest) can be theoretically derived. The surface elevation
around this extreme event is modelled by the statistically most probable shape associated

with its occurrence, and is given by the autocorrelation function of the Gaussian process
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defining the sea-state. Further theoretical details of NewWave theory are presented in
Chapter 5.

For structures which respond quasi-statically, NewWave theory has been used successfully
in the prediction of global response (Tromans and van de Graaf, 1992; Winterstein et al.,
1998). It has also been validated against both measured global loading and conventional
random wave modelling on areal platform by Elzinga and Tromans (1992) and on standard

column examples (Tromans et al., 1991).

2.2.3.2 Constrained NewWave

NewWave theory can be used within a random time series of surface elevation by
mathematically incorporating the NewWave (of pre-determined height) into the random
background (Taylor et al., 1995). This is performed in a rigorous manner such that the
constrained sequence is statistically indistinguishable from the original random sequence.
Constrained NewWave allows for easy and efficient evaluation of extreme response
statistics. This is achievable without the need to simulate many hours of real time random
seas, most of which is of no interest. This is provided the required extreme response
correlates, on average, with the occurrence of a large wave within a random sea-state. Use
of Constrained NewWave for the calculation of extreme response is shown for a simplified
jack-up in a study by Harland (1994). The application of Constrained NewWave to the

study of jack-up responseis discussed further in Chapter 6.

2.2.3.3 Alternative Methods for Full Random Time Domain Simulation

Other methods to reduce computation time whilst maintaining accuracy in obtaining
extreme response statistics have been suggested. Reducing the simulation time period in a
time domain analysis and then extrapolating the extreme response to the duration required

is one common method; see, for example, Kjegy et al. (1989) or Karunakaran et al. (1992).
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However, by fitting a general probabilistic model to the extremes, bias can be introduced to

the results, and furthermore, there is much uncertainty as to the amount of bias present.

Other researchers have attempted to find “design wave’” segments. It is believed that a
segment of random sea can be chosen such that the response to it is directly correlated to
the response of the entire period. Within the jack-up industry, for example, Hoyle and Snell
(1997) identified 200-second segments from their base case three-hour simulation. They
concluded that for further variations in the analyses only the segments needed to be used
and could be linearly scaled according to the load required. Unfortunately, there is little
guarantee that when the analysis conditions change from the base case the chosen segments
will be representative of the extreme response, especialy in a highly non-linear jack-up

analysis.

2.2.4 Spudcan Footings—Models for Foundation Response

There has been much interest in recent years in the level of foundation fixity developed by
spudcan footings. If some foundation fixity is taken into account, critical member stresses
(usually at the leg/hull connection) and other response values are reduced (Chiba et al.,
1986; Norris and Aldridge, 1992). With higher levels of moment restraint, the natural
period of the jack-up is aso reduced, usually improving the dynamic characteristics of the
rig. It is still widely accepted practice, however, to assume pinned footings (infinite
horizontal and vertical and no moment restraint) in the analysis of jack-ups (Reardon, 1986;
Frieze et al., 1995). This creates overly conservative results. Another approach used, and an
improvement on pinned footings, is the use of linear springs. Brekke et al. (1990) for
example, calibrated linear springs with offshore measurements and reported a 40%
reduction in critical member stresses in comparison to pinned cases. Unfortunately, while

linear springs are easy to implement into structural analysis programs, they do not account
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for the complexities and non-linearities of spudcan behaviour, and this ssmplistic approach

can produce unrealistic results which may also be unconservative.

Various authors have attempted to implement non-linear springs in their structural analysis.
For example, Hambly et al. (1990) and Hambly and Nicholson (1991) calibrated their
springs against measurements in the North Sea with spring stiffnesses calculated at each
instantaneous time step. To achieve this, however, the structural analysis was minimised to
a single degree of freedom problem, which did not allow for consideration of other non-

linearities (such as variation in the application of wave loading).

Another approach widely used is the non-linear stiffness model recommended in the
SNAME (1994) procedures and based on the findings described by Osborne et al. (1991).
Using the yield surface principle, alocus of vertical, moment and horizontal forces define a
boundary at which loads can be applied without significant penetration of the footing. The
size of this surface is fixed and relates to the vertical pre-load value. Within this surface a
pseudo-elastic stiffness is assumed, with the rotational stiffness non-linearly reduced from
its original elastic stiffness according to how close the load combination is to the yield
surface. For spudcans on sand the horizontal elastic stiffness is also reduced. Hoyle and
Snell (1997), for example, implemented this model; however, it does not account for any
work-hardening of the soil with stiffness reducing to zero at the yield surface boundary.

Furthermore, cross coupling effects are not implemented.

Manuel and Cornell (1996) compared the sensitivity of the dynamic response statistics at
two sea-states to different support modelling conditions: pinned, fixed, linear springs, and a
non-linear rotational spring model based on two parameters fitting a non-linear curve (the
horizontal and vertical springs were still linear). They noted that not only were there large

differences in the response extremes, but also that the model employed at the soil/structural
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interface significantly affected the root-mean-sgquared (rms) response statistics (Six samples
were taken for a duration of 0.57 hours each). Manuel and Cornell concluded that the stiffer
foundation models, whilst predicting smaller rms response, exhibited more non-Gaussian
behaviour due to smaller dynamic forcing components (i.e. with more foundation fixity the
natural period of the structure moved away from the peak period of the two sea-states

investigated).

The use of strain-hardening plasticity theory has emerged as the best approach to model
soil behaviour with a methodology amenable to numerical analysis. This is because the
response of the foundation is expressed purely in terms of force resultants. Though first
used as a geotechnical solution to another problem by Roscoe and Schofield (1956), it has
recently been used in the examination of jack-up performance (for instance by Schotman

(1989), Martin (1994) and Thompson (1996)).

2.2.5 Overall Jack-Up Analyss—A Summary of Models Used

Table 2.1 details the level of complexity used in the analysis of jack-up response in a
representative set of studies published in the last fifteen years, with the four areas
previously highlighted as conventionally conservative broken into components of
increasing degrees of sophistication (and accuracy). This table demonstrates the
considerable diversity in the level of complexity used in jack-up analyses with no standard

approach dominating. All of the components in Table 2.1 have been assessed for
appropriate modelling of the physical processes and graded with athree category system: a
represents state-of-the-art practice, b a compromise solution (adequate under some

circumstances) and g an inadequate method (which usually produces overly conservative

response).
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Some general comments on each of the four areas are:

Structural: Most of the studies performed in recent years have implemented structural non-
linearities. Thisis an area where the application of advances in structural theory have been
successfully applied to jack-up modelling and techniques have reached a sophisticated
level. Other advances, for example plasticity of space frame structures (Al-Bermani and
Kitipornchai, 1990) or the use of super finite elements (Lewis et al., 1992) could give more
accurate results in a more detailed manner, but without the same high level of accuracy

being shown in the other areas, the advantages are ineffectual.

Foundations: Single studies are often complex in one or two of the areas but have the
simplest of assumptions in the others. Thisis especialy true for foundation modelling, with
many studies using detailed structural models or advanced wave mechanics whilst still

using the simplest of foundation assumptions (i.e. pinned footings).

Dynamics: Within the published works used in Table 2.1, time domain simulation occurs
more often than frequency domain dynamic analysis and can be assumed as the only
generally accepted method which captures the non-linear characteristics of a jack-up

analysis accurately.

Wave loading: The use of point loads or regular wave theories does not adequately
represent wave loading on jack-ups. However, when used, the level of sophistication in
random wave loading is highly variable. For example, the number and length of simulations
used to estimate response levels differ widely. Most studies use simplifying assumptions

due to the extensive computational time needed to perform random time domain simulation

properly.
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2.3 Overview of JAKUP — The Analysis Program used in Thesis

An overview of the components of the dynamic structural analysis program used in this
thesis are described here. Named JAKUP, it is capable of considering the maor non-
linearities in jack-up response. The initia development of JAKUP was by Martin (1994)
and Thompson (1996).' Further developments of the foundation and wave models of

JAKUP resulting from this thesis are outlined in sections 2.3.3 and 2.3.4.

2.3.1 Dynamic Analysis

To analyse the results of jack-up unit response against time, the dynamic equation of
motion must be solved. In this instance this equation can be expressed for a N degree of

freedom system as
M (t)%(t) + C(t)x(t) + K () x(t) = P(t) (2.1

where M (t), C(t) and K(t) are the mass, damping and stiffness matrices at time t
respectively. P(t) represents the externally applied forces at the nodal positions, and X(t),
X(t) and x(t) the nodal accelerations, velocities and displacements at time t. As discussed
in section 2.2.1, because of the need to model non-linearities, analysis in the time domain
using numerical step-by-step direct integration techniques provides the most versatile
method to solve Egn 2.1 (and analyse jack-ups). Within this thesis, the Newmark b =0.25,
d =0.5 method is used, since it is an unconditionally stable and highly accurate solution

algorithm. For further details see Thompson (1996), who reviewed methods for solving the

equations of motion in a discretized system

! Martin (1994) initialy developed a structural model including his elasto-plastic model for spudcan
behaviour on clay (entitled Model B and further detailed in Chapter 3). Thompson (1996) extended JAKUPto
consider dynamic behaviour and regular wave loading.
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2.3.2 The Structural Model

For the modelling of jack-up response, structural non-linearities must be considered if
reasonable accuracy is to be achieved. Euler and P- D effects are both accounted for in
JAKUP by using Oran’s (1973[a]) formulation of beam column theory to specify the
stiffness matrix. The load-deflection path is traced according to Kassimali (1983), except
the consideration of plastic hinge formation has not been implemented. Further
modifications to produce the additional end rotations on the beam due to the presence of
shear are also implemented (Martin, 1994). Both the mass and damping matrix of Eqn 2.1
are time invariant with the former derived as a consistent mass matrix using cubic
Hermitian polynomial shape functions and the latter by use of Rayleigh damping. Structural
damping coefficients are defined for the lowest two modes, i.e. surge and sway in a jack-
up. This creates artificially high damping in the higher modes. Implementation of the
structural model of JAKUP was performed by Martin (1994) and Thompson (1996), where

further details of the formulations can be found.

2.3.3 TheFoundation Model

JAKUP has the capabilities of modelling pinned, fixed or linear springs as the foundations
of the jack-up. Furthermore, a strain hardening plasticity model for spudcan footings on
dense sand has been developed and its numerical formulation implemented into JAKUP.

Thisisdiscussed in Chapters 3 and 4.

2.3.4 Environmental Loading Models

2.3.4.1 Wave Loading

Linear NewWave theory, second-order NewWave formulations, Constrained NewWave
and a method for full random wave analysis have been implemented in JAKUP to evaluate

surface elevations and wave kinematics, as is described in Chapters 5 and 6. JAKUP then
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uses the extended Morison equation to calculate the hydrodynamic loads on the jack-up
legs. As used here to calculate the horizontal loads on the vertical member, the equation
consists of a drag and an inertia component and incorporates current and relative motion
between the structure and the fluid. The horizontal force per unit length on the member can

be expressed as
F(x, z,t):%cerh(ut - 9u - §+CrAu- (Cp- PrAs (2.2)

where D, and A, are the hydrodynamic cross sectional diameter and area respectively, u,

the velocity vector sum of current and wave resolved normal to the members axis, u the
acceleration of the wave and $ and § the structural velocity and acceleration respectively

at the point with horizontal position x and vertical elevation z. C, and C,, are the drag

and inertia coefficients respectively. The drag term is entirely empirical and is due to
vortices created as flow passes the member, while the inertia term is due to the pressure

gradient in an accelerating fluid.

In a number of jack-up studies, the relative motion between the structure and the water is
considered, either explicitly in the relative Morison formulation (Kjegy et al., 1989; Chen
et al., 1990; Karunakaran et al., 1992; Manuel and Cornell, 1996) or as additiona
hydrodynamic damping combined with the structural damping in the dynamic analysis
(Carlsen et al., 1986). Chen et al. (1990) and Manuel and Cornell (1996) have shown that
significantly larger response is predicted if relative velocity effects are ignored (i.e. there is
an absence of hydrodynamic damping). This difference may be as much as 40% in the root-
mean-squared (rms) levels of response under random loading (Manuel and Cornell, 1996).
However, because the relative Morison formulation predicts stronger non-Gaussian

behaviour, this difference is not as large for extreme response estimates.
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Details of the formulation of the relative motion Morison equation in JAKUP can be found

in Thompson (1996). Horizontal particle kinematics are calculated at the undeflected beam

position, with the equivalent nodal load, P, found by integrating the distributed load with

the corresponding shape function:
R =Q,Y 1 (QF(xzt)dz. 23

Yi (z) is the shape function evaluated at elevation z. In Thompson (1996), seven point

Gauss integration was used. However, the number of Gauss points is now user-defined for
each member, allowing more accurate measurement of kinematics, especially close to the

free surface.

2.3.4.2 Wind Loading

Wind loads on the hull make up a small but nevertheless significant proportion of the
loading on ajack-up (Vugts, 1990; Patel, 1989). Wind forces acting on the jack-up hull are
applied as constant point loads at the relevant nodes within a JAKUP numerical analysis.
However, wind loading on the exposed surface of the jack-up legs was not deemed

necessary. More details of wind force values are given when used in Chapter 6 and 7.

2.4 Example Structure used in Analyses

Fig. 2.1 shows a schematic diagram of the idealised plane frame jack-up used in all
analyses in this thesis. The mean water depth was assumed to be 90 m with the rig size
typical of athree-legged jack-up used in harsh North Sea conditions. Fig. 2.1 represents an
equivalent beam model, with the corresponding stiffnesses and masses of the beams shown.
The hull is also represented as a beam element with a rigid leg/hull connection. Though

non-linearities in the leg/hull jack houses are recognised as significant (Grundlehner, 1989;
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Spidsee and Karunakaran, 1993), they were not included in the analyses. Example

structural node locations on the legs are shown in Fig. 2.1.

The hydrodynamic modelling of the leg is performed by idealising the detailed lattice leg to
comprise one “equivalent” vertical tubular section located at the geometric centroid of the
actual leg according to the SNAME procedures (1994). The detailed leg section used is one
described by Nielsen et al. (1994) and is shown in Fig. 2.2. Table 2.2 represents the

calculation procedure used to determine the equivalent hydrodynamic diameter D, and the
equivalent area A , with values calculated as 8.50 m and 3.66 nf respectively. A marine

growth of 10 mm on all members has been assumed, similar to growths used in other jack-
up studies. Recently, Hoyle and Snell (1997) used 25 mm and Karunakaran (1993) between

10 and 40 mm depending on depth. Hydrodynamic coefficient values for tubular sections of
C, =11 and C, =20 are utilised? Use of the equivalent leg members assumes that no

shielding or blockage occurs.

% There is considerable uncertainty in the Cq and C,,, vaues appropriate for the calculation of leg forces

offshore, with many values in publication. As the coefficients need to be empirically derived, they are based
on the analysis of both the measurement of force and of the kinematics. Uncertainty in the kinematics is one
reason for many different results found in different investigations of force coefficients (Vugts, 1990). When
choosing coefficients, the parameters to be considered are the K eulegan-Carpenter and Reynolds numbers and
the relative roughness. Consideration must aso be given to the wave model being used. For extreme response
analysis of jack-ups, post-criticdl Reynold numbers (1.0” 10° - 45° 10°) and high Keulegan-Carpenter
numbers are expected (SNAME, 1994); however, the amount of roughness is uncertain. The values chosen
here reflect recommended valuesin SNAME for tubular sections (for rough sections C4 =1.0 and C, =1.8

and for smooth C4 =0.7 and C,,=2.0). In ajoint industry project led by Shell Offshore Inc., forcing
coefficients were obtained using a one meter diameter instrumented cylinder (Rodenbusch and Kallstrom,
1986). Reynolds numbers greater than 10°, aswell as forced oscillations and random waves, were studied. For
high Keulegan-Carpenter numbers, C, values approached 1.2 and 0.7 for rough and smooth cylinders
respectively. Tromans et al. use coefficients detailed by Rodenbusch (1986) with the NewWave model with
values of C4 =0.63 and 1.17 for smooth and rough cylinders respectively and a C,, of 1.8. Other values
used in published studies of jack-ups include Leseth and Hague (1992) C4 =1.0 and C,, =175 and

Karunakaran (1993) C4 =1.0 and C,, =2.0.
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Chapter 3 - Strain Hardening Plasticity Model for Spudcans

on Dense Sand

3.1 I ntroduction

In this chapter an incremental work hardening plasticity model (Model C) is described. It
has been developed for flat circular footings on dense sand subjected to a combination of
vertical, moment and horizontal loading (V, M, H). Model C is based on a series of
experimental tests performed at the University of Oxford by Gottardi and Houlsby (1995).
Circular footings are representative of spudcans, typical pad footings found on jack-up
drilling platforms. A description of the incorporation of the conical features of spudcan
footings into Model C is presented in Chapter 4. The model follows “Model B” described

by Martin (1994) for spudcans on clay.

3.2 Literature Review

3.2.1 Introduction - Combined L oading on Foundations

Bearing capacity methods have been commonly used to caculate the ultimate capacity of
spudcan footings under combined loading, with failure evaluated from inclined and
eccentric load conditions. Recently a number of experimentally based studies have led to
the development of an alternative to bearing capacity methods for foundations subjected to
combined loads. These studies have led to the development of complete plasticity modelsto

replace bearing capacity factors.
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3.2.2 Traditional Bearing Capacity Theories

In the offshore industry, the calculation of the bearing capacity of foundations on frictional
material generally uses procedures described by Meyerhof (1951, 1953), Brinch Hansen
(1961, 1970) and Vesic (1975). For a surface strip footing, the maximum vertical bearing

capacity is calculated as

Ve = 0.5gBN A (3.1)

where g¢ is the submerged unit weight of the soil, B and A the width and plan area of the

footing respectively, and N the bearing capacity factor.

In the application of these procedures to jack-ups, the vertical capacity is reduced by the
assumption that a spudcan behaves as a flat circular footing. A shape factor is applied and

usually takesthevalue of sy = 0.6. Furthermore, it is well known that the bearing capacity

of afoundation subjected to pure vertical load is reduced when concurrent horizontal and/or
moment loads are applied. In a cam sea vertica self-weight is the sole load on the
foundations of a jack-up. During a storm, however, environmental forces impose horizontal

and moment loads onto the foundations.

Meyerhof (1953) proposed that inclination factors be used to scale the reduction of vertical
bearing capacity caused by simultaneous horizontal loading, as shown in Fig. 3.1(a).
Applying the same shape factors as for the pure vertical loading, for a circular footing of

radius R, the bearing capacity becomes

Ve = 055,i,9€2RING A (3.2)

where iy istheinclination factor defined, for asoil of friction anglef, as



Chapter 3 - Srain Hardening Plasticity Model for Spudcans on Dense Sand 3-3

@ W
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Brinch Hansen (1963, 1970) retained Meyerhof’s basic approach, but defined the

LaH 6

2
- &y

and W= tan (3.39)

QO

inclination factor in terms of a ratio of horizontal to vertical load, unconditional on soil

properties:

i, = gi o.7§+ra . (3.3b)

For eccentric loading as shown in Fig. 3.1(b), Meyerhof (1953) suggested that for
calculating bearing capacities an “effective area’ concept should be used. The load carrying
contact area, and thus the bearing capacity, is reduced such that the centroid of the effective
area coincides with the applied vertical load. For a strip footing Meyerhof defined the

effective width as B¢= B - 2e, where e is the eccentricity of the applied load as depicted in

Fig. 3.2(a). For circular footings he did not specify a Bé¢value explicitly, only drawing the
effective area graphically (Fig. 3.2(b)). Brinch Hansen (1970) retains this effective area
approach, as does Vesic (1975), athough modifying the area capable of carrying load for
circular footings to be as shown in Fig. 3.3. The American Petroleum Institute (API, 1993)

recommends procedures for determining the effective foundation dimensions as

AC= BEC=pR® - 2eR*- € - 2R? sin'l?;%g and
eng

Lo |R+e (3.4)
B¢ R- e

A locus of limiting behaviour can be established in V:M:H space by combining these three

empirical formulations, i.e. vertical, eccentric and inclined loading. “Failure” is predicted
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for any foundation design load state exceeding this capacity criterion. If the maximum

vertical load is defined as the pure vertical bearing capacity, V . = 0.5s,g@RN A, and

assuming the moment load M = Ve, the failure interaction surfaces can be derived as

% ) A )
vV _1 A8 0.4%F- 0719 Egi- 0779 (Brinch Hansen, 1970) (3.5)
Vo 06 A2R & Vg LEE Vg

V. _ ABEE+01ten?(45 +F/2)(BILYEE tan (HN)O
Vi A2RE  1+0.1tan’(45° +/2) f o

(Meyerhof, 1953) (3.5b)

In the derivation of these failure surfaces, the shape factors defined by Brinch Hansen and

Meyerhof have been used:
Sy =1- 0.4i,(B¥LY (Brinch Hansen, 1970) (3.6a)
Sy =1+0.1tan*(45" +f /2)(BYLY. (Meyerhof, 1953) (3.6b)

Fig. 3.4 shows both Brinch Hansen and Meyerhof curves for a typica sand (for this

example f = 43°), with all loads normalised by the maximum vertical load V ., . Figs

3.4(a) and (b), represent planar cuts through the three dimensional surfaces along the

V/VIoeak axes under the conditions M = 0 and H = O respectively, whereas Fig. 3.4(c)

showsthe shapeinthe M/2RV ., - HN o planeat three V/V o, load levels.

Inthe H/V ey :V/V e plane, both Brinch Hansen's and Meyerhof’s curves are parabolic

in shape, starting with no horizontal and vertical load, i.e. H/V g =0 and VN o =0,
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and finishingat H/V e =0 and V/V o, =1. Both are skewed with peak horizontal load
values occurring at V/\/ ek < 0.5. Fig. 3.4(b) shows that both curves are skewed parabolic
in shape in the M/(2RV g ) VNV o plane, with a maximum moment occurring at
V/VIoeak <0.5. This is a similar result to Fig. 3.4(a). The yield loci defined from

Meyerhof’s and Brinch Hansen's theories are considered conservative compared with
existing experimental evidence for strip and circular footings (Dean et al., 1993).
Comparisons with the experimental results of Gottardi and Houlsby (1995) will be

described in section 3.3.5.

Moment can be developed on a footing with either positive or negative eccentricity, as
depicted in Fig. 3.5. In Fig. 3.4(c) quadrant (A) represents positive eccentricity and (B)
negative. For the analysis of jack-up platforms, the expectation is that the largest loading on
the foundations would be with positive eccentricity. Nonetheless, it is important in the
development of a model to consider all (V, M, H) load cases. Meyerhof commented on the
differences between the two cases, but only developed a solution for the positive case, with
no indication of a procedure to solve for negative eccentricity. Zaharescu (1961) made a
detailed investigation of the difference between negative and positive eccentricity, using a
flat strip footing on sand. He found that there is a larger moment capacity in the negative
eccentricity case for the same H and V loading. Despite this finding, Brinch Hansen and
Vesic retained Meyerhof's approach, and their results are based only on positive
eccentricity. Thisis illustrated in Fig. 3.4(c) where the capacity is assumed symmetric for

both negative moment and horizontal 1oad, contrary to Zaharescu' s findings.

3.2.3 Alternative Yield Surface Loci

As an dternative failure envelope in the V:M:H plane, Butterfield and Ticof (1979)

suggested for strip footings on sand a yield surface parabolic along the V axis, but elliptical
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perpendicular to it. Fig. 3.6 shows their surface, which they described as “ cigar-shaped”.
The surface was based solely on the interpretation of a large number of load controlled
tests, not relying on any empirical bearing capacity formula. Butterfield and Ticof
recommended that the size of their yield surface be determined by fixed dimensi onless peak

loads, with values M / BV, » 0.1 and H/V, » 0.12, where V, is the maximum vertica
load experienced. The surface is symmetric about all axes and pesks at V/V, =0.5. Nova

and Montrasio (1991) gave additiona verification of this surface as a good description of

combined load bearing capacity for surface strip footings on sand.

Research performed at Cambridge University has also shown the cigar-shaped surface
suitable for modelling the combined load bearing capacity of conical and spudcan footings
on sand. This work was co-ordinated by Noble Denton and Associates (1987) and is also

summarised by Dean et al. (1993). For this surface the peak loads were retained at

V/V, =0.5, but valuesof M /2RV, =0.0875 and H/V/, = 0.14 were suggested. (Note: for

conical footings, compared with strip footings, 2R replaces B.)

3.2.4 Concluding Remarks - Combined L oading on Foundations

The bearing capacity formulations and yield surface loci described in sections 3.2.2 and
3.2.3 have been developed empirically and verified experimentally in sand mainly for strip
and square footings, with only a small number of experiments on circular footings or actual
spudcans. The origina intended use was for onshore conventional shallow foundation
designs, where horizontal loads and moment are relatively small when compared with
vertical load. These formulae have been adequate, though usually overly conservative for
predicting failure under combined loads, but because of their empirical nature they cannot

be applied within numerical anaysis.
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3.25 Use of Plasticity Theory for Combined Loading of Offshore
Foundations

Recent research has not used the procedures of conventional bearing capacity factors but
has relied on the interpretation of experimental data in terms of the concepts of plasticity
theory. The exploration of the shape of the yield surface within three dimensional space
(V:M:H) allows for consistent procedures amenable to numerical analysis. This approach
was pioneered by Roscoe and Schofield (1956) when they discussed the design of short
pier foundations in sand in terms of the plastic moment resistance of the footing in M:V

space.

Schotman (1989) was first in describing a complete non-linear spudcan foundation
| oad:displacement model which he implemented into a relatively smple structural analysis
of ajack-up. The model was framed within plasticity theory in (V:M:H) load space, though
it still relied heavily on numerous empirical assumptions. For instance, the yield surface
shape was not defined experimentally, but was a limiting condition of empirical vertica
bearing capacity formula. The elasticity constants and plastic potential were calibrated
using limited finite element analysis. By factoring the environmental load, Schotman
investigated the load distribution between the footings when yield occurs, as well as its

effect on structural stability. Loading was applied as a point load at a set location on each

leg.

Tan (1990) made a detailed investigation of the H:V yield loci for various conical and
spudcan footings on saturated sand. His physica model tests were performed in a
geotechnical centrifuge at Cambridge University. Tan found that for spudcan footings on

sand, the H:V yield locus was not symmetric about V/V, = 0.5, and suggested that the peak

horizontal load occurred at about V/V, » 0.4. Although Tan did not develop a full
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plasticity model, he did combine his yield locus and plastic potential with theoretical
elasticity behaviour and a semi-empirical hardening law based on bearing capacity theory.
The resulting model was verified with retrospective smulation of both load and
displacement controlled tests. Though Tan modelled experimental data with an incremental

plasticity method, it wasin two dimensional H:V space with no moment component.

Martin (1994) investigated spudcan footing behaviour on cohesive soil with a programme
of physical model tests involving combined loading on reconstituted speswhite kaolin. The
test results were interpreted and theoretically modelled in terms of a work hardening
plasticity theory in three dimensions, which was named Model B. Martin used theoretical
stiffness factors to define elastic behaviour, and theoretical lower bound bearing capacity
solutions to define vertical bearing capacity with vertical penetration. He found from his
physica experiments on clay that the general shape of the V:M/2R:H yield surface
remained constant while expanding with increased penetration. This allowed the definition
of the yield surface to be normalised in one expression by V,, the pure vertical load
capacity at any depth. A modified cigar-shaped yield surface similar to Butterfield and
Ticof (1979) was used.

Martin (1994) found that the shape of the yield surface could be modelled as roughly
parabolic in the H/V; =0 and M/2RV, =0 planes, with adjustments made to the
curvature at relatively high and low stresses. The surface was found to be dliptical in the
plane of constant V /VV, , with a rotation such that the major and minor axes of the ellipse do
not coincide with the H/V, and M/2RV, co-ordinate axes. Gottardi and Butterfield

(1993) adso found this to be the case for their tests on surface strip footings on dense sand.

Their study concentrated on a load level of V/V, =0.5. However, in contradiction to

Gottardi and Butterfield, Martin found that for a spudcan footing (rather than a flat footing)
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the yield surface had a positive eccentricity. This implies that the maximum horizontal and

moment capacity occurs in the positive quadrantsin M/2RV, : H/V, space. Gottardi and

Butterfield’s study confirmed Zaharescu's (1961) observation that maximum moment
capacity occurs with negative eccentricity. Martin attributed the difference in Model B to

the use of spudcans with an angular underside profile rather than aflat footing.

3.3 Development of Model C

3.3.1 Introduction to Experimental Tests and Data

The combined loading of a footing results in a complex state of stresses in the underlying
soil. By expressing the response of the footing purely in terms of force resultants (V, M, H)
the model defined can be coupled directly to a numerical analysis of a structure. Fig. 3.7
outlines the positive directions of force resultants, (V, M, H) and the corresponding
displacements (w, g, u), with directions and notations for the combined loading problem as
recommended by Butterfield et al. (1997). For dimensiona consistency, the model will be

formulated with moment and rotation described as M /2R and 2Rq respectively.

The numerical model described in this chapter is based on a series of 29 loading tests
performed by Gottardi and Houlsby (1995) on arough, rigid, flat circular footing resting on
dry, dense Yedlow Leighton-Buzzard sand. The tests were carried out using the
displacement controlled load cell device designed and constructed by Martin (1994) and
located in the University of Oxford laboratory. The footings were subjected to a variety of
vertical trandations, horizontal trandations and rotation combinations with the
corresponding loads being measured. By varying the applied displacement path, the

load:displacement behaviour of a strain hardening plasticity model could be investigated
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and theoretically modelled. The major components of a strain hardening plasticity model
are:
An empirical expression for the yield surface in (V,M/2R,H) space. This failure
envelope represents ayield locus defining permissible load states.
A strain hardening expression to define the variation of vertical load with vertica
displacement. The yield surface expands and contracts with vertical plastic penetration
and plastic heave respectively, with its size determined by V,, the vertical |oad
capacity.
A suitable flow rule to allow predictions of the footing displacements during yield.

A model for elastic |oad:displacement behaviour within the yield surface.

To develop these components, the experimental displacement paths required were as

follows, with the expected load path directions depicted in Fig. 3.8:
Swipe Tests. The footing is subjected to a horizontal displacement or rotation after
being penetrated vertically to a prescribed level, in this case V = 1600 N. The load path
followed can be assumed to be a track of the yield surface appropriate to that
penetration. Tan (1990) first argued this assumption when he made his detailed
investigation of the (H:V) yield loci for various conical and spudcan footings on
saturated sand. Investigation of the yield surface at low stress is achieved by vertically
loading to the same vertical penetration then unloading to a low stress, in this case
V =200N before making a swipe. The swipe tests could be thought of as constant
vertical penetration tests.
Constant V Tests. Similar to a swipe test except rather than holding the vertical
penetration constant, the vertical load is fixed while the footing is driven horizontally

and/or rotated. According to plasticity theory, the yield surface should expand or
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contract according to the strain hardening relationship, with the tests providing
information on the load:displacement relationship (flow rule) at yield.

Radial Displacement Tests. Straight paths of different combinations of vertical,
horizontal and rotational displacements are applied to the footing to provide information
about the hardening law and flow rule. Vertical loading tests, where the footing is
purely penetrated in the vertical direction, are one specific example; these can be used
to deduce a vertical strain hardening law.

Elastic Stiffness Tests. Though the elastic stiffness matrix may be derived using
numerica methods (for example, finite element analysis of a footing), experimental
footing tests with small excursions in all three directions, after unloading from a
prescribed vertical load, can be used to establish approximate elastic stiffness

coefficients. With these the validity of any numerical selections can be determined.

3.3.2 Elastic Response: Choice of an Elastic Stiffness Matrix

Elastic response of the soil needs to be defined for any increments within the yield surface,

with existing theoretical and numerical elastic solutions considered for usein Model C.

The American Petroleum Institute (AP!) (1993) has recommended elastic solutions for rigid
circular footings on the surface of a homogeneous elastic half space subjected to vertical,
horizontal or moment loads. These closed form solutions are referenced in Poulos and

Davis (1974) and can be written in uncoupled matrix form as

€4GR u

0 0 U
&V § g-n ew 6
¢ . F g 8GR = 2
¢H 3 e 0 32GR(1- n)tLjBU )

e I

é 7-8 U
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where G and n are the shear modulus and Poisson ratio of the soil respectively. The terms
were derived with contradictory assumptions, with the vertical and moment solutions
developed for smooth footings while the horizontal term assumed a rough footing with no
vertical deflections. Bell (1991) showed that these solutions are exact only for
incompressible soils (n = 0.5). For these soils the smooth and rough cases equate and cross
coupling does not exist. However, as most sands have n < 0.5, the API recommendations

are imprecise for use in the analysis of jack-up foundations.

In response to limited consistent information on the elastic response of flat circular footings,
Bell (1991) conducted extensive research using finite element methods. He investigated the
effects of footing embedment for a full range of Poisson ratios concluding that vertical,
rotational and horizontal stiffness increase with depth of penetration. His work also showed
that cross coupling between the horizontal and rotational footing displacementsis important.

Bell expressed this mathematically as

@ Voo Skl 0 oLjLEew o
gM/ZRi: ZGRSO k2 k4 @ZRq: (38)
& H 5 g0 ky ki u

and set out tabulated values of k, ¥4 k, for flat footings. As footings on dense sand are

usually considered as shallow footings, the results for the surface condition can be assumed,
allowing for constant k values. For elastic behaviour within the yield surface in Model C,

Bell’sresults for n = 0.2 were used,* with the values as follows:

k,=265; k,=046; k,=230; k,=-0.14.

! Lade (1977) found that a Poisson’ s ratio of 0.2 is appropriate for awide range of sands.
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These stiffness coefficients have been adjusted for rotations normalised by 2R rather than R
as in Bell’s thesis. Ngo-Tran (1996) furthered Bell’s finite element investigation deriving
factors for Eqn 3.8, considering the effects of the cone angle of conica footings, footing

penetration, and Poisson’ sratio.

The elastic stiffness tests and the vertical unload-reload loops provide information on the
stiffness coefficients observed during Gottardi and Houlsby’s (1995) experiments. Vertica
unload and reload loops were performed nine times on the vertical load tests, as shown in
Fig. 3.9, and seventeen times in the pre-peak region of the swipe and vertical load tests.
Though non-linear behaviour was observed, by averaging the unload section of the loops,

the vertical stiffness can be estimated as K, =14.93kN/mm. A large scatter in elastic

stiffness was observed, with a normal standard deviation for the 26 tests of 3.5 kN/mm.
Horizontal and moment elastic stiffness were estimated from the eastic stiffness tests. The

values were calculated as K, =1.85 and K,, =0.54 kN/mm respectively. However, as

only two pilot elasticity tests and one fully successful test were performed, and given the
scatter seen in the vertical case, some doubt should be cast over these results. In the
horizontal and moment excursions cross coupling was evident, with rotation about the axis
norma to the direction of the horizontal load observed, and similarly, horizontal
displacements during moment loading. It is of interest to note that small amounts of positive
vertical displacements were recorded throughout the duration of these excursions,
suggesting the existence of plastic behaviour within a region that will be theoretically
modelled asfully elastic.

3.3.3 Development of a Strain Hardening Law
The following empirical formula defines the vertical bearing capacity with plastic

embedment (w,, ):
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vV, = i (3.9

where kisthe initial plastic stiffness, V,,, is the peak value of V,, and w,, the value of

plastic vertical penetration at this peak. This formula was developed as a closed form
solution to fit the data from two vertical load tests by Gottardi et al. (1997). However, by
extending the fit to al the vertical load tests, and minimising the error squared between the

experimental and theoretical values, the parameters have been defined as

k =2175N/mm; Vom = 2050 N; Wy, =3.16 mm

with the best fit shown in Fig. 3.9.

A formula that models post-peak work softening as well as pre-peak performance was

essential, however, Eqn 3.9 unrealistically implies V, ® 0 as w, ® ¥ . Therefore, it can

only be used for a limited range of penetrations. For jack-ups in dense sand, loading post-

peak would not be expected; however, for a complete foundation model, Eqn 3.9 can be

dtered to
. 2
b ) Oeew, O
kw, +G—L—C P~
p = YOm
1- fpgwpmz
V, = (3.10)
m W, 0 @ 1 Gew, O
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where f, isadimensionless constant that describes the limiting magnitude of vertical load
asaproportion of Vg, (i.e. Vo ® f Vg, asw, ® ¥ (seeFig. 3.10)). It is possible to use

the same parametric values of k, V, and w,, inEgn 3.10.

3.3.4 Development of a Three-Dimensional Normalised Yield Surface

The swipe test load paths are used to determine a three-dimensional yield surface with
loads normalised by V,, the ultimate bearing capacity. All swipe tests outlined in Gottardi
and Houlsby (1995) are used, with Fig. 3.11 showing the basic shape mapped out in the
deviatoric/norma planes (H/V,:V/V,ad M/2RV, :V/V,). Initidly V, has been
assumed as the vertical load at the start of the swipe, therefore all tests beginat VNV, =1.
However, the load paths of the swipe tests do not follow a yield surface of constant V,;

with a steady increase in vertical plastic penetration, slight expansion of the yield surface
occurs. This penetration is partly the result of elasticity in the soil, but more importantly,
due to a testing rig of finite stiffness. Therefore, as the vertical load reduces during the
course of the swipe, by calculating the additional plastic penetration due to the rig stiffness,
a correction to V, can be computed using the theoretical hardening law. This can be
explained in more detail using Fig. 3.12, noting that plastic vertica displacements have
been aready evaluated by subtracting the theoretica elastic component from the

experimental results according to Eqn 3.8. At the commencement of the swipe, V,__. is

knownand w,,__ can be calculated by solving the quadratic equation

.2 .. L.
(iavpstart 9 (ia-' fp(VOm/VOStart)g_l_(iek ) k _ 2 9W +1:O (311)
g Won g g 1- 1, 2 gVOm Vosart Wom -
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which has been formulated by rearranging the hardening law of Eqgn 3.10. As al swipes
started on the rising section of the hardening curve, the lower root of Egn 3.11 is the

solution for w,__ . For each experimental data point, the vertical load V., and the

experimental penetration Whe, € known, with the theoretical yield surface size VOtheory

and its corresponding theoretical plastic penetration Wy requiring evaluation. As
eory

depicted in Fig. 3.12, W pineory MY be written as

Otheory ) V9<P

+dw,_ +

Wptheory = Wpstart p K (3 12)

\

where K, =14.93kN/mm as evaluated by using the vertical unload-reload loops. By

substituting w into Eqn 3.11, a solution for V, can be evauated, thus determining
Ptheory Otheory

eor

the theoretical size of the yield surface at that experimental point.

The shape of the yield surface in the M/2RV, : H/V, plane is difficult to visualise from
Fig. 3.11. However, by taking the yield points at varying V /VV, positions and plotting them
in the p plane (M/2RV, : H/V, ), asin Fig. 3.13, a clearer picture can be seen. The yield

points map out a parabolic section in the deviatoric/normal planes (Fig. 3.11) and a rotated

elliptical section in the p plane, as shown in Fig. 3.13 by the highlighted V/VV, = 0.2, 0.5

and 0.8 values. The cigar-shaped yield surface as used by Houlsby and Martin (1992) and
Gottardi et al. (1997) isagood first estimate of the basic shapes presented in Figs 3.11 and

3.13, and can be written as

@H 0 aM/2R0 20HM/2R o 0@ V

=G 2 - _ =0. (3.13)
hVog &MVo g hymyV, Vog & Vo
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The first three terms (the H and M /2R terms), for constant V/V, values, map out a

rotated ellipse in the p plane whilst the fourth term (the V term) represents the parabolic
section in the deviatoric/normal planes. The parameters h, and m, are the intercepts of the

ellipse with the respective co-ordinate axes, whilst a determines the eccentricity of the

ellipse.

Eqgn 3.13 incorrectly predicts apeak at V/V, = 0.5, which can be seen in Fig. 3.14 to be an
overestimate. In Fig. 3.14 the force relationships in the H/V,:V/V, and the
M/2RV, :V/V, planes have been collapsed onto a single plane by defining a general

deviator force as

+

I-1-O

5 @M /2RO 2aH M/2R
; : .22 . (3.14)
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Additionally, the theoretical curve underestimates the yield surface location at both low and

high stress levels (V/V, <0.3 and V/V, >0.8). A correction needs to be introduced to

yield surface Eqn 3.13 to account for both of these features.

While investigating the interaction diagram for strip footings on sand, Nova and Monstrasio

(1991) used a modified parabola of the form

H Inter
VO

I-1-O

.b
—ml&_ VS 3.15
m\Zé Vo ¢ ( )

Q

where H,,, is the intercept of the ellipse on the H co-ordinate axis and M scales the

magnitude of the peak load. Nova and Monstrasio noted that with b = 0.95 an improved fit

of their data occurred. The choice of b controls the vertical load level at which the peak



Chapter 3 - Srain Hardening Plasticity Model for Spudcans on Dense Sand 3-18

horizontal load occurs, and in this form, with b < 1, the peak horizontal load shifts to a
vertical load value of V/V, >0.5. In addition, with b < 1, the tip of the parabolais rounded
off, implying the slope at V/VV, =1 is vertica. This allows differentiation of the yield

surface at that point%s a numerically desirable condition if associated flow is assumed. The

analogous expression in terms of moment is

Mg _ oV 1
_m\/_g v (3.16)

BV,

QIIO

where B is the width of the strip footing. Nova and Monstrasio (1991) and Gottardi and
Butterfield (1993) both described Egn 3.16 as a good fit for experimenta strip footing data

on sand.

As seen in Fig. 3.14, experimental data shows that the peak horizontal and moment loads
occur at vertical loads of V/V, <0.5. Unfortunately, Eqns 3.15 and 3.16 are only capable
of shifting the pesk from V/V, = 0.5 towards V/VV, =1 if arounded parabolaat VNV, =1
is to be maintained. Therefore with only one b defined, the experimental data cannot be
successfully modelled. For the same reason, Martin (1994) in his analysis of combined

loading on clay, proposed the introduction of a second b factor and adjusted mto preserve

the magnitude of the desired peak load. Martin’s modifications can be written as

by+by)
- ot &' v e @17
V0 @ b, b, Vo o Vo g
or
Mg _ é(b, +b,) ") ey 5 . l@bz (3.18)
ZRVO é blblbzbz ' VOB ? VOB .
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These expressions allow the pesk to be shifted aong the V/V, by varying the b, and b,
values, whilst maintaining the peak horizontal and moment load a h,V, and m,2RV,
respectively. For the conditions b, < b, <1, the peak horizontal load will occur at

VAN, <0.5, with the parabola rounded off and differentiable a both V/V, =0 and

VN, =1.

An expression for the fully normaised VN, :M/2RV,:H/N, yied surface can be
obtained by substituting Eqns 3.17 and 3.18, the expressions relating the V/V,: H/V, and
VN, :M/2RV, interaction, into the genera llipticd equation relating the

M/2RV, : H/V, interaction:

2H 0 aM2R0 2aHM/R

Chovop &MV 5 hymV,2

f(V,M/2R H) =

. 2
&b, + b, )(bl+b2) U eev 0@ v
T K- VI v

e b b, 9! Vo g Vo o

=0. (3.19)

This equation defines the yield surface of Model C.

With the yield surface equation defined asf = O, the parametric values of h,, m,, a, b, and

b, were derived to minimise the deviation of experimenta (V,M/2R,H ) load states from
this theoretical surface. A FORTRAN program was written to quantify this deviation for
different permutations of the yield surface parameters. A total error value was evaluated as
the sum of the theoretical valuesof f 2 for al the data points equally weighted, for al the
swipe tests. As previously outlined, adjustments were made to the experimental values

when calculating V,, to take soil elasticity and rig stiffness into consideration. The minimal
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total error was found, establishing the following combination of yield surface parameters as

the best fit:

h, =0.116; m,=0086; a=-02; b, =09; b,=0.99 or 1.0.

The Model C yield surface shape is shown in three-dimensions in Fig. 3.15. The

parameter b, could either be defined as 0.99 or 1.0 depending on whether it is essential to
have a rounded off yield surface at V/VV, =1, with little difference in the overall yield
surface shape. However, if the differential is not needed to be defined at V/V, =1, asisthe

case when a separate plastic potential is defined, then b, =1.0 alows for amathematically
less complex yield surface expression. The value of a = -0.2 implies an anti-clockwise
rotation of the axes and agrees with both Zaherescu's (1961) and Gottardi and Butterfield’s
(1993) observation on sands that the failure locus in the M/2RV, : H/V, plane is not
symmetric with respect to the co-ordinate axes but is rotated with a negative sense of

eccentricity.

3.3.5 Comparisonswith Other Yield Surfaces
In this section comparisons are made between various planar sections of the Model C yield
surface (Egn 3.19) and the predictions of some other yield surfaces described in the

literature review. The experimental value of f = 43° isused in all theoretical formulations.

3.3.5.1 TheDeviatoric/Normal Plane (H/V,:VIVy, MI2RVy: VIV, or QIVo:VIVy)
Figs 3.16(a) and (b) shows Egn 3.19 for comparison with the experimental values and aso
Brinch Hansen's (1970) and Meyerhof's (1953) bearing capacity predictions. The

assumption that the peak bearing capacity V ., isequivalent to V, is made to determine the
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adequacy of the bearing capacity interaction curves as yield surface models. Both in the
horizontal and moment directions Egn 3.19 fits the experimental values consistently well.
The maximum size of the yield surface occurs when V/V, = 0.474, agreeing with Tan's
(1990) assessment that the maximum size of the yield surface in the H:V plane occurs at
V/V, <0.5. For most conditions, Fig. 3.16 confirms that both Meyerhof’s and Brinch
Hansen's results would be conservative if used as a yield surface in this context. The
deviatoric/normal plane of M/2R=0 is an exception, with Fig. 3.16(a) showing that
Brinch Hansen’'s results are not conservative when compared with the Model C surface.

Fig. 3.14 compares Egn 3.19 with the experimental data in the Q/V, :VV, plane, and

shows that the use of the two b factors does provide a justifiably better fit, especially at

the peak and low load levels.

3.3.5.2 Thep Plane (M/2RV:H/V,)

Fig. 3.16(c) shows interaction in the p plane for three representative load levels VN, =
0.2, 0.5 and 0.8, for both Egn 3.20 and for Brinch Hansen and Meyerhof’s solutions. The
experimenta data points derived from the six sideswipe tests and their reflections have also
been plotted and can be seen to fit Eqn 3.19 well, especialy for the V /V, = 0.5 case. Again,
it is evident that Brinch Hansen’s and Meyerhof’s solutions are conservative for all load
levels compared to Model C and the experimental data. They are, however, more accurate
in the positive quadrants of M/2RV,, : H/V, space, an understandable result given that the

Brinch Hansen solution is based on positive eccentricities and ignores negative eccentricity

loading.
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3.3.6 Development of the Plastic Potential
To model load-deflection behaviour, incremental plastic displacements at yield are used to
define a suitable flow rule. To achieve this, the displacements were investigated on two

planes: the p plane (M /2RV, : H/V, ) and the deviatoric/normal planes (H/V, : VN, and
M/2RV, : V/V, ). Swipe and constant V tests provide information about the flow rule in the

p plane, with the tests designed to explore all loading directions. Constant V tests also
provide data in the deviatoric plane as they contain substantial plastic displacements in the
vertical as well as the radial direction. In addition, the plastic displacements of the radial
displacement tests present information on flow in the deviatoric/normal plane at one ratio of

incremental displacements per test.

3.3.6.1 Incremental Plastic Displacementsat Yield: p Plane

Within plasticity theory, if associated flow is assumed in the p plane, the theoretical change

in horizontal displacement and rotation can be derived for the yield surface of Egn 3.19 as

e 0
u, = - 22H2 2aM/2R 320
H gho Vo ho MoV o ﬂ
5
2Rdq, =| i |8QM/2R 2aH 2 (3.21)

T(M/2R) gmo Vo omovozg

where | isamultiplier which can be derived from the condition of continuity with the strain
hardening law. The ratio of plastic strain rate can be written in terms of the current load

state as
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H2RMo . am
dp__ o (3.22)
2Rda, Mo ok
my

The incremental experimental plastic displacement ratios for the six swipe tests and four
constant V tests have been plotted against their load state in Fig. 3.17. The plastic
displacements were evaluated by subtracting the theoretical elastic displacement component
from the total experimental displacements using the matrix of Eqn 3.8. This introduces
uncertainty due to doubt in the magnitude of the estimated elastic components and especially
their dependence on choice of shear modulus. However, with the value of G = 59.8 MN/nt
(based upon Eqgn 4.1 with the dimensionless shear modulus factor g = 4000, atypical value
recommended for use in Model C) used in this computation there is only a relative
difference of up to 16% between the evaluated plastic displacements and the total
experimental displacements. The theoretical associated flow curve has been presented in
Fig. 3.17. With the experimenta data falling both sides of the curve, the assumption of
associated flow in the p plane is reasonable. As the experimental displacements are for a
large range of vertical load levels, associated flow can be justified in the p plane along the

entire yield surface.

3.3.6.2 Incremental Plastic Displacementsat Yield: Deviatoric/Normal Plane
By using the genera deviator force, Q as defined in Eqgn 3.14, the plastic displacements in

thisradial direction are defined according to plasticity theory as

dq,, =| T o120, (3.23)

1Q

Combining Egns 3.14, 3.20, 3.21 and 3.23, dq, can be written in terms of horizontal

displacements and moment rotations as
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2 =

1
da,, a2 (hodup)2+(m02qup)2+2a(h0dup)(moszqp)]. (3.24)

For the constant V tests, the arrows in Fig. 3.18 show the incremental plastic displacement

directions in the Q:V plane for a number of yield points at various V, vaues. The

theoretical yield surfaces are calculated using Egn 3.19, and as in the p plane, plastic
displacements are evaluated by subtracting the estimated elastic component from the raw
experimental data. In constant V tests, the yield surface expands and then contracts
according to the hardening law. In Fig. 3.18, crosses indicate the flow directions on the
expanding yield surface, while circles represent contraction. Fig. 3.18 indicates non-
association in the deviatoric/normal plane, with the displacement directions containing a
larger vertical displacement component than if associated flow was assumed, in which case
displacements would be perpendicular to the yield surface. As the yield surface expands
with increasing load Q, the incrementa plastic displacement directions remain almost
constant, implying that on this load path the displacement ratios are insensitive to the force
ratio. This was an observation also made for constant V type tests by Gottardi and
Butterfield (1995) in their series of model tests on a surface strip footing on dense sand, and
mentioned in Gottardi et al. (1997). After reaching a peak radial load, and with the yield
surface contracting, Fig. 3.18 shows the displacement directions contain a dightly larger
component of vertica displacement when compared with the expanding surface; an

explanation for thiswill be explored later.

The direction of plastic flow in the deviatoric/normal plane for the radial displacement tests

is shown by the arrows in Fig. 3.19, with yield points selected at V, = 400N intervals.

Strong non-association in the deviatoric/normal plane is aso clear from these tests. With

each test providing information at oneratio of QtoV, it is evident that for increasing Q/V ,

the ratio of radial to vertical displacements dq, / dw, also increases. Test gg22 shows that
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there is till a prediction of vertical penetration rather than heave at Q/V » 3, even though

thisisin the region of the theoretical yield surface to the left of the peak in Q. Interestingly,

though the displacement vectors of test gg22 are pointing into the yield surface, this
phenomenon is a function of mapping the angle tan'l(dqp / dw,) onto the Q:V plane. A

displacement vector directed inwards from a yield surface is unusual, but can occur on
certain mappings of non-associated flow (irrespective of the mapping, an associated flow
vector will, however, always point in the direction of the outward normal to the yield
surface). It should not be confused with an inward directed force vector, which would
indicate elasticity. If the displacement directions were plotted against the yield surface in

the three dimensiond (V/V,:M/2RV, :H/N\,) plane, the vector would not be inward

directed.

With non-association so clearly visible, a plastic potential g, differing from the yield
surface, must be defined to model the force-displacement relationship. The ssimplest plastic

potential would be one based upon the shape of the yield surface.

Martin (1994) developed a work-hardening elasto-plastic model for clay assuming

associated flow in the p plane. He used an “association parameter” z, to adjust vertical

displacements to match those observed experimentally, with

Tw, =z, W (3.25)

P associated  *

This association parameter took on two different values, both less than one, depending on
the direction of the vertica displacement. This simplified model, which requires no
separate plastic potential to be defined, works adequately for Martin’s experiments on clay,
but would not model the sand tests well. For example, for load states at V values less than

that at the peak in Q on the yield surface, the prediction of heave is not appropriate for
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dense sand. This can be seen in test gg22 in Fig. 3.19, where vertical penetration is till

being observed.

In investigating the H:V yield loci for spudcan footings on saturated sand, Tan (1990)
suggested a plastic potential that used the same yield surface equations, but with a “plastic
potential parameter” to distort the peak of the surface in the deviatoric/normal plane. In the
three dimensional case for Model C, based on the yield surface described by Eqgn 3.19 this

concept could be formulated as

2H ¢ aEM/ZRgz_ZaH M/2R

OV MR = Ves e s 2 homvd

b,

(by+b,) ('jz ('ijlw ('52
Zﬁbl + b2) = &V = i; =0 (326)

VL) e & Ve

where V{ defines the value of maximum vertical load for the current plastic potential shape
(thatis, H =0 and M/2R=0). The association parameter a, alows for variation of the

vertical displacement magnitude and location of the “parallel point”? at a desired vertical
load level. However, these two requirements are linked and with only one parameter it is

difficult to model both adequately.

Incressing h, or m, with two association factors, rather than scaling the vertical

component, enables the plastic potential’s shape to change in the radia plane. This

consequently reduces radial plastic displacements. This method has the advantage of more

2 At the peak of the plastic potential a parallel point exists where continuous radial distortion occurs with
no change in vertical plastic displacements and consequently no change in the yield surface size. Accurate
prediction of this point is important as it describes the transition between settlement and heave of the
footing and where sliding failures will occur.
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flexibility in modelling subtle differences between horizontal and moment loading results.

Using two association factors the plastic potential may be defined as

2
0 aeM/ZR o HM/2R
M /2R, H 5 -2a— 12
9. M/ )= é hoVo% ga mVég a,a,hom Ve

b, + b)) Gay ™ v 6™

S oo, 585 & vy (820

If a,, and a,, are constant and equal, Eqn 3.27 is equivalent to Eqn 3.26 for the same value
of a,. Fig. 3.20 indicates how factoring h, and m, by scalars a, and a,, affects the
theoretical predictions of force to displacement ratios. If a,,, a,, = 1, the plastic potential
and yield surface coincide and associated flow isimplied. If a,, a,, <1, the intersection

of the plastic potential and the yield surface creates a flattened plastic potential with

V>V, (plastic potential ;) in Fig. 3.20). This increases the ratio of radial to vertical
displacement when compared with associated flow at that force level. Conversely, if a,,
a,, > 1, the surface expands in the Q plane with V@<V, and the amount of radia to

vertical displacement is reduced (plastic potential (, in Fig. 3.20).

Fig. 3.21 shows for al constant V and radia displacement tests the ratio of radial to

vertical plastic displacements, dq, /dwp , for their current force ratio, Q/V . The figure is
formulated in terms of the angle of the force ratio tan(Q/V ) and the angle of the
displacement ratio tan’(dq,, /dw,, ) as depicted in Fig. 3.22. A value of tan(dq, /dw, ) =
90° indicates the transition from vertical penetration to heave and is marked on Fig. 3.21(a).

Unfortunately, al of the constant V and radia displacement test data is concentrated in the

region of tan™( da, /dwp) < 30°; this area is highlighted in Fig. 3.21(b). The difference in
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horizontal and moment loading has been indicated in Fig. 3.21(b), with moment loading
consistently showing higher ratios of dq, /dwp for the same load level. Eqn 3.27 with
a, ! a, dlows for this difference to be theoretically modelled. Additionally, Fig. 3.11
indicates that the parallel point of sideswipe testsis not located at the same V/V/, level, but

variesfor different loading positionsin the p plane. Thistoo can be modelled by Eqn 3.27.

In Fig. 3.23, atheoretical plot of associated flow corresponding to

dd, = R (3.28)

dw, TF/V
has been added for comparison with the experimental results, and as expected substantially
overestimates dq, /dwp for all force ratios. By systematically increasing a, and a,, in
Eqgn 3.27 the increasing degree of non-association can be compared with the experimental
results. Values between 1.75 and 3.0 correspond to sections of the results, but no single
valuefitsall. By smply replacing the yield surface parameters b, and b, in Eqn 3.27 with
two new values, b; and b,, to alow for different variations in curvature at the minimum

and maximum vertical stress levels respectively, a better fit can be achieved. The new

plastic potential may be written as

o LEM/2R o H M/2R
2a— R

hh0V0¢ﬂ gamﬁbVo% apan,hymyVf

g(V,M/2R H) = g

%{bg +b )(b3+b4) Y 0 - i92b4
g (5)> (b, )" _gvo_ g L

=0. (3.29)

Fig. 3.24 compares the experimental displacement directions with theoretical predictions

with b; = 0.55 and b, = 0.65. By reducing b, and b, from their equivalent yield surface
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values, the plastic potential is steegpened with respect to the V axis at both low and high
stress levels, allowing for a substantial decrease in the ratio of radial to vertica
displacements at small and large Q/V values. Two separate theoretical curves are needed
to fit adequately the constant V and radial displacement tests and are shown in Fig. 3.24

(a,=a, =175 and a, =a,, =24 respectively). Due to the differences in the

experimental displacement directions, one solution encompassing both constant V and radial

displacement tests could not be found with uniform a, and a,, vaues though a

compromise solution has been shown in Fig. 3.24 (a,, =a,,, = 2.05).

Given the variance in the two types of experimental tests, the question of which loading
directions are important for the foundation modelling of jack-up rigs needs to be addressed.
Jack-ups are preloaded vertically to approximately twice their service vertical load before
being subjected to any radial loading. For Model C this expands the yield surface to the size
of the pre-load as shown aong A® B® C in Fig. 3.25. When subjected to environmental
loads on the legs, radial load on the footings will naturally increase with vertical load being
shed from the upwave leg to the downwave leg. This creates load paths as shown by C® D
and C® E in Fig. 3.25. The downwave leg's path contains e ements of both the constant V
and radia displacement tests and could be seen as a combination of the two. However, no
experiments directly explored the surface subjected to aloading path smilar to the upwave
leg at low vertical load levels. It is imperative for the modelling of jack-ups that the flow
rule is consistent for both constant VV and radial displacement tests and justifiable at low

vertical load levels.

Fig. 3.21(b) shows that for an expanding yield surface in the constant V tests (pre-peak of
the strain hardening law), the displacement ratio remains relatively constant with increasing

force ratio. For a contracting surface (post-peak of the strain hardening law), dq,, /dwp
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reduces, indicating that proportionately less radia displacement was measured than for the
same radial loads when the surface was previousy expanding. Both expanding and
contracting behaviour in the constant V tests indicate “stiffening” occurring in the radia
force-displacement relationships. This implies that in the horizontal plane, to continue the
same rate of horizontal displacements increasing levels of horizontal load must be applied.

The same is true for moment rotation. To model this behaviour, the association factors a,,
and a,, could increase with horizontal and moment displacements, indicating a greater

degree of non-association, rather than remaining constant. An appropriate form of variation
could be similar to the pre-peak region of the vertical hardening law, a hyperbolic function,

but with limiting a,, and a,, values, written as

_kfa, tany (up)

a, = K6+ (u,) (3.30)
_ k%amo +am¥ (2qu)

a,= K6+ (2Rq) (3.31)

where a,, and a,, represent the association factors with no previous plastic radial
displacements. As indicated in Fig. 3.26, k¢ and k¢ relate the rate at which a,, and a,,

approach their limiting valuesof a,, and a,,, respectively.

Fig. 3.27(a) indicates how Egns 3.30 and 3.31 will map onto the tan '(Q/NV):
tan” 1(dqp /dwp) plane for atypical constant V test. Commencing at the origin A, under the

application of radial load, the test will start by tracking close to the a, curve. With

increasing plastic radial displacements the test will move across the lines of increasing
congtant a to B, the position of a fully expanding yield surface at the peak of the strain

hardening law. As it would be unusual for ajack-up in dense sand to load past point B, it is
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important to fit this load:displacement gradient between A® B reasonably well. The rate at
which the plastic potential expands controls this gradient and is determined by the

parameter k¢ or k¢. For a contracting yield surface, B® C on Fig. 3.27(a), radial load is

decreasing and the test path will asymptotically approach the a, curve.

Each of the six radial displacement tests provides an accurate picture of the force ratio at

one rate of displacement and, as shown in Fig. 3.21, the displacement ratios dq,, /dwp are

consistently lower than those of the constant V tests. The reduction of the displacement ratio
with radial displacement, as seen in the behaviour of the constant V tests, is aso not
consistent with the radial displacement results. This implies that the force-displacement
flow is sendtive to the direction of loading and any plastic potential must take this
difference into account if it is to model al loading combinations adequately. One
explanation for the disparity isthat the constant V tests were loaded primarily in the vertical
direction (to V = 1600 N) before any radial displacements were applied to the footing. This
contrasts with the radial displacement tests, where radia displacements were applied
immediately a V = 0. If radia stiffness were to vary with horizontal and moment
displacement, as postulated about the constant V tests, an assumption that this rate is
proportional to the vertical displacement history of the footing would be physically sound.
If the footing has been loaded vertically to a higher level, compacting the underlying soil
under vertical stress, the radial displacements needed to expand the plastic potential fully
would be proportionally greater. To account for this, radia displacements can be
normalised by the plastic vertical displacements, allowing Egns 3.30 and 3.31 to be written

as

a :kﬂaho +6}h¥(up/wp)
T kgl /w)

(3.32)
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— kﬁEamo +a,m¥ (Zqu/Wp)

A k%+(2qu/Wp)

(3.33)

The effect on the path of the constant V test described in Fig. 3.27(a) is minimal, athough
different k¢ values need to be selected. Fig. 3.27(b) shows the expected theoretical position

of radial displacement tests of different force ratios. As w,, starts at zero, the theoretical

displacement ratios can be assumed to be close to the a, curve. Therefore, for the two load

paths, Egns 3.32 and 3.33 allow different theoretical flow paths to be followed.

The parametric values of the plastic potential relationships have been derived by
minimising the least squared error of the difference between the experimental angular
direction in the deviatoric/normal plane and the theoretical direction, as depicted in Fig.
3.28. Egns 3.32 and 3.33 contain six new parameters; however, this can be rationalised to

three. If theinitial a,, and a,,, curves are assumed as the associated conditions, a, and
a,, canbereplaced in Egns 3.32 and 3.33 with the numerical value one. This assumption

is supported by the constant V experimental data shown in Fig. 3.24. Furthermore, the rate

of variation of a, and a,, can be assumed the same, reducing k¢ and k¢ to the one term,

k¢. With the plastic potentia defined asin Eqgn 3.29, the following values were eval uated:

b, =055, b,=065; a,, =25; a,y =215; k¢=0.125.

Fig. 3.29 shows that the theoretical displacement ratios calculated using the expanding

plastic potential are close to the experimenta ratios for both the constant V and radial

displacement tests. The theoretical a, and a, values were calculated assuming the

experimenta plastic displacements.
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3.3.6.3 Numerical Evaluation of Plastic Potential Size

To evaluate the size of the plastic potential (i.e. the magnitude of V# in Egn 3.29), a factor
x=V{#V, can be defined to relate the primed (plastic potential) and non-primed (yield

surface) values. The value of x for a certain load V i/, can be obtained from the numerical

solution of
b, + b)) 6 v o
L e B2
\/Kx(l w8 (0)7(0,)” Gav 0™ & Vo (334)
B (g{b3+b4)(b3+b4)9 Voo g[' VMg 9b4
& (by)>(b,)™ e X o
where
.2 .2
A=§ig +39\/|/2Rg ~2aH M/2R (3.35)
hOﬂ mo 4] hOrnO
2 .2
@H 0§ +69\/|/2Rg _ 2aH M/2R (3.36)

B= - - .
éahhor'a anMy g apdphymy

3.3.6.4 Commentson Model C's Plastic Potential

The experimental evidence did not support the application of associated flow in Model C
and a plastic potentia function g was defined. Plastic displacements occur when the force
point is located on the yield surface and in the direction normal to the plastic potential
shape, as defined by Eqgn 3.29. The non-dimensional association factors a,, and a, relate
the size of the yield surface to the shape of the plastic potential and are formulated as

hyperbolic functions in terms of plastic displacements. The rateswhich a, and a,, vary in

Model C are depicted in Fig. 3.30.
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Model C's plastic potential is defined by five parameters, arguably an overly complex
arrangement to explain the flow rule of shallow circular footings. However, systematic
variation of the association factors makes modelling the differences caused by the loading
direction possible, resulting in greater confidence in the ability to model areal jack-up load
path. Furthermore, with uncoupled horizontal and moment association factors, greater
flexibility in the modelling of the location of the parale point is possible. For different

radial load paths, the point may occur at unique V/V, levels, the importance of which will

be highlighted in the retrospective predictions of the experimental swipe testsin Chapter 4.

As a less complicated alternative, with only three parameters, the compromise solution
shown in Fig. 3.24 could be used (i.e. b; =0.55, b, =0.65and a,, = a,, = 2.05). Further

physical experimentation, especially at low Q/V load levels could lead to a more accurately

defined, and perhaps aless complex, flow rule.
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Chapter 4 — Numerical Formulation of Model C for the

Analysis of Jack-Up Units

4.1 Introduction

The numerical formulation of Model C is described in this chapter. Retrospective prediction
of the Gottardi and Houlsby (1995) experiments has been performed, with examples
showing the capabilities of Model C detailed. A description of a numerica model
accounting for the conical features of spudcan footings is aso presented. Finally, the
formulation used to incorporate Model C into the dynamic structural analysis program
JAKUP is detailed.

4.2 Featuresof Model C

4.2.1 General Structureof Model C

Model C is defined by twenty parameters, most of which are dimensionless. There are three

quantities, however, which define the dimensions of the model. These factors are the footing

radius R, the effective unit weight of the soil g and the shear modulus G; R and gare user-

defined, whereas G is estimated using the expression
G 2Rg

_=g
Pa Pa

(4.2)

where p, is atmospheric pressure and g is a non-dimensional shear modulus factor. This
equation is derived from the empirical observation that the shear modulus depends
approximately on the square root of the stress level, with 2Rg a representative estimate

(Wroth and Houlsby, 1985). Table 4.1 outlines the twenty Model C parameters and gives

typical values.
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The vertical strain hardening law for Model C, as formulated in Egn 3.10, describes the

isotropic variation of the yield surface size. Numerical values of k, V,,, and w,, were

derived for the experimental conditions based on one radius and one sand. Assuming the

same shape of the vertica strain hardening law, k and w,,,, can be defined for different sized

footings by introducing the dimensionless parametersf and d ;, where

k = f2RGK, (4.2)
and

W, =2Rd, . (4.3)

The vaues of f andd,were determined from the experimental results as 0.144 and 0.0316

respectively. V,,, can be calculated for different sands from bearing capacity theory as

Vom = GNgPR? (4.4)

where N, is the dimensionless bearing capacity for a circular footing (for example values

see Bolton and Lau (1993) or section 4.4.1).

4.2.2 Numerical Formulation of Model C

If the loading increment is entirely within the yield surface, then elastic displacements are
described by Egn 3.8. However, when the footing is yielding, plastic displacements are in
the direction normal to the plastic potential with a multiplication factor | determining the

magnitude of the plastic displacement increment according to
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£ M 9
pdw, 0 ¢ T -
g2Rdq, +=| gﬂ M/ZR;. (4.5)
g, 5 C gy C

W b

Since the flow rule is defined in terms of plastic displacements, Model C has been
formulated in terms of flexibility rather than stiffness. Therefore, for an elasto-plastic

increment during yielding, the elastic and plastic components are summed to give

g 0
®edw, 0 gdw, 9 &dw, 0 €, 0 O dv ¢ ¢ WV =
¢ T ¢ - T_ @ e ¢ 9 =
gZquep+:92que++(;2qup+=éO C, C4u§dM/2R++I(;‘”M/2R+ (4.6)
Sdug 5 &du, 5 Sdu, ; BO C, Cifk dH 5 ¢ o
W o
where C, ¥4 C, aretheelastic flexibility factors given by
1 1 _ 1 Kq
1~ Ar~D L 2~
2GR k, 2GR k,k, - k,° | 7

1 k
C3 = : 2 C4 = - 2 k4
2GR k,k, - k, 2GR k,” - K,k

For any incremental load or displacement through yield, any change in the value of f must be
zero (df = 0) so that the force point (V, M/2R, H) remains on the yield surface. For
compatibility with the strain hardening law a solution for |, the magnitude of plastic
displacements, exists and may be determined from the condition df = 0, where

m 0, I

1l dM/2R+_—dHz+—dV, =0. (4.8)

TM/2R ™ g IV,

df :E%dw
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AsV, and dV, are dependent on the vertical penetration w,,, using the chain law and the

plastic potential relationship dw, =1 g /TV , Eqn 4.8 can be rewritten and solved for | :

v T gm/ore T gu2e T Moy 10 4.9)

df = g
v M/2R H 5 MW, W™

The overall increment form of Model C can therefore be represented as

Joro 0 0 i0orl 0 0 i 0 §
¢ ? ' a
€0 100 0 { 0 Oorl O L,J )
e ; ; f av o 89 dVordw o}
e ' ' - h 4
&0 0 r0! 0 0 Oorli o0 9M/2R- ¢dM/2Ror2Rdq- (4.10)
EJ'""""""""""""""';""""""""""""L""ﬂ"""g aH - g dHordu ¥
6 Cy 0 0i-1 0 o0 ﬂ_\? € dw +=¢ 0 :
¢ : . qg % 2rRdg I ¢ 0 .
€o c, c, 10 -1 0! & o ¢ N
e ; fqm/2RE du ¢ 0 7
e 5 19 &5 € 0 s
€0 c, C:o0 o -1 19 ¢ B e s
& f i it r @
v TmzR w0 0 0 Bud
where B, ; isderived from Eqn 4.9 and equates to
2\
B, - Ylg Wo I (4.11)
™V 1w, NV,

Expressions for §f /v, ff /T(M/2R), 7f /TH and Tf /TV, can be evaluated in closed
form by differentiating the yield surface Eqn 3.19, and Tg/1Vv, T9/9(M/2R) and Yg/TH
by differentiating the plastic potential Eqn 3.29 and 1V, /‘ﬂwp from the strain hardening law

of Egn 3.10. These processes are uncomplicated; however, the somewhat lengthy results

will not be presented here.

With the incremental plasticity solution described by Eqn 4.10, any combination of control

commands can be used. An increment may have full displacement, full load or a mixture of
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displacement/load control, with the matrix adjusted so that the numerical value 1 aligns with
that row’s control type. For calculations inside the yield surface the elastic matrix consists

of thefirst six rows and columns of Eqgn 4.10.

4.2.3 Implementation of Mode C in the FORTRAN Program OXC

The strain hardening plasticity theory of Model C has been implemented in a FORTRAN
program named OXC, which, for any load, displacement or combinational path can evaluate
the resulting loads/displacements. In OXC the input path is broken up into a number of

stages, in which the numerical increments and type of control are described.

For each stage in sequence, atrial solution of Eqn 4.10 is evaluated. Whether an elastic or
an easto-plastic formulation is used depends on where the previous step’s load state
finished. If it finished on the yield surface (f = 0), an elasto-plastic increment is used,
whereasiif it finished within the yield surface (f < 0), an elastic increment is used. An elasto-

plastic increment is used for the first step.

An UPDATE routine is then applied to control this trial load/displacement solution
according to the numerical formulation of Mode C. The UPDATE subroutine is
displacement controlled, using the change in displacement calculated for one entire stage.
Initially UPDATE assumes that the increment is elastic and makes atrial solution of the load
state based on this assumption. The location of this trial load state with respect to the
existing yield surface is then checked with three possible cases arising:

Case I If fyjy < O, the trial load space is located within the yield surface, implying an

elastic increment. Thetrial load space values are accepted as the final load state.

Case 2: If fyiy = 0, the trial load space is located on the yield surface. This aso implies an

elastic increment and the trial load state is accepted as the final 1oad state.
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Case 3. If fyig > 0, the trid load space is located outside the existing yield surface and the

increment is elasto-plastic.

For Case 3thetria load state is incorrect, with the correct solution being defined by an
elasto-plastic step. To account for non-linearities in this calculation, the displacement
increment is divided into a number of equal substeps. For each substep, the change in load is
calculated and the total load updated for that increment. Using that updated load state, a new

V, is evaluated so that the requirement f = O is satisfied. Therefore, the yield surface

expands over that substep increment and the new yield surface size is calculated before the

next substep.

It would not be pertinent to describe all subroutines found within OXC here. Further details
of the key subroutines, solver techniques and tolerance values can be found in Cassidy

(1996).

4.3  Retrospective Prediction of Experimental Tests

To investigate the capabilities of Model C to mode footing behaviour, numerical
simulations were carried out for a number of representative experiments using OXC. In each
of these simulations the values of three of the experimentally measured quantities (e.g. the
displacements) were taken as input, and the other three quantities (e.g. the loads) were
caculated for comparison with the experiments. No idealisation of the experimenta input
data was carried out, so that the input values contain all the minor fluctuations associated
with experimental measurements, with OXC able to handle such perturbations. As the
simulations were carried out on the same tests as were used for the development of Model
C, the quality of the fit is of course expected to be good. The purpose of this exercise is,

however, twofold: (a) to demonstrate that Model C can be implemented numericaly and
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used to simulate footing behaviour and (b) to assess the overal capability of the model to

capture the salient features of the original data.

4.3.1 Vertical Penetration Test

Fig. 4.1(a) shows the experimental results for a vertical penetration test. Fig. 4.1(b) is a
simulation of this same test in which the measured displacement is taken as input and the
vertical load calculated. Model C gives loads that accurately represent the origina test and
thisis principally atest of the chosen strain hardening law. The three vertical unload/reload
loops pre-peak are modelled well, although Model C does not reflect the hysteresis which
occur in the experimental results. This does make a dight, but not too significant, reduction
in the displacements compared to their corresponding loads. It can be seen that OXC has the
ability to predict the location of the existing yield surface when being reloaded in an unload-
reload loop. It does not overshoot the yield surface because a bisection agorithm is used to
determine the proportion of the increment that is elastic, with the remaining proportion

alocated as elasto-plastic.

In Figs 4.2 to 4.6, (&) and (b) represent the measured experimental data, whilst (c) and (d)

are Model C ssimulations.

4.3.2 Moment and Horizontal Swipe Tests from V»1600 N
In a swipe test the footing is load controlled in the vertical direction until it reaches a
prescribed load, in this case V » 1600 N. Rotation or horizontal displacement is then

applied to the footing with the trace corresponding to a track along the yield surface,

appropriate for that embedment.

Fig. 4.2 represents a moment swipe starting at vV » 1600 N. Prior to the swipe the footing is

loaded in the purely vertical direction with only small amounts of horizontal and moment
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load being developed. However, for clarity, only the swipe has been plotted. Model C
simulates the magnitude of peak moment adequately, reaching a value just over M/2R = 150
N. The numerica peak moment in Fig. 4.2(d) and the experimenta peak moment in Fig.
4.2(b) occurred at the same vertical load. Additionally, Figs 4.2(a) and (c) show that the
amount of rotation before the peak was modelled accurately. However, in this test Model C
locates the paralel point dightly lower than the experiment (point A in Fig. 4.2(d)). In the
Modd C simulation in Fig. 4.2(d), movement back along the yield surface can be seen to

occur, for instance at V » 800 N and again at V » 600 N.

Fig. 4.3 represents an equivalent swipe, but in the horizontal direction, with Model C load
controlled to V » 1600 N and then displacement controlled for the swipe. OXC models the
track along the yield surface very well, with the peak horizontal load amost exactly
matching that of the experiment at just over 200 N. Fig. 4.3(c) shows Model C predicting a
very similar displacement path to the experiments (Fig. 4.3(a)), verifying the flow rule for
this case. The smulation stops tracking at around the same horizontal and vertical 1oad
levels, indicating accurate prediction of the paralel point in the horizontal plane. Further
justification of the use of two independent association factors (a,, and a,,) in the flow rule
Is given by the more accurate prediction of the parallel point for both the moment and

horizontal swipes than would be possibleif there were only one.

4.3.3 Moment and Horizontal Swipe Tests from V»200 N

Fig. 4.4 represents moment and horizontal swipes starting at VvV » 200 N, highlighting the
yield surface at low vertical loads. In order to depict the experiments, Model C is load
controlled to V » 1600 N, then unloaded to V » 200 N, before displacement controlled
throughout the swipe. Figs 4.4(@) and (c) show that at low vertical loads both the

experimental results and Model C depict work hardening, with Model C simulating the
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experiment well. This was not the case horizontaly. Fig. 4.4(b) shows that the experiment
elastically loads in the horizontal direction before yielding occursat H » 80 N (A® B), then
tracks along the yield surface with a reduction in vertical and horizontal load (B® C). This
implies work-softening of the sample. Model C simulates the elastic horizontal loading very
well, predicting the yield surface at the same position (line segment A® B on Fig. 4.4(d)).
However, it then predicts that work hardening will occur, with increasing vertica and
horizontal load tracking up around the yield surface. This is consistent with, and entirely
related to, Model C's prediction of the parallel point from a swipe at 1600 N. Nevertheless,
it does indicate that Model C's flow rule will not always follow the experimental

performance.

4.3.4 Constant Vertical Load Tests

The congtant V tests as shown in Figs 4.5 and 4.6 are simulated with full load control to
V »1600N, before the vertical load is held constant at around that value (with dlight
fluctuations according to the experimental data), whilst horizontal and moment displacement

control models an excursion. The constant V tests model the expansion and then later

contraction of the yield surface relative to the V, vaue. Figs 4.5(c) and 4.6(c) show that

Model C models expanding yield surfaces reasonably well, reaching a similar peak for
horizontal and moment load to the experimental values. Once the peak value has been
reached, the Model C surfaces then contract back as predicted by the post-peak performance
of the hardening law. Fig. 4.5(c) shows that for the predominately moment case this post-
peak performance is adequately modelled, athough the experimental data did not continue
until M/2R = 0. However, in the horizontal constant V test the experiment did continue until
H = 0, but this was not reproduced by the OXC simulation, with the unexpected result of
increasing H occurring at the end of thetest (du >4 mm at point A in Fig. 4.6(c)). The cause
of thisrisein H in the numerical smulation is due to a rapid decrease in the experimentally

recorded vertical load, which was used as input. Between point A and the end of the test, V
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falls from approximately 1600 N to 1400 N. If V was held constant at 1600 N, Model C
would simulate the horizontal load decreasing back to zero, as would be theoretically
expected during a constant V test. This is a good example showing that prediction in Model

Cisvery senditiveto the value of V near the peak value of capacity.

Figs 4.5(d) and 4.6(d) show that the flow rule satisfactorily predicts the vertical
displacements when compared with the horizontal or rotational displacements, which are
part of the input. Fig. 4.5(d) shows a dlight over-prediction in vertical displacements,
indicating that for this case the plastic potential's surface is too steep, or too normal when
compared to the V ¢axis. However, with Fig. 4.6(d) showing a dight under-prediction, the

flow ruleis predicting balanced results.

4.3.5 Radial Displacement Tests

Constant gradients of moment to vertical and horizontal to vertical displacement were used
as inputs to smulate horizontal and moment radial displacement tests. The resultant
experimental moment and horizontal loads and Model C predictions are shown in Figs 4.7
and 4.8 respectively, noting that (a) represents the measured experimental data and (b) the
Model C simulation. The simulations are of similar gradient, implying that the Model C flow
rule is performing well. The noise that can be seen in Figs 4.7(b) and 4.8(b) is due to the

fluctuations that occur in the real experimental input data.

4.4  Consdering the Conical Shape of Spudcans

4.4.1 Vertical Bearing Capacity of Conical Footings
So far Model C has been derived for flat footings. In order to account for the conical shape
of spudcans, a numerical study was performed to evaluate a comprehensive set of bearing

capacity factors for various conical shapes, roughnesses and soil conditions. These factors
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are used in section 4.4.2 to define a more redistic hardening law for spudcan footings. The
investigation was carried out on Prof. G.T. Houlsby’s existing FORTRAN program FIELDS,
with lower bound collapse loads calculated for the axisymmetric problem using the Method
of Characteristics. The theoretical methods used in FIELDS, as well as a sample numerical
study of conical footings on clay, can be found in Houlsby (1982) and Houlsby and Wroth
(1983). Within the study performed here, the sand was assumed to be rigid-plastic and to
obey the Mohr-Coulomb yield criterion. Furthermore, change in geometry effects were not

taken into account.

Fig. 4.9 defines the problem and notation used for the 360 combinations of the three

dimensionless parameters investigated:

cone apex angle: b =30°, 60°, 90°, 120°, 150°, 180°
roughnessfactor: a=0, 0.2, 0.4, 0.6, 0.8, 1.0

friction angle: f =5°, 10°, 15°, 20°, 25°, 30°, 35°, 40°, 45°, 50°

A roughness factor of a = 0 represents a smooth footing, whilst a = 1.0 represents a rough
one. For spudcans on dense sand a roughness factor close to one is appropriate, and the
friction angle would lie in the range 40-50°. Fig. 4.10 shows a typical general shear failure
mechanism generated by the program FIELDS. Lower bound bearing capacity factors for all

combinations of the dimensionless parameters are shown in Fig. 4.11.

4.4.2 Adaptation of Model C for Conical Shape of Spudcans

The development of Model C was based on experiments on flat circular footings. Its strain
hardening law differs from the load-penetration curve theoretically expected for flat plates.
A new “combined” theory is needed to consider the differences in a manner consistent with

both the experimental observations and the theoretical predictions.
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4.4.2.1 Flat Plates
Theory: For a flat plate of radius R, as shown in Fig. 4.12(a), the theoretical vertical
bearing capacity is considered constant with penetration as depicted in Fig. 4.12(b), and

written as
Vommeory = INgPR® (4.12)

Experimental Evidence: For the same situation, with the experimental evidence used in the
derivation of the strain hardening law of Model C, a different picture is seen. With
increasing vertical penetration, vertical load increases with decreasing stiffness until a peak
load is reached at a derived fraction of the footing diameter, as specified in Egn 3.10 and
shown in Fig. 4.12(d). With increasing penetration, work softening occurs in the sand and
vertical load carrying capacity decreases. The peak vertical capacity in the model is defined

as in the theoretical case as
Vomg,, =NgPR’. (4.13)

The experimental load penetration curve was derived for a flat footing with one set of
surface roughness and soil condition values. For different values, the shape would be similar

but with vertical load scaled according to an appropriate bearing capacity (from Fig. 4.11).

4.4.2.2 Conical Spudcans
Theory: The theoretical case of a conical footing, as depicted in Fig. 4.12(e), can be split
into two parts. firstly, a conical section of varying radius (r) and penetration

(Wp<R/tan(b/2)); and secondly, after full penetration of the conica section

(w, 3 R/tan(b/2)). Before full penetration of the conical section, theoretically the vertical
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load is proportional to the cube of the current radius of the penetrated section. This is

represented by segment A® B in Fig. 4.12(f), and written as.
Vorary = NP = Ngp{w, tan(b/2)f. (4.14)

With the conical section of the footing fully penetrated, the footing is assumed to penetrate at
a constant load according to Eqn 4.12, as shown between B® C on Fig. 4.12(f) (neglecting

the geometrical effects of embedment).

A Combined Method: By combining these theoretical and experimenta ideas, a more
realistic strain hardening law can be derived for spudcans in dense sand. Figs 4.12(g) and

(h) outline this new model. Using a N, value (from Fig. 4.11) appropriate for the geometry®

and roughness of the spudcans and friction angle of the sand, the experimenta flat footing

curve shape (Egn 3.10) can be normalised by the theoretical maximum VomTheory’ as shown in

Fig. 4.12(g), and written as

kw, e f ceew, O
+C p —(~ p =
Vose _ Vom &l- f,3%2Rd, @15
Vomheor o w e 1 Gew 62 .
Von  g2Rd, &1- f €2Rd %
where VOrrrrheory =V0mExp (asgiven by Egns 4.12 and 4.13). It should be noted that the plastic

penetration has been normalised by the vertical penetration at peak load (Eqn 4.3).

Until full penetration of the conical footing, the appropriate value of w, / 2Rd, isa constant

and equal to 1/2d, tan(b/2). From this value a constant factor s, =Vog /Vommenry CaN be
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determined from Eqgn 4.15, as indicated in Fig. 4.12(g). Before full penetration of the cone

(w, < R/tan(b/ 2)),the|oad penetration curve from the theoretical model is used, but scaled
by s;,, thereby consistently combining the two methods. This is shown as section A® B in

Fig. 4.12(h) and can be written as
Vo = s, dN,pr® = s, dN,p(w, tan(b/2) f (4.16)

After full penetration of the conical section, Egn 4.16 can still be applied; however, s, will
now vary according to Eqn 4.15, thus following the original Model C experimental shape. If

W, 3 R/tan(b/2), the shape of the experimental hardening law will result in a peak load at
w, =2Rd,. This is illustrated as section B® C of Fig. 4.12(h). Conversely, if

W, < R/tan(b/Z), the entire response after embedment is predicted from the post-peak

section of the experimental curve. The maximum load occurs just as full embedment is
reached, as shown in section B® D of Fig. 4.12(h). For realistic values of the parameters it

appears that the latter caseis more usual.

4.5 Implementation of Model C into JAKUP

Slight modification of the Model C numerical formulation described in section 4.2.2 (and
implemented in OXC) alowed it to be independently incorporated into the dynamic
structural analysis program JAKUP. The structura model within JAKUP uses a Eulerian
approach where equilibrium, compatibility and stiffness equations are expressed in terms of
the deformed geometry of the structure. JAKUP uses an incremental loading approach and
Newton-Rhapson iteration to account for non-linearities (see Martin, 1994 and Thompson,

1996).

! The embedded part of the underside of the spudcan is treated as an “equivalent conical footing”, i.e. a
conical footing with equal radius and volume as the embedded spudcan.
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At the start of any new time increment the external applied loads (P;t) are in equilibrium
with the members interna load state (P, ¥these correspond to the deformation of the

structure (X)), that is:
P =P * Prata + Pdtanping (4.17)

where Py and Piaming  represent the inertiad and damping components of the dynamic
equation of motion. With the application of a new load increment (dP), a new deformation
(X" ) needs to be defined such that the new internal and external loads are in equilibrium.
This is achieved by summing the incrementa displacement vector (dx%acalculated by
solving the dynamic equations of motion with a globa stiffness matrix defined for the initial
set-up) with the existing displacement vector. The new internal force vector corresponding
to the internal state of stress can then be evaluated. Generally, P“® does not satisfy the

conditions of force equilibrium, and iteration is needed to correct the displacement vector.

In order to do this, an out-of-balance force is evaluated as

— pt+dt t+dt t+dt t+dt
Pwt-cf-balance _Ped 'Pint " Viretial = "damping (4-18)

and used to find a new displacement correction vector (dx,, ). For each iteration step, a

new tangent stiffness matrix is used, representing the latest configuration of the structural
system. The iterative process is repeated until convergence of solution is achieved. The
convergence criterion compares the size of the displacement correction vector with the

actual displacement vector, and is as defined in Martin (1994) and Thompson (1996).

The contribution of the Model C foundations is included by combining their stiffness

matrices with those of the general structural members when assembling the global stiffness
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matrix. Furthermore, the reactions of the foundations are included when compiling the
internal load conditions. To achieve the formulation outlined, Model C must operate in two
modes:

At the beginning of the timestep, the position of the spudcans is known and the footing

stiffness matrix (3" 3 in size) is evaluated. If the combined force state (V,M/2R,H ) at

the beginning of the time increment lies within the current yield surface (“initialy
elastic”), an elastic footing stiffness matrix is returned; however, if the force state lies on
the surface then an elasto-plastic stiffness matrix is calculated (“initially elasto-
plastic”).

During the iterations, due to incrementa changes in footing displacement (displacement
correction), the incremental changes in footing loads need to be evaluated. The spudcan
displacements are extracted from the change in structura displacements at the footing
node. The stiffness matrix used represents the current configuration. If the footing is
initialy elastic, an elastic matrix is used for the foundation stiffness component until
yielding is detected, at which time an elasto-plastic configuration is used for al of the
remaining iterations during that timestep. For the initially elasto-plastic case, the footing
remains elasto-plastic unless it is calculated to lie within the yield surface (.e. f <0

using Eqn 3.19) for the first equilibrium iteration.

At the initial numerical set-up, al structural elements are assumed free of stress and all
joints have zero displacement. The spudcans are embedded to the vertical plastic penetration
corresponding to their initial vertical pre-load value. The load in the foundations is assumed
to be zero, with the rotational and horizontal trandations zero and the vertical displacement

equal to w . The initia size of the yield surface is equivalent to the vertical pre-load

Ppre load

per spudcan, i.e. Vo =V o5 - The foundations are, therefore, in an elastic condition

before the vertical weight of the hull is applied as the first step in a numerical anaysis.



Chapter 4 — Numerical Formulation of Model C for the Analysis of Jack-Up Units 4-17

4.6  Concluding Remarks
An elasto-plastic model, entitted Model C, appropriate for the modelling of spudcan
foundations for jack-up units on sand has been detailed. The mgor advantages of Model Cin
the analysis of jack-up response include:
Its formulation is amenable to numerical analysis, alowing it to be implemented into
structural analysis programs.
It accounts for the non-linearities of combined loading on sand in a consistent manner.
It provides a direct indication of yielding. Furthermore, movement of the spudcan
footings can be evaluated, with differentiation between upwave and dowwave leg
behaviour possible. Sliding of spudcan footings, therefore, can be evaluated directly.
A “redlistic” interpretation of spudcan fixity alows for more accurate dynamic analysis.
Modd C gives significantly different dynamic response to pinned and fixed footing
assumptions.

All of these advantages are highlighted in the following chapters of thisthesis.



51

Chapter 5 - Application of NewWave Theory in the Analysis

of Jack-Up Units

5.1 I ntroduction

Wave theories suitable for the analysis of jack-up platforms are discussed in this chapter.
Emphasis is placed on NewWave theory as an alternative to widely used regular wave
theories, such as Stokes' fifth-order waves. The theoretical basis of NewWave is described
and verification of its implementation into JAKUP outlined. Appropriate stretching
procedures and extensions of NewWave theory to account for second-order effects are
discussed. Examples are shown to emphasise the differences in predicted extreme response

due to various footing assumptions: pinned, linear springs and Model C.

5.2 Theoretical Background

5.2.1 Linear Random Wave Theory

By generating surface elevations and corresponding kinematics over short storm periods,
for example three hours, the response of a jack-up to random wave loading may be analysed
for that one sea-state. Analysis of wave data suggests the assumption that the ocean surface
within a certain physical area is statistically a stationary Gaussian random process can
generally be made. A description of this surface is given by the superposition of wavel ets of
different wavelengths, amplitudes and periods travelling at varying speeds and directions.
For a uni-directional wave, the instantaneous surface elevation above the mean water-level

h(t) at apoint in space can be written as

h(t) = 5 c, cosiw.t +f ) (5.1)

n=1
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where w, and f | arethe frequency and random phase angle of the n™ wavelet respectively.
The amplitudes of the individual wavelets c, are described by the spectral decomposition

of the ocean as

Co =+/2Sm fwn )ow (5.2

where S, (wn) isthe n™ component of the (one-sided) wave spectrum and dw the discrete

frequency interval. This summation of all the coefficients (N in total) produces a wave
record for aperiodt =0to T, where T = 2p/dw. The random nature of the ocean surface is

introduced by the phase angle f, associated with each sinusoidal component, with f |

uniformly distributed between 0 and 2. Further discussion of the generation of random

surface elevationsis given in Chapter 6 (section 6.2.1).

5.2.2 NewWave Theory

As an dternative to smulating many hours of random time domain simulation, Tromans et
al. (1991) describe afirst order wave that is deterministic but still accounts for the spectral
composition of the sea. The method, entitted NewWave, involves the superposition of
directional linear wavelets with an extreme crest associated with the superposition of all
the wavelet crests at a specific point in space or time. The surface elevation around this
extreme wave event is then modelled by the most probable wave shape conditiona on this
extreme crest. It is shown by Tromans et al. that the surface elevation is normally
distributed about this most probable shape, with the surface elevation described by two
terms, one deterministic and one random. As a function of time, the surface elevation can be
written as

h{t) =ar(t)+g(t) (5.3)
I
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wheret =t- t,, the time relative to the initial position of the crest (i.e. t, is the time when

the wavelet forms). In Eqn 5.3, termy,) describes the most probable value, where a is the
crest elevation defined as the vertical distance between the wave maximum and the mean
water-level, and r(t) the autocorrelation function for the ocean surface eevation. For the
random surface elevation, the autocorrelation function is defined as the mean vaue of the
product h(t)h(t +t), where t is the time lag. For a stationary process this will depend

only on t . The autocorrelation function is proportional to the inverse Fourier Transform of
the surface energy spectrum (known as the Wiener-Khintchine relationship), allowing the

surface elevation to be determined efficiently. Further explanation is given below.

Term, of Eqn 5.3 is a non-stationary Gaussian process with a mean of zero and a standard
deviation that increases from zero at the crest to s, the standard deviation of the underlying
sea at a distance away from the crest. Therefore, as the crest elevation increases, termy,
becomes dominant and can be used alone in the derivation of surface elevation and wave

kinematics.
The continuous time autocorrel ation function is defined as
— 1 N Wt
rt)=—5 Q) Snwe™ dw (5.4)

with the time history of the extreme wave group proportional to r(t) at the region around
t =0. An important property of S,,(w) for atimelag t =0 is that the autocorrelation

function of Eqn 5.4 reducesto

t=0=— 6 Sy, (W)dw (5.5)



Chapter 5 - Application of NewWave Theory in the Analysis of Jack-Up Units 54

with the integral equal to the second moment of area of the wave data, i.e. E[ h?(t) ]

Since the mean value of h(t) iszero, r(t =0) isequal to one:
rt =0) == Eh2@)=1 (5.6)
s

This allows the surface elevation of the NewWave to be scaled efficiently, as shown below
in Egn 5.7.

The NewWave shape as defined by the autocorreation function (Egn 5.4) can be
discretised by a finite number (N) of wavelets. As there exists a unique relationship
between wave number and frequency, spatia dependency can also be included, leading to

the discrete form:
a
h(x’t = _2a [th (Wn)dw] COS(knx - Wnt) (57)
S n=l1

where k, isthe wavenumber of the n" wavelet. As defined previously, a is the crest
elevation, S, (w,)dw the surface elevation spectrum and s the standard deviation

corresponding to that wave spectrum. X = X - X; is the distance relative to the initial position
with X = 0 representing the wave crest. This allows the positioning of the spatial field such
that the crest occurs at a user-defined position relative to the structure, a useful tool for time
domain anaysis. The kinematics are then calculated as a function of time. Egn 5.7 generates
a NewWave as the summation of infinitesmal wavelets coming into phase, with their

amplitudes proportional to S, (w;, )dw.
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5.2.3 Wave Energy Spectrum

Appropriate choice of wave energy spectrum shape varies with location and conditions,
depending on variables such as the wind duration and fetch length. The Pierson-Moskowitz
(Pierson and Moskowitz, 1964) and the JONSWAP (Hasselmann et al., 1973) spectra are
widely used examples. The sea-states are usually described by just two terms, the
significant wave height Hs and the mean zero crossing period T,. The significant wave
height is the average height of waves typically reported from usual observations. Such
observations, however, are found to be biased towards the higher waves in a sea-state, and
Hs can be defined more precisely as the mean of the highest third of the waves. The mean
zero crossing period is defined as the average time between up-crossings of the surface

€levation through the mean water-level.

The Pierson-Maoskowitz spectrum derived from measured data for fully developed seas has

the form

aeBo

S, W)= e B (5.8

where Aand B are constants that can be evaluated for Hs and T,, giving the one-sided wave

spectrum
2 5 (@)
S, W=t s EPO i (5.9)
" 2p 4pT," éwW g

Though developed from wave data in the North Sea, the Pierson-Moskowitz spectrum has
the theoretical basis of wave energy spectrum formulated by Phillips (see, for instance,

Phillips, 1958). Theoretically the spectrum frequency ranges between zero and ¥, with the
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zeroth spectral moment (the areaunder S, ) equal to the mean sgquare deviation of the water

surface from the mean level. Thisis proportional to the wave energy in that sea-state.

It has been found that in the North Sea, with its limited fetch conditions and mainly wind-
generated seas, the spectra are more “peaky” than the Pierson-Moskowitz shape
(Hasseilmann et al., 1973). After measurements were taken in the North Sea, the JONSWAP
spectrum was developed and can be described by adjusting the Pierson-Moskowitz
spectrum. For an equivalent Hs and T,, the JONSWAP spectrum gives a higher but narrower
peak eevation, with the peak’s amplitude and frequency conditioned by a frequency
dependent factor g known as the peak enhancement factor. As the fetch length of the wind
increases, the sea-state becomes fully developed and the JONSWAP spectrum approaches
the Pierson-Moskowitz shape. Various authors have suggested formulations of the
JONSWAP spectrum in terms of parameters commonly measured or predicted, usually
wave height and period (see, for example, Houmb and Overvik, 1976 or Carter, 1982).
Within this thesis, however, the JONSWAP spectrum described by Ochi (1979) has been
implemented into JAKUP and used. Ochi suggested a mean value of the peak shape
parameter g of 3.3 with a standard deviation of 0.79. To describe the JONSWAP spectrum

the following variables need to be defined:

9=33; (5.10a)
k, =1.4085; (5.10b)
k, =0.327¢" %% +1.17; (5.10c)
k, =1- 0.285In(Q) (5.10d)

where k, isthe value of T, /TZ when g =1 (the Pierson-Moskowitz spectrum) and k

defines the relationship between the mean zero crossing period and the period
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corresponding to peak spectral frequency T, suchthat T, =k_T,. The parameter k; is a

normalising factor. The JONSWAP spectrum, as described by Ochi, can therefore be

written as

1 HK,'k, 290 & -_1§%kb94 oo,
s b g O péwT,: a

wW)=—— = - e P& where a=e ) - 11
Sin )= W Swo g 11

and where w, represents the peak spectra frequency. As consistent with Hasselmann et al.
(1973), s has the numerica values 0.07 and 0.09 for wE£2p/T, and w>2p/T,

respectively.

5.3 Implementation of NewWave into JAKUP

NewWave theory has been implemented into JAKUP with the choice of either the Pierson-
Moskowitz (Egn 5.9) or JONSWAP (Egn 5.11) as the wave energy spectrum. Fig. 5.1
shows the difference in the spectral shape for a sample seastate characterised by
H,=12mand T, =10s. The development of the extreme NewWave surface elevation in
the time domain assuming a Pierson-Moskowitz spectrum is illustrated in Fig 5.2. In this
example, the crest elevation a has been set at 12m. A spectral bandwidth (e) of 0.6 was
achieved by cutting the taill of the spectra density function at w=1.405rad/s. The
bandwidth parameter characterises the frequency over which most of the wave energy
exists, and for an unbounded spectrum e = 1. The Nyquist frequency was assumed as
w =1.405rad/s and for frequencies larger than this a spectra density of zero was used for
padding up to the maximum frequency of W, =2w, =2.8lrad/s. This ensures no
corruption of the spectrum at high frequencies, a process known as aliasing. The number of
frequency components (N) is user-defined; in this example N = 512, giving a dw
component of 0.005488rad/s. While describing a second-order theory, Jensen et al. (1995)
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published the values of the surface elevation of a linear NewWave for the equivaent sea-
state and spectral shape. Fig. 5.2 shows these values, which correspond to the profile
evauated by JAKUP. The wave profiles derived from the Pierson-Moskowitz and
JONSWAP spectra for the same sea-state are shown in Fig. 5.3, with the JONSWAP
spectrum showing evidence of a narrower banded spectrum as its autocorrelation decays

lessrapidly.

5.3.1 Wave Dispersion Relationship

A spatia profile of NewWave similar in shape to Fig. 5.2 can be obtained from the wave
number spectrum. Due to the dispersive nature of ocean waves, however, a more rapid
decay in the wave profile as a function of distance than as a function of time can be
expected. Though a spatialy variable NewWave at a constant time is not needed to analyse
jack-ups, due to the substantial separation of their legs (51.96 m in the example structure
used in this thesis), the ability to evaluate accurately the time varying surface elevation and
kinematics at two spatial positions is significant. Therefore, the relationship between space

and time will be further explored.

Angular frequency w, and wave number k are related by the dispersion relation for plane

waves, and in water of constant depth d this can be written as
w? = gk tanh(kd). (5.12)

The usual approach to solving Eqn 5.12 for the unknown wave number, when the frequency
is specified, is to ‘guess a first approximation and iterate with an appropriate algorithm
such as Newton's method. However, this is a computational burden and care is required to

ensure a robust algorithm for all values of w. To avoid this calculation, the deep water

approximation of w” = gk is often used, but for JAKUP to be versatile under all conditions



Chapter 5 - Application of NewWave Theory in the Analysis of Jack-Up Units 5-9

this assumption was not deemed appropriate, and Egn 5.12 is invariably used in the

evaluation of wave number spectrum.

An approximate solution method of Eqgn 5.12, as outlined by Newman (1990), has been
implemented in JAKUP. Newman derived polynomial approximations valid for all water
depths and accurate to seven or eight significant figures. Furthermore, with only two
iterations of a conventiona Newton-Rhapson approach, double precision accuracy
(fourteen significant figures) can be achieved. The solution is separated into two water

depth ranges, the first representing shallow water (O£ kd £ 2) and the second deep water
conditions (kd 3 2), with Newman dstating that the partition a kd =2 is “somewhat

arbitrary”.

In both cases, the solution of the water wave dispersion relationship can be found as a
summation of known polynomial vaues. For the lower range, representing shallow water

(O£ kd £ 2), this can be written as

Y, @L (5.13)

8

é.ciéf\ﬁ-_xn9
ico €2 @

where y, =k, d, X, :wnzd / g. For the upper range representing deep water (kd 3 2) it

can be written as

y, @ + a b S &y g2 ° (5.14)
ﬂ

=0

Thevauesof ¢ ,i=0,1,%,8and b, ,i =0, 1,%,5arepresented in Table 5.1.
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5.3.1.1 Implementation of NewWavein JAKUP - Dispersion Relationship

Fig. 5.4 shows the NewWave surface elevation profile evaluated by JAKUP for the upwave
and downwave legs of the example structure for the same spectral conditions as used in Fig.
5.2. The co-ordinate x-axis has been defined as shown in Fig. 5.4, with x=0m and
x =51.96 m representing the upwave and downwave legs respectively. The peak crest of
the NewWave has been focused on the upwave leg a t = 0s. For al of the analysesin this
thesis, therig is orientated with two upwave legs and one downwave leg. From a series of
simulations focussing the wave in various positions, this rig orientation and wave position

was interpreted as the critical condition.

5.4 NewWave Kinematics

5.4.1 Theory

As NewWave is based on linear wave theory, the water particle kinematics can be easily
obtained once the water surface is established. Though vertical kinematics can be derived,
for the analysis of jack-up units only the horizontal kinematics are necessary and for

unidirectional waves they can be written as

u(Xx,zt) = Sa—zéN_ [S,, (W,)dw]w, F,(z) cos(k, X - w,t) (5.15)
a0, 20) = 2 A TS, v, Jdwlv °F (2 sk, X - wit) (5.16)

whereu and u are the horizontal water particle velocity and acceleration respectively. F,

isthe horizonta attenuation factor and, as afunction of depth z, is given by linear theory as

E (Z) _ COSh(kn (d + Z))
" snh(k d)

(5.17)
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Asthe kinematicsin Eqns 5.15 and 5.16 are derived from linear wave theory, they have no
theoretical validity above the mean water-level and care must be taken in describing their
values in a crest. A number of extrapolation or stretching approaches are commonly used,
such as delta stretching (Rodenbusch and Forristall, 1986) or Wheeler stretching (Wheeler,
1970).

Fig. 5.5 shows both extrapolation and stretching procedures widely used to evaluate wave
kinematics in a crest. A straight extrapolation (linear extrapolation) above the mean surface
can be used; however, this will over-predict wave kinematics. Vertical extrapolation uses
linear theory up to the mean water-level and then uses the kinematics at the mean level up to
the free surface. Wheeler stretching also uses the mean water-level kinematics as the free
surface kinematics, but stretches the entire profile by modifying the depth attenuation

function F, to become

S‘hc’mn(d +2)0

B 1+h/d 4
F.(2)= S ) (5.18)

where h is the instantaneous surface elevation. Wheeler stretching and linear extrapolation
provide a lower and upper bound respectively for horizontal particle velocities in the crest
of waves (Forristall, 1981). Delta stretching interpolates between the two, whilst
maintaining some of the smooth non-linearities of a stretched profile (Rodenbusch and
Forristall, 1986). Thisis achieved by stretching the vertical axis by replacing the depth z in

the attenuation factor with z,, at any height above half the significant wave height
(Dg = H,/2) below the mean water-level, according to

Zg :(Z+ Ds)(Nh+ DS) -D

W s forz>-Dgandh>0
S
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L =Z otherwise (5.19)

where N is the stretching parameter (usually set as 0.3). All of these procedures are
approximations and all break linear wave theory (namely the Laplace equation or the free

surface boundary conditions).

In linear theory, a procedure for stretching (or extrapolation) is more important for steeper
waves where the shorter wave components tend to over-predict wave kinematics in the
crest. Compared with a single periodic model, NewWave being broad banded makes it less
sengitive to over-prediction of wave kinematics; nevertheless, the difference in kinematics
is significant and stretching (or extrapolation) should aways be used with NewWave.
Although there are numerous methods described in the literature, there is no clear preferred
option. Stretching and extrapolation techniques with example caculations are further

discussed in section 5.5.1.

5.4.2 Example of NewWave Kinematicsin JAKUP
Fig. 5.6 shows the horizontal particle velocities calculated by JAKUP for an extreme wave
under a crest for the example conditions used to generate the wave surface elevation in Fig.

52 (.e. H,=12m, T, =10sand e=0.6). The water depth was 200 m. The difference

between the horizontal velocities with and without the use of Whedler stretching is
highlighted. The horizontal velocities below the first and largest trough (located at
x =+5.62m) are also shown in Fig. 5.6. The horizontal velocities evaluated by JAKUP for
the non-stretched case again correspond to the results published by Jensen et al. (1995) for

the same conditions.
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5.4.3 Example Response of a Jack-Up Subjected to NewWave L oading

The extended Morison equation (Egn 2.2) is used in JAKUP to relate the horizontal
kinematics to the hydrodynamic loads on the jack-up legs, as outlined in section 2.3.2. Fig.
5.8 indicates the wave forces calculated on each leg in the time domain for the NewWave
used in the above example (the surface elevation at both legs is again shown in Fig 5.7).
The example jack-up unit used here, and also for the rest of the thesis, is shown in Fig. 2.1.
The forces at a given time are the sum of the loads applied at each node on the leg at that
time. The rig is assumed to have two legs upwave, so for the ‘upwave legs the values
shown are the total for two legs. For this example, the environmental force is purely wave
loading, with no wind or current included. As the hydrodynamic loading includes relative

velocity effects, it should be noted that Fig. 5.8 represents the Model C foundation case.

The corresponding horizontal deck displacements due to this NewWave are shown in Fig.
5.9, for three foundation cases. pinned, Model C and linear springs. Pinned footings
represent infinite horizontal and vertical, but no rotationa stiffness. Model C is the strain
hardening plasticity model described in Chapters 3 and 4, whilst linear springs represents
finite stiffness of equivalent formulation and values to the eastic region of the Model C

case (Eqgn 3.8). The parameters of Model C used are as outlined in Table 4.1 (an N value

of 250 was used). Though only horizontal deck displacements have been shown, any
measure of structural response can be determined by JAKUP. After the NewWave passes,
the structure can be seen to be vibrating in its natural mode. With increased rotational fixity
the natural periods decrease, with approximate values of 9, 5, and 5 seconds for the pinned,
Model C and linear spring footings respectively. As expected, the pinned footings give the
largest horizontal deck displacement over the time period. The pinned case for this example

is rather conservative compared with the Model C footings, with a peak displacement close
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to a factor of four greater (as would be expected from a quasi-static linear model of a

simplified jack-up).

For the example in Figs 5.7 to 5.9, the load combinations on the Model C footings were
contained entirely within the yield surface, giving a response equivalent to the linear spring
case. By increasing the crest amplitudeto a =15mor a =18m, as shown in Fig. 5.10, the
increased loading caused plastic displacements in the Model C footings, shifting the entire
foundations and leaving a permanent offset in the displacement of the deck. Thisyielding of
the sand footings occurred during the peak of the NewWave. The natural period during this
event may also be modified by the plastic behaviour. These examples have shown

NewWave theory conveniently and efficiently implemented into a structura analysis

program.

5.5 Discussion of NemWave
5.5.1 Calculation of Kinematics— Linear Stretching/Extrapolation

Procedures

For the analysis of jack-ups, interest lies not so much in the kinematics but the forces they
trand ate onto the jack-up’s legs, and then the dynamic response to them. To demondtrate the
difference in the stretching procedures an example calculation was performed for wave
conditions that a large jack-up in the North Sea could expect. Model C foundations were
used, with the peak period of the sea-state chosen as three times the natural period of the

structure (i.e. T, =g qpe » 155). NewWave elevations were scaled to represent

increasing wave steepness, with elevations givenin Table 5.2.

The forces on the upwave leg and corresponding horizontal deck displacements are shown

inFig. 5.11 and Fig. 5.12 respectively. The linear extrapolation and Wheeler stretching give
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upper and lower limits to the largest forces and dynamic response respectively, with similar
response evaluated for delta stretching and vertical extrapolation. The choice of procedure

is clearly more important with increasing wave steepness, with significant differences in

deck displacements shown for the k,a = 0.3 case.

5.5.2 Second-Order NewWave Theory

Stokes (1847) demonstrated the non-linearity of finite amplitude water waves, and today
design waves used to evaluate loads on offshore structures are usualy Stokes' fifth-order
waves (i.e. a deterministic non-linear regular wave). With the only free parameters being
wave height and period, the spectral content of the waves is not considered. In NewWave,
however, the spectral content is considered, but only by using linear waves. Second-order
corrections to NewWave, which would account for both the spectral content and some non-
linearities, have been suggested by severa authors (Taylor, 1992; Jensen et al., 1995;
Jensen 1996); a discussion of these theories follows in sections 5.5.2.1 and 5.5.2.2. By
accounting for the effects of short waves riding on longer waves, both the free surface
elevation and the horizontal fluid velocities (within the extreme crest where the

uncertainties are greatest) can be modelled to second-order.

5.5.2.1 The Second-Order Correction Suggested by Taylor (1992)

Taylor (1992) suggested a semi-empirical second-order extension to NewWave, making use
of Longuet-Higgins and Stewart’s (1964) theories about the effect of superposition of two
sets of regular waves of different frequencies and wavelength. Longuet-Higgins and Stewart
showed that there was a significant change in both the amplitude and the wavenumber of a
short wave due to the presence of along one, but not vice versa. They wrote this amplitude
modulation and wave number variation as

LS
Ko

a =1+ AK cos(Kx) (5.20)
Ao
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where a and k are the varying amplitude and wavenumber of the shorter wave respectively,

and a, and k, are the shorter wave's amplitude and wave number in the absence of the

longer wave. The parameters A and K are the amplitude and wave number of the longer
wave. The modulationsin Egns 5.20 emphasise the physical causes of non-linearity, i.e. the

vertical straining and horizontal propagation respectively.

In his second-order correction to NewWave, Taylor (1992) assumed that the mean wave-
profile is identical with the profile obtained by taking all phase lags in the individual wave
components to be equa to zero a the extreme wave crest, with the effects of Egn 5.20
added to the formulation. With the individual wave component amplitudes being taken from
the linear result, Taylor’s formulation is only an empirical correction for second-order and
does not have a well defined second-order stochastic definition. Just as the free surface is
modified by second-order wave interaction, the velocity fields of the individual wavelets

are affected, with Taylor also detailing a second-order extension for horizontal velocities.

5.5.2.2 Second-Order NewWaves Suggested by Jensen (1996)

Jensen (1996) has outlined explicit second-order formulae for the conditional mean value of
the wave profile and the wave kinematics. These formulae are derived from Stokes
second-order unidirectional waves in deep water. However, any moderate non-linear wave
theory could be used to generate the statistical moments needed to depict the conditional
mean wave description. The mean values are determined for dightly non-Gaussian
correlated processes and are conditiona on both the value and slope of the surface

elevation at a particular point. For the largest wave this is taken as being the extreme wave
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crest with a dope of zero. Explicit details will not be given here; however, their

development and formulation can be found in Jensen et al. (1995) and Jensen (1996).*

5.5.2.3 Comparisons of the Second-Order Formulationswith Linear Kinematics

Both Taylor's (1992) and Jensen's (1996) formulations have been independently
implemented in JAKUP, alowing surface elevations and kinematics (at both legs) to be
evaluated to second-order. For the steepest condition in Table 5.2 (T, = 15s and linear
NewWave amplitude = 16.79m), the surface elevations for linear NewWave theory,
Taylor's second-order extension and Jensen’s formulation are shown in Fig. 5.13. The
horizontal particle kinematics are a'so shown in Fig. 5.14, with comparisons with Wheeler
and delta stretching of the linear profile given. Both Wheeler stretching and Jensen’'s
second-order formulation give a smooth velocity profile, whereas delta stretching and

Taylor’s second-order formulation are digointed at or just below the mean water-level.

The second-order surface elevation profile developed by Jensen (1996) gives steeper
slopes above the till water level and shallower troughs than those predicted by linear
NewWave theory and also Taylor's (1992) second-order correction. The predictions aso
reduce the horizonta velocity of the wave kinematics, a result which is consistent with the
conventional Stokes' fifth-order wave (Jensen, 1996). Furthermore, the kinematics can be
evaluated without the need for stretching; therefore, no further assumptions are introduced.

The kinematics are, however, sensitive to the bandwidth parameter (or cut-off frequency).

For the same conditions, Fig. 5.15 shows the horizontal deck displacements estimated by
JAKUP for the second-order theories and compares them with a linear NewWave with

delta and Wheeler stretching. For this example, Taylor's (1992) second-order formulation

1 Jensen (1996) is an extension of the second-order formulation of Jensen et al. (1995). Taking the
formulation further, it assumes that the wave elevation at a particular point in space or time is actually a
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gives a similar response to the delta stretching method. Although there are significant
differences in the kinematics and predicted forces at different depths on the jack-up legs, i.e.
Taylor’s second order is predicting larger forces around the crest but lower below the mean
sea-level, these differences have averaged out over the entire leg. Jensen’s (1996) second-
order formulation has given the smallest response, though it is similar to Wheeler stretching.
Fig. 5.15 shows that there is as much difference in response caused by the choice of

stretching procedure in alinear theory as by choosing a second-order formulation.

In Chapter 6 linear NewWaves are constrained within a random background to evaluate
extreme response statistics of jack-ups in random seas. It is possible to constrain second-
order waves in a similar way; however, considering the additional computational burden,

this was not performed in thisthesis.

crest.



Chapter 6 - Evaluation of Extreme Response Statistics

using Constrained NewWave

6.1 Introduction

Much computation is needed to evaluate extreme response statistics using full random time
domain simulations with only afew of the waves in each time series capable of producing
the extreme result. In contrast to this, by constraining a NewWave with a predetermined
large crest in an arbitrary random time series, Taylor et al. (1995) devised a method that
allows for the calculation of extreme statistics without the same degree of computational

burden.

This chapter is concerned with the evaluation of extreme response statistics of jack-up
units using the Constrained NewWave methodology. Firstly, the theoretical derivations
and implementation of both full random simulation and Constrained NewWave are
detailed, with example calculations highlighting the importance of arandom background in
the analysis of jack-ups. Following this, a method of generating short- and long-term
response statistics using JAKUP is examined. The short-term is based on individua sea-
state activity over a short discrete time period, whilst the long-term is based on the
response to many sea-states over extended periods of time. The term sea-state as used
here defines the set of parameters that describe statistically the wave conditions at a given
time (typically three hours) and location. An example calculation based on a jack-up

located in the central North Seais detailed.
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6.2 Theoretical Background

6.2.1 Numerical Random Wave Simulation

The numerica method widely used to evaluate a random instantaneous el evation of the sea
surface from a given wave energy spectrum is based on the summation of a finite number
of Fourier components, as described by Eqgns 5.1 and 5.2. This method, however, only
correctly simulates a Gaussian random process at the limits dw® O and N ® ¥ (see
Rice, 1944 and Tucker et al., 1984), i.e. when the summation becomes an integration. For

finite values of N, by using deterministic values of the amplitude components c,, n =1, 2,

Y4, N, the variability of a Gaussian random process is not truly modelled. Tucker et al.
suggest an alternative method where the amplitude components are themselves random

variables.

For usein this procedure, Egn 5.1 can aternatively be written as

h(t) = T‘g{z (a, cosjw,t)+ b, sin(w,t)) (6.1)

n=1

where a, and b, are Fourier components which are themselves independent Gaussian

random variables with zero mean and a variance related to the wave energy spectrum at

the corresponding discrete frequency:
S t%h,n = th (Wn )dW : (6.2)

Therefore, a, (and b,) can be easily simulated by finding the product of a standardised
normally distributed random variable rn, (or rn, ) with zero mean and the standard

deviation s, , as
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a, =rn, \/S,(w,)dw and b, =rn,./S, (W,)dw (6.3)

notingthat rn, and rn, areindependent.

6.2.1.1 Implementation in JAKUP

The method of evaluating a random surface elevation established by Tucker et al. (1984)
has been implemented into JAKUP, alowing the capability of full random time domain
analysis. As an example of this implementation, the calculation of one random surface
elevation for the sea-state characterised by Hy= 12 m and T,= 10 s will be described. The
JONSWAP spectrum with the frequency cut at w= p/2 rad/sis used with 512 summation

components. Fig. 6.1 shows the randomly generated Fourier coefficients a, and b, for a

typical realisation, whilst Fig. 6.2 illustrates the surface elevation for these components.
The timesteps are marked by crosses with dt = 2p/W.. The unsmoothed power spectral
density of this redlisation is shown in Fig. 6.3 for comparison with the standard
JONSWAP spectrum for the same sea-state. The variance of the JONSWA P spectrum was
calculated as 8.979 compared with 8.750 for this random redlisation. By repeating the
process and averaging the ensembled realisations, or by smoothing a single realisation, a

closer fit to the JONSWAP spectrum would be achieved.

6.2.2 Constraining a NewWave into a Random Background

It isimportant when constraining a NewWave into a random sequence that the constrained
sequence is statistically indistinguishable from the original random sequence. The details
of a procedure achieving this (as outlined by Taylor et al. (1995)) follow. The

constrained surface elevation h_(t) could be considered as

h.(t) =h, (t) + Qe(t) + R (1) (6.4)
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where h, (t) is the random surface of Egn 6.1 and e(t) and f(t) are two non-random

functions of the form

et) = Na2 c,cosiw,t) and f(t)= %/fdn sn(w,t) (6.5)

n=1 n=1

where ¢, and d, a t =0 have the same statistical propertiesas a, and b, in Egn 6.1.
Thevauesof c, and d,, and theformsof Q and R, are selected to constrain h_(t) at t =
0 to the criteria h,(0) =a and h_(0) =a , where a is the predetermined crest elevation

and a the gradient. For acrest a is naturally set to zero. Therefore, Q and R can be

evaluated as
A N/2 ¥ N/2
Q:}ga-éj_ang wherec=g c, ,ad (6.69)
Ceg n=1 U n=l
4 N/2 N N/2
R=2% 2w wheed= Hwd, . (6.6b)
dg n=1 ua n=1

As stated by Taylor et al., there is an infinite set of solutions of e(t) and f(t) that can
constrain this process to satisfy the criteria. However, the desired choice should minimise

the variance of the constrained process, allowing the profile h (t) to be as smilar as

possible to the expected profile Efh, (t)], where
Elh. (t)] = Efh, (t)] + et).E[Q] +  (t).E[R] = @ + % . (6.7)

The one solution which achieves thisis

&) _ O _-1®
. r(¢) and r 2 (6.8)
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where r(t) is the autocorredation function (or the unit NewWave), and r(t) the
differentiation of the autocorrelation function with respect to time (or the slope of the unit

NewWave). | ? is obtained from the second spectral moment of the wave energy spectrum

(m, =1%2).
By substituting these solutions into Egn 6.4, the solution of the constrained surface

elevation is derived as

A N/2 N . A N/2 Y
h® =h O+ 1 5 e+ B 0% Han

2 @ - a. Wn bn u (69)
e n=1 (J € I ga n=1 0]
(1) 2 (3 4 ©) (6) )

where the terms have the following meanings:

term ;) - the original random surface elevation;

term ) - the unit NewWave;

term (5 - the predetermined constrained amplitude (a);

term (4 - the original random surface elevation at t = 0 (or h, (0));
term (s - the slope of the unit NewWave;

term (g - the predetermined constrained slope; for acrest, & = 0;

term (7 - the original random surface’sslopeat t = 0 (or h, (0) ).

6.2.2.1 Example Response of a Jack-Up Subjected to a Constrained NewWave
Fig. 6.4 illustrates the surface elevation of a NewWave with a crest elevation of 15m

embedded in arandom sea-state characterised by H, =12mand T, =10s. The wave has

been constrained such that at about 59.34 s its peak collides with the upwave leg of the
jack-up. It isshown in Fig. 6.4 that, for this example, the influence of the NewWave on the
surface elevation is contained to within 40s of the constrained peak. The surface

elevation for the downwave as well as the upwave leg, as evauated in JAKUP, is
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displayed in Fig. 6.5. The corresponding deck displacements with time are shown in Fig.
6.6 for the linear springs, Model C and pinned foundation assumptions. For this example
embedment, the peak displacements have been increased compared with just the
equivalent NewWave (Fig. 5.10). Thisis due to the random background and the structural
memory caused, indicating that for dynamically sensitive structures, such as jack-ups, the
response is not only conditional on the present applied load, but also on the load history.
As was the case for a jack-up loaded exclusively by a NewWave, the assumption of
pinned footings is clearly illustrated in Fig. 6.6 as overly conservative. The linear springs
can be seen to yield lower displacements than the Model C footing due to the greater
stiffness exhibited. In addition, Model C indicates a permanent horizontal displacement

occurring in the jack-up.

6.3 Using Constrained NewWave in the Evaluation of Response
Statistics of Jack-Ups

6.3.1 Overview

Though only one Constrained NewWave example has so far been shown here, one of the
main benefits of the constraining technique is that the probability distribution of the
extreme response can be estimated without the need to simulate many hours of real time,
most of which is of no interest. For a storm associated with one sea-state, shorter time
periods can be used with a logical combination of crest elevations to simulate responses
for the expected wave sizes within that sea-state. Convolution with the probability of
occurrences of crest elevations allows for the compilation of response statistics. With
knowledge of long-term sea conditions, long-term extreme exceedence probabilities for
response design properties of interest in the reliability of jack-ups (for example lower

leg-guide moments or deck displacement) can be evaluated.
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6.3.2 Methodology Adopted for the Evaluation of Short-Term Statistics

Within this thesis, smulations of 75 s duration, with the crests constrained at 60 s, are
used to estimate the time history response associated with one crest height. A lead time of
60 s was considered to have the same statistical response properties due to the crest when
compared with longer time periods. For five discrete crest elevations representative of
the full range of wave heights in a three hour storm, 200 simulations per crest elevation
were performed using JAKUP. The largest response caused by the constrained peak was
recorded for each simulation. The extreme response distributions were evaluated by
convolving responses from the five constrained crest elevations with the Rayleigh
distribution of crest heights. This was accomplished numerically using Monte Carlo

techniques. The steps followed are outlined below and are a'so shown in Fig. 6.7:

Step 1: For a short time period (for example three hours), crest heights may be randomly

derived assuming a Rayleigh distribution.” One crest elevation is predicted as

a e =4/~ (252).In(1- rn) (6.10)

where rn is a random number generated from a uniform distribution between 0 and 1.

Therefore, a set of wave crests a,;, i = 1, 2, ¥, Nyes, Can be estimated from a Monte

Carlo smulation (Nges 1S the number of wave crests, assumed as the time period divided

by T,).

Step 2 Using the response information from the 5 sets of 200 JAKUP runs, lines of

constant probability are constructed by firstly sorting the response at each of the five

! This is based on the assumption of a Gaussian sea and a narrow-banded process (see Longuet-Higgins
(1952)). The Gaussian sea assumption depends on the water depth of the jack-up and for many shallow
water cases it would not be appropriate.
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NewWave crest elevations into order from the lowest (or 1%) response to the highest (or
200" response. Following this, polynomial curve fitting of the five responses
representing the five NewWave elevations at each response level (1® 200) gives 200
lines of constant probability.? These lines allow response values to be estimated for crest
elevations between the five NewWave amplitudes used in JAKUP. Construction of the

lines of constant probability will be shown in an example in section 6.3.3.

For each crest elevationin step 1, i.e. &;, i = 1, 2, ¥4, Ngeg, @ response corresponding to
its elevation is “randomly” chosen. By simulating a number between 1 ® 200 (the number
of JAKUP runs per NewWave crest elevation), interpolation along that number’s line of
constant probability givesthe “random” response for that one crest. Repeating for all Ngreg
elevations completes a set of responses for that time period. This is shown in step 2 of
Fig. 6.7. Therefore, for one random three-hour event, the distribution of responses within

that sea-state have been calculated and the extreme event can be extracted.

Step 3: By repesting steps 1 and 2, responses for different three-hour events are
evaluated and, by using the maximum of each, the distribution of extreme response can be
compiled. Thisis shown in step 3 of Fig. 6.7. In the numerical experiments in this thesis,

distributions are based on 2500 of these samples.

6.3.3 Example Numerical Results for One Sea-State (H,=12s and

T, =10.8055)

An example of the methodology described in section 6.3.2 to compile short-term extreme

response statistics is outlined here. The sea-state described by the JONSWAP wave

2 The 200 lines of constant probability need to be constructed only once and contain all of the response
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energy spectrum with parameters Hs = 12 m and T,= 10.805 s has been chosen. Thisisthe
base condition on which the long-term numerical experimentsin section 6.4 are contingent
and is assumed to be representative of the 100 year sea-state in a central North Sea

location.

Fig. 6.8 shows the deck displacements calculated by JAKUP for the five crest elevations:
3.5, 7, 10, 12 and 15 m. Though Fig. 6.8 seems to illustrate larger variation of deck
displacements as the NewWave crest elevation increases, this is not the case. When the

coefficient of variation is calculated, defined in the usual way as

Cov, = >x (6.11)
m

where s, and m are the standard deviation and mean of set x respectively, there is

actually a reduction in CoV with increasing elevation. This implies that as the crest
elevations become higher, they also become more dominant in the calculation of global

response, thereby reducing the response’ s variation.

Constructed by simple polynomial curve fitting, Fig. 6.9 shows five example lines of
constant probability between the levels of evaluated response. This was performed using
standard MATLAB functions and was necessary for the interpolation of intermediate
crests. The actual number of lines of constant probability used is not five, as implied in
Fig. 6.9, but is the number of smulations at each crest elevation performed by JAKUP (in

this case 200).

information from the JAKUP runs.
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The extreme response distribution for deck displacement, evaluated using the convolution
procedure described in section 6.3.2, is shown in Fig. 6.10. The mean and 50%
exceedence values are 0.251 and 0.241 m respectively and the distribution has a CoV of
22.26%.

6.3.4 Verification of Short-Term Extreme Response Results

The accuracy of this method has been examined by repeating the calculations. Four new
sets of 200 extreme responses per crest elevation were evauated by JAKUP and the
convolution procedures repeated. With little difference between the resulting statistics,
uniformity in successive tests is shown in Fig. 6.11. The question of whether 200
responses per crest elevation is a large enough sample has also been answered. With
convolution performed on al the data (1000 JAKUP responses per crest elevation), the
extreme response statistics evaluated are consistent with results evauated from the 200
JAKUP response data. This is shown in Fig. 6.11 and vaidates the use of only 200

extreme responses per crest elevation.

Consistency is also shown in Fig. 6.11 for a more extreme sea-state, H, =16.45m and

T, =12.66s(the1in 10° year sea-state used in the long-term calculations of section 6.4).
This is an important outcome, as the method used is validated for large amounts of
plasticity and non-linearities in the Model C calculation and, moreover, the results for the

more ‘linear’ pinned and linear spring cases can therefore aso be accepted.

The results have also been verified by “brute force” random wave simulation for both
sea-states. As shown in Fig. 6.12, one hundred full three-hour ssimulations correspond

well with the Constrained NewWave results.
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Comparisons of the values for the maximum horizontal force on the jack-up legs for the
repeated calculations and the full random domain smulation are shown in Fig. 6.13.
Again, the Constrained NewWave procedure used with a sample of 200 response data for

five crest elevations is satisfactory.

6.4 Evaluation of Long-Term Statistics: A Numerical Experiment on an
Example Jack-Up

6.4.1 Overview

An understanding of long-term meteorological and oceanographic (met-ocean) conditions
is needed before any convolution of short-term statistics into long-term probabilities can
be performed. Difficulties arise, however, in extrapolating measured or hindcast time
series data, which in the North Sea are usualy only of length 5-25 years, to longer return
periods. A short review of extrapolation methods used will be given here, and then the

approach taken for the numerical experimentsin this chapter will be highlighted.

6.4.1.1 Review of Extrapolation Methods

In an effort to derive long-term design conditions, one widely used method is to derive a
“design wave’, an individual wave with a height which is exceeded on average only once
in aspecified return period (for example, 100 years) (see Durning (1971), Hogben (1990)
or Tucker (1991)). The design wave is evaluated by finding the 100-year return value of
Hs from either a measured or predicted cumulative distribution (usualy log-normal,
Weibull or Fisher Tippett Type 1) and then for that 100-year Hs, the most probable
maximum wave height in a three-hour period (Tucker, 1991). Wind and current are
assumed to act independently and similar procedures are used to calculate design wind
and current velocities for the return period in question. This is unnecessarily conservative

as the extreme events are not expected to occur at precisely the same time (Forristall et
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al., 1991). Uncertainty in the extreme wave in a sea-state is neglected, with only most
probable values calculated. As seastate is defined as the independent variable,

correlation between successive sea-states is also neglected.

For dynamically senditive structures, the design wave does not always represent the
situation producing the greatest force on the structure, making the design wave approach
inadequate in reliability calculations of jack-up units. As an alternative, Tromans and
Vanderschuren (1995) demonstrated a method for the prediction of extreme waves and
long-term load statistics based on the assumption of “storms’ asindividual events. Here a
storm is defined as a continuous period of severe seawith Hs at over 30-40% of the peak
H; in the database record for the particular location. In the North Sea the NESS hindcast
database can be used (Peters et al., 1993). Typicaly lasting from 12 to 36 hours, a storm
has a period of increasing Hs, a peak and then a decaying phase. For a typical location
several hundred storms might be extracted from 25 years of data (Tromans and
Vanderschuren, 1995), and these results can be used to develop short- and long-term

statistics.

Short-term: By characterising each storm in the database by its most probable extreme
individual wave, a model for the uncertainty of an extreme within a short time scale (or
storm) can be achieved.

Long-termx Compiling al the most probable extreme wave heights for each individua
storm provides a picture of the long-term distribution of that variable. However, with
limited data available, extrapolation to large values of most probable extreme wave
height requires an assumption of the distribution the data follows. Convolution of the
short- and long-term models provides a complete storm-based long-term distribution,
accounting for uncertainty of the extreme within a storm and the uncertainty in storm

severity.
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6.4.1.2 Response-Based Design Conditions

Using generic load models (for drag-dominated quasi-static structures) that combine the
environmental variables into a structura response, such as base shear force, Tromans and
Vanderschuren (1995) describe a method of evaluating response-based joint ocean design
conditions. By using a similar procedure to that of wave height (see section 6.4.1.1),
Tromans and Vanderschuren deduce the distribution of long-term extreme loads (for
instance base shear force and overturning moment). For any return period, therefore, the
design wave parameters of interest (crest elevation, current and wind) can be evaluated as
the solutions which equate the same loads in the generic model. This approach has the
advantage of accounting for joint probabilities of occurrence and evaluating design
conditions based on the response of a structure. Example normalised load versus return
period for the northern, centra and southern North Sea, as well as the Gulf of Mexico,
produced by Tromans and Vanderschuren, are shown in Fig. 6.14 (the loads have been
normalised by the 100-year result). The central North Sea results presented here are used
as the basis for scaling of sea-states in the long-term evaluations in this chapter (see

section 6.4.2 below).

6.4.2 Example Calculationsfor a Central North Sea Jack-Up

To describe the long-term behaviour of the jack-up in this investigation, assumptions

about the condition of the wave environment had to be made. The three major assumptions

were:

1. Thel1in 100 year value of Hs was assumed to be 12 m. Thisis avaue which could be
derived from NESS for a specific site; however, for most positions in the centra

North Seait is believed to be reasonable.
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2. From this base condition, Hg was scaled to other return periods ranging between 1
year and 10° years. The scaling is based on the normalised load versus return period
of Fig. 6.14 for the central North Sea, i.e. a 22% increase in load per factor of 10 on
return period. With load approximately estimated as proportiona to the crest

elevation squared (&%) in drag-dominated structures, and with a proportional to H, Hs

was scaled by +/1.22 per factor of 10 on return period. This can be written as

Hy(rp) = Hygy e AL+ 0-22(10gy (r-p)- 2) (6.12)

wherer.p. is the return period and Hy ear the 100 year return period value of Hg

(i.e. 12m). Table 6.1 outlines the return periods and corresponding Hs values used. It
is acknowledged that this assumption is based on a curve derived on a generic quasi-
static structure; however, the Hg values deduced will give reasonable results to study
long-term jack-up response.

3. For all the experiments, wave stegpness was assumed constant at k,Hs = 0.25, with

valuesof T,and T, also givenin Table 6.1

These conditions are a simplification of a real environment. With a known location and
access to a hindcast database a more accurate analysis could be performed in practice.
The methodology of determining long-term dtatistics, however, would be the same as the
procedure detailed in this chapter. Two numerical experiments were performed, one
excluding and one including wind and current effects. As mentioned previously, Fig. 2.1

shows the example jack-up used in awater depth of 90m.
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6.4.3 First Long-Term Numerical Experiment - Wave L oading Only
For the first numerical experiment, wave loading was the only environmental force, with
no wind or current applied. For seven return periods, Table 6.1 outlines the sea-states and

five crest elevations at which the NewWave peak was constrai ned.

Implicit in this statistical approach is the assumption that it is not possible to determine a
meaningful upper limit of sea-state wave conditions. However, the limiting size of a sea-
state in the North Sea must depend on the geographical fetch limits and wind duration.

Therefore, the physical possibility of the larger sea-states should be questioned. For

example, is the 1 in 10° year sea-state used here possible? Moreover, even if it is
possible, for the results to be credible all of the components of the anaysis (i.e. the

structural, foundation and wave models) must remain accurate at this sea-state severity.

The contribution of this sea-state, however, to probability levels of interest (10*® 107°)
is negligible.®> Nonetheless, it has been included to complete the trends occurring, and to

show what might be expected in extrapolation to very low levels of probabilities (for

instance 10°°). The redlity of a sea-state of this severity and the physical bounds of any
analysis, however, must be kept in mind in the interpretation and discussion of the results

presented.

Following the procedures in section 6.3.3, seven short-term extreme response
distributions were evaluated. The distributions of maximum deck displacement for Model
C footings are shown in Fig. 6.15. With increasing severity of the short-term conditions,

Fig. 6.15 indicates increasing variation in the levels of response. Hypotheses explaining

% Fjeld (1977) in a summary of probabilities of failure used in recognised codes quotes an accepted
failure level of 10%-10° in the offshore industry compared with a level of 10°-10" onshore. The
Canadian Standards Association sets the target annual probability of failure at 10 when there is a small
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this are investigated here. As the sea-states become more severe, the CoVs of load
increase. This is because drag loading on the jack-up will be increasingly dominant
compared with inertia loading and, due to the horizontal particle velocity squared term in
the drag component of the Morison equation (Egn 2.2), CoV's also increase. This is shown
in Figs 6.16(a) and (b), where the values of maximum force CoV's exemplify this well.
However, this does not fully explain the higher levels of variation found in the deck

displacement extreme response distributions, and other factors must be contributing.

With increasing severity, the amount of plasticity in the Model C calculation must add to
the variation in the levels of extreme deck displacement response. The amount of

plasticity in any simulation can be represented by the V,, value to which the yield surface

has expanded. In Model C, as the loading on a footing reaches the yield surface, it expands

according to the hardening law, with its size described by V, . Therefore, the V, vaue

normalised by the initial VOpre— can be used as a descriptive measure of the level of

load

plasticity in the calculation. The extreme response V, /V0 vaues for the upwave

pre-load
and downwave footings are shown in Figs 6.17(a) and (b) respectively. For the 1 in 1

year sea-state in both footings, V, /\/Opre oy = L indicating that all loading was within the

initial yield surface and only elastic behaviour occurred. However, as the sea-states

became more severe, the levels of V, /VOprelo o and their variation both increase. This

must contribute to the variation of global response of the jack-up as indicated in the

increasing CoV's of deck displacement.

risk to life and alow potential for environmental damage, and at 10 for situations of great risk to life or
high potentia for environmental damage (Sharpleset al., 1989).
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Both the mean and CoV values of V, /VOpr are larger for the downwave footing than

e load
for the upwave footing. This is due to the combination of larger vertical loads pushing the
downwave footing into the sand, and the dliding occurring in the upwave footing due to the

NewWave's peak being focussed on the upwave leg.

6.4.3.1 Methodology Adopted to Numerically Scale Short-Term Extreme Response
Digtributions
With the extreme response distribution evaluated for each sea-state (i.e. 1in 10’ year, j =
0, 1, ¥4, 6), convolution with the logarithmic distribution of sea-state occurrences gives
long-term probability predictions of response. However, as sea-states do not occur in
discrete intervals, the extreme response distribution of any intermediate sea-state must be
adequately estimated to evauate this convolution numerically. Though numerous
techniques would be satisfactory, a method based on the scaling of the “normalised” 1 in

100 year distribution has been chosen here due to its ease of implementation.

By normalising each curve by its 50% exceedence value (R, ), & point common in al

short-term sea-states is achieved. This is shown for all three footing assumptions in Fig.

6.18. Two scale factors, sf,g and sf,,%a0ne for the upper tail (0.5£€ Q(x) £1.0) and

one for the lower tail (O£ Q(x) <0.5)% are evaluated at Q(X) =0.8 and Q(x) =0.2
respectively. The scale factors represent the difference in normalised response (at
Q(x) =0.8 and Q(x) =0.2) between each return period and the 100 year sea-state. Each
return period distribution is weighted according to its relation in logarithmic time to the 1
in 100 year (j = 2) distribution, i.e. each integer increasein j (for example 1in 10°® 1in
10 or 1in 10°® 1 in 10% is equivalent to one order of magnitude of the scale factor.

Therefore, sf,g is evaluated as the sum of the difference between al of the normalised
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curves compared with the 100 year curve at Q(x) = 0.8, scaled according to the number
of integers in logarithmic time (values of |) they are from the 100 year curve (j =2). In

numerical form this can be written as:

3 [R/Rese ;- R/Resey ]
Sfog =12 - (6.13)

ali-2

j=0

Qoo

where R/Ryy,, is the normalised measured response at Q(x) =0.8 and j the power

integer describing the sea-state occurrence. The numerator represents the sum of the

difference in the normalised curves response values a Q(x) = 0.8 and the denominator
the sum of the integer differences (remembering that sf, g represents one step of the power
integer). This calculation is aso summarised in Fig. 6.19. A similar calculation can be
performed on the lower tail to evaluate sf,,. Fig. 6.20 shows the 50% response
exceedence values (Rgy,) used in the normalisation process for each sea-state. The

curves of best fit indicate the 50% exceedence values to be used to re-scale at any

intermediate level.

With the scale factors calculated, the extreme response can be estimated for any return

period and cumulative probability value (Q(x) ). For the return period of value |, usng

the appropriate Ry, value and the normalised 1 in 10? distribution (.e. [R/Ry] j=2)»

the extreme response can be evaluated at the Q(x) = 0.8 level as

X; = [Rso%]jgﬁ%/Rso% Q(X):%]jzz +(j - 2).sf0,gg for Q(x) = 0.8. (6.144)
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Assuming a linear scaling of sf,g from Q(x) =0.5 to Q(x) =1.0 (i.e. a Q(x) =0.5,
sfos =0 andat Q(x) =0.8, sf,g = sfyg), a any value of Q(x) the extreme response can
be evaluated as

o056, )
X, = [RSO%]J.ETR/RSO% Q(x)]j:2 +§%§( i- 2).sf0.8§for QX 05  (6.14b)

For the lower tail, the formulation of Egn 6.14 is the same, except that sf,, replaces
sfyg- For the Model C case, the equivalent scaled valuesfor j = 0, 1, ¥4, 6 are shown in

Fig. 6.21, for comparison with the origina distributions. Throughout the distributions, the

scaled curves approximate the original curves closely.

6.4.3.2 Monte Carlo Sampling of Long-Term Extreme Exceedence Probabilities

Using the scaling and convolution procedures described in section 6.4.3.1, long-term
extreme exceedence probabilities for the horizontal deck displacement have been
evaluated for the example jack-up and are shown in Fig. 6.22. All three foundation cases
are presented, with the additional variation in the short-term Model C distributions
creating a more non-linear long-term curve. As expected, for large annual exceedence
probabilities (10° ® 10™%), the linear springs and the Model C cases are equivalent.
However, as the probabilities get smaller, the Model C deck displacements become
relatively larger and there is a significant difference between the Model C and linear
spring displacements. For annual exceedence valuesof 10™* and 107> (probability levels
of interest in an offshore reliability analysis), the Model C displacements are 33% and
50% greater respectively; this indicates the importance of the plasticity component of the

model to the level of response.
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The pinned case is again shown to be conservative compared to Model C for al annual
probabilities of exceedence, although with enough extrapolation the Model C curve could
be expected to cross the pinned curve. Thisis possible as horizontal plastic displacements
are accounted for in the Model C formulation. In this analysis with no wind or current,

however, this would not occur at any significant level of probability.

There is a little less than a factor of four difference between the pinned and the linear
springs cases. This is expected as non-linearities in both the structure and loading are
included, and the linear springs case, though very stiff, is not fully fixed. Theoreticaly, if
non-linear and dynamic amplification effects were not considered, there would be a factor

of four difference between a pinned and fixed case for ajack-up with avery stiff hull.

6.4.3.3 Long-Term Loads on the Jack-Up Legs
Fig. 6.23 shows the long-term annual probabilities of exceedence for forces on the legs of
ajack-up. It is of interest to compare these results with the initial assumption upon which
the scaling of Hs was based (Egn 6.12). Rather than giving a steady linear increase in
force of 22% per factor of 10 on the return period (as in Fig. 6.14), the loads increase
non-linearly. The assumption that force is proportional to wave amplitude squared, and
thus H, is overestimating the force due to the NewWaves. This could be due to the fact
that:
The force on the legs is not completely drag-dominated, as the assumption suggests,
with the level of inertia compared with drag loading changing the CoV's for each short-
term sea-state. The inclusion of other non-linearities in the loading also changes the
results from the initial “linear” assumption.
Forceis not only proportional to Hg, but as T, increases with more extreme sea-states,
loading varies in a non-linear manner. This is due to changes in the wave energy

spectrum influencing the wave kinematics formulation, the depth dependency function
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and also the load on the downwave legs (affected because of the dispersive nature of
waves).
It has been shown that the initial assumption, which was based on a generic load model of
a quasi-static structure, has not held for the non-linearities associated with the analysesin
JAKUP. However, as discussed in section 6.4.2, the sea-states and associated return
periods are not for a specific location, but a general assumption of what could occur in the
central North Sea. Therefore, though not consistent with Fig. 6.14, the long-term loads on

the legs are till representative of the example location described by Table 6.1.

6.4.4 Second Long-term Numerical Experiment - All Environmental
Forces

During a second numerical experiment with the same wave loading, wind and current
loading was applied as outlined in Table 6.2. The wind force was assumed as point |oads
on the nodes of the deck with two thirds applied at the upwave and one third at the
downwave node. The wind loading was assumed as 15% of the constrained NewWave
loading on al legs at the 100-year condition (as shown in Table 6.3) and then scaled for
the other sea-states according to Fig. 6.14.* A uniform current of 0.8 m/s was chosen for
the base 100-year case and also scaled to give the same force ratio per time of occurrence

as the wave and wind loading.

The value of current is similar to values used in previous studies of jack-up response (see,
for example, Morandi et al. (1997) and Karunakaran et al. (1994)). It is assumed here to
be an independent variable and its level might be highly conservative if joint contributions

were considered. Peters et al. (1993) suggest that widely used current values based on

* The proportion of 15% was chosen as a representative level of wind load that could be expected on the
jack-up (see, for instance, Patel (1989))
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guidance notes (such as SNAME) could be more than double the magnitude of currents

associated with extreme waves based on NESS.

Fig. 6.24 shows the maximum deck displacement distributions normalised by their 50%
exceedence values for three hour periods of the seven sea-states. As was the case for the
experiment with no wind or current loading, all three foundation cases exhibit an increase
in variation with sea-state severity, with the increase larger for the Model C case.
However, the magnitudes of al the CoVs are less than they are with no wind or current
(see Fig. 6.18). This is to be expected as the wind and current do not act with any
variation. In the numerical experiments detailed here, wind is a steady force which for
each realisation causes a consistent deck offset. Moreover, current adds to the magnitude
of horizonta particle velocity by the same amount for each realisation. Therefore, both
wind and current reduce the CoV's of the force and deck displacement calculations; Table

6.3 outlines the magnitude and variation of force both with and without wind and current.

The predicted long-term horizontal deck displacements are shown in Fig. 6.25. The
difference in Model C and the linear springs is evident and more significant with the
additional wind and current loading. At the 10°* and 10°° levels, the increase in deck
displacement is about 75% and 100% respectively. Furthermore, this difference increases

to 233% for an annual probability of exceedence of 10™°, where the Model C case has

nearly crossed the pinned footing curve.

6.4.5 Measuring the Relative Importance of the Random Background

It has been shown for one redlisation in Fig. 6.6 that the random background in which a
NewWave is constrained affects the force on and response of the jack-up. It is therefore

significant to evaluate the relative importance of this background and determine if thereis
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a need to perform random time domain analysis in the calculation of long-term statistics of

jack-up response.

To address this, the two long-term numerical experiments were repeated for the same
environmental conditions, except that the New\Waves were not constrained in a random
sea, but acted on their own. For al the NewWave eevations, the results of horizontal
deck displacement are shown in Fig. 6.26. Although only results for Model C are shown,
similar trends occur for the linear spring and pinned cases. Using the same convolution
and scaling procedures, short-term maximum response distributions and long-term

probability estimates were evaluated.

Table 6.4 contains the mean and CoV vaues for the three-hour maximum deck
displacement distributions, and Table 6.3 presents the respective force results. Assuming
a fixed relation between wave force and wave height (H), an estimate of a CoV for the
extreme wave force can be calculated from the Rayleigh distribution (R(H)) of wave

heights raised to the power of the number of waves (Ne¢) in the sea state:
P(Hy /H) = [R(H /H )]s (6.15)

By assuming that the extreme force is proportiona to H for inertia-dominated structures
and H? for drag-dominated, Harland et al. (1997) estimated CoVs of 8.5% and 17%
respectively in a single three-hour sea-state. On this basis, the force CoVs in Table 6.3
are clearly more drag-dominated. The additional variation is probably due to the
assumptions made by Harland et al. and the use of the extended Morison equation in

JAKUP.

In Fig. 6.27 the long-term deck displacement estimates are compared with the fully

constrained results. For al annua probability of exceedence levels, the random
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background sea increases the deck displacement response. The percentage increase at a
number of levelsis shown in Table 6.5. The linear spring and pinned cases have similar
differences, steady for the range of probabilities at around 6% to 8%. However, for
Model C, rather than maintaining a constant difference, the estimates of response for the

Constrained NewWave case become proportionately larger relative to just the NewWave
case. Atthe 10°* ® 107> probability levels, they are around double that of the linear and

pinned case, and a the more unreliable 102 level, they have increased to a multiple of
around two and a half. This implies that the random background noise is more significant
when using plasticity footing models than when using linear springs or pinned footings. In
general, however, for al three foundation assumptions investigated, the levels of
difference are high enough to necessitate the need for full random analysis, especiadly as

they are non-conservative in nature.

The comparison of the force applied to the jack-up due to the Constrained NewWave and
just the NewWave is shown in Fig. 6.28 for the cases without and with wind and current
respectively. As for hull displacement, the Constrained NewWave gives a significantly

larger probability of exceedence level.

6.4.6 Further Discussion of Long-Term Results

Although jack-up leg forces and deck displacement have been the only responses shown
so far, the same methodology could be used to evauate long-term statistics for any jack-up
response variable. One design property of interest in the reliability of jack-ups is lower
leg-guide moment. From JAKUP this is estimated as the moment at the node linking the
deck element and the highest leg element (one for each leg). Fig. 6.29 shows the long-term
probability of exceedence for lower leg-guide moments for the same example conditions.

As expected, the results follow the same trends as for the horizontal deck displacement,
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and the benefits of using Model C are evident. For example, if a critical design bending

moment was set at 1.0 GNm, using the overly conservative pinned footing assumption, an

annual exceedence probability of around 10™* would be calculated. Conversaly, using

Model C as a more redlistic interpretation of spudcan fixity, this value is reduced to

around 10™°. This could result in the difference between acceptance and non-acceptance

of therig.
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Chapter 7 - Application of Probabilistic Modelsin the

Response Analysis of Jack-Ups

7.1  Introduction

In chapter 6 the probabilistic response of jack-up units was introduced through the random
nature of wave loading. The rest of the model was deterministic; i.e. its material properties,
geometric properties and its actions were uniquely specified. It is known, however, that
there are parameters within the models presented that are not unique, but have a range of
possibilities. For example, if the mass of the deck could be measured it would vary in
value. Furthermore, if experimental testing of the structural, wave loading and foundation
models of JAKUP could be performed, they too would give a variable response, even for
the same input conditions. Therefore, by using a probabilistic formulation of one or more of
the material properties, geometric dimensions or even the action of the structure, the

likelihood that the jack-up behavesin a certain way can be more “redlistically” evaluated.

This probabilistic approach is an extension of any deterministic analysis, but with a number
of previoudly deterministic quantities randomly interpreted with specified distributions.
Within this chapter, probabilistic methods are used to develop understanding of the
response behaviour of jack-ups. Variables which influence the dynamic response are
addressed and probabilistic distributions attributed to them. These are known as random
variables. A sensitivity study is described of the important random variables involved in the
evauation of extreme dynamic response of an example jack-up, usng JAKUP and the
Model C foundation model. Within this study, not only has the significance of parameters
within an elasto-plastic foundation model been evauated, but their relative importance
compared with other random variables commonly used in reliability analyses has also been

caculated.
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7.2 Literature Review

7.2.1 General Rdliability Theory

Probabilistic response of jack-up units is most commonly encountered during reliability
evaluations. In structural reliability theory, the failure probability of one component is

defined as

P = PGOX) £0] =, . Tx (X)X (7.1)

X)

where G( X) isthefailure function (G(X) £ 0 isafailure state and G(X) > 0 a safe state)
and X is aset of k random basic variables, i.e. [X]=[X,,X,....,X,] (further details of

random variables used in jack-up analyses can be found in section 7.5). f, (X)isthe multi-

variant density function of X. For a component reliability analysis, failure criteria are

usually set on the limiting factors of strength or behaviour of the jack-up and are of the form:
G(X)=R-S (7.2)

where R is the component’s resistance (or upper limit of strength/behaviour) and S its
serviceability (or calculated response distribution from load effects). This failure region is
shown in Fig 7.1 in a diagrammatic comparison of a deterministic and a probabilistic

anaysis.

Confidence in this probabilistic approach depends on the following factors:
The ability to evaluate the integral in Eqn 7.1 accurately. Techniques to achieve this are

described in section 7.2.2.
The accuracy of the failure function. In any reliability analysis, the results can only be

judged by the accuracy of the individual modelling components used in the anaysis.
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This is especialy true for highly interactive and non-linear processes, as seen in jack-
ups. With inappropriate and highly conservative assumptions, such as pinned footings,
not only are the reliability results inaccurate, but the level of uncertainty in them can be
unacceptably high. It is, therefore, important to have confidence in the failure function
derived.

The probabilistic modelling of the uncertainty in the basic random variables. The
statistical spread assumed for random variables needs to reflect their inherent
variability, and thiswill be investigated for application to jack-up dynamic response in

section 7.5.

7.2.2 Réliability Calculation Techniques
One method of calculating the integral in Egn 7.1 is by Monte Carlo smulation. For each
simulated vector of random variables X, a complete numerical experiment needs to be
performed. Asthe mgority of structural analysis problems are complex and computationally
time-consuming, this requires a prohibitively large number of complete runs to produce a
result with statistical confidence. This is especialy true for small probabilities of failure.
Alternate methods requiring less computational effort include:
Response Surface Methods (RSM): If the computational effort is large for each
response calculation in a Monte Carlo simulation, then this calculation can be replaced
by aresponse surface (RS) that is of simple mathematical form and can be solved more
efficiently. Once the RS is determined it is used to predict the required response,
avoiding the former complicated numerical procedure. In this chapter response surfaces
are used to estimate jack-up horizontal deck displacements (based on results evaluated
by JAKUP); these are further described in section 7.4.
First Order Reliability Methods (FORM): The failure function (or the RS) is
approximated by a first order function in standardised Gaussian space at the most

probable failure point. In standardised Gaussian space this is the point physically
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closest to the origin (the mean point). More details of FORM, aong with a practical
example, are given in section 7.6.1.5.

Second Order Reliability Methods (SORM): Similar to FORM except that curvature is
considered by fitting a second order function. SORM has not been used in this chapter.
Importance Sampling in Monte Carlo Smulations: Monte Carlo techniques can be
optimised by organising the sampling procedure around the most probable failure area.
This minimises the amount of sampling required. Though not used here, examples of
importance sampling techniques in structural analysis can be found in Melchers (1989)

or Karunakaran (1993).

7.2.3 Use of Reliability Theory for the Analysis of Jack-Up Units

Difficulties arise when attempting reliability calculations of jack-up platforms, due to their
highly non-linear dynamic response. Dynamic effects change for different response
guantities and sea-states, and various approaches have been used in published studies to
account for the dynamic contribution. For example, in a comparative study of the reliability
of jack-ups and jackets designed according to design assessment procedures (SNAME
(1994) and API (1993) respectively), Morandi et al. (1997) used an additional load set to
account for dynamic effects, i.e. they used a DAF to scale the forces of one “design wave’
from a quasi-static analysis. The design wave was calculated by finding the return period Hg
required from a long-term probability distribution of Hs, and then the short-term most
probable highest wave from the Rayleigh distribution. This method is arguably
unconservative as it assumes the dynamic contribution to response is the same for all sea
states and response characteristics. Short-term force variability is accounted for by
Morandi et al. as a basic random variable with a COV of 18% (perhaps a little low when

compared with the COV's calculated for short-term force variation in Chapter 6).
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A method which calculates DAFs for short-term sea-states and then applies each in along-
term evaluation was outlined by Daghigh et al. (1997). Using a ssimplified jack-up moddl,
for each short-term sea-state the largest stress response was evaluated in each of the
following three analyses:

three hours of random sea using a dynamic anaysis,

the same three hours of seausing a quasi-static anaysis, and

a short-term design wave (based on the most probable highest wave from the Rayleigh

distribution) for a quasi-static analysis.
A DAF was then calculated to scale the quasi-static design wave force to a short-term
three-hour dynamic force, through the intermediary three-hour quasi-static anaysis. To
calculate short-term reliability values of a more detailed jack-up, Daghigh et al. proceeded
to use simple quasi-static design waves, but with their forces scaled by the DAFs
calculated. Long-term reliability values were calculated by ‘adding the reliabilities for
various short-term sea-states in accordance with the scatter diagram for the area of
operation’ (Daghigh et al., 1997). This method, while accounting for differences in long-
term sea-state dynamics, does not correctly account for the variation within the short-term
seas. As shown in Chapter 6, the variation of force for three-hour short-term seas is
considerable; however, the method used by Daghigh et al. results in only one vaue for

short-term dynamic force per sea-state.

In both Morandi et al. (1997) and Daghigh et al. (1997), extremely complex finite element
models were used but, with the smplest of foundation assumptions. In the latter the
structural model consisted of 1800 nodes, yet the foundations were assumed to be pinned. It
has been shown in this thesis that the foundation model used can affect the long-term
probability of exceedence of response by an order of magnitude; thus these reliability
results must be interpreted in light of that consideration. The study detailed by Morandi et

al. is, however, part of an ongoing investigation commissioned by the U.K. Health and
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Safety Executive, and will include Martin's (1994) Model B elasto-plastic model for

spudcans on clay at alater stage.

Karunakaran (1993), in a study of the non-linear dynamic behaviour of jack-up units,
proposed a reliability procedure accounting for long-term response. Noting that traditiona
design wave methodology in combination with dynamic amplification factors, as used, for
example, by Morandi et al. (1997), is not capable of predicting the extreme dynamic
response correctly and may even give unconservative results, Karunakaran fit three-
parameter Weibull distributions to maxima calculated for short-term sea-states. However,
he used only 10-20 samples of 45-60 minutes length in the evaluation of these distributions.
By dividing an example scatter diagram of the location into regions of similar dynamic
response and fitting short-term distributions to these blocks, Karunakaran then calculated
long-term reliability values in a consistent manner by convolution of the short-term
distributions and their long-term probabilities of occurrence (as can be determined from the

scatter diagram).

Similarly, the long-term reliability experiments in this chapter will be based upon the
combination of short-term distributions with their long-term expectance. The long-term sea-

states used for the example experimentsin Chapter 6 will again be utilised.

7.3  Aimsof Numerical Experiments

The aims of the numerical experiments discussed in this chapter are:
to ascertain and incorporate probabilistic distributions for random variables which
influence the response analysis of jack-up units;
for short-term sea-states, to fit response surfaces which adequately model an example

jack-up response (in this chapter horizontal deck displacement is investigated);
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to evaluate the significance of each random variable to this extreme jack-up responsg;

for long-term conditions, to compare the probability of exceedence estimates for deck
displacement using probabilistic random variables with the values calculated using just
their deterministic mean values (previously evaluated in Chapter 6). This comparison

will be made for NewWaves without any random background.

7.4  Use of the Response Surface Method (RSM)

As shown in Chapter 6, the calculation of jack-up response probabilities of exceedence
using Monte Carlo techniques requires a significant sample size. For numerica experiments
with probabilistic distributions of random variables, the use of one JAKUP run per
response calculation would be computationally prohibitive. Therefore, to estimate
probability of exceedence values in this chapter, JAKUP is replaced by a RS which can

predict extreme response efficiently.

To create a RS, a suitable mathematical form is chosen with a finite set of parameters to be
uniquely fixed. If there are k free parameters, for instance, then it only requires k different
experiments to fit the surface (or in this case k JAKUP runs). However, with only k
experiments no information is given about error of fit and the possible random error;
therefore, it is usual to make more than k experiments when fitting the surface. In this case,
the surface parameters are chosen by a regression method based on the minimisation of the

total misfit error.

Within this chapter the form of the response surface chosen to model extreme jack-up

response is the versatile second-order polynomial with mixed terms:

- & & & &
S(X)=a+ahxi+aCiXi2+aadi,-XiX,-+e (7.3)

i=1 i=1 i<
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where X; and X; are the i and | components respectively of the set of random
variables, a, b, ¢ and dj the free parameters needing evaluation (a total of

1+ 2k +k(k - 1)/2 parameters) and e the error of fit. Theterm S represents the service

response predicted by the RS. This form was chosen for its ability to model response with
significant system curvature. Unfortunately, it carries no formal resemblance to the actual
surface resulting from the mechanica modelling of jack-ups, however, with further
developments a surface shape resembling the physical processes more closely could be

identified.

The free parameters are evaluated by systematic numerical experiments using the central
composite design method (see, for instance, Myers and Montgomery, 1995). There are three
main sets of random variables (X) used to fit the surface, as depicted in Fig. 7.2 (for the
k =2 case). They are:
The axia points, which largely contribute to the estimation of the quadratic terms, but
not to the interaction terms. There are 2k axial points.
The factorial points, which contribute to the estimation of linear terms, but also are the
sole contributors to evaluation of the interaction terms. The number of factorial pointsis
equal to 2.
The central runs, which contribute to the estimation of the quadratic terms and provide
an evaluation of pure error. The number of central runs is user-defined, as discussed

below.

n 1

Fig. 7.2 depicts an axia “distance’" of V2 and gives the number of central runs as three.

These are the only components of the method that allow flexibility in the design and both are

important to the RS accuracy. The axial distance chosen is usualy in the range of 1 to Jk
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(for afactorial distance of +1 standard deviations from the mean), and these points define
the experimental design region (Myers and Montgomery, 1995). The latter forms an equal

distance from the centre, with the factorial points creating a “spherical” design region,

whilst the former creates a ‘cubic’ region. If one chooses an axia distance of Jk and an
appropriate number of centre runs (Myers and Montgomery recommend three to five runs),
the prediction variance has the same value at any two locations that are the same distance
from the design centre¥sa notion developed by Box and Hunter (1957) and known as
“rotatability”. Centre runs aso reduce the prediction variance within the design region and
can give an estimate of pure error. However, in JAKUP, for NewWaves not constrained in
a random background, all centra runs give an equivalent response. For the response

surfaces developed in this chapter the spherical design is used.

As an dternative to regression anaysis, “interpolating polynomials’ could be used to fit a
RS (Bucher and Bourgund, 1990). Once a first attempt at evaluating an equivalent RS has
been performed, a design point (defined as the point on the failure surface closest to the
mean of the normalised set of basic variables) can be established. This point represents the
set of basic variables most likely to breach the ‘failure’ criteria. As the response surface’s
accuracy might be questionable (the design point could be a distance from the central point
where the surface was fit), further iteration is used to refine the response surface around this
area of ‘most probable failure’. This technique is powerful when evaluating one failure
point rather than a region of values (where re-runs of the iterations for every new failure
point would be required). Interpolating polynomials were used by Morandi et al. (1997) in

ardliability investigation of jack-ups, however, they will not be used here.

! All distances quoted here are in standardised Gaussian space and, therefore, need to be multiplied by S |
the standard deviation of the random variable. In this case al variables are assumed to be normally
distributed.
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7.5 Choice of Random Variables and their “ Predicted” Variability

To quantify uncertainty in the modelling of jack-ups it is necessary to define a set of basic
variables which govern the dynamic response of the structure. The term basic is used to
emphasise that these quantities represent the most fundamental variables in the anaysis
calculation. This process of defining values for all input variables is also performed in a
deterministic calculation with single values attributed. In a probabilistic approach,

however, the uncertainty in the basic variablesis specified.

There are distinctive types of uncertainty in the basic random variables to be considered.
These include:
Physical uncertainty: due to inherent variability of the properties in nature. Loads,
material properties and dimensions are al examples of basic variables which, if
measured, would exhibit physical fluctuation which could be described in terms of a
probabilistic distribution or stochastic process.
Statistical uncertainty: as the physical variability can only be quantified from example
data, which is often of small sample size, uncertainty arises due to the inferences drawn
from these limited observations.
Besides the randomness and uncertainty associated with the input variables, uncertainty
exists in the mechanical model set up to formulate the response. This modelling uncertainty
includes not only uncertainty of model components, but aso the response of the complete

model.

7.5.1 Random Variables Influencing the Dynamic Response of Jack-Ups

Before a set of basic random variables was chosen to represent the loading and physical
uncertainties in JAKUP, an investigation of random variables used in the literature was
undertaken. The aim was to determine which variables might be important in the response

analysis of jack-ups. Table 7.1 outlines the results and gives some indication of possible
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distributions, mean values and CoVs. For clarity the basic random variables have been
divided into four categories. environmental loading, geometric/structural, foundation and

modelling.

Environmental Loading: Many studies formulate this variation in loading as a variation in
the applied load calculated with deterministic values, as opposed to uncertainty in the
individual components of the Morison equation; see, for instance, Morandi et al. (1997) and
Lacasse and Nadim (1994). However, as one of the aims of these experiments is to compare
the components of the models that are used in JAKUP, and not just to reach a probability of

failure answer for one particular case, the most basic components were used.

In experiments, despite the attempt to maintain constant conditions, such as steady flow,
viscosity, temperature, roughness and geometry, the measured values of the Morison drag
and inertia coefficients exhibit considerable scatter (see, for example, Kim and Hibbard,
1975). With even greater complexities in the conditions for offshore jack-ups, such as
interaction of members, marine growth and unsteady flow, any scaled experimental values
would be invalid when applied to a real jack-up. There is therefore considerable

uncertainty in the application of C, and C, arising from alarge number of effects that are

not fully understood (Thoft-Christensen and Baker, 1982). This uncertainty is reflected in
values previoudly used in the literature, with CoVs of 20-25%; the drag coefficient is
usually considered to have a larger variation than the inertia coefficient. Distributions used
to describe the effect of marine growth on jack-ups have also been listed in Table 7.1. This
uncertainty could aso be included as a component of the uncertainty within the Morison

coefficients.

Wind and current are other variables influencing the force on a jack-up. In reliability

studies, wind can be described either in terms of wind velocity (Thoft-Christensen and
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Baker, 1982) or as awind force (Morandi et al., 1997). As the wind loading in Chapter 6

was described as aforce, the latter approach will be used here.

Geometric/Structural: Important variables found in the literature for the response of jack-
ups are the mass of the deck and the structural damping ratio. Deck mass influences the
dynamic response and geometric non-linearities, as well as the pre-load applied to the
foundations. As Model C is very dependent on the pre-load level (as it determines the
initial yield size), in the numerical experiments described later in this chapter these two

effects have been separated into two variables: deck mass and pre-loading factor.

Foundation: Due to limited data (in terms of both quantity and quality) there is a large
measure of subjective judgement when determining geotechnical uncertainty (Gilbert and
Tang, 1995). In the literature surveyed, jack-up analyses (and reliability studies) generally
contain complex structural or wave models, whilst using smplistic assumptions for the
foundations. When probabilistic methods for geotechnical models have been used, it has
often been as an overall uncertainty on the deterministic model’s results (see for example
Nadim and Lacasse (1992)). There are, however, a number of studies which used
probabilistic distributions for the stiffness of the linear spring representation of spudcans,

with variations shown in Table 7.1.

Modelling: Some typical examples of the types of statistical variations which are placed on
jack-up models in reliability studies are shown in Table 7.1. Modelling uncertainty is
incorporated by introducing variability (and often bias) to represent the ratio between the
“actual” and predicted model response. Use of modelling uncertainty is discussed further in

section 7.5.2.



Chapter 7 - Application of Probabilistic Models in the Response Analysis of Jack-Ups 7-13

7.5.2 Distributions of Random Variables used in Numerical Experiments

Based on the experience of previous studies (Table 7.1) and knowledge gained from the
results of Chapter 5 and 6, eleven basic random variables have been chosen for an initia
numerical experiment using JAKUP. Table 7.2 outlines these variables, their distribution
type (formulations can be found in Appendix A), mean values and CoVs. There are three

types of basic random variables used: environmental loading (current(u),C,,C,,,wind ),
structural modelling (structural damping, mass of hull) and Model C (g,m,,N,, f - d,

pre-load). All of these variables have been used previoudly, except the last two Model C

parameters, with further explanation given here.

Thebasic variable f - d; isacombination of the parameters f (theinitial plastic stiffness
factor) and d; (the dimensionless plastic penetration at peak), both of which affect the
hardening law of Egn 3.10. The initid stiffness is proportional to f (Eqgn 4.2), and d,

affects the location of the peak in plastic vertical displacement (Eqn 4.3). If f isreduced,

to keep the peak at the same vertical load, d, must increase in proportion; therefore, the
product of f and d, must remain constant. The basic variable f - d; representsthe f
value used, with d,, calculated as

_ Fren oy _ 4557 10°
P (f - dp)random (f - dp)random

(7.4)

The hardening law’s shape is changed by the range of f - d, values, but with the peak of

the vertical load remaining at the same level, as depicted in Fig. 7.3. The pre-load factor
determines the amount of vertical pre-load applied to the foundations before operation (or

numerically, before any wave loading is applied). The vertical pre-load per footing is
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determined by the multiplication of this factor and the weight of the hull distributed to each

leg.

Modelling uncertainty has been included as variation in the model’s components (for

instance, the variablesg, m, and f - d, inthe Model C category) rather than uncertainty in

the model itself. The idea of incorporating an uncertainty or bias to the calculated response
due to a whole model, for example, Model C, is extremely difficult to quantify and reduces
any attempt to reflect the physical processes occurring. Uncertainty in the fit of the RS has
not been included as it is expected to be minimal (tests of this are described in section

7.6.1.3)

The statistical distributions ascribed to the Model C parameters should be considered as
best judgements for an example numerical experiment, not as definitive results. Part of the
motivation for these probabilistic numerical experiments is the identification of Model C
parameters that are significant for jack-up response. It is hoped that a judgement on
parameters needing more careful consideration in further research (to determine more
representative distributions) and ones which can be thought of as deterministic (as they do

not notably affect the response) will be resolved.

7.6  Short-Term Analysis (100-year return period)

7.6.1 NewWave with Most Probable Highest Amplitude (i.e. a = 0.93H,)

To test the application of a second-order polynomia as a RS for the random variable
distributions outlined in Table 7.2, the 1 in 100 year sea-state of Chapter 6 is used with a
NewWave amplitude held constant at its most probable highest wave elevation. There are
two definitions of most probable highest elevation that could be used: the modal and the

mean. Both will be investigated for the 100-year sea-state, starting with the modal.
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For a narrow-banded sea, where the number of waves is N, the moda extreme

amplitude (&,,,,,) can be evaluated as

gmod. = \/Zln(Ncra )\/nbh (7-5)

where m, isthe zeroth spectra moment (the area under the wave spectrum).? For a

narrow-banded spectrum this can be estimated as

= aeigz (7.6)
" = &a01, '

Therefore, for three-hours of the example 100-year sea-state (characterised by H, =12m,
T, =10.805m and with N =1000), using Egns 7.5 and 7.6, &,,,4 =11.16 m. This was
the NewWave amplitude used in the first numerical experiment. The composite design
method described in section 7.4, with 2071 different sets of random input variables, was
used to fit the polynomial. The largest deck displacement was extracted from the
displacement time series for each JAKUP run, and by minimising the error squared,
polynomial coefficients for an extreme deck displacement RS were estimated. Their values

areshownin Table 7.3.

7.6.1.1 Calculating Probability of Exceedence Results from a Monte Carlo Simulation
of theRS
Using the distributionsin Table 7.2, arandom set of basic variables (X) can be selected and

the corresponding deck displacement calculated from the extreme deck displacement RS. By

2 h has been placed as a subscript on the zeroth spectral moment of the wave spectrum in this chapter to
distinguish it from the dimension of the Model C yield surface in the moment direction (my).
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repeating this process an extreme response distribution for deck displacement can be
formulated, as shown in Fig. 7.4 for a NewWave amplitude of 11.16m in the 100-year sea-
state. The number of random variable sets sampled for Fig. 7.4 was 10 000. The 50%
exceedence value was evaluated as 0.369 m and the mean as 0.387 m. As expected, the
50% exceedence value approximates the deck displacement of 0.363 m calculated by

JAKUP when al random variables equal their mean value.

7.6.1.2 The Mean Most Probable Highest Amplitude

For the same sea-state, another RS was evaluated for the mean highest amplitude in a three-
hour sea-state. The NewWave was again held constant, with the same procedure used to
approximate the RS and extreme response statistics. Barltrop and Adams (1991) estimate

the mean extreme wave amplitude (&.,,) for sea-states with over 100 crests as

Apeen = g‘\/ 2IN(Neq ) +%§m . (7.7)

Fig. 7.5 compares the extreme response distributions of deck displacement for the modal
highest wave with the mean highest wave. In the latter the NewWave amplitude was
calculated from Eqn 7.7 as 11.60 m. A CoV of 30.32% for the mean distribution is similar
to the modal value of 29.16%. The difference in deck displacements between the mean and
modal distributions is greater in the middle region of the cumulative distribution than at both
the high and low extremes. This indicates that the NewWave amplitude (and the additional

force created) is not asimportant as the other basic random variables at these extremes.

7.6.1.3 How Preciseisthe Response Surface Fit?

To investigate the fit of the RS (for &,,,,), retrospective simulations of sets of random

variables were performed using JAKUP. The sets of basic variables were recorded from
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the Monte Carlo calculation performed in section 7.6.1.1 and can be divided into two

categories:

1. The first 1000 sets of random variables evaluated irrespective of the displacement
calculated by the RS.

2. Three groups of 200 sets each, where the deck displacement calculated by the RS was

between0.2m< d,, £04m,04m<d,, £06mand06m<d,,.

This division was made so that the general random accuracy as well as the accuracy within
bands of response could be gauged. Fig. 7.6 shows the deck displacements calculated by
JAKUP against the predicted response of the RS for the first 1000 random variable sets. By
inspection, the response surface seems to be accurately predicting the JAKUP evauated
displacements, with no bias evident. Fig. 7.7 has been divided into the response sections
being retrospectively smulated; again the RS surface is indicating a good fit. For both large
and small displacements, the RS is not as accurate as it is around the mean response level;

this is expected as accuracy of the RS decreases as the set of basic variables move away

fromtheinitial central run (in this case d, = 0.363m).

A quantitative measure of relative error (e,, ) has been evaluated as

e, = o~ G 1000 (7.8)

deck

where d,, and d,, are the deck displacements evaluated by the RS and JAKUP

respectively. As shown in Figs 7.6 and 7.7, the relative error for the first 1000 runs was
2.08%, and for the three sets of 200: 2.47%, 1.04% and 2.15%. The relative error
calculations confirm the observation that there is more accurate RS prediction surrounding

the mean value.
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7.6.1.4 Sensitivities of the Basic Random Variables

The relative importance of the random variable X; can be caculated as P; /Tmy,

(Karunakaran, 1993). Within a Monte Carlo caculation this sensitivity measure denoted

Snxi can be evaluated as

_ Pf(”’( +dnyi)- Pf(m()
™ dmy, /m

S (7.9)

where drr;<i isasmall change in the mean value of the random variable X;. In thisthesisthis

small change was assumed as a 1% increase (or decrease, depending on which change

enlarged the response).

Table 7.4 outlines the sensitivity values calculated at three response levels (d,, = 0.3, 0.5
and 0.7 m) for the RS evaluated. The random variables have also been ranked in Table 7.4
according to their Smxi value. The drag coefficient (C,) can be interpreted as the most
influential random variable at al levels of response, with current, hull mass, and the Model
C parameters m, and the pre-load factor al consistently showing high sensitivity values.

The two Model C variables change in rank at different response levels, and this warrants

further explanation.

At d,, =0.3m, alow displacement for this NewWave amplitude (as indicated by the high
exceedence P, value), the pre-load factor is ranked higher than m, (third versus fifth

respectively). Asthe response level becomes larger, the pre-load factor fallsin the rankings

(&t dyy =0.7m it is ranked 5-7); however, m, becomes more important, moving up the
rankings to be nearly as sensitiveas C, at the d ., =0.7m level. This shows the influence

of plasticity in the calculation of deck displacement. As the pre-load factor determines the
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initial yield surface size according to the Model C formulation, it directly influences
whether a load combination produces plastic conditions at the footing, and thus the extreme

response. In contrast to this, athough m, does influence the yield surface shape (it
determines the peak size on the M /2R axis), it is not as influential in determining whether
plasticity occurs. If the load combination does not reach (and expand) the initial Model C
yield surface, thevalue of m, isinsignificant. These factors are reflected in the rankings at
dyy =0.3m. The opposite is true for the d ., =0.7m level, as a calculation including a
plastic component is expected and the influence of m, on the surface shape is more

important than whether the surface is reached.

7.6.1.5 CalculationsUsing First Order Rédiability Methods (FORM)

As a practical method of evaluating probabilities of failure, FORM is widely used in
offshore structural applications (see, for example, Baker and Ramachandran (1981), Nadim
and Lacasse (1992) and Morandi et al. (1997)). Its main advantage is the simplification of
computationally difficult analyses. Using the second-order RS outlined, Monte Carlo
simulation is computationally efficient for large samples. Therefore, FORM is not

specifically required in this chapter, but it will be outlined here and used to evaluate P,

and sensitivity values as a comparative method.

The RS of Egn 7.3 can be mapped into standardised Gaussian space (of k dimensions) by
replacing all uncorrelated normally distributed basic random variables X, with their

standardised value Z;, where:

z =—X (7.10)
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An important characteristic of the z-coordinate system is rotational symmetry with respect
to the standard deviations. Therefore, the point on the RS with the highest probability of
occurrence is the point on the surface closest to the origin (the origin represents the mean set
(m) in anormalised set of basic variables). This point is called the design point and is
shown in Fig. 7.8. Another term commonly used is the reliability index b, which Hasofer
and Lind (1974) defined as the distance between the origin and the design point in

standardised Gaussian space:

o
b:mlné ai
i=1

As shown in Fig. 7.8, the original RS is replaced in a FORM calculation by a first-order

I-O

(7.11)

[N

surface of the same gradient as the RS at the design point. The probability of failure can

therefore be estimated as
P, =F(-b) (7.12)

where F is the standard normal distribution function (see appendix A). In most

circumstances this alternative estimate could be seen as a conservative estimate of P, .

Iterative solution techniques for finding the reliability index and the design point were used

on the RS of section 7.6.1.1 for the failure condition of deck displacements exceeding

0.5m, i.e. S=S>0.5m. Details of these techniques will not be given here but can be

found in Thoft-Christensen and Baker (1982). The log-normal distributions of g and N,

were incorporated by finding equivalent normal distributions at the design point, as is
recommended in Thoft-Christensen and Baker (1982). In finding the design point the unit
vector a was defined as the direction of the design point from the origin. As shown in Fig.

7.8, the vector from the origin to the design point is therefore
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OA = ba (7.13)

where O represents the origin and A the design point. The individual components of a
allow for a sensitivity measure of the basic random variables. Firstly, a,® is the fraction of

the variance of the safety margin that originates from X;. Another measure used is the

omission sengitivity factor (z;), which expresses the relative error in the geometric
reliability index (b) if an input variable was replaced by a fixed value Ditlevsen and
Madsen, 1996). For the calculation here, z, can be interpreted as the percentage change in

the reliability index when variablei isreplaced by its mean value and is evaluated as

(7.14)

Table 7.5 shows the results calculated for the RS of section 7.6.1.1 usng FORM. The
reliability index was evaluated as b =1.03, giving an estimated P; of 0.1515; as could be
expected, this value is larger than the value of 0.1479 estimated for the 10 000 samples
using Monte Carlo ssimulation. Furthermore, the sengitivities to individual random variables
have similar ranking to those given in Table 7.4. The drag coefficient is again dominating

the response, with its proportion of a,” at 0.67. Moreover, if it was replaced by just its

mean value, the reliability index would change by avery significant 74.71%.

7.6.1.6 Using Only 7 Basic Random Variables— Repeat Calculation
As some of the random variables originaly chosen were not significantly influencing the

extreme deck displacement¥sas indicated by low S, values¥a the number of random

variables was reduced from eleven to seven in order to abridge the computational effort for
the rest of the numerical experiments. Naturally the most influential were left in the

experiments and they are described in Table 7.6. Following the same procedure as in
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sections 7.6.1 to 7.6.1.4, a RS was estimated and a distribution of extreme deck
displacements formulated (from Monte Carlo sample sets of 10 000 random variables). Fig.
7.9 shows a comparison between the eleven- and seven- variable extreme response
distributions. As would be expected for fewer random variables, the seven-variable
distribution shows less variation than the eleven-variable distribution; however, the

difference is small enough to justify using the lower number of random variables.

7.6.2 Short-Term Sea-States with Variable Wave Amplitudes

For short-term conditions, random wave amplitudes follow the Rayleigh distribution as
employed in Chapter 6. Therefore, in this section the variation in wave amplitudes will be

consdered, rather than using the most probable maximum wave amplitude.

7.6.2.1 Methodology Adopted
The method adopted to incorporate the variability of extreme wave amplitudes, as well as
the probabilistic occurrence of the random variables in the evaluation of extreme response

distributions, follows these steps:

Step 1: For the five NewWave crest elevations (described for each sea-state in Table 7.7),

a separate RS is estimated using the central composite design and regression analysis. For k

number of random variables this requires (1 + 2k + 2¥) JAKUP runs per crest elevation.

Step 2: In aMonte Carlo calculation, for the same set of random variables (X) aresponse is
calculated for each of the five NewWave elevations and a line of best fit is evaluated for

these five responses. This allows interpolation for intermediate crests.
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Step 3: With an extreme wave elevation randomly cal culated,® one extreme response can be

estimated from the random-set best-fit polynomial of Step 2.

By repeating Step 2 and Step 3 for many sets of X, a statistical distribution of the extreme
response can be formulated. This method adds another random component to the distribution
compared with the calculations using the most probable extreme elevation in section 7.6.1,

i.e. the extreme devation in a short-term sea-state.

7.6.2.2 Numerical Experiment for 100-Year Return Period
An example of the methodology described in section 7.6.2.1 to compile short-term extreme
response statistics for probabilistic random variables is outlined here. The 100-year sea
state characterised by the JONSWAP spectrum with parameters Hs = 12 m and T, = 10.805
sisused again. For each of the five NewWave crest elevations, 3.5, 7, 10, 12 and 15 m (as
utilised in Chapter 6), 143 JAKUP runs were performed (for k = 7) and the maximum deck
displacements extracted. With the five RS polynomials estimated, 10 000 sets of basic
random variables were simulated and 10 000 extreme wave amplitudes used to evaluate the
distribution of extreme deck displacements. Fig. 7.10 shows this distribution and compares
it with the distribution of extreme deck displacements calculated with variable NewWave
amplitudes, but with basic variables at their mean value (as evaluated in Chapter 6). The
additional variation caused by the uncertainty in the basic random variables is clearly
shown. Two more observations from Fig. 7.10 can be made:

The increase in displacement caused by the basic random variables at large deck

displacements is greater than the reduction at low deck displacement levels. It is

believed this is due to the non-linear response of the basic random variables, and thisis

discussed further in section 7.7.1.

3 Evaluated by Monte Carlo simulation of the number of waves in the short-term time period (Nees) Using
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The two curves intersect below the 50% exceedence level, at about Q(x) » 0.38 when

dyi » 0.36m. Again, reasons for this are explored in section 7.7.1.

In Fig. 7.11 a comparison of the extreme deck displacement distributions for variable
NewWave amplitudes and for the mean most probable highest wave amplitude shows the
importance of varying the wave elevations. The extra variation is reflected by the CoV
increasing from 30.32% to 35.66%. The curves cross at around Q(x) » 0.5, the expected
mean vaue (the dight difference might be due to the ‘most probable’ curve being estimated

from eleven random variables as opposed to seven).

7.7 Long-Term Numerical Experiment with Probabilistic Random
Variables

7.7.1 Short-Term Results

Six short-term extreme response distributions have been evaluated based on the long-term
conditions used in Chapter 6 and described again in Table 7.7. The experiments include
wind and current, with their mean and standard deviations aso shown in Table 7.7. The
mean values are those used in Chapter 6 and the CoVs are those used in the example 1 in

100 year sea-state previously detailed in this chapter.

Fig. 7.12 shows the extreme deck displacement distributions evaluated with statistical
variation in the basic random variables (or ‘random-variable’ distributions) and compares
them with the short-term distributions calculated for the mean values of the basic variables
(or ‘mean-variable’ distributions). Table 7.8 outlines all of the extreme response

distributions statistical properties (mean values and CoVs). A considerable increase in

the Rayleigh distribution of wave elevations (see Eqn 6.10).
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CoVs for the random-variable distributions is observed for all sea-states. Although for a
return period of 1-year the mean deck displacement is the same (for the random-variable
and mean-variable curves), there is a steady increase in the mean response for the random-
variable extreme deck displacement distributions for longer return periods, as is shown by

the percentage increasesin Table 7.8.

For the 1-year return period, the intersection of the mean-variable and the random-variable
distributions on the cumulative distribution plot of Fig. 7.12 is at approximately Q(x) » 0.5.
For the other short-term distributions, however, as the sea-states become less probable the

intersection is at progressively lower Q(x) values, crossing a around Q(x) » 0.26 for the

10° year sea-state. An explanation considering the linearity of the response to each of the

random variablesis explored further here.

Firstly, assume the change in response to all of the random variables is linear, i.e. for the
same probability of occurrence of the random variable's value at a “distance” from its
mean, either lower or higher, the reduction in response is the same as the increase. This is
shown in Fig. 7.13(a). For this case, the mean-variable and the random-variable extreme
response distributions should intersect a Q(x) =0.5. Furthermore, as shown in Fig.
7.13(b), the variation of the random-variable curve away from the mean-variable extreme
response distribution should be of the same magnitude for both Q(x) < 0.5 and Q(x) > 0.5.
On the other hand, if the response to a random variable is non-linear, the random-variable
extreme response distribution becomes skewed. If, as in Fig. 7.13(c), the additiond
response is relatively larger for the same probability away from the mean as it is smaller,
then the distributions should intersect at Q(x) <0.5 (assuming more than one random
variable). Additionally, the random-variable distribution will not have the same difference

in variability, but will show alarger change in response at high Q(x) values, as indicated
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in Fig. 7.13(d). Thisisasimplistic explanation and one which becomes more complex with

competing non-linearities and cross-term effects.

For the 1-year sea-state the majority of runs used to evaluate the RS were within the initial
Model C yield surface (only a few of the runs for the highest NewWave elevation of 11m
caused expansion of the yield surface). Therefore, the runs were al within the foundation’s

elastic region and the footings were acting as linear springs. In this situation, the Model C
parameters m, and the pre-load factor had no effect on the response. The remaining
parameters, especialy C, and wind load, have a more linear effect on the horizontal deck

displacement, and this is reflected in the extreme response distribution for the 1-year sea

state shown in Fig. 7.12.

As the sea-states become harsher, the Model C parameters become more important and

more non-linear. For example, with al of the other variables at their mean level and only
m, varied for the 10° sea-state and a NewWave amplitude of 19 m, the deck displacement
calculated by JAKUP isincreased by 0.219m for m, at two standard deviations below its
mean, but only decreased by 0.122 m for m, at two standard deviations above its mean.

This influence would be increased when cross terms are considered, especially due to the

increase in load caused by higher C, values. It is these non-linear effects which are thought

to create the skewed curves described by Fig. 7.12.

7.7.2 Long-Term Results

As discussed in section 6.4.3.1, the convolution of the short-term distribution with the
logarithmic distribution of sea-state occurrence gives long-term probability predictions of

response. The same method of scaling the normalised (by the 50% exceedence value) 1 in
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100 year distribution as described in section 6.4.3.1 was used to estimate values in

intermediate sea-states.

Long-term extreme exceedence probabilities have been calculated for the horizontal deck
displacement of the example jack-up for the statistical distributions of random variables
outlined in Table 7.7, and are shown in Fig. 7.14. The estimates are significantly larger than
the annual probability of exceedence values calculated in Chapter 6 for the mean
deterministic values of the basic random variables. This can be explained by the increased
variability observed in the short-term random-variable extreme response distributions. For
al seastates (apart from the 1-year return period) the variations in the basic random
variables caused larger mean deck displacements for the short-term distributions (as
outlined in Table 7.8). This, as well as the fact that the short-term response is relatively

larger at high Q(X), and that the curves cross at lower Q(X) levels as the sea-state return

period increases, means that the long-term exceedence prediction is significantly increasing.
For the reasons discussed in section 7.7.1, it is believed that if a linear foundation model

was used, the difference in long-term exceedence estimates would not be as large.
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Chapter 8 — Concluding Remarks

8.1 | ntroduction

This thesis is concerned with the modelling of jack-up units on sand when subjected to
random ocean waves. Anaysis techniques have been developed in the three main areas
outlined in the research ams. foundation modelling, random wave loading and the
probabilistic approach to developing extreme response statistics. In this chapter the main
findings of the thesis are summarised, conclusions drawn, and some possible directions for

future work presented.

8.2 Conclusons—Main Findings

8.2.1 Foundation Modelling

Based on a series of experiments performed at the University of Oxford by Gottardi and
Houlsby (1995), an incremental work hardening plasticity model entitled Model C has been
developed to represent spudcan footings in the analysis of jack-up units on sand. The yield
surface, flow rule and hardening law of Model C are all empirically determined to fit the
experimental data. Stiffness factors derived from three-dimensional finite element analyses

performed by Bell (1991) are used to describe elastic behaviour within the yield surface.

A complete incremental numerical formulation of Model C describing the combined loading
on spudcan footings was outlined. This was implemented in the FORTRAN program OXC,
which was used to perform retrospective smulations of several footing experiments. The
capability of OXC to smulate the original test data for both load and displacement

controlled stages was demonstrated.
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Using the Method of Characteritics, a theoretical study of the vertical bearing capacity of
conical footings on sand was conducted. Lower bound solutions were evaluated for a range
of cone angles, footing roughness and the angle of friction of sand. Using the results of this
study, a method accounting for the conica shape of spudcan footings in Model C was
suggested. The hardening law relating the size of the yield surface was defined by a
combination of an empirical fit to experimental data for flat circular footings on dense sand

and a theoretical bearing capacity approach for the conical section of the footing.

Model C represents a significant advance to the response anaysis of jack-up units. When
compared with techniques widely used in the jack-up industry, a significantly different

response is found, and this was shown in examplesin this thesis.

8.2.2 Numerical Modelling of Random Wave L oading

The numerical formulation of Model C was implemented into the plane frame structural
analysis program JAKUP, which is suitable for the dynamic analysis of jack-up units.
NewWave, Constrained NewWave and second-order NewWave theories have al been
independently implemented into JAKUP to consider the random, spectral and non-linear
aspects of wave loading. The following conclusions can be drawn from the numerica
experiments performed:
Due to the interpretation of spudcan fixity in Model C, a significantly different dynamic
response from the pinned footing assumption was found. Predicted response was shown
for NewWave and Constrained NewWave examples according to various footing
assumptions. pinned, linear springs (using the elastic stiffness matrix of Model C) and

Model C. For the cases shown, the pinned response was arguably over-conservative.
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The importance of the random background for the dynamic analysis of jack-up units was
shown by comparing an example NewWave with the same NewWave constrained within

arandom background.

8.2.3 Probabilistic Approach to Developing Extreme Response Statistics
The probabilistic response of jack-ups was investigated through the random nature of wave
loading. Using an example structure and central North Sea location, a series of numerical
experiments designed to evaluate short- and long-term extreme response statistics produced
the following findings:
A method for determining short-term extreme response statistics using the Constrained
NewWave was demonstrated. The peak responses due to five Constrained NewWave
elevations (for 200 random backgrounds each) were used to evaluate numericaly the
short-term extreme statistics of that sea-state using Monte Carlo methods. This was found
to be computationally efficient and the results comparable with 100 full three-hour
simulations of random seas, even with the inclusion of significant amounts of foundation
non-linearities.
For the example jack-up, for increasing sea-state severity there was an increasing
variation in the short-term extreme horizontal deck displacements. It was suggested that
more drag-dominant loading behaviour contributed to the increasing CoV's of response.
For the Model C case, increasing levels of yielding of both the upwave and downwave
foundations was also influential.
For long-term conditions, Model C displayed significantly different extreme response

from both the pinned and linear spring assumptions. For annual failure probability levels
of interest in the offshore industry (10 *® 10 °®), there was over an order of magnitude

difference for the equivalent pinned and Model C deck displacements. It is conceivable

that in certain gdtuations this could be the difference between acceptance or non-
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acceptance of the rig. The benefit to the jack-up industry of the more redlistic
interpretation of spudcan behaviour in Model C, combined with an efficient long-term
response eval uation method, has been displayed.

For the three foundation models presented, Model C footings displayed higher variation
in the short-term datistics and a comparatively more non-linear long-term annual
probability of exceedence curve.

It was found that it is possible for Model C to give larger long-term probability of
exceedence results than pinned footings. This is due to horizontal plastic displacements
being accounted for in the Model C formulation, demonstrating that the indication of
yielding is a maor benefit of usng a plasticity formulation for spudcan
load: displacement behaviour.

For long-term probability of exceedence levels, the random background sea significantly
increases the extreme (deck displacement) response, confirming the need for random

time domain analysis of jack-ups.

The influence of a probabilistic analysis approach, as an extension of the deterministic
analysis, was investigated using the response surface methodology. It was found that
accounting for the uncertainty in the values of a set of basic random variables affected the
extreme response statistics. The following conclusions can be drawn:
For one sea-state investigated (the example 100-year condition), the drag coefficient
used in the extended Morison eguation was the most significant basic random variable.
Others, including current, hull mass, m, and the amount of pre-load, aso notably
affected the extreme deck displacement results. It can therefore be concluded that for

future experimental development of plasticity models, the terms m, and the effect of pre-

load (i.e. the vertical loading level) should be modelled accurately.
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For short-term statistics there was an increase in CoV values. Furthermore, for
increasing seastate severity, the 50% exceedence response value increased in
comparison with the equivalent deterministic approach. Both of these affected long-term
estimates, giving increased annual probability of exceedence results. Accounting for the

probabilistic distributions of random variables was therefore shown to be important.

8.3 Directionsfor Future Work

8.3.1 Extension to Three Dimensions

In this thesis JAKUP was used for analyses of plane frames, with wave loading applied
along the axis of symmetry of the jack-up. With much of the structural and wave loading
theory available! an extension to a three-dimensiona analysis is possible and would

represent a significant advance.

Model C was developed for behaviour constrained within asingle vertical plane, i.e. a three
degree of freedom problem. For incluson in a three-dimensiona structural anaysis
program, the extension of Model C to six degrees of freedom is required, with the six
loading conditions being horizontal and moment loading in two orthogonal directions,
vertical load and torque. The likely theoretical form of the yield surface for the extension of
Model B to six dimensions was detailed by Martin (1994). However, an experimental
program designed to fit this surface shape (and to develop a suitable flow rule) for the new

Model C would be challenging to perform in the laboratory.

! For details of accounting for geometric non-linearities in space frames see Oran (1973[b]) and Chan and
Kitipornchai (1987) for example. Extension of NewWave to spread seas is possible using the theory set out
by Tromanset al. (1991).
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8.3.2 Foundation Theoriesfor Spudcan Footings

Model C has been developed from monotonic loading tests on sand. However, for the
analysis of offshore structures, loading rates and cyclic loading are both important. The
strength of the sand foundation is related to the rate of the applied load and the degree of
drainage of developed pore pressures. Furthermore, reversal of load paths and cyclic
behaviour (as can be expected in an ocean environment) can cause reduction of the strength
in the soil. The next step in formulating a more advanced plasticity model is to account for

these effects.

8.3.3 Physical Validation of Model C

Model C has been used as a macro-model in anumerical analysis to evaluate the response of
a jack-up unit. It would therefore be desirable to substantiate this use with physica
experiments involving both the structura and foundation components. Two types of
experiments could be undertaken:

1. Through the use of a scaed modd, including the physica structural components, a
comparison of Model C's numerically predicted |oad:displacement path of the spudcans
in service conditions with a physical test could be achieved. Furthermore, response
levels (of lower leg-guide moment, for instance) would help verify the numerical models
used.

2. At the University of Oxford, a Structura Dynamics Laboratory has been built to test
physically a structura element when coupled in real time to a numerical model of the
surrounding structure (see Williams et al., 1997). This equipment could be used with the
overal jack-up numerically modelled in JAKUP, but with one (or both) of the
foundations replaced by a physical model of the spudcan. In the time domain, JAKUP
would calculate the displacements to be applied by the actuators to the physical test

spudcan. The reaction forces generated would then be used as input into the JAKUP
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model for the next displacement increment. Use of the control capacity in the Oxford
University Structural Dynamics Laboratory with this substructure approach offers the
following advantages:

Not only could verification of the use of Model C for drained cases be investigated,
comparisons with realistic transient loading cases are also feasible. Use of Constrained
NewWave in conjunction with the structural and wave loading non-linearities included
in a JAKUP calculation would allow for a more redlistic random load path to use in
laboratory testing of model foundations.

Performance of various foundation types could be investigated; for instance, varying
cone angles of spudcans and the use of skirts on spudcans.

The testing for Model C used a footing radius of 50mm. Through use of larger size

actuators and footing radii, scale effects could also be investigated.

8.3.4 Wave Models

The Constrained NewWave technique provides a powerful tool for numerically analysing
jack-up problems. In this thesis, the effect of only one large peak was investigated as the
basis for development of extreme response statistics. However, there are conceivable
examples of problems caused by a number of large waves following each other. For
instance, if alarge wave horizontally displaces the downwave spudcan, less force needs to
be applied to further displace the downwave spudcan dueto P- D effects. A detrimental
situation can occur with increasingly smaller waves displacing the footing. This type of
problem could be investigated by constraining a number of successve NewWaves.
Constrained NewWave has the ability to investigate different combinations of waves in a

numerically simple manner (with the inclusion of random backgrounds).
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In further investigation of higher-order NewWave theory, the wave models used to analyse
jack-ups could be refined. However, considering the level of rigour for other components of

the model, this may be overly sophisticated at thistime.

8.4 Conclusion

The modelling of jack-upsis challenging due to its complexity in a number of different areas.
Only with confidence in each modelling component can one have confidence in the fina
result. In this thesis, several techniques have been combined to achieve what is believed to

be arealistic modelling of ajack-up.



Appendix A: Statistical Distributions Used

This appendix contains the statistical distributions used to represent the probabilistic
variability of the basic random variablesin the numerical experiments of Chapter 7.

Normal Distribution
probability density function:

fx(x):s—expﬂ where - ¥ <x<¥ (A-1)

X
\

F, (X) = O¥S—exp: gt where - ¥ <x<¥ (A-2)

This integra can not be evaluated in closed form, however, by using the substitution
s=(t- m/s and dt =sds, Egn A-2 becomes
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The standard normal distribution function used is defined by:

¢ t*0

F ()= d%pexpga dit (A-4)

L og-Normal Distribution

If the random variable Y =In(X) is normally distributed (and my is a real number and
s, >0)then Xislog-normally distributed.

probability density function:

é & U
Y lan(x)- m oy

$U
1 1@(32 Sy gl

Sy 2p;

f (X)= where O£ X< ¥ (A-5)

cumulative distribution function:

&n(x) - m o

Fy (X) = FgTE; (A-6)

where F isthe standard normal distribution of Eqn A-4.
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Table 2.1 - Level of complexity used in the analysis of jack-up units

structural foundations dynamic wave loading
degreeof complexity | — > > >
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Cassidy™ 99 v v v v
1. investigated DAFsfor different levels of 9. six0.57hr smulations
damping for 1000 waves (representing one 10. implemented the non-linear stiffness model
3hr event) recommended in the SNAME (1994)
2. uncoupled springs procedures
3. for random time domain simplified the 11. used a200-second segment of one 3hr storm
structure to a stick model to scale and represent the extreme case
4. fitted extreme response of 3hr storm with 3 12. used dynamic analysis of asimplified stick

©NoO

parameter Weibull distribution from one
40min and two 20min simulations

ten 2.3hr smulations

ten 3hr ssimulations

used single degree of freedom stick model
used Constrained NewWave

13.

model to evaluate DAFs at specific Hg
valuesfor usein aquas static push over
analysis

thisthesis

(R) studies on jack-up reliability




Table 2.2 - Calculation of equivaent hydrodynamic diameter (D g,) and area (Ag,)

s =5.16 m = bay height Drag Inertia
Member | Number | Diameter | Marinegrowth| Area | Length | S(Voal.) Cy a b ac.d. Cue Cn C., Val/s

(m) (m) m) | m | (m) degrees | degress (m’)
1 3 0.900 0.01 0.664 5.160 | 10.285 2 90 90 1 2.557 1 1.993
2 1 0.356 0.01 0.111 6.377 0.706 1 90 44.254 1 0.215 1 0.137
2 0.356 0.01 0.111 6.377 1.412 1 30 44.254 | 0.48257 [ 0.208 1 0.274
3 1 0.356 0.01 0.111 6.377 0.706 1 90 44.254 1 0.215 1 0.137
2 0.356 0.01 0.111 6.377 1.412 1 30 44.254 | 0.48257 [ 0.208 1 0.274
4 1 0.406 0.01 0.143 9.700 1.384 1 90 0 1 0.371 1 0.268
2 0.406 0.01 0.143 9.700 2.769 1 30 0 0.125 0.093 1 0.537
5 1 0.114 0.01 0.014 4.712 0.067 1 90 0 1 0.057 1 0.013
2 0.114 0.01 0.014 4.712 0.133 1 30 0 0.125 0.014 1 0.026
Dg = (4.S(AreaLength/(ps)) )0'5 = 2159 SCg4| 3937 [SC,, Vol/s| 3.658

note: Both C4 and C,, in thistable are unit values (i.e. to be scaled later in the Morison equation) flow direction

The drag coefficient of the chord member has been estimated as twice that of other circular members.
Assuming a marine growth of 10mm.

a isthe angle of the flow direction (see inserted figure); flow is assumed to be perpendicular to the triangular face (see Fig. 2.2).
b isthe angle of vertical inclination of the members (90 degreesis vertical and 0 horizontal)

ac.d. = angular correction for drag = (sin®b + cos’b sin‘a )**; therefore for each member C 4, = (Number.C4 (ac.d.).Vol)/(Dg.s)

Equivalent D, = (SCye Dg) =850 m
Equivalent A g, = S(C e VOI)/s = 3.66 m?




Table4.1 - Parameters for Model C

Congtant | Dimension| Explanation Congtraints | Typica | Notes
value
R L Footing radius (various)
g9 F/L® | Unit weight of soil 10kN/m’ | Saturated sand
g - Shear modulus factor 4000
Ky - Elastic stiffnessfactor (vertical) 2.65
K, - Elastic stiffnessfactor (moment) 0.46
Kg - Elastic stiffness factor (horizontal) 2.3
Ky - Elastic stiffness factor (horizontal/moment -0.14
coupling)
ho - Dimension of yield surface (horizontal) 0.116 | Maximum vaue of H/V,
on M =0
my - Dimension of yield surface (moment) 0.086 | Maximum value of
M/2RVgon H =0
a - Eccentricity of yield surface -10<a<1l0| -02
b, - Curvature factor for yield surface (low b,£1.0 0.90 b, =b, =1 gives
stress) parabolic section
b, - Curvature factor for yield surface (high b, £1.0 0.99 b, =b, =1 gives
stress) parabolic section
b, - Curvature factor for plastic potential (low b, £10 0.55
stress)
b, - Curvature factor for plastic potentia (high b, £1.0 0.65
stress)
a, - Association factor (horizontal) 1.0-25 | Variation according to
Egn3.32and a,y =25
a, - Assaciation factor (moment) 1.0-2.15 | Variation according to
Egn3.33and a, =2.15
k¢ - Rate of change in association factors 0.125
f - Initial plastic stiffness factor 0.144
Ng - Bearing capacity factor (peak) 150-300
- Dimensionless plastic penetration at peak 0.0316

Tableb5.1 - Coefficients used in Eqns 5.13 and 5.14 (after Newman, 1990)

i ¢ (for Egn 5.13) b, (for Egn 5.14)
0 1.00000000 0.000000122
1 -0.33333372 0.073250017
2 -0.01109668 -0.009899981
3 0.01726435 0.002640863
4 0.01325580 -0.000829239
5 -0.00116594 -0.000176411
6 0.00829006

7 -0.01252603

8 0.00404923

Table 5.2 - NewWave amplitudes used in the sea-state characterised by T, = 15s

steepness [kyal (rad®/(ms)) | NewWave amplitude [a] (m)
0.1 5.60
0.2 11.19
0.3 16.79




Table 6.1 - Sea-state characteristics and NewWave elevations used in the long-term
numerical experiments

Return Period Hg T, Tp a, a, as as as
(m) (s) (s) (m) (m) (m) (m) (m)

1 8.98 9.35 12.02 2.5 45 6.5 8.5 11

1E1 10.60 | 10.16 | 13.06 3.0 5.5 7.5 10 14

1E2 12.00 | 10.81 | 13.90 3.5 7 10 12 15

1E3 13.25 | 11.36 | 1461 4.0 7.5 10.5 13 17

1E4 1440 | 11.84 | 1522 4.5 8 11 15 18

1E5 15.46 | 12.27 | 15.78 4.75 10 13 16 19

1E6 16.45 | 12.66 | 16.27 5.0 12 15 175 21

Table 6.2 - Wind and current values used in the long term numerical experiments

Return Period Wind Force (MN) Current (m/s)

1 0.756 0.599
1E1 1.053 0.707
1E2 1.350 0.800
1E3 1.647 0.884
1E4 1.944 0.960
1E5 2.241 1.031
1E6 2.538 1.097

Table 6.3 - Statistical properties of the extreme force distributions

(a) nowind or current

probability Force on upwave legs Tota forceon al legs
occu?:ence just Constrained just Constrained
(vear) NewWave NewWave NewWave NewWave
m(MN) [ CoV (%) | m(MN) [ CoV (%) | m(MN) [ CoV (%) | m(MN) [ CoV (%)
1inl1E0 | 3.867 16.81 4.103 17.16 4.292 15.84 4517 16.43
linlEl | 5637 17.42 5.957 17.72 6.180 16.43 6.653 16.90
linlE2 | 7.530 17.47 7.985 18.18 8.354 17.03 9.043 17.42
linlE3 | 9.741 17.66 10.250 18.54 10.954 17.45 11.844 17.64
linlE4 | 11.986 17.87 12.560 18.31 13.837 17.65 14.988 17.65
1in1E5 | 14.308 18.12 14.849 18.68 17.060 18.09 18.164 18.14
1inlE6 | 16.944 18.53 17.871 19.22 20.673 18.21 | 22.543 18.37
(b) with wind and current
probability Force on upwave legs Tota forceon al legs
occucr)rfence just Constrained just Constrained
(year) NewWave NewWave NewWave NewWave
m(MN) | CoV (%) | m(MN) | CoV (%) | m(MN) | CoV (%) | m(MN) | CoV (%)
1linl1E0 | 6.029 12.96 6.251 13.66 6.804 12.61 7.125 12.60
linlEl | 8.824 13.57 9.197 14.04 9.998 12.54 10.644 12.86
linlE2 | 11.607 13.84 12.361 14.33 13.642 13.02 14,771 13.31
1inl1E3 | 14.986 14.04 15.700 14.77 18.002 13.35 19.038 13.47
linlE4 | 18.607 14.24 19.317 14.97 22.657 13.60 | 24.375 13.61
linlE5 | 22.173 14.49 22.932 15.30 27.860 14.19 | 29.366 14.35
1in1E6 | 26.041 14.84 27.283 15.71 33.351 14.63 | 36.001 14.81




Table 6.4 - Statistical properties of the extreme deck displacement distributions for

just the NewWave

(@) nowind or current

probability of linear springs Model C pinned
OC((:;;:;]CG m(m) CoV (%) m(m) CoV (%) m(m) CoV (%)
1in 1E0 0.104 16.97 0.104 16.92 0.472 14.91
1in1E1 0.159 18.41 0.161 19.29 0.638 15.72
1lin1E2 0.225 18.54 0.233 20.99 0.823 16.32
1in1E3 0.290 18.73 0.326 2454 1.019 16.97
1in1E4 0.356 18.93 0.427 25.64 1.249 17.25
1in 1E5 0.431 19.03 0.560 27.70 1.478 17.76
1in 1E6 0.509 19.13 0.703 29.05 1.751 17.91

(b) with wind and current

probability of linear springs Model C pinned
OCE;;;%‘CG m(m) CoV (%) m(m) CoV (%) m(m) CoV (%)
1in1E0 0.175 12.99 0.175 12.99 0.672 12.85
1in1E1 0.257 13.82 0.278 17.81 0.898 13.22
1in1E2 0.349 14.13 0.400 20.58 1.137 13.33
1in1E3 0.451 14.29 0.596 22.15 1.441 1352
1in 1E4 0.547 1457 0.857 22.68 1.816 1361
1in 1E5 0.654 14.62 1.141 22.86 2.205 13.70
1in 1E6 0.773 14.71 1.503 23.08 2.670 13.64

Table 6.5 - Percentage increase in expected deck displacement at three levels of
annual probability of exceedence due to the random background in the
Constrained NewWave analysis

probability no wind or current with wind and current
of linear Model C pinned linear Model C pinned
exceedence |  springs springs
(%) (%) (%) (%) (%) (%)
1.0E-4 7.5 13.0 7.5 6.0 12.0 7.0
1.0E-5 8.0 16.0 8.0 6.5 15.0 7.5
1.0E-8 8.5 21.0 8.0 7.0 16.0 8.0




Table 7.1 — Basic random variables of interest in the probabilistic modelling of jack-up units (table continues over page)

Basic Variable Mean Value  |Distribution |CoV (%) |Reference Notes
Env. Loading |Cy 0.75 norma 30 Thoft-Christensen and Baker used in an example calculation of ajacket structure
(1982)
1.0 normal 20 L aseth and Bjerager (1989) for example deep water jacket (over 300m water depth)
1.0 log-normal 20 L zeth and Hauge (1992)" for example jack-up calculation
1.0 normal 20 Karunakaran (1993) and values used for three-legged jack-up with triangular-trussed
Karunakaran et al. (1994) legs
0.75 log-normal 25 Sigurdsson et al. (1994) for example jacket located in the North Sea
0.61 24 Kim and Hibbard (1975) full scaletests on 325mm diameter smooth piles (consistent
for Hs = 0.8-3.0m)
marine growth log-normal 20 L gseth and Hauge (1992) for central North Seajack-up in 83.7m water depth
25—-50 mm log-normal 50 Sigurdsson et al. (1994) values are depth dependent and for ajacket platform
(indicating higher values than for ajack-up)
varies normal 10 Shetty et al. (1997) for ajacket structure in North Sea conditions
Cn 18 normal 15 Thoft-Christensen and Baker used in an example calculation of ajacket structure
(1982)
20 normal 10 L gseth and Bjerager (1989) for example deep water jacket (over 300m water depth)
175 log-normal 10 L gseth and Hauge (1992) for example jack-up calculation
20 norma 20 Karunakaran (1993) and values used for three-legged jack-up with triangular-trussed
Karunakaran et al. (1994) legs
17 log-normal 25 Sigurdsson et al. (1994) for example jacket located in the North Sea
1.2 22 Kim and Hibbard (1975) full scaletests on 325mm diameter piles
wind 12-13 Thoft-Christensen and Baker CoV for annua max. mean-hourly extreme wind levels at
(1982) Lerwick (aresonable representation of the Northern North
Sea)
42.40 m/s normal 8 Morandi et al. (1997)° based on 50-year return-period
40.45 m/s (of force) based on 20-year return-period
variation isincluded with dead and live loads
current (u) 0.85m/s log-normal 20.0 Karunakaran (1993) based on observed current datain a central North Sealocation
(varieswithHy)
0.2,0.4, 0.7 m/s |log-normal 20.0 Karunakaran et al. (1994) uniform current with value related to increasing Hy
log-normal 15 Puskar et al. (1994) error in current values used for comparison of predicted

platform damage due to a hurricane in the Gulf of Mexicoin
1992




Basic Variable Mean Value Distribution |CoV (%) |Reference Notes
0.86 m/s normal 15 Morandi et al. (1997) based on 50-year return-period
0.42m/s based on 20-year return-period
variation included with wave loading
0.44 m/s log-normal 15 Shetty et al. (1997) based on a 50-year return current in the North Sea
Geometry/  |deck mass normal 5 L eseth and Bjerager (1989) top mass
Structural (10) (distributed massin legs and braces)
values arefor ajacket and have been included for comparison
16.9E6 kg log-normal 10 Karunakaran (1993) for *MSC CJ62' jack-up platform designed for operationin
108m water depth
norma 8 Morandi et al. (1997) for application as gravity dead load
15 for application asinertiaload set
damping ratio 0.03 norma 333 Baker and Ramachandran (1981) |for an example jacket structure (included for comparison)
(structural)
0.025 log-normal 25.0 Karunakaran (1993) included as Rayleigh damping with hydrodynamic damping
accounted for in relative Morison equation
0.02 log-normal 25.0 Karunakaran et al. (1994) included as Rayleigh damping with hydrodynamic damping
accounted for in relative Morison equation
0.055 21.8 Weaver and Brinkman (1995) total damping estimated from accel eration record from a jack-
up in the central North Sea (depth = 75m & Hs=11.7m)
Foundation |linear spring stiffness log-normal 20 L aseth and Hauge (1992) on uncorrelated linear springs for vertical, horizontal and
rotation directions
norma 30 Karunakaran (1993) on uncorrelated linear springs (for jack-up in dense sand)
Modelling wave kinematics norma 10 Karunakaran (1993) After using Wheeler stretching on the Airy wave model, a
variation on the kinematics of 10% with abiasof 1.05is
applied. The reason stated is the under-prediction of wave
kinematicsin the crest compared to laboratory experiments.
extreme mudline forces 15-30 Lacasse and Nadim (1994) CoVs quoted for extreme mudline forcesin jackets and jack-
(global CoVs) 20-25 ups respectively
pushover analysis norma 12 Morandi et al. (1997) once the failure point is found by push-over analysis, an
additional variation is applied
Notes:

1. Leseth and Hauge (1992) used normal distributions for current and wind velocities based upon Hs values. Deterministic values were used for structural damping (1%) and hull

mass.

2. Inmodelling forcesMorandi et al. (1997) place anormal distribution with CoV's of 15% on the [wave + current] loading and 8% on the [wind + dead + live] loading.




Table 7.2 — Set of eleven basic random variables used in short-term numerical experiments

Random Basic Category Mean value | Digtribution Standard CoV (%)
variable variable (m) deviation
number (X)) (sx)

1 u loading 0.8 m/s normal 0.16 20

2 Cq loading 1.1 normal 0.22 20

3 Cm loading 2.0 normal 0.3 15

4 wind loading 1.35E6 N normal 0.135E6 N 10

5 structural. structural 0.02 normal 0.004 20

damping

6 mass of hull structural 16.1E6 kg normal 1.61E6 kg 10

7 g Model C 8.228 (4000) | log-norma | 0.363 (1500) 37.5

8 My Model C 0.086 normal 0.0129 15

9 Ng Model C 5.502 (250) log-normal 0.198 (50) 20

10 f-dy Model C 0.144 normal 0.0288 20

11 pre-load Model C 1.925 normal 0.1925 10

factor
Table 7.3 — Polynomial coefficients for a RS of deck displacements
Xi a | b G dji (X=..)
1 2 3 4 5 6 7 8 9 10 | 11

1 |-997E3| 27261 993E2| - [376E1[-228E2| 1L06E-7 | -3307 |-112E-8[-1.32E-5| -2844 |-205E-4| -324E-1| -461E-2
2 1192 | 14761 -908E-3| -704E-9| 2997 | -231E-8[-178E-5| 5919 |-118E-4| -458E-1|-131E-1
3 206E-1 | -5.23E-4 -1.84E-8 | 291E-1 | -4.14E-9 | -4.73E-6 | -1.97E-1 | -5.66E-5 | -2.32E-1 | -1.20E-3
4 247E-7 | -L7E-15 2.75E-7 | -82E-16 | -7.1E-12 | -101E-6 | 7.0E-11 | -L.35E-7 | -543E-8
5 -5578 -4.680 531E-7 | -141E-4| 187E1 |-3.28E-3| 120El |-5.36E-1
6 -148E8| 32E-16 -33E-13| 27167 | 7.36-12 | -191E-8| 36569
7 4.08E-5 | 49E-10 961E-5 | -1.04E-8 | -9.92E-6 | 1.16E-6
8 -111E1 | 640EL 14763 | 5788 | 1015
9 417E-5 | -5.00E-8 6.27E-4 | 3.69E-5
10 294E-1 | -130E-1 5.65E-1
11 -269E-1| 593E-2

Table 7.4 — Sensitivity values evaluated at three response levels

N =10 000 R= ddeck =0.3m R= ddeck =0.5m R= ddeck =0.7m

Dr‘r;<i = 1% P;=0.7756 P; = 0.1479 P; = 0.0131
Xi Type +- | P( DMy, ) sm/(i Rank | p( DMy, ) sm/(i Rank | p( DMy, ) Srmi Rank
1 u + 0.7794 | 0.38 2 0.1524 | 0.45 4 0.0134 | 0.03 | 34
2 Cqy + 0.7886 1.3 1 0.1575 | 0.96 1 0.0147 | 0.16 1
3 Cxu + 0.7759 | 0.03 | 7-8 0.1481 | 0.02 10 0.0131 - 8-11
4 wind + 0.7777 | 0.21 6 0.1494 | 0.15 6 0.0132 | 0.01 | 5-7
5 damping | - 0.7758 | 0.02 | 9-10 | 0.1486 | 0.07 8 0.0132 | 0.01 | 57
6 hull mass| - 0.7785 | 0.29 4 0.1527 | 0.48 3 00134 | 0.03 | 34
7 g - 0.7759 | 0.03 | 7-8 0.1487 | 0.08 7 0.0131 - 8-11
8 My - 0.7780 | 0.24 5 0.1549 | 0.70 2 0.0145 | 0.14 2
9 Ng - 0.7757 | 0.01 11 0.1480 | 0.01 11 0.0131 - 8-11
10 f-d, - 0.7758 | 0.02 | 9-10 | 0.1485 | 0.06 9 0.0131 - 8-11
11 | pre-load - 0.7786 | 0.30 3 0.1513 | 0.34 5 0.0132 | 0.01 | 57

factor

note; +/- indicates whether the basic variable' s mean is being changed by + Dr‘r)<i or - Dmy




Table 7.5 — Results from FORM calculation for aresponse of Gieck = 0.5m

The reliability index was evauated as b =1.03 giving an estimated P; of 0.1515.

X Type a, Xdesign point a’ z, (%) Rank Rank from
Monte Carlo

1 u 0.35 0.8577 0.1225 6.75 3 4

2 Cq 0.82 1.2858 0.6724 74.71 1 1

3 S 0.0046 2.0014 2.12E-5 0.0011 10 10

4 wind 0.066 1.3592E6 | 0.004356 0.22 6 6

5 damping -0.032 0.0199 0.001024 0.051 9 8

6 hull mass -0.18 15.8015E6 0.0324 1.66 4 3

7 g -0.061 3656.8 0.003721 0.19 7 7

8 Mo -0.38 0.0810 0.1444 8.11 2 2

9 Ng -0.0004 245.16 1.6E-7 8.0E-6 11 11
10 f-dy -0.042 0.1428 0.001764 0.088 8 9

11 pre-load -0.13 1.8992 0.0169 0.86 5 5

factor
Table 7.6 - Set of seven basic random variables used in numerical experiments
Random Basic Category Mean value | Distribution Standard CoV (%)
varisble varisble (nx) deviation
number (X;) (sx)

1D u loading 0.8 m/s normal 0.16 20
2(2) Cq loading 1.1 normal 0.22 20
3(4) wind loading 1.35E6 N normal 0.135E6 N 10

4 (6) mass of hull structural 16.1E6 kg normal 1.61E6 kg 10
5(7) g Model C 8.228 (4000) | log-normal | 0.363 (1500) 37.5

6 (8) Mo Model C 0.086 normal 0.0129 15
7(11) pre-load Model C 1.925 normal 0.1925 10

factor

() indicate previous random variable number for 11 random variable experiment

Table 7.7 — Sea-states and NewWave elevations used in the long-term numerical experiments

Ret_urn Hs IF Tp a a as ay as Mhind | Swind | Murrent |S current
period| (M) | () | (& | M | (M | M | M | (M | (MN)|MN)| (m/s) | (mis)
1 8.98 9.35 | 12.02 2.5 4.5 6.5 8.5 11 0.756 | 0.0756| 0.599 | 0.1198
1E1 | 10.60 | 10.16 | 13.06 3.0 55 7.5 10 14 1.053 [ 0.1053| 0.707 | 0.1414
1E2 | 12.00 | 10.81 | 13.90 3.5 7.0 10 12 15 1.350 {0.1350| 0.800 | 0.16
1E3 | 13.25 | 11.36 | 14.61 4.0 7.5 10.5 13 17 1.647 | 0.1647| 0.884 | 0.1768
1E4 | 1440 | 11.84 | 15.22 4.5 8.0 11 15 18 1.944 | 0.1944| 0.960 | 0.1920
1E5 | 1546 | 12.27 | 15.78 | 4.75 10 13 16 19 2.241 10.2241| 1.031 | 0.2062

Table 7.8 — Statistical properties of the short-term extreme deck displacement distributions

Return All X; with mean values (Ch. 6) All X; include statistical variability | Percentage increase
period Magy) (M CoV (%) Mgy ) (M) CoV (%) in My,
1 0.175 12.99 0.176 22.38 0.5
1E1 0.278 17.81 0.291 31.59 4.7
1E2 0.400 20.58 0.433 35.66 8.3
1E3 0.596 22.15 0.660 36.67 10.7
1E4 0.857 22.68 0.952 36.82 11.1
1E5 1.141 22.86 1.294 38.72 134
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All dimensions approximate

Figure 1.1 - Typical three legged jack-up unit (after Reardon, 1986)
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Figure 1.2 - Examples of jack-up spudcan footings (after Young et al., 1984)
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Figure 1.3 - Loads and displacements defined in a three-dimensional foundation model
(after Butterfield et al., 1997)
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Figure 2.1 - General schematic of the idealised jack-up unit used in the analyses
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Figure 2.2 - Detailed leg section used in the idealised jack-up unit (after Nielsen et al., 1994)



(a) smultaneous horizontal and vertical loading
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Figure 3.1 — Representations of inclined and eccentric loading
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Figure 3.4 - Bearing capacity interaction surfaces derived from Meyerhof (1953) and Brinch

Hansen (1970)




(a) positive eccentricity
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Figure 3.5 — Representations of positive and negative eccentricity
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