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Abstract. Monitoring a distributed system to detect a stable property
is an important problem with many applications. The problem is espe-
cially challenging for a dynamic distributed system because the set of
processes in the system may change with time. In this paper, we present
an efficient algorithm to determine whether a stable property has become
true in a system in which processes can join and depart the system at
any time. Our algorithm is based on maintaining a spanning tree of pro-
cesses that are currently part of the system. The spanning tree, which is
dynamically changing, is used to periodically collect local states of pro-
cesses such that: (1) all local states in the collection are consistent with
each other, and (2) the collection is complete, that is, it contains all local
states that are necessary to evaluate the property and derive meaningful
inferences about the system state.
Unlike existing algorithms for stable property detection in a dynamic
environment, our algorithm is general in the sense that it can be used to
evaluate any stable property. Further, it does not assume the existence
of any permanent process. Processes can join and leave the system while
the snapshot algorithm is in progress.

1 Introduction

One of the fundamental problems in distributed systems is to detect whether
some stable property has become true in an ongoing distributed computation.
A property is said to be stable if it stays true once it becomes true. Some
examples of stable properties include “system is in terminated state”, “a subset
of processes are involved in a circular wait” and “an object is a garbage”. The
stable property detection problem has been well-studied and numerous solutions
have been proposed for solving the general problem (e.g., [1–3]) as well as its
special cases (e.g., [4–10]). However, most of the solutions assume that the system
is static, that is, the set of processes is fixed and does not change with time.

With the advent of new computing paradigms such as grid computing and
peer-to-peer computing, dynamic distributed systems are becoming increasingly
popular. In a dynamic distributed system, processes can join and leave the on-
going computation at anytime. Consequently, the set of processes in the system
may change with time. Dynamic distributed systems are especially useful for
solving large-scale problems that require vast computational power. For exam-
ple, distributed.net [11] has undertaken several projects that involve searching a
large state-space to locate a solution. Some examples of such projects include



RC5-72 to determine a 72-bit secret key for the RC5 algorithm, and OGR-25 to
compute the Optimal Golomb Ruler with 25 and more marks.

Although several algorithms have been proposed to solve the stable property
detection problem in a dynamic environment, they suffer from one or more of
the following limitations. First, to the best of our knowledge, all existing algo-
rithms solve the detection problem for special cases such as property is either
termination [12–14] or can be expressed as conjunction of local predicates [15].
Second, most of the algorithms assume the existence of permanent processes
that never leave the system [13, 15, 14]. Third, some of the algorithms assume
that processes can join but cannot leave the system until the detection algorithm
has terminated [12, 14]. Fourth, the algorithm by Darling and Mayo [15] assumes
that processes are equipped with local clocks that are weakly synchronized.

In this paper, we describe an algorithm to detect a stable property for a
dynamic distributed system that does not suffer from any of the limitations
described above. Our approach is based on maintaining a spanning tree of all
processes currently participating in the computation. The spanning tree, which is
dynamically changing, is used to collect local snapshots of processes periodically.
Processes can join and leave the system while a snapshot algorithm is in progress.
We identify sufficient conditions under which a collection of local snapshots can
be safely used to evaluate a stable property. Specifically, the collection has to be
consistent (local states in the collection are pair-wise consistent) and complete
(no local state necessary for correctly evaluating the property is missing from
the collection). We also identify a condition that allows the current root of
the spanning tree to detect termination of the snapshot algorithm even if the
algorithm was initiated by an “earlier” root that has since left the system. Due to
lack of space, formal description of our algorithm and proofs of various lemmas
and theorems have been omitted and can be found in [16].

2 System Model and Notation

2.1 System Model

We assume an asynchronous distributed system in which processes communicate
with each other by exchanging messages. There is no global clock or shared
memory. Processes can join and leave the system at any time. We do not assume
the existence of any permanent process. We, however, assume that there is at
least one process in the system at any time and processes are reliable. For ease
of exposition, we assume that a process can join the system at most once. If
some process wants to join the system again, it joins it as a different process.
This can be ensured by using incarnation numbers.

When a process sends a message to another process, we say that the former
process has an outgoing channel to the latter process. Alternatively, the latter
process has an incoming channel to the former process. We make the following
assumptions about channels. First, any message sent to a process that never
leaves the system is eventually delivered. This holds even if the sender of the
message leaves the system after sending the message but before the message is
delivered. Second, any message sent by a process that never leaves the system
to a process that leaves the system before the message is delivered is eventu-
ally returned to the sender with an error notification. Third, all channels are



FIFO. Specifically, a process receives a message from another process only after
it has received all the messages sent to it earlier by that process. The first two
assumptions are similar to those made by Dhamdhere et al [13].

We model execution of a process as an alternating sequence of states and
events. A process changes its state by executing an event. Additionally, a send
event causes a message to be sent and a receive event causes a message to be
received. Sometimes, we refer to the state of a process as local state. To avoid
confusion, we use the letters a, b, c, d, e and f to refer to events and the letters
u, v, w, x, y and z to refer to local states.

Events on a process are totally ordered. However, events on different processes
are only partially ordered by the Lamport’s happened-before relation [17], which
is defined as the smallest transitive relation satisfying the following properties:

1. if events e and f occur on the same process, and e occurred before f in real
time then e happened-before f , and

2. if events e and f correspond to the send and receive, respectively, of a mes-
sage then e happened-before f .

For an event e, let process(e) denote the process on which e is executed.
Likewise, for a local state x, let process(x) denote the process to which x belongs.
We define events(x) as the set consisting of all events that have to be executed
to reach x. Intuitively, events(x) captures the causal past of x.

A state of the system is given by the set of events that have been executed
so far. We assume that existence of fictitious events ⊥ that initialize the state
of the system. Further, every collection (or set) of events we consider contains
these initial events. Clearly, a collection of events E corresponds to a valid state
of the system only if E is closed with respect to the happened-before relation.
We refer to such a collection of events as comprehensive cut. Formally,

E is a comprehensive cut , (⊥ ⊆ E) ∧ 〈∀e, f :: (f ∈ E) ∧ (e → f) ⇒ e ∈ E〉

Sometimes, it is more convenient to model a system state using a collection of
local states instead of using a collection of events, especially when taking a snap-
shot of the system. Intuitively, a comprehensive state is obtained by executing
all events in a comprehensive cut. In this paper, we use the term “comprehen-
sive cut” to refer to a collection of events and the term “comprehensive state”
to refer to a collection of local states. To avoid confusion, we use the letters A,
B, C, D, E and F to refer to a collection of events and the letters U , V , W , X,
Y and X to refer to a collection of local states.

For a collection of local states X, let processes(X) denote the set of processes
whose local state is in X. Also, let events(X) denote the set of events that have
to be executed to reach local states in X.

Two local states x and y are said to be consistent if, in order to reach x on
process(x), we do not have to advance beyond y on process(y), and vice versa.

Definition 1 (consistent collection of local states). A collection of local
states is said to be consistent if all local states in the collection are pair-wise
consistent.



Note that, for a collection of local states to form a comprehensive state,
the local states should be pair-wise consistent. However, not every consistent
collection of local states forms a comprehensive state. This happens when the
collection is missing local states from certain processes. Specifically, a collection
of local states X corresponds to a comprehensive state if the following two con-
ditions hold: (1) X is consistent, and (2) X contains a local state from every
process that has at least one event in events(X).

For a consistent collection of local states X, let CS(X) denote the system
state obtained by executing all events in events(X). Clearly, X ⊆ CS(X) and,
moreover, CS(X) corresponds to a comprehensive state.

For a static distributed system, a system state is captured using the notion of
consistent global state. A collection of local states forms a consistent global state
if the collection is consistent and it contains one local state from every process
in the system. For a dynamic distributed system, however, the set of processes
may change with time. As a result, the term “every process in the system” is
not well-defined. Therefore, we use a slightly different definition of system state,
and, to avoid confusion, we use the term “comprehensive state” instead of the
term “consistent global state” to refer to it.

2.2 Stable Properties

A property maps every comprehensive state of the system to a boolean value.
Intuitively, a property is said to be stable if it stays true once it becomes true.
For two comprehensive states X and Y , we say that Y lies in the future of X,
denoted by X 4 Y , if events(X) ⊆ events(Y ). Then, a property φ is stable if
for every pair of comprehensive states X and Y ,

(φ holds for X) ∧ (X 4 Y ) ⇒ φ holds for Y

We next describe an algorithm to detect a stable property in a dynamic
distributed system.

3 Our Algorithm

3.1 The Main Idea

A common approach to detect a stable property in a static distributed system
is to repeatedly collect a consistent set of local states, one from each process.
Such a collection is also referred to as a (consistent) snapshot of the system. The
property is then evaluated for the snapshot collected until it evaluates to true.
The problem of collecting local states, one from each process, is relatively easier
for a static distributed system than for a dynamic distributed system. This is
because, in a static system, the set of processes is fixed and does not change
with time. In a dynamic system, however, the set of processes may change with
time. Therefore it may not always be clear local states of which processes have
to be included in the collection.

In our approach, we impose a logical spanning tree on processes that are
currently part of the system. The spanning tree is used to collect local states



of processes currently attached to the tree. Observe that, to be able to evaluate
the property, the collection has to at least include local states of all processes
that are currently part of the application. Therefore we make the following two
assumptions. First, a process attaches itself to the spanning tree before joining
the application. Second, a process leaves the application before detaching itself
from the spanning tree.

A process joins the spanning tree by executing a control join protocol and
leaves the spanning tree by executing a control depart protocol. Likewise, a pro-
cess joins the application by executing an application join protocol and leaves
the application by executing an application depart protocol.

We associate a status with every process, which can either be OUT, JOINING,
IN, TRYING, DEPARTING. Intuitively, status captures the state of a process with
respect to the spanning tree. A process that is not a part of the system (that
is, before it starts executing the control join protocol or after it has finished
executing the control depart protocol) has status OUT. When a process starts
executing its control join protocol, its status changes to JOINING. The status
changes to IN once the join protocol finishes and the process has become part
of the spanning tree. When a process wants to leave the spanning tree, it begins
executing the control depart protocol, which consists of two parts. In the first
part, the process tries to obtain permission to leave from all its neighboring
processes. In the second part, it actually leaves the spanning tree. But, before
leaving the system, it ensures that the set of processes currently in the system
remain connected. During the former part of the depart protocol, its status is
TRYING and, during the latter part, its status is DEPARTING.

Typically, for evaluating a property, state of a process can be considered to
consist of two components. The first component captures values of all program
variables on a process; we refer to it as core state. The second component is
used to determine state of a channel (e.g., the number of messages a process
has sent to another process); we refer to it as non-core state. We assume that,
once a process has detached itself from the application its core state is no longer
needed to evaluate the property. However, its non-core state may still be required
to determine the state of an outgoing channel it has with another process that
is still part of the application. For example, consider a process p that leaves the
application soon after sending an application message m to process q. In this
case, m may still be in transit towards q after p has left the application. If q does
not know about the departure of p when it receives m and it is still part of the
application, then it has to receive and process m. This may cause q’s core state
to change, which, in turn, may affect the value of the property. In this example,
even though p has left the application, its non-core state is required to determine
the state of the channel from p to q, which is non-empty.

We say that an application message is irrelevant if either it is never delivered
to its destination process (and is therefore returned to the sender with error
notification) or when it is delivered, its destination process is no longer part
of the application; otherwise the message is relevant. In order to prevent the
aforementioned situation from arising, we make the following assumption about
an application depart protocol:

Assumption 1. Once a process has left the application, none of its outgoing
channels, if non-empty, contains a relevant application message.



The above assumption can be satisfied by using acknowledgments for appli-
cation messages. Specifically, a process leaves the application only after ensuring
that, for every application message it sent, it has either received an acknowledg-
ment for it or the message has been returned to it with error notification. Here,
we assume that a process that is no longer a part of the application, on receiving
an application message, still sends an acknowledgment for it. It can be verified
that this scheme implements Assumption 1.

Assumption 1 is useful because it enables a process to evaluate a property
using local states of only those processes that are currently part of the spanning
tree. Specifically, to evaluate the property, a process does not need information
about states of processes that left the system before the snapshot algorithm
started.

Now, to understand local states of which processes need to be recorded in a
snapshot, we define the notion of completeness. We call a process active if its
status is IN and semi-active if its status is either IN or TRYING. Further, for a
collection of local states X, let active(X) denote the set of all those processes
whose status is IN in X. We can define semi-active(X) similarly.

Definition 2 (complete collection of local states). A consistent collection
of local states Y is said to be complete with respect to a comprehensive state X
with Y ⊆ X if Y includes local states of all those processes whose status is IN in
X. Formally,

Y is complete with respect to X , active(X) ⊆ processes(Y )

From Assumption 1, to be able to evaluate a property for a collection of local
states, it is sufficient for the collection to be complete; it need not be compre-
hensive. This is also important because our definition of comprehensive state
includes local states of even those processes that are no longer part of the sys-
tem. As a result, if a snapshot algorithm were required to return a comprehensive
state, it will make the algorithm too expensive. As we see later, our snapshot al-
gorithm returns a collection that contains local states of all semi-active processes
of some comprehensive state (and not just all active processes).

3.2 Spanning Tree Maintenance Algorithm

Processes may join and leave the system while an instance of the snapshot al-
gorithm is in progress. Therefore spanning tree maintenance protocols, namely
control join and depart protocols, have to designed carefully so that they do not
“interfere” with an ongoing instance of the snapshot algorithm. To that end, we
maintain a set of invariants that we use later to establish the correctness of the
snapshot algorithm.

Each process maintains information about its parent and its children in the
tree. Initially, before a process joins the spanning tree, it does not have any
parent or children, that is, its parent variable is set to nil and its children-set
is empty. Let x be a local state of process p. We use parent(x) to denote the
parent of p in x and children(x) to denote the set of children of p in x. Also,
let status(x) denote the status of p in x. Further, p is said to be root in x if



parent(x) = p. For a collection of local states X and a process p ∈ processes(X),
we use X.p to denote the local state of p in X.

Now, we describe our invariants. Consider a comprehensive state X and let
p and q be two processes in X. The first invariant says that if the status of a
process is either IN or TRYING, then its parent variable should have a non-nil
value. Formally,

status(X.p) ∈ {IN,TRYING} ⇒ parent(X.p) 6= nil (1)

The second invariant says that if a process considers another process to be
its parent then the latter should consider the former as its child. Moreover, the
parent variable of the latter should have a non-nil value. Intuitively, it means
that child “relationship” is maintained for a longer duration than parent “rela-
tionship”. Further, a process cannot set its parent variable to nil as long as there
is at least one process in the system, different from itself, that considers it to be
its parent. Formally,

(parent(X.p) = q) ∧ (p 6= q) ⇒
(p ∈ children(X.q)) ∧ (parent(X.q) 6= nil)

(2)

The third invariant specifically deals with the departure of a root process.
To distinguish between older and newer root processes, we associate a rank with
every root process. The rank is incremented whenever a new root is selected.
This invariant says that if two processes consider themselves to be root of the
spanning tree, then there cannot be a process that considers the “older” root to
be its parent. Moreover, the status of the “older” root has to be DEPARTING.
Formally,

root(X.p) ∧ root(X.q) ∧ (rank(X.p) < rank(X.q)) ⇒
〈∄r : r ∈ processes(X) \ {p} : parent(X.r) = p〉 ∧
(status(X.p) = DEPARTING)

(3)

We now describe our control join and depart protocols that maintain the
invariants (1)–(3).

Joining the Spanning Tree: A process attaches itself to the spanning tree by
executing the control join protocol. Our control join protocol is quite simple. A
process wishing to join the spanning tree first obtains a list of processes that are
currently part of the spanning tree. This, for example, can be achieved using a
name server. It then contacts the processes in the list, one by one, until it finds
a process that is willing to accept it as its child. We assume that the process is
eventually able to find such a process, and, therefore, the control join protocol
eventually terminates successfully.

Leaving the Spanning Tree: A process detaches itself from the spanning tree
by executing the control depart protocol. The protocol consists of two phases.
The first phase is referred to as trying phase and the status of process in this
phase is TRYING. In the trying phase, a departing process tries to obtain per-
mission to leave from all its tree neighbors (parent and children). To prevent



neighboring processes from departing at the same time, all departure requests
are assigned timestamps using logical clock. A process, on receiving departure
request from its neighboring process, grants the permission only if it is not de-
parting or its depart request has larger timestamp than that of its neighbor.
This approach is similar to Ricart and Agrawala’s algorithm [18] modified for
drinking philosopher’s problem [19]. Note that the neighborhood of a departing
process may change during this phase if one of more of its neighbors are also
trying to depart. Whenever the neighborhood of a departing process changes, it
sends its departure request to all its new neighbors, if any. A process wishing
to depart has to wait until it has received permission to depart from its current
neighbors.

We show in [16] that the first phase of the control depart protocol eventually
terminates. Once that happens, the process enters the second phase. The second
phase is referred to as departing phase and the status of process in this phase
is DEPARTING. The protocol of the departing phase depends on whether the
departing process is a root process. If the departing process is not a root process,
then, to maintain the spanning tree, it attaches all its children to its parent. On
the other hand, if it is a root process, then it selects one its children to become
the new root. It then attaches all its other children to the new root. The main
challenge is to change the spanning tree without violating any of the invariants.

Case 1 (when the departing process is not the root): In this case, the
departing phase consists of the following steps:
– Step 1: The departing process asks its parent to inherit all its children

and waits for acknowledgment.
– Step 2: The departing process asks all its children to change their parent

to its parent and waits for acknowledgment from all of them. At this
point, no process in the system considers the departing process to be its
parent.

– Step 3: The departing process terminates all its neighbor relationships.
At this point, the parent of the departing process still considers the
process to be its child.

– Step 4: The departing process asks its parent to remove it from its set
of children and waits for acknowledgment.

Case 2 (when the departing process is the root): In this case, the
departing phase consists of the following steps:
– Step 1: The departing process selects one of its children to become the

new root. It then asks the selected child to inherit all its other children
and waits for acknowledgment.

– Step 2: The departing process asks all its other children to change their
parent to the new root and waits for acknowledgment from all of them.
At this point, only the child selected to become the new root considers
the departing process to be its parent.

– Step 3: The departing process terminates child relationships with all its
other children. The child relationship with the child selected to become
the new root cannot be terminated as yet.

– Step 4: The departing process asks the selected child to become the new
root of the spanning tree and waits for acknowledgment. At this point,
no process in the system considers the departing process to be its parent.



– Step 5: The departing process terminates all its neighbor relationships.

To ensure liveness of the snapshot algorithm, we require the departing process
to “transfer” the latest set of local states it has collected so far (which may be
empty) to another process, after it has detached itself from the spanning tree
but before leaving the system permanently. The process to which the collection
has to be “transfered” is the parent of the departing process in the first case
and the new root of the spanning tree in the second case. In both cases, the
process to which the collection is “transfered” has to wait until it has received
the collection from all processes it is supposed to before it can itself enter the
departing phase.

3.3 The Snapshot Algorithm

As discussed earlier, it is sufficient to collect a consistent set of local states
that is complete with respect to some comprehensive state. We next discuss how
consistency and completeness can be achieved. For convenience, when a process
records it local state, we say that it has taken its snapshot.

Achieving Consistency: To achieve consistency, we use Lai and Yang’s ap-
proach for taking a consistent snapshot of a static distributed system [2]. Each
process maintains the instance number of the latest snapshot algorithm in which
it has participated. This instance number is piggybacked on every message it
sends—application as well as control. If a process receives a message with an
instance number greater than its own, it first records its local state before de-
livering the message. It can be verified that:

Theorem 3 (consistency). Two local states belonging to the same instance of
the snapshot algorithm are consistent with each other.

Achieving Completeness: As explained earlier in Sect. 3.1, to be able to
evaluate a property for a collection of local states, it is sufficient for the collection
to be complete with respect to some comprehensive state. The main problem
is: “How does the current root of the spanning tree know that its collection has
become complete?” To solve this problem, our approach is to define a test property
that can be evaluated locally for a collection of local states such that once the
test property evaluates to true then the collection has become complete. To that
end, we define the notion of f-closed collection of local states.

Definition 4 (f-closed collection of local states). Let f be a function that
maps every local state to a set of processes. A consistent collection of local states
X is said to be f -closed if, for every local state x in X, X contains a local state
from every process in f(x). Formally,

X is f-closed , 〈∀x ∈ X :: f(x) ⊆ processes(X)〉

Intuitively, f denotes a neighborhood function. For example, f may map a
local state x to children(x). We consider two special cases for function f . For a



local state x, let ρ(x) be defined as the set containing the parent of process(x)
in local state x, if it exists. Further, let κ(x) be defined as the set of children
of process(x) in local state x, that is, κ(x) = children(x). We show that, under
certain condition, if the collection is (ρ ∪ κ)-closed, then it is also complete. To
capture the condition under which this implication holds, we define the notion
of f -path as follows:

Definition 5 (f-path). Let f be a function that maps every local state to a set
of processes. Consider a comprehensive state X and two distinct processes p and
q in processes(X). We say that there is an f -path from p to q in X, denoted
by f-path(p, q,X), if there exists a sequence of processes si ∈ processes(X) for
i = 1, 2, . . . ,m such that:

1. s1 = p and sm = q
2. for each i, 1 ≤ i < m, si 6= si+1 and si+1 ∈ f(X.si)

Using the notion of f -path, we define the notion of an f -connected state as
follows:

Definition 6 (f-connected state). Let f be a function that maps every local
state to a set of processes. A comprehensive state X is said to be f -connected
if there is a f-path between every pair of distinct processes in semi-active(X).
Formally, X is f-connected if

〈∀p, q ∈ processes(X) : p 6= q : {p, q} ⊆ semi-active(X) ⇒ f-path(p, q,X)〉

Using the invariants (1)–(3), we show that every comprehensive state is actu-
ally (ρ∪κ)-connected. We first prove an important property about the spanning
tree maintained by our algorithm.

Theorem 7. The directed graph induced by parent variables of a comprehensive
state is acyclic (except for self-loops).

The following theorem can now be proved:

Theorem 8. Every comprehensive state is (ρ ∪ κ)-connected.

The main idea behind the proof is to show that each semi-active process has
a ρ-path to the current root of the spanning tree. This, in turn, implies that there
is a κ-path from the current root to each semi-active process in the system. We
now provide a sufficient condition for a collection of local states to be complete.

Theorem 9 (f-closed and f-connected ⇒ complete). Let f be a function
that maps every local state to a set of processes. Consider a consistent collection
of local states X. If (1) X is f-closed, (2) semi-active(X) 6= ∅, and (3) CS(X)
is f-connected, then X is complete with respect to CS(X).

Therefore it suffices to ensure that the set of local states collected by the
snapshot algorithm is (ρ ∪ κ)-closed. We now describe our snapshot algorithm.
After recording its local state, a process waits to receive local states of its children
in the tree until its collection becomes κ-closed. As soon as that happens, it sends



the collection to its (current) parent in the spanning tree unless it is a root.
In case it is a root, it uses the collection to determine whether the property of
interest (e.g., termination) has become true. A root process initiates the snapshot
algorithm by recording its local state provided its status is either IN or TRYING.
This ensures that the collection contains a local state of at least one semi-active
process. (Note that the snapshot algorithm described above does not satisfy
liveness. We describe additions to the basic snapshot algorithm to ensure its
liveness later.) The next theorem establishes that the collection of local states
returned by an instance of the snapshot algorithm is not only κ-closed but also
(ρ ∪ κ)-closed.

Theorem 10. The collection of local states returned by the snapshot algorithm
is consistent and (ρ ∪ κ)-closed.

It follows from Theorem 3, Theorem 9, Theorem 8 and Theorem 10 that:

Corollary 11 (safety). The collection of local states returned by the snapshot
algorithm is (1) consistent and (2) complete with respect to some comprehensive
state.

The liveness of the snapshot algorithm is only guaranteed if the system be-
comes permanently quiescent eventually (that is, the set of processes does not
change). Other algorithms for property detection make similar assumptions to
achieve liveness [13, 15]. Without this assumption, the spanning tree may con-
tinue to grow forcing the snapshot algorithm to collect local states of an ever in-
creasing number of processes. To ensure liveness under this assumption, we make
the following enhancements to the basic snapshot algorithm. First, whenever a
process records its local state, it sends a marker message containing the current
instance number to all its neighbors. In addition, it sends a marker message to
any new neighbor whenever its neighborhood set changes. Second, whenever its
parent changes, it sends its collection to the new parent if the collection has
become κ-closed. Third, just before leaving the system, a process transfers its
collection to one of its neighbors as explained earlier. Once the system becomes
permanently quiescent, the first modification ensures that all processes in the
tree eventually record their local states and the second modification ensures that
the collection at the root eventually becomes κ-closed. It can be proved that:

Theorem 12 (liveness). Assuming that the system eventually becomes perma-
nently quiescent (that is, the set of processes does not change), every instance of
the snapshot algorithm terminates eventually.

4 Conclusion and Future Work

In this paper, we present an efficient algorithm to determine whether a stable
property has become true in a dynamic distributed system in which processes
can join and leave the system at any time. Our approach involves periodically
collecting local states of processes that are currently part of the system using a
(dynamically changing) spanning tree.

There are several interesting problems that still need to be addressed. The
depart protocol described in the paper has relatively high worst-case depart



latency. Specifically, a process may stay in the trying phase for a long period
of time (because of other processes joining and leaving the system) before it is
able to enter the departing phase. An interesting problem is to design a depart
protocol that has low worst-case depart latency. Also, in our current approach,
control neighbors of a process may be completely different from its application
neighbors, which may be undesirable in certain cases. Finally, in this paper, we
assume that processes are reliable and they never fail. It would be interesting to
investigate this problem in the presence of failures.
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