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Abstract 

 

Evolutionary Algorithms in Optimization of Technical Rules for 

Automated Stock Trading 

 

Harish K Subramanian, MSE 

The University of Texas at Austin, 2004 

Supervisors:  Peter Stone, Benjamin Kuipers 

 
The effectiveness of technical analysis indicators as a means of predicting future price 

levels and enhancing trading profitability in stock markets is an issue constantly under 

review. It is an area that has been researched and its profitability examined in foreign 

exchange trade [1], portfolio management [2] and day trading [3]. Their use has been 

advocated by many traders [4], [5] and the uses of these charting and analysis techniques 

are being scrutinized [6], [7]. However, despite their popularity among human traders, a 

number of popular technical trading rules can be loss-making when applied individually, 

typically because human technical traders use combinations [8], [9] of a broad range of 

these technical indicators. Moreover, successful traders tend to adapt to market 

conditions by varying the weight they give to certain trading rules and dropping some of 

them as they are deemed to be loss-making. In this thesis, we try to emulate such a 

strategy by developing trading systems consisting of rules based on combinations of 

different indicators, and evaluating their profitability in a simulated economy. We 

propose and empirically examine two schemes, using evolutionary algorithms (genetic 

algorithm and genetic programming), of optimizing the combination of technical rules. A 

multiple model approach [10a] is used to control agent behavior and encourage 

unwinding of share position to ensure a zero final share position (as is essential within the 

framework that our experiments are run in). Evaluation of the evolutionary composite 



 vii 

technical trading strategies leads us to believe that there is substantial merit in such 

evolutionary designs (particularly the weighted majority model), provided the right 

learning parameters are used. To explore this possibility, we evaluated a fitness function 

measure limiting only downside volatility, and compared its behavior and benefits with 

the classical Sharpe ratio, which uses a measure of standard deviation. The improved 

performance of the new fitness function strengthens our claim that a weighted majority 

approach could indeed be useful, albeit with a more sophisticated fitness function.  
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Chapter 1. Introduction 

The stock market represents an interesting dynamical system that intrigues 

researchers from a number of disciplines including the machine learning community 

which aims to build autonomous agents as part of a larger body of research into 

autonomous agent systems [11]. Autonomous trading in stock markets is an area of 

growing interest in the academic as well as commercial circles. Various attempts at 

forecasting and prediction of time series data including neural network prediction 

schemes have been moderately successful in the prediction of prices based on complex 

mathematical models [12], [13]. While these are rigorous and expansive schemes to base 

trading on, and despite their capability of producing good results when modeled right, the 

fact remains that developing a sufficiently expansive model is a very difficult challenge. 

As long as profitability is our primary concern, the goal remains to try and produce 

productive and profitable strategies, even if they are specific to a market. We aim to 

utilize existing intuition and combine ‘conventional wisdom’ with computational 

techniques to try and improve profitability.  

1.1 MOTIVATION 
 

The stock market is a time varying, highly volatile process with so many factors 

affecting its variation that it is very difficult to model its behavior with any precision. 

Numerous investigations have been largely unsuccessful in predicting its behavior, 

failing to produce substantial returns over basic, intuitive “reactionary” rules [14], [15]. 

In fact, a controversial but oft cited investment theory known as the Efficient Market 

Hypothesis [16] implies that it is impossible to beat the market. In other words, it 

suggests that the behavior of share price variation in the stock market does not contain 

much predictable behavior that can be taken advantage of to ensure profitability. Other 

studies also conclude that the autocorrelation for day to day changes is very low [17] and 

that the process behaves very much like a random walk [18]. However, in the technical 

trading community, the popular belief is that such an assumption would mean that 

someone with no knowledge of the market making a random trade is about as likely to 
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succeed as an experienced trader. Deferring to intuition, they argue that this is not the 

cases, and claim that there are some non-random aspects of the market that can be 

exploited to trade profitably [6]. 

 

There is now substantial interest and possible incentive in developing automated 

programs that would trade in this market much like a technical trader would, and have it 

be relatively autonomous. Unless the market does not move at all during a trading day, 

there is always some strategy that would work on a given day to make a lot of money. 

These strategies would then lose money on other days, when a degenerate do nothing 

strategy would have been a better way to go. We may think of a ‘successful strategy’ to 

be one that maximizes the number of profitable days, as well as has positive average 

profits over a substantial period of time, coupled with reasonably consistent behavior. 

What does it mean to be ‘consistent’? And what is a substantial period of time? In the 

context of our experiments in this thesis, we examine these questions in later sections. 

Further discussion of evaluation criteria for our strategies can be found in Chapter 2.  In 

this thesis, we aim to study the effect of combining multiple ‘intuitive’ trading rules 

within the framework of the Penn Lehman Automated Trading (PLAT) project [19]. 

There have been numerous studies on the use of technical trading strategies in intraday 

stock trading. Even with exhaustive optimization of parameters, most of these strategies 

have often proved too simplistic and coarse to utilize the variation of high frequency 

stock price variation [20], [21].  

 

A possible solution is to combine these individual strategies much like a human 

trader would do on the floor of the stock exchange. Where the trader would rely on 

combining intuition and experience to make a final decision, the strategy we wish to test 

here is to emulate this behavior by using a genetic algorithm to tune the relative merits of 

the individual rules. In this thesis, we aim to verify the validity of a scheme of operation 

wherein the automated agent trades based on a combination of signals it receives from the 

various ‘simplistic’ rules. We explore two schemes of combining rules – adding weights 

to the various trading suggestions and adding or deleting certain rules altogether. 
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The two main contributions of this thesis are as follows. First, we propose that 

technical indicators, although useful, are not as profitable when used alone, as they are 

when used in conjunction with other technical trading rules. We explore two schemes of 

combination of technical trading rules, using evolutionary algorithms (Genetic Algorithm 

and Genetic Program) to optimize the combination of these rules, and conjecture that it 

would work better than an ad-hoc combination. We develop agents with a weighted 

majority design as well as one with provision for adding/deleting rules and the use of 

Boolean operators as combining elements. Second, we look at improvements in fitness 

functions for the evolutionary algorithms, so the model evolved by them are suited to 

days of different price dynamics and increase profitability over days of all kinds of 

behavior. To this end, we compare and contrast two different (but related) fitness 

functions, and the performance of the resulting agents. Finally, we aim to present an 

empirical study of performance of certain agent designs in controlled but fairly realistic 

market simulations in an effort to explore possible vistas in profitable automated agent 

development. 

1.2 OUTLINE 
 

The thesis aims to study the design, development and performance of an 

automated trading strategy utilizing a composite technical trading strategy optimized by a 

genetic algorithm. We also use a multiple model approach to control trading order 

placement based on share position of the agent. Trading simulations and controlled 

experiments are conducted to study the performance of this agent as well as its 

components. 

 

The rest of the thesis is organized as follows. Chapter 2 delves into some details 

about the domain in which simulations are performed, background work and requisite 

terminology. We also briefly touch upon the design of other agents we use in our tests. 

Chapter 3 discusses the component technical trading strategies, as well as how they are 

composed. A brief introduction to aspects of genetic algorithm and genetic programming 
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optimization used in our strategy, along with some implementation issues, are also 

included. Chapter 4 contains a summary of experiment design, tests and simulations that 

were performed as well as the results and includes an analysis of the results. Finally 

Chapter 5 summarizes key results and a limitation of the work described in the thesis, and 

discusses some ideas for future work in the area.   
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Chapter 2. Background and Related Work 

2.1 BACKGROUND 
 

In this section, we review some of the earlier work done by researchers in the 

area. We also introduce basic trading concepts and discuss simulated trading 

environments including the one used for experiments throughout this thesis.  

2.1.1 Literature Survey 
 

Stock markets have been around for centuries and the classic ‘scream’ across the 

floor has been the medium of choice. Of late, however, markets have gone electronic. 

NASDAQ is a distributed trading system completely run over networks of computers. It 

allows customers' offers to be displayed on NASDAQ by their brokers or through ECNs 

(Electronic Crossing Networks). ECNs such as Island [22] allow customers to display 

their orders as well as trade orders with each other. Of course, trading in these markets on 

an experimental basis is a costly exercise not only due to the transaction fees, but the 

potential for steep penalties in the event of mistakes when a large amount of money is 

risked. Additionally, experimentation to verify effects such as that of volume of trade on 

profitability may involve high risks, as the downside to high volume trades is potentially 

very high.  

 

The factors described above warrant the use of trading simulators. These range 

from in-class simulators, aimed at students to teach them the nuances of financial markets 

[23], and financial simulators for exam preparation [24] to advanced market models like 

the Santa Fe Artificial Stock Market [25]. However, various shortcomings of these and 

other such simulators (like the failure to simulate a realistic market scenario and failure to 

accommodate trading frequencies suitable to intra-day trading) have been addressed by 

the PLAT domain. It uses real-world, real-time stock market data available over modern 

ECNs and incorporates complete order book information; simulating the effects of 
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matching orders on the market. It also provides numerous APIs that allow the participants 

to program their own strategies and trade with other agents as well as the external market. 

 

Technical Analysis has a long history among investment professionals. However, 

it has been approached with a great deal of skepticism in academia, over the past few 

decades, largely due to the belief in the efficient market hypothesis. Though this field has 

remained marginalized in literature, the accumulating evidence against the efficiency of 

the market [21] has caused a resurgence of interest in the claims of technical analysis as 

the belief that the distribution of price dynamics is totally random is now being 

questioned. These techniques assume that, notwithstanding the efficient market 

hypothesis, there exist patterns in stock returns and that they can be exploited by analysis 

of the history of stock prices, returns and other key indicators. [6] provides details on 

technical analysis for stock trading. Contained in [26] is a very good description of their 

utility for our problem. 

 

Initial attempts at isolating factors that affect trading yielded mixed results, but 

when exploring a relatively new domain, negative or inconclusive results may still 

contain valuable information. A multitude of day trading strategies from ‘resistance and 

support’ [27] to the ‘market making with volume control’ [10(b)] strategy discuss volume 

of trades (or the size of the buy or sell trading order in number of shares) as a parameter, 

in the former case, to aid the decision process and in the latter, as a control mechanism. 

Most studies however, have considered this a secondary factor and hence, literature on 

studies of its exclusive effect on intraday trading is scarce. Order imbalance in volume 

[10(c)] emerged as a useful volume parameter. Initial tests and an attempt at designing a 

useful day trading strategy yielded useful information, despite some inconclusive results, 

regarding the merits of order volume as a consideration when designing a trading 

strategy. 

 

There exists an immense body of work on the mathematical analysis of the 

behavior of stock prices, stock markets and successful strategies for trading in these 
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environments. In recent years, the application of artificial intelligence (AI) techniques to 

technical trading and finance has experienced significant growth. Neural networks [28] 

have received the most attention in this regard and have shown various degrees of 

success. The purpose of using neural networks is the ability to forecast data patterns that 

are too complex for traditional statistical models. However, it is the lack of 

interpretability of rules generated by a neural network that has caused a shift of interest in 

favor of more transparent methods, and the genetic algorithm has risen in prominence as 

an optimization tool in financial applications.   

 

 Many traders aim to practice technical analysis as systematically as possible 

without automation while others use technical analysis as the basis for constructing 

systems that automatically recommend trade positions. A good example of research 

where attention is paid to system construction as opposed to rule construction is [29]. 

Other work in this area includes [28] who proposed using the method of genetic-based 

global learning in a trading system. Here, genetic algorithms are used to attempt to find 

the best combination indicators for prediction and trading. Results are shown to be 

profitable but are reported in too little detail for objective scrutiny. 

 

In [14], a financial currency exchange system that uses genetic algorithms to 

optimize parameters for a simple technical trading indicator is described. This work has 

considerable merit since intraday data are used. It is noted that the ultimate aim of such a 

project would be to create a system based on an ensemble of indicators as we attempt. A 

framework for systematic trading system construction and adaptation, based on genetic 

programs was suggested in [30]. In [1], the use of genetic programming to discover 

profitable trading rules was explored. A good introduction to genetic algorithms can be 

found at [31]. Additionally, their use in investment strategies is described in [32].  

 

Work in using a multiple model approach for development of an effective 

intraday trading strategy [10a] and attempts at designing a strategy in the PLAT domain 

using reinforcement learning and hill climbing as well as a market maker to be used in 
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competition in the PLAT domain have been explored to some extent [10b], but not in 

conjunction with technical trading rules.  

2.1.2 Relevant Trading Terminology 
 

Before we discuss the environment and design involved in our work, we will 

discuss the underlying mechanics of financial markets and exchanges, or the market 

microstructure. In electronic markets such as NASDAQ, all orders are sent to the 

exchange via an electronic interface and order-routing system. Since orders are cleared 

electronically, the use of Electronic Crossing Networks (ECNs) has become prevalent. 

One of the larger ECNs is Island [4]. 

 

Electronic Trading uses orders to buy or sell shares. These orders may be placed 

at any price and any number of shares may be traded. Most commonly, we use market 

and limit orders. A market order is an order to buy or sell shares at the current market 

price. A limit order is an order to buy or sell a security at a specific price. In other words, 

this kind of order is used to buy shares at a lower price than the current price or sell 

shares at a higher price than the current. This kind of order does not guarantee a trade, 

and such an order will be executed only if the current price happens to reach the quoted 

price.  

 

Most of the strategies described in this thesis use the limit order – and the terms 

‘order’ and ‘limit order’ are used interchangeably in the following sections. 

An order book is essentially a sorted list of orders placed by traders. The orders to sell 

and buy are stored in the sell and buy order books respectively. Incoming (new) orders 

are compared with corresponding orders in the opposite book – to check if it can be 

executed immediately. If it can be executed, the corresponding order in the opposite book 

is deleted to the extent to which it satisfies the order. If the incoming order is large, then 

more than one order in the opposite book may be executed to satisfy the need. Incoming 

orders that are not immediately executed (partly or fully) are entered into the appropriate 
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order book in an appropriate position ranked by price and time of order placement (in 

case of a tie). 

 

 
                       Figure 2.1: A typical electronic trading order book 

 

Order book imbalance is the difference in price or volume of trades between the sell and 

buy order books. Volume of trades is usually expressed as number of shares associated 

with orders. Programs written by stock traders/organizations with the specific intent of 

placing trading orders, according to an algorithm is defined as an agent in the following 

sections. These agents monitor price variation, and based on the programmed algorithm, 

place orders. Of course, various levels of autonomy can be assigned to the process. 

Human intervention can be enforced to a high level – wherein the human trader uses the 

algorithm purely as an indicator or recommendation, and on the other hand, the agent 

may have more autonomy and is allowed to automatically place bids on behalf of the 

trader. In this thesis, and all the following sections, we program strategies (that monitor 

current market statistics, and based on the algorithm, decide the action to be taken) that 

the agent uses to perform certain trading actions. 
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2.1.3 Stock Market Simulators 
 

Automatic trading has been an active area of research over the last decade, and a 

primary requirement to this cause is a realistic simulation of the market – owing to the 

high expenses associated with experimenting on the actual market. This has led to the 

development of numerous simulators (virtual markets). These simulators have been 

designed from various perspectives – from the study of market mechanism to classroom 

teaching of finance fundamentals. The Santa Fe Artificial Stock market project is an 

example of the former and [20], the latter. The Stock Market Game [33] is a simulator 

where participants can study the tradeoffs in risks and rewards in making decisions 

according to certain strategies. Another simulator that can be used by traders to 

experiment on managing different portfolios is the Virtual Stock Exchange [34]. 

However most of these simulators create whole new stock exchanges, independent of the 

real world trades.  

 

The bids placed by the agent needs to affect the economy of the market it trades 

in. So, in any scenario where virtual bids are placed at current prices over a period of 

time and evaluated in a real world economy, the economy is not affected by any action of 

the agent. All the above shortcomings in various stock market simulators motivated the 

research of the Penn-Lehman Automated Trading (PLAT) group. The PLAT simulator 

seamlessly combines the virtual orders from participating virtual trading agents with 

orders in a real world ECN, to create an environment very close to the real world. The 

Penn Exchange Server (PXS), a component of the PLAT project , is a platform for 

developing novel, principled automated trading strategies. The real-data, real-time nature 

of PXS lets us examine computationally intensive, high frequency, possibly high-volume 

trading strategies.  

2.1.4 PLAT Domain 
 

The Penn Lehman Automated Trading (PLAT) domain uses the Penn Exchange 

Server (PXS) to which the trading agents can plug in. PXS uses real-world, real-time 
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stock market data for simulated automated trading. It frequently queries the Island 

electronic crossing network’s (ECN) web-site to get the most recent stock prices and buy 

and sell order books. A detailed discussion of the working of PXS can be found in [19]. 

PXS works in a manner very similar to a regular ECN. The order books maintained by 

the PXS server are a combination of real orders and virtual orders (placed by the agents 

that are plugged into it). Real orders correspond to those on the Island ECN. At every 

processing cycle, an attempt is made to match virtual orders. All possible transactions are 

processed, following which, an attempt is made to match the virtual orders with real 

orders. After this is over, all remaining unmatched orders (virtual and real) are combined 

to form a single pair of buy and sell order books. The simulator also computes the profit 

and losses of each connected trading agent in real time, and displays it in an output file.  

 

PXS is equipped for testing strategies on historical data and also for running in the 

live mode, starting and ending at the same time with normal trading sessions of the 

NASDAQ. The simulator supports limit orders only. The trading strategies connected to 

the server, which we have until now referred to as an agent will now be used 

interchangeably with client for the rest of this work.  In the simulation, the best ask price 

is the lowest price any seller (either trading agents or outside market customers) has 

declared that they are willing to accept; the best bid price is the highest price any buyer 

has declared that they are willing to pay. If a new buy order has bid price greater than or 

equal to the best ask price or a new sell order has ask price less than or equal to the best 

bid price, the order will be matched in the amount of the maximum available shares and 

the trade is executed. If a bid price is higher than the ask price, the trading price is the 

average of these two (bid and ask) prices. If orders cannot be matched immediately, they 

are kept in the queue to wait for possible future matches. 
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               Figure 2.2: PLAT System Architecture 

 

Currently, PXS supports four stocks. However, during the early stages, they were 

hardwired to Microsoft Stock (Symbol: MSFT). Hence, in this work, our focus is on 

trading this stock alone. Trading agents in the simulation can buy or sell MSFT stocks 

with limit orders. Agents can borrow stocks from the simulator and go short or borrow 

money from the simulator without any interest to go long. However, the same amount of 

money will be deducted from the agent's simulated cash account. The cash in the account 

can be negative or positive. The value that a trading agent has in the simulation can be 

approximated in real time by the formula: value = cash + holdings * current Price.  

 

In the experiments in the rest of this thesis, we impose some rules that are the 

same as the ones used in recent competitions held by the group responsible for the 

running of the PLAT domain. We now discuss these rules, which were established 

external to the working of the PXS server itself. An important feature of the trading 

simulation is that the objective is to day trade (the objective of day trading is purely to 

trade profitably over a day’s stock price variation, and the frequency of observation of 

price variation as well as order placement is high – many times in a day) and hence, it is 

strongly desirable to unwind one’s position, i.e., buy back all the shares from a short 

position or sell all the shares from a long position by the end of the trading day, leaving 

the agent at a neutral (zero surplus, zero deficit) position in terms of number of shares. 

Failure to do so results in a penalty (specific penalty for our experiments are examined in 

 LOCAL 
MARKET 

  PXS 

Agent 1 

Agent n 

   Island 
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later sections). Any excess shares held at the end of the day are valued at zero. Shares 

that are short need to be bought back by the agent at twice the closing price.  

 

Other factors to be accounted for are the fact that trading happens continuously 

and in real time. The agent strategy cannot be externally changed in the middle of a 

trading day. Also, PXS has provisions to accommodate transaction costs, much like the 

real market. Each time a trade is executed by PXS, one side of the order exists in one of 

the order books already, and the other side of the order is the incoming order. In order to 

reward an agent for providing liquidity (providing the books with unfulfilled orders to 

match potential orders from the other side of the book), the agent that has its order in the 

book already – is rewarded with a rebate. The agent with the incoming order 

correspondingly is charged a fee – as it eliminates liquidity from the order books. The 

daily return is thus defined as: 

Daily Return = Cash – Unwinding Penalty – Transaction fees + Trading Rebates 

The transaction fees charged for trade, in the experiments in this thesis, follows exactly 

the pricing mechanism of the Island ECN. For each trade executed by PXS, the agent 

whose order was already in the books receives a REBATE of $0.002, and the agent who 

placed the incoming order (that was executed immediately) pays a transaction FEE of 

$0.003.  This way, agents are rewarded for maintaining liquidity on the server and 

penalized for depleting the liquidity. Within the framework defined so far, the objective 

of the agent strategy is to maximize profits. Specifically, the expected return, measured 

by the Sharpe ratio, is to be maximized (section 2.4). There are competing objectives at 

play here. The need to maximize profits implies that an extreme position be taken by 

trading as much as possible when an opportunity for profit is seen. On the other hand, the 

need to unwind one’s position at the end of the day as well as the strict statistical measure 

of performance suggests a more cautious approach. There are no limits to how many 

shares an agent may buy or sell in a day, or how many shares an agent may hold (or have 

a deficit of) at any given point of the day. So there is room for exploration of strategies. 

Unreasonable positions are avoided by most agents due to the focus on liquidity, but 
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counter-intuitive, extreme strategies are accommodated within this framework.  

 

A key point to note is that it is desirable to make consistent small profits over 

many days, as opposed to adopting strategies that provide high returns but result in high 

variance, thereby neutralizing the profits and resulting in a small Sharpe ratio. The need 

for a controlled trading strategy is evident.    

2.2 EARLY AGENT DESIGN AND THE NEED FOR A COMPOSITE STRATEGY 
 

Some financial and commodity market traders study market price history with a 

view to predicting future price changes in order to enhance trading profitability. This 

study is called technical analysis. Technical trading rules involve the use of technical 

analysis to design indicators that help a trader determine if current behavior is indicative 

of a particular trend, as well as the timing of a potential future trade. Owing to the 

difficulty of managing complex models of the market and using rigorous, adaptive 

decision techniques, day traders tend to use simpler and more intuitive decision rules. 

This ‘common sense’ approach has often proven quite effective [10a] and has been 

considered a good candidate for automation [35]. 

 

The hypothesis is that a robust strategy can be designed by composing multiple 

‘intuitive’ strategies. Robustness and relatively complex behaviors can be achieved by 

synthesizing multiple, intuitive strategies. Basic stock trading is commonly perceived to 

be governed by the dictum ‘buy low, sell high’. If an agent were to buy a share at a low 

price and sell it at a higher price, then a profit of high price – low price has been made. 

Numerous such trades over the day would accumulate profit for the trader. A problem in 

stock markets is that the future is unknown and it is therefore unclear if a decision to buy 

or sell in anticipation of a favorable movement in the future would yield profit. This 

decision is further complicated by the strict need to unwind, as is the case in intraday 

(high frequency) trading. The aim is to leverage the small price changes to one’s 

advantage. A process of unwinding, i.e. the process of selling excessive shares if in 

excess and buying the number of shares required to make up the deficit, when short, is 
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implemented in the experiments in the following sections. (The case of possible retention 

of a short or long position overnight, is a different body of research, and includes factors 

such as overnight information, adjusted prices, etc).  

 

Synthesis of multiple rules to come up with a composite trading strategy has been 

tried before in various forms – with the component rules being everything from complete 

rules [36] to very basic predicates and operators that are combined to generate complex 

rules [37]. In this work, we aim to synthesize a strategy where the component rules are 

independent strategies in themselves, so they would appeal to a human trader. It would be 

hard to intuitively see the utility of a rule that was a long series of conjunctions and 

disjunctions of basic predicates. So, we aim to see if existing, simple, intuitive strategies 

can be composed in some way to make a robust, profitable strategy. In the following 

subsections, we will briefly discuss some of the strategies that have been implemented 

and tested in the PLAT domain, with emphasis on the ones we will use as competitive 

agents in experiments in later sections. 

2.2.1 Static Order Book Imbalance (SOBI) Strategy 
 

The SOBI [10d] strategy bases its decision on the differences in the distribution of 

volume at different prices in the BUY and SELLS order books. 

Let bi (i = 1, 2, 3, 4) represent the volume-weighted average price (VWAP) of the top 

i*25% of the volume in the buy order book. For instance, b1 is computed by taking the 

top 25% of the buy order volume, and computing the average price offered per share. 

Similarly, let si (i=1,2,3,4) be the volume-weighted average price of the top i*25% of the 

volume in the sell order book. Also, let lastPrice be the most recently updated market 

price. 

Si: si – lastPrice 

Bi: lastPrice - bi 

Note that Si and Bi will always be positive numbers.  
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They can be interpreted as a measure of the "distance" from the last price of the top 

i*25% of the respective order book. The strategy computes the VWAP of the PXS BUY 

and SELL order books, and compares them to the PXS last price.  

 

The basic idea is that the the difference between the respective VWAPs and the 

last price is an indicator of the level of support that the buyers and sellers show. For 

example, if the VWAP of the buy book is much further from the last price than the 

VWAP of the sell book, it is a sign that buyers are less supportive of this price than are 

sellers, as indicated by their limit orders (statistically) standing further off. In this case, 

SOBI will place an order to sell shares, on the theory that the weaker buy-side support 

will cause the price to fall. 

 

To summarize, the SOBI strategy, at every tick, computes Si and Bi and places 

buy or sell orders according to the following rules: 

If (Si - Bi > theta), place an order to buy volume(v) shares at (price); 

If (Bi - Si > theta), place an order to sell volume(v) shares at (price); 

theta being a controlled parameter. 

2.2.2 Market Maker 
 

A market maker buys stock when the price is increasing at an increasing rate and 

sells stock when the price is decreasing at an increasing rate. However, rather than wait 

for a trend reversal to unwind the accumulated share position, the agent always places 

buy and sell orders in pairs. When the price is increasing at an increasing rate, the agent 

places a buy order at price p (based on the order book)  and immediately places a sell 

order at price p + �, with the confidence that the latter will be matched shortly when the 

price has gone up enough. The situation is assumed to be symmetric when the price is 

decreasing at an increasing rate. For further discussion, the reader is pointed to [38]. In 

our tests, this (having been a successful agent in past competitive tests) is used as a 

competing agent.  



 17 

2.2.3 Volume Based Strategy 
 

Volume of trades and order book volume imbalances have long been established 

as important criteria in evaluating portfolios [39] and long term investment strategies. 

The hypothesis [10c] is that it is an essential component of intraday trading strategies – 

important enough to be effectively used exclusively as an indicator of the market 

behavior. We conjectured that price based measures need to be coupled with order 

imbalance in volume (the difference in total volume of shares on either side of the order 

books ) to make it more sensitive to the ‘confidence’ of the investors in the midst of a 

trend. Unlike the SOBI strategy (section 2.2.1), where the volume weighted price 

difference between either side of the order book is used to base a trading decision, we 

conjectured that such a decision can be made using the volume of orders alone (on either 

side of the order book).  

 

Another hypothesis on volume effects was that very high volume of trade in the 

market coupled by a period of unidirectional price increase/decrease indicates continued 

unidirectional trade. An explanation for such behavior could be the occurrence of product 

releases, earnings announcements, bullish and bearish announcements or other private 

information that an agent might use to trade one way or another. This should be an 

overriding factor in the agent decision process, and thus prevent the agent from going 

very long or very short without any hope for recovery. If large volumes of trade are 

coupled with unidirectional movement in price, this may be an indication of the 

possibility of extreme long or short trading. 

 

The basic strategy was implemented as follows. The order book data was obtained 

for each update (in time, say t1) and the corresponding volume of unmatched shares on 

the buy and sell sides of the book. The difference of these volumes is the buy-sell 

difference. Then, this same difference is obtained for the next time update (say time t2).  
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The decision rule is stated as: 

If   (buy – sell)t2 > (buy – sell)t1 

      buyOrder(buyprice, ordervolume); 

Else If (buy – sell)t1 > (buy – sell)t2 

        sellOrder(sellprice, ordervolume); 

Else do nothing 

The volume of orders was tuned with an optimization algorithm that maximized the 

function: 

]21**2[)])}(*()*[{( volvolpriceteordervolumbuypriceeordervolumsellprice �−�−−�  

where vol1 and vol2 are the buy and sell volumes respectively. 

As discussed earlier, in the event that high trading volumes accompanied unidirectional 

price movement, a cautionary approach was taken and implemented as: 

check totalvolume 

if (totalvolume is very high) 

for (3 time steps) 

      if (price increases for three time steps) 

              buyvolume = sellvolume = 0 ; 

      else if (price decreases for three time steps) 

              buyvolume = sellvolume = 0 ; 

Else do basic strategy 

Although crude, this guard mechanism proved quite useful.All of these early attempts at 

designing strategies seemed to indicate the need for combining many simple intuitive 

strategies, as well as using a more efficient control mechanism to take care of cash and 

share position. 

2.2.4 Multiple Model Strategy 
 

This approach was developed and implemented by Ramamoorthy [10(a)] as part 

of a project for a class and was a successful agent in competitive simulations in April 

2004 (Appendix 3). The intuition behind this strategy is that there are periods of time 

when the behavior of the stock return is, in fact, mean reverting and a simple strategy 
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with this assumption would, in a statistical sense, produce profits. When the markets 

deviate from this favorable model, the resulting effect would be observed from 

instantaneous cash and stock holdings. This could be used to trigger a mode switch to a 

different strategy that does not assume the mean-reverting nature of stock prices. In the 

case of the agents we aim to implement in our thesis, we incorporate this strategy (as is, 

with a few very minor modifications) in conjunction with our algorithms, as a control 

measure. Intuitively, we can think of this as a faucet that we turn to control various rated 

of flow. If we think of the trading suggestion and suggested trading volume as the 

suggested trading parameters, then it is regulated by the action mode (safe or regular) 

suggested by the multiple model mechanism, which we describe [from 10(a)] below. 

 

The problem of detecting the agent and the market’s mode can be approached by  

thinking in terms of two key variables – cash held by the agent and net shares held by the 

agent. This representation can be visualized as a two dimensional state space, the axes 

being cash axis and share axis respectively. The idea is to move in the positive direction 

on the Cash axis while trying to stay close to zero on the Share axis. The effect of the 

market is to move the agent’s current position along the Cash axis towards the negative 

side. The agent, on its part, can issue commands to move along the Share axis. 

Occasionally, the agent’s state is far from the Share axis.              

         

So, the idea is to explicitly control risk and rewards by tuning the one variable 

available to the agent, the share holdings, in response to observed variables, the last price. 

The allowed modes of trading the agent can follow are: 

Regular: Perform trading as usual.  

Safe:  Try to divest holdings when profitable, otherwise, do nothing. This would never 

increase holdings in the unfavorable direction (in the state space).  

Risk Seeking: Trade with lower margins and larger volumes in expectation of higher 

returns. 
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These behaviors can be composed as shown in the table below: 

           

Cash 

Share 

Very 

Negative 

Negative Zero Positive Very Positive 

Very Short Safe Safe Safe Safe Safe 

Short Safe Safe Regular Regular Safe 

Zero Safe Regular Regular Regular Risk Seeking 

Long Safe Regular Regular Risk Seeking Risk Seeking 

Very Long Safe Safe Safe Safe Safe 

          

Table 2.1: Mapping position in cash-share space to a mode of action 

2.2.5 Other Strategies  
 

Numerous other strategies have been implemented in the PLAT domain and 

implemented in competitive runs, with varying degrees of success. Among the more 

successful of these agent strategies, is the Reverse Strategy [48]. This strategy runs 

counter to the traditional dictum of “sell when the price is falling and buy when it is 

rising”. It buys when the price is dropping and sells when the price is rising. Other 

techniques explored use trader message boards and gleaning information from the news 

online [51]. In the following sections in this chapter, we briefly discuss evolutionary 

algorithms and trading evaluation criteria with relevance to the central strategy discussed 

in this thesis. 

2.3 GENETIC ALGORITHMS AND GENETIC PROGRAMMING 
 

The areas of artificial intelligence and its application to technical trading and 

finance have seen a significant growth in interest over the past few years. Specifically, 

the use of evolutionary methods such as genetic algorithms (GA) and genetic 

programming (GP) in this domain has been examined. These approaches have found 

financial applications in options pricing [40] and as an optimization tool in technical 

trading applications [30]. 
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Evolutionary learning algorithms derive inspiration from Darwinian evolution. GAs are 

population-based optimization algorithms and the first proposal of this idea has been 

credited to Holland [41]. They have since found applications in a wide range of problems. 

GPs are an extension of this idea proposed by Koza [42] with a view to evolving 

computer programs.  

 

GAs are iterative systems and aim to find near optimal solutions. They differ from 

standard search algorithms in that they use a population of possible solutions rather than 

tuning a single one. Although convergence to the global optimum is not guaranteed, they 

are quite robust in producing near optimal solutions to a wide range of problems and, in 

particular, those that are not easily reducible to a precise mathematical formulation. In 

pseudo code below, a basic genetic algorithm (a formulation we stick to reasonably 

accurately) is described. 

PSEUDOCODE (adapted from [54]): 

Begin GA 
  g:=0     { generation counter } 
  Initialize population P(g)  
  Evaluate population P(g)  {i.e., compute fitness values}  
     while not done do  
     g:=g+1  
     Select P(g) from P(g-1)  
     Crossover P(g)  
     Mutate P(g)  
     Evaluate P(g)  
     end while  
End GA 
 

The starting point in using GAs to solve a problem is to represent the problem in a way 

that a GA can work with. This often amounts to representing the solution space as a finite 

number of strings of binary digits. Binary strings are an effective form of representation 

since complex statements as well as numerical values of parameters can be represented in 

this form. The resulting search space is finite when parameters take only discrete values 

to yield a binary representation as a string of fixed length. Secondly, there needs to be a 

means of evaluating the fitness of the constituents of the solution space, i.e. the suitability 
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of each potential solution, for how well they perform. For example, in the case of 

selecting trading rules the fitness could be viewed as the profitability of the rule tested 

over a time series of historical price data, or a function of this variable.  

 

Genetic Programs are a variation of the standard genetic algorithm, wherein string 

lengths may vary within the solution space. Unlike in GAs, solutions in GP can be seen 

as non-recombining decision trees [43] with non-terminal nodes as functions and the root 

as the function output. These are usually the optimization algorithm of choice in cases of 

evolving strategies based on Boolean operators – when the solution may be evolved with 

varying depth in the tree [44]. It is inherently more flexible than the GA, but care needs 

to be taken in representation to avoid over-fitting (the phenomenon where a classifier is 

trained too minutely to fit the training data – causing diminished performance on data 

outside of the training sample, also called out-of-sample data). 

2.4 PERFORMANCE CRITERIA 
 

A class of performance criteria commonly used in the financial community are 

measures of risk-adjusted investment returns. Risk-adjusted returns are a measure of the 

returns of an asset adjusted for risk or volatility. In other words, consistency is rewarded 

and volatile trading patterns are not. Common measures within this class are the Sharpe 

and Modified Sortino ratios.  

2.4.1 Sharpe Ratio 
 

Probably the most popular measure of performance of asset trading in finance is 

the Sharpe ratio, introduced by William Sharpe [45], and originally introduced to 

measure the performance of mutual funds. Essentially, it is excess return divided by risk 

as measured by the standard deviation of return. For the rest of the thesis, we will assume 

that ‘return’ is ‘daily return’. We recall from section 2.1.4 that daily return, for our 

experiments, is defined as: 

Daily Return = Cash – Unwinding Penalty – Transaction fees + Trading Rebates 
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If the average daily return (defined as the amount of money made after money spent and 

sale of remaining stocks are adjusted for, at the end of the trading day) is supposed to be 

Ri then the average daily return is: 
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Thus, the Sharpe ratio is, 

Sharpe ratio = 
σ
R

     

2.4.2 Modified Sortino Ratio 
 

Despite the common use of Sharpe ratio in the field of financial performance 

evaluation, quite often, traders are often not perturbed by the possibility of volatile return 

structure provided the strategy is mostly profitable. Sortino ratio, introduced in the early 

1980’s, is a modification of the Sharpe ratio that differentiates ‘harmful volatility’ from 

volatility in general, using a value for downside deviation only. While it has limited basis 

in theoretical study in the area [46], we hypothesize that it warrants a closer look, 

especially in the domain of intraday trading agent performance evaluation.  

 

The Sortino ratio, as defined in [46], is a more complex model - suitable for 

rigorous statistical evaluation of asset returns – than we aim to use in the experiments of 

our thesis. A usable form of this ratio, which we will use in following sections, is: 

Modified Sortino Ratio = 
neg

R
σ

     

where negσ  is the standard deviation of negative returns only (over the given period of 

time). R  represents the returns (as described in section 2.4.1). 
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2.5 THE DATA 
 

The PLAT domain is an experimental test bed that is configured to run with the 

historical as well as live mode data. The data comes from a mirror of the Island ECN 

which trades NASDAQ stock. The only stock used here is the Microsoft (Symbol: 

MSFT) stock. The stock data consists of a bid and an ask price table, that lists in order of 

preference, the respective orders placed by agents/traders. The difference between the 

topmost entries of this table is called the spread. A number of past trading days’ books 

are stored in the PLAT project. The process of selection of data (trading days) used for 

training and testing is as follows. There were days from early December 2003 to mid July 

(archived in the PLAT project for MSFT) that we used as a baseline set of data for 

consideration for our thesis. Over half of these days were eliminated due to incomplete 

data over the day or corruption of data. Of the remaining days, attempts were made to 

make sure the data included data representative of a number of different stock behaviors 

over a training day. Specifically, we made a list of all the days in the archives, which we 

deemed as tradable after weeding out incomplete data, and this list was checked with a 

list of trading data we obtained from Yahoo! Finance pages [52]. The data, based on 

details such as opening price, closing price, high and low prices of the day, was divided 

into various categories such as increasing, decreasing, mean reverting, etc. Further 

discussion on the classification of days based on price dynamics is included in 

Appendices 1 and 2. Our final list included 60 days. Of these, 15 days were set aside for 

our competitive tests with previously successful agents. The remaining days were split up 

into training and test days, and we made sure that no experiment had any overlap between 

its training and test set of days.  
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Chapter 3. Agent Design 

In this chapter, we will discuss design issues, and the techniques used in 

development of agents for trading in PLAT domain. Our primary aim is to design trading 

strategies that resemble a technical trader who would systematically, and based on a set 

of pre-specified evaluation criteria; choose a subset of trading strategies from a larger set 

of trading rules, and evaluate the performance of these strategies in various competitive 

scenarios. The basic idea is to combine popular, ‘intuitive’ technical analysis indicators 

and rules to profitably trade in the PLAT domain. Trading strategies and rules are 

allowed to combine in two different mechanisms – with the use of genetic algorithms and 

genetic programs – to evolve strategies that are aimed to be profitable, and perform well, 

under the different evaluation criteria involved.  

3.1 GENETIC ALGORITHM AGENT (GAA) 

In an attempt to make a profitable, robust strategy using simple intuitive laws that 

appeal to the human trader, we use multiple technical trading rules in a weighted 

combination to produce a unified strategy. In addition to designing an automated strategy 

that is intuitively appealing, the generation of effective strategies using complete, 

comprehensible indicator strategies may help in the understanding of these component 

strategies, their effects and limitations.  

 

In this formulation, we use a number of basic (indicator) strategies in a weighted 

combination to produce a cumulative trading action at every tick (a tick in the following 

sections is the point in a trading day when the books are updated and fresh data is 

available). The algorithm uses principles from the weighted majority algorithm [47] in 

the use of suggestions from the component strategies and combining them using a 

weighted majority. We propose the use of a similar suggestion or voting mechanism 

wherein each indicator would signal a buy, sell or do nothing action. We recall that the 

steps involved in trading in this environment include getting the raw order book data, 

evaluation of a recommended action by each of the indicator strategies and combining 

these indicators using the respective weights giving us a cumulative suggestion (a 
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weighted majority). This is followed by a multiple model control mechanism that 

determines the mode it should trade in (A discussion of modes of trading is in section 

2.2.4). Earlier, we compared the control mechanism to a faucet, acting as the final 

regulator on the trading decision and volume suggested by the composite strategy so far. 

It has the power to veto a trading decision suggested by the composite algorithms, when 

in the safe mode or allow the trade to continue unaltered in the regular mode. 

 

The multiple model control mechanism determines the trading mode based on 

current holdings of the agent (also called the share position). The share position is the 

number of shares that the agent has accumulated (long position), or the number of shares 

that is deficient (short position), over the trading day up to that point. It is not difficult to 

imagine that a human trader would behave differently when in an extremely long or short 

position (risk averse) as opposed to when he is in a relatively neutral share position (risk 

neutral or risk seeking). A similar behavior is desired from an autonomous automated 

agent in determining the trading action to be taken. The agent evaluates its current share 

position and this helps keep the agent from following a possibly unidirectional market 

trend to the end of the day, and reaching a very long or short position. In essence, this 

mechanism is a control measure to ensure the agent achieves a share position as close to 

neutral (zero accumulation or deficit) as possible. In section 2.1.4, we discussed that 

unwinding is an important constraint and enforced external to the mechanism of PXS. 

With the use of Sharpe and Sortino ratios, the imposition of this rule makes sense in that 

it provides for a uniform set of statistics to evaluate trading agents on.  We achieve the 

objective of unwinding with the use of a multiple model mechanism. One of the changes 

in our implementation, when compared to that in section 2.2.4, is that we have eliminated 

the use of the ‘risk-seeking’ mode of operation. The reasoning behind this decision is that 

such a behavior is proposed only for extremely high cash as well as share positions. This 

is not only a highly unlikely occurrence, but also a situation where we hypothesize a 

regular behavior should suffice in recovering a reasonable share position – keeping in 

mind the relatively robust design of the market evaluation phase of the strategy. This 

multiple model scheme examines the agent’s share position and provides a mode of 
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operation that the agent should follow. This regulation is combined with the decision that 

is output by the composite strategy and we arrive at a final trading decision to buy, sell or 

do nothing, and the volume to be traded. In the figure, the four indicators (MAS, VS, PS 

and PCBS) are the result of each component technical trading rule and their suggestion 

based on the market information they receive. We will discuss these indicators in greater 

detail at a later time. An important point to note at this time is that the indicators, 

although complete strategies in themselves, provide us with nothing more than 

suggestions to buy or sell. The reason for ignoring the volume of trade that may be 

possible to obtain from each indicator is that this would require us to optimize the volume 

parameter for each of the indicators, and then applied tuned weights to them. This adds to 

the burden of computation, and is avoided in this thesis. We do not use these indicator 

strategies to give us specifics such as the volume or price at which to place trading 

orders. Weights (W1… W4) are applied to the indicators to arrive at a weighted suggestion 

W*I. The final decision depends on this weighted suggestion as well as the output of 

multiple model control mechanism to give us the final action to be performed by the 

agent. The weighted suggestion to trade a certain way determines the volume of shares to 

be traded at that tick.  

 

The order placement is done online based on the information obtained from the updated 

order books and current agent statistics (both of which are obtained from the PXS and 

client statistics respectively). The weights (W1… W4) are tuned offline using a genetic 

algorithm (GA). The weights are each represented as 2 discrete bits in a bit string. Also 

included is a sign bit associated with each weight.  The sign bit is used to evaluate the 

effect of the weight on the rule. For example, if an indicator suggested a buy action, and 

if the weight Wn had a negative sign, then the weighted suggestion would be to sell. This 

representation is particularly useful in the expansion of search space available to the GA 

as well as in compensating for some representations of the component (indicator) 

strategies that may in fact be useful as a parameter to be observed, but the decision rule 

may be quite the opposite of our assumption. A good example of such an occurence is the 

use of ‘direct’ and ‘reverse’ strategies in [48]. In it, an initial attempt at using a simple 
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decision rule based on current and previous price used a buy action when the price 

increased and sell action when the price deceased. However, when they switched the 

actions to use a sell action for increasing price and a buy action for an increasing price, it 

yielded superior performance. Such occurrences would be compensated for with the use 

of the sign bit in our bit string as the GA is expected to tune itself for better performance. 

 
Figure 3.1: Overview of working of the GA agent 

 

From Figure 3.2(a), we can see that the 2 bits corresponding to each weight can take on 3 

discrete non-zero values for each of the positive and negative signs prefixing them. In all, 

there are 7 possible values for each weight. In Figure 3.2(b), we’ve described the 

structure of bit strings for buy and sell strings. Figure 3.2(c) describes how the weights 

combine to affect the volume of trade. The weights (along with the sign) can combine to 

give us a value of combined strength that ranges from -12 to +12. This combined strength 
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value is then multiplied with a constant volume factor (the value of this was fixed 

empirically at 25 throughout this thesis) to give us the volume of shares to be traded at 

that particular tick. 

 

 

 

 

 

 

 

Figure 3.2 (a) Correspondence of bit patterns of weights to strength of suggestion 

 

SIGN W1 SIGN W2 SIGN W3 SIGN W4 BUY 
0 01 1 11 0 00 0 10 

 

SIGN W1 SIGN W2 SIGN W3 SIGN W4 SELL 
0 00 1 10 0 01 0 01 

     Figure 3.2 (b) Structure of the buy and sell bit strings that populate the GA 
 

 
     Figure 3.2 (c) Combining weights and volume factor to get volume of trade 

 

Bit Pattern Strength of Suggestion 

00 0 (No trade) 

01 1 (Weak) 

10 2 (Strong) 

11 3 (Very Strong) 

Combining Weights  

W1   W2    W3    W4 

-11  + -11   + -11   + -11 

00  + 00  + 00   + 00 

11  + 11   + 11   + 11 

-12 

0 

12 

Volume Factor 

The combination of 
weights is multiplied to 

the volume factor to give 
final volume to be traded 

Volume of 
Trade 



 30 

The length of the bit strings are limited to 12 bits (2 bits and a sign bit for each indicator), 

due to the burden of computation time. The reasoning was that longer strings would make 

the search space of possible solutions much larger (owing to the increased number of 

unique combination of bits. The computation time of the GA, in its current format, 

already runs into more than a day, as each generation is essentially a simulation over a 

trading set (15 days run in historical mode) with multiple agents (in this case 20 per 

generation). The time taken to run the simulation also increases with the number of 

agents plugged in simultaneously. It is evident that an increase in the number of 

individual bit strings per generation would be required to search a reasonable portion of 

the search space, in case the number of bits per string was increased. This would 

consequently lead to increase in computation time, and training would become a very 

computationally intensive task. To avoid this predicament, we limited the bit strings to 12 

bits, at the cost of increased granularity in weight values. 

 

In preliminary work done in a class, we hypothesized that technical trading 

indicators are sometimes not symmetrical. The market, as an aggregate, swings upward 

or downward from an opposite trend – and these effects, when viewed on a chart, are 

called shoulders. These shoulders may be wider when a downward trend ends and 

narrower when an upward trend ends, or vice versa, depending on the setup of the 

decision rule [49]. To incorporate this hypothesis in our design, the trading rules and 

weights are split into buy and sell components. Each indicator strategy consists of a buy 

and sell recommendation (suggestion) that is triggered by the ME phase. However, buy 

rules are not necessarily the complementary to the sell rules in manner or strength. 

Hence, to allow for these variations, we use separate buy and sell rules (Figure 3.2). This 

reasoning for this modification is as follows. For example, order imbalance in volume on 

the buy side may indicate strongly that buying stock is the right thing to do, but when the 

imbalance is on the sell side, the sell signal may not be quite as strong. In many cases, 

due to numerous factors, symmetrical trends on the buy and sell sides do not imply 

complementary actions at all times, especially if the volume of trade is considered.  
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Figure 3.3: The GA for one generation of execution 
 

The final action to be taken is determined as: 

)*()*()*()*( 44332211 IWIWIWIWAction +++=  

where )11,10,01,00(=nW  and )1,0,1(−=nI , with -1 indicating a sell action, 1 indicating 

buy action and 0 indicates a do nothing action. In the following sections, we will look at 

details of implementation of the GA and briefly discuss the component strategies 

(indicators). 

3.1.1 Genetic Algorithm Implementation Issues 
 

The genetic algorithm goes through the generation of population, fitness 

calculation, crossover and mutation stages until convergence is achieved or the maximum 

allowed number of iterations has occurred. 

 

Population Initialization: In the very first generation (beginning of run), the population is 

initialized using uniform pseudorandom integers which are translated to the strings that 

101001010011(BUY) 

101001010011(SELL) 

Fitness1 

Fitness20 

Best K% Crossover Mutation 

Initial  
Population 
Of 20 

Generate new 
population 

Ranked in descending order 



 32 

constitute the initial population. We use a population of ten strings for each of the buy 

and sell rules as the population for each generation. As can be seen in figure above, we 

have 20 strings that populate every generation. Many factors go into choosing the size of 

the population in a GA. Sufficient exploration of the search space necessitates a 

reasonable size for the population. However, here, a mitigating factor was computation 

time. Our training method included running the population over entire training periods 

(15 days per training set), and a generation involved running 20 individuals 

simultaneously on PXS over this entire period. This process took many hours (with 15 

training days). For this reason, we found it necessary to keep the number of members in 

the population down to a manageable number. However, we did introduce a few steps 

like elitism (the selection of only the top ranking strings in terms of fitness) to encourage 

convergence. Each subsequent generation is populated as a result of crossover and 

mutation operations. 

 

Fitness Calculation: The Sharpe and Sortino ratios (section 2.4) are used as the fitness 

function to evaluate the performance of each member of a population in every generation. 

The fitness was calculated as the Sharpe or Sortino ratio of the string over a period of 

time (15 days if training sets in Appendix 2 are used). The training set of trading days 

remained the same for each subsequent generation. Hence, the goal of the evolution 

process is to maximize the fitness functions (and find the combination of weights that 

does this) for a given set of training days. However, it is possible to find the right set of 

weights to maximize the fitness over any given set of trading days (given sufficient time 

and exploration), and we must keep in mind that the ultimate aim is to find the right 

weights that will maximize profit over out-of-sample data (test data different from 

training data). The strings of weights, after evaluation, are ranked in decreasing order of 

fitness. 

 

Crossover:  Crossover is the process of cutting strategy string pairs at appropriate points 

and exchanging tails between heads to make a new pair. Only the best k% of strategies is 



 33 

used for crossover, and bit strings are crossed over tail to head. The probability of being 

selected for crossover is higher for strategies with higher fitness.  

 

The selection of a string ranked i is calculated by the formula: 

pi = 

�
�
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�
�
�

��
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where k is the percentage of population to be considered. N is the population size and i is 

the rank of the string in the population. Based on this probability, pairs of strings are 

independently selected (with replacement) from the population and crossed over [in a 

manner as described in 21]. Once a pair has been selected, a cut point for both strings is 

uniformly pseudo-randomly selected, so that both strings are cut into two pieces with the 

‘head’ and ‘tail’ parts of both strings being the same length. Then these tails are crossed 

over. The resulting strings are next analyzed to check uniqueness relative to the current 

population by comparing each string bit by bit.  

 

Mutation: Mutation is the process of randomly changing appropriate bits in a strategy 

string and is executed in a bitwise manner. We maintain an elitist model since the top 2 

strings (from each of the buy and sell sides) are spared mutation. This is done in order to 

preserve strings with high fitness since in this kind of optimization we are searching for 

maxima locally as well as globally, i.e. we attempt to generate an array of good solutions 

rather than just the best. The generation of such a set of solutions rather than a single 

good solution is done in an attempt to maintain a set of good solutions to search from 

(and increase exploration). After each attempted mutation, the string is checked bit by bit 

with the other solutions for uniqueness. In the event that duplicate strings are found, only 

one of them is retained, and we dip into the remaining (unique) solutions and select the 

one with the highest of the remaining fitness functions. Also, a brute force 

implementation ensured that each generation had at least two sell and two buy rules 
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generated, to ensure that there was never a case when all rules were of sell or buy type 

exclusively.  

 

We use a relatively high mutation rate, to compensate for the small population 

size, and to ensure more exploration of the search space. If the population of strings 

contains B bits, numbered 1 to B, then we would wish to mutate M = 0.1B of them. In this 

case, M uniform pseudo-random integers are generated between 1 and B without 

replacement. The M integers are ordered by magnitude and for each the correspondingly 

numbered bit is mutated (0 goes to 1, 1 goes to 0). After each string has been passed by 

the mutation process, a bit-by-bit check is performed to test for uniqueness, and duplicate 

strings are eliminated in favor of unique ones. Elitism also ensures that an arbitrary 

stopping of the algorithm after a few generations produces a good result. 

 

A lower bound on number of generations is used so even if it converges to a 

maximum before that, it goes on until a set number of generations are done. Also, an 

upper limit of generations was used to ensure that it doesn’t go on to the point where it 

takes too much time (as we stressed earlier, the process already takes over a whole day of 

runtime). Convergence is said to occur when mean fitness of a user defined percentage of 

the most fit strategies and maximum fitness both change by no more than 1% between the 

previous and current generation. 

 

Figure 3.4(a) shows the convergence of the fitness over generations, for a training 

run (with training set T1), and the respective weight values allotted in each generation. In 

our thesis, we used a minimum number of generations as 8 (to ensure that local minima 

are avoided) and a maximum number of 10 generations. This proved to be a very small 

range, and owing to the fact that the GA almost always converged in 8 generations (in the 

case of our tests), we might as well have done away with the range and stuck to a fixed 

number of (eight) generations. Figure 3.4(b) shows the corresponding weights at each 

generation for the one test run that we documented. It may be argued that the 

convergence seems to have occurred in a fairly low number of generations only because 
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the resolution of weights is so low. This is true, but as we had explained earlier, we 

decided to sacrifice resolution for the sake of manageable computation times for the 

training process.  
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Figure 3.4: Convergence of fitness by generation 

Generation W1 W2 W3 W4 Mean 

Sharpe 

Ratio 

Maximum 

Sharpe 

Ratio 

1 01 10 10 11 
-0.38 0.012 

2 10 10 10 10 
-0.19 0.34 

3 10 10 00 10 
-0.141 0.742 

4 11 10 00 10 
-0.0897 0.911 

5 11 10 01 01 
-0.054 0.968 

6 11 10 00 01 
0.006 1.077 

7 11 10 00 01 
0.06 1.091 

8 11 10 00 01 
0.12 1.112 

 

Table 3.1:  Weights allotted to the indicators for the individual with best fitness in  

each of the generations for a particular training run 

Maximum         
Sharpe Ratio 

Mean Sharpe 
Ratio 
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3.1.2 Component Strategies or Indicators 
 

So far, we have discussed how indicators are combined to produce a weighted 

suggestion, and how this is used to arrive at a suitable trading action. We now look at the 

component strategies that are used as indicators in the formulation discussed in earlier 

sections. Although the strategies below are complete and give, as output, desired trading 

action as well as the price and volume of the trading order to be placed, we implement 

them as indicators alone. Thus, we only utilize the trading order suggestion from the 

component technical trading strategies, and combine them using our weighted majority 

algorithm to obtain trading volume. 

 

At this point, we aim to clarify some implementation details, helping simplify 

possible reconstruction of the experiments. Previously, we had assumed that once the 

action was determined, it would be performed instantaneously. However, this is not 

always the case. When a buy or sell order is placed, it is not necessary it will be filled. In 

the event, a decision on the action to be performed was determined using the last price. 

However, the actual execution involved looking at the order books and the existing 

entries, and placing an order that is incrementally better than the best offer. The orders 

placed were $0.0001 worse than the existing value. This value is small enough not to 

make a substantial difference in price, yet helping the agent avoid much of the penalty for 

removing liquidity in the order books by placing itself just behind the top order. In 

pseudo code, this would be reflected as: 

SellPrice = price of top sell order + 0.0001 

BuyPrice = price of top buy order – 0.0001 

We decided not to optimize the individual parameters (as suggested in section 3.1.1) in an 

effort to avoid over-fitting the agent to the training data. So, the parameter choices, if 

any, were determined empirically, over 15 sample days in the training set of days. In each 

of our component strategies, we defined the order price to be the same and as described 

above. We used a constant volume factor of 25 throughout the thesis. This volume factor 

is the constant number of shares to be multiplied to the strength of the composite 
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strategy’s suggestion. For example, if the four weights all added up to 5 for the buy rule, 

then we would trade 5*25 = 125 shares at every point when a buy order is to be placed. 

MOVING AVERAGES STRATEGY 

The first strategy used was using the moving average crossover strategy. The moving 

average of stock prices over a shorter and longer horizon respectively, is taken. The 

simple moving average is taken as: 

Moving Average = �
=

n

i
ilastprice

n 0

1
 

Here, n = N1 is a shorter horizon window and n = N2 is a longer horizon window such that 

N2 > N1. Let moving average over N1 be MA1 and that over N2 is MA2.  

 

The algorithm: 

If (MA1 > MA2 + Threshold) 

 Then Sell m shares @ sellprice 

Else If (MA2 > MA1 + Threshold) 

 Then Buy m shares @ buyprice 

Else Do Nothing 

 

A key aspect of this algorithm is that this strategy (depending on the parameters) is 

capable of making large gains, but is equally capable of making large losses. This can be 

attributed to a naïve dependence of the strategy on the mean reverting nature of intraday 

price variation of stock. The decision rule is intuitively simple but has the common 

problems. If the volume of each trade is too high, the extreme position is all too common 

and unwinding may be difficult. If the volume is too low, then we are not efficiently 

utilizing the potential for profit. Variation in the threshold is susceptible to the same 

problems. A potential solution is to employ volume tuning using an optimization 

algorithm similar to that in section. However, optimizing both these factors 

simultaneously, involves finding an appropriate model and that is quite difficult. 

Throughout this thesis, we used a constant value of threshold on the difference between 
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two moving averages. The threshold was determined empirically. Setting it too low 

would make the strategy too sensitive, and the true trend would probably not be captured. 

Setting it too high would make it sluggish and unresponsive to anything but major 

swings. We found that a value close to 0.01 proved to give good results. Also, window 

sizes of 5 and 50 proved to yield good results. 

VOLUME BASED STRATEGY 

The strategy here remains the same as described in section 2.2.3. The basic strategy 

involves obtaining the order book data for each update (in time, say t1) and getting the 

corresponding volume of unmatched shares on the buy and sell sides of the book. The 

difference of these volumes is the buy-sell difference. Then, this same difference is 

obtained for the next time update (say time t2). The decision rule is stated as: 

If   (buy – sell)t2 > (buy – sell)t1 + Threshold  

      buyOrder(buyprice, ordervolume); 

Else If (buy – sell)t1 > (buy – sell)t2 + Threshold 

        sellOrder(sellprice, ordervolume); 

Else do nothing 

 

In the volume based indicator strategy, a � factor of 0.1 proved to give us good 

performance, where � was the multiplication factor in the volume threshold, Threshold = 

�*(average of volumes in two order books). 

SIMPLE PRICE BASED STRATEGY 

This strategy is intuitively the simplest to understand. At any time during the simulation, 

if the stock price goes up, it places a buy order; and if the stock price goes down, it places 

a sell order. The motivation is that a price rise indicates likely further price rises. It is 

written as: 

If currentprice > lastprice 

 Buy @ buyprice (ordervolume) 

Else if lastprice > currentprice 
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 Sell  @ sellprice (ordervolume) 

Else Do Nothing 

 

The strategy described here is the same as the one described in [5], where its performance 

is compared to the ‘reverse’ strategy. The reason for choosing the direct strategy in the 

face of results that prove otherwise is to allow for the GA to tune the weights and sign to 

choose the (presumably superior) ‘reverse’ strategy if necessary. Essentially, the model 

we propose includes a sign for the buy or sell order signaled by the component strategies, 

allowing for use of the strategy in either form.  

PRICE CHANNEL BREAKOUT STRATEGY 

This strategy involves defining Bollinger bands [53], which enclose a price range within 

the maximum and minimum price of the last few time steps. The trading range is defined 

by the upper and lower bounds obtained by finding the maximum and minimum prices 

over the last few time steps. 

 

UpperPriceBandLimit = max(price over last n steps) 

LowerPriceBandLimit = min(price over last n steps) 

If CurrentPrice > UpperPriceBandLimit 

 Buy @ buyprice (ordervolume) 

If CurrentPrice < LowerPriceBandLimit 

 Sell @ sellprice (ordervolume) 

Else Do Nothing 

 

When the price crosses the upper limit from below, it indicates a breakthrough and 

signals a buy action. When the price crosses the lower limit from above, it signals a sell 

action. This is a simple strategy to grasp intuitively. It is easy to imagine that this strategy 

is useful more as support scheme to bolster a trading signal or to promote cautiousness in 

trade. The above four indicators are abbreviated as MAS, VS, PS and PCBS respectively, 
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and will be referred to by these acronyms when the results of our experiments are 

discussed (Chapter 4). 

3.1.3 Training 
 

A number of days needed to be selected for running the genetic algorithm and 

evaluating the fitness of each member of the population for a generation. A primary 

motivation for this large baseline pool of days to select days from – is that there tend to 

be local consistency in the patterns that the days took. There may be days together when 

the price ended lower or higher than it began, for example. Also, if the pool of selected 

days consisted predominantly of a particular price dynamic (Appendices 1 and 2), then 

the algorithm might assign weights that suit that day more than the others, as this would 

prove to give very good fitness over the training period. However, the true test of 

performance is over a test set of days different from the training sample. In order to avoid 

fitting the weights too finely to a certain price dynamic, we aimed to include not only the 

different major price dynamics (Appendix 1), but also include about the same number of 

days of each type. This handpicked set of days (training sample) will be referred to as 

training set, training sample or training days; in the following sections. For training, 

numerous days from December 2003 to March 2004 were used (from the PLAT historical 

books). After a weeding of a number of the days due to incomplete information or 

corrupted files, 60 of the archived dates were split up fairly evenly into test and training 

sets of days. In all the experiments in this thesis, the training and test sets for the given 

test consist of different days, i.e. an intersection of their sets would be empty. A hybrid of 

training days was used with some days being ‘representative’ (Appendix 1) of the desired 

price dynamics and others being randomly chosen days from the set of days that were in 

the pool for consideration as training data. A big problem when working with models of 

financial prediction is the estimation of out-of-sample performance for the obtained 

models or trading rules. In particular, it is very easy to jump to conclusions regarding 

trading rules that exhibit extremely profitable behavior on certain training data. This 

phenomenon is sometimes referred to as over fitting. When not enough validation done 
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over out-of-sample data, the parameters are tuned finely to the training data, and the 

systems’ general behavior is not very good. 

 

             
Figure 3.5: Some representative price dynamics (Appendix 1 for details) 

 

3.2 GENETIC PROGRAM AGENT (GPA) 

The approach in this section uses a genetic programming methodology much like 

the design in [30]. In a number of ways, the design of this agent is very similar to the one 

in section 3.1.1. Genetic programs themselves are extensions of the basic GA, and 

involve a number of the same evolutionary methods. A binary string (much like the one 

used in section 3.1.1 in the design of the GA) is the starting point in using GP to solve the 

problem at hand. Binary strings are an effective form of representation since complex 

statements of Boolean logic as well as numerical values of parameters can be represented 

in this form. For example, statements such as: 

If ((Function 1)=True AND (Function 2) = False)OR(Function 3)=True; 

 Sell @ sellprice (ordervolume) 

                              | 

        |   

Else If (Function 2)=False 

 Buy @ buyprice (ordervolume) 
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can be represented quite easily using a binary bit string. The primary difference between 

this approach and the GAA is the allowance for growth of trading strategies based on 

combination of rules and thus a variable number of component rules, and the use of 

Boolean operators as combiners rather than the ‘weighted majority’ design in the GAA. 

The use of GP allows for optimized strategies based on single rules as well as a fixed 

number of chosen indicators. In a sense, the solution space of a GA is a subset of that of a 

GP. Trading strategies are constructed by allowing the genetic selection engine to 

combine the component indicator rules with Boolean operators. Strategies are once again 

split into buy and sell rules (and are suffixed by ‘b’ and ‘s’ respectively). When a buy or 

sell rule gives a buy or sell signal, the rule is evaluated and determined to be True or 

False. For example, when a sell rule is true, it would imply that the indicator condition is 

satisfied. In the case of the moving averages strategy (Section 3.1.1), it might imply that  

MA1 is greater than MA2 + Threshold. If this rule were false, then it would indicate that  

MA1 is not greater than MA2 + Threshold.  

Let us take the example strategy statement,  

If ((Function 1s)=True AND (Function 2s) = False)OR(Function 3s)=True; 

 Sell @ sellprice (ordervolume) 

                              | 

        |   

                              | 

 If (Function 2b)=True 

 Buy @ buyprice (ordervolume) 

 

The rules 1s and 3s, etc are sell rules that are used as component strategies and possible 

nodes in the GP decision tree (section 2.3). There are corresponding buy rules (2b) that 

decides the buy criteria. In each case, the GP has the potential to choose from buy and 

sell rules based on four technical indicators defined in section 3.1.1 (topic II). The 

Boolean operators AND, OR and XOR are used to compose these buy and sell rules. 

Finally, as a cash and share position management, we use the multiple model control 

mechanism, like in GAA. The order price is similar to the price used in GAA and the 



 43 

order volume in GPA was throughout this thesis is 125 – this value determined 

empirically over 10 sample days. We abandoned attempts to include volume as a tuning 

factor in this experiment, in order to simplify the design. The structure of the strategy as 

well as the binary string has certain changes from the representation in GAA (Figure 3.6). 

We have Boolean connectors and the use of rule in use bits that tell us whether a certain 

rule is selected for use or not. 

 

 In Figure 3.7, we show how such a rule structure like the one in Figure 3.6 

translates to a binary string. Each indicator has a particular bit that reflects that it is either 

true or false by indicating 1 or 0, respectively. Also, each indicator pair has a Boolean 

connector - AND, OR, XOR - represented by 00, 01 and 10, respectively. The last part of 

the string indicates which indicators are to be ignored. This allows strategies containing 

variable numbers of indicators to be represented without substantial change in design 

from the GAA. Note that although the buy and sell rules are dependent on two and three 

indicators, respectively, they are of the same length.  
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     Figure 3.6: Structure of buy and sell bit strings that populate the GP 
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Figure 3.7: Structure of the basic GPA strategy 

 

 

 
Figure 3.8: Overview of working of the GP agent 
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Each generation of evolving strategies in the GP follows the same steps (population 

initialization, fitness calculation, crossover and mutation) as that of the GA (section 

3.1.1) and the mechanics of these steps remain the same. Additionally, the training 

process remains the same. Figure 3.8 shows how the change in this strategy is only in the 

ME phase of the overall design, and the APE phase remains as it was in the GAA.  
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Chapter 4. Results and Analysis 

This chapter is divided into two segments. The first segment contains 

experiments, results and analysis with the primary focus being on developmental results, 

and exploration of various schemes of optimization of our basic algorithm. The second 

segment contains results and analysis of our composite strategy in competition scenarios 

with other agents. 

4.1 DESIGN OF EXPERIMENTS 

Controlled experiments were performed to evaluate the evolutionary agents 

individually. This selection process was followed by competitive experiments to validate 

the performance of these evolutionary agents in joint simulations. The training days were 

chosen to fairly represent different price dynamics (Figure 3.5). With a view to testing the 

strategies in various environments, an effort was made to include different price 

dynamics in the test set of days as well. The experimental test dates were chosen from 

two distinct periods of time, one around December 2003 and the other around April 2004. 

In addition to tests performed at various stages of development of the agents (in order to 

evaluate certain hypotheses that we made earlier), we performed controlled, structured 

experiments in a competitive environment with other agents whose underlying strategies 

differed from our evolutionary agents as well as between themselves. 

 

Evolutionary algorithms involve a fitness function (which is optimized) to arrive 

at a solution or set of solutions that are ‘superior’ to the explored potential solutions in 

the search space. However, a change in the fitness function could cause a change in the 

‘fitness’ of the solution, and it may no longer be superior. Earlier, we looked at the 

Sharpe and Modified Sortino ratios as validation criteria. We hypothesized that using 

these measures as fitness functions in comparison tests could shed some light on the issue 

and provide interesting results. A matrix of tests (Table 4.1) was performed in an effort to 

perform this study. 
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 Table 4.1: Matrix of tests to be performed in competition with other agents  

 
Unwinding, a rigid rule to enforce that the share holdings of the agent at the end of the 

day is zero, was decided to be a key necessity in the competitive tests. However, since the 

multiple model includes an effort to unwind, no additional rules were included in the 

individual tests. The final cash score, for the individual evaluation of agents (section 4.2) 

was computed to be the sum of cash value and shares valued at closing price. This 

modification was made since we use some aspects of our agent design as partial agents – 

and evaluate their performance against the complete agents. For example, we compare 

the agents without multiple model with the complete GAA and GPA, respectively. In this 

case, the multiple model, which is used to control share position and encourage 

unwinding, is absent from the no multiple model versions. This may put them at a 

disadvantage if the criteria of evaluation included penalties for not unwinding. In later 

sections, when we compare the evolutionary agents with other complete agents, we 

include the penalty for not unwinding one’s share position. 

4.2 EVALUATION OF INDIVIDUAL AGENTS 

In the tests in this section, we use Sharpe ratio alone as the fitness function, as 

well as evaluation criteria. We compare the agent’s performance against the component 

strategies running alone, with an unoptimized combination of indicators, and against the 

agents without multiple model, respectively. These tests are an effort to ascertain if there 

really is a benefit in using this design. Our first effort is to verify the agents’ performance 

with their component strategies. We use the multiple model in all cases in order to 

maintain similar design. The four component strategies are labeled (I1…I 4) respectively.  

Evaluation Criteria 

 Sharpe Ratio Modified Sortino Ratio 

Sharpe Ratio X X Fi
tn

es
s 

Fu
nc

tio
n 

Modified Sortino Ratio X X 
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            Table 4.2: Comparison of (a) GAA, above and (b) GPA, below, with 
indicators for test set TE1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Days ( TE1) GAA MAS VS PS PCBS 

#1 1155 1181 -1113 2166 -2592 
#2 1813 679 1152 50 35 
#3 955 494 1198 -2386 -3670 
#4 -1391 -2102 -3558 -1130 642 
#5 1164 810 -179 3451 509 
#6 985 243 -1647 -1066 -120 
#7 -102 -508 2267 -1218 -1501 
#8 1801 722 -1147 -65 36 
#9 877 -198 -1951 144 -1980 
#10 -1004 -1407 1737 -75 9 
#11 1104 912 -1120 110 -351 
#12 1213 309 672 134 19 

Avg. Profit 714.17 94.58 -307.42 9.583333 -747 
Sharpe 0.701 0.095 -0.177 0.006 -0.548 

Days ( TE1) GPA MAS VS PS PCBS 

#1 1447 1034 562 1662 -1159 
#2 1006 1624 374 14 405 
#3 -1364 250 -843 -1932 -1074 
#4 848 -988 -1090 -899 325 
#5 -765 -1285 451 1010 4 
#6 1536 1129 -1315 -102 -12 
#7 1501 -151 322 -1441 -1921 
#8 -1712 -1148 -114 70 244 
#9 318 -11 -512 501 -126 
#10 109 499 2201 1 165 
#11 1004 152 -900 1002 -172 
#12 -104 48 1006 632 101 

Avg. Profit 318.666 96.083 11.833 43.166 -268.333 
Sharpe 0.285 0.105 0.011 0.041 -0.371 
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The training set of days used was TS1 because it is the only set of 16 days (of the four 

listed in Appendix 2) that consists of all different price dynamics and does not favor any 

one of them. For experimentation, the test set of days used were test set TE1 and TE2 

(Appendix 2). Running the experiment on two test sets is a measure to see if the 

performance superiority or inferiority of any of the competing agents is not a fluke (or a 

rare slip-up). With this experiment we aim to verify if the composite agents are indeed 

superior in performance to the component indicators. If they are not substantially better in 

performance over many trading days, then it could imply that our design is not 

necessarily a profitable one, or that the specific parameters chosen and optimization 

algorithm needs to be changed. The results (Table 4.2) show that GAA and the GPA (in 

independent tests) outperformed each of the component strategies in both test cases - an 

important result in support of the composed strategies. Even within the component 

strategies, we can see that there is quite a bit of variability between the various strategies’ 

performance, indicating that it may be useful to include different weights for the various 

indicator suggestions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2: (c) Comparison of GAA with indicators for test set TE2 

Days ( TE2) GAA MAS VS PS PCBS 

#1 281 -372 113 -1249 -1010 
#2 -1412 138 1214 1567 335 
#3 1801 1021 984 -431 -1367 
#4 128 1991 -3558 1419 1599 
#5 1441 81 179 -1132 64 
#6 1013 1210 1547 191 -120 
#7 630 -1223 1067 -1021 -1200 
#8 1362 1031 -1147 -429 102 
#9 -376 72 351 2457 -1889 
#10 -1075 -2141 1737 -899 55 
#11 -121 -224 -1120 -2214 -531 
#12 1492 1201 672 -1293 199 

Avg. Profit 430.33 232.08 169.91 -252.833 -313.583 
Sharpe 0.411 0.201 0.114 -0.181 -0.333 
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Table 4.2:  (d) Comparison of GPA with indicators for test set TE2 

 

This lends support to our initial hypothesis that technical indicators, when used in 

combination, do not lend suggestions of equal power. This leads us to believe we’d be 

better off with a weighted majority schema. In order to verify this in the case of GAA, we 

compare the use of tuned weights against fixed and equal weights, for two different test 

sets - TE1 and TE2 (Appendix 2). The training set was TS1 again owing to the fact that it is 

the only training set with all representative days (Appendix 1). The results of this 

comparison are tabulated in Table 4.3.We may venture to explain the advantage that 

tuned agent has with the following: 

- Equal weights would imply that each of these indicators were equally confident 

when they gave a buy or sell recommendation at each time step. This may not be 

the case. For example, a price breakout may be more of a ‘sure bet’ suggesting a 

trend than the simple price check. So, the weights should be allowed to decide 

accordingly. 

Days ( TE2) GPA MAS VS PS PCBS 

#1 1102 -331 1094 1210 657 
#2 821 1099 -1102 712 332 
#3 1009 954 810 -1109 -1982 
#4 -532 1002 243 303 1023 
#5 908 -912 -208 1688 -16 
#6 -1604 -112 722 -878 1102 
#7 -199 58 -198 -1809 -1621 
#8 1321 872 -1407 188 921 
#9 188 18 940 248 -2211 
#10 -901 -1704 -1101 -21 -556 
#11 1121 775 114 110 -812 
#12 663 809 232 312 91 

Avg. Profit 324.75 210.6667 11.58333 79.5 -256 
Sharpe 0.346 0.24 0.013 0.082 -0.217 
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- Different weights for buy and sell sides accommodate the contingency that an 

indicator may be more confident of a buy signal as opposed to a sell signal, or 

vice versa.  

It might have been a better strategy to include the entire suggestion from the indicator 

strategies, i.e. take the suggestion as well as volume from the indicators, and average it in 

some way to get the desired trading volume. However, this would only be useful if the 

volumes we obtained were themselves optimized. This optimization would introduce 

further computation, something we’ve tried to avoid all along. In the event, the fact that 

the parameters we use for our indicator strategies are hand-picked means that it is not 

very useful to use these values to get a final trading volume. We decide to extract only 

the trading suggestion from the indicators, and use the confidence of this suggestion (sum 

of weights) to obtain the trading volume. 

 

 

 

Table 4.3: Comparison of tuned weights and equal weights for test sets TE1 and TE2 

 

Days ( TE1) GAA Equal Weights 

#1 1155 966 
#2 1813 489 
#3 955 -505 
#4 -1391 -1128 
#5 1164 -1021 
#6 985 1002 
#7 -102 881 
#8 1801 -1101 
#9 877 908 
#10 -1004 -765 
#11 1104 1232 
#12 1213 1177 

Avg. Profit 714.17 177.9167 
Sharpe 0.701 0.18 

Days ( TE2) GAA Equal Weights 

#1 281 112 
#2 -1412 723 
#3 1801 -1121 
#4 128 -998 
#5 1441 -64 
#6 1013 16 
#7 630 -1101 
#8 1362 1449 
#9 -376 -19 
#10 -1075 102 
#11 -121 -1 
#12 1492 749 

Avg. Profit 430.33 -12.75 
Sharpe 0.411 -0.016 
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The above tests indicated that our initial hypothesis regarding the benefit of using 

technical indicators in a weighted combination scheme like in GAA, had some merit to it. 

To further explore this hypothesis, we isolated four different sets of training days to train 

this agent over. These days had been chosen such that a majority of the days had different 

price dynamics from the other sets of days. This would allow us to isolate the difference 

in the solution weights over different scenarios. The four sets of days chosen had 

majority monotonic, majority mean reverting, majority other and no majority price 

dynamics and corresponded to the sets TS2, TS3, TS4, and TS1 (Appendix 2), respectively. 

The result of this test proved very encouraging and supported our hypothesis. In Figure 

4.1 we observe that the weights are uneven and favor some of the indicators more than 

the others. In addition, we notice that there is a change in weights over the different 

training sets. Both of these results concur with our hypothesis for this design.  
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              Figure 4.1: Weights of indicators for training sets TS1, TS2, TS3, and TS4 

 

On testing the agents tuned to these different training sets (on test set TE1), we notice that 

the weights that were tuned to TS1 gave us the best performance on TE1, (Table 4.4), as 

expected. TS1 contains all price dynamics and is not favored towards any particular one 

of them. The agents whose weights were tuned over TS2, TS3 and TS4 were profitable 
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(probably because these training sets do contain days of all price dynamics, although they 

are largely biased towards particular price dynamics), but lagged in performance to the 

agent whose weights were tuned to TS1. The number of training and test data available 

are so few that no statistically significant conclusion can be made from these. We just use 

these results as guidelines to the agents’ behavior over larger (more complete datasets), 

and to try and glean some qualitative information out of them. Table 4.4 only reflects the 

Sharpe ratio, and we performed this test only on TE1. The reason for performing only the 

one test is that our primary aim with this experiment was to verify if the weights were 

indeed different for various training sets, and if the appropriate choice of training sets did 

affect the performance of the agent over test data. Further verification and an in-depth 

look at performance of the agents with other test sets are included in later sections. 

 

Training 

set 

Sharpe Ratio 

(over test set TE1) 

TS1 0.377 

TS2 -0.181 

TS3 0.142 

TS4 0.212 

 

Table 4.4: Performance of agents tuned on different training sets on test set TE1 

 

So far, we have verified the utility of using a combination of indicators as opposed to 

using them individually, and found that there is indeed an advantage in using a weighted 

combination as opposed to a simple addition or averaging. It now remains to be seen if 

there is indeed any advantage in using the multiple model mechanism to control share 

position needs to be explored. In the event that there is no substantial performance 

improvement using this mechanism, we could eliminate this aspect and simplify the 

algorithm. A competing strategy we used for this test was the composite strategy without 

the multiple model. In both GAA and GPA, the multiple model mechanism was 

eliminated, and these stripped agents were tested with the complete agents. The training 

set used was TS1 (the only training set with uniform number of different price dynamics) 
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and the test set of days used was TE1 (the test set we use for all tests in this section). 

From Table 4.5, we see that the evolutionary agents outperformed the ones without 

multiple models.  

 

Test Set TE1 Sharpe Ratio Test Set TE1 Sharpe Ratio 

GAA 0.701 GPA 0.133 

No Multiple Model 0.255 No Multiple Model -0.101 

 
Table 4.5: Comparison of (a) GAA and (b) GPA with a no multiple model agent 
 

A curious observation was that in the absence of the multiple model, the strategy tended 

to trade lower volumes and allotted higher weights to indicator strategies that were safe 

(that had higher thresholds). Figure 4.2 reflects this difference in volume of trades for one 

of the trading days. A possible explanation is that in the presence of the multiple model, 

the agent is willing to take a riskier position, with the confidence that it will be led back 

to safety.  

 

 There are two ways of optimizing the Sharpe ratio – increasing profit everyday, 

or decreasing variance. Without multiple model mechanism, the optimization is possibly 

favored with a lower variance and lower profit. With multiple model, the profit is higher 

(due to higher volume of trades), but the variance is also higher. This indicates a slightly 

more aggressive, but more profitable strategy. In this experiment, we limited the 

experiments to only one test set of data (TE1). As we mentioned earlier, in these 

experiments, we aim only to look at general behavior of the agents, and don’t aim to 

prove anything with any significant statistical confidence. Moreover, we test the agents in 

competitive environments in later sections. Finally, we compare the performance of each 

of these agents independently with SOBI (section 2.2.1), a baseline agent provided by the 

PLAT group. The price dynamics of the test sets we chose were monotonically 

increasing, monotonically decreasing, mean reverting and no majority (all from TE1), 

respectively. The tests were performed on certain hand picked days and aim only to 

verify the performance of the agents over separate days with different price dynamics. 



 55 

Verification over a larger set of days and evaluation using Sharpe and Modified Sortino 

Ratios follow in later sections, where SOBI was included as a competitive agent. We 

consider the raw cash measure for the days below as a performance measure (with the 

closing price sale of all excess shares at the end of the day, or closing price purchase of 

all deficit shares).  

 

 

 
 Figure 4.2: Volumes of trade on a typical trading day when comparing GAA with 

                multiple model (above) and without (below). Notice the scale of the plots. 

 

From Table 4.6, we find encouraging results from both the GAA and the GPA – each 

outperforming SOBI on five of the seven days. On days of monotonic variation, both the 

evolutionary algorithms showed promising results, GAA ending in the black on 3 of the 

four days and GPA on two of them, but averaging positive cash over these days. The days 
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when the price was mean reverting was closer, and on one of these days, SOBI 

outperformed GPA. It shows that given the right circumstances, any strategy can prove 

profitable on some days. While the cumulative results above do indicate that GAA as 

well as GPA outperformed SOBI, we need to explore their performance further – in more 

realistic economies (with competing agents).  

 

 Cash Measures Cash Measures 

Price Dynamics GAA SOBI GPA SOBI 

Increasing 1401 1673 608 5 

Increasing 882 -12340 -132 -11021 

Decreasing 571 10211 810 8982 

Decreasing -11 -11059 -208 146 

Mean Reverting 2133 1912 621 4003 

Mean Reverting 1514 -14402 102 -13106 

Other 1224 -30023 1019 -25001 

Table 4.6: Individual agent performance (cash measure) of (a) GAA and (b) GPA with 
SOBI on select ‘representative’ days. 

4.3 JOINT SIMULATION 
 

In this section, we examine these agents’ performance in joint simulations (when 

they were allowed to run against each other as well as other agents) in slightly more 

realistic economies, with numerous different strategies. As opposed to earlier tests, when 

the evolutionary agents were used in targeted experiments with a view to testing various 

aspects of their design, our aim in this section is to test these agents in an environment 

where the other agents have different strategies, are competitive and are all aiming to be 

profitable. In this experiment, we used TS1 as the training set and TE2 as the test set of 

days. As we had earlier tested these agents in various scenarios (section 4.2) using test set 

TE1, we decided to use TE2 in this experiment, with a view to testing the agents over a 

new set of test days. The training set we used was TS1 again, as it is the only set with 

uniform number of days with different price dynamics. Table 4.7 below shows the results 
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of the first joint simulation we performed. In addition to GAA and GPA, we use 

competing agents SOBI, Market Maker (MM) and Volume-based agent (VBA). We 

discussed these competing agents in Section 2.2. However, our aim in this section is only 

to compare the performance of the GAA and GPA agents and evaluate the usefulness of 

the Modified Sortino Ratio (MSR) as a fitness function in our design. We evaluate these 

agents in a competitive test in later sections. Columns 1 and 2 of Table 4.7 display the 

result of tests performed on GAA and GPA when they were tuned with Sharpe ratio as 

the fitness function in training phase. Columns 3 and 4 of the table show the results of 

similar tests performed on the evolutionary agents with Modified Sortino Ratio as the 

fitness function. We also evaluate the agents below using the Sharpe and Modified 

Sortino ratios, and additionally the raw profit (cash) score, as performance criteria; in 

order to verify our hypothesis that the agents tuned to maximize profits and avoid only 

negative volatility would do better than those which aimed to reduce all volatility. We 

used the standard PLAT scoring policy and rules (discussed in Section 2.1.4), and enforce 

unwinding penalties (in accordance with the rules imposed by the PLAT group in earlier 

competitions).  

 

At this point, as a means of evaluating the improvement in performance of agent, 

we introduce a measure called the MSR to Sharpe ratio. This is the ratio of the values of 

MSR and Sharpe ratios for a given column in our table. We see that GAA and GPA 

(tuned with Sharpe ratio) showed values of 2.34 and 2.23 respectively, for this measure. 

This value for GAA and GPA tuned with MSR was 5.12 and 2.49 respectively. We 

observed that the agents tuned with MSR not only showed higher MSR values, but also 

Sharpe ratios not too far below the SR-tuned agents. The difference between MSR and 

Sharpe ratios was most stark in the case of GAA. This, coupled with the fact that the 

Sharpe ratio was not too far off for GAA-MSR as compared to GAA-SR, is a good 

indicator of the usefulness of the new fitness function in GAA. Also, from Figure 4.3 and 

Table 4.7, we notice that the average profit as well as maximum profit was also higher for 

GAA tuned with MSR. In the case of GPA, the MSR version did perform better than the 

SR version in the MSR evaluation (and was very close in Sharpe ratio too), but the 



 58 

difference was not very much (as is evident from the similar MSR to Sharpe ratio values).  

In general, we observe that the agents tuned with MSR as fitness function showed higher 

average profits as well as higher total profit over the set of out-of-sample test days, 

presumably since they did not have to worry about volatility in the positive. From the 

table, we see that maximum profit over the period improved from 2536 to 7924 in GAA 

and from 2034 to 3939 in GPA, when fitness function changed from SR to MSR. 

Average profit similarly went up from 796 to 1773 for GAA and 415 to 660 for GPA. 

 

Sharpe ratio as fitness function MSR as fitness function Test Days 

(TE2) GAA GPA GAA GPA 

#1 
1008 1189 1250 1924 

#2 
2536 679 7924 3939 

#3 
1036 494 1251 1333 

#4 
-1447 -1102 -1512 -118 

#5 
1364 1210 1285 162 

#6 
855 331 2148 242 

#7 
175 -108 -499 -1253 

#8 
1692 735 4034 211 

#9 
715 -1123 598 1133 

#10 
-744 -450 -986 -1863 

#11 
1221 2034 2162 1892 

#12 
1145 1098 3624 322 

Avg. Profit 
796.3333 415.5833 1773.25 660.3333 

Sharpe Ratio 
0.751357 0.431729 0.691213 0.43023 

MSR 
1.761815 0.964018 3.540813 1.0708 

MSR/Sharpe 
2.344844 2.232922 5.122612 2.4889 

 

Table 4.7: Joint simulation with Sharpe ratio and MSR used as fitness functions 

                  for evolutionary algorithms and as means of evaluation 
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       Figure 4.3(a): Comparison of GAA-SR and GAA-MSR performance (test set TE2) 
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       Figure 4.3(b): Comparison of GPA-SR and GPA-MSR performance (test set TE2) 

 

The comparison between SR and MSR shows that the use of MSR as fitness function in 

our optimization procedure shows improved performance, not only when the criteria of 

evaluation is MSR, but also in terms of average and maximum profit. When MSR was 

used as fitness function, these agents also ranked very close to the performance of the 
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SR-tuned agents, even when SR was used to evaluate these agents. Earlier, we had 

hypothesized that the elimination of penalty for positive volatility would help improve 

profitability, as we were penalizing agents for making large amounts of profits on a 

trading day as much as we were penalizing them for losing large amounts on a day 

(through the use of standard deviation). The results in this section validate our 

hypothesis, and indicate that the use of better fitness functions, like MSR (which 

penalizes only money losing behavior) may be a key factor in designing evolutionary 

agents such as the ones in this thesis.  

4.4 COMPETITIVE TESTS WITH OTHER AGENTS 
 

In competitive tests, we use all four agents (GAA and GPA, each tuned with 

Sharpe ratio and MSR) from the previous section, in addition to which we use SOBI, 

MM and Multiple Model Agent (MuMo)[10a] – the last two were winners in two 

previous competitions held in December 2003 and April 2004 (Appendix 3) respectively, 

and were used to benchmark the performance of our evolutionary algorithms against 

competitive agents. For the sake of readability, the GAA with Sharpe ratio as fitness 

function was labeled GAA-SR and that with MSR as fitness function was labeled GAA-

MSR. The GPA counterparts were labeled GPA-SR and GPA-MSR respectively. The 

training set for this run was TS1 again owing to the unbiased distribution of price 

dynamics among the days in this set. To test the agents in a competitive test with 

successful agents from past competitions, and to do so on days that were not used in 

training or tests before, we use  TE3 (Appendix 2) as the test set. In this test, we did not 

use other agents such as the individual indicator strategies (section 3.1) since we had 

already tested them over two datasets in previous tests (section 4.2). Also, we aimed to 

limit the number of agents used in the test so computation as well as documentation 

would be easier. Apart from the changes discussed above, the rules remained the same as 

in the case of joint simulation (section 4.3). Table 4.8 below lays out the results of this 

experiment.  

The results of this experiment show that the performance of the evolutionary agents was 

fairly competitive with the best agents from previous competitions (MM and MuMo) and 
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substantially better than SOBI. Let us look at some comparisons that stand out from 

observation of Table 4.8. For a clearer view and to make comparisons easier, the reader is 

urged to refer Figure 4.4, which summarizes the information in plots. 

 

      Table 4.8:         Test of evolutionary agents’ performance with competitive agents  

 

As expected, GAA-MSR and GPA-MSR outperformed GAA-SR and GPA-SR 

respectively, in the evaluation criteria that favored them (MSR). Most interesting, 

however, was that the average profit was higher for both the agents’ MSR versions than 

the SR ones. Also, the maximum profit (over all days) for each of the MSR agents was 

higher than the SR counterparts. This is an encouraging result, since it supports our 

Days (TE3) GAA-SR GAA-MSR GPA-SR GPA-MSR MM MuMo SOBI 

#1 2526 4655 1278 4416 223 2891 4133 
#2 1249 2177 1045 492 312 3445 1698 
#3 1567 2765 242 -253 184 1717 -2753 
#4 82 -545 -1694 -130 271 1433 -7028 
#5 1900 2402 1376 141 538 2037 -12182 
#6 -132 1100 -376 49 -241 -141 -4422 
#7 1145 2601 1441 2011 135 2465 481 
#8 1112 5500 1141 1216 -12 1850 1233 
#9 1429 2802 630 1134 656 2928 4399 
#10 2457 7975 1707 1175 385 5229 12180 
#11 -899 -1100 -1376 -755 142 -1349 -3405 
#12 -1214 -1370 -775 -1076 461 -1562 -14092 
#13 -1029 184 -102 125 122 1307 12333 
#14 1723 4213 1090 2212 224 2509 -10120 
#15 -1038 102 -221 -113 -213 -1338 231 

Avg. Profit 725.2 2230.733 360.4 709.6 212.4 1561.4 1154.27 
Sharpe 0.5521 0.851719 0.335342 0.509728 0.854144 0.807884 0.14735 

MSR 1.517778 5.007865 0.658961 2.196996 2.574284 2.670785 0.18029 
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decision to not only evaluate the agents differently from previous competitions, but also 

to factor this into the agents’ behavior to increase average profit.  

 

MM outperformed all the evolutionary agents (GAA-SR, GAA-MSR, GPA-SR, 

GPA-MSR) in the Sharpe ratio evaluation. However, when MSR evaluation was 

considered, the agents (particularly the ones with MSR as fitness function) were much 

closer in performance to MM (GAA-MSR was much better than MM) and the average 

profit of GAA-MSR as well as GPA-MSR was greater than that of MM. GAA-MSR had 

a higher MSR than MM and GPA-MSR was only just beaten in this regard. Again, this is 

an encouraging result in support of our designs. MuMo outperformed GPA-SR in both 

SR and MSR evaluations. However, GAA-MSR managed to outperform MuMo in MSR 

as well as SR evaluations and GAA-SR also outperformed MM in MSR evaluation, 

barely losing out in SR. 

 

Overall, the above results can be summarized by saying that the MSR versions of 

the evolutionary agents performed well and were extremely competitive with the other 

leading agents. Also, the GAA strategy seemed more useful than the GPA strategy, 

possibly because the design of GPA needs a larger pool of indicators to choose from. The 

results above suggest that the evolutionary design was fairly successful as was the 

incorporation of MSR. An important observation is the superior performance of the 

evolutionary agents when tuned by MSR instead of SR – especially in the weighted 

majority case of GAA. A curious aspect of the live competition results in April 2004 was 

that the GA agent used then (GAA-SR) lost out to MuMo, which implemented a basic 

moving average strategy within the multiple model structure to trade. It raised the 

question as to whether we were adding additional complexity for no reason. As a 

hypothesis, this failure was attributed to the fact that tuning the agent with Sharpe ratio as 

a fitness function may have been the wrong choice, as it may have imposed an upper 

bound on trading profits on a given day to reduce volatility. To explore this possibility, 

we introduced MSR as a measure limiting only downside volatility. This proved very 

useful indeed, and contributes to this thesis, a very important result. It also strengthened 
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our view that the weighted majority approach could indeed be useful, albeit with a more 

sophisticated fitness function. 
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           Figure 4.4(a): GAA-SR and GAA-MSR in the competitive run (test set TE3) 
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                 Figure 4.4(b): GPA-SR and GPA-MSR in competitive runs (test set TE3) 
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                 Figure 4.4(c): MM, MuMo and SOBI in competitive runs (test set TE3) 
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Chapter 5. Conclusions and Future Work 

In this thesis, we have explored applications of evolutionary algorithms (GA and 

GP) to technical trading rules in an effort to develop profitable agents for trade in the 

PLAT domain, as well as to provide insight into the utility of such design to automated 

trading scenarios. An important factor to consider is that this research was performed 

purely as a study of certain agent schemes and as an exploration into the use of 

evolutionary algorithms in the PLAT domain. Various limitations were imposed during 

the course of this work, and although PXS is more realistic than most of the simulators 

used in previous such studies, it is far from being realistic. The results in this thesis are 

strictly within the confines of the test economy and no reasonable guarantees can be 

made regarding its utility (as is) in actual trade markets. Our aim was to study the 

implications of certain design aspects in a simulation and the study aims to be a launch 

pad to more advanced and sophisticated agent designs of a similar nature. 

 

Various studies have shown the benefits of technical trading as an effective day 

trading strategy. However, their utility as effective strategies when used individually or in 

combination but without the benefit of human ‘intuition’ has proven quite low. We have 

found in this thesis that it is possible to profit from trading technical rules when the trade 

entry signal is taken from combinations of indicators since this is the manner in which a 

technical trader would use such indicators. The above work is just a sample of what can 

be produced using such a system. Further adaptation techniques could include periodic 

re-optimization with longer and shorter periods. As was previously stated, this first test of 

our system aims to show that such a structure merits further work by analyzing results in 

a general and unoptimized framework.  

 

In this thesis, we proposed two frameworks for combining technical trading rules 

in an effort to trade profitably in the PLAT domain. While the GPA design proved to be 

only moderately successful in tests, it might have greater utility if parameter optimization 

was done, especially the trading order volume. In this design, we used a fixed number 
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(arrived at empirically). Including volume in the bit string for a GPA-like design may be 

a possible solution. We did not explore this idea further, but suggest it as a possible fix. 

The GAA design proved much more successful and not only outperformed GPA and the 

baseline SOBI agent, but also beat or proved very competitive when pitted with 

successful agents from previous competitions in our battery of tests. We found that GAA 

performs better than its component indicator strategies. To test if any combination of 

technical rules would do, we compared our weighted majority algorithm with an agent 

where the component indicators were combined with each of them weighted equally. 

Superior performance of our weighted agents vindicated our decision to use evolutionary 

algorithms to optimize weights for GAA. Further, the use of multiple model share 

position control mechanism seemed to provide for unwinding while performing better 

than the basic agents without the multiple model. In further tests of the agent against 

competitive agents over different test sets of trading days, GAA proved to be profitable 

and better or as good as the most successful of existing agents in the PLAT domain.  

 

The evolutionary agents (particularly GAA) were fairly successful, but not quite 

competitive with the successful PLAT agents until we used a new fitness function 

(MSR), that penalized only loss making volatility and not all volatility (as Sharpe ratio 

does). When the agents used MSR as fitness function, they proved to have improved 

performance including greater profitability. This leads us to believe that there is useful 

information in technical indicators that can be exploited, and further development and the 

use of carefully chosen fitness functions might mean that such a design may prove to be 

even more successful. This is consistent with the claims of technical analysis.  The use of 

multiple model mechanism also proved quite effective as a control element to the 

strategy, allowing our agents to ‘boldly’ hold positions with the confidence of being 

shepherded back to a desirable state by this mechanism. The qualitative nature of this 

mechanism also appeals to intuition, and this was in keeping with our theme of using an 

intuitive combination of technical rules. By implementing a simple set of weights, 

various human trader-like behaviors could be replicated. These include deciding how 
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important a certain indicator is, and dropping certain indicators if they showed 

consistently poor performance (by turning the weight down to zero).  

 

What is evident is that more work has to be done in areas such as bit string 

representation, fitness function choice and online optimization. Possible improvements 

include finer resolution of weights using longer bit strings, the use of more indicators, 

and development of more sophisticated fitness functions to include details finer than just 

measures of profit and deviation over many days. Other feature additions could include a 

method to run this optimization algorithm online (as a background process) and include 

training days on the fly. This would make the agent more adaptive to immediate changes 

and eliminate the need for time-intensive and periodic offline training. 

 

This thesis is a small part of growing research in which computer-simulated 

market interactions of autonomous agents are studied and an attempt is made not only to 

develop a profitable trading strategy, but through these efforts, understand the working of 

the market itself. The thesis provides us with a few solution concepts to certain aspects of 

the automated trading problem, but has not been tested with any statistical significance 

and the results we have obtained are by no means an indication that it is ready to be 

deployed in the real world. It does point us (and walk us part of the way) towards 

possible solution ideas that may be incorporated with further work to increase 

profitability among automated trading agents. In a lot of ways, this thesis confirms the 

difficulty of automated stock trading and suggests that further exploration of heuristic 

solutions that may aid profitable trading is merited.  
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Appendix 1 

MSFT Trading Prices and Price Dynamics 

 
In this section, we aim to explain what we mean by price dynamics and briefly look at 

some of the prominent price dynamics that we isolate for studying agent behavior under 

different conditions. 

 

High-frequency data, as we use the term, are observations taken many times a day. Price 

dynamics, in the context we use it in, refers to a broad characterization of this intraday 

data over the entire trading day. In other words, we try and fit (an approximate fit) 

patterns to the daily data. Of course, we do not use any modeling or curve-fitting 

technique, but use very broad, intuitive labeling. 

 

Details such as opening price, closing price, high and low prices of the day – for a few 

sample days of each type of price dynamic we use, are listed in tables below; followed by 

a plot of the day’s price variation. All data is of Microsoft Stock (Symbol: MSFT). 

 

For monotonically increasing data, we choose days that not only ended higher than 

opening price, but spent most of the day increasing in price. 

 

Days Opening  High Low  Closing 

12/26/03 27.05 27.25 27.00 27.21 

12/29/03 27.21 27.53 27.16 27.46 

01/06/04 28.19 28.28 28.07 28.24 
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 12/26/03   12/29/03   01/06/04 

 

Similarly, for monotonically decreasing data, we choose days that end lower than the 

opening price, and spend most of the day decreasing in price. 

 

Days Opening  High Low  Closing 

01/08/04 28.39 28.48 28.00 28.16 

01/13/04 27.55 27.62 27.24 27.43 

04/28/04 27.01 27.05 26.47 26.56 

 

 
 01/08/04   01/13/04   04/28/04 

 

Mean reverting days imply days that ended within a small margin of the starting price 

(we use 05.0± of a dollar as the margin). Additionally, these days spend substantial 

amount of time on either side of the mean daily price. 
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Days Opening  High Low  Closing 

04/26/04 27.45 27.55 27.10 27.44 

05/05/04 26.32 26.60 26.25 26.30 

05/06/04 26.16 26.34 26.03 26.12 

 

 
 04/28/04   05/05/04   05/06/04 

 

All other patterns (or sub-patterns within the day) were more generally clubbed together 

and labeled as other.  

 

A more keen method of classifying the days might help increase the accuracy of our 

experiments. However, owing to the effort that would need to go into it, and the fact that 

we are primarily interested in the broad, qualitative behavior of the agents, we chose to 

take the easy way out. 
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Appendix 2 

Training and Test Data 

In this section, we list the contents of the training and test sets used in our experiments. 
 
Training Sets: 
 
TS1 (All representative days + others) 
12/11/2003 12/15/2003 12/12/2003 12/19/2003 12/22/2003 12/24/2003 
12/23/2003 04/28/2004 12/31/2003 04/29/2004 12/16/2003 
12/17/2003 12/18/2003 12/26/2003 12/29/2003 12/30/2003   
 
TS2 (Majority Monotonic) 
12/16/2003 01/05/2004 12/18/2003 01/06/2004 12/26/2003 01/08/2004 
01/09/2004 12/29/2003 04/28/2004 12/30/2003 04/30/2004  
12/15/2003 12/11/2003 12/19/2003 12/12/2003 12/24/2003   
 
TS3 (Majority Mean Reverting) 
12/11/2003 12/12/2003 12/22/2003 12/23/2003 12/31/2003 04/29/2004 
04/26/2004 04/27/2004 05/06/2004 05/04/2004 05/05/2004 
04/30/2004 01/15/2004 12/17/2003 05/03/2004 05/07/2004  
 
TS4  (Majority Other) 
05/04/2004 05/05/2004 05/06/2004 04/27/2004 12/11/2003 04/29/2004 
12/22/2003 12/12/2003 12/23/2003 04/30/2004 01/16/2004  
01/12/2004 01/02/2004 12/17/2003 05/03/2004 05/07/2004  
 
Test Sets: 
 
TE1 
01/12/2004 01/02/2004 12/17/2003 05/03/2004 05/07/2004 01/12/2004  
04/26/2004 04/27/2004 05/06/2004 05/04/2004 05/05/2004 01/02/2004 
 
TE2  
01/30/2004 01/29/2004 01/28/2004 01/27/2004 01/26/2004 01/23/2004 
01/22/2004 01/21/2004 01/20/2004 01/07/2004 01/14/2004 01/13/2004 
 
TE3  
06/30/2004 07/01/2004 07/02/2004 07/05/2004 07/06/2004  
07/08/2004 07/09/2004 07/12/2004 07/13/2004 07/14/2004  
07/15/2004 07/16/2004 07/19/2004 07/20/2004 07/21/2004 
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Appendix 3 

Live Competition Results – April 2004 
(http://www.cis.upenn.edu/~mkearns/projects/0507corrected.htm) 

Days of test: 
04/26/2004 05/03/2004 
04/27/2004 05/04/2004 
04/28/2004 05/05/2004 
04/29/2004 05/06/2004 
04/30/2004 05/07/2004 
 
Trading agents were split into two groups: Red Pool and Blue Pool. Below are the final 
results over the two trading weeks. 
 

RED POOL 
Agent Name Sharpe Ratio 

ggc14 0.8334 
hariharan -0.1619 
kenyon 1.1221 

lkt -0.4232 
henis* -12.6200 

             
         * This agent was a VWAP agent and evaluated differently 

 
 

BLUE POOL 
Agent Name Sharpe Ratio 

lo 0.7213 
ramamoorthy 2.4963 

sherstov 0.7559 
subramanian 0.5778 

wu 0.0432 
henis* -12.5931 

             
         * This agent was a VWAP agent and evaluated differently 

 
            The agent subramanian in the Blue Pool above is the GAA agent in the thesis. 
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