
Towards a Model-based COTS-aware Requirements Engineering Process

Lawrence Chung
Dept. of Computer Science

The University of Texas at Dallas
P.O. Box 830688

Richardson, TX, USA
chung@utdallas.edu

Kendra Cooper
Dept. of Computer Science

The University of Texas at Dallas
P.O. Box 830688

Richardson, TX, USA
kcooper@utdallas.edu

Abstract

The goals of developing systems better, faster, and
cheaper continue to drive software engineering
practitioners and researchers to investigate
software engineering methodologies. In
requirements engineering, the focus has been on
modeling the software engineering process and
products for systems that are being built from
scratch. As the size and complexity of systems
continues to grow the use of commercial off the
shelf (COTS) components is being viewed as a
solution. Effective use of COTS components,
however, requires a systematic approach that
provides both a set of concepts for modeling the
subject matter and a set of guidelines for using
such concepts.

In this paper, we present a preliminary version
of a goal and agent oriented software engineering
process model that explicitly addresses the use of
COTS components. More specifically, we present
a model for a COTS-Aware Requirements
Engineering (CARE) process and illustrate it
using a Digital Library System.

1 Introduction

Models are used to embody abstract ideas in a
concrete representation. In a model, the ideas are
more easily communicated, reviewed, and revised.
The properties we seek in a model include that the
model be complete, consistent, correct, and
concise. We also recognize that a model needs
both an ontology and a methodology. An ontology
is a formal description of entities and their
properties; it forms a shared terminology for the
objects of interest in the domain, along with
definitions for the terms. A methodology describes
how the entities are related to one another.

In requirements engineering, models are used
to represent both the methodologies and the
requirements specifications. Our work is focused
on creating and modeling a requirements
engineering approach that explicitly supports the
use of commercial off the shelf (COTS)
components. Our approach is called the COTS-
Aware Requirements Engineering (CARE)
approach. It is both goal oriented (e.g., see [1,2,3])
and agent oriented (e.g., see [4]).

There are two models that describe the CARE
approach: a process model and a product model.
The process model is the focus of this work. Here
we present the process model in the i* framework
[4] and demonstrate its use with a Digital Library
System application.

The development of the product model for the
CARE approach is underway. We recognize that a
CARE approach needs to be knowledge-based,
simply because without the knowledge of the
COTS components, they cannot be used. For
describing the COTS components in the
knowledge base (KB), the conceptual notations of
MBASE [5,6], RUP [7], and ACRE-PORE [8] are
adopted at least for the functional aspect. As a
result, there are three types of essential concepts,
or ontology, namely, object oriented (OO), agent
oriented (AO) and goal oriented (GO).

This paper is organized as follows. Following
the introduction, we present the issues that
motivate the CARE research in Section 2. The
process model for the CARE approach is presented
in Section 3. To illustrate the application of the
CARE approach, an example illustration is
presented in Section 4. Conclusions and future
work are in Section 5.

2 Why CARE?

In developing an approach that supports the use of
COTS components, one of the first steps is to
define the desired characteristics of an ideal,
CARE approach. We consider characteristics
along four, related lines. Firstly, the approach
should encourage the development of systems that
the customers are going to find useful. Secondly,
the approach should be process driven, in order to
support the systematic development of a system.
Thirdly, the approach should be knowledge based
in order to effectively use the COTS components.
Lastly, the scope of the approach needs to consider
the impact of using COTS over the software
development lifecycle. When all four
characteristics are considered, a CARE approach is
expected to be feasible to use.

2.1 Customer Satisficing

A CARE approach needs to support developing a
system that satifies the customer. In reality,
however, a customer is not likely to be 100%
satisfied with a system. The term customer
satificing is used to describe that a customer is
satisfied enough with the system to use it.

When using a standard software engineering
methodology, the requirements are gathered from
stakeholders (native requirements) and are
intended to describe a system that is going to be
“good enough”.

When developing systems with the goal of
maximizing the use of COTS components, it is
vital to understand how to specify requirements
that strike the optimum balance between
describing the desired user functionality and the
available COTS products. We call the
requirements of the COTS components foreign
requirements.

In order to satisfice the customer, the CARE
approach needs to consider a number of
charactersitics including the flexibility of the
requirements, matching and selection support, and
a goal driven process.

Flexibility of Native Requirements. In a
traditional software development lifecycle, the
native requirements are gathered, analyzed,
revised and baselined. However, in CARE, there
may be few, or no, COTS components to meet the
native requirements. In order to use COTS
components, the customer needs to be flexible,

hence their requirements too, and forgo some of
their initial requirements.

Matching and Selecting Components. Bridging
the gap between native requirements and the set of
foreign requirements is not a unidirectional but a
bi-directional process: moving either from the
native system requirements to the foreign
component requirements set or the other way
around. Since there can be more than one way to
bridge the gap, a CARE approach needs to
encourage the exploration of alternatives
(matching native to foreign requirements) and
provide guidance as to the best selection among
the alternatives.

Goal Driven. A CARE approach needs to be goal
driven. Rather than begin with the traditional
documentation of requirements, a goal oriented
approach begins by eliciting the customer’s goals.
Goals describe very high level objectives for the
system as a whole. For example, the customer may
state that they would like a “usable and flexible”
system. It is important to note that the goals may
be met by a combination of human activities and
the system developed. When requirements are
elicited, they need to be evaluated against the
goals of the system. The requirements engineer
needs to ask how each requirement supports
accomplishing one or more of the goals.

2.2 Method (or Process) Based

A CARE approach needs to have a clearly defined
process that provides the requirements engineer
with a set of guidelines and heuristics for using the
COTS components. The process needs to offer a
collection of methods that address bridging the
native and foreign requirements, matching, and
selecting the COTS components. When re-writing
requirements in the bridging process, the process
needs to be flexible enough to allow for both
correctness-preserving refinements and
inconsistent rewriting. In addition, the process
should not be overly complicated for it to be
accepted for use.

2.3 Knowledge-Based

A CARE approach needs to be knowledge-based,
simply because without the knowledge of the
COTS components, they cannot be used. In a
knowledge based approach, there are three types
of essential concepts, or ontology, namely OO,

AO, and GO. Using OO, knowledge of software
systems, both foreign and native, is captured for
their functional requirements. Using AO and GO,
coupled with scenario analysis and descriptions of
experiences, knowledge of the enterprise or
context is captured. Knowledge of system-wide
properties is represented and reasoned about as
knowledge of non-functional requirements.

2.4 Scope of a CARE Approach

A CARE approach should consider the impact on
the system architecture, the long term maintenance
of the system, and the system cost.

Impact on the System Architecture. The use of
COTS products also impacts the architecture, or
high-level design, phase of the software
development lifecycle. In a standard software
development lifecycle the architecture is
developed to fullfill the native requirements of the
system without regard to the availability of COTS
components. Using this approach, there may be
few or no available products that fit within the
chosen architecture [9]. To maximize the use of
COTS components, the architects need to consider
the distinction between the foreign and the native
requirements when developing the architecture.

Impact on Initial System Cost. In comparison to
a approach that does not consider the use of COTS
products, a CARE approach may use more time in
the requirements analysis phase. When
considering COTS, the engineer needs to search
through the COTS specifications to match and
select among the components. The benefits of
using a CARE approach are expected to appear
near the end of the software development
lifecycle, in the detailed design, implementation,
and unit testing phases. As a result, the evaluation
of the CARE approach needs to be measured with
respect to the overall development lifecycle effort.

Impact on the System Maintenance. The impact
of using COTS components on the system
maintenance may also need to be considered. For
systems that are being developed with the
expectation of going into a maintenance phase, the
complexity of the interfaces of the components
and the probability of the vendor being in business
in five years may be considered. This is not an
issue when a goal is to prototype a system, for

example, that is only intended to demonstrate a
concept and then be disposed of.

3 Process Model

The scope of the process described here is
restricted to the requirements phase of the software
development lifecycle. The description does not,
for example, consider the design, implementation,
testing, and maintenance phases.

3.1 Ontology

The ontology of the process model includes actors,
goals, resources, dependencies, decompositions,
and means-end relationships. The definitions of
these entities are found in the i* modeling
framework [4].

The actors in the CARE process model are the
customer and the requirements engineer (RE). In
this description of the model, the customer is
contracting the development of a large scale
system and is involved in the development work.
Variations of this model can be developed in the
future to consider high volume, shrink-wrap
product development.

The customer’s overall goal is to receive a
system that satisfices them. Subgoals include
receiving product development artifacts (product
goals, system requirements, and software
requirements) and product planning artifacts
(quality plan, test plan, schedule, etc.). The
customer’s softgoals include receiving a system
that is delivered on schedule, within budget, and
with high quality.

The RE depends on the customer to validate
the system as it is being developed and provide
(ideally) complete and correct information.

3.2 Methodology

The CARE Process methodology is being
developed using a set of examples for a Digital
Library System [10]. In this work, the process is
described in the i* notation (refer to Figures 1-5).
In i*, the concepts of the model are embedded into
the conceptual modeling language Telos [20]. As a
result, i* provides an extensible, object-oriented
representational framework with classification,
generalization, aggregation, attribution, and time.

The scope of the strategic dependency diagram
(refer to Figure 1) focuses on the requirements
engineering phase of the software development

lifecycle. As the CARE approach is extended to
consider other phases, additional actors, goals, and
softgoals are going to be added to the model.

In Figure 2, the RE actor is decomposed using
the Strategic Rationale Model. The model
describes how the RE can accomplish the goals of
creating the baselined system goals and the
baselined system requirements. Currently, our
process model does not extend to creating the
baselined software requirements.

The task of creating the Baselined System
Goals (refer to Figure 3) can be decomposed into a
set of five subtasks (Elicit Initial Goals, Analyze
Goals, Correct Goals, Validate Goals, Baseline
Goals). The RE, an intentional agent, decides
when to use each of the subtasks to accomplish the
goal of Creating the Baselined System Goals.

The subtask of Defining the COTS
Requirements (refer to Figure 4, 5) can be
decomposed into a set of nine subtasks. Each of
these is briefly described below.
Select Candidate Requirements. The RE evaluates
each system requirement and determines if it is a
candidate for implementing with one or more
COTS components.
Preliminary Search. The RE performs a search on
the repository that returns high level descriptions
of the components that match the search criteria.
Preliminary Match. The RE evaluates the results
of the preliminary search and determines which of
the components may be a possible match to the
functionality needed.
Detailed Search. The RE performs a search on the
repository for the components that satisfy the
preliminary match. Detailed specifications of these
components are returned.
Detailed Match. The RE evaluates the results of
the detailed search and determines which of the
components are a close or exact match to the
functionality needed.
Select Component. The RE selects one or more
components that are an exact match for the
functionality needed.
Request to Change Component. The RE sends a
request to the vendor for a change to a component
Request to Change Requirement. The RE sends a
request to a stakeholder for a change to a
requirement.

Maintain Components. The RE adds, updates,
or deletes the detailed specifications of the
components in the repository.

Figure 2. Strategic Rationale Model (RE)

Requirements
Engineer

Create
Baselined System
Reqs. (with COTS)

Create
Baselined

System Goals

(see Figure 3)

(see Figure 4)

…

Figure 1. Strategic Dependency Model

Legend
 Decomposition
 Dependency

Create
System Planning

Artifacts

Create
System Product

Artifacts

Create
System Goals

Create System
Requirements

Create
Software

Requirements

Requirements
Engineer

Within
Budget

High
Quality

Within
Schedule

Validate
System

Create
System

Customer

4. Illustration

The CARE approach is being developed iteratively
by working through a set of examples in a Digital
Library System. The initial CARE process is based
on the example used to develop the system
requirements (with COTS) for the database
component in the system [10]. In this work, we
present another example in order to validate the
initial process. The example is for a
communication component in the system.

4.1 Create Baselined Set of Enterprise
Goals

The goal of describing the Baselined Enterprise
Goals is workable because the RE has a routine to
use. In this example, the routine to describe the set
of Baselined Enterprise Goals is composed of the
following tasks (refer to Figure 3):

Elicit Initial Set of Goals
Analyze Goals
Correct Goals
Baseline Goals

The RE’s routine is described below.

Elicit Initial Set of Enterprise Goals. Here, the
digital library (DL) refers to the digital library
organization as a whole. It may consist of people,
software, hardware, and interfaces to external

Figure 5. Define COTS Requirements

Legend
 Decomposition

Component
Repository

Figure 3. Create Baselined System Goals

Legend
 Decomposition

Figure 4. Create Baselined System Requirements
(with COTS)

Legend
 Decomposition

Analyze
Goals

Elicit Initial
Goals

Correct
Goals

Validate
Goals

Baseline
Goals

Create
Baselined System

Goals

Create
Baselined System
Reqs. (with COTS)

Elicit
System
Reqs.

(see Figure 5)

Define COTS
Requirements

Analyze
System
Reqs.

Correct
System
Reqs.

Define
COTS
Reqs.

Verify
System
Reqs.

Baseline
System
Reqs.

Preliminary
Match of

Components

Preliminary
Search of
Repository

Select
Candidate

Requirements

Detailed
Search of
Repository

Detailed
Match of

Components

Select
Component

Request
Change to
Component

Request
Change to

Requirement

Maintain
Components

System
Requirements

ss

Component
Repository

Component
Repository

Component
Repository

agents. The digital library system (DLS) refers to
the goals that need to be met by the software
system. The initial set of goals are:

1. The DLS should be delivered with high
quality, on time, and within budget

2. The DL should comply with current
standards

3. The DL should be easy to use
4. The DL should have high availability
5. The DL should have fast performance
6. The users should be able to access a large

number of diverse objects
7. The users should be able to search,

browse, and retrieve objects quickly and
efficiently

8. The librarians should be able to maintain
the library quickly and efficiently

9. The librarians should be able to provide
reference support quickly and efficiently

10. The administrators should be able to
maintain users’ accounts quickly and
efficiently

11. The DL should be scaleable
12. The DL should be secure
13. The DL should be inexpensive to operate

In this example, we select two, initial goals to
refine into system level requirements (with COTS)
using our CARE process:

1. The DLS should be delivered with high
quality, on time, and within budget

2. DL should comply with current standards
The first goal drives the use of COTS

components. The use of COTS is viewed as a
solution to the problem of how to develop systems
that are increasingly complex with high quality, on
time, and within budget. This goal needs to be
refined in a quality plan, project schedule, and
project budget and are not considered in the
refinement process for technical requirements. The
second goal is considered in the analysis task.

Analyze Goals. The second goal may be achieved
by people, hardware, or software within the
organization (i.e., the library) or by external
systems (described by interfaces). In the CARE
work, we focus on the software system. Here, the
RE interprets the meaning of the goal to be that the
customer would like the system to adhere to the
latest technical standards that are applicable to a
DLS. The analysis of this goal determines which
standards (de-facto or international) are relevant to
the DLS. Domain experts and publicly available

documents describing currently deployed digital
library systems are sources of information. The
initial list of standards includes:
 2a. ANSI/NISO Z39.50-1995 [11]
 2b. Dublin Core [12]
 2c. XML [13]
 2d. EAD [14]
 2e. MARC [15]

2f. AACR2 [16]

Correct Goals. Domain experts validate the
identified standards and note that the following
standards are missing:

2g. ebXML [17]
2h. OEBPS [18]

After investigating these standards and
understanding why they need to be included, the
RE corrects the problem and adds the standards to
the refined goals.

Baseline Goals. After analysis and correction, the
RE determines that the refinement step is complete
and the goals are ready to be baselined. A heuristic
the RE may apply to determine if the refinement
task is complete is this: if further refinement
results in a statement that can be tested (from a test
engineer’s perspective), then the goal is
completely refined. When the goals are completely
refined, the RE places the set of goals under
configuration management.

4.2 Create Baselined Set of System
Requirements (with COTS)

The goal of describing the set of Baselined system
requirements (with COTS) is workable because
the RE has a routine to use. In this example, the
routine to describe the set of Baselined system
requirements is composed of the following tasks
(refer to Figures 4 and 5):

Elicit Initial Set of System Requirements
Select Requirement as Candidate for COTS
Preliminary Search for Components
Preliminary Matching for Components
Detailed Search for Components
Detailed Matching for Components
Select Component
Correct System Requirements
Baseline System Requirements

This routine is described below.

Elicit Initial Set of System Requirements. For
this example, we focus on the baselined goal of

complying to the ANSI/NISO Z39.50-1995
standard. This standard specifies a client/server
based protocol for Information Retrieval across the
Internet. Like many international standards, the
Z39.50-1995 is quite large. It specifies procedures
and structures for a client to search a database
provided by a server, retrieve database records
identified by a search, scan a term list, and sort a
result set. Access control, resource control,
extended services, and a "help" facility are also
supported. The protocol addresses communication
between corresponding information retrieval
applications, the client and server [4].

As an initial system requirement, the
description of the goal is re-used as the system
requirement:
 2a1. ANSI/NISO Z39.50-1995
For standards that are going to be implemented
using COTS components, it may not be necessary
to identify and describe precisely which parts of
the standards are needed because a component that
complies with the standard is expected to meet the
entire standard. Therefore, at this point it is
important for the RE to determine if the
requirement is a candidate for COTS component.
If it is a candidate, then the requirement can be left
at this level. Otherwise, a detailed statement of
compliance to the standard is needed.

Select Candidate System Requirements. The RE
selects the system requirement
 2a1. ANSI/NISO Z39.50-1995
as a candidate for COTS component. This is an
international, communication protocol standard for
the Internet and is likely to have COTS
components available.

Preliminary Search. The RE performs a
preliminary search in the repository using the
keyword Z39.50. The results of the search include
the following components:
1. Follett Software Company, Follett Software
 Z39.50 version 2
2. Sunstone Systems, Sunstone Z39.50 version 2
3. Blue Angel, Metastar Gateway component
 Z39.50 version 3
4. Blue Angel, Metastar Server component,
 Z39.50 version 3.

Preliminary Match. The RE reviews the results
of the preliminary search and determines that the
Blue Angel components are preliminary matches.
The components by Sunstone and Follett only

support version 2 of the standard and are not
considered any further.

Detailed Search. The RE performs a detailed
search on the preliminary matches. The following
information is returned:

Blue Angel Metastar Server component is
compliant with Z39.50 version 3.
Platforms: Windows NT and UNIX platforms.
Performance: N/A
Scaleability: N/A

Blue Angel Metastar Gateway component is
compliant with Z39.50 version 3.
Platforms: Windows NT and UNIX platforms.
Performance: N/A
Scaleability: N/A
Notes: integrated with the Altavista and Fulcrum
search engines; provides Z39.50 client

Detailed Match. The RE performs a detailed
match. Based on the information in the repository,
the Blue Angel components match the requirement
because they provide the Z39.50 version 3 client
and server capabilities.

Select Component. Based on the information in
the repository, the RE selects the Blue Angel
Gateway and Server components to provide the
Z39.50 client and server functionality.

Correct System Requirements. Due to the
selection of the COTS component, the RE updates
the system requirements with a new requirement:
The ANSI/NISO Z39.50-1995 shall be
implemented using a COTS component.

Baseline System Requirements. In this task, the
RE places the corrected system requirements
under configuration management.

5. Conclusions and Future Work

We have presented a preliminary process model
for a requirements engineering approach that
explicitly supports the use of COTS components.
The ontology and methodology for the model is
described and an example is given to demonstrate
the applicability of the model to a Digital Library
System. We recognize that the model needs to be
refined to address complex issues in the use of
COTS components including: the coupling of non-

functional requirements for a component (e.g.,
memory, performance tradeoffs), incompatibility
of COTS components, and bridging the gap
between customer requirements and the
capabilities available in COTS components [3,19].

There are a number of important aspects of the
research to investigate. Our next step is to refine
the process by working through a more complex
illustration in the Digital Library System. The next
illustration will show conflicting goals and
conflicting requirements, and use some portions of
the process model that have not been used in this
example (e.g., Request a Change to a COTS
Component, Request a Change to a Requirement,
Maintain the Components in the Repository).

As the process model is refined and validated,
the product model for the CARE approach also
needs to be developed. Defining the product model
which would allow the consistent use of a “mixed
bag” of the various OO, AO, and GO ontologies
and methodologies for CARE is expected to be
challenging.

Our CARE approach currently addresses three
of the four characteristics of an ideal, CARE
approach. Our CARE approach supports
developing systems that satisfice the customer, is
method based, and is knowledge based. In the
future, we will extend the approach to consider the
impact over the software development lifecycle.

References

1. Annie I. Antón and Colin Potts, “The Use of Goals

to Surface Requirements for Evolving Systems”,
International Conference on Software Engineering,
Kyoto, Japan, pp. 157-166, 19-25 April 1998.

2. A. van Lamsweerde and E. Letier, “Handling
Obstacles in Goal-Oriented Requirements
Engineering”, IEEE Transactions on Software
Engineering, Special Issue on Exception
Handling, Vol. 26, September 2000.

3. L. Chung, B. Nixon, E. Yu and J. Mylopoulos, Non-
Functional Requirements in Software Engineering,
Kluwer Academic Publishing, 2000.

4. E. Yu, “Modelling Strategic Relationships For
Process Reengineering”, DKBS-TR-94-6, The
University of Toronto, Canada, December 1994.

5. B. Boehm, D. Port, M. Abi-Antoun, and A. Egyed,
“Guidelines for the Life Cycle Objectives (LCO)
and the Life Cycle Architecture (LCA) deliverables
for Model-Based Architecting and Software
Engineering (MBASE)”, TR USC-CSE-98-519,
USC-Center for Software Engineering.

6. H. In and E. Flores-Mendoza, "Initial Design of the
"Plug-n-Analze" Framework for Architecture

Tradeoff Analysis", COMPSAC99, Phoenix,
Arizona, USA, October, 1999.

7. I. Jacobson, G. Booch, and J. Rumbaugh, The
Unified Software Development Process, Addison
Wesley Longman, Inc., USA, 1999.

8. C. Ncube and N. Maiden, “Guiding parallel
requirements acquisition and COTS software
selection”, Proceedings of the IEEE International
Symposium on Requirements Engineering 1999, pp.
133-140.

9. L. Brownsword, T. Oberndorf, and C.A. Sledge,
"Developing new processes for COTS-based
systems", IEEE Software, Volume: 17 Issue:4, July-
Aug. 2000 pp. 48 –55.

10. L. Chung, K. Cooper, and D.T. Huynh, “COTS-
Aware Requirements Engineering Technique”,
submitted to ICCBSS ’01.

11. ANSI/NISO Z39.50-1995 Information Retrieval
(Z39.50): Application Service Definition and
Protocol Specification, Z39.50 Maintenance
Agency, July 1995. (ISO 23950)

12. S. Weibel and J. Kunze, “Dublin Core Metadata for
Resource Discovery”, IETF RFC 2413, September
1998.

13. World Wide Web Consortium (W3C), “Extensible
Markup Language (XML), Recommendation 6,
October 2000.

14. Encoded Archival Description Document Type
Definition (EAD DTD), version 1.0, Network
Development and MARC Standards Office, August
1998.

15. Machine Readable Cataloging (MARC) 21, Format
for Bibliographic Data, update No. 1, Network
Development and MARC Standards Office, October
2000.

16. Anglo-American Cataloguing Rules, Second
Edition, Canadian Library Association, Library
Association Publishing, American Library
Association, 1999.

17. Electronic Business XML (ebXML), ebXML
Technical Architecture Specification version 1.04,
The United Nations Centre for Trade Facilitation
and Electronic Business (UN/CEFACT) and The
Organisation for the Advancement of Structured
Information Standards (OASIS), February 2001.

18. Open eBook Publication Structure (OEBPS)
specification, version 1.0.1, July 2001.

19. J. Mylopoulos, L. Chung, and B. Nixon,
“Representing and using nonfunctional
requirements: a process-oriented approach” IEEE
Transactions on Software Engineering, Volume 18,
Issue 6, June 1992, pp. 483-497.

20. J. Mylopoulos, A. Borgida, M. Jarke, M.
Koubarakis, “Telos: Representing Knowledge about
Information Systems”, ACM Trans. Info. Sys., 8 (4),
pp. 325-362, October 1990.

