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Abstract. We describe a program analysis for linked list programs where
the abstract domain uses formulae from separation logic.

1 Introduction

A shape analysis attempts to discover the shapes of data structures in the heap at
program points encountered during a program’s execution. It is a form of pointer
analysis which goes beyond the tabulation of shallow aliasing information (e.g.,
can these two variables be aliases?) to deeper properties of the heap (e.g., is this
an acyclic linked list?).

The leading current shape analysis is that of Sagiv, Reps and Wilhelm, which
uses very generic and powerful abstractions based on three-valued logic [17]. Al-
though powerful, a problem with this shape analysis is that it behaves in a global
way. For example, when one updates a single abstract heap cell this may require
also the updating of properties associated with all other cells. Furthermore, each
update of another cell might itself depend on the whole heap. This global na-
ture stems from the use of certain instrumentation predicates, such as ones for
reachability, to track properties of nodes in the heap: an update to a single cell
might alter the value of a host of instrumentation predicates.

In contrast, separation logic provides an approach to reasoning about the
heap that has a strong form of locality built in [14]. Typically, one reasons about
a collection of cells in isolation, and their update does not necessitate checking or
updating cells that are held in a different component of a separating conjunction.
It thus seems reasonable to try to use ideas from separation logic in program
analysis, with an eye towards the central problem of modularity in the analysis.

Our technical starting point is recent work of Berdine, Calcagno and O’Hearn
[5], who defined a method of symbolic execution of certain separation logic for-
mulae called symbolic heaps. Their method is not, by itself, suitable as an ab-
stract semantics because there are infinitely many symbolic heaps and there is
no immediate way to guarantee convergence of fixed-point calculations. Here,
we obtain a suitable abstract domain by working with (a variation on) their
method of symbolic execution, and adding to it an abstraction or widening op-
erator which converts any symbolic heap to one in a certain “canonical form”.
This abstraction method is an adaptation of work in [7, 8] to the symbolic heaps
of Berdine et. al. In contrast to unrestricted symbolic heaps we show that there



are only finitely many canonical forms, resulting in termination of the fixed-point
calculation used in the abstract semantics of while loops.

Our abstract domain uses linked lists only. Other abstractions based on sep-
aration logic might be considered as well.

After defining the analysis we turn to locality. We describe a sense in which
the abstract semantics obeys the Frame Rule of separation logic, and we iden-
tify a notion of footprint as an input-output relation that mentions only those
symbolic heap cells accessed by a program. The footprint provides a sound over-
approximation of a program’s entire (abstract) meaning. The results on locality
give a way to automatically infer sound answers for large states from those
obtained on small ones as input, suggesting further possible developments in
interprocedural and concurrency analyses.

1.1 Related Work

In work on heap analysis (see [15] for discussion) much use has been made of a
“storeless semantics” where the model is built from equivalence classes of paths
rather than locations. The storeless semantics has the pleasant property that it
is garbage collecting by its very nature, but it is also extremely complex. This
makes it highly nontrivial to see that a particular analysis based on it is sound.
In contrast, here we work directly with a store model, and soundness is almost
immediate. The abstraction we use is defined by rewrite rules which are all true
implications in separation logic, and the symbolic execution rules are derived
from true Hoare triples.

Recent work on shape analysis [15, 16] might be regarded as taking some
steps towards separation logic. Early on in separation logic there was an empha-
sis on what was referred to as “local reasoning”: reasoning concentrates on the
cells accessed during computation [12]. In [15, 16] an interprocedural analysis
is described where a procedure summary is constructed which involves only the
(abstract) cells reachable from input parameters or variables free in a proce-
dure. The method of applying a procedure does not, however, explicitly utilize a
separating conjunction operator ∗; one might say that the general idea of local
reasoning is adopted (or altered), but the formal apparatus of separation logic
is not.

In this paper we reciprocate by taking some steps towards shape analysis. Our
intention initially was full reciprocation: to build an interprocedural analysis.
But, after labouring for the better part of a year, we decided to aim lower: to
define an abstract domain and abstract post operator, together with an account
of its locality, for a language without procedures. In doing this we have been
influenced by shape analysis, but have not adopted the formal apparatus of shape
graphs or 3-valued logic. We hope that this paper can serve as a springboard for
further developments in local interprocedural and modular concurrency analysis.

We want to make clear that we do not claim that our analysis is superior,
in a practical sense, to existing shape analyses. Although it works well on small
examples, we have not yet demonstrated that it scales to large programs. Also,
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from a methodological point of view, in the framework of [17] different abstrac-
tions are obtained in a uniform way, where a notion of “canonical abstraction”
results once instrumentation predicates are nailed down. In contrast, here we
have just one particular set of rewrite rules that have been hand-built; how this
might be turned into a more general scheme is not obvious.

Nonetheless, we believe that research on how separation logic, or more partic-
ularly, the local reasoning idea, might be used in program analysis is of interest
because it suggests a genuinely different approach which has promise for the
central problem of obtaining modular analyses. A very good example of this is
the recent work of Amtoft et. al. [2, 1] which uses local reasoning in information
flow analysis (this is a more shallow form of analysis than shape analysis, but
they are successful in formulating a very modular analysis).

Finally, in work carried out independently of (and virtually in parallel to)
that here, Magill et. al. have defined a method of inferring invariants for linked
list programs in separation logic [9]. They also utilize a symbolic execution mech-
anism related to [5], and give rewrite rules to attempt to find fixed points. There
are many detailed differences: (i) they use a different basic list predicate than we
do and, as they point out, have difficulty dealing with acyclic lists, where that
is a strong point of our analysis; (ii) they do predicate abstraction of arithmetic
operations, where we do not; (iii) and they use an embedding into Presburger
arithmetic to help decide implications and Hoare triples, where we do not pro-
vide a method for deciding implications (or Hoare triples); (iv) their algorithm
does not always terminate, where ours does. But, there is remarkable similarity.

2 Semantic Setting

We first describe the general semantic setting for this work. Following the frame-
work of abstract interpretation [6], we will work with complete lattices D: The
semantics of a command c will be given by a continuous function [[c]]:D → D.

If we are given a programming language with certain primitive operations
p, together with conditionals, sequencing and while loops, then to define the
semantics we must specify the meaning [[p]] of each primitive operation as well as
a continuous function, filter(b): D → D, for each boolean. Typically, D is built
from subsets of a set of states, and the filter function removes those elements
that are not consistent with b’s truth. The semantics extends to the rest of the
language in the usual way.

[[c ; c′]] = [[c]] ; [[c′]] [[if b then c else c′]] = (filter(b) ; [[c]]) t (filter(¬b) ; [[c′]])

[[while b do c]] = λd. filter(¬b)
ş
fix λd′. d t (filter(b) ; [[c]])(d′)

ť

One way to understand the semantics of while is to view d′ as a loop invariant.
The d in the lhs of t means that the loop invariant d′ should be implied by the
precondition, and the rhs of t means that d′ is preserved by the body. (Here, the
fixed-point operator has been moved inward from its usual position in semantics,
so that it applies to predicates instead of two command denotations.)

Our domains D will be constructed using a powerset operation. If S is a set
we denote by P(S) the “topped” powerset of S, that is, the set of subsets of
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S ∪ {>}. Here, > 6∈ S is a special element that corresponds to memory fault
(accessing a dangling pointer). If we were to take logical implications between
elements of P(S) into account then we would make {>} the top and equate all
sets containing >. For simplicity in this paper we just use the subset order.

Given a relation (p =⇒) ⊆ S× (S ∪{>}), with membership notated σ, p =⇒
σ′, we can lift it to a function p†:P(S) → P(S) by

p†X = {σ′ | ∃σ ∈ X. (σ, p =⇒ σ′) or (σ = σ′ = >)}.

The semantics of primitive commands will be given by first specifying an exe-
cution semantics =⇒ and then lifting it to P(S) .

Every semantics we work with will have two additional properties: that {>}
is mapped to {>} and that it preserves unions. Because of this we could in fact
work with a corresponding map [[c]]†:S → P(S) instead of [[c]]:P(S) → P(S).

3 Concrete and Symbolic Heaps

Throughout this paper we assume a fixed finite set Vars of program variables
(ranged over by x, y, . . .), and an infinite set Vars′ of primed variables (ranged
over by x′, y′, . . .). The primed variables will not be used within programs, only
within logical formulae (where they will be implicitly existentially quantified).

Definition 1. A symbolic heap Π | Σ consists of a finite set Π of equalities and
a finite set Σ of heap predicates. The equalities E=F are between expressions E
and F , which are variables x, or primed variables x′, or nil. The elements of Σ
are of the form

E 7→F ls(E, F ) junk.

We use SH to denote the set of consistent symbolic heaps. (For the definition
of consistency, see below.)

The first two heap predicates are “precise” in the sense of [13]; each cuts out a
unique piece of (concrete) heap. The points-to assertion E 7→F can hold only in
a singleton heap, where E is the only active cell. Similarly, when a list segment
holds of a given heap, the path it traces out is unique, and goes through all the
cells in the heap. This precise nature of the predicates is helpful when accounting
for deallocation. For each symbolic heap Π | Σ, we call Π pure part of Π | Σ,
and Σ spatial part of Π | Σ.

The junk predicate is used in the canonicalization phase of our analysis to
swallow up garbage. It is crucial for termination of our analysis, and it has the
useful property to reveal memory leaks.

Besides the heap formulae, symbolic heaps also keep track of equalities in-
volving pointer variables and nil.

We often use the notation Σ ∗P for the (disjoint) union of a formula P onto
the spatial part of a symbolic heap, and we similarly use Π ∧P in the pure part.

The meaning of a symbolic heap corresponds to a formula

∃x′1x′2 . . . x′n.
ş^

P∈Π

P
ť
∧

ş
FQ∈Σ Q

ť
,
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in separation logic, where {x′1, . . . , x′n} is the set of all the primed variables in Σ
and Π. More formally, the meaning of a symbolic heap is given by a satisfaction
relation s, h ² Π | Σ, where s is a stack and h a (concrete) heap.

Values = Locations ∪ {nil} Heaps = Locations ⇀f Values

Stacks = (Vars ∪ Vars′) → Values States = Stacks× Heaps

The semantics is given in Table 1. The operation h0 ∗h1 there is the union of
heaps with disjoint domains. We give the semantics for the singleton sets in the
pure and spatial parts, and then for unions. There, the clause for list segments
is given informally, but corresponds to the least predicate satisfying

ls(E, F ) ⇐⇒ E 6=F ∧ (E 7→F ∨ (∃x′.E 7→x′ ∗ ls(x′, F ))).

Table 1 Semantics of Symbolic Heaps

C[[x]]s = s(x) C[[x′]]s = s(x′) C[[nil]]s = nil

s, h ² {} iff h is the empty heap []

s, h ² {E 7→F} iff h = [C[[E]]s7→C[[F ]]s]

s, h ² {ls(E, F )} iff there is a nonempty acyclic path from C[[E]]s to C[[F ]]s in h

and this path contains all heap cells in h
s, h ² {junk} iff h 6= ∅
s, h ² Σ0 ∗Σ1 iff ∃h0, h1. h = h0 ∗ h1 and s, h0 ² Σ0 and s, h1 ² Σ1

s ² {} always

s ² {E=F} iff C[[E]]s = C[[F ]]s

s ² Π0 ∪Π1 iff s ² Π0 and s ² Π1

s, h ² Π | Σ iff ∃v′. (s(x′ 7→ v′) ² Π) and (s(x′ 7→ v′), h ² Σ)

where x′ is the collection of primed variables in Π | Σ

Our analysis will require us to be able to answer some questions about sym-
bolic heaps algorithmically: whether two expressions are equal, whether they are
unequal, whether the heap is inconsistent, and whether a cell is allocated.

Π ` E=F Π | Σ ` E 6=F (when Vars′(E, F ) = ∅)
Π | Σ ` false Π | Σ ` Allocated(E) (when Vars′(E) = ∅)

Π ` E=F is easy to check. It just considers whether E and F are in the
same equivalence class induced by the equalities in Π. The other operators use
subroutine allocated, which takes Σ and an expression E, and decides whether
Σ implies that E points to an allocated cell, by a “nontrivial reason”: allocated
ignores the case where Σ is not satisfiable and implies all formulae.

allocated(Σ, E) = ∃E′. (E 7→ E′ ∈ Σ) or (ls(E, E′) ∈ Σ).
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We then define the other querying operators as follows:

Π | Σ ` false ⇐⇒ (∃E. Π ` E=nil and allocated(Σ, E)), or

(∃E, F. Π ` E=F and ls(E, F ) ∈ Σ), orÃ
∃E, F. Π ` E=F and Σ contains two distinct

predicates whose lhs’s are, respectively, E and F

!

Π | Σ ` E 6=F ⇐⇒ (E=F ∧Π | Σ) ` false

Π | Σ ` Allocated(E) ⇐⇒ Π | Σ ` false, or (∃E′. Π ` E=E′ and allocated(Σ, E′))

These definitions agree with what one would obtain from a definition in terms
of the satisfaction relation ², but they are simple syntactic checks that do not
require calling a theorem prover.

The rules that define our analysis will preserve consistency of symbolic heaps
(that Π | Σ 6` false). In particular, inconsistent heaps introduced in branches of
if statements or as a result of tests in a while loop will be filtered out.

4 Concrete and Symbolic Execution Semantics

The grammar of commands for the programming language used in this paper is
given by

b F E=E | E 6=E

p F xBE | xB [E] | [E]BF | new(x) | dispose(E) Primitive Commands

c F p | c ; c | while b do c | if b then c else c Commands

We do not consider commands that contain any primed variables amongst their
expressions. We include only a single heap dereferencing operator [·] which refers
to the “next” field. In the usual way, our experimental implementation ignores
commands that access fields other than “next” (say, a data field), and treats any
boolean conditions other than those given as nondeterministic.

4.1 Concrete Semantics

The execution rules for the primitive commands are as follows, where in the
faulting rule (the last rule) we use notation for primitive commands that access
heap cell E:

A(E) F [E]BF | xB [E] | dispose(E)

Concrete Execution Rules

C[[E]]s = n

s, h, xBE =⇒ (s | x 7→ n), h

C[[E]]s = ` h(`) = n

s, h, xB [E] =⇒ (s | x 7→ n), h

C[[E]]s = ` C[[F ]]s = n ` ∈ dom(h)

s, h, [E]BF =⇒ s, (h | ` 7→ n)

` 6∈ dom(h)

s, h, new(x) =⇒ (s | x 7→ `), (h | ` 7→ n)

C[[E]]s = `

s, h ∗ [` 7→ n], dispose(E) =⇒ s, h

C[[E]]s 6∈ dom(h)

s, h, A(E) =⇒ >
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Notice the tremendous amount of nondeterminism in new: it picks out any
location not in the domain of the heap, and any value n for its contents.

The concrete semantics is given in the topped powerset P(States), where the
filter map is

filter(b)X = {(s, h) ∈ X | C[[b]]s = true} ∪ {> | > ∈ X}

where C[[b]]s ∈ {true,false} just checks equalities by looking up in the stack s.
With these definitions we may then set C[[p]] = p† and by the recipe of

Section 2 we obtain the concrete semantics, C[[c]] : P(States) → P(States), of
every command c.

4.2 Symbolic Semantics

The symbolic execution semantics σ,A =⇒ σ′ takes a symbolic heap σ and a
primitive command, and transforms it into an output symbolic heap or >. In
these rules we require that the primed variables x′, y′ be fresh.
Symbolic Execution Rules

Π | Σ, xBE =⇒ x=E[x′/x] ∧ (Π | Σ)[x′/x]

Π | Σ ∗ E 7→F , xB [E] =⇒ x=F [x′/x] ∧ (Π | Σ ∗ E 7→F )[x′/x]

Π | Σ ∗ E 7→F , [E]BG =⇒ Π | Σ ∗ E 7→G

Π | Σ, new(x) =⇒ (Π | Σ)[x′/x] ∗ x7→y′

Π | Σ ∗ E 7→F , dispose(E) =⇒ Π | Σ
Π | Σ 6` Allocated(E)

Π | Σ, A(E) =⇒ >
Rearrangement Rules

P (E, F ) F E 7→F | ls(E, F )

Π0 | Σ0 ∗ P (E, G), A(E) =⇒ Π1 | Σ1

Π0 | Σ0 ∗ P (F, G), A(E) =⇒ Π1 | Σ1

Π0 ` E=F

Π0 | Σ0 ∗ E 7→x′ ∗ ls(x′, G), A(E) =⇒ Π1 | Σ1

Π0 | Σ0 ∗ ls(E, G), A(E) =⇒ Π1 | Σ1

Π | Σ ∗ E 7→F, A(E) =⇒ Π ′ | Σ′

Π | Σ ∗ ls(E, F ), A(E) =⇒ Π ′ | Σ′

The execution rules that access heap cell E are stated in a way that requires
their pre-states to explicitly have E 7→F . Sometimes the knowledge that E is
allocated is less explicit, such as in {E=x} | {x 7→y} or ls(E,F ), and we use
rearrangement rules to put the pre-state in the proper form. The first rearrange-
ment rule simply makes use of equalities to recognize that a dereferencing step
is possible, and the other two correspond to unrolling a list segment.

In contrast to the concrete semantics, the treatment of allocation is com-
pletely deterministic (up to renaming of primed variables). However, a different
kind of nondeterminism results in rearrangement rules that unroll list segments.

All that is left to define the symbolic (intermediate) semantics I[[c]]:P(SH) →
P(SH) by the recipe before is to define the filter map. It adds the equality for
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the E=F case, but does not do so for the E 6=F case because we do not have
inequalities in our symbolic domain.

filter(E=F )X = {> | >∈X} ∪ {(E=F ∧Π | Σ) | Π | Σ ∈ X and Π | Σ 6` E 6=F}
filter(E 6=F )X = {> | >∈X} ∪ {(Π | Σ) ∈ X | Π 6` E=F and Π | Σ 6` false}

To state the sense in which the symbolic semantics is sound we define the
“meaning function” γ:P(SH) → P(States):

γ(X) = if (> ∈ X) then (States ∪ {>}) else ({(s, h) | ∃Π | Σ ∈ X. (s, h) |= Π | Σ})

Theorem 2. The symbolic semantics is a sound overapproximation of the con-
crete semantics: ∀X ∈ P(SH). C[[c]](γ(X)) ⊆ γ(I[[c]]X).

5 The Analysis

The domain SH of symbolic heaps is infinite. Even though there are finitely
many program variables, primed variables can be introduced during symbolic
execution. For example, in a loop that includes allocation we can generate for-
mulae x7→x′ ∗ x′ 7→x′′ · · · of arbitrary length.

In order to ensure fixed-point convergence we perform abstraction. The ab-
straction we consider is specified by a collection of rewrite rules which perform
abstraction by gobbling up primed variables. This is done by merging lists, swal-
lowing single cells into lists, and abstracting two cells by a list. We also remove
primed variables from the pure parts of formulae, and we collect all garbage into
the predicate junk.

5.1 Canonicalization Rules

The canonicalization rules are reported in Table 2. We again use the notation
P (E, F ) to stand for an atomic formula either of the form E 7→F or ls(E, F ).

The most important rules are the last two. The sense of abstraction that
these rules implement is that we ignore any facts that depend on a midpoint in
a list segment, unless it is named by a program variable. There is a subtlety in
interpreting this statement, however. One might perhaps have expected the last
rule to leave out the P3(G,H) ∗-conjunct, but this would result in unsoundness;
as Berdine and Calcagno pointed out [4, 5] (our abstraction rules are obtained
from their proof rules), we must know that the end of a second list segment
does not point back into the first if we are to concatenate them. We are forced,
by considerations of soundness, to keep some primed midpoints, such as in the
formula ls(x, x′) ∗ ls(x′, y), to which no rewrite rule applies.

Notice the use of a ∪ rather than a ∗ on the rhs of the (Gb1) and (Gb2)
rules. This has the effect that when more than one unreachable node named by
a primed variable is present, all of them get put into the unique junk node.
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Table 2 Abstraction Rules

E=x′ ∧Π | Σ ; (Π | Σ)[E/x′]
(St1)

x′=E ∧Π | Σ ; (Π | Σ)[E/x′]
(St2)

x′ 6∈ Vars′(Π, Σ)

Π |Σ ∗P (x′, E) ; Π |Σ ∪ junk
(Gb1)

x′, y′ 6∈ Vars′(Π, Σ)

Π |Σ ∗P1(x
′, y′) ∗P2(y

′, x′) ; Π |Σ ∪ junk
(Gb2)

x′ /∈ Vars′(Π, Σ, E, F ) Π ` F=nil

Π | Σ ∗ P1(E, x′) ∗ P2(x
′, F ) ; Π | Σ ∗ ls(E, nil)

(Abs1)

x′ /∈ Vars′(Π, Σ, E, F, G, H) Π ` F=G

Π | Σ ∗ P1(E, x′) ∗ P2(x
′, F ) ∗ P3(G, H) ; Π | Σ ∗ ls(E, F ) ∗ P3(G, H)

(Abs2)

5.2 The Algorithm

We say that Π | Σ is a canonical symbolic heap if it is consistent (i.e., Π | Σ 6`
false) and no canonicalization rule applies to it, and we denote by CSH the set
of all such. We can immediately observe:

Lemma 3 (Strong Normalization). ; has no infinite reduction sequences.

This, together with the results in the next section, would be enough to define a
terminating analysis. But, there are many distinct reduction sequences and to
try all of them in an analysis would lead to a massive increase in nondetermin-
ism. We have not proven a result to the effect that choosing different reduction
sequences matters in the final result (after applying the meaning function γ),
but neither have we found examples where the difference can be detected. So, in
our implementation we have chosen a specific strategy which applies the equality
rules, followed by (Gb1), followed by abstraction rules, followed by (Gb2). In the
theory, we just presume that we have a function (rather than relation)

can:SH → CSH
which takes a symbolic heap Π | Σ and returns a canonical symbolic heap Π ′ | Σ′

where Π | Σ ;∗ Π ′ | Σ′.
[We remark that can(Π | Σ) is not the best (logically strongest) canonical

heap implied by Π | Σ. A counterexample is {} | {x 7→x′, x′ 7→y, y 7→nil}. This
symbolic heap is reduced to {} | {ls(x, y), y 7→nil} by the canonicalization, but
implies another symbolic heap {} | {x7→x′, x′ 7→z′, y 7→nil}, which is not (logically)
weaker than {} | {ls(x, y), y 7→nil}. We believe that this “problem” is fixable; we
conjecture that there is a preorder v on SH such that (i) v is a sub preorder
of the logical implication and (ii) can(Π | Σ) is the smallest canonical heap
greater than or equal to Π | Σ with respect to v. As of this writing we have not
succeeded in proving this conjecture. If true, it would perhaps open the way to a
study pinpointing where precision is and is not lost (as in, e.g., [3]) using Galois
connections. Although valuable, such questions are secondary to our more basic
aim of existence (soundness and termination) of the analysis.]

Let in:P(CSH) → P(SH) denote the inclusion function. We define the ab-
stract semantics for each primitive command p by the equation
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A[[p]] = in ; I[[p]] ; (can†).

The filtering map in the abstract semantics is just the restriction of the symbolic
one to CSH. Then, by the recipe from Section 2 we obtain a semantics

A[[c]] : P(CSH) → P(CSH)

for every command.
The soundness of the abstract semantics relies on the soundness of the rewrit-

ing rules.

Lemma 4 (Soundness of ;). If Σ | Π ; Σ′ | Π ′ then Σ | Π ` Σ′ | Π ′.

The statement of soundness of the abstract semantics is then the same as for the
symbolic semantics, except that we quantify over P(CSH) instead of P(SH).

Theorem 5. The abstract semantics is a sound overapproximation of the con-
crete semantics: ∀X ∈ P(CSH). C[[c]](γ(X)) ⊆ γ(A[[c]]X).

Here are some examples of running the analysis on particular pre-states,
taken from an implementation of it in OCaml.

Example 1 . This is the usual program to reverse a list. Here 0 is used to denote
nil, x�tl is used instead of [x], and the commas in the analysis results are replaced
by the corresponding logical connectives.

Program: pB0 ; while (c 6=0) do (nBc�tl ; c�tlBp ; pBc ; cBn)

Pre: {} | {ls(c, 0)} Post: {c=0∧ c=n∧n=0} | {ls(p, 0)} ∨ {c=0∧ c=n∧n=0} | {p7→0}
Inv: {p=0} | {ls(c, 0)} ∨ {c=n∧n=0} | {p 7→0} ∨ {c=n∧n=0} | {ls(p, 0)} ∨

{c=n} | {p 7→0 ∗ ls(n, 0)} ∨ {c=n} | {ls(p, 0) ∗ ls(n, 0)}
Given a linked list as a precondition, the analysis calculates that the postcon-

dition might be a linked list or a single points-to fact. The postcondition has
some redundancy, in that we could remove the second disjunct without affecting
the meaning; this is because we have used the subset ordering on sets of states,
rather than one based on implication. The analysis also calculates the pictured
loop invariant, which captures that p and c point to separated linked lists.

Running the analysis to the same program with a circular linked list as input
gives the following (we omit the calculated invariant, which has 11 disjuncts).

Pre: {} | {ls(c, c′) ∗ ls(c′, c)}
Post: {c=0 ∧ c=n∧n=0} | {p7→p′ ∗ ls(p′, p)} ∨ {c=0 ∧ c=n ∧ n=0} | {p7→p′ ∗ p′ 7→p}

Example 2 . This is the program to dispose a list.

Program: while (c 6=0) do (tBc ; cB c�tl ; dispose(t))

Pre: {} | {ls(c, 0)} Post: {c=0} | {} Inv: {c=0} | {} ∨ {} | {ls(c, 0)}

The spatial part {} of the postcondition expresses that the heap is empty on
termination. If we leave out the dispose instruction, it returns postcondition
{c=nil} | {t 7→nil ∗ junk} (showing memory leak). When we run the analysis on
this program on a circular list or ls(c, d) it reports a memory fault.
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In addition to these examples we have run the analysis on a range of other
small programs, such as list append, list copy, programs to insert and delete from
the middle of a list, programs to delete and filter from circular lists, and to delete
a segment between two values from a sorted list. The execution times ranged
from a few milliseconds for reverse, copy and append to three seconds for delete-
a-segment (running on a 1.5GHz PowerBook G4), and in space requirements
none of them exceeded the OCaml default initial heap size of 400kB.

In coverage of examples, and in the nature of the abstraction itself, the anal-
ysis here appears to be somewhat similar to the one reported in [10]. A careful
study of this relationship could be worthwhile.

6 Termination

Although the abstract semantics exists, we have not yet established that the
algorithm it determines always terminates. We do that by showing that the
domain CSH, consisting of the normal forms of the rewriting rules, is finite.

To gain some insight into the nature of the canonical symbolic heaps here
are some examples, where the pure part Π is empty (and left out).

Irreducible Reducible

ls(x, x′) ∗ ls(y, x′) ∗ ls(x′, nil) ls(x, x′) ∗ ls(x′, y′) ∗ ls(y′, nil)

ls(x, x′) ∗ ls(x′, x) ls(x, y′) ∗ ls(y′, x′) ∗ ls(x′, x)

ls(x, x′) ls(x′, x)

ls(x, x′) ∗ ls(x′, y) ls(x, x′) ∗ ls(x′, y) ∗ ls(y, z)

In the first element of the first row, variable x′ is shared (pointed to by x and y),
and this blocks the application of rule (Abs1) because of its variable condition.
On the other hand, the second element can be reduced, in fact twice, to end up
with ls(x, nil). The second row contains two cycles, one of (syntactic) length two
and the other of length three. The first of these cannot be reduced. We would
need to know that x=nil to apply (Abs1) and we cannot, because x in ls(x, x′)
cannot be nil or else we would have an inconsistent formula. The second in
this row can, however, be reduced, to the first. In the third row x′ is a reachable
variable that possibly denotes a dangling pointer and there is no way to eliminate
it. In the second it is not reachable, and can be removed using the (Gb1) rule.
Note that this removal is sound, because all heap predicates, including ls(x′, x),
imply junk. In the final row, first x′ points to a possibly dangling variable y. We
cannot remove x′, because transforming ls(x, x′) ∗ ls(x′, y) to ls(x, y) is unsound;
when y = x = 10, no heap can satisfy ls(x, y), while a cycle from location 10 of
length 2 satisfies ls(x, x′) ∗ ls(x′, y). The rule (Abs2) is arranged to prevent this
unsoundness. If we tack on another heap formula to ensure that y does not point
to any internal cells of the list segment ls(x, x′), then (Abs2) can apply.

Based on these ideas we can characterize the normal forms of ;∗ using
“graphical” ideas of path and reachability, as well as conditions about sharing,
cycles, and dangling pointers.
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Definition 6. 1. A path in Π | Σ is a sequence of expressions E0, E1, . . . , En

such that
∀i ∈ {1, . . . , n}. ∃E, E′. Π ` Ei−1=E and Π ` Ei=E′ and P (E, E′) ∈ Σ.

Reachability between expressions is defined in the usual way: E is reachable
from E′ in Π | Σ if and only if there is a path in Π | Σ that starts from E
and ends in E′.

2. An expression E in Π | Σ is shared if and only if Σ contains two distinct
elements P0(E0, E

′
0) and P1(E1, E

′
1) such that Π ` E=E′

0 and Π ` E=E′
1.

3. A primed variable x′ in a cycle (a path from E to itself) is an internal node
if and only if it is not shared.

4. E is called possibly dangling in Π | Σ if and only if
(a) Π 6` E=nil,
(b) there exists some E′ such that Π ` E=E′ and E′ is the second argument

of some heap predicate in Σ, and
(c) there are no expressions F ′ such that Π ` E=F ′ and F ′ is the first

argument of some heap predicate in Σ.
5. E points to a possibly dangling expression if and only if there are E′, F such

that Π ` E=E′, P (E′, F ) ∈ Σ, and F possibly dangles.

Definition 7 (Reduced Symbolic Heap). A symbolic heap Π | Σ is reduced
if and only if

1. Π does not contain primed variables;
2. every primed variable x′ in Σ is reachable from some unprimed variable; and
3. for every reachable variable x′, either (a) x′ is shared, or (b) x′ is the internal

node of a cycle of length precisely two, or (c) x′ points to a possibly dangling
variable, or (d) x′ is possibly dangling.

In (b) of this definition the length refers to the syntactic length of a path, not
the length of a denoted cycle. For example, ls(x, x′)∗ ls(x′, x) has syntactic length
two, even though it denotes cycles of length two or greater.

This definition of reduced heaps is not particularly pretty; its main point is
to give us a way to prove termination of our analysis.

Proposition 8 (Canonical Characterization). When a symbolic heap Π | Σ
is consistent, Π | Σ is reduced if and only if Π | Σ Ã/ .

We consider the formulae in CSH as being equivalent up to renaming of
primed variables. With this convention, we can show CSH finite.

Proposition 9. CSH is finite.

The proof of this proposition proceeds by first showing a lemma that bounds
the number of primed variables in any reduced form. In essence, the condition 3
of the definition of “reduced” stops there being infinitely many possible primed
variables (starting from a fixed finite set of program variables). This then limits
the number of atomic formulas that can appear, giving us finiteness. The overall
bound one obtains is exponential (for the record, we have an argument that gives
a very coarse bound of 2(129n2+18n+2)). This the leads us to

Theorem 10. The algorithm specified by A[[·]] always terminates.
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7 Locality

We now describe locality properties of the semantics, beginning with an example.
Suppose that we have a queue, represented in memory as a list segment from c
to d. An operation for getting an element is

xBc ; cBc�tl /* get from left of queue, put in x */

The list segment might not be the whole storage, of course. In particular, we
might have an additional element pointed to by d which is (perhaps) used to
place an element into the queue. When we run our tool on an input reflecting
this state of affairs we obtain

Pre: {} | {ls(c, d)∗d7→d′} Post: {c=d} | {x7→d∗d 7→d′} ∨ {} | {x 7→c∗ ls(c, d)∗d7→d′}
However, it is clear that the d 7→ d′ information is irrelevant, that a run of the

tool on the smaller input gives us all the information we need.

Pre: {} | {ls(c, d)} Post: {c=d} | {x7→d} ∨ {} | {x7→c ∗ ls(c, d)}

In fact, the behaviour of the tool in the first case follows from that in the
second, using the Frame Rule of separation logic. This example is motivated by
the treatment of a concurrent queue in [11]. The fact that we do not have to
consider the cell d when inserting is crucial for a verification which shows that
the two ends of a nonempty queue can be manipulated concurrently. To produce
such results from an analysis, rather than a by-hand proof, we would similarly
like to avoid the need to analyze the entire state including the cell d.

We can give a theoretical account of the locality of our analysis using the
following notions. First, we define a notion of ∗ on entire symbolic heaps.

(Π1 | Σ1) ∗ (Π2 | Σ2) = (Π1 ∪Π2 | Σ1 ∗Σ2).

This is a partial operation, which is undefined when Σ1 ∗ Σ2 is undefined, or
when (Π1 ∪Π2 | Σ1 ∗Σ2) is inconsistent, or when some primed variable appears
both in Π1 | Σ1 and in Π2 | Σ2. We extend this to SH ∪ {>} by stipulating
(Π | Σ) ∗ > = > = > ∗ (Π | Σ). It then lifts to a total binary operation on
P(SH) by

X ∗ Y = {σ1 ∗ σ2 | σ1 ∈ X, σ2 ∈ Y }.
To formulate the locality property we suppose a fixed set Mod of modified

variables, that appear to the left of B or in new(x) in a given command c.

Theorem 11 (Frame Rule). For all X,Y ∈ P(CSH), if Vars(Y ) ∩Mod = ∅
then γ(A[[c]](X ∗ Y )) ⊆ γ((A[[c]]X) ∗ Y ).

There are two reasons why we get an overapproximation ⊆ rather than exact
match here. First, and trivially, there might be states in X where c faults, returns
>, while it never does for states in X∗Y . The second reason is best understood by
example. When the program new(x);(if x=y then zB a else zB b);dispose(x)
is run in the empty heap, it returns two post-states, one where z=a and the
another where z=b. But when run in y 7→y′ the if branch is ruled out and we
only get z=b | y 7→y′ as a conclusion. However, we get z=a | y 7→y′ as an additional
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possibility starting from y 7→y′, when we put the small output together with y 7→y′

using ∗. Although precision can be lost when passing to smaller states, in many
examples we have considered it is an acceptable loss or none.

For a given command c and symbolic heap σ we define

1. safe(c, σ) iff > 6∈ A[[c]]{σ}
2. σ1 ¹ σ3 iff ∃σ2. σ3 = σ1 ∗ σ2

3. σ ≺ σ′ iff σ ¹ σ′ and σ 6= σ′

4. onlyaccesses(c, σ) iff safe(c, σ) and ¬∃σ′ ≺ σ. safe(c, σ′).

The notion of accesses is coarse. For example, onlyaccesses([x]B y, ls(x, nil)) holds,
even though a single cell can be picked out of the list segment. A stronger
notion of accesses, and hence footprint, might be formulated taking implications
between symbolic heaps into account as well as ¹.

The footprint is partial function foot(c): CSH ⇀ P(CSH),

foot(c)σ = if (onlyaccesses(c, σ)) then (A[[c]]{σ}) else (undefined).

The point of the footprint is that, as a set of pairs, it can be compact compared to
the entire meaning. For the disposelist program in Example 2, the footprint has
three entries, with preconditions {} | {ls(c, nil)}, {} | {c7→nil} and {c=nil} | {}.
The entire meaning has 16 entries, corresponding to the number of canonical
symbolic heaps over a single input variable c.

To express the sense in which the footprint is a sound representation of the
semantics of c we show how any potential footprint can be “fleshed out” by
applying the idea behind the Frame Rule. Again, let Mod be the set of modified
variables in a given command c, and for each Π | Σ, let unaffectedEqs(Π | Σ) be
the set of equalities E=F in Π such that Vars(E=F ) ∩Mod = ∅. If f : CSH ⇀
P(CSH), then flesh(f): CSH → P(CSH) is defined as follows:

validSplit(σ0, σ1, σ) ⇐⇒ σ0 ∗ σ1 = σ and Vars(σ1) ∩Mod = ∅ and

σ0 ∈ dom(f) and unaffectedEqs(σ1) = unaffectedEqs(σ)

flesh(f)σ = if (¬∃σ0, σ1. validSplit(σ0, σ1, σ)) then {>}
else let σ′0, σ

′
1 be symbolic heaps s.t. validSplit(σ′0, σ

′
1, σ)

in P(can)(f(σ′0) ∗ {σ′1})

The fleshing out picks one access point, and adds as many ∗-separated invariants
as possible to the access point.

Theorem 12. The footprint is a sound overapproximation of the abstract se-
mantics: ∀X ∈ P(CSH). γ(A[[c]]X) ⊆ γ(foot(c)†X).

The calculation of whole footprints is, of course, not realistic. A more prac-
tical way to employ the footprint idea would be, given an input state σ, to
look at substates on which a procedure or command does not produce a fault.
In interprocedural analysis, we might record the input-output behaviour on as
small states as possible when tabulating a procedure summary. This would be
similar to [16], but would not involve entire reachable substates. In concurrency,
we would look for disjoint substates of an input state on which to run parallel
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commands: if these input states were safe for the commands in question, then we
could soundly avoid (many) interleavings during symbolic execution. We hope
to report on these matters at a later time.
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