
How to Write a Design
Report for 6.033

Mya Poe
MIT Program in Writing and Humanistic Studies

March 14, 2003
myapoe@mit.edu

9 Steps in the Writing Process
1. Read and understand the assignment
2. Identify the design problem
3. Isolate specific design constraints
4. Develop a design approach
5. Consider alternatives
6. Write your introduction and conclusion
7. Write your front and end matter
8. Check assignment specs
9. Edit and proofread

9 Steps in the Writing Process
Understand

the
assignment

Identify the
design
problem

Isolate
design

constraints

Develop a
design

approach

Consider
alternatives

Write intro.
and

conclusion

Write front
and

end matter

Check assignment specs

Edit and Proofread

Step
#1 Read and understand the

assignment
Underline important design concepts
Identify report deliverables

III. Resource limitations and design goals
Because the mote is so small, it has very strict resource limitations in terms
of energy. Your design will have to cope with the tradeoffs introduced by
these limitations. We also want to make as many of the motes (which are
disposable) as possible: your design must balance reducing the cost of
the mote with improving performance and saving energy. . .

We estimate that a good paper will be 8 to 10 pages in length (single
spaced).

Step
#2 Identify the design problem

In one sentence, what design problem are you
solving?

• The problem statement helps you clarify the purpose of your
project by making you focus on the “bigger” picture.

The problem I am trying to solve in this project is ____________.

The purpose of this project is to ___________________________.

Step
#3 Isolate design constraints

What limitations will you consider in your design?
• Make a checklist using the assignment sheet, or
• Number the constraints on the assignment sheet

Examples:
√ 16-bit microprocessor (running at 8Mhz)
√ 32Kbytes of RAM (with a bandwidth of 8Mbs)
√ “You are only concerned with interactions between programs”

Step
#4 Develop a design approach

Begin with a conceptual overview of your design
• You may need a figure to clarify your ideas

Follow with a detailed design description:
• Move from general to specific
• Use section headings to help readers understand hierarchy of ideas
• Chunk information into readable units
• Use figures, tables, and pseudo-code to illustrate concepts

Tip: Do not throw away alternative design ideas

2 Conceptual Overview of the MMU

To achieve enforced modularity in a segmented memory system,
each process must be able to protect its segments from other
processes as it sees fit. The O/S must therefore maintain a database
of permission information describing which processes are allowed to
read from, write to, or execute in each memory segment. The kernel
must update this permissions table whenever it services a system call
to allocate a new data segment, spawn a new process, or change the
permissions of a segment.

The MMU works by synthesizing queries to this permissions table
from three pieces of information:
1. The process making a memory request.
2. The memory segment this process wishes to access.
3. The type of access (read, write, and/or execute) the process is
asking for.

-- From “Simple Sharing and Enforced Modularity Access Control in a Segmented Memory
System.” Jeff Bartelma. March 21, 2002

3 MMU Details and Design Decisions
The following subsections discuss the Beta MMU design in detail . . .

3.1 Process-Based vs. Segment-Based Access Control
To design an MMU capable of enforcing modularity in every case, it is
necessary to distinguish process-based access control from segment-
based access control. . . If the MMU had data specifying only that code in
segment X should be allowed access segment C (segment-based access
control), it would fail to stop instance B of MATLAB from illegally accessing
A's private data. See Figure 1. To prevent this problem, the MMU must
control access to segments based on the process, not segment, that
generated the memory request.

Figure 1: Two processes
sharing a segment of
executable code. The
dotted line indicates
unauthorized
sharing allowed by
segment-based access
control.

Step
#5 Consider alternatives

Write a description of design alternatives not
chosen.

• Refer to design constraints to isolate specific variables
• Explain the advantages and disadvantages of alternatives

• Tip: No need for more than 1 page in length.

Step
#6 Write introduction & conclusion

Introduction
Explain your motivation for the design

• Reference the problem you are addressing

State your approach to the problem
List specific design considerations
State the purpose of your document

Conclusion
Summarize your project

1 A Segmented Memory System
Most virtual memory systems provide each program module with
a distinct address space, tied to physical memory that is invisible
to other modules. By restricting each module's view of memory,
this “standard model" of virtual memory provides excellent fault
isolation. However, to claim the advantage of modularity, a
programmer adopting the standard model forfeits a convenient
interface for sharing memory. Two programs attempting to
access the same physical location must use the different virtual
addresses specified in their respective page maps. Sharing
would be simpler if all processes ran in the same address space,
that is, if any program could reference any piece of data,
irrespective of the program that owns it. Ideally, we would like to
retain isolation while providing this palatable interface for sharing.

One way to approach this problem is to use a segmented
memory system: divide the single address space into a number
of “segments" and interpret the b high-level bits of each CPU-
issued virtual address as a segment number. The remaining bits
of a virtual address are used as an offset into the segment. . . .

M
ot

iv
at

io
n/

Pr
ob

le
m

Goal

A
pp

ro
ac

h

A good MMU must enable a program to prevent all other
programs from accessing its segments. That is, the MMU
must be able to enforce modularity. At the same time, the
MMU must facilitate useful sharing; for example, two
instances of Emacs should be able to share the same
segment of executable code while maintaining distinct, private
data segments. Finally, the MMU must protect the kernel and
provide support for its memory-related tasks, e.g., allocating
segments or starting programs from within other programs.

This paper presents an MMU design to support segmented
memory for the 32-bit Beta processor, and demonstrates its
viability in light of the constraints mentioned above.

-- From “Simple Sharing and Enforced Modularity Access Control in a Segmented
Memory System.” Jeff Bartelma. March 21, 2002

D
es

ig
n

co
ns

id
er

at
io

ns
Pu

rp
os

e
of

th
e

re
po

rt

Conclusions
End-to-end arguments are a kind of "Occam's razor" when
it comes to choosing the functions to be provided in a
communication subsystem. Because the communication
subsystem is frequently specified before applications that
use the subsystem are known, the designer may be
tempted to "help" the users by taking on more function than
necessary. Awareness of end-to-end arguments can help to
reduce such temptations.

It is fashionable these days to talk about "layered"
communication protocols, but without clearly defined
criteria for assigning functions to layers. Such layerings are
desirable to enhance modularity. End-to-end arguments
may be viewed as part of a set of rational principles for
organizing such layered systems. We hope that our
discussion will help to add substance to arguments about
the "proper" layering.

--From END-TO-END ARGUMENTS IN SYSTEM DESIGN, J.H. Saltzer, D.P. Reed
and D.D. Clark

Write the front and end matter

Title
• Brief and descriptive,

using key words

Abstract
• Approx. 150 words

summary of your report

Table of Contents
• Lists section headings

and page numbers
• optional

Acknowledgements
• Anyone who helped you

with your design

References
• IEEE style. How? See the

Mayfield Handbook

Appendix
• Used for supplemental

material
• Not needed to understand

report

Step
#7

END-TO-END ARGUMENTS IN SYSTEM DESIGN
J.H. Saltzer, D.P. Reed and D.D. Clark
M.I.T. Laboratory for Computer Science

Abstract
This paper presents a design principle that helps guide placement of
functions among the modules of a distributed computer system. The
principle, called the end-to-end argument, suggests that functions
placed at low levels of a system may be redundant or of little value
when compared with the cost of providing them at that low level.
Examples discussed in the paper include bit error recovery, security
using encryption, duplicate message suppression, recovery from
system crashes, and delivery acknowledgement. Low level
mechanisms to support these functions are justified only as
performance enhancements.

Contents

1 A Segmented Memory System 3
2 Conceptual Overview of the MMU …. 4
3 MMU Details and Design Decisions 4

3.1 Process-Based vs. Segment-Based Access Control
4

3.2 State 4
3.3 MMU Data Structures 5

3.3.1 Preliminary Considerations 5
3.3.2 Final Design and Justification 6

3.4 Virtual Address Translation 8
4 MMU Design Viability9

4.1 Sharing Executable Code 9
4.2 MMU-Kernel Interactions 10

4.2.1 Protecting the Kernel 10
4.2.2 Allocating Data Segments 11
4.2.3 Starting Programs 12
4.2.4 Changing Permissions 12

4.3 Enforced Modularity 12

Acknowledgements
Many people have read and commented on an earlier draft of this
paper, including David Cheriton, F.B. Schneider, and Liba
Svobodova. The subject was also discussed at the ACM Workshop in
Fundamentals of Distributed Computing, in Fallbrook, California
during December 1980. Those comments and discussions were quite
helpful in clarifying the arguments.

References
[1] F. Cavalieri, T. Ruscio, R. Tinoco, S. Benedict, C. Davis, and P. K.
Vogt, "Isolation of three new avian sarcoma viruses: ASV9, ASV17,
and ASV 25," Virology, vol. 143, pp.680-683, 1985.

Step
#8 Review the assignment specs

Did you answer all the questions that
the assignment asked you to?

Edit & Proofread
Did you chunk information
into expected sections?

Title
TOC (optional)
Abstract
1.0 Introduction
2.0 Design Overview
3.0 Design Description
4.0 Alternatives
5.0 Conclusion
Acknowledgements
References
Appendix

Step
#9

Did you number the pages?
Are all figures and tables
labeled and referenced in the
text?
Are all sources cited?
Did you avoid:

naked “this”
“the reason is because . . ”
“the fact that . . .”
phrases
over-use of “I”

Did you proofread a printed
copy?

Report Format

Your name, ID#, the name of your recitation
instructor, & your section meeting time at the top
of the page.
11 or 12 point font
Single-spaced
No more than 10 pages, including optional
Appendix.
Write “PHASE II” on the title page if you want
report submitted to the Writing Program.

Writing Help

Model papers on 6.033 website
Readings in your course packet
Writing Center : web.mit.edu/writing
Mayfield Handbook of Technical and Scientific
Writing
Writing Tutor:

• Monday 10-12 Contact mcaulf@mit.edu for appt
• Tuesday 10-1, 5-8 Contact mcaulf@mit.edu for appt
• Wednesday 5:30-7:30 first come, first served 14N-229a

mailto:mcaulf@mit.edu
mailto:mcaulf@mit.edu

	How to Write a Design Report for 6.033
	9 Steps in the Writing Process
	9 Steps in the Writing Process
	Read and understand the assignment
	Identify the design problem
	Isolate design constraints
	Develop a design approach
	Consider alternatives
	Write introduction & conclusion
	Write the front and end matter
	Review the assignment specs
	Edit & Proofread
	Report Format
	Writing Help

