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Abstract

Transmit power in wireless cellular networks is a key degree of freedom

in the management of interference, energy, and connectivity. Power

control in both uplink and downlink of a cellular network has been

extensively studied, especially over the last 15 years, and some of the

results have enabled the continuous evolution and significant impact of

the digital cellular technology.

This monograph provides a comprehensive survey of the models,

algorithms, analysis, and methodologies in this vast and growing lit-

erature. It starts with a taxonomy of the wide range of power control

problem formulations, and progresses from the basic formulation to

more sophisticated ones. When transmit power is the only set of opti-

mization variables, algorithms for fixed SIR are presented first, before

turning to their robust versions and joint SIR and power optimization.

This is followed by opportunistic and non-cooperative power control.

Then joint control of power together with beamforming pattern, base

station assignment, spectrum allocation, and transmit schedule is sur-

veyed one by one.

Throughout the monograph, we highlight the use of mathematical

language and tools in the study of power control, including optimiza-

tion theory, control theory, game theory, and linear algebra. Practical

implementations of some of the algorithms in operational networks are

discussed in the concluding chapter. As illustrated by the open prob-

lems presented at the end of most chapters, in the area of power control

in cellular networks, there are still many under-explored directions and

unresolved issues that remain theoretically challenging and practically

important.
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Introduction

1.1 Overview

Transmission powers represent a key degree of freedom in the design of

wireless networks. In both cellular and ad hoc networks, power control

helps with several functionalities:

• Interference management : Due to the broadcast nature of

wireless communication, signals interfere with each other.

This problem is particularly acute in interference-limited sys-

tems, such as CDMA systems where perfect orthogonality

among users are difficult to maintain. Power control helps

ensure efficient spectral reuse and desirable user experience.
• Energy management : Due to limited battery power in mo-

bile stations, handheld devices, or any “nodes” operating on

small energy budget, energy conservation is important for

the lifetime of the nodes and even the network. Power con-

trol helps minimize a key component of the overall energy

expenditure.
• Connectivity management : Due to uncertainty and time-

variation of wireless channels, even when there is neither

3



4 Introduction

signal interference nor energy limitation, the receiver needs

to be able to maintain a minimum level of received signal

so that it can stay connected with the transmitter and esti-

mate the channel state. Power control helps maintain logical

connectivity for a given signal processing scheme.

To define a scope that allows an in-depth treatment within 150

pages, we will focus on power control in cellular networks in this mono-

graph, emphasizing primarily its use in interference management while

occasionally touching upon energy and connectivity management. Most

of the treatment is devoted to uplink transmission from mobile station

(MS) to base station (BS), although extensions to downlink transmis-

sion from a BS to MSs are sometimes discussed as well. In many for-

mulations uplink problems are more difficult to solve, although there

are exceptions like joint power control and beamforming, and in other

formulations uplink and downlink problems present interesting dual-

ity relationships. Uplink power control is also often more important in

systems engineering of cellular networks 1.

Within the functionality of interference management, there are sev-

eral types of problem statements, including optimizing Quality of Ser-

vice (QoS) metrics such as utility functions based on throughput and

delay, achieving network capacity in the information-theoretic sense

with technology-agnostic converse theorems, or maintaining network

stability in queueing-theoretic sense when there are dynamic arrival

and departure of users. This monograph focuses on the first type of

problems, which is already rich enough that a detailed taxonomy of

problem formulations is warranted and will be provided later in this

section.

Given the specialization stated above and the range of power con-

trol problems in wireline systems like DSL, it is clear that this mono-

graph only covers part of the broad set of problems in interference man-

1 First, BS power consumption is of less importance in comparison to MS power consump-
tion. Second, the downlink intra-cell interference is much smaller in comparison to uplink
intra-cell interference, because maintaining orthogonality of resource allocation (e.g., code
allocation in CDMA, tone allocation in OFDM, or frequency and time slot allocation in
GSM) to MSs within a cell on the downlink is easily accomplished by the BS. Third, BS
locations are fixed and inter-cell interference is less bursty.
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agement. Yet within this scope, there is already a wide and growing

range of results that are mathematically interesting and practically im-

portant. After surveying the key formulations, their relationships with

each other, and the key properties of convexity and decomposability in

this opening chapter, we organize the core materials in eight chapters.

Chapters 2-4 present the basic formulations, starting with the simplest

case of power control with fixed equilibrium SIR targets in Chapter

2, and progressing to the case of controlling transient behaviors and

admission in Chapter 3, and that of jointly controlling power and SIR

assignment in Chapter 4. Chapters 5 and 6 then present extensions to

opportunistic and non-cooperative power control, respectively. Power

control is often conducted jointly with other resource allocation when

spatial, spectral, and temporal degrees of freedom are offered. In Chap-

ters 7-9, we discuss joint power control and beamforming, base station

assignment, frequency allocation, and scheduling, for both fixed SIR

and variable SIR cases. Each of Chapters 2-9 starts with an overall

introduction and concludes with a discussion of open problems. The

mathematical techniques of optimization theory, control theory, game

theory, and linear algebra will also be highlighted across these eight

chapters. Practical impacts of the theory of power control in the wire-

less industry have been substantial over the years, and some of these

engineering implications in operational networks are summarized in

Chapter 10.

Power control in wireless networks has been systematically stud-

ied since the 1970s. Over the last 15 years, thanks to the tremendous

growth of cellular networks and its transformative impacts on society,

extensive research on cellular network power control has produced a

wide and deep set of results in terms of modeling, analysis, and design.

We have tried to include as many contributions in the bibliography

as possible, to survey the key results and methodologies in a balanced

manner, and to strike a tradeoff between a detailed treatment of each

problem and a comprehensive coverage of all major issues. While these

lofty goals may not have been attained to perfection, we hope this

monograph will serve both as an an imperfect summary of the state-

of-the-art and a sketchy illustration of the exciting open problems in

the area of power control in cellular networks.
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Fig. 1.1 An example of a multi-cellular network and uplink transmission.

1.2 Notation

The following notation are used throughout this monograph. Vectors

are denoted in bold small letter, e.g., z, with their ith component de-

noted by zi. Matrices are denoted by bold capitalized letters, e.g., Z,

with Zij denoting the {i, j}th component. Vector division x/y and mul-

tiplication xy are considered component-wise, and vector inequalities

denoted by � and � are component-wise inequalities. We use D(x) to

denote a diagonal matrix whose diagonal elements are the correspond-

ing components from vector x. A summary of key notation is provided

in tables at the end of this chapter.

1.3 Taxonomy of Problem Formulations

1.3.1 Basic system model

Consider a general multi-cell network where N MSs establish links to

K BSs, as illustrated in Fig 1.1. We assume that each MS is served by

one of the K BSs, thereby establishing N logical links. Let σi denote

the receiving BS for link i.

Let Ci denote the set of links whose transmitted power appear as
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interference to link i. This definition allows us to consider both orthog-

onal and non-orthogonal uplinks. In a non-orthogonal uplink, such as

CDMA, transmitted power from all links appear as interference, so we

set Ci = {j | j 6= i}. For an orthogonal uplink, such as OFDM, links

terminating on the same BS are orthogonal and do not contribute in-

terference to one another. In this case, we set Ci = {j | σj 6= σi}.
Let hkj denote the amplitude gain from MS j to BS k. Define the

N × N power-gain matrix G by

Gij = ‖hσij‖2, (1.1)

which represents the power gain from MS on link j to the receiving BS

on link i. Correspondingly define a normalized gain matrix F where

Fij =

{

Gij/Gii if j ∈ Ci,

0 if j 6∈ Ci.
(1.2)

Let Dh = diag(G11, . . . , GNN ) be the diagonal matrix representing

direct link channel gains, which depend on h.

Let pj be the transmit signal power on link j at its serving BS σj.

Since hσjj is the path gain from MS on link j to its serving BS, the

receiver on link j receives the signal at the power of pj‖hσjj‖2 = Gjjpj.

If j ∈ Ci, this transmission will appear as interference to link i with a

power of ‖hσij‖2pj = Gijpj. The total interference and noise at the BS

serving MS i is given by

qi =
∑

j∈Ci

Gijpj + ni =
M
∑

j=1

FijGjjpj + ni, (1.3)

where ni ≥ 0 is the power of noise other than interference from other

links. In matrix notation, (1.3) can be written as

q = FDhp + n. (1.4)

Let γi be the SIR achieved by link i. With the above notation,

γi = Giipi/qi, or equivalently,

Dhp = D(γ)q, (1.5)
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where D(γ) = diag(γ1, . . . , γM ) 2. Combining (1.4) and (1.5), we get

the following basic equations relating the key quantities:

q = FD(γ)q + n, (1.6)

and

Dhp = D(γ)FDhp + D(γ)n. (1.7)

An important factor that determines the total uplink capacity in

commercial networks today is the interference limit qm, often stated

in the form qm = κn for some constant κ ≥ 1. With this definition,

the interference, qi, at each BS i, is not allowed to be larger than a

factor κ greater than the thermal noise ni. The factor, κ, is called the

Interference over Thermal (IOT), and typically quoted in dB,

IOT = 10 log10(κ).

An related measure is the Raise over Thermal (ROT), the ratio of the

interference and the signal power to the thermal noise. The IOT limits

bound the interference to the cell and limits the power required for new

MSs to access the network. Typical IOT values in commercial networks

range from 3 to 10 dB.

1.3.2 Optimization Variables

Whether a power control problem is formulated as cooperative or non-

cooperative, over a period of time or for a target equilibrium, it often

involves an optimization formulation. An optimization can be described

by four tuples: optimization variables, objective function, constraint

set, and constant parameters.

Obviously transmit power vector p is an optimization variable in

all formulations in this monograph. In Chapters 7-9, beamforming pat-

tern, BS assignment, bandwidth allocation, and time schedules also

become variables. In addition to these primary variables, there are also

secondary variables that are functions of them. An important example

is that, in Chapter 4, SIR vector γ also becomes a variable.

2 The difference between the D(γ) and Dh notation is that the diagonal entries of D(γ) is
exactly γ while those of Dh are functions of h.
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1.3.3 Objectives

There are two types of terms in the objective function: QoS-based util-

ity and resource cost. Cost function for resource usage is relatively

simple. It is often an increasing, convex function V of the underlying

resource, e.g., linear function of transmit power.

Utility functions require more discussion. The most general utility

function assumes the form of U(β) where β is a vector of metrics. Often

it is assumed to be additive across MSs indexed by i: U(β) =
∑

i Ui(β),

and locally dependent: U(β) =
∑

i Ui(βi).

Metric βi may be the achieved throughput or goodput (and U would

be an increasing function), or delay, jittering, or distortion (and U

would be a decreasing function). These metrics are in turn functions

of transmit power and other optimization variables in a given power

control problem formulation.

For example, one QoS metric of interest is throughput, which is a

function of SIR, which is in turn a function of transmit powers. There

are several expressions of this metric. One is in terms of the capacity

formula:

βi(γi) = d log(1 + cγi) (1.8)

where c and d are constants that depend on modulation scheme, symbol

period, and target Bit Error Rate (BER). In high-SIR regime, the above

expression can be approximated by log function: βi(γi) = d log cγi. In

low-SIR regime, it can be approximated by linear function: βi(γi) =

dcγi. It turns out both approximations help with formulating a con-

vex optimization problem as discussed later. When other degrees of

freedom such as schedules and beamforming patterns are involved, the

expression becomes more complicated. Another expression for through-

put is through the packet success rate function f that maps SIR to the

probability of successfully decoding a packet:

βi(γi) = Rif(γi) (1.9)

where Ri is the transmission rate.

There are also other QoS metrics such as delay that depend on SIR,

and they will be introduced as the chapters progress.
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Back to the utility function Ui itself, it is often modeled as a mono-

tonic, smooth, and concave function, but in more general form as re-

quired by different applications, it may not be smooth or concave. It

can capture any of the following: happiness of users, elasticity of traf-

fic, efficiency of resource allocation, and even the notion of fairness.

Consider is a family of utility functions parameterized by α ≥ 0 [121]:

Ui(βi) =

{

log(βi) if α = 1,

(1 − α)−1β1−α
i if α 6= 1.

(1.10)

Maximizing such an “α-fair utility function” leads to an optimizer that

satisfies the definition of α-fairness in economics literature. For exam-

ple, proportional fairness is attained for α = 1 and maxmin fairness for

α → ∞. It is also often believed that larger α means more fairness.

A utility function that will help provide convexity of problem for-

mulation while approximating linear utility function is the following

pseudo-linear utility function:

Ui(βi) = log(exp(βi/c) − 1) (1.11)

where c > 0 is a constant. This utility function is fairer than the linear

utility function but approximates the linear utility at high QoS values.

In particular, we have

log(exp(βi/c) − 1) → βi/c as βi → ∞,

log(exp(βi/c) − 1) → −∞ as βi → 0.

Sometimes, QoS-based utility and resource cost are combined into

a single objective function for each user, either additively as in utility

minus power, or multiplicatively as in throughput over power.

1.3.4 Constraints

There are three major types of constraints in power control problems.

First is the set of constraints reflecting technological and regulatory lim-

itations, e.g., total transmit power, maximum transmit power for each

user, and IOT or ROT. These are usually simple constraints mathe-

matically.

Second are constraints based on inelastic, individual users’ require-

ments, e.g., two MSs’ received SIR at a BS need to be the same, or one
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MS’s rate cannot be smaller than a threshold. It is not always possi-

ble to meet these constraints simultaneously. In these cases, the power

control problem is infeasible.

The third type of constraints, called feasibility constraints, is most

complicated. In information-theoretic sense, it would be the capacity

region of an interference channel, which remains unknown. In queueing-

theoretic sense, it would be the stochastic stability region. In this mono-

graph, we focus instead on constraints that are defined with respect to

QoS feasibility region, which is closely related to SIR feasibility region.

An SIR vector γ � 0 is called feasible if there exists an interference

vector, q � 0, and power vector p � 0, satisfying (1.6) and (1.7),

respectively. It is reasonable to assume that the network of BSs and

MSs represented by the channel matrix F in Section 1.3.1 is connected,

implying that F is a primitive matrix. Let ρ(·) denote the spectral

radius function 3 of such a positive, primitive matrix. The following

lemma from [198] is one of the fundamental results that characterizes

SIR feasibility based on spectral radius of system matrices F and D(γ):

Lemma 1.1. An SIR vector γ � 0 is feasible if and only if ρ(FD(γ)) <

1, when n 6= 0, and ρ(FD(γ)) = 1, when n = 0.

Further discussions on SIR and QoS feasibility regions will be pro-

vided in Chapters 2 and 4.

1.3.5 Problem Formulations

We are ready to provide a quick preview of some representative problem

formulations in the rest of the monograph. Given the vast landscape of

power control problems covered, a “problem tree” in Figure 1.2 serves

as a high-level guide to the relationships among these problems. Mean-

ings of each level of branching off are as follows:

• Level 1: Optimization vs. game theory approach.
• Level 2: Deterministic optimization within each time slot vs.

opportunistic approach.

3 Spectral radius is the maximum of the absolute value of the eigenvalues of a matrix.
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• Level 3: Variable SIR vs. fixed SIR approach.
• Level 4 and below: Joint power control and a subset of the

following: beamforming, BS assignment, bandwidth alloca-

tion, and scheduling.

A

B C

D E

F G

H I J K L M

N O

Fig. 1.2 A tree of representative problem formulations. Obviously, only part of the tree is
shown here.

Next, we present one or two representative problems in each of

the nodes in the problem tree. Symbols are defined in the Table of

Notation. The meanings, justifications, solutions, and implications of

these problems are not discussed here, since they will be extensively

studied in the following 8 chapters. This preview puts the following

chapters in the appropriate corners of the problem landscape.

Problem (O), distributed power control, discussed in Chapter 2:

minimize
∑

i pi

subject to SIRi(p) ≥ γi, ∀i

variables p

(1.12)
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Problem (M), robust distributed power control, discussed in Chap-

ter 3:
minimize

∑

i pi + φ(ǫ)

subject to SIRi(p) ≥ γi(1 + ǫ), ∀i

variables p, ǫ

(1.13)

Problem (N), power control for optimal SIR assignment, discussed

in Chapter 4:
maximize

∑

i Ui(γi)

subject to p(γ) � pm

variables γ, p

(1.14)

Problem (E), opportunistic power control, discussed in Chapter 5:

maximize
∑

s πs
∑

i Us,i(ps,i)

subject to
∑

s πsgs,i(ps) ≥ ci, ∀i
∑

i ps,i ≤ PT , ∀s

variables ps, ∀s

(1.15)

Problem (C), Non-cooperative power control, discussed in Chapter

6:
maximize Ui(γi) − Vi(pi)

subject to SIRi(pi, σi,p−i) ≥ γi, ∀i

p � pm

σi ∈ Si, ∀ i

variables p, γ, σ

(1.16)

Problem (K), Joint PC and beamforming power minimization, dis-

cussed in Chapter 7:

minimize
∑

i pi

subject to SIRi(W,p) ≥ γi, ∀i

variables p, W

(1.17)

Problem (J), Joint PC and beamforming for utility maximization,

discussed in Chapter 7:

maximize
∑

i Ui(γi)

subject to SIRi(W,p) ≥ γi, ∀i

p � pm

variables p, γ, W

(1.18)
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Problem (L), Joint PC and BS assignment, discussed in Chapter 8:

minimize
∑

i pi

subject to SIRi(p,σ) ≥ γi, ∀i

σi ∈ Si, ∀i

variables p, σ

(1.19)

Problem (H), Joint PC and scheduling in frequency domain, dis-

cussed in Chapter 9:

maximize
∑

i Ui(ri)

subject to ri =
∑L

l=1 bl log(1 + cγl
i), ∀i

γ l ∈ Γl, ∀l
∑

l p
l
i ≤ pm

i , ∀i

variables pl, γ l, ∀l

(1.20)

Problem (I), Joint PC and scheduling in time domain, discussed in

Chapter 9:
maximize

∑

i Ui(ri)

subject to r ∈ X = Conv(R(Γ))

γ ∈ Γ

variables r, γ

(1.21)

Finally, the above list of representative formulations are compared

in Table 1.4. The columns represent the fields describing the problem,

and each row corresponds to one node in the tree of problems.
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Table 1.1 Table of representative problem formulations

# Chapters Objectives Constraints Variables

P

i Ui(γi) −

P

i Vi(pi) E
ˆP

i Ui(γi)
˜

SIR Power E[Power] Band Time ri γi pi σi wi ǫ wi t

C 6 √ √ √ √ √ √ √

E 5 √ √ √ √ √ √

F 4,7,9 √ √ √ √ √ √ √ √ √ √ √ √

G 2,3,7,9 √ √ √ √ √ √

H 9 √ √ √ √ √ √ √

I 9 √ √ √ √ √ √ √

J 7 √ √ √ √ √

N 4 √ √ √ √

K 7 √ √ √ √

L 8 √ √ √ √

M 3 √ √ √ √

O 2 √ √ √
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1.4 Convexity and Decomposability Structures

1.4.1 Convexity

Convexity is long recognized as the watershed between easy and hard

optimization problems. Convex optimization refers to minimization of

a convex objective function over a convex constraint set. For convex

optimization, a local optimum is also a global optimum (and unique if

the objective function is strictly convex), duality gap is zero under mild

conditions, and a rich understanding of its theoretical and numerical

properties is available. For example, solving a convex optimization is

highly efficient in theory and in practice, as long as the constraint

set is represented efficiently, e.g., by a set of upper bound inequality

constraints on other convex functions. Zero duality gap further enables

distributed solutions through dual decomposition.

To check if a power control problem is convex optimization, we

need to check both its objective and constraints. We want the objective

function being maximized (e.g., utility function of rate) to be concave,

and the one being minimized (e.g., cost function of power consumption)

to be convex in the optimization variables. As will be discussed in many

chapters later, concavity of utility function may not always hold. In

non-cooperative power control formulations, quasi-concavity property

of selfish utility functions plays a similarly important role for proving

the existence of Nash equilibrium. We also want the constraint set to be

convex, and in an efficient representation. Sometimes, a log change of

variables turn an apparently non-convex problem into a convex one as

in the Geometric Programming approach that has been shown to solve

a wide range of constrained power control problems in high-SIR regime

and a smaller set of problems in general-SIR regime [39]. More sufficient

conditions for such convexity will be discussed in later chapters.

Sometimes discrete optimization variables need to be introduced,

thus turning the problem into a nonconvex one. Three important exam-

ples include BS assignment among a finite set of BS choices, scheduling

an MS to transmit or not, and a discrete set of available power levels.
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1.4.2 Decomposability

While convexity is the key to global optimality and efficient compu-

tation, decomposability is the key to distributed solutions of an op-

timization problem. Unlike convex optimization, however, there is no

definition of a decomposable problem. Rather decomposability comes

in different degrees. If a problem can be decomposed into subproblems

whose coordination does not involve communication overhead, its solu-

tion algorithm can be distributed without any message passing. In other

instances, subproblems being solved by different network elements (e.g.,

MS and BS) need to be coordinated by passing messages among these

elements. Counting such communication overhead is not always easy

either, it often depends on how far and how often are messages passed

and how many bits each message contains. In general, message passing

across multiple BS is difficult, whereas between a BS and the MS in its

cell is more feasible. Frequency and length of these control messages

will be further discussed in Chapter 10.

There are various decomposition techniques from optimization the-

ory, such as dual decomposition, primal decomposition, and penalty

function method. However, one of the key constraints in power control

problems, the SIR feasibility constraint, turns out to be coupled in a

way that is not readily decomposed by these techniques. In Chapter 4,

we will show how a reparametrization of this set reveals decomposabil-

ity structures and leads to a distributed algorithm.

In contrast to the global optimization formulations, distributed al-

gorithms are, by definition, already provided in non-cooperative game

formulations of power control, as surveyed in Chapter 6. The challenge

then becomes showing that such distributed interactions among selfish

network elements will lead to a desirable equilibrium, e.g., they also

maximize the global utility function for the whole network. The follow-

ing two approaches are complementary: modeling as global optimiza-

tion and searching for decomposition method, or modeling as selfish

local optimization and characterizing loss of social welfare optimality.
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Table 1.2 Summary of Key Notation

Symbol Meaning

C,D,X ,Y, K Sets in R
N (X̄ denotes the closure of X )

g(·), φ(·) Scalar-valued function

c, d Scalar constants

L(·) Lagrangian

λi, µi, νi Lagrangian multipliers (or prices)

x,y, z Auxiliary vectors

x∗ Optimizer or stationary point of a problem

x[t] Variable at the tth iteration

δ Step size for an iterative algorithm

N (indexed by i or j) Number of links (MS)

K (indexed by k) Number of base-stations (BS)

M (indexed by m) Number of BS antennas

Ci A set of links interfering with link i

hki or hki Complex channel amplitude from MS i to BS k

G Absolute link gain matrix,

Gij = |hσij |2 or Gij =
∣

∣wT
i hσij

∣

∣

2
(for multi-antennas)

F Normalized link gain matrix,

Fij = Gij/Gii if j ∈ Ci and Fij = 0 o.w.

Dh Direct link gain matrix Dh =diag{G11, . . . , GNN}
D(·) Diagonal matrix operator

ni = E[zi] (in vector n) Thermal noise for link i

vi = γini/Gii Product of normalized noise with SIR target for link i

ηi = ni/Gii (in vector η) Normalized noise for link i

κ Rise-Over-Thermal

pi (in vector p) Transmission power of MS i

pm
i (in vector pm) Transmit power constraint for link i
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Table 1.3 Summary of Key Notation.

qi (in vector q) Interference plus noise power for MS i

qm
i (in vector qm) Transmit interference constraint for link i

γi (in vector γ) SIR value of link i

Γ, B A set of feasible SIRs

SIRi(p) SIR function for MS i

ρ(·) Spectral radius operator

I(p) Standard interference function

RI Feasibility index of a standard interference function

λF Lyapunov exponent associated with matrix F

V Lyapunov function of power control algorithm

ǫ Robustness parameter

K1+ǫ Invariant cone parameterized by robustness parameter

p̃i = log pi Log transformation of power

ξ Energy consumption budget (percentage over total power)

Ui(·) (with parameter α) Utility function (for α fairness)

si Spillage factor

ℓi Load factor

θ Convex combination weight

S (indexed by s) Number of states

πs Probability that the system is in state s

ps,i Transmit power of user i in state s

Gs,i Path gain from base station to user i in state s

gs,i Performance measure of user i in state s

ai,j Fixed weight on each gj
s,i(ps,j) to reflect priority

υi minimum fraction of the total transmit power by user i

υ̃i minimum fraction of the expected total system utility by user i
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Table 1.4 Summary of Key Notation.

̺i Stochastic gradient of Lagrangian

PT Total transmit power in downlink transmission

ζi Signal-interference product of user i

ϑ Non-orthogonality factor in CDMA spreading code

Eb/I0 The bit energy to interference density ratio

L (indexed by l) Number of (orthogonal) carriers

Di Multiplexing gain for MS i in a CDMA network

Dt and Df Number of total information bits and bits in a packet

BER(γi) Bit error rate function

f(·) Packet success rate function

Ai A set of feasible power allocation policies for MS i

wi (in matrix W) Uplink beamforming vector for MS i

ŵi Downlink beamforming vector for MS i

ui Information symbol of unit power for MS i

Gex Extended coupling matrix for beamforming

1 A vector whose components are 1’s

p̂i Downlink transmission power of MS i

σi The BS that serves MS i

Si A set of allowable BSs that MS i can connect to

bi, Bm Bandwidth for MS i and total bandwidth allowed

ri(γi) Rate function of link i

R Instantaneous rate region

X The stable arrival rate region

Conv(R) Convex hull of R
T Length of time resource
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Power Control with Fixed SIR

2.1 Introduction

Much of the study on cellular network power control started in 1992-

1993 with a series of results that solve the basic problem formulation,

where transmit power is the only variable, constrained by fixed target

SIR, and optimized to minimize the total power. In this chapter, we

consider the system model in Chapter 1 and first review the Distributed

Power Control (DPC) algorithm proposed by Foschini and Miljanic

[57]. There are several nice interpretations that motivate this simple

yet powerful algorithm from different angles. Then we review an ele-

gant generalization of DPC to the framework of standard interference

function and canonical power control algorithms. These generalizations

reveal the connection between structures of the basic power control

problem and properties of its solution algorithms. They also charac-

terize the link between power control problems and Perron Frobenius

theory of nonnegative matrix. Rate of convergence and robustness to

stochastic dynamics are mentioned before we conclude this chapter that

lays the foundation to the rest of the monograph.

21
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2.2 Distributed Power Control

Consider the problem of varying transmit power to satisfy fixed target

SIR constraints γ and minimize the total power [57, 17, 16]:

minimize
∑

i pi

subject to SIRi(p) ≥ γi, ∀i,

variables p.

(2.1)

In the above and all of the following optimization problems, we omit

non-negativity constraints on variables.

Problem (2.1) can be rewritten as a linear program:

minimize 1T p

subject to (I −D(γ)F)p � v,
(2.2)

where I is the identity matrix, and

v = D(γ)η =

(

γ1n1

G11
,
γ2n2

G22
, . . . ,

γNnN

GNN

)T

.

To compute an optimal solution to (2.1), the following algorithm is

proposed in [57]:

Algorithm 2.1 (Distributed Power Control [57]).

pi[t + 1] =
γi

SIRi[t]
pi[t], ∀i (2.3)

where t = 1, 2, . . . , and SIRi[t] is the received SIR at the tth iteration.

In the above and all of the following iterative algorithms, we omit the

iteration loop with t = t + 1.

The update in (2.3) is distributed as each user only needs to monitor

its individual received SIR and can update by (2.3) independently and

asynchronously [189]. Intuitively, each user i increases its power when

its SIRi[t] is below γi and decreases it otherwise. The optimal power

allocation p∗ in (2.1) is achieved in the limit as t → ∞, and satisfies

(I−D(γ)F)p∗ = v, i.e., the constraints in (2.2) are tight at optimality.

The above DPC algorithm has been extensively studied, with results

on existence of feasible solution and convergence to optimal solution

characterized through several approaches.

First is a set of equivalent conditions for SIR feasibility:
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Theorem 2.1 (Existence of a feasible power vector). The

following statements are equivalent:

1) There exists a power vector p � 0 such that (I −D(γ)F)p � 0.

2) ρ(D(γ)F) < 1.

3) (I−D(γ)F)−1 =
∑∞

k=0 D(γ)Fk exists and is positive componen-

twise, with

lim
k→∞

(D(γ)F)k = 0. (2.4)

Assuming the fixed SIR targets γ is feasible, the DPC algorithm

converges to a power-minimum solution:

Theorem 2.2 (Convergence and optimality of DPC algorithm).

If the constraints in (2.1) have a feasible solution, then

p∗ = (I − D(γ)F)−1v (2.5)

is feasible and power-minimum, i.e., for any solution p̂ satisfying the

constraints of (2.1),

p̂ � p∗. (2.6)

One way to view the DPC algorithm is through the power update

to solve the matrix inversion p = (I − D(γ)F)−1v. If condition 3 in

Theorem 2.1 is satisfied, the expansion of this matrix inversion as a

power series becomes

p[t + 1] = D(γ)Fp[t] + v, (2.7)

which in scalar form is indeed (2.3).

Other properties, such as rate of convergence, and interpretations,

such as best response strategy of a game, of the DPC algorithm, will

be discussed later in the monograph.

Maximum power constraint. If we assume a maximum power

constraint pm
i , a modified form of the DPC algorithm is given as follows

[189]:

pi[t + 1] = min

{

γi

SIRi[t]
pi[t], pm

i

}

, ∀i. (2.8)



24 Power Control with Fixed SIR

However, a problem with using (2.8) is that a user may hit its maximum

power ceiling at some iteration t̄ with SIRi[t̄] < γi, and this may result

in SIRi[t] < γi for t ≥ t̄, i.e., the SIR constraint is not satisfied even

though the user transmits at the maximum power. In this case, it can

be shown that the power of those users in the network that satisfy

SIRi[t̄] ≥ γi for some t ≥ t̄ will converge to a feasible solution, whereas

the other users that cannot achieve the required SIR threshold will

continue to transmit at maximum power.

Discrete power levels. In [184], the authors consider solving (2.1)

over a discrete set of available power levels. Now (2.1) becomes an inte-

ger programming problem, which is in general hard to solve for global

optimality. In [184], a Minimum Feasible Value Assignment (MFVA)

iterative algorithm is developed to solve this integer programming prob-

lem. The MFVA algorithm can be made distributed and solved asyn-

chronously. Furthermore, the MFVA algorithm finds the optimal solu-

tion in a finite number of iterations which is polynomial in the number

of power levels and the number of users in the network [184]. This

algorithm can be interpreted as a relaxed version of the framework

proposed in [189], to be discussed in the following section.

2.3 Standard Interference Function

A general framework for uplink power control is proposed in [189] by

identifying a broad class of iterative power control systems. The SIR

of each user can be described by a vector inequality of interference

constraints of the form

p � I(p). (2.9)

Here, I(p) = [I1(p), . . . , In(p)]T where Ii(p) denotes the interference

experienced by user i. A power vector p � 0 is feasible if p satisfies

(2.9), and an interference function I(p) is feasible if (2.9) is satisfied.

For a system with interference constraint in (2.9), we examine the

following iterative algorithm.

Algorithm 2.2 (Standard Interference Function Algorithm [189]).

p[t + 1] = I(p[t]). (2.10)
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Convergence for synchronous and totally asynchronous version of the

iteration (2.10) can be proven when I(p) satisfy the following definition

for power vectors p and p′:

Definition 2.1 ([189]). I(p) is a standard interference function1 if it

satisfies: 1) If p > p′, then I(p) > I(p′) (monotonicity property). 2) If

c > 1, then cI(p) > I(cp) (scalability property).

We also assume that for each i and j 6= i, Ij(p) → ∞ as pi → ∞.

Existence of fixed point of iteration 2.10 has been characterized by the

following definition and theorems:

Definition 2.2. [69] The feasibility index RI of a standard interfer-

ence function I(p) is

RI = max{c ∈ R | p � cI(p) for some feasible p}

Theorem 2.3. [69] A standard interference function I(p) is feasible if

and only if RI > 1.

Theorem 2.4. [189] For iteration 2.10, if a fixed point exists, then the

it is unique, and the power vector converges to the fixed point from any

initial power vector.

It is readily verified that the power update algorithm in (2.7) is a

standard interference function where

Ii(p) =
γi

Gii





∑

j 6=i

Gljpj + ni



 , ∀i. (2.11)

Hence, the DPC algorithm converges under both synchronous and to-

tally asynchronous condition if there exists a feasible solution, and the

feasibility index RI , given by 1/ρ(D(γ)F), is larger than 1 [69].

1 The positivity of I(p), the other condition in [189], can be shown to be implied by mono-
tonicity and scalability.
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2.4 Canonical Power Control

A more general framework on convergence analysis is given in [103]

that builds on the standard interference function in [189]. The authors

define a broader class of synchronous and totally asynchronous power

control algorithms known as the canonical algorithms.

Before stating the conditions that define the canonical algorithms,

we introduce some more notation. Let Ti, a subset of the set of positive

real numbers, be the target region of user i. The target region is defined

as T = T1 = T1 × T2 × · · · × Tn. Let X,Y ⊆ R
n, X̄ be the closure of

X and Ȳ be the closure of Y , we say that X is separated from Y if

X ∩ Ȳ = Y ∩ X̄ = ∅.

Definition 2.3 ([103]). A power update algorithm is called bounded

if it satisfies the bounding condition; it is called reactive if it satisfies

the reactive condition.

1) Bounding Condition: There exists a γ such that

min
i

{pi[t], γiIi(p[t])} ≤ pi[t + 1] ≤ max
i

{pi[t], γiIi(p[t])} (2.12)

for any MS i and iteration t.

2) Reactive Condition: For any user i and X ⊆ R where X is sepa-

rated from the target region Ti, there exists ǫ > 0 and an infinite subset

of nonnegative integers T i such that
∣

∣

∣

∣

pi[t]

pi[t + 1]
− 1

∣

∣

∣

∣

> ǫ (2.13)

whenever SIRi[t] ∈ X and t ∈ T i.

The above conditions can be motivated as follows. First, pi[t] and

γiIi[t+1] in the bounding condition forms a lower and an upper bound

on the power level at the next update. Consider the case when power

is not high enough, i.e., pi[t] ≤ γiIi[t + 1]. If pi[t + 1] is set below pi[t],

the SIR will move away from the SIR threshold. On the other hand, if

pi[t + 1] is set above γiIi[t], the resulting SIR will overshoot the target

[103]. Second, under the reactive condition, the SIR’s of the users are

not allowed to stay outside the target region indefinitely. The powers
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keep changing when the target region is not reached. Intuitively, if these

conditions are satisfied, the power of each user moves toward the SIR

threshold, and it will not stop moving until the target is reached.

Definition 2.4 ([103]). A power control algorithm is called canonical

if it satisfies the following conditions:

1) The interference measure is a standard interference function.

2) The target region T is closed.

3) The power control update algorithm is bounded and reactive.

Theorem 2.5 (Canonical power control theorem [103]).

If the power control algorithm of user i is canonical, then

lim
t→∞

SIRi[t] ∈ Ti. (2.14)

Theorem 2.5 guarantees that a canonical algorithm converges, and

the resulting SIR falls within the target region. In [189], the author

considers power control algorithm with a unique limit point, i.e., T
consists of only a single point. In general, multiple limit points can

exist. The limit point depends on the initial power vector, the power

update schedule, and the actual power update algorithm.

Applying Theorem 2.5 to the DPC algorithm, it can be checked

that [103]:

1) Interference function: The interference function given by (2.11)

is standard.

2) Target region: The target region Ti is [γi, γi], which is closed in

the positive set of R.

3) Bounding condition: (2.7) satisfies the bounding condition. Re-

active condition: Let A be a set in the positive set of R separated from

Ti. Then there exists ǫ > 0 such that [γi/(1 + ǫ), γi/(1 − ǫ)] is disjoint

from A. For any t ∈ Ti, if SIRi ∈ A, then |pi[t]/γiIi[t] − 1|. Hence, we

have
∣

∣

∣

∣

pi[t]

pi[t + 1]
− 1

∣

∣

∣

∣

> ǫ. (2.15)
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Therefore, the DPC algorithm is canonical and its convergence is im-

plied by Theorem 2.5. In addition, [103] also shows that a discretized

DPC algorithm with limited feedback that adjusts the transmit power

level by a fixed dB margin [164, 90] is also canonical.

2.5 Extensions

2.5.1 Rate of convergence

We now turn to the rate of convergence for the DPC algorithm. It was

shown in [75] that the DPC algorithm converges to the fixed point at

a geometric rate.

Theorem 2.6 ([75]). Suppose that ρ(D(γ)F) < 1 in the DPC algo-

rithm. Starting from any initial power vector p[0], the sequence p[t]

converges geometrically to the fixed point, such that ‖p[t] − p∗‖ ≤
at‖p[0] − p∗‖ for some nonnegative constant a < 1.

There are various factors that affect how the sequence p[t] con-

verges. One is the initial power vector, which can reduce the conver-

gence time if it is sufficiently close to the fixed point. In addition, as

the number of users in the network increases, i.e., the congestion in the

network increases, the speed of convergence may become slower.

Figure 2.1 shows the evolution of the received SIR’s for a particular

user using DPC, in a cell for the case when there are three, five and

ten users, with different initial points (either the maximum power of

1600mW or 0W). In this example, initializing from a maximum power

has a smaller convergence time than initializing from zero power. As the

number of users increases, the convergence time to the SIR threshold

is longer. Power control algorithms that take into account congestion

is briefly discussed below and in detail in Chapter 3.

2.5.2 Perron-Frobenius eigenvalue as a congestion measure

As shown in Theorem 2.1, ρ(D(γ)F) is an important parameter that

determines the existence of the optimal power allocation. In addition,

ρ(D(γ)F) has been proposed as a congestion measure in [67]. Here,
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Fig. 2.1 A typical numerical example of using the DPC algorithm for a particular user with
different initial points (either at the maximum power of 1600mW or the zero power) and different
number of users in a cell. The SIR thresholds for all users are set as γi = 7 for all i. The received
SIR for the user converges slower with an increasing number of users.

congestion refers to either an increase in the number of users in the

cell (thereby increasing the dimension of p and D(γ)F), or an increase

in the minimum SIR requirement of any user (thereby increasing some

of the elements in D(γ)F). In the former case, ρ(D(γ)F) increases as

shown in [67]. In the latter case, ρ(D(γ)F) increases since the spectral

radius of an irreducible nonnegative matrix is an increasing function of

any of its elements.

The following result characterizes ρ(D(γ)F) (and thus the feasible

SIR thresholds in (2.1)) by using a classical result on non-negative

matrices [59].

Theorem 2.7 ([59]). For any square nonnegative matrix F, we have
∏

i

γxiyi

i ρ(F) ≤ ρ(D(γ)F) ≤ max
i

γi ρ(F), (2.16)

where x and y are the left and right (non-negative) eigenvector of F

corresponding to its spectral radius, respectively.

Equality holds for both the lefthand-side and the righthand-side
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bounds if and only if γi is the same constant for all i.

From Theorem 2.7, it is easy to see that, in order for the DPC

algorithm to converge i.e., ρ(D(γ)F) < 1, a sufficient condition can

be given by maxi γi ρ(F) < 1. Similarly, a necessary condition can be

given by
∏

i γxiyi

i ρ(F) < 1, which implies that feasible SIR thresholds

have to satisfy
∑

i

xiyi log γi + log ρ(F) < 0. (2.17)

It is easy to see that a simple choice of γi < 1/ρ(F) for all i satisfies

(2.17).

The author in [56] shows that ρ(D(γ)F) can be suitably interpreted

as the traffic load on the CDMA network when the congestion is high.

Using (2.1), the authors in [168] propose per-link “interference price”

for each SIR constraint in (2.1), and the aggregate sum of all the “in-

terference prices” gives a congestion measure, playing a similar role as

ρ(D(γ)F).

2.5.3 Stochastic power control

There are two types of stochastic dynamics often modeled in wire-

less cellular networks. One is channel variations and the other is user

mobility. Robustness against these dynamics has been analyzed and

algorithms leveraging them have been designed. Some of these results

will be surveyed in various sections of the monograph, starting with

this subsection.

The previous sections has focused on power control with fixed chan-

nels. The authors in [72, 73] show that the DPC algorithm resulting

from such formulations may not accurately capture the dynamics of

a time-varying channel. Suppose the channel gains Gij are allowed to

vary with time. Let {G} = {G(t) : t > 0} be a stationary ergodic

sequence of random channel gain matrices. Assume that the sequence

{G} takes values in a discrete or continuous set of square, nonnegative,

and irreducible matrices. Next, we can rewrite (2.7) as

p[t + 1] = D(γ)F[t]p[t] + v[t]. (2.18)
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It is shown in [72, 73] that the power p[t] converges in distribution

to a well defined random variable if and only if the Lyapunov exponent

λF , defined as

λF = lim
t→∞

1

t
log ||D(γ)F[1]D(γ)F[2] . . . D(γ)F[t]| |, (2.19)

is strictly less than 0 for any norm.

Theorem 2.8 ([72, 73]). Using iteration (2.18), p[t] converges

weakly to a limit random variable p(∞) if λF < 0 and E[log(1 +

‖|v[t]‖|)] < ∞. Furthermore, we have

lim
t→∞

E[log(SIRi[t])] = log γi, ∀i. (2.20)

Otherwise, p[t] → ∞ with probability one.

Note that in formulations with random channels, the minimum

SIR requirements have changed; rather than being constrained by

SIRi = γi, the stochastic version of the DPC algorithm is constrained by

E[log SIRi] = log γi. Using the Jensen’s inequality, we have log E[SIRi] ≥
E[log SIRi]. Consequently, this may cause overshoot in the minimum

SIR requirement [72, 73].

The authors in [72, 73] propose a stochastic approximation based,

on-line algorithm for controlling transmitter powers, using a fixed step

size that provides weak convergence and faster response to time-varying

channel conditions.

Under slow fading channel condition, the interference at a receiver

is correlated from one time slot to the next. Based on the interference

measurements in the previous time slots, one can apply appropriate

methods to predict the interference to be perceived at the receiver.

With the predicted interference and estimated channel gains between

the transceivers, the transmit power can be adjusted in the next time

slot. In [100], the author proposes a state space model and Kalman

filter method for this purpose. The advantage of the Kalman filter

method is that it is simple, due to its recursive structure, robust over

a wide range of parameters, and provides an optimal estimate of the

interference in the sense of minimum mean square error (MMSE). Other
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work that exploit the temporal correlation of interference in power

control algorithms include [104, 85, 161, 174, 95, 35].

Aside from the stochastic nature of the channel gains, impairments

such as noisy feedback can also result in stochastic uncertainties that

lead to power variation. The authors in [156] proposed an adaptive

power control algorithm for random channels that predicts channel

and other stochastic behaviors based on the past observations and then

use these predictions to update the transmit power. Similar to [100],

an online implementation of the predictive algorithm in [156] is made

possible with a robust Kalman filter used for interference estimation.

Other work on stochastic power control include [172, 139, 199, 111,

155, 200, 142, 82, 34, 80, 79, 131, 126].

In Chapter 5, we consider more in details power control algorithms

that take advantage of the varying channel condition opportunistically

when allocating power to maximize given performance metric in the

network.

In the next chapter, we will investigate power control algorithms

that specifically take into account robustness against disturbances and

provide protection against SIR outage in the next chapter.

2.6 Open Problems

The feasibility of (2.1) is determined by D(γ)F (cf. Theorem 2.1). In

[58], the authors propose heuristics for joint power control and chan-

nel assignment algorithm in order to ensure feasible power allocation

in each channel. Optimal power control and channel assignment algo-

rithms are especially important in cognitive radio networks where there

are different classes of user priorities [157]. A joint, distributed opti-

mal power control and channel assignment algorithm remains an open

problem.

While the equilibrium properties of fixed SIR power control are well

understood, both transience properties and extensions to variable SIR

are more challenging. These two topics will be addressed in the next

two chapters, respectively
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Transients, Robustness, and Admission

3.1 Introduction

While the equilibrium of the DPC algorithm in Chapter 2.2 is well-

understood, what happens during the transience is less clear and more

challenging to characterize. In particular, the SIR of an active link can

dip below the SIR targets when there is a slight perturbation such as the

entry of a new user. Consider the following example of a cell originally

with two active users. A new user enters using the DPC algorithm, and

causes an SIR outage that deviates from the SIR targets by as much as

63% during the transience that lasts for approximately 20 time slots,

as shown in Figure 3.1. This simple example illustrates a limitation of

the DPC algorithm: the lack of QoS quality in times of congestion.

How to prevent such dips, and in general, how to admit users and

manage congestion in cellular network power control becomes an im-

portant question. In particular, to guarantee that active links continue

to have acceptable received SIR when there are disturbances in the

network, an active link protection scheme has to be incorporated with

power and user access control [17, 16, 138, 186, 150, 48, 11, 70, 12, 132,

13, 168, 167, 108]. In this chapter, we look at how robust power control

33
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Fig. 3.1 A small numerical example of transient behavior of the DPC algorithm. Originally,
there are two users, but a new user enters the same channel at the 300th time slot. The
received SIR’s of the two active users experience an SIR outage that deviates from the SIR
targets by as much as 37% and 63% during the transience period.

in transience and its integration with admission control. In Section 3.2,

a characterization of the SIR space that ensures SIR guarantees at all

time slots for power control algorithms is presented. In Section 3.3, a

robust version of the DPC algorithm in Chapter 2.2 with access con-

trol is given. In Section 3.4, the design of a general robust distributed

power control scheme is discussed, together with its effectiveness in

providing both energy management and interference management and

in modulating the energy-robustness tradeoffs.

3.2 SIR Invariant Region

In this section, we look at the dynamics and the evolution of the SIR’s in

the DPC algorithm before reaching the equilibrium. Using tools from

control theory, the authors in [17, 53] characterize the SIR invariant

regions for the DPC algorithm.

Consider an autonomous discrete-time dynamical system x[t+1] =

f(x[t]), y[t] = g(x[t]), with initial state x[0]. The state of the system

and the output at time t are x[t] ∈ R
n and y[t] ∈ R

m respectively.
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Definition 3.1 ([53]). A subset of the output space is called invariant

if once the output enters this set, it remains there for all future time

steps, i.e., if y[t] ∈ S, then y[t + 1] ∈ S, ∀ t.

For the DPC algorithm, let the power pi[t] be the state of each link

i at time t, and refer to the corresponding SIRi[t] as the output. The

state equation is given by (2.3). Assuming that ρ(D(γ)F) < 1, i.e., γi’s

are feasible, it is next shown how to identify invariant regions in the

SIR space and the associated conditions on SIR guarantees [53].

3.2.1 SIR guarantees

Assuming all links have already achieved a certain SIR level γ̃i, e.g.,

the minimum SIR required for link connectivity, under what conditions

can we meet the SIR level for all subsequent time steps? The following

common ratio condition in [53] characterizes an answer to this question:

Theorem 3.1. [53] If there is a constant ǫ > 0 such that γi/γ̃i =

1 + ǫ, ∀i, then SIRi[t] ≥ γ̃i, ∀i, implies SIRi[t + 1] ≥ γ̃i, ∀i.

Note that γi/γ̃i = 1 + ǫ can be interpreted as the “safety margin”

because it allows for each link to be a factor 1 + ǫ above its minimum

required SIR. Theorem 3.1 states that, for any γ, F, and u that satisfy

ρ(D(γ)F) < 1, particular cones in the SIR space are invariant. These

cones are copies of the nonnegative orthant R
n
+, shifted by a constant

1/(1+ǫ) times the vector γ, which can be parameterized by ǫ as K1+ǫ =

R
n
+ + 1/(1 + ǫ)γ, for all ǫ ≥ 0.

3.2.2 Lyapunov function interpretation

The invariant cones discussed above are reminiscent of the level sets

of a Lyapunov function. Indeed, the cones K1+ǫ can be extended to

invariant rectangles, which form the level sets of a Lyapunov function.

The following result describes the associated rectangles [53].

Lemma 1. For any ǫ > 0, if |SIRi[t]−γi| ≤ γi (1 − 1/(1 + ǫ)) ∀ i, then

|SIRi[t + 1] − γi| < γi (1 − 1/(1 + ǫ)) ∀i. (3.1)
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Let SIR[t] be the vector with entries SIRi[t] for all i. It is shown in

[53] that the rectangular regions shown in Figure 3.2 are invariant, and

form the level sets of the following Lyapunov function.

Theorem 3.2. [53] The invariant sets given in Lemma 1 are the level

sets of the following Lyapunov function

V(SIR[t]) = maxi
1

γi
|SIR[t] − γi| = ‖D(γ)−1(SIR[t] − γ)‖∞. (3.2)

Fig. 3.2 The level sets of the Lyapunov function

The invariant rectangles shown in Figure 3.2 illustrate that, at any

time t, the possible SIR drops are always bounded by a known value.

For example in Figure 3.2, SIR[t] lies on the boundary of one of the

rectangles. Since this rectangle is invariant SIR[t+1] will also be inside

this region. Therefore, drops in the SIR of each link, i.e., components

of vector SIR[t] − SIR[t + 1], can be no larger than the componentwise

distance of SIRi[t] to the line SIRi[t]/γi = 1 + ǫ; this distance is labeled

∆SIR in Figure 3.2.
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3.3 Power Control with Active Link Protection

Turning from analysis of invariant region to design of robust power

control, we next summarize a robust DPC algorithm proposed in [17,

16].

3.3.1 DPC/ALP Algorithm

By extending the DPC algorithm, the authors in [17, 16] proposed the

Distributed Power Control with Active Link Protection (DPC/ALP)

algorithm to protect active users from new users that access the same

channel. The two key ideas of the DPC/ALP algorithm are: 1) the

gradual power-up of new users; and 2) the introduction of an SIR mar-

gin ǫ to cushion the existing users, which is accomplished by modifying

the SIR constraint in (2.1) to

SIRi(p) ≥ γi(1 + ǫ), ∀ i (3.3)

where ǫ > 0. Parameter ǫ serves as a protection margin for users that

are running (2.3) and helps keep them from falling below γ in a dynamic

setting when new users access the same channel.

For a given ǫ, the DPC/ALP algorithm is given by

Algorithm 3.1 (Distributed Power Control/Active Link Protection [17, 16]).

pi[t + 1] =

{

(1+ǫ)γi

SIRi[t]
pi[t], if SIRi[t] ≥ γi

(1 + ǫ)pi[t], if SIRi[t] < γi

∀ i. (3.4)

Implicitly, the DPC/ALP algorithm solves the following problem of

power minimization subject to a robust version of the SIR constraint:

minimize
∑

i pi

subject to SIRi(p) ≥ γi(1 + ǫ), ∀ i,

variables p.

(3.5)

Since ǫ is fixed, (3.5) can still be rewritten as a linear program in a

way similar to (2.2), and the DPC/ALP Algorithm converges to the

optimal solution of (3.5) if and only if (1 + ǫ)ρ(D(γ)F) < 1 [17].
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From Theorem 3.1, we immediately see that the DPC/ALP algo-

rithm provides SIR protection for active links, i.e., SIRi[t] ≥ αi ∀ i,

implies SIRi[t + 1] ≥ αi ∀ i. Also, it is shown in [17] that if the ith link

has SIRi[t] ≤ γi, then SIRi[t] ≤ SIRi[t + 1], i.e., the received SIR of a

new user strictly increases. Furthermore, the power overshoots of the

DPC/ALP algorithm can be bounded as follows.

Theorem 3.3 (Bounded power overshoot [17]). In the

DPC/ALP algorithm, for any fixed ǫ, we have pi[t + 1] ≤ (1 + ǫ)pi[t]

for links with SIRi[t] ≥ γi.

Theorem 3.3 shows that the powers of active links can only increase

in a smooth way, in order to accommodate the new links that are

powering up [17, 16]. A larger ǫ obviously provides more protection to

existing users, but comes at a price of higher power expenditure and,

from Theorem 3.3, possibly a larger power overshoot. Furthermore, a

larger ǫ makes user admission faster, but may cause excessive interfer-

ence or even infeasibility of the enhanced target SIR. How to control

these tradeoffs modulated by ǫ? Intuitively, ǫ should be time-varying

instead of being a constant, controlled possibly by some “interference

price” that is updated by inferring the network congestion level from

local measurements. This intuition will be made clear in the following

section.

3.4 Robust Distributed Power Control

We now examine a robust distributed power control (RDPC) algorithm

in [168, 167]. It is developed based on the following: sensitivity anal-

ysis on the effects of power changes, interference prices obtained from

Lagrangian duality theory, congestion measures related to the size of

the Perron-Frobenius eigenvalue, and a primal-dual update equation

with desirable convergence properties. It turns out that the RDPC

algorithm solves an underlying optimization problem, whose objective

function can be tuned to influence the behavior of the RDPC algorithm

in a predictive way. We conclude this section with the application of

the RDPC algorithm in modulating the energy-robustness tradeoff.
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First, we consider a general problem formulation in [168] that takes

robustness into account. Using the protection margin in (3.3) to en-

hance the SIR constraints, we consider the minimization of the total

power expenditure plus a cost function:

minimize
∑

i pi + φ(ǫ)

subject to SIRi(p) ≥ γi(1 + ǫ) ∀ i,

variables ǫ, p.

(3.6)

Note that now ǫ is an optimization variable and φ(ǫ) is a decreasing,

convex cost function that captures the tradeoff in adjusting ǫ. This ob-

jective function will be very useful in modulating the tradeoff between

robustness and energy both at equilibrium and during transience. The

following necessary condition characterizes feasible solutions to (3.6):

Lemma 3.1. [168] For a feasible p and ǫ to (3.6), the following holds:

(1 + ǫ)ρ(D(γ)F) < 1. (3.7)

Note that (3.6) can no longer be written as a linear program as can

be done with (2.1) and (3.5), and in fact it is a nonconvex optimiza-

tion problem. It can nevertheless be rewritten as a convex optimization

problem for certain functions φ(ǫ) [168]. By applying a log transforma-

tion to pi, for all i, and ǫ (p̃ = log p and ǫ̃ = log ǫ), the following

equivalent problem is obtained:

minimize
∑

i e
p̃i + φ(eǫ̃)

subject to log(SIRi(p̃)/γi) ≥ log(1 + eǫ̃) ∀ i,

variables: p̃, ǫ̃.

(3.8)

We will focus on those φ satisfying the condition in the following

lemma.

Lemma 3.2. [168] The optimization problem in (3.8) is convex if
∂2φ(z)/∂z2

∂φ(z)/∂z ≥ −1/z for z > 0.
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3.4.1 RDPC Algorithm

The main algorithm in [168] is given next. The details of its derivation

will be given in the next subsection (in particular, (3.10)-(3.11) follow

from Theorem 3.4 and (3.12) follows from Theorem 3.4). It will also

be shown that ν is the Lagrange multiplier vector for (3.8).

Algorithm 3.2 (Robust Distributed Power Control [168]).

• The base station initiates at ǫ[0]. New users power up with

sufficiently small pi[0], e.g., pi[0] = ni.

Update by each user i:

(1) Update the transmitter powers pi[t + 1] at the [t + 1]th step:

pi[t + 1] =

{

(1+ǫ[t])γi

SIRi[t]
pi[t], if SIRi[t] ≥ γi

(1 + ǫ[t])pi[t], if SIRi[t] < γi.
(3.9)

Update by the base station:

(1) Update x[t + 1]:

x[t + 1] = (1 + ǫ[t])(D(γ)F)Tx[t] + 1. (3.10)

(2) Update ν[t + 1]:

νi[t + 1] = xi[t + 1]pi[t + 1], ∀i. (3.11)

(3) Update ǫ[t + 1] by solving

−∂φ(ǫ)

∂ǫ

∣

∣

∣

∣

ǫ=ǫ[t+1]

(1 + ǫ[t + 1]) = 1T ν[t + 1]. (3.12)

Both the DPC and DPC/ALP algorithms are primal algorithms

with linear updates, whereas the RDPC algorithm is a primal-dual al-

gorithm with nonlinear updates. Also, the power update (3.9) differs
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Fig. 3.3 A schematic of the RDPC algorithm for uplink power control.

from the DPC/ALP algorithm in [17, 16] in that ǫ is not a constant

parameter, but is updated at each time slot according to variables x

and ν. Equation (3.12) quantifies the remark on choosing the parame-

ter ǫ in [17]: “ǫ should be chosen such that (1 + ǫ) is larger when the

network is uncongested, so that links power up fast, and grow smaller

as congestion builds up to have links power up more gently”.

The following theorem for the RDPC algorithm connects it to the

underlying optimization model [168]:

Theorem 3.4. If {ǫ[t]} converges to a finite value ǫ∗, and ρ(D(γ)F) <
1

1 + ǫ∗
, then the RDPC algorithm converges to a global optimum

(p∗, ǫ∗) of problem (3.6).

A general schematic diagram of the RDPC algorithm for an uplink

transmission is shown in Figure 3.3. The inner loop power control block

consists of a transmit power update for each user based on the measured

SIR values (see (3.9)), and the outer loop power control block adjusts

the SIR targets γ as a function of the frame error rates. The interference

management block takes as input the measured power of all users, and,

based on a particular cost function φ(ǫ), modulates the parameter ǫ,

which is then fed to the outer loop block (see (3.10)-(3.12)).
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3.4.2 Development of RDPC

Intuitively, the amount of congestion in the system and the “price” of

maintaining the SIR constraints, should be a factor in determining how

robust a power control algorithm needs to be. Following [168], consider

the case of ǫ = 0 in (3.6), which corresponds to (2.1). Sensitivity analy-

sis is then used in [168] to show how adjusting γ affects the solution for

(2.1), which further instructs the network designer on how to choose

the right cost function φ(ǫ) in (3.6).

Recall that the SIR constraints in (2.1) are tight at optimality,

assuming that there is a feasible power allocation for all users. Hence,

tightening or loosening this constraint set affects the optimal value of

(2.1). For the ith SIR constraint in (2.1), define a perturbed SIR target

γi/ui where 1/ui represents a fractional perturbation of the SIR target

γi, and substitute the ith SIR constraint in (2.1) by γi/SIRi(p) ≤ ui

for all i. Obviously, 0 < ui < 1 or ui > 1 if we tighten or loosen the ith

SIR constraint, respectively. Next, define f∗(u) as the optimal value of

(2.1) with these perturbed constraints:

f∗(u) = minimize
∑

i pi

subject to γi/SIRi(p) ≤ ui ∀ i,

variables p.

(3.13)

If f∗(u) does not exist for some u, define f∗(u) = ∞. Let p̃i = log pi

and the parameter ũi = log ui, and taking the logarithm of the SIR

constraints, f∗(u) can be written in the log transformed parameter ũ

as f̃∗(ũ), the optimal value of the objective function in the following

problem:
minimize

∑

i e
p̃i

subject to log(γi/SIRi(p̃)) ≤ ũi ∀ i,

variables p̃.

(3.14)

The following result quantifies the tradeoff between power expendi-

ture and robustness [27].

Lemma 3.3. Let ν∗
i , for all i, be the optimal Lagrange multipliers of

the unperturbed problem in (3.14), (i.e., for ũ = 0), then

100
f̃∗( βi

100ei) − f̃∗(0)

f̃∗(0)
= −βiν

∗
i /f̃∗(0) + o(βi) (3.15)
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where ei is a vector that has all its entries 0, except the ith entry, which

is 1.

The engineering implication is as follows. Relaxing (or tightening)

the ith SIR target constraint by βi percent in (2.1) decreases (or in-

creases) the total power by approximately βiν
∗
i /f̃∗(0) percent, for a

small βi. Hence, the total power reduction (or increment) is approxi-

mately
∑

i βiν
∗
i /f̃∗(0) percent. If users with large ν∗

i is compromised

slightly, all users obtain power saving and lower interference simulta-

neously.

To complete the development of the iterative updates in the RDPC

algorithm, the following result is derived in [168] to compute ν in

Lemma 3.3.

Lemma 3.4. The optimal power p∗ in (2.1) and the Lagrange multi-

plier ν∗ in the unperturbed problem in (3.14) satisfy

ν∗
i = p∗i

(

1 +
∑

i6=i

Gilν
∗
i

∑

j 6=i Gijp
∗
j + ni

)

, ∀i. (3.16)

Furthermore, the following updates can be used to compute ν∗:

p[t + 1] = (D(γ)F)p[t] + v, (3.17)

x[t + 1] = (D(γ)F)Tx[t] + 1, (3.18)

and

νi[t + 1] = xi[t + 1]pi[t + 1], ∀i. (3.19)

As t → ∞, νi[t] converges to ν∗
i in (3.16) for all i if and only if

ρ(D(γ)F) < 1.

3.4.3 Balancing the tradeoffs

We next look at the application of the RDPC algorithm that balances

the tradeoff between SIR robustness and energy expenditure. Based

on the sensitivity analysis in Lemma 3.3, the extra power needed to

provide ǫ∗ amount of SIR margin is

100(1T ν∗ǫ∗/1T p∗) (3.20)
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percent, or, from (3.12),

−∂φ(ǫ)

∂ǫ

∣

∣

∣

∣

ǫ=ǫ∗
100(1 + ǫ∗)ǫ∗/1T p∗ (3.21)

percent. Suppose the network can tolerate at most an increase of

100δ/1T p∗ percent in total power to limit interference 1. Now, from

(3.21), it is shown in [168] that

∂φ(ǫ)

∂ǫ
= − δ

ǫ(1 + ǫ)
, (3.22)

which upon integration yields

φ(ǫ) = δ log(1 + 1/ǫ). (3.23)

It is easy to verify that φ(ǫ) in (3.23) is strictly convex decreasing and

satisfies Lemma 3.2.

Recall that the convergence result in Theorem 3.4 requires an as-

sumption that ǫ[t] → ǫ∗ as t → ∞. For the function φ(ǫ) in (3.23), fur-

ther analysis can be carried out to remove this assumption and prove

local asymptotically stability of the RDPC algorithm in general.

Let z[t] = [p[t]T x[t]T ]T , z∗ = [p∗ T x∗T ]T , and ∆ = δ/1T p∗.

Theorem 3.5. [168] Consider the mapping from z[t] to z[t + 1] and

its Jacobian matrix J = ∂f(z)
∂z

∣

∣

∣

∣

z=z∗
where

f(z) =





(

1 + ∆
pT x

)

(D(γ)Fp + v)
(

1 + ∆
pT x

)

(D(γ)F)Tx + 1



 . (3.24)

We have ρ(J) =
(

1 + ∆
p∗ T x∗

)

ρ(D(γ)F).

Furthermore, the RDPC algorithm with φ in (3.23) is locally asymp-

totically stable if and only if

ρ(J) =

(

1 +
∆

p∗Tx∗

)

ρ(D(γ)F) < 1. (3.25)

1 This δ can be obtained from different kinds of models. For example, in [43], the authors
propose an in-cell rise-over-thermal (IROT) constraint. Given an IROT constraint, δ can
be configured as the input parameter for the RDPC algorithm.
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In addition the tradeoff between robustness and energy, another

tradeoff during the transience is between the speed of user admission

and the amount of allowed interference. Both tradeoffs can be controlled

by changing the curvature of the function φ(ǫ), which then changes the

dynamic and equilibrium properties of the RDPC algorithm.

In [168], the following family of φα(ǫ) is considered, parameterized

by a nonnegative integer β, for ǫ ∈ (0, 1]:

φβ(ǫ) = δ

(

β
∑

n=1

(−1)β−nǫ−n/n + log(1 + 1/ǫ)

)

. (3.26)

This φβ(ǫ) given by (3.26) is strictly decreasing and also satisfies

Lemma 3.2. Using (3.26), we see that ∂φβ(ǫ)/∂ǫ provides a way to

adjust the curvature of the function φβ(ǫ) such that ǫ∗ increases as the

control parameter β, tunable by the network operator, gets larger. This

implies that energy expenditure increases, but new user admission rate

also increases. Therefore, new users can power up faster with increasing

traffic load.

In [167], the RDPC algorithm can be further modified for the time-

division duplex network by exploiting the uplink-downlink duality, as

discussed in Chapter 7. In this case, the interference price ν can be

interpreted as the product of uplink and downlink power [167].

3.4.4 Numerical example

The ability of the RDPC algorithm to balance energy and robustness

compared to the DPC algorithm and the DCP/ALP algorithm is il-

lustrated using a numerical example. Using φ(ǫ) in (3.23), the RDPC

algorithm is configured with δ to have at most 15 percent total power

increment, and the ǫ∗ computed is 0.021. During time slots 0-250, only

User 1 and 2 are active. From time 250, User 3 becomes active. At

time 1000, User 1 completes data transmission, and departs from the

cell leaving User 2 and 3. Figure 3.4 shows that the DPC/ALP algo-

rithm results in a total power expenditure of more than 150 percent at

the two network operating points at time 250 and 1000 as compared

to DPC, whereas the RDPC algorithm uses an additional extra total

power of 15 percent. In the case of DPC, the received SIR’s of User
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Fig. 3.4 Evolution of the total power with the DPC/ALP, RDPC, and DPC algorithms. The
percentage increases in extra power between (i) DPC/ALP and DPC, and (ii) RDPC and DPC
at two different operating points (i.e., time slots 250-1000 and 1000-1500) are shown.

1 and 2 are observed to suffer a dip of more than 40 and 60 percent

respectively at time 250 when User 3 enters the channel. In contrast,

this does not happen with the RDPC and DPC/ALP algorithms.

3.5 Open Problems

Transient behaviors of distributed power control remain under-explored

compared to equilibrium properties. In terms of analysis, a complete

characterization of invariant sets remains open in general. In terms of

design, in the RDPC algorithm, even though there are predictive mod-

els for parameter choice, the control of tradeoff during transience and

the tradeoff at equilibrium is still coupled through a single parameter

ǫ.

With network dynamics such as mobility, handoff, and fading, ro-

bustness of power control solutions is important yet challenging to en-

sure. This chapter primarily focused on robustness with respect to new

users entering a cell, while other definitions of robustness are still yet

to be fully explored. In particular, opportunities arising from channel

variations will be discussed in Chapter 5.
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Finally, as traffic in wireless cellular networks becomes increasingly

multimedia-based, admission control in a power-controlled network

presents increasingly difficult issues. A related issue is assignment of

SIR target, a degree of freedom that has been fixed as constants in the

last and present chapters and will be exploited in the next chapter.





4

Power Control with Variable SIR

4.1 Introduction

The fixed SIR approach to power control problem discussed in Chap-

ter 2 is suitable for lightly loaded voice networks. When the network

gets more heavily loaded, setting the target γ to be feasible becomes

challenging. More importantly, in a wireless data network can opti-

mize the SIR assignment according to traffic requirements and channel

conditions. Higher SIRs imply better data rates and possibly greater

reliability, while smaller SIRs can still provide lower data rates. In addi-

tion, a cellular operator of a wireless data network might want to treat

higher tariff paying users preferentially by allocating them to higher

QoS classes, and the SIR target need to be set differently for users in

different QoS classes. Most of the literature that deals with this prob-

lem define either the rate or another QoS metric as a bijective mapping

to SIR, and optimize their allocation according to a utility function,

subject to the constraint that SIR assignment must be feasible, i.e.,

there is a power vector that can realize the SIR vector. Therefore, the

problem becomes a joint SIR assignment and power control.

One approach to vary SIR targets is for each MS to selfishly attempt

49
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to maximize its utility without regard to network-wide criteria. This

results in a distributed implementation that can be modeled as an N -

person non-cooperative game. The resulting Nash equilibrium can then

be analyzed for properties such as existence, uniqueness, and efficiency

loss. This game-theoretic approach will be discussed in Chapter 6.

A second approach is to consider the SIR allocation based on global

maximization of the utilities as proposed in [83, 38, 127] and depicted

in Figure 4.1. The utility maximization problems considered in [38]

and [127] assume an approximation to the rate function and propose

centralized algorithms. The work in [83] proposes utilities of data rates

approximated as linear functions of SIRs, and proposes a distributed

algorithm on a subset of the SIR feasibility set that is easier to decouple

and leads to a heuristic solution.

In summary, the range of results in 1992-2005 can provide (1) a

distributed and optimal solution in the special case of fixed SIR, or (2)

an optimal but centralized solution that requires global coordination

across the cells, or (3) a distributed but suboptimal solution based

on selfish local power update at MSs. A key difficulty in this problem

of jointly optimizing SIR and transmit powers across multiple cells is

that the constraint set of SIR feasibility is coupled in a complicated

way beyond standard decoupling techniques.

In the case of convex SIR feasibility set, the work in [65] presents

a distributed algorithm that does not require coordination across cells

and converges to the jointly optimal SIR and power. The main idea of

this solution comes from a re-parametrization of the constraint set from

power-interference representation to the so-called load-spillage repre-

sentation, essentially a sophisticated change of coordinates, which then

lead to an ascent search-direction for this optimization problem that

is locally computable by each mobile user. Convergence and optimal-

ity proofs then followed. This Load-Spillage Power Control (LSPC)

algorithm has also been recently adopted in the industry, as will be

explained in Chapter 10.

This chapter starts with characterizations of the SIR feasibility re-

gions, especially their convexity property, then present the LSPC algo-

rithm, its main theoretical properties, and a large-scale example using

the 3GPP2 simulator.
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Fig. 4.1 The feasible SIR region has a Pareto-optimal boundary. Points outside the bound-
ary cannot be realized by any power allocation. Utility function’s curves intersect at the
boundary and define an optimal SIR assignment. The central question in this chapter is how
to distributedly move towards this optimal SIR point and the associated power allocation.

4.2 SIR Feasibility Region

Consider the system setup in Section 1.3.1 and the SIR feasibility equa-

tions (1.7) and (1.6). Due to the interference among links, not all SIR

vectors γ are achievable. The basic feasibility condition was discussed

in Theorem 2.1.

Let the region B = {γ � 0 : ρ(FD(γ)) < 1} be the set of all feasible

SIR vectors γ. As γ approaches the boundary of B, ρ(FD(γ)) → 1,

p(γ) → ∞, and q(γ) → ∞. To avoid mathematical technicalities right

on the boundary of feasibility region and to consider practical limits on

power and interference, the following SIR feasibility regions are defined

in [65]. Let qm ≻ 0 and pm ≻ 0 be maximum interference and power

vectors, and define the corresponding subsets of feasible SIR vectors,

B(pm) = {γ ∈ B | p(γ) � pm},
B(qm) = {γ ∈ B | q(γ) � qm}.

The set B(pm) limits the transmit power, pi of each mobile i, and

is most useful in coverage-limited networks where the transmit power

capabilities of the mobiles are the limiting factor in network capacity.
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The set B(qm) limits the interference qi at the BS serving MS i, and

is most useful in interference-limited networks.

4.2.1 Convexity

A well-known result is that the SIR feasibility region B is convex in

log(SIR) as shown in [163]. The result is summarized in the following

Lemma.

Lemma 4.1. [163] If γ ∈ B and γ′ ∈ B, then the vector γα defined

by

γα = {γα
i γ′

i
(1−α)}

where 0 ≤ α ≤ 1, is also feasible.

A second result on the convexity in [30] shows that B is convex in

1/SIR.

Lemma 4.2. [30] The SIR region B is convex in 1/γ.

This result is further extended in [81] where it is shown that, in

addition to the general feasible SIR region, the power constrained SIR

region B(pm) is also convex. The corresponding lemma applies to the

interference constrained region B(qm) as well.

Lemma 4.3. [81] The SIR regions B(pm) and B(qm) are convex in

log(γ) and 1/γ.

An equivalent result with a different approach is shown in [25, 26].

Lemma 4.4. [25, 26] The functions q(γ), p(γ) and ρ(FD(γ)) are con-

vex in log γ in the region log B. In particular, the sets, log B(qm),

log B(qm) and log Bρ are convex.
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4.2.2 Pareto-Optimality

Let Γ ⊆ B be a set of feasible SIR vectors. The selection of a feasible

γ ∈ Γ is, in general, a multi-objective optimization problem. Increasing

the SIR, γi, for one MS will require that the SIR, γj, for another MS be

reduced. The Pareto-optimal points of a set Γ form the Pareto-optimal

boundary denoted by ∂Γ. A characterization of Pareto-optimality for

the feasible sets B(pm) and B(qm) is given in [65].

Lemma 4.5. [65] For Γ = B(qm), γ ∈ ∂B(qm) if and only if q(γ) �
qm with at least one i such that qi(γ) = qm

i . For Γ = B(pm), γ ∈
∂B(pm) if and only p(γ) � pm with at least one i such that pi(γ) = pm

i

4.3 Joint SIR Assignment and Power Control

4.3.1 Problem formulation

A cellular network has to pick a particular operating point on the

Pareto-optimal boundary of the feasibility region, and achieve the

point preferably in a distributed manner with minimal message passing.

There is an infinite number of Pareto-optimal points on the boundary

of feasibility region, and an objective function, like the range of con-

cave utility functions discussed in Chapter 1, define a particular point

as the optimum. Given a set of feasible SIR vectors, γ ∈ Γ ⊆ B, the

optimal SIR over this set is defined by γopt = arg maxγ∈Γ
∑

i Ui(γi).

For Γ = B(pm), the problem of optimal SIR assignment is given by:

maximize
∑

i Ui(γi)

subject to p(γ) � pm

variables γ ≻ 0, p ≻ 0.

(4.1)

For Γ = B(qm), the problem of optimal SIR assignment is:

maximize
∑

i Ui(γi)

subject to q(γ) � qm

variables γ ≻ 0, q ≻ 0.

(4.2)

The problem posed in [38, 127] is a variant of (4.1) and stated in

terms of data rates considered as a bijective mapping of SIR.



54 Power Control with Variable SIR

This chapter focuses on the case where the above problem is convex

optimization. This imposes restrictions on both the objective function

and constraint set. For example, since SIR feasibility regions are convex

in log(γ), assuming utility functions Ui(γi) to be concave in log(γi)

renders the problem convex. Non-convex formulations will be briefly

discussed in Chapter 9.

Sufficient conditions for convexity of feasibility region have just been

presented. Concavity of utility function in γ or p can also be readily

checked. For example, concavity of Ui in log(γi) can be expressed in an

alternative form: Ui(γi) is concave in log γi if and only if the negative

of the curvature is sufficiently large:

U ′′
i (γi) ≤ −U ′

i(γi)

γi
.

In particular, the above condition is satisfied for α-fair utilities when

α ≥ 1. Note that the function Ui(γi) = log(γi) satisfies this condition.

It is the psuedo-linear utility discussed in Chapter 1 for a QoS βi =

log(1 + γi) and satisfies the above condition. But Ui(γi) = log(1 + γi)

does not satisfy the above condition.

We also assume that Ui(γi) → −∞ as γi → 0, thus prohibiting

zero power and SIR allocation. This implies that every link gets a non-

zero SIR at equilibrium. Such problem formulations represent a system

design where the links are not scheduled in time but can compete with

each other for higher SIR in every time slot as is the case in 1xEVD0, a

commercial wireless broadband system discussed further in Chapter 10.

However, sometimes it is better to allocate zero SIR to some links, i.e.,

deactivate them, so as to maximize the network’s total utility. This

situation will be discussed in Chapter 9 for joint power control and

scheduling.

Even when problems (4.2) and (4.2) are convex, the structure of the

coupled constraint set, where the transmit power of any one MS affects

the SIR of every other MS in the network, renders the problem difficult

to solve distributively. It turns out that an alternative representation

of the Pareto-optimal boundary in terms of the left, rather than right,

Perron-Frobenius eigenvectors enables a distributed solution.
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4.3.2 Load Spillage Power Control

The key to decouple the SIR feasibility constraint set is a set of pa-

rameters termed the “load” factors as defined in [65]. The load-factors

{ℓi} are positive numbers associated with links. From the load-factors,

arise the spillage factors {si} defined as follows:

(1) For Γ = B(pm):

s(ℓ,ν) = FT ℓ + ν (4.3)

(2) For Γ = B(qm):

s(ℓ,ν) = FT (ℓ + ν) (4.4)

The load-factor ℓi on link i represents the amount of intolerance of that

link to interference from neighboring links, and the spillage-factor si

is a measure of the potential interference that can be caused by link i

when it transmits.

The factor ν is a price that is updated depending upon the local

power and interference constraint through a simple subgradient-based

update:

For Γ = B(pm): νi[τ + 1] = [νi[τ ] + δ[τ ](pi[τ ] − pm
i )]+ (4.5)

For Γ = B(pm): νi[τ + 1] = [νi[τ ] + δ[τ ](qi[τ ] − qm
i )]+ (4.6)

where δ[τ ] = δ0/τ, δ0 > 0, is a suitable choice for the step size.

Much more importantly, an ascent-direction update of load factors

along the Pareto-optimal boundary can be conducted in a distributed

way [65]:

∆ℓi =
U ′

i(γi)γi

qi
− ℓi, ∀i. (4.7)

This key step leads to the the LSPC algorithm described as follows:

Algorithm 4.1 (Joint SIR and power optimization). [65]

• Parameters: Step sizes δ1 > 0 for load update, δ > 0 for price

update, utility functions Ui(γi), and interference or power

constraints, pm or qm.
• Initialize: Arbitrary {ℓi[0] > 0} and {νi[0] ≥ 0}
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(1) (a) For Γ = B(pm): Compute si[τ ] according to (4.3)

(b) For Γ = B(pm): Compute si[τ ] according to (4.4)

(2) Assign SIR target γi[τ ] = ℓi[τ ]/si[τ ]

(3) Measure resulting interference qi[τ ]

(4) Update load si[τ ] in the ascent direction given by (4.7)

si[τ + 1] = si[τ ] + δ1∆si[τ ].

(5) (a) For Γ = B(pm): Update price νi[τ ] according to (4.5)

(b) For Γ = B(pm): Update price νi[τ ] according to (4.6)

Continue: τ := τ + 1

The price update is based only on the link power or interference

constraint, and the spillage calculation requires only local measurement

at the MS of the channel gains to all the neighboring BSs (weighted by

the sum of loads supported by links terminating at those BSs). There

is no coordination across BSs, provided the BS transmits the sum of

the loads from the links it is serving on the downlink. Finally, the

load-update can be calculated locally at each MS.

Convergence and optimality of the algorithm have been shown:

Theorem 4.1. [65] For sufficiently small step size δ1 > 0 and δ > 0,

Algorithm 4.1 converges to the globally optimal solutions of prob-

lems (4.1) and (4.2) for Γ = B(pm) and Γ = B(qm) respectively.

The key steps of the proof are as follows. Since problems (4.1)

and (4.2) are convex optimization problems, one can consider the max-

imization of Lagrangians of the problems and then consider minimiza-

tion of the Lagrange dual problem. It is shown in [65] that the load

update (4.7) is an ascent update to the Lagrangians, reparameterized

in terms of the load factors. The boundedness of the first and sec-

ond derivative of the utility functions and other technical condition is

shown to be sufficient to guarantee the Lipschitz continuity property,

thus ensuring the convergence to the Lagrangian maximum.
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The update to the price vectors ν corresponds to the gradient for

the Lagrange multipliers if we allow the convergence to the Lagrangian

maxima over s at every price ν[t]. However, the load factor s and price

ν can be updated simultaneously. Such a joint update can be proven

to converge to the optimum of the original constrained optimization

problem if the Lagrangian is concave and the maximized Lagrangian

for a given price is convex [137]. This is indeed true and therefore the

algorithm converges to the optimal.

Finally, it is shown in [65] that upon convergence, the KKT con-

ditions [27] are satisfied and so the convergence point is indeed the

optimal solution to the original problems.

4.3.3 Large Network Simulation

SIR optimization in a large network is demonstrated through the

3GPP2 simulator. The model consists of 19 cells arranged in a three

ring hexagonal structure. Each cell is divided into three identical 120

degree sectors for a total of 57 BSs as depicted in Figure 4.2. Each

realization of the network consists of 10 randomly selected MSs in each

BS, for a total of 570 MSs.

The convergence of the LSPC algorithm 4.1 is illustrated in Fig. 4.3.

The QoS metric βi used is βi = d log(1 + cγi), with equal allocation of

time-frequency resources across users within a sector. The algorithm

is initialized with a random positive load vector ℓ, and the step size is

taken as δ1 = 0.1. The interference limit in terms of the ROT factor,

the ratio of the total interference to noise, is set to 5, 10, and 15 dB,

in different experiments. Shown as a horizontal line is the global opti-

mum numerically attained by centralized computation. Each iteration

consists of one power control update and is typically of the order of

milliseconds as discussed in Chapter 10. It can be seen that the QoS

from the distributed algorithm is almost identical to the optimal QoS

within about 25, 35, and 50 iterations for ROT=5, 10, and 15dB, re-

spectively. To compare timescale of convergence, the DPC algorithm

with SIRs fixed at the optimal values (which is almost impossible to do

in practice) is also plotted for each ROT and with random initialization

of the powers. Convergence time of the DPC algorithm is about 15, 25,
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Fig. 4.2 Hexagonal cellular network for the uplink simulation consisting of 19 cells with
wrap around. Cells are three-way sectorized for a total of 57 BSs. Cell radii are normalized
to unity. Path loss accounts for log-normal shadowing, and angular antenna pattern. Plotted
are the locations of 300 random MSs connected to the lower sector of the center cell. Other
MSs are not shown explicitly.

and 50 iterations for ROT=5, 10, and 15dB, respectively, similar to

the convergence time for the distributed optimal SIR algorithm. This

shows that the speed of convergence of the LSPC algorithm is almost

as fast as the standard power control for fixed SIR. As expected, the

convergence time increases with the ROT limit. However, the conver-

gence times remain reasonable with the practical ROT limits of 6 to

10 dB typically used in commercial networks.

Figure 4.4 shows the cumulative distribution of the user capacities

at the final iteration of Algorithm 4.1. As discussed in Chapter 1, one of

the desirable features of utility maximization is that this QoS distribu-

tion, and the efficiency-fairness tradeoff, can be varied by appropriately

adjusting the utility. Figure 4.4 shows the resulting QoS distribution

for the pseudo-linear utility, log utility, and the α-fair utilities with

α = 2 and α = 3 all with the same realization of MS distribution in

the network. It can be seen that the variance in the MS’s QoS with the

{2, 3}-fair distributions is significantly smaller than with the logarith-

mic and pseudo-linear utility functions. Consequently, fewer MSs are
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Fig. 4.4 User capacity distribution after 50 iterations of the distributed algorithm under
different utility functions: α-fair distribution with α = 1, 2, 3, and the pseudo-linear utility.

seen with either very high or very low achievable capacities. In general,

larger α enhances the fairness of SIR assignment while reducing the
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spectral efficiency in terms of b/s/Hz.

4.4 Open Problems

Two major open problems have already been discussed in the last sec-

tion. One is problem (4.1) when the feasibility set is non-convex or the

utility function non-concave. Two is the problem of joint power control

and scheduling, where the equilibrium is not a fixed SIR assignment

but a limit cycle of link activation schedule. These will be discussed

further in Chapter 9.

Unlike the DPC algorithm where transient behaviors have been

studied, SIR evolution before equilibrium in the LSPC algorithm has

not been explored.

In all of the remaining chapters of this monograph, there is a di-

chotomy of problem formulations: those with fixed SIR and total power

minimization as the objective function, and those where SIR is part of

the optimization variables and total utility function is the objective

function. We will see that in most cases, the general formulations with

variable SIR remain open.
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Opportunistic Power Control

5.1 Introduction

Power control algorithms can exploit channel variations to improve

the performance and fairness. This is achieved by opportunistically

leveraging the instantaneous or past information of channel quality

obtained through measurement and feedback. Work on opportunistic

power control in both uplink and downlink include [109, 140, 171, 98,

200, 74, 99, 6, 152, 153, 171, 98, 200, 99, 6, 61].

The key idea of opportunistic power control is to spend more power

and increase rate as channel quality improves, and to avoid using the

channel below an optimized cutoff. For example, in uplink transmis-

sion in a frequency-flat fading channel, in order to maximize the total

throughput, only a set of user with the overall best channel gain should

be allowed to transmit its data at each time slot [91].

Opportunistic power control can also bring benefits to a network

where the users typically belong to two priority groups, e.g., voice

(higher priority) and data (lower priority) transmission in cellular net-

work, or in cognitive radio network. Users in the higher priority group

always get to maintain their SIR requirement, but due to the varying

61
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channel conditions and user mobility, users in the lower priority group

get to share the channel and transmit opportunistically without violat-

ing the SIR requirement of the users with higher priority [157, 18].

5.2 Opportunistic Throughput Maximization in Uplink

In this section, two opportunistic power control schemes to maximize

the total throughput in the network are presented based on [91, 101].

First, the authors in [91] consider a model for a fading channel with

full channel state information and no interference among users [91]. The

problem of maximizing the average throughput for all users is given as

[91]:

maximize E

[

∑

i log
(

1 + piGi

ni

)]

subject to E [
∑

i pi] ≤ pavg

variables p,

(5.1)

where the expectation in (5.1) is taken with respect to the channel

fading statistics, Gi is the direct channel gain, ni is Gaussian noise, nd

pavg is the average power budget for all users.

The optimal strategy to (5.1) is such that the user with the largest

channel gain is first selected, i.e., select User k = arg maxi Gi. The

resulting optimal power allocation for User k is given by

p∗ =

[

1

λ
− ni

maxi Gi

]+

(5.2)

where λ (the Lagrange multiplier corresponding to the constraint in

(5.1)) is chosen to satisfy the average power constraint. As noted in

[91], (5.2) can be geometrically interpreted as water-filling over time.

More information-theoretic discussions on related topics can be found

in [63].

Using a different channel model, the authors in [101] consider an

opportunistic power control scheme for throughput maximization in an

uplink channel that is interference-limited. The power control algorithm

instructs a transmitter to increase its power when the channel is good

and to decrease its power when the channel is bad, using a proposed
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metric called the signal-interference product and defined as follows:

ζi = pi

∑

j 6=i Gijpj + ni

Gii
. (5.3)

The transmit power is then adjusted according to the following algo-

rithm [101].

Algorithm 5.1 (Opportunisitc Power Control [101]).

pi[t + 1] = ζi
SIRi[t]

pi[t]
, ∀i. (5.4)

The key advantage of the power control scheme in [101] is that all users

update their power distributively. Furthermore, their scheme is shown

to co-exist with users that use the DPC algorithm in Chapter 2.2. Other

extensions include cases where maximum power constraint is imposed

and soft handoff is executed distributively in [101], and opportunistic

throughput maximization with fairness constraints in [102].

5.3 Opportunistic Utility Maximization in Downlink

In this section, opportunistic power control that maximizes the total

utilities on the downlink of a cell is considered [171, 98]. In each time-

slot, users are selected for transmission and the transmit power for each

selected user is determined. The base-station has a maximum transmit

power limit PT .

5.3.1 Proportional fair scheduling

Consider the following case first. At each time-slot, BS transmits to

at most one user, and each user sends a Data Rate Control (DRC)

message to BS that indicates the rate at which BS can transmit to that

user if it is selected. We also denote the amount of data that can be

transmitted to the ith user in time-slot t by DRCi[t]. The Proportional

Fair Scheduling (PFS) algorithm is an algorithm that schedules the

channel for the user that maximizes [19, 171]:

DRCi[t]

ri[t]
(5.5)
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where ri[t] is the exponentially smoothed average of the service rate

received by the ith user, and is updated according to

ri[t + 1] =

{

(1 − θ)ri[t] + θDRCi[t], if i = arg maxj
DRCj [t]

rj [t]
,

(1 − θ)ri[t], otherwise.
(5.6)

The PFS algorithm favors users that have a larger DRC value, which

helps to keep the system throughput high. However, if the ith user is

not receiving any service, the value of 1/ri[t] increases, making PFS

more likely to serve the ith user in the next time-slot. It is shown

in [110, 171] that for users with infinite backlogs, the PFS algorithm

maximizes the sum of the logarithms of the long-run average data rates

provided to the users, i.e.,
∑

i log ri, over all feasible scheduling rules.

This objective is known as the proportional fair metric [110, 171].

5.3.2 General utility-based scheduling

In [98], the channel is allowed to vary across time-slots and is modeled

as a stationary stochastic process. In a time-slot, the system is in one

of the possible network states. Each state takes a value from a finite

set {1, 2, · · · , S}. Denote the probability that the system is in state s

by πs. In [98], the SIR for the ith user when the system is in state s is

defined as

γs,i(ps) =
Gs,ips,i

ϑGs,i(
∑

j ps,j − ps,i) + ns,i
, (5.7)

where ps is the power allocation vector for all users, ps,i is the power

allocation for the ith user, Gs,i is the path gain from the base-station

to the ith user, ϑ ∈ [0, 1] is a constant to model the non-orthogonality

factor in the CDMA code, and ns,i is the background noise and inter-

cell interference at the ith user, all defined when the system is in state

s.

Similar to Chapter 4, a utility function Us,i is associated with the

ith user at state s. Following [98], the problem with general constraints

is first presented and then some special cases are highlighted in de-

tails. The opportunistic power scheduling problem is formulated as a
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stochastic optimization problem:

maximize
∑S

s=1 πs
∑N

i Us,i(γs,i(ps,i))

subject to
∑S

s=1 πsgs,i(ps) ≥ ci, ∀i
∑

i ps,i ≤ PT

variables ps, ∀s

(5.8)

where ci is a given constant for all i, ps = (ps,1, ps,2, · · · , ps,N ),

Us,i(ps,i)
△
= Ui(γs,i(ps,i)), and πs is the probability that the system is

in state s. In this problem,
∑S

s=1 πsgs,i(ps) ≥ ci could either be a

performance or fairness constraint for the ith user, e.g., the generic

function gs,i is a performance measure such as the total rate achieved

by the ith user. Following [98], we assume that Us,i(ps,i) is a strictly

concave function and gs,i(ps) is concave, continuous, and bounded.

Since BS should always transmit at its maximum transmission

power, i.e.,
∑

i ps,i = PT , we rewrite γs,i(ps) in (5.7) as

γs,i(ps,i)
△
=

Gs,ips,i

ϑGs,i(PT − ps,i) + ns,i
.

In (5.8), if the underlying probability distribution for the state of

the system (i.e., πs, ∀s) is known, the problem is equivalent to a deter-

ministic convex optimization problem. However, in practice, no such

a priori knowledge can be obtained. An opportunistic power control

algorithm without the knowledge of the underlying probability distri-

bution is given in the following. For a given state s, define the set

of power vector that satisfies the total power constraint in (5.8) as

Xs = {(ps,1, ps,2, · · · , ps,N ) | , 0 ≤ ps,i ≤ PT , ∀ i}.

Algorithm 5.2 (Opportunistic Power Control [98]). (1)

ps(µ) = arg max
ps∈Xs

{
∑

i

Us,i(ps,i)+µigs,i(ps)}, s = 1, 2, · · · , S.

(5.9)

(2)

̺i[t] = gs[t],i(ps[t](µ[t])) − ci, ∀ i, (5.10)

(3)

µi[t + 1] = [µi[t] − δ[t]̺i[t]]
+, ∀ i. (5.11)
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The development of Algorithm 5.2, through Lagrange duality and

stochastic subgradient algorithm, is summarized based on [98]. First,

consider the Lagrangian associated with (5.8):

L(µ,p) =

S
∑

s=1

πs

∑

i

Us,i(ps,i) +
∑

i

µi(

S
∑

s=1

πsgs,i(ps) − ci), (5.12)

where µ = (µ1, µ2, · · · , µN ). Then, the dual problem of (5.8) is defined

as:

min
µ≥0

F (µ)

where

F (µ) = max
p∈X

L(µ,p) (5.13)

and X = {(p1,p2, · · ·pS) | ps ∈ Xs, s = 1, 2, · · · , S}.
For a given µ, the problem is separable in s and, thus, p(µ) maxi-

mizes L(µ,p) if and only if p(µ) = (p1(µ),p2(µ), · · · ,pS(µ)), where

ps(µ) = arg max
ps∈Xs

{
∑

i

Us,i(ps,i) + µigs,i(ps)}, s = 1, 2, · · · , S. (5.14)

For a given µ and system state s, the problem in (5.14) is a determin-

istic convex optimization problem.

Next, the dual problem (5.13) is solved in [98]. Note that F (µ) is a

convex function of µ and, thus, (5.13) is a stochastic convex optimiza-

tion problem. A stochastic subgradient method is used in [98], which

is defined by the following iterative process:

µi[t + 1] = [µi[t] − δ[t]̺i[t]]
+, ∀ i, (5.15)

where ̺i[t] is a random variable that represents the stochastic in-

formation of the first order gradient of F (µ). Let the sequence

of solutions, µ[0],µ[1], · · · ,µ[t], be generated by (5.15) and ̺[t] =

(̺1[t], ̺2[t], · · · , ̺N [t]) be chosen such that

E{̺[t] | µ[0],µ[1], · · · ,µ[t]} = ∂µF (µ[t]),

where ∂µF (µ[t]) is a subgradient of F (µ) with respect to µ at µ = µ[t].

Then, the vector ̺[t] is called a stochastic subgradient of F (µ) with
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respect to µ at µ = µ[t]. In this case, by solving (5.15), µ[t] converges

to µ∗, the optimal solution of (5.13), with probability 1, if the following

conditions are satisfied:

E{||̺[t]||2 | µ[0],µ[1], · · · ,µ[t]} ≤ c (5.16)

for a constant c, and time-varying stepsizes satisfy the following stan-

dard conditions:

δ[t] ≥ 0,

∞
∑

t=0

δ[t] = ∞, and

∞
∑

t=0

(δ[t])2 < ∞. (5.17)

By Danskin’s Theorem [23], ∂µF (µ) is obtained by

∂µF (µ) = (d1, d2, · · · , dN ), (5.18)

where

di =

S
∑

s=1

πsgs,i(ps(µ)) − ci, ∀i,

and ps(µ) = (ps,1(µ), ps,2(µ), · · · , ps,N(µ)) is a solution of the problem

in (5.14). Hence, it can be shown that

̺i[t] = gs[t],i(ps[t](µ[t])) − ci, ∀i, (5.19)

where s[t] is an index of the system state at iteration t.

Finally, by the assumption that gs[t],i is bounded, the condition in

(5.16) is satisfied, and the algorithm in (5.15) converges to the optimal

solution that solves (5.13). Since the primal problem (5.8) has no dual-

ity gap, the algorithm also converges to the optimal power scheduling.

5.3.3 Special cases

Finally, some applications of the above opportunistic utility maximiza-

tion framework [98] are illustrated for problem with separable con-

straints. When the performance or fairness constraint gs,i(ps) for each

user i can be separable, i.e., the constraint can be represented as

gs,i(ps) =
∑

j

ai,jg
j
s,i(ps,j), ∀i, (5.20)

where ai,j is a given weight on each gj
s,i(ps,j) to reflect priority.
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Problem (5.14) can be rewritten by

ps(µ) = arg max
ps∈Xs

{
∑

i

Ũs,i(µ, ps,i)}, (5.21)

where Ũs,i(µ, ps,i) is an adjusted utility function of the ith user.

Ũs,i(µ, ps,i) = Us,i(ps,i) +
∑

j

µjaj,ig
i
s,j(ps,i). (5.22)

For a given µ and system state s, Ũs,i(µ, ps,i) for user i can be rep-

resented as a function of its own power allocation, as in the original

utility function. Hence, by solving (5.21), the power allocation maxi-

mizes the sum of the adjusted utilities, Ũs,i(µ, ps,i)’s, of all users with

a constraint only on the total transmission power limit of BS.

Utility-based fairness constraint. Now consider an opportunis-

tic power scheduling problem in which the ith user is guaranteed to

achieve at least a fraction υ̃i of the expected total system utility. This

constraint is formulated as

S
∑

s=1

πsUs,i(ps,i) − υ̃i

S
∑

s=1

πs

∑

j

Us,j(ps,i) ≥ 0,

where υ̃i ≥ 0, and
∑

i υ̃i ≤ 1. Hence, ci = 0 and gs,i(ps) is separable

and represented by (5.20) with

ai,j =

{

1 − υ̃i, if i = j

−υ̃i, otherwise

and

gj
s,i(ps,j) = Us,j(ps,j).

Again, from (5.22), the adjusted utility function

Ũs,i(µ, ps,i) = (1 + µi −
∑

j

µjwj)Us,i(ps,i),

is obtained by multiplying a weight factor 1 + µi −
∑

j µjwj to the

original utility function. Further, from (5.19) the stochastic subgradient

is obtained as

̺i[t] = Us[t],i(ps[t],i(µ[t])) − υ̃i

∑

j

Us[t],j(ps[t],i(µ[t])),
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which is the difference between the achieved utility of the user and its

constraint based on power allocation in the current time-slot.

Resource Based Fairness Constraint Suppose the ith user is

guaranteed to consume power by an amount that is at least υi fraction

of the total transmission power:

S
∑

s=1

πsps,i − υi

S
∑

s=1

πs

∑

j

ps,j =

S
∑

s=1

πsps,i − υiPT ≥ 0,∀i, (5.23)

where υi ≥ 0 and
∑

i υi ≤ 1. Hence, ci = 0 and gs,i(ps) is separable

and represented by (5.20) with

ai,j =

{

1 − υi, if i = j

−υi, otherwise

and

gj
s,i(ps,j) = ps,j.

From (5.19) and (5.22), the adjusted utility function is obtained as

Ũs,i(µ, ps,i) = Us,i(ps,i) + µips,i,

which is achieved by adding an offset value µips,i to the original utility

function and the stochastic subgradient is obtained as

̺i[t] = ps[t],i(µ[t]) − υiPT ,

i.e., the difference between the amount of power allocated to the user

in the current time-slot and its constraint value.

5.4 Open Problems

In opportunistic power control, feedback of both channel state and re-

source allocation is crucial in selecting a set of users to transmit. For

example, the opportunistic power control algorithm in [91] is that it

requires the prior knowledge of a Lagrange multiplier λ that is asso-

ciated with the average power constraint. Obtaining λ requires some

form of long-term estimation for the channel state information. An

open problem is to characterize the impact of limited, delayed feedback,

or inaccurate, out-of-date estimation, on opportunistic power control,
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such as the suboptimality gap thus caused. Suboptimality gap can also

arise due to nonconvex utility functions of users, e.g., in opportunis-

tic power control in [98]. The problem formulation then becomes non-

convex, which is in general difficult to solve as we will see throughout

the monograph.
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Non-cooperative Power Control

6.1 Introduction

The interests of MSs are not aligned: they compete for limited radio

resources. We have assumed that they will update their powers for

social welfare maximization thus far in the monograph, but they may

not have to. The interests of the wireless network operator could also

be in conflict with those of end users. In both cases, non-cooperative

power control problems need to be formulated, solved, and analyzed as

games. In these formulations, summarized in this chapter, each game

consists of three tuples: a set of players indexed by i, a selfish utility

function Ui for each player, and a set of feasible strategy space Ai for

each player.

When a problem is formulated and solved as a non-cooperative game

[112], game theory provides standard procedures to study its equilibri-

ums, such as existence, uniqueness, stability under various strategies,

and optimality gap. The most frequently used concept of equilibrium in

game theory is Nash equilibrium, which is defined as a set of individual

policies at which no player may gain by unilaterally deviating [50]. A

Nash equilibrium power allocation p∗ is one where no MS has incentive

71
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Fig. 6.1 Illustration of a Nash equilibrium for a two-player power control game.

to unilaterally change its power:

Ui(p
∗
i ,p

∗
−i) ≥ Ui(pi,p

∗
−i), ∀pi ∈ Ai (6.1)

where p−i denote the vector of powers of all MSs other than MS i.

The power control problems discussed in Chapter 2 and Chapter

4 can also be reformulated and analyzed in the game-theoretic frame-

work. With fixed SIR targets, the authors in [9, 170] show that the clas-

sical power control problems studied by [57, 197, 17] can be modeled

as noncooperative games with submodularity structure [162, 9, 170].

Let Ai(p−i) be the set of feasible power policies for MS i that depends

on power allocations of all other MSs. A game is submodular if all sets

Ai(·) are compact and descending in all values of their argument

p−i < p̃−i =⇒ Ai(p−i) ⊃ Ai(p̃−i). (6.2)

It has been shown that the best-response strategy of this game is equiv-

alent to the DPC algorithm discussed in Chapter 2 [9, 170]. On the

other hand, when variable SIRs are considered, individual utility func-

tions can be assigned to MSs measuring transmission power they con-

sume and the SIR that they attain. Each MS is then assumed to decide
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on his own transmission power level so as to maximize his utility. Possi-

ble utility functions and their properties for both voice and data sources

have been investigated in detail in [49, 117].

Continuing our discussion on utility function in Chapter 1, we will

see that a variety of selfish utility functions have been used in non-

cooperative power control formulations. For example, in [162], utility

is defined for single carrier systems such that each MS seeks to min-

imize the distance between its achieved SIR and its specified target.

In [84], linear and exponential utility functions based on carrier SIR

are proposed for multi-carrier systems. In both work, the existence of

a Nash equilibrium is proven under certain assumptions on the util-

ity functions, and an algorithm for solving the noncooperative power

control game suggested. To take transmit power consumption also into

account, in [145], the authors introduce a utility function defined as the

ratio of throughput to transmit power. This result has since been gen-

eralized in [114] to multi-carrier CDMA networks, in [120, 115, 28] to

study the cross-layer problem of joint power control and modulation-

receiver design, and in [118, 119] to allow for QoS constraints (e.g.

delay and average rate) and to quantify the tradeoffs between energy

efficiency and QoS metrics. These utility functions have also been ap-

plied to wireless ad-hoc networks [77, 76] and ultrawideband networks

in frequency-selective multi-path environments [15, 14].

Nash equilibrium are often suboptimal in total utility attained [10].

This optimality gap due to non-cooperation among MSs motivates pric-

ing mechanisms to align selfish interests [173] to social welfare maxi-

mization. This approach is complementary to the one where a global

optimization is first formulated and decomposition techniques are then

used to derive a distributed algorithm. Both approaches eventually

hope to arrive at an optimal and distributed solution.

A pricing scheme is first studied in [143] using submodular games. It

quantifies the intuition that a noncooperative power control game with

a pricing scheme is superior to one without pricing, in terms of fair-

ness and algorithm convergence. Other works studying pricing include

[187, 165, 8, 166, 41, 182, 181, 97, 96] for different utility functions

and network models. In particular, in [8, 166], a cost function is in-

troduced as the difference between the pricing of transmission power
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and user-centric utility functions, and the existence of a unique Nash

equilibrium is established. Later, these results are extended to a more

general scenario, where a network-centric pricing scheme is considered

and each MS has the freedom to choose its own BS [96, 97]. This joint

power control, network pricing and BS assignment problem has also

been considered in [55] as a hybrid non-cooperative game.

This chapter provides an overview of the above results. In each sec-

tion, when a design problem is formulated as a game, the following com-

mon set of questions will be considered: Does the game have a steady

state (existence of Nash equilibrium)? What are those steady states

(characterization of Nash equilibrium)? Is the steady state(s) desirable

(optimality of Nash equilibrium)? When will the game dynamics reach

the steady state (convergence of Nash equilibrium), especially under

the best response strategy where each MS adjusts its variable by max-

imizing selfish utility under the assumption that no other MSs would

change?

6.2 Fixed-SIR Power Control as Game

The power control problem with fixed SIRs discussed in Chapter 2 can

be reformulated and analyzed within the game-theoretic framework,

where each MS decide dynamically on his own transmission power level

so as to minimize it.

The power control problem in Chapter 2 is repeated here:

minimize
∑

i pi

subject to SIRi(p) ≥ γi, ∀i

variables p.

(6.3)

First observed that although power control decisions are coupled

due to the SIR constraints, total power can be computed so as to min-

imize the power of each MS separately while satisfying the SIR con-

straints. Therefore, problem (6.3) can be viewed as a noncooperative

game: the utilities (i.e., transmit powers) are each assigned to one MS,

and maximization subject to SIR constraints is performed by each MS.
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In this game, each MS solves the following selfish optimization:

minimize pi

subject to pi ∈ Ai(p−i)

variable pi

(6.4)

where Ai(p−i) is the set of feasible power policies for MS i that depends

on the power allocations p−i of all other MSs, i.e.

Ai(p−i) = {pi ≥ 0 : SIRi(pi,p−i) ≥ γi}. (6.5)

It can be verified that

p−i < p̃−i =⇒ Ai(p−i) ⊃ Ai(p̃−i), (6.6)

i.e., the policy sets Ai(·) are submodular [9]. The power control al-

gorithms described in Chapter 2 can be viewed as submodular games

defined by (6.4) and (6.5) with coupled policy sets, where the set of

feasible transmit powers for each MS depends on the powers of all other

MSs. The best response strategy of MS i gives

p∗i = γi





∑

j 6=i

Gijpj + n



 (6.7)

recovering the DPC algorithm in Chapter 2. The next result naturally

follows:

Theorem 6.1. [9] For the power-control submodular game defined by

(6.4) and (6.5), a unique Nash equilibrium exists. Further, starting

with any feasible power allocation, a sequence of best-response power

updates defined by (6.7) monotonically converges to the equilibrium.

This game-theoretic approach provides an alternative angle to the

approach of fixed-point iteration for standard interference functions

in Chapter 2. The result has also been generalized to the case where

perfect channel state information is not available through a model of

min-max game [68]. When variable SIR and maximum transmission

power constraints are considered, other power control games could be

formulated by assigning more complicated utility functions to individ-

ual MSs. For example, one possible way to handle the variable-SIR case
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is to formulate a game with no power constraints, but in which the ob-

jective of each MS is to minimize a specific cost function incorporating

both SIR and transmit power. This approach will be discussed in the

next section.

6.3 Linear Pricing Game

For power control with variable SIRs, a cost function can be intro-

duced as the difference between the price of transmission power and

data rates. For example, authors in [8] define a utility function as the

difference between a linear pricing function proportional to transmitted

power and a logarithmic function of SIR:

Ui(pi,p−i) = µi log(1 + γi) − λipi, (6.8)

with pricing parameters λi and µi.

Consider a single-cell with N MSs, where the cost function is defined

by (6.8) and the SIR for MS i is given by

γi(pi,p−i) = D
Giipi

∑

j 6=i Gijpj + n
. (6.9)

where D > 1 is the spreading gain of a CDMA system [8] 1. The MS

problem for this game is then formulated as

minimize Ui(pi,p−i)

subject to pi ∈ Ai

variable pi

(6.10)

where Ai = {pi ≥ 0} is the set of non-nonnegative power allocations.

Taking the derivative of the cost function (6.8) with respect to pi , the

first-order necessary condition can be obtained as follows:

∂Ui(pi,p−i)

∂pi
= λi −

µiDGii
∑

j 6=i Gijpj + DGiipi + n
= 0 (6.11)

At a Nash equilibrium, equation (6.11) holds for i = 1, . . . , N . It is easy

to see that the second derivative is positive, and hence the Nash equi-

librium, if it exists, is the unique point minimizing the cost function.

1 We have suppressed spreading gain by absorbing it into the Gii term when talking about
CDMA systems in other chapters, but in this chapter certain results are best illustrated
by making spreading gains explicit in the formula of SIR.
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Therefore, based on (6.11), the best response of MS i is derived as

p∗i =
1

Gii





µiGii

λi
− n

D
− 1

D

∑

j 6=i

Gijpj





+

. (6.12)

The best response in (6.12) depends on both user-specific parameters,

like µi and λi, and network parameters, such as D and the total inter-

ference received at the BS. A parallel update algorithm for computing

the Nash equilibrium is proposed in [8].

Algorithm 6.1 (Best Response for Linear Pricing Game [8]).

(1) BS measures interference qi[t] =
∑

j 6=i Gijpi[t] + n, and feed-

backs it to MSs.

(2) Each MS update power according to (6.12):

pi[t + 1] =
1

Gii

[

µiGii

λi
− 1

D
qi[t]

]+

The convergence of Algorithm 6.1 and the uniqueness of its equilib-

rium solution is characterized by the following theorem.

Theorem 6.2. [8] The power game by (6.10) admits a unique Nash

equilibrium. Algorithm 6.1 is globally stable and converges to the

unique equilibrium solution from any feasible starting point p[0] if the

spreading gain is sufficiently large: N−1
D < 1.

6.4 Energy-efficiency Utility Game: Single-carrier

The tradeoff between higher throughput and higher energy expenditure

can also be quantified by defining a utility function that depends on

the ratio, rather than the difference, between throughput and energy

[64, 117], i.e.,

Ui(pi,p−i) =
Ti(p)

pi
. (6.13)
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This utility has units of bits/Joule. It measures the total number of

reliable bits transmitted per Joule of energy consumed and is particu-

larly suitable for applications where saving transmit power is critical.

Throughput Ti(p) in equation (6.13) represents the net number of in-

formation bits that are transmitted without error per unit time, instead

of the capacity-formula based expression. For a single-carrier CDMA

uplink, it can be expressed as [145]

Ti(p) =
Dt

Df
rif(γi) and γi = D

Giipi
∑

j 6=i Gijpj + n
(6.14)

where D is the spreading gain of the CDMA system; Dt and Df are the

number of information bits and the total number of bits in a packet,

respectively; ri and γi are the transmission rate and the SIR for MS

i, respectively; and f(γk) is the Packet Success Rate (PSR) function,

i.e., the probability that a packet is received without an error. The

PSR function is assumed to be increasing, continuous, and S-shaped
2 with f(∞) = 1 and f(0) = 0. It has be shown that for a PSR

function satisfying these assumptions, the utility function in (6.13) is

a quasiconcave function 3 of the MS transmit power [144]. This is also

true if the throughput in (6.14) is replaced with an increasing and

concave function of γi.

The problem of maximizing the sum of energy-efficient utilities

(6.13) can be viewed as a noncooperative game. In the best response

strategy, each MS i optimizes its own utility Ui(pi,p−i), given the trans-

mission powers p−i of other MSs fixed. This MS problem is formulated

as follows

maximize Ui(pi,p−i)

subject to pi ∈ Ai

variable pi

(6.15)

where Ai = {0 ≤ pi ≤ pm
i } is the set of feasible power allocations

for MS i. It is shown in [145] that the best response solution can be

2 An increasing function is S-shaped if there is a point above which the function is concave,
and below which the function is convex

3 The function f defined on a convex set S is quasiconcave if every superlevel set of f is
convex, i.e., {x ∈ S|f(x) ≥ a} is convex for every value of a.
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obtained by truncating the solution of an unconstrained optimization,

i.e.

p∗i = min{p̃i, p
m
i } (6.16)

where p̃i =argmaxpi≥0 Ui(pi,p−i) is the unconstrained maximizer of

the utility in (6.13). The property of Nash equilibrium is summarized

in following theorem.

Theorem 6.3. [145] The power game by (6.15) has a unique Nash

equilibrium. At the equilibrium, a MS either attains the utility-

maximizing power allocation or it fails to do so and transmits at max-

imum power pm
i .

This result simplifies the computation of the best response solution

and leads to the an efficient update algorithm below for computing the

Nash equilibrium. It is shown [145] that the algorithm converges to the

unique equilibrium solution from any feasible starting point.

Algorithm 6.2 (Single-carrier energy-efficient power control [145]).

(1) Each MS computes the unconstrained maximizer p̃i[t] for his

individual utility Ui in (6.13).

(2) Each MS updates power according to (6.17), i.e.,

pi[t + 1] = min{p̃i[t], p
m
i }

.

This game-theoretic approach with energy-efficient utility functions

has also been extended in [116] to multiuser receivers, in [114, 201] to

multi-carrier systems, in [202] to CDMA systems with multiple anten-

nas, and in [15, 14] to ultrawideband systems.
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6.5 Energy-efficiency Utility Game: Multi-carrier

Consider the uplink of a synchronous multi-carrier CDMA data net-

work with N MSs, L carriers, and processing gain D (for each carrier).

The carriers are assumed to be sufficiently far apart so that inter-carrier

interference is negligible. [44]. At the transmitter, the incoming bits for

MS i are divided into L parallel streams and each stream is spread

using the spreading code of MS i. The L parallel streams are then sent

over the L (orthogonal) carriers. If random spreading sequences are

used, the output SIR for the ℓth carrier of the ith MS with a matched

filter receiver is given by

γℓ
i (p

ℓ
i ,p

ℓ
−i) = D

pℓ
iG

ℓ
ii

∑

j 6=k pℓ
jG

ℓ
ij + nℓ

(6.17)

where Gℓ
ij is the path gain for the ℓth carrier of MS i.

Then, similar to the single carrier case discussed in Section 6.4, a

non-cooperative game in which each MS chooses its transmit powers

over the L carriers to maximize its overall energy-efficient utility can be

formulated. Let pi = [p1
i , . . . , p

L
i ] be the power allocation vector of MS

i on the L carriers. The utility function for MS i is defined as the ratio

of the total throughput to the total transmit power for the L carriers,

i.e.,

Ui(pi,p−i) =

∑L
ℓ=1 T ℓ

i
∑L

ℓ=1 pℓ
i

, (6.18)

where T ℓ
i is the throughput achieved by MS i over the ℓth carrier, and

is given by T ℓ
i = Dt

Df
rif(γℓ

i ). Let Ai = {pℓ
i ,∀ℓ : 0 ≤ pℓ

i ≤ pm} be the set

of feasible power allocations for MS i. The resulting non-cooperative

game can be expressed as the following maximization problem:

maximize Ui(pi,p−i)

subject to pi ∈ Ai

variables pi.

(6.19)

If equal transmission rates for all MSs are assumed, (6.19) can be sim-
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plified to

maximize
P

ℓ f(γℓ
i )

P

ℓ pℓ
i

subject to pi ∈ Ai

variables pi.

(6.20)

Compared to the non-cooperative power control game in the single

carrier case, there are two difficulties to the problem (6.20). One is that

power allocation strategies of MSs in the multi-carrier case are vectors

(rather than scalars) and this leads to an exponentially larger strategy

set for each MS. Secondly, the energy efficiency utility function is now

non-quasiconcave. This means that many of the standard theorems

from game theory cannot be used here, even for the existence of Nash

equilibrium.

To understand the structure of the best response of MS i in this

game, it has been shown in [114] that, when power allocation of other

MSs are fixed, the utility maximization of a single MS (6.20) can be

solved by the following optimal solution. Let γ∗ denote the unique

(positive) solution of f(γ) = γf ′(γ).

Theorem 6.4. [114] For all linear receivers and with transmit powers

of all other MSs fixed, the utility function of MS i, given by (6.18), is

maximized when

pℓ
i =

{

pLi,∗
i for ℓ = Li

0 for ℓ 6= Li
, (6.21)

where Li = arg minℓ pℓ,∗
i with pℓ,∗

i being the transmit power required

by MS i to achieve an output SIR equal to γ∗ on the ℓth carrier, or pm

if γ∗ cannot be achieved.

This theorem states that the utility for MS i is maximized when

the MS transmits only over its best carrier such that the achieved SIR

at the output of the uplink receiver is equal to γ∗. The best carrier is

defined as the one that requires the least amount of transmit power to

achieve γ∗ at the output of the uplink receiver. A set of power vectors,

p∗
1, · · · ,p∗

N , is a Nash equilibrium if and only if they simultaneously

satisfy (6.21).
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For the existence and uniqueness of Nash equilibriums, it has been

shown in [114] that, depending on the set of channel gains, the proposed

power control game may have no equilibrium, a unique equilibrium, or

more than one equilibrium. The following theorem helps identify the

Nash equilibrium (when it exists) for a set of given channel gains and

matched filter receiver.

Theorem 6.5. [114] A necessary condition for MS i to transmit on

the carrier ℓ at equilibrium is that

Gℓ
ii

G
(ℓ̃)
ii

>
Θn(ℓ)

Θn(ℓ̃)

Θ0, for all ℓ̃ 6= ℓ , (6.22)

where n(ℓ) is the number of MSs transmitting on the ℓth carrier and

Θn =
1

1 − (n − 1)γ∗

D

, n = 0, 1, · · · , N. (6.23)

When this condition is satisfied, the optimal transmit power for MS i

is given by pℓ,∗
i = γ∗

Gℓ
ii

nΘn(ℓ).

Based on (6.23), when the gain is sufficiently large: D > (N −
1)γ∗, it follows that 0 < Θ0 < Θ1 < Θ2 < · · · < ΘN with Θ1 = 1. For

each of the LN possible equilibria, the channel gains for each MS must

satisfy L − 1 inequalities similar to (6.22). Furthermore, satisfying a

set of N(L − 1) of such inequalities by the N MSs is sufficient for

existence of Nash equilibrium but the uniqueness is not guaranteed.

For example, for the case of N = L = 2, the four possible equilibria

can be characterized as follows.

• For both MSs to transmit on the first carrier at equilibrium,

a necessary condition is
G

(1)
11

G
(2)
11

> Θ2 and
G

(1)
22

G
(2)
22

> Θ2.

• For both MSs to transmit on the second carrier at equilib-

rium, a necessary condition is
G

(1)
11

G
(2)
11

< 1
Θ2

and
G

(1)
22

G
(2)
22

< 1
Θ2

.

• For MS 1 and MS 2 to transmit on the first and second

carriers, respectively, at equilibrium, a necessary condition

is
G

(1)
11

G
(2)
11

> Θ0 and
G

(1)
22

G
(2)
22

< 1
Θ0

.
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• For MS 1 and MS 2 to transmit on the second and first

carriers, respectively, at equilibrium, a necessary condition

is
G

(1)
11

G
(2)
11

< 1
Θ0

and
G

(1)
22

G
(2)
22

> Θ0.

A sequential, distributed algorithm is proposed in [114] to compute

a Nash equilibrium of this game. The algorithm is applicable to all

linear receivers including the matched filter, decorrelating and MMSE

detectors.

Algorithm 6.3 (Multi-carrier Energy-efficient Power Control [114]).

(1) Start with MS i = 1.

(2) Given the transmit powers of other MSs, MS i picks its best

carrier which requires the least amount of transmit power for

achieving γ∗.

(3) MS i transmits only on this carrier at a power level pℓ
i [t] such

that it achieves an output SIR equal to γ∗.

(4) Let i = i + 1 and consider the next MS.

(5) If i ≤ N then go back to step (2).

(6) Stop if the powers have converged; otherwise go to step (1).

This is a sequential best response algorithm. In particular, it is

sufficient for the MS to only know its own received SIRs on each carrier.

This information can for example be fed back to MS from BS.

It is clear that if the above algorithm converges, it will converge to a

Nash equilibrium. The question that remains to be answered is whether

or not the above algorithm converges whenever a Nash equilibrium

exists. In [114], it has been shown that for the two-MS two-carrier case,

Algorithm 6.3 converges to a Nash equilibrium when it exists. Tracing

the possible combinations of best response dynamics, convergence is

also proved for the case of two MSs and L carriers as well as for the

three-MS two-carrier case. In the case of multiple Nash equilibria, the

algorithm converges to one of the equilibria depending on the starting
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point. Properties of Nash equilibrium, such as the number of MSs on

each carrier, are also characterized in [114].

6.6 Game with Network Pricing and BS Assignment

Game models for power control can be further extended by adding the

network as an active player to the game. In this section, we survey

a joint game formulation for power control, network pricing and BS

assignment.

The following network pricing mechanism is proposed by [54] to

mediate between conflicting MS and network objectives: Each MS’s

objective is to maximize its net utility, while the network operator’s

objective is to maximize its revenue. Suppose the network charges MS

i proportional to its throughput Ti with a unit price λi. Let Ui be the

utility function for MS i as introduced in Section 6.4. Then the net

utility for MS i is defined by

Unet
i = Ui − λiTi (6.24)

where Ti is the throughput that depends on the PSR function intro-

duced in the last section. On the network side, the objective is to choose

the optimal unit price vector λ that maximizes the total revenue, i.e.,

U rev(λ) =
∑

i

λiTi. (6.25)

Consider the system model and utility function Ui introduced in

Section 6.4. Let σi denotes the index of the BS serving MS i. Taking

BS assignment into account, we have

Ui(σi, pi,p−i) =
Ti(σi, pi,p−i)

pi
=

(

Dt

Df
ri

)

f(γi)

pi
. (6.26)

Now |hσij |2 denotes the channel from MS j to BS σi. The SIR γi in

equation (6.26) depends on the BS-assignment and is given by

γi = SIRi(σi, pi,p−i) = D
|hσii|2 pi

∑

j∈Ci(σ) |hσij |2 pj + n
. (6.27)

where Ci(σ) is the set of MSs interfering with MS i under current BS

assignment σ.
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The joint power control, BS assignment, and network pricing prob-

lem can be modeled as game among MSs and the network. Let Si be

the set of allowable BSs that MS i can connect to. With the network

broadcasts unit price vector λ, each MS individually maximizes its net

utility, over two degrees of freedom: transmit power and BS assignment:

maximize Ui(σi, pi,p−i) − λiTi(σi, pi,p−i)

subject to σi ∈ Si

variables pi, σi

(6.28)

On the other side, network operator tries to find its highest revenue

by searching over all feasible price vector λ in some constraint set Λ:

maximize
∑

i λiTi(σi,p)

subject to λ ∈ Λ

variables λ

(6.29)

Solving the joint user-network game described by (6.28) and (6.29)

is difficult. So far, it is not even clear whether there exists a Nash

equilibrium for this game, although some heuristic algorithms seem to

solve the problem according to numerical experiments [55]. As a result,

previous work usually makes the assumption that the price vector λ

is known or given by a separate algorithm, and then focuses on Nash

equilibrium of the user game (6.28) only.

Solving Nash equilibrium for the joint BS assignment and power

control problem (6.28) is not trivial either. It is easy to see that an

exhaustive searching over all possible combination of BS assignments

and transmitter powers would be computationally intensive. The search

can be simplified by noting that the objective function in (6.28) is

monotonically increasing in λi, leading to the following result:

Theorem 6.6. [55] Given an interference vector p−k, the BS assign-

ment based on the net utility maximization (6.28) is equivalent to the

one based on maximizing SIR, i.e.,

σ∗
i = arg max

σi

Ui(σi,p) − λiTi(σi,p)

= arg max
σi

γi(σi,p). (6.30)
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Furthermore, the SIR maximization for MS i over the BS assign-

ment can be carried out independently of its power optimization. There-

fore, the user problem can be optimally solved by assigning the BS first,

followed by power control. The algorithm proposed in [55] is summa-

rized as follows.

Algorithm 6.4 (Joint Power Control and BS assignment [55]).

(1) MSs find the optimal BS assignment

σi[t + 1] = arg max
σi

γi(σi[t],p[t])

.

(2) Given the transmit powers of other MSs, each MS updates

its transmit power by

pi[t+1] = arg max
pi

Ui(σi[t+1], pi,p−i[t])−λiTi(σi[t+1], pi,p−i[t])

.

If Algorithm 6.4 converges, it achieves a Nash equilibrium of the

joint BS assignment and power control game, with equilibrium power

vector p∗ and BS assignment vector σ∗. The condition for the existence

of the Nash equilibrium is stated in the following theorem.

Theorem 6.7. [55] A unique Nash equilibrium vector exists for the

power-control game (6.28) if bit error rate BER(γ) decays exponentially

in SIR γ and the PSR function f(γi) is given by

f(γi) = [1 − 2BER(γi)]
Df . (6.31)

Given any fixed unit price vector λ, starting from any initial point,

Algorithm 6.4 always converges to a unique Nash equilibrium power

vector p∗ and BS assignment vector σ∗. The user-centric optimization

can be carried out by autonomous BS assignment and power control.
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6.7 Open Problems

Non-cooperative behaviors in cellular networks have not been exhaus-

tively formulated yet. Indeed, for almost all of the formulations in other

chapters of this monograph, game-theory and mechanism-design ques-

tions can be raised. For example, when the network is considered as an

active player who interacts with individual MSs and tries to maximize

its total revenue, a general class of joint user-network games can be for-

mulated. In the last section, the special case of joint power control, BS

assignment, and networking pricing is formulated. Now let Ti be a re-

source allocation for MS i, including power and other spatial-temporal-

spectral resources, and function φ(Ti) be a pricing policy adopted by

the network. The general user-network game can be formulated over

any set of feasible resource allocations and network pricing policies,
{

MSs : max
Ti

Ui(Ti) − φ(Ti), Network : max
φ(·)

∑

i

φ(Ti)

}

This general set of games, taking financial incentives of operator and

multiple degrees of freedom of MSs into account, is yet to be studied.

Even for existing formulations, the issues related to mixed strategy,

rather than pure strategy, and to mechanism design often remain open.





7

Joint PC and Beamforming

Starting with this chapter, we will incorporate additional degrees of

freedom that work together with power control (PC) in cellular net-

works. These include multi-antenna beamforming in this chapter, BS

assignment in the next chapter, and bandwidth allocation and schedul-

ing in Chapter 9. With non-convexity and more coupling in their for-

mulations, these joint optimization problems present new challenges to

the design of optimal and distributed algorithms.

7.1 Introduction

The use of multiple antennas provides an extra degree of freedom in

addition to power, spatial diversity can be leveraged by deploying mul-

tiple antennas at both transmitter and receiver. Due to hardware and

cost limitations at MS, linear beamforming with multi-antenna BS and

single-antenna MS has been considered as a compromise between per-

formance and complexity [29, 179, 71, 87, 149]. Such a system is also

referred to as a multiple-input-multiple-output (MIMO) system with

partial antenna cooperation, where cooperation is only allowed between

the BS antennas but not between the decentralized MSs. Fig.8.1 illus-

89
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trates a typical wireless cellular environment. Discussions in this chap-

ter focuses on joint power control and beamforming within a single cell,

although some of the results can be extended to multiple cells.

BS

User 1

User 2

User N

. . .

h1

h2

hN

Fig. 7.1 A single cell with multiple antenna at BS.

In the uplink, spatial diversity of multiple antennas is exploited by

independently adjusting beamforming vectors at the receiver. In the

downlink, the beamforming vectors act as linear pre-equalizers, spread-

ing the signals over the antenna array prior to transmission. Depending

on the availability of full channel information, beamforming problems

can be formulated in several different ways: In case the transmitter

has no knowledge of the channel information, [148, 178] show that, by

constructing random beam vectors and transmitting to the MSs with

the highest SIR, the achievable sum rate has the same scaling law as

the sum capacity for downlink broadcast channels when the number of

MSs is large. This approach is referred to as random (or opportunistic)

beamforming. It has since been generalized to beamforming with par-

tial channel information [192, 122, 159, 203, 78, 86, 191]. On the other

hand, when full channel information is available at the transmitter, the

beamforming vectors can be adjusted adaptively to minimize interfer-

ence and enhance SIR. One of the approaches is to invert the channel

through the beamforming vector to eliminate interference completely,

and it is referred to as the zero-forcing (ZF) beamforming approach
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[179, 180, 158, 190, 151]. The main drawback of the ZF beamforming

is its degraded performance in low SIR regime, since inverting the chan-

nel increases the need for more transmit power [22]. This motivates the

design of optimal beamforming vectors for a known MIMO channel,

which is the main subject of this chapter.

In uplink transmission, for a fixed power allocation, the SIR of all

MSs can be independently maximized by minimizing the respective

Minimum Mean Square Error (MMSE) between the received and the

transmitted signal. Thus uplink beamforming can be decoupled, such

that each MS performs an independent optimization of its own beam-

forming vector and the optimal solution is referred to as an MMSE

filter. However, the usage of beamforming impacts SIR, and therefore

on the optimal power allocation.

On the other hand, for fixed beamforming vectors, an overview of

power control techniques is given in Chapter 2 and 4. It was assumed

that the beamforming vectors are given by a separate algorithm that

either fixes the beamforming vectors for each MS, or alters the beam-

forming vectors according to a fixed pattern, or even adaptively changes

the beamforming vectors in response to some suitable feedback. For ex-

ample, the opportunistic beamforming mechanism in [178] changes the

beamforming vector in a fixed pattern so as to let every MS achieve

the optimal beamforming configuration at which its SIR is maximized.

This chapter considers the interaction between power control and

beamforming, and addresses their joint optimization [123, 52, 136, 24,

146, 45, 93]. For joint power control and beamforming, a distributed

algorithms is first proposed in [136]. The algorithm computes the trans-

mission powers and the beamforming vectors iteratively, such that a

target SIR is achieved for each link (if it is achievable) with minimal

transmission power. This work has been extended in several directions,

e.g., in [93], the nonconvex and globally coupled problem of joint beam-

forming and power control is considered to maximize the network-wide

utility as a function of attained SIR.

Downlink joint power control and beamforming, on the other hand,

is more complicated than uplink because transmit beamforming vec-

tors are coupled and must be optimized jointly. When nonorthogonal



92 Joint PC and Beamforming

transmission is allowed, the choice of one MS’s beamforming vector

may affect the crosstalk experienced by other MSs. For fixed SIR tar-

gets, a downlink joint power control and beamforming problem has

been solved in [135, 176, 141, 21, 22, 183]. Another result in [146] deals

with optimal joint power control and beamforming for max-min SIR

fairness. A key technique in the solutions of both the minimum-power

beamforming problem and the maximum-utility beamforming problem

is the idea of an uplink-downlink duality, which leverages the better-

understood structures in uplink beamforming for the downlink prob-

lem. This duality result states that, under the same power constraint,

the best achievable SIR region with joint transmitter beamforming and

power control is the same as that of an uplink channel with joint re-

ceiver beamforming and power control [24, 193, 177, 175, 176, 183].

The optimal beamforming vectors in the downlink is also the optimal

beamforming vectors in the uplink.

This chapter will first focus on joint power control and beamforming

in the uplink case, starting with fixed SIR then moving to variable

SIR. We will then present the uplink-downlink duality and discuss the

downlink case.

7.2 Uplink with Fixed SIR

Consider the uplink of a wireless cellular network with N MSs, each

equipped with 1 transmit antenna sending independent information to

a BS equipped with M receive antennas. Denote hσii as the M × 1

channel amplitude vector from MS i to its serving BS, indexed by σi.

Since this chapter focuses wireless networks with a single cell , all σi’s

are equal. The received signal at the BS given by

x =
N
∑

i=1

√
pihσiiui + z, (7.1)

where ui is an information symbol with unit power E |ui|2 = 1, and z

is the resulting M × 1 Gaussian noise vector with zero mean and co-

variance matrix nI. The vectors hσii are collected in an M ×N matrix

H = [hσ11, . . . ,hσN N ], such that Hmi denotes effective channel ampli-

tude from MS i to the mth BS antenna. So H represents the effective
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channel amplitude matrix of the MIMO system.

For uplink linear beamforming, the BS implements a set of beam-

forming vectors to map the received vector signal into independent

scalar decoders for recovering information ui’s. Let w ∈ R
M denote the

beamforming vector designed for MS i and pi be its transmit power.

The output signal at the BS for MS i is given by

yi =
(

wT
i hσii

)√
piui +

∑

j 6=i

(

wT
i hσij

)√
pjuj + wT

i z. (7.2)

For notational convenience, the beamforming vectors are collected in

a matrix W = {wi}. The three terms on the right hand side of (7.2)

correspond to signal, interference, and noise, respectively. The data

rate of uplink joint beamforming and power control then depends on

the SIRs achieved by MSs.

Now the absolute path gain from MS i to the BS is |wihσii|2. An

N×N coupling matrix which now depends on the beamforming vectors

can be defined:

Gij(W) =







|wT
i hσij|2

|wT
i hσii|2 if j ∈ Ci,

0 if j /∈ Ci.
(7.3)

Since Ci = {j : j 6= i} for the single-cell case considered in this chapter,

the total interference (including noise) for MS i is given by,

qi(W,p) =
∑

j 6=i

Gij(W)pj + ηi(W), (7.4)

where pi is the transmit power of MS i and ηi is an equivalent noise

given by

ηi(W) =
||wi||22
∣

∣wT
i hσii

∣

∣

2 · n. (7.5)

In vector form, equation (7.4) can be written as

q(W,p) = G(W)p + η(W). (7.6)

The SIR achieved by MS i becomes:

SIRi(W,p) =
|wihσii|2pi

∑

j 6=i |wihσij|2pj + n||wi||22
(7.7)

=
pi

∑

j 6=i Gij(W)pj + ηi(W)
.
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In this section, consider a joint power control and beamforming

problem, where the objective is to find the optimal beamforming vec-

tor and power allocations such that a set of given SIR threshold γi

is achieved by all MSs, and total power minimized. This fixed SIR

problem formulation for joint uplink beamforming and power control

is given by

minimize

N
∑

i=1

pi

subject to SIRi(W,p) ≥ γi, ∀i

variables W,p.

(7.8)

Note that for fixed beamforming vectors W, problem (7.8) reduces

to a power control problem that has been discussed in Chapters 2 and 4.

The optimal power vector can be computed as the limit of the following

iteration of the distributed power control algorithm:

pi[t + 1] = γi

∑

j 6=i

Gij(W)pj [t] + γiηi(W), ∀i. (7.9)

Since the transmit power in (7.9) only depends on beamforming

vector wi, beamforming optimization with respect to fixed power allo-

cation is solved by

w∗
i = arg min

wi

γi

∑

j 6=i

Gij(W)pj + γiηi(W). (7.10)

It is easy to see that the solution to (7.10) is MMSE filter1 given by

w∗
i =





∑

j 6=i

pjhσijh
H
σij + nI





†

hσii, (7.11)

where (.)† denotes the matrix pseudoinverse. When this MMSE filter

is used, the SIR constraints in (7.8) are always met with equality.

In [136], the authors proposed an algorithm for the joint beamform-

ing and power control problem (7.8), based on the above two updates.

The algorithm operates by alternating between two optimization steps.

1 The w∗
i

as expressed in (7.10) is optimal up to an arbitrary scaling factor.
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For a fixed power allocation, BS updates the beamfroming vectors us-

ing the MMSE filter. Next, MS powers are updated to minimize total

transmit power under given SIR constraints. The algorithm is summa-

rized as follows:

Algorithm 7.1 (Joint Power Control and Beamforming [136]).

(1) BS updates beamforming vectors wi[t], according to (7.11).

(2) BS estimates the resulting channel coupling matrix G(W [t])

and equivalent noise η(W [t]).

(3) MSs perform power update for p[t], according to (7.9).

Algorithm 7.1 can be implemented distributively at BS and MSs. In

[136], it has been proved that the joint power and beamfroming vector

update in each round is a contraction mapping, hence Algorithm 7.1

always converge to a fixed point.

Theorem 7.1. [136] The sequence (p[t],W[t]) produced by the iter-

ations in Algorithm 7.1, starting from an arbitrary power vector p[0],

converges to the optimal pair (p∗,W∗) of the joint power control and

beamforming problem (7.8).

In [183], the authors re-examine the power and beamforming up-

dates in Algorithm 7.1 by introducing a joint update method. Plugging

(7.11) into (7.9), they obtain

pi[t + 1] =
γi

1 + γi
· 1

hH
σii

(

∑

j 6=i pj [t]hσijh
H
σij

+ nI
)†

hσii

. (7.12)

It can be shown that the above update rule, incorporating both power

and beamforming updates in Algorithm 7.1, is a standard interference

function (see Chapter 2 for a definition) of the power vector [183].

Therefore the optimal solution is the unique fixed-point of (7.12) and

its convergence and optimality follow.
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7.3 Uplink with Variable SIR

In this section, rather than fixing SIR, we consider a joint beamform-

ing and power control problem in order to maximize total utility as a

function of attained SIRs. This can be viewed as a simultaneous gener-

alization of the formulation in the last section and that in Chapter 4.

In [146, 147], a max-min utility optimization has been studied, un-

der a sum power constraint 2 across all MSs :

maximize min
i

γi

subject to SIRi(W,p) ≥ γi, ∀i

1T p ≤ pm

variables γ,W,p.

(7.13)

This optimization problem is difficult to solve because the SIR con-

straints in (7.13) are not convex, and all three variables γ, W and p are

coupled. By introducing a notion of extended coupling matrix Gex(W):

Gex(W) =

[

D(γ)G(W) D(γ)η(W)
1

pm 1T D(γ)G(W) 1
pm 1T D(γ)η(W)

]

, (7.14)

it has been observed that, if beamforming vector W is fixed in problem

(7.13), power control for maximizing the smallest SIR can readily be

solved. If (γ∗,p∗) is the optimal solution for (7.13) with fixed beam-

forming vector W, then with some matrix manipulations, it is easy to

see that all SIRs are equal (γi = γ∗, ∀i) and

Gex(W)[p∗; 1]T =
1

γ∗
[p∗; 1]T . (7.15)

The result has been strengthened in [188] to show that the maximal

eigenvalue and its associated eigenvector of Gex(W) are strictly posi-

tive. No other eigenvalue fulfills the positivity requirement. Hence, the

solution of the power control problem with fixed beamforming vectors

is given by [146]

γ∗ =
1

λmax[Gex(W)]
, (7.16)

2 A sum power constraint normally applies to downlink channels. However, as it will be
shown later in Section 7.4, this uplink beamforming formulation with a sum power con-
straint serves as an equivalent dual problem for downlink beamforming, which is difficult
to tackle directly [146].
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where λmax[.] is a maximum eigenvalue function.

On the other hand, if power allocation p is fixed in problem (7.13),

optimization over beamforming variables is solved by maximizing indi-

vidual SIR:

w∗
i = arg max

wi

|wihσii|2pi
∑

j 6=i |wihσij |2pj + n||wi||22
. (7.17)

Its solution is again the MMSE filter, given by

wi
∗ =





∑

j 6=i

pjhσijh
H
σij + nI





†

hσii. (7.18)

Based on the above derivation, [146, 147] propose an iterative algorithm

for the joint power control and beamforming problem (7.13).

Algorithm 7.2 (Joint Power Control and Beamforming [146]).

(1) BS updates beamforming vectors wi[t], according to (7.18).

(2) BS estimates the extended coupling matrix Gex(W [t]).

(3) Maximal eigenvalue λmax of Gex(W[t]) is computed at BS.

(4) BS computes power p[t] as the eigenvector for λmax, i.e.,

Gex(W[t]) [p[t]; 1] = λmax · [p[t]; 1]

(5) MSs update power allocations to achieve γi[t] = 1/λmax, ∀i.

The updates in Algorithm 7.2 are done iteratively until both the

transmit powers and the beamforming vectors converge. Convergence

and optimality are characterized by the following theorem.

Theorem 7.2. [146] For a given sum power constraint pm, the se-

quence (γ[t],p[t],W[t]) obtained by Algorithm 7.2 converges to the

globally optimal solution for the joint power control and beamforming

problem (7.13).
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Max-min objective function in problem (7.13) is a special case of

the problem formulation in this section. Joint beamforming and power

control for maximizing a general concave utility function is much more

difficult, since the optimal beamforming and power vectors are non-

linearly coupled in a way that cannot be treated using the extended

coupling matrix. Assume that utility function Ui(γi) satisfies all prop-

erties discussed in Section 4.3. The problem of joint beamforming and

power control can be formulated as

maximize
∑N

i=1 Ui(γi)

subject to SIRi(W,p) ≥ γi, ∀i

pi ≤ pm
i , ∀i

variables γ,W,p.

(7.19)

To overcome this difficulties in solving (7.19), the authors in [65] took

the load-spillage approach introduced in Chapter 4. The basic idea

is still to iteratively solve the two power control and beamforming

subproblems, but using alternative optimization variables: load ℓ and

spillage s. For given beamforming vectors W, Problem (7.19) can be

solved using the load-spillage algorithm in Chapter 4, where the opti-

mization over power p is transformed into an optimization over spillage

vector s and the SIR constraint is replaced by

γ = ℓ/s, s = G(W)T ℓ + ν, (7.20)

where the division of the vectors is component-wise. The power price

vector ν is determined through an iterative subgradient update

ν[t + 1] = [ν[t] + δν(p[t] − Pm)]+ (7.21)

where δν > 0 is a sufficiently small constant. (See Chapter 4 for details

on the LSPC algorithm.)

A solution to problem (7.19) requires the determination of the opti-

mal power vector and the beamforming vectors subject to the imposed

transmit power constraint. Alternatively, using a load-spillage charac-

terization, one can determine the optimal load vector and the beam-

forming vectors, with the power prices updated to achieve the required

power constraint. Consider the following load and beamforming vector



7.3. Uplink with Variable SIR 99

update:

ℓ[t + 1] =
[

ℓ[t] + δℓ∆ℓ
]+

, ∆ℓi =
U ′

i(γi)γi

qi
− ℓi, (7.22)

wi[t + 1] =



nI +
∑

j 6=i

pj [t] · hσijh
H
σij





†

hσii. (7.23)

The authors [65] propose the following algorithm for joint beamforming

and power control problem (7.19) for a general concave utility function.

Algorithm 7.3 (Joint Power Control and Beamforming [65]).

• Parameters: step size δℓ > 0, δν > 0.

(1) Load-spillage factors are updated assuming fixed beamform-

ing vectors until convergence:

(a) BS computes the spillage-factor si[t].

(b) BS assigns SIR γi[t] = ℓi[t]/si[t] to MS i.

(c) MSs adjust transmission power p[t] until their actual

SIR converges to the target SIR, i.e.

SIRi(p[t],W[t]) = γi[t], ∀i

(d) MS update its load factor ℓi[t] in the ascent direction

given by (7.22) and broadcast it to BS.

(2) BS updates power price according to (7.21).

(3) Beamforming vector wi[t] is updated at the BS serving MS

i, using (7.23).

This algorithm’s convergence property is known:
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Theorem 7.3. [65] For sufficiently small step sizes δℓ > 0 and δν > 0,

Algorithm 7.2 converges to a stationary point of Problem (7.19).

It is also proved to be globally optimal in the 1-BS, 2-MS case.

Empirical evidence suggests optimality of equilibrium of Algorithm 7.3

in general [65].

7.4 Uplink-downlink Duality

For downlink joint power control and beamforming, the BS constructs

one data stream to each MS and spreads the data stream over M an-

tenna elements, with beamforming vectors to exploit spatial diversity.

Consider a cellular network with one BS equipped with M transmit

antennas and N MSs each equipped with one receive antenna. The

transmitted signal is of the form X =
N
∑

i=1

ŵiui, where ŵi is a M × 1

beamforming vector for information signal ui of MS i. Let E|ui|2 = 1.

The received signal for MS i is

yi =
(

hH
σiiŵi

)

ui +
∑

j 6=i

(

hH
σiiŵj

)

uj + zi, (7.24)

where hσij denotes the M×1 equivalent channel vector for MS j and zi

is an addictive white Gaussian noise with variance n. Consider a fixed-

SIR approach for the downlink joint power control and beamforming

problem, whose objective is to find optimal beamforming vectors that

minimize the total transmit power and satisfy the given SIR targets for

each MS. Since E[XHX] =
∑N

i=1 ŵH
i ŵi, the downlink joint power con-

trol and beamforming problem can be formulated as follows. Note that

downlink transmit power is absorbed into the beamforming vectors, i.e.

p̂i = ŵH
i ŵi, ∀i.

minimize

N
∑

i=1

ŵH
i ŵi

subject to
|hH

σii
ŵi|2

∑

j 6=i |hH
σii

ŵj|2 + n
≥ γi, ∀i (7.25)

variables Ŵ
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Problem (7.25) is complicated in that the beamforming vectors must

be optimized jointly since the interference suffered by MS i depends on

the beamforming vectors of all other MSs.

To overcome this difficulty, a duality between uplink and downlink

has been developed in [24, 193, 177, 175, 176, 88, 183]. The duality

property states that the achievable SIR region for a downlink channel

with joint transmitter beamforming and power control is the same as

that of an uplink channel with joint receiver beamforming and power

control, under the same sum power constraint:
∑

i pi =
∑

i ||ŵi||22. Fur-

ther, the optimal beamforming vectors for the uplink is also the optimal

beamforming vectors for the downlink. Since uplink joint power control

and beamforming discussed in previous sections are easier to solve, any

downlink problem can be transformed and more efficiently solved in its

dual uplink domain.

y1

y2

y2

y1w1

w2
b2

b1

z1 ∼ (0, n)

z2 ∼ (0, n)

z ∼ (0, nI)

X

hH
2

hH
1

h1

h2

wH
2

√
p1b1

wH
1

E[XHX] ≤ pm p1 + p2 ≤ pm

√
p2b2

Fig. 7.2 Beamforming uplink-downlink duality with sum power constraints [193].

This uplink-downlink duality is illustrated in Fig.7.2, and has been

proven in many different ways. In [135] and [176]. The authors first

show that the same SIR targets can be achieved in both the uplink and

the downlink channels with the same beamforming and sum transmit

power. Therefore, downlink joint power control and beamforming prob-

lems with fixed SINR targets can be solved efficiently by an iterative

uplink joint beamforming and power update algorithm. In particular,

[176] offered an optimality proof for uplink-downlink duality based on

an examination of the KKT conditions for the optimization problems.

It is shown that the uplink problem and downlink problem have the

same KKT conditions and the same set of stationary points. Later, in
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[183], a convex optimization framework for downlink joint power con-

trol and beamforming was introduced to show that problem can be

formulated as a semi-definite programming (SDP) problem. Therefore,

one can numerically verify the feasibility of the SDP problem and find

its globally optimal solution. Based on this observation, the authors

[193] propose a unified interpretation to the uplink-downlink duality,

which is shown to be equivalent to Lagrangian duality in optimization

theory. This viewpoint illustrates the previously known duality result

in a new perspective, and allows the downlink joint power control and

beamforming problem with per-antenna power constraint to be solved.

Here the proof for the convexity of problem (7.25), which leads to

strong Lagrange duality for the problem, is summarized [193]. Since

the objective function in (7.25) is convex in beamforming vectors ŵi,

it remains to show that the SIR constraints are convex. The key obser-

vation is that the SIR constraints in (7.8) can be cast into a standard

convex form 3:

|hH
σii

ŵi|2
∑

j 6=i |hH
σii

ŵj|2 + n
≥ γi

⇔ 1

γi
|ŵH

i hσii|2 ≥
∑

j 6=i

|ŵH
j hσii|2 + n

⇔ (1 +
1

γi
)|ŵH

i hσii|2 ≥
∑

j

|ŵH
j hσii|2 + n

⇔
√

1 +
1

γi
ŵH

i hσii ≥
∣

∣

∣

∣

∣

∣

∣

∣

ŴHhσii√
n

∣

∣

∣

∣

∣

∣

∣

∣

. (7.26)

It is easy to see that the new SIR constraint (7.26) is convex in

beamforming vectors ŵi. Thus downlink joiint power control and beam-

forming problem (7.25) can be transformed into a convex optimization

problem, which can be solved by any standard convex optimization

program. As a convex optimization satisfying constraint qualifications

[193], problem (7.25) has strong Lagrange duality. This allows us to

3 The last step is obtained by taking a squire-root on both side. It is valid because an
arbitrary phase rotation can be added to the beamforming vectors without affecting the
SIR. Thus, if {ŵi} is optimal, then so is {ŵie

jφi}. Without loss of generality, {φi} can
be chosen such that ŵihσii is real and positive [193].
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derive a dual uplink joint power control and beamforming problem for

(7.25).

Theorem 7.4. [193] The SIR region achieved by joint power control

and beamforming for a downlink channel is identical to that of a dual

uplink channel in which the transmitter and the receivers are reversed

and the channel matrices are transposed. The downlink joint power

control and beamforming problem (7.25) has the following dual uplink

problem:

minimize
N
∑

i=1

(nλi) (7.27)

subject to
|wH

i hσii|2 · (nλi)
∑

j 6=i |wH
i hσij |2 · (nλj) + n||wi||22

≥ γi, ∀i

variables W,λ

where λ is Lagrangian multiplier for the downlink SIR constraints. Op-

timization problem (7.27) is equivalent to the Lagrange dual problem

of (7.25).

The dual uplink problem (7.27) is exactly the uplink joint power

control and beamforming problem with fixed-SIR, by changing the op-

timization variables pi = nλi. The dual uplink channel is constructed

from the downlink channel by interchanging the input and the output

vectors and by transposing the channel matrices. The optimal beam-

froming vectors for uplink and downlink are also the same. According

to [194], the duality relation is summarized in Table 7.1.

Downlink Uplink

hH
σii

⇐⇒ hσii

ŵi ⇐⇒ wi

nλi ⇐⇒ pi

Table 7.1 This table summarizes the correspondence between the downlink problem (7.25)
and the uplink problem (7.27). It shows that the Lagrange multipliers λi corresponding to
the SINR constraints in the downlink problem play the role of the transmit power in the
uplink problem, while the channel matrices and the beamforming vectors are equal [194].
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7.5 Open Problems

In this chapter, we review results for joint beamforming and power con-

trol in a cellular network with multiple antennas, assuming full channel

information is known to the BS. The joint beamforming and power con-

trol problem of minimizing total transmit power with fixed SIRs has

been solved by adding a beamforming vector update to previous power

control algorithms. The more complicated problem of maximizing a

concave utility under a sum power constraint has only been solved

in special cases. Several algorithms for the uplink channels are sum-

marized and discussed. Due to an interesting uplink-downlink duality

introduced in the last section, all the algorithms also apply to the

downlink channels.

Besides the joint beamforming and power control problem for gen-

eral utility functions in Section 7.3, there are several other open prob-

lems. First, most results so far focus on a single cell where interfer-

ence from neighboring cells are regarded as Gaussian noise. Distributed

beamforming for a multi-cellular network need to be considered. Sec-

ond, beamforming problems joint with network resource allocation,

such as bandwidth, time, or BS-assignment have not been fully ex-

plored. Third, beamforming problems with mobility, fading, and inac-

curate channel information are yet to be fully studied.
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Joint PC and BS Assignment

8.1 Introduction

The assumption of static connectivity patterns between MSs and BSs,

adopted in most of the results surveyed thus far, is not realistic due to

two reasons. First, channels and BSs can be reassigned to MSs at any

time, even in the middle of a call. As MSs move around the network

and change positions, SIR changes and reassignment of both BS and

transmit power may be required. When a new call request arises, a

reassignment of the existing calls might be required to accommodate

it. Second, connectivity can also be viewed as an extra system resource

in addition to power, time, bandwidth, and multiple antennas. When

such a joint resource allocation is considered, performance of a cellular

network and experience of the end-users could be further improved.

As a numerical example, Figure 8.2 considers a network with 2

BSs and 10 MSs and compares the minimum required transmit power

of the DPC algorithm and a joint BS assignment and power control

algorithm, for achieving an equal SIR target γ at all MSs. It is shown

that the minimum required transmit power can be reduced by as much

as 20dB under a joint optimization.

105
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BS1

BS4

BS3

BS2

BS5

Fig. 8.1 A BS is selected by each MS to establish a link. This figure shows the connectivity
between 5 BSs and 12 MSs.
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Fig. 8.2 The minimum required transmit power (normalized to noise, i.e.,
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i pi

n
) to achieve

a given SIR target γ in a network with 2 BSs and 10 MSs. Channels are randomly generated
from Normal distribution with variance 1.

This chapter studies the joint problem of BS assignment and power

control. As in Chapter 7, we consider two types of problem formula-

tions: minimize the total transmit power for fixed SIR, or maximize

total utility for variable SIR. The discussion will focus on the uplink

channel of cellular networks, and then extended to downlink using the
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uplink-downlink duality in Chapter 7.

The joint power allocation and BS assignment problem in uplink

has been studied, e.g., in [113, 66, 189, 136, 125]. The main objective is

to determine the BS assignment that minimizes the required transmit

power for fixed SIRs on each link. Let SIRi(p,σ) be the SIR function for

MS i that now depends on both power allocation p and BS assignment

σ. The joint optimization problem for uplink is formulated:

minimize
N
∑

i=1

pi

subject to SIRi(p,σ) ≥ γi, ∀i

σi ∈ Si, ∀i

variables σ,p

(8.1)

where Si is a set of feasible BS assignment for MS i. In particular,

[66] characterizes the optimal solution of problem (8.1), and showed

that at the optimum, all SIR constraints are met with equality, and

there exists an optimal BS assignment for which the optimal transmit

power is minimized for each MS. Then an algorithm based on selecting

the BS to achieve the minimum transmit power is proposed. Similar

algorithms are also presented in [189, 136, 125], where the joint power

and BS update is shown to be a contraction mapping that is guaranteed

to converges to a unique fixed-point. In addition, [136] proposes an

algorithm for the joint power control, beamforming, and BS assignment

problem. All these results are based on previous power control and

beamforming algorithms discussed in Chapter 2 and 7, together with

choosing a BS that requires the minimum transmit power.

Later, these results are generalized in [134, 133, 20] to downlink

channels, using the uplink-downlink duality in Section 7.4. In [128], for

a network with two BSs, an algorithm that achieves the optimal power

and BS assignment for both the uplink and the downlink simultane-

ously is provided. It turns out that the SIR simultaneously achieved by

the uplink and downlink channels are equal.

Utility optimization for joint power control and BS assignment has

also been studied in several special cases [129, 96, 144, 55, 60, 97]. By

extending the basic power control problem in Chapter 4, the problem
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can be formulated as follows:

maximize

N
∑

i=1

Ui(γi)

subject to γi ≤ SIRi(p,σ), ∀i

p ≤ pm

σi ∈ Si, ∀i

variables γ,σ,p

(8.2)

Problem (8.2) has a difficult-to-handle structure due to the interaction

between the integer connectivity constraints on individual MSs and the

joint utility maximization over all SIRs. This problem remains under-

explored. In Chapter 6, a game-theoretic approach for problem (8.2)

has been discussed [96, 144, 55, 97] for certain utility functions. It is

shown in [60] that the joint power control and BS assignment problem

for maximal throughput is NP complete. A simple algorithm has been

proposed in [60] under the assumption that all MSs use orthogonal

codes and the resulting inter-cell interference is zero.

8.2 Joint PC and BS Assignment

Consider the uplink of a wireless cellular network with N MSs and

K BSs. At any given time, MS i is transmitting to one of these BSs,

denoted by σi. The vector σ = [σ1, . . . , σN ]T represents the allocation

of MSs to cells. For each MS i, there is a set Si consisting of precisely

those BSs that the MS i is allowed to connect to, i.e. σi ∈ Si. Note that

the sets of allowable cells Si’s are regarded as fixed in the chapter, but

with mobility Si’s should be allowed to adapt on a slow time scale to

the changes in the network geometry. Let G(σ) be the channel coupling

matrix, now defined as a function of the BS assignment σ. We have

[

G(σ)
]

ij
=







|hσij|2
|hσii|2 , if j ∈ Ci(σ),

0, if j /∈ Ci(σ).
(8.3)

where Ci(σ) is the set of MSs interfering with MS i under current BS

assignment σ, and hσij is the channel amplitude form MS j to BS σi.

Again, the joint power control and BS assignment problem, for fixed
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SIR targets, is formulated as follows:

minimize

N
∑

i=1

pi

subject to
pi

∑

j∈Ci(σ)

Gij(σ)pj + ηi

≥ γi, ∀i

σi ∈ Si, ∀i

variables σ,p

(8.4)

When BS assignment is fixed and no switching between cells are

allowed in the cellular network, the problem reduces to the power con-

trol problem that has been discussed in Chapter 2. For the joint power

control and BS assignment problem, previous power control algorithms

can be extended to optimize the transmit power p and the BS assign-

ment σ jointly. It has been shown [66] that there exists an optimal

solution for problem (8.4) such that the resulting transmit power is

minimal and unique, as characterized by the following theorem.

Theorem 8.1. [66] If there exists one feasible BS assignment, such

that SIR targets γ are achievable, then there exists an optimal solution

(p∗,σ∗) to problem (8.4). The optimal power allocation satisfies p∗ ≤ p

where p is any feasible power vector.

Based on this observation, the authors in [66] propose an algorithm

to solve problem (8.4). The algorithm is similar to the Algorithm 2.3

for distributed power control, but now with each MS i measuring the

interference levels at each BS in Si and connecting to the BS with the

minimum power level required.

Algorithm 8.1 (Joint PC and BS-assignment [66]).

(1) Given transmit powers p[t], MS i computes the required

transmit power at the next step for connecting to each BS



110 Joint PC and BS Assignment

in Si:

p̃i,k = γi





∑

j∈Ci(σ)

|hkj |2

|hki|2
pj [t] + ηi



 , for k ∈ Si.

(2) MS i connects to BS σi[t + 1], satisfying

σi[t + 1] = arg min
k∈Si

p̃i,k.

(3) MS i updates its transmit power by pi[t + 1] = p̃i,σi[t+1].

(4) Consider the next MS and go back to step (1)

The algorithm can be implemented distributively at BSs and MSs:

Each BS measures the total interference it receives from all MSs in the

network and broadcast this value via control channels. MS i, receiving

the broadcasted values, compute the required transmit power levels

and decide which BS to connect to. In particular, a MS does not need

to know the individual transmit powers of the other MSs. Only the

channel gains and interference of the BSs in Si are reqiured. In [66], it

has been proved that Algorithm 8.1 converges to the optimal solution

of problem (8.4).

Theorem 8.2. [66] Algorithm 8.1 converges to the optimal power

allocation and BS assignment (p∗,σ∗) of problem (8.4), i.e.

lim
t→∞

(p[t],σ[t]) = (p∗,σ∗).

For joint power control and BS assignment in downlink, the joint

optimization cannot be solved by Algorithm 8.1 due to the following

limitation of the standard interference function approach. In the up-

link, whenever a MS can reduce its transmitted power, all other MSs

will benefit from that power reduction. This property does not hold

for joint power control and BS assignment in downlink. The power re-

duction associated with changing the BS assignment for MS i from BS

k1 to k2 may create greater interference for those MSs near BS k2. To

overcome this difficulty, the uplink-downlink duality discussed in pre-

vious chapters is applied. An algorithm is proposed in [134], where the
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downlink problem is solved by constructing a equivalent virtual uplink

problem and generating sequence of BS assignment and power vector

for the uplink. If the thermal noise power at all receivers are equal,

Algorithm (8.1) generates a feasible solution that minimizes the sum

of downlink powers.

8.3 Joint PC, Beamforming, and BS Assignment

Consider a joint optimization problem over power, BS assignment, and

beamforming:

minimize
N
∑

i=1

pi

subject to
|wH

i hσii|
2pi

P

j∈Ci(σ) |w
H
i hσij |2pj+n||wi||22

≥ γi,∀i

σi ∈ Si, ∀i

variables W,p,σ

(8.5)

Algorithm 8.1 can be modified to support beamforming as well [136]:

Algorithm 8.2 (Joint PC, BF and BS-assignment [136]).

(1) Each BS in the allowable set (i.e. k ∈ Si) of MS i finds the

optimal beamforming vector for MS i:

w̃i,k = arg max
wi

|wH
i hki|2pi[t]

∑

j∈Ci(σ) |wH
i hkj|2pj[t] + n||wi||22

,

=





∑

j∈Ci(σ)

pj[t]hkjh
H
kj + nI





†

hki. (8.6)

(2) Given these beamforming vectors, MS i computes the re-

quired transmit power for connecting to each BS in Si:

p̃i,k = γi





∑

j∈Ci(σ)

|w̃i,khkj|2

|w̃i,khki|2
pj[t] +

n

|w̃i,khki|2



 .



112 Joint PC and BS Assignment

(3) MS i connects to BS σi[t + 1], satisfying

σi[t + 1] = arg min
k∈Si

p̃i,k.

(4) MS i updates its transmit power by pi[t + 1] = p̃i,σi[t+1].

(5) The BS σi[t+1]updates the beamforming vector for MS i by

wi[t + 1] = w̃i,σi[t+1]

In Algorithm 8.2, at each iteration all of the BSs in the allowable

set Si perform beamforming and the required MS transmit power for

the next iteration is calculated. This step introduces both communica-

tion and computation overhead. The BS assignment is performed by

comparing the power requirements of different BSs. The BS with the

least required transmit power will be selected for the MS. The beam-

forming vector updated in step 2 above is the same as the MMSE filter

derived in Chapter 7. In summary, algorithm 8.2 can be viewed as a

combination of Algorithm 8.1 and Algorithm 7.1.

For the joint power control and BS assignment problem in Section

8.2, it is shown that the optimal power allocation is unique. In the joint

problem with beamforming, using the same approach as in Theorem

8.2 [66], it can be shown [136] that the optimal power allocation is

also unique. However, the optimal BS and beamforming vectors may

not be unique. Optimality of Algorithm 8.2 is summarized in the next

theorem.

Theorem 8.3. [136] Algorithm 8.2 converges to the optimal power

allocation, beamforming, and BS assignment (p∗,σ∗,W∗), which solves

the joint optimization problem (8.5).

8.4 Open Problems

In this chapter, we review results for joint power control and BS as-

signment for cellular network with single or multiple antennas. The

problem of minimizing total transmit power with fixed SIR targets has

been solved by adding BS selections to previous distributed power con-

trol algorithms, while the more complicated problem of achieving the
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optimal SIRs through a utility maximization is largely open, except for

a few special cases [96, 144, 55, 60, 97].

Unlike the power minimization problem where BS assignment for

minimum transmit power always reduces interference suffered by other

MSs, the utility maximization problem requires optimal SIRs to be

achieved by possibly increasing the transmit power. Thus, improving

the utility of a particular MS by joint BS assignment and power control

may cause more interference for all MSs in Ci(σ) due to the coupling

in the SIR function:

SIRi(p,σ) =
pi

∑

j∈Ci(σ)

Gij(σ)pj + ηi

(8.7)

This coupling, combined with the integer constraints on the connectiv-

ity variables, leads to a problem structure that is hard to handle. We

conclude this chapter by presenting the open problem of joint power

control and BS assignment for utility optimization:

maximize

N
∑

i=1

Ui(γi)

subject to γi ≤ SIRi(p,σ), ∀i

p ≤ pm

σi ∈ Si, ∀i

variables γ,σ,p

(8.8)
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Joint PC and Spectral-Temporal Scheduling

9.1 Introduction

In addition to power, the achieved QoS of an MS obviously depends

on the allocated frequency bandwidth and time slots. The discussion

in Chapter 4 implicitly assumed equal and static allocation of spectral-

temporal resources among MSs. The discussion in Chapter 5 focused

on optimizing the power allocation to the MSs over time as the chan-

nel varies. The interference was either assumed fixed or the variation

in interference was not explicitly considered. This chapter will instead

discuss joint optimization of allocation of power along with the time-

frequency resources for fixed channels. The joint optimizer will be re-

ferred to as the scheduler in the rest of this chapter. It turns out that

joint power control and frequency allocation is not easy to formulate

in the general case, and joint power control and scheduling difficult to

solve optimally and distributedly. Many problems in this topic remain

open.
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9.2 Joint PC and Bandwidth Allocation

9.2.1 General formulation

Consider a bandwidth Bm available for scheduling among the N

MSs, divided into L orthogonal resources of width bl each. The divi-

sion of bandwidth into orthogonal resources is modulation dependent,

an OFDM modulation scheme provides tone-level granularity, and a

CDMA modulation scheme provides code-level granularity. Each MS

divides it’s power pi among the L orthogonal resources so as to max-

imize a network wide utility. For each parameter, let super-script l

denote the parameter pertaining to the lth orthogonal resource. With

this, the following equations can be written for the lth resource similar

to (1.3):

ql
i =

∑

j∈Ci

Gl
jjp

l
j + ηl

i. (9.1)

The SIR γl
i is then given by

γl
i = Gl

iip
l
i/q

l
i. (9.2)

Let Γl = Bl(pl) denote a feasible SIR region for resource l as defined in

Chapter 4, with the super-script l indicating that each feasible region

is specific to the lth block of bandwidth. The L resources are coupled

by a sum power constraint
∑

l p
l
i ≤ pm

i . The total rate achieved is then

the summation of the rates achieved in each of the L resources:

ri =
L
∑

l=1

bl log(1 + cγl
i). (9.3)

The bandwidth allocation problem for variable SIR can then be

written as

maximize
∑

i Ui(ri)

subject to ri =
∑L

l=1 bl log(1 + cγl
i), ∀i

γ l ∈ Γl, ∀l
∑

l p
l
i ≤ pm

i , ∀i

variables γ l,pl ∀l

(9.4)

This problem is non-convex and has no known distributed optimal so-

lution.



9.2. Joint PC and Bandwidth Allocation 117

The representation (9.4) is in-fact very similar to the spectrum bal-

ancing problems [32] in DSL systems. There are several distributed

solutions ([32, 195, 196, 31]) with different complexities and optimality

gap. For example, a key idea in Autonomous Spectrum Balancing [31],

is to decouple the joint power constraint across the L resources by dual

decomposition and to decouple the competing users by reference line,

which does not directly apply to wireless networks. Even in DSL case,

optimality of practical algorithms can only be proved in special cases

since the general problem is non-convex.

9.2.2 Interference spread formulation

The problem definition in (9.4) assumes frequency dependent channels,

Gl
ij , thus frequency specific SIR feasible regions Γl. In some cases, wire-

less channels tend to be frequency independent since the bandwidth of

interest, even for some wideband wireless system, is small compared

to the carrier frequency. Channel variation across the band may be

small. Furthermore, some systems incorporate interference averaging

mechanism along the frequency domain. The frequency hopping mech-

anism in an OFDM system and the cover sequences in a CDMA system

are interference averaging mechanisms motivated by the intention to

spread the interference due to an MS across all of the L resources. In

these systems, inter-cell interference is averaged across the available

bandwidth, while intra-cell interference is negligible since MSs within

a cell are allocated orthogonal resources.

Therefore, a special case of joint power control and bandwidth allo-

cation problem can be formulated as follows. Each MS j transmits with

power pj on resource bj of the total available bandwidth of Bm. The in-

terference averaging mechanism ensures that a neighboring MS i sees an

interference of Gijpj spread equally across the available bandwidth W .

The average interference seen by MS i becomes qi =
∑

j∈Ci
Gijpj + ni

and the rate ri achieved by MS i is given by

ri = bi log(1 + cBmγi/bi) (9.5)

where γi = pi/qi is the SIR across the total bandwidth Bm, and

Bmγi/bi is the boosted SIR for MS i on resource bi. Orthogonaliza-
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tion of MSs within the same cell requires an additional constraint that
∑

i∈Sk
bi ≤ Bm. The following optimization problem is thus formulated:

maximize
∑

i Ui(ri)

subject to ri = bi log(1 + cBmγi(p)/bi)
∑

i∈Sk
bi ≤ Bm

variables r,γ,p,b.

(9.6)

It can be verified that ri is a concave function of bi. Under assump-

tions that Ui(ri) is concave in ri, and, in addition, concave in log(γi),

problem (9.6) is a convex optimization problem whose Lagrangian is

L({γi}, {bi}, {νi}, {λk}) =
∑

i

Ui(ri) +
∑

i

νi(p
m
i − pi(γ)) +

∑

k

λk(B
m −

∑

i∈Sk

bi). (9.7)

In terms of the load-spillage factors discussed in Chapter 4 and [65],

the KKT conditions can be written as

U ′
i(ri)

∂ri

∂γi
= νT ∂p

∂γ
ei = siqi, ∀i,

U ′
i(ri)

∂ri

∂bi
= λk, ∀i ∈ Sk. (9.8)

For example, consider the case where Ui(ri) = log(ri) and ri =

bi log(1+cBmγi/bi). The KKT conditions have the following structure.

cBm

bi(1 + cBmθi) log(1 + cBmθi)
= siqi, ∀i,

1/bi = siqiθi + λk, ∀i ∈ Sk (9.9)

where θi = γi/bi has the interpretation of SIR per resource. The opti-

mality of equation (9.9) is established by the following Lemma.

Lemma 9.1. For Ui(ri) = log(ri), problem (9.6) is a convex optimiza-

tion problem and satisfies equation (9.9) at optimality.

Figure 9.1 plots the trend of power and bandwidth allocation against

spillage and interference at optimality. The points are obtained by solv-

ing the KKT equations above. Note that both power and bandwidth
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Fig. 9.1 Bandwidth and power allocation against spillage and interference at optimality.

allocation decreases with increasing spillage in the optimal allocation.

This confirms the intuition that spillage acts as a measure of poten-

tial interference to the network, as discussed in Chapter 4. Distributed

algorithm for this problem has not appeared yet.

9.3 Joint PC and Scheduling

One of the key functionalities of power control, and indeed the one that

most of this monograph has been focusing on, is interference manage-

ment. Since both schedules and powers are degrees of freedom that help

manage interference, we need to investigate their joint control.

A simple view is to extend the basic power control models, both

power minimization (for fixed SIR) and utility maximization (for vari-

able SIR), by incorporating a new boolean variable ξi ∈ {0, 1}, indi-

cating whether MS i is scheduled to transmit or not. This would be

similar to the model of joint power control and BS assignment, leading
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to a mixed integer nonlinear optimization problem.

Assuming that the timescale of scheduling is shorter than the coher-

ent time, another possible formulation would be similar to joint power

control and bandwidth allocation with interference spread, as discussed

in the last section, except now bandwidth chunk would be replaced by

the fraction of time allocated to each MS.

However, neither of the above formulations completely captures the

essence of joint power control and scheduling. All power control for-

mulations surveyed so far assume that the objective is defined for the

equilibrium state, therefore must activate all users in its power control

solutions, for otherwise those users allocated with zero transmit power

will be disconnected from the network. To properly study joint power

control and scheduling, a generalization of such formulations to allow

limit cycles, rather than a single point, at the equilibrium, is necessary.

On the other hand, on the topic of scheduling, existing research

literature often assumes the M -hop collision model, which does not take

into account that received SIR determines the amount of interference,

nor the opportunity of varying transmit powers jointly with scheduling

to increase stability region and the attained utility.

Both scheduling problem formulations (without power control) and

power control problem formulations (without scheduling) are incom-

plete. They represent two sides of one common issue, one by deciding

when can a subset of MSs transmit and the other by changing the power

with which MSs can transmit. Their unification remains an open prob-

lem. Starting with the scheduling part of the problem, SIR based inter-

ference model often leads to NP-hard problems. Starting with the power

control part of the problem, neither convexity of power-controlled rate

region nor distributed convexification are well-understood. This over-

due union between power control and scheduling presents fundamental

research challenges, and is briefly discussed in this section from the

point of view of power control.

Separation of scheduling and power control is proposed in [42, 46,

107]. The work in [42] proposes a centralized link scheduling algorithm

that minimizes the power required to achieve a set of data rates that

can potentially lie outside the instantaneous rate region but within the

convex hull of the rate region. The authors make a low SIR approxima-
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tion and assume that the data rate is linearly related to the SIR. In the

resulting schedule, links either switch off or transmit with maximum

power. An extension in [107] removes the low SIR approximation, re-

sulting in additional complexity in the centralized solution. The work

in [46] proposes a heuristic for link scheduling in each time slot, followed

by the DPC algorithm for explicit rate requirements.

There are two major challenges in fully understanding the joint

control of power and scheduling:

(1) When is power control adequate without time-sharing?

(2) If power control alone is inadequate, how should MSs be

scheduled?

Here, the word “adequate” may be quantified by the optimality gap

with respect to an objective function, e.g., cost function of power or

utility function of rate. It is also often quantified by the size of sta-

bility region attained by an algorithm. Roughly speaking, when there

are stochastic arrivals and departures of users, each carrying a finite

workload, stability region is the set of arrivals that can be served by

the system while keeping the queues finite. As mentioned in Section

1.1, stochastic arrivals will not be discussed in this monograph due to

space limitation.

To answer these questions, an analysis of the convexity property of

the rate regions attained by power control algorithms is needed, and a

scheduling algorithm activating or silencing MSs in the right pattern is

required when the rate region is non-convex.

Consider some functional dependence of rate on SIR, e.g.,

ri(γi) = d log(1 + cγi). (9.10)

The instantaneous rate region R(Γ) is defined as the set of feasible

rates in any time-frequency resource v:

R(Γ) = {ri : ri = ri(γi),γ ∈ Γ} (9.11)

where Γ is a feasible SIR region introduced in Chapters 1 and 4. In

particular, it is possible that Γ = B(pm) or Γ = B(qm), depending

upon the constraints.
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Let xi denote the traffic arrival rate for MS i, assumed time inde-

pendent for simplicity of exposition. If MS i is served rate ri[t] in slot

t, then the queue for traffic intended for MS i, denoted by yi[t], evolves

as

yi[t + 1] ≤ [yi[t] − ri[t]]
+ + xi. (9.12)

where the time slot is assumed to be of unit length for simplicity.

Let X be the stability region. It is well known that X = Conv(R)

where Conv(R) is the convex-hull of the instantaneous rate region R.

In one of the possible formulations of the problem, the arrival rates

are assigned a utility Ui(xi) and the problem is formulated as a utility

maximization problem over X :

maximize
∑

i Ui(xi)

subject to x ∈ X = Conv(R(Γ))

variables x,γ.

(9.13)

This problem is considered in a number of papers both in the cellular

setup [109, 7, 92] as well as the adhoc network setup [105, 160, 106,

124, 47, 36]. The problem can be split for each time instant t into a

rate control problem

xi[t] = arg max Ui(xi) − yi[t]xi, (9.14)

a queue update as given in 9.12, and a resource scheduling problem

given by
maximize

∑

i yi[t]ri(γi)

subject to γ ∈ Γ

variables γ, r.

(9.15)

The queues {yi[t]} evolve over time and problem (9.15) is to be solved

in every time slot t with the resulting xi[t] converging to the optimal

of problem (9.13). The queues have the interpretation of prices for

the rate control problem, and the terms prices and queues are used

interchangeably in the rest of the chapter.

Most of the work on power-control based interference model either

make the “high-SIR” approximation where log(1 + cγi) ≈ log(cγi),

which immediately renders R = Conv(R), or explicitly assume that R
is convex, in which case again R = Conv(R). If the underlying instan-

taneous rate region R given by a power control algorithm is convex,
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then all MSs are allowed to participate in data transmission in every

time-frequency resource and the power control algorithm can find the

appropriate power levels to maximize the weighted rates. Distributed

solutions with this simplification is proposed in [37, 65, 185]. The work

in [39] develops the geometric programming framework of high SIR

and successive GP approximation for general SIR regime. The work

in [185] tackles problem (9.15) under the high-SIR approximation. The

work in [65] can be applied to solve (9.15) if R is assumed to be convex.

However, if R is non-convex, there has been no distributed mech-

anism that determines the set of MSs allowed to participate in data

transmission in each time slot and then determine the power levels of

transmission among the activated MSs. Intuitively, an appropriate time

sharing mechanism silences links whose queues are relatively small and

whose activation would contribute adversely to the achievable rates of

other links with relatively larger queues.

In the rest of this section, we will discuss a partial answer to the

second question posed before, through a heuristic based on Algorithm

LSPC in Chapter 4. There has been proof of convergence or optimality

yet. The iterations are stated in terms of τ to distinguish between

iteration index and queue update time.

Algorithm 9.1 (Link Selection and Power Control).

• Parameters: step size δ > 0, δν > 0.

(1) At τ = −1, set spillage si[−1] = 0 at MS and communicate

to BS.

(2) At τ = 0, the BS for link i picks ℓi[0] as the load-factor. The

MS on link i picks νi[0] as the power-price.

(3) At time τ , the BSs calculate indicator functions ξi[τ ] where

ξi[τ ] = I(ℓi[τ ]/si[τ − 1] ≥ βi).

The factor βi has to be adjusted appropriately so as to

achieve a performance close to optimal.

(4) The load-factor ℓi[τ ] is broadcast if ξi[τ ] 6= 0.
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(5) MS i reads the broadcast load-factors from neighboring BSs

with whom it can potentially interfere with, and calculates

the spillage-factor si as

si[τ ] =
∑

j

Gjibj[t]ℓj [τ ] + νi[τ ]

(6) BS communicates the interference in the last slot qi[τ −1] on

a feedback channel to MS i.

(7) MS i uses transmit power level pi[τ ] = γi[τ ]qi[τ − 1] where

SIR γi[τ ] = ℓi[τ ]/si[τ ].

(8) MS i updates the power-price as

νi[τ + 1] = [νi[τ ] + δν(pi[τ ] − pm
i )]+.

(9) MS i updates the queue lengths yi[τ ] according to equa-

tion (9.12).

(10) BS measures the interference qi[τ ], and updates the load-

factor: ℓi[τ + 1]

∆ℓi[τ ] =
yi[τ ]r′i(γi[τ ])γi[τ ]

qi[τ ]
− ℓi[τ ]

ℓi[τ + 1] = ℓi[τ ] + δ∆ℓi[τ ]

The performance of Algorithm 9.1 is plotted in Figure 9.2 for a sim-

ple numerical example with 2 links. The channel parameters between

the links are picked to result in a non-convex rate region as shown in

the figure. An arrival rate within the convex hull of the rate region is

picked. The algorithm is shown to stabilize the queues by alternating

the capacity allocation between the links.

The basic idea in the algorithm is to silence links that are expected

to contribute adversely to the objective of maximizing the overall net-

work criteria. A link with a high spillage will thus be silenced until the

queue builds up large enough to turn the link back on. With the large

queue that has built up, a high load-factor is broadcast, resulting in

possibly silencing the links that would have adversely affected this link.

The factors βi are the silencing threshold. Low values of βi will pre-

vent appropriate silencing and result in a set of data rates closer to the
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Fig. 9.2 Performance of Algorithm 9.1 for two link case: The rate region is non-convex
and the arrival rate in this example is within the convex hull but outside of the non-convex
region as shown in Fig. 9.2a. The queues, loads and the assigned data rates oscillate between
the two links as shown in Fig. 9.2b,c,d.

non-convex instantaneous rate region, and high values of βi will result

in too many links being unnecessarily turned off, lowering the overall

network utility. Determining the appropriate values of βi remains an

open problem.

9.4 Joint PC, Beamforming, and Bandwidth Allocation

The joint optimization problems considered so far involved power con-

trol along with one other resource. It is apparent that optimizing over
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all resources jointly results in more efficient utilization of the resources

but leads to increased complexity of implementation. Considering joint

optimization of several resources together may also give the system de-

signer insight into the trade-off involved among the resources to achieve

a target value for the objective function. One such joint optimization

is formulated in this section.

Consider the case where each BS is equipped with M transmit an-

tennas as in Chapter 7 and the total available bandwidth Bm is split up

into L orthogonal resources {bl}. The N users build up queues {yi[t]}
according to (9.12). As discussed in Section 9.3, the problem of maxi-

mizing the sum of the price-weighted rates becomes:

maximize
∑

i yi[t]ri

subject to ri =
∑L

l=1 bl log(1 + cγl
i), ∀i

γl
i ≤ SIRi(W,pl), ∀i and ∀l
∑

l p
l
i ≤ pm

i , ∀i

variables γ, r,W,b,p.

(9.16)

This joint optimization over space, time and frequency is a globally

coupled, non-convex problem. A solution to this problem will be highly

instructive to a system designer trading off resources in time, frequency,

space and power. Now consider a simplification of problem (9.16), where

queue evolution and time-domain scheduling are removed from consid-

eration, and interference spreading mentioned in Section 9.2.2 is used

in frequency-domain. The utility maximization problem becomes:

maximize
∑

i Ui(ri)

subject to ri = bi log(1 + Bmγi/bi),∀i
∑

j:σj=k bj = Bm, ∀k

γi ≤ SIRi(W,p), ∀i

p ≤ pm

variables γ, r,W,b,p.

(9.17)

MSs within a cell are allocated orthogonal bandwidth resources so

that each MS suffers only inter-cell interference, and beamforming in

space is used to reduce the inter-cell interference. This joint optimiza-

tion is still a globally coupled, non-convex problem, difficult to solve

optimally or distributedly. However, the following approach to the so-

lution is intuitively appealing. First, fixing the bandwidth allocation,
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the problem of jointly optimizing over receiver beamforming and trans-

mit power can be solved by a distributed algorithm as in Section 7.3,

which is proved to be convergent. Next, as shown in Section 9.2.2, the

joint power-bandwidth optimization with fixed beamforming vectors

is a convex optimization problem. Finally, an alternating maximiza-

tion method is used to combine these two algorithms and shown to be

convergent.

Algorithm 9.2 (Joint optimization of three resources).

(1) BSs and MSs perform joint beamforming and power control

in Algorithm 7.3 until it converges:

(a) MSs updates transmit power control using the load

and spillage, for fixed beamforming vectors.

(b) The BS that serves MS i optimizes the beamforming

vector of MS i.

(2) Resulting p[t] and W[t + 1] are inputs for the next step.

(3) BSs and MSs solve for joint bandwidth allocation and power

control using any standard convex optimization method.

(4) Resulting p[t + 1] and b[t + 1] are inputs for the next step.

The joint optimization framework like the above is more than an

intellectual curiosity, it leads to a quantitative understanding of the

engineering tradeoff among increasing power, partitioning the spec-

trum, and installing multiple antennas. Fig. 9.3 illustrate an achievable,

equi-utility contour surface, obtained by solving the above optimization

problem, as a function of three resource constraint parameters: trans-

mit power pm, total bandwidth Bm and number of BS antennas K. In

a network with N = 10 users, pm/n = 0dB, and Bm = 1MHz, Algo-

rithm 9.2 and rate control algorithm (9.14) are employed for solving

the joint utility optimization problem under these three constraints.

Fig. 9.3 illustrates a Pareto-optimal tradeoff surface for the optimized

utility contour over 3-D bases, by plotting a set of resource bundles

{Bm,pm,M} providing the same optimal utility. Each axis represents
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Fig. 9.3 A Pareto-optimal tradeoff surface among different resource allocations that achieve
the same utility. Each axis represent a resource constraint parameter. The optimal resource
allocation itself is not shown.

the constraint value on one of the resources, and each point on the sur-

face states that for this set of constraint values, the optimized resource

allocation (not shown in the graph) attains the same utility value as

other points on the surface.

Imposing a cost model on top of this Pareto-optimal surface will

further provide a cost-effectiveness analysis to the wireless cellular op-

erator. For example, since bandwidth is a scarce resource in a wireless

cellular network, a large cost function should be associated with the

total bandwidth usage, whereas smaller costs are assigned to power

and number of antennas. This choice of costs would result in a resource

bundle of {Bm = 1MHz, pm = 5,M = 4}, in which the total bandwidth

usage has been minimized. This is in contrast to a different resource

bundle of {W = 4.37MHz, pm = 1,M = 1} lying on the same trade-

off surface, where number of antennas and transmit power has been

minimized.

9.5 Open Problems

There is a large number of open problems on topics discussed in

this chapter. Many of them are due to the delicate balance between
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tractability and accuracy of models of resource allocation in wireless

networks. In addition, neither algorithm presented in this chapters has

a full characterization of convergence or optimality.

For joint power control and bandwidth allocation, the interference

spread approach is only an approximation. The original formulation

(9.4) in Section 9.2 does not have yet a scalable solution. A good under-

standing of the solution would provide further insights into the classical

question of what frequency reuse factor is best for the efficient perfor-

mance of a cellular network.

For joint power control and scheduling, the two fundamental diffi-

culties listed in Section 9.3 both remain open problems. In particular,

we need to characterize the convexity of various power controlled rate

regions without assuming convexity of SIR feasibility region in the first

place. Distributed solution to the convex problem of maximizing utility

over the convex hull of rate region has not been found. Even a proper

model of jointly deciding when and how much power to transmit will

require innovative optimization formulations. Further challenges will

arise as both channel variations and traffic’s stochastic arrivals are in-

corporated like in Chapter 5.

In general, a complete understanding of how to design cellular net-

works by jointly considering transmit power and all other degrees of

freedom remain a long-term goal, with continuous progress being made

as documented in the last three chapters.
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Industry Adoption

10.1 Introduction

Power control mechanisms have played an important role in the suc-

cess of most digital cellular systems. Power control offers substantial

benefits for the efficient and fair operation of the cellular system, sup-

ports QoS adaptations like rate control, and yet the basic power con-

trol algorithms involve feedback with as few as 1-bit and are simple

to implement. These motivate most cellular systems to incorporate

power control in the physical layer specification of the standard. In

this concluding chapter of the monograph, we survey a selection of the

implementations of the algorithms in previous chapters in operational

networks, including those listed in Table 10.1.

Power control implementations in cellular systems often consist

of Open-loop power control (OLPC) and Closed-loop power control

(CLPC). OLPC is a simple scheme that allows the transmitter to opti-

mally select the transmit power by exploiting the similarity of the up-

link and downlink channel in properties including distance-dependent

attenuation and frequency-independent slow fading. For asymmetric

channel properties like fast fading, a CLPC scheme, as discussed in

131
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Fig. 10.1 Power-control loops in cellular networks.

Chapter 2, will have to be implemented. CLPC schemes are more ex-

pensive to implement and are most beneficial in the uplink communi-

cation or for a Frequency Division Duplex (FDD) system where uplink

and downlink are on different frequencies and the channel on the two

links are uncorrelated with respect to fast fading. Time Division Du-

plex (TDD) systems, on the other hand, see correlated channel on the

uplink and downlink even for fast fading and can adjust the transmit

power on either link by directly measuring the the receiver power and

channel quality on the other link. As such, CLPC tends to be prevalent

in the uplinks of FDD systems and less so in the downlink or the TDD

systems. Typically, tolerance levels for OLPC is in the range 9-12dB

and tolerance levels for CLPC in the range 1-2dB.

10.2 Power Control in 2G Networks

Early digital cellular systems are typically referred to as 2G systems to

set them apart from 1G analog cellular systems. The 2G systems were

primarily designed for voice which is generated at a fixed bit rate, and

the power control mechanisms were geared towards targeting a fixed

SIR, determined by the quality of voice that needs to be supported.
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Table 10.1 Power control basic parameters in cellular network standards

Cellular System Update Frequency Supported Step-Size

GSM 2Hz 2-3dB

IS-95 800Hz 1dB

WCDMA 1500Hz 0.2dB-1dB

1xEVDO-Rel0 600Hz 0.25-1dB

1xEVDO-RevA 150Hz 0.2dB-1dB

Flash-OFDM 800Hz 0.5-1dB

Qualcomm proposed an OLPC scheme for a CDMA based cellular

system where the transmit power is set inversely proportional to the

received power [154]. The OLPC scheme was augmented by a CLPC

scheme where the receive powers were equalized through a 1-bit feed-

back [62]. This power control solution to the near-far problem was

instrumental in enabling the success of CDMA networks.

More recent CLPC algorithms implement a discretized version of

the DPC algorithm where the feedback from the BS is limited to a

finite number of bits, and the transmit power at the MS is altered by a

fixed step-size update based on the feedback. The feedback is typically

1-bit or 2-bits, and represents either a increment or decrement of the

power level rather than the absolute power level. For example, a 1-bit

power control feedback with a step-size of δdB increases the transmit

power by δdB if the feedback is “0” and decreases the transmit power if

the feedback is “1”. It is shown in [90] that this CLPC implementation

converges to within 2δdB of the SIR target. A two-bit feedback (more

precisely, a 3-level or a 1.5-bit feedback) either increases or decreases

the transmit power level by δdB or maintains the transmit power at

the same level based on the feedback. The result in [164] shows that

the 3-level feedback converges to within δdB of the SIR target.

The feedback frequency presents a trade-off between power-control

overhead and the doppler tolerance. For example, it is shown in [40]

that the number of users in an IS-95 sector that can be supported

drops by 25% when the doppler changes from 25Hz to 50Hz at a power

control update rate of 800 per second. The step-size choice presents a
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trade-off between doppler tolerance, robustness, and spectral efficiency.

Typically, higher doppler requires larger step-size to be able to track the

fast fades. An approximate but useful calculation of doppler tolerance

levels based on CLPC feedback rate and step-size parameters is as

follows. If feedback is at the rate of F updates every second and the

step-size is δdB, then a a Rayleigh fade of upto 30dB requires 30/(Fδ)

seconds to bring the power level back to the nominal. This implies that

the channel coherence time can be no less than 30/(Fδ) seconds or

equivalently doppler level no more than Fδ/30Hz. However, larger step-

sizes result in more SIR variation in steady state and larger variations

when dopplers exceed what can be supported. Therefore, step-sizes

needs to be chosen with care.

CLPC is an important component of the CDMA based IS-95 [169]

system where neighboring sectors use the same frequency. It helps in

minimizing inter-sector interference and enabling frequency reuse of

one. In addition, MSs in the same sector of an IS-95 system are not

orthogonal on the uplink since it is prohibitively expensive to maintain

CDMA chip-level synchronization among MSs. CLPC ensures that the

MSs closer to the BS does not swamp out the MSs further away from

the BS. The CLPC scheme on the uplink in IS-95 uses 1-bit feedback

at the rate of 800 every second. The power control update is in steps

of 1dB with choices of smaller steps allowed in later revisions of the

standard. On the downlink, CLPC is less important since the downlink

signals emanating from the same BS are orthogonal, and as such the

feedback rate is once every 20ms reporting a frame error in 1-bit.

The GSM[5] based 2G standard is an orthogonal scheme where the

MSs within a sector are allocated a separate time and frequency slot

for both uplink and downlink. Maintaining orthogonality between MSs

of the same sector implies that the time-frequency resource for each

MS is limited and the SIR requirement for voice communication is

higher in comparison to IS-95. This rules out frequency reuse of one

in GSM systems. The non-existence of inter-sector interference from

the immediate neighbors of a sector and the non-existence of intra-cell

interference due to the orthogonality of MSs within a sector imply that

the need for CLPC in GSM standard is less in comparison to IS-95.

As such, GSM implements a CLPC scheme both on the uplink as well
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as the downlink with updates every 480ms based on two parameters

referred to as “RxLev” and “RxQual”. The “RxLev” is the receive

power level and the “RxQual” is the receive signal quality in terms of

SIR or BER.

10.3 Power Control and Scheduling in 3G/4G Networks

In addition to voice, the 3G and 4G cellular systems support data of

varying rates and QoS needs. Rather than formulating power control

as a fixed SIR feasibility problem, SIR assignment and power control

need to be jointly designed as in Chapter 4. The time and frequency

allocation for each MS, unlike the case in a 2G system, is not static

but depends on the traffic arrivals, channel conditions, and QoS classes.

Scheduling refers to allocation of time and frequency slots to the MSs,

as discussed in detail in 9. Power control determines the transmit power

allocated to the links. Power control and scheduling are therefore done

in conjunction in 3G systems to maximize the efficiency of the system.

The time and frequency resources are split into chunks that form

the time-frequency slabs. For each time-frequency slab, the scheduling

algorithm decides the set of MSs that are allowed to participate in

data transmission in that slab, and the power control part determines

the data rate of transmission by allocating appropriate power levels to

the participating MSs through a power-control algorithm. The ultimate

objective, whether stabilizing queues resulting from a set of arrivals or

maximizing network-wide criteria, is realized through both scheduling

and rate selection through power control.

The scheduling mechanism requires a control channel over which

the allocation of the MSs for a given time-frequency slot is indicated to

the MSs. This overhead is an important factor to consider in the design

of the scheduler. If the traffic pattern over the links is predictable, then

it might be beneficial to pre-allocate the time-frequency resources and

reduce the overhead associated with an explicit scheduler implemen-

tation. Such a system is then an unscheduled system supporting more

uniform data rates in comparison to a scheduled system. For example,

the 1xEVDO system is a scheduled system on the downlink but an un-

scheduled system on the uplink. An unscheduled system is still designed
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to support different data rates according to the traffic requirements but

would be efficient only in supporting uniform data rates.

An important factor that determines the total uplink capacity in

commercial networks is the interference limit qm, often stated in terms

of IOT and ROT factors that were discussed in Chapter 1. The IOT

limits bound the interference to the cell ensuring stability of rate al-

location on the uplink, and in addition limits the power required for

new mobiles to access the network. Typical IOT values in commercial

networks range from 3 to 10 dB.

10.3.1 1xEVD0 Rel0 and RevA

The 1xEVDO Rel0 [2] and RevA [3] are CDMA based 3G systems that

implement a scheduled downlink and an unscheduled uplink. On the

downlink, the transmit power is fixed and the rate of transmission is

adapted according to the interference experienced by the MS. No power

control is employed. The long-term data rates depend upon the fraction

of time-frequency slabs scheduled to each MS.

The uplink, however, is unscheduled and relies on power control

to achieve a required data rate. Two independent control mechanisms

together determine the uplink data rate as explained in [33].

First is the basic power control that measures the received SIR on pi-

lot signals transmitted by the MS and feeds back 1-bit power up-downs.

Rel0 uses a feedback rate of 600Hz with step-seize of 1dB. The Pilot

channel transmit power is determined entirely by this power-control

loop. The traffic channel transmit power is expressed in relation to the

pilot channel transmit power and is referred to as the T2P (Traffic-

to-Pilot Power). The data rate on the traffic channel has a one-to-one

relationship, with T2P with higher rates requiring higher T2P.

The second control mechanism determines the data rate of trans-

mission. Each BS measures the interference level and sets a control bit

referred to as the “Reverse Activity Bit” (RAB) if the level is beyond

a certain threshold. The MS maintains an “active set” of BSs that it

can detect with some strength including the serving BS. The RAB-bit

from any one of the BSs causes the MS to backoff it’s current data rate

with a certain probability. If no RAB-bit is detected to be set, then the
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MS increases the data rate with a certain probability. The RAB-bits

are fed back at the rate of 37.5Hz. The probabilities are set to values

dependent on the desired interference level and can be set on the each

MS to satisfy QoS requirements. Since the supported data rates are

not a continuum of values but take some discrete values based on the

chosen code rate and modulation, the T2P is discrete the interference

tends to be bursty.

The uplink in RevA is an improvement over that of Rel0. Higher

data rates are defined, supporting a larger range of data rates, and

hybrid ARQ is introduced, making effective use of any T2P and pro-

viding a contiguous set of data rates. The MS decreases and increases

the T2P in deterministic amounts based on whether the RAB bit is set

or not. The T2P and the hybrid ARQ-induced latency requirement for

the traffic determine the rate of transmission. The RAB bit is trans-

mitted more frequently in RevA, at the rate of 600Hz, and hybrid ARQ

allows a continuum of T2P, making the interference less bursty with

RevA in comparison to Rel0. Indeed, the RevA uplink is two to three

fold more efficient in comparison to Rel0 uplink as shown in [51].

10.3.2 Flash-OFDM

The Flash-OFDM system [94] is based on OFDM modulation with

orthogonality among MSs within the same cell maintained by allocat-

ing different tones to different MSs. The orthogonality among MSs

removes intra-cellular interference, improving the range of attainable

SIRs. Maintaining orthogonality among MSs is easier in OFDM than

in CDMA since the MSs have to match their timing alignment with the

BS only upto the cyclic prefix inserted in the OFDM symbol. However,

this gain in SIR due to removal of intra-cellular interference comes at

the expense of the extra resource occupied by the cyclic prefix.

Another advantage of the timing alignment of the MSs within a

cell in an OFDM system is that it opens up the possibility of having a

scheduled uplink. The true advantages of a scheduler should be evalu-

ated in terms of the overhead carrying information of the assignment

of the MSs to the time-slots and the benefits offered by a scheduler

in managing various traffic arrival patterns. The Flash-OFDM system
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is a scheduled downlink and uplink system. Similar to the 1xEVDO

systems, the Flash-OFDM system has the MS transmitting pilots that

are power-controlled to a given SIR target. The traffic channel transmit

power is not determined by the MS directly. Instead, the MSs report

to the BS a quantity similar to the “spillage” as explained in Chap-

ter 4. The uplink scheduling algorithm at the BS picks MSs that can

transmit in any given time-frequency slab and indicates the maximum

T2P that each scheduled MS can use in the time-frequency slab. The

MS then picks a data rate that can be supported within the maximum

T2P that it gets from the BS.

The Flash-OFDM network is the first network with a scheduled up-

link with the power control and rate selection based partly on the

optimization framework presented in Section 4.3.2. Time is slotted

into units of 1.4ms with a power-control feedback expected every slot.

Scheduling decision made every time-slot about the set of MSs that will

participate in data transmission in that slot and the rate at which the

MSs transmit. This gives the scheduler flexibility in catering to various

traffic patterns and QoS requirements. However, power control feedback

at the same rate as the scheduling decision and the possible fluctuation

in transmit power of MSs due to scheduling decisions can potentially

destabilize the system. The Flash-OFDM system implements a simple

rule derived from the results in Section 4.3.2 to maintain stability. If

Lk is the load-budget allocated to BS k, then every time slot the BS

schedules a set of users such that
∑

i siγi < Lk, where si is the spillage

reported by MS i and γi is the SIR corresponding to the intended rate

allocation. With this rule and with a suitable averaging of the inter-

ference used in rate allocation, it can be shown that the Flash-OFDM

system maintains a stable uplink with rate allocation close to optimal.

10.3.3 WiMax

Power control in the WiMax broadband wireless system [1] is based

on the uplink ranging signal, which is a fixed waveform transmitted by

the terminals for the BS to make power and timing corrections. The

downlink power corrections, however, are not defined as part of the

standard and left to the implementation to be sent down as control
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data packets. The power control mechanism is expected to support

fluctuations of 30dB per second with depths of at least 10dB. WiMax

defines a scheduled uplink and the BS picks the MSs that can transmit

in any given time-frequency slab. The MS maintains the same transmit

power level per tone and the total power transmitted depends upon the

number of traffic tones transmitted.

10.4 Power Control in WiFi Networks

The IEEE 802.11 standard defines a wireless local area network that is

typically not considered “cellular”. However, the most prevalent model

of deployment for the WiFi standard is in a mode where the WiFi access

terminals (ATs) communicate with an access point (AP), similar to the

MSs communicating with a BS in cellular topologies. In such a scenario,

power control can result in significant improvement to the performance

of the network both by reducing the overall power consumption of the

ATs and reducing the interference level and thereby increasing the data

rates.

The 802.11 standard implements a MAC algorithm that involves

carrier sense and exponential backoff and does not dictate any explicit

power control scheme. Researchers have attempted to remedy the situa-

tion by proposing various MAC layer schemes that can be implemented

on top of the PHY layer. One such mechanism is for the receiver to send

back the power level of data transmission in a control channel at the

maximum power, in response to intention of data transmission indi-

cated by the transmitter [130]. However, transmitting data and control

channel at different power levels results in inefficient operation in an

unplanned spread of APs. Improvements to this scheme were suggested

in [89] to get around the problem by occasionally transmitting data at

the maximum power to prevent neighboring APs from taking over the

channel.

10.5 Open Issues

The 3G cellular data systems mostly designed power control based on

principles developed for the 2G networks, often retaining the assump-
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tion of a fixed date rate demand, and sometimes leveraging joint SIR

assignment and power control. As cellular data and multimedia trans-

mission become more prevalent in mobile applications, the expectation

is that the data rate demands will have a high dynamic range both

among users and in time. It becomes important for the industry to

adopt techniques for admission control as discussed in Chapter 3, for

better power allocation under channel variation as discussed in Chap-

ter 5, for joint power control and beamforming design in cells equipped

with multiple antennas as discussed in Chapter 7, for joint power con-

trol and BS allocation as discussed in Chapter 8, and for joint power

control and time-frequency allocation as discussed in Chapter 9.

For example, the Fractional Frequency Reuse (FFR) scheme pro-

posed in the design of Universal Mobile Broadband [4], the next gener-

ation mobile broadband system from the 3GPP group, is an effort to re-

visit the joint power control and frequency allocation design. The avail-

able bandwidth is sub-divided into multiple sub-bands, with frequency-

hopping restricted to within the sub-band. This allows the power al-

location to be varied in different sub-bands. The envisioned use of the

sub-bands is static allocation of powers to result in frequency reuse

of 1 in some sub-bands and higher frequency reuse in other sub-bands.

Dynamic power allocation across sub-bands in response to varying QoS

demands remains an open issue that demands an answer to problems in

Section 9.4. As the general industry trend continues towards scheduled

allocation of time and frequency resources, an efficient way to imple-

ment a solution to Problem 9.13 in Chapter 9 is required. Since it is

desirable to have network architectures that preclude centralized Base

Station Controllers, a distributed solution to Problem 9.13 that only

requires BS MS message passing would be even better.

Indeed, most of the open problems in power control discussed in

Chapters 2–9 are clearly motivated by the needs of operational wire-

less cellular networks. Their solutions would require new modeling tech-

niques, theoretical advances, and mathematical machinery, which will

in turn help push the cellular technology as in the last 15 years of this

research area.
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