

Copyright

by

Harish K Subramanian

2004

Evolutionary Algorithms in Optimization of Technical Rules for

Automated Stock Trading

by

Harish K Subramanian

Thesis

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

December 2004

Evolutionary Algorithms in Optimization of Technical Rules for

Automated Stock Trading

Approved by
Supervising Committee:

 Peter Stone

 Benjamin Kuipers

 Joydeep Ghosh

Dedicated to

Jacks of All Trades

 v

Acknowledgements

I would like to express my deep gratitude to Dr. Peter Stone for his guidance,

advice, and encouragement. It has been great fun and a privilege to conduct research

under his supervision. I am grateful to him for the confidence he had in me.

I would also like to thank Dr. Benjamin Kuipers and Dr. Joydeep Ghosh for their

support.

I would like to thank Subramanian Ramamoorthy for providing support and

interesting discussion. I would also like to express my gratitude to family and friends for

their encouragement and support.

 vi

Abstract

Evolutionary Algorithms in Optimization of Technical Rules for

Automated Stock Trading

Harish K Subramanian, MSE

The University of Texas at Austin, 2004

Supervisors: Peter Stone, Benjamin Kuipers

The effectiveness of technical analysis indicators as a means of predicting future price

levels and enhancing trading profitability in stock markets is an issue constantly under

review. It is an area that has been researched and its profitability examined in foreign

exchange trade [1], portfolio management [2] and day trading [3]. Their use has been

advocated by many traders [4], [5] and the uses of these charting and analysis techniques

are being scrutinized [6], [7]. However, despite their popularity among human traders, a

number of popular technical trading rules can be loss-making when applied individually,

typically because human technical traders use combinations [8], [9] of a broad range of

these technical indicators. Moreover, successful traders tend to adapt to market

conditions by varying the weight they give to certain trading rules and dropping some of

them as they are deemed to be loss-making. In this thesis, we try to emulate such a

strategy by developing trading systems consisting of rules based on combinations of

different indicators, and evaluating their profitability in a simulated economy. We

propose and empirically examine two schemes, using evolutionary algorithms (genetic

algorithm and genetic programming), of optimizing the combination of technical rules. A

multiple model approach [10a] is used to control agent behavior and encourage

unwinding of share position to ensure a zero final share position (as is essential within the

framework that our experiments are run in). Evaluation of the evolutionary composite

 vii

technical trading strategies leads us to believe that there is substantial merit in such

evolutionary designs (particularly the weighted majority model), provided the right

learning parameters are used. To explore this possibility, we evaluated a fitness function

measure limiting only downside volatility, and compared its behavior and benefits with

the classical Sharpe ratio, which uses a measure of standard deviation. The improved

performance of the new fitness function strengthens our claim that a weighted majority

approach could indeed be useful, albeit with a more sophisticated fitness function.

 viii

Table of Contents

Acknowledgements……………………………………………………………......v

Abstract………….……………………………………………………………......vi

List of Tables……………………………………………………………………...x

List of Figures…………………………………………………………………….xi

Chapter 1. Introduction 1
1.1. Motivation..1

1.2. Outline..3

Chapter 2. Background and Related Work 4
2.1. Background ..4

 2.1.1. Literature Survey………………………………………………..4

 2.1.2. Relevant Trading Terminology..………………………………..8

 2.1.3. Stock Market Simulators………………………………………10

 2.1.4. PLAT Domain…………………………………………………10

2.2. Early Agent Design and the need for a Composite Strategy14

 2.2.1. Static Order Book Imbalance (SOBI) Strategy…..……………15

 2.2.2. Market Maker…… …………………………………………..16

 2.2.3. Volume Based Strategy ………………………………………17

 2.2.4. Multiple Model Strategy………………………………………18

 2.2.5. Other Strategies……….……………………………………….20

2.3. Genetic Algorithms and Genetic Programming.....................................20

2.4. Performance Criteria ...…….22

 2.4.1. Sharpe Ratio…………………………………………………...22

 2.4.2. Modified Sortino Ratio…………………………..…..………..23

2.5. The Data……………………………………………………..………...24

Chapter 3. Agent Design 25
3.1 Genetic Algorithm Agent (GAA)………………………...………….....25

 3.1.1. Genetic Algorithm Implementation Issues.…………………....31

 ix

 3.1.2. Component Strategies or Indicators……..…………………….36

 3.1.3. Training……………………………………….………….…....40

3.2. Genetic Programming Agent (GPA).……………………………….....41

Chapter 4. Results and Analysis 46
4.1. Design of Experiments…………………………………………….......46

4.2. Evaluation of Individual Agents……………………………………....47

4.3. Joint Simulation…………………………………………………….....56

4.4. Competitive Tests with Other Agents………………………………....60

Chapter 5. Conclusions and Future Work 65

Appendix 1 MSFT Trading Prices and Price Dynamics……………………......68

Appendix 2 Training and Test Data…………………………………………….71

Appendix 3 Live Competition Results - April 2004………………………....…72

References……………………………………………………………………….73

Vita ……………………………………………………………………………...77

 x

List of Tables

Table 2.1: Action determined by Share Position ...17

Table 3.1: Weights allotted to indicators over generations and performance....35

Table 4.1: Matrix of tests to be performed...48

Table 4.2: (a) Comparison of GAA with indicators (TE1).................................49

 (b) Comparison of GPA with indicators (TE1)49

 (c) Comparison of GAA with indicators (TE2).................................50

 (d) Comparison of GPA with indicators (TE2)51

Table 4.3: Comparison of Tuned and Equal Weights ..51

Table 4.4: Performance of agents tuned on different training sets54

Table 4.5: Comparison of GAA and GPA with no multiple model agent..........54

Table 4.6: Comparison of GAA and GPA with SOBI.......................................56

Table 4.7: Joint Simulation with SR and MSR as fitness functions59

Table 4.8: Test of evolutionary agents' performance with competitive agents..62

 xi

List of Figures

Figure 2.1: Typical Electronic Trading Order Book ...7

Figure 2.2: PLAT System Architecture...10

Figure 3.1: Overview of Working of the GA Agent ...26

Figure 2.2: PLAT System Architecture...10

Figure 3.2: (a) Bit patterns corresponding to strength of suggestion28

 (b) Structure of the Buy and Sell strings for the GA28

 (c) Combining weights and volume factor to get volume of trade ...28

Figure 3.3: GA for one generation of execution..30

Figure 3.4: Convergence of fitness by generation...35

Figure 3.5: Some representative price dynamics...42

Figure 3.6: Structure of Buy and Sell bit strings that populate the GP44

Figure 3.7: Structure of the basic GPA strategy..45

Figure 3.8: Overview of working of the GP Agent ...46

Figure 4.1: Weights of Indicators for different training sets53

Figure 4.2: Volumes of trades for GAA with and without multiple model55

Figure 4.3: (a) Comparison of GAA-SR and GAA-MSR performance..............60

 (b) Comparison of GPA-SR and GPA-MSR performance60

Figure 4.4: (a) GAA-SR and GAA-MSR in competitive run..............................63

 (b) GPA-SR and GPA-MSR in competitive run...............................64

 (c) MM, MuMo and SOBI in competitive run..................................64

 1

Chapter 1. Introduction

The stock market represents an interesting dynamical system that intrigues

researchers from a number of disciplines including the machine learning community

which aims to build autonomous agents as part of a larger body of research into

autonomous agent systems [11]. Autonomous trading in stock markets is an area of

growing interest in the academic as well as commercial circles. Various attempts at

forecasting and prediction of time series data including neural network prediction

schemes have been moderately successful in the prediction of prices based on complex

mathematical models [12], [13]. While these are rigorous and expansive schemes to base

trading on, and despite their capability of producing good results when modeled right, the

fact remains that developing a sufficiently expansive model is a very difficult challenge.

As long as profitability is our primary concern, the goal remains to try and produce

productive and profitable strategies, even if they are specific to a market. We aim to

utilize existing intuition and combine ‘conventional wisdom’ with computational

techniques to try and improve profitability.

1.1 MOTIVATION

The stock market is a time varying, highly volatile process with so many factors

affecting its variation that it is very difficult to model its behavior with any precision.

Numerous investigations have been largely unsuccessful in predicting its behavior,

failing to produce substantial returns over basic, intuitive “reactionary” rules [14], [15].

In fact, a controversial but oft cited investment theory known as the Efficient Market

Hypothesis [16] implies that it is impossible to beat the market. In other words, it

suggests that the behavior of share price variation in the stock market does not contain

much predictable behavior that can be taken advantage of to ensure profitability. Other

studies also conclude that the autocorrelation for day to day changes is very low [17] and

that the process behaves very much like a random walk [18]. However, in the technical

trading community, the popular belief is that such an assumption would mean that

someone with no knowledge of the market making a random trade is about as likely to

 2

succeed as an experienced trader. Deferring to intuition, they argue that this is not the

cases, and claim that there are some non-random aspects of the market that can be

exploited to trade profitably [6].

There is now substantial interest and possible incentive in developing automated

programs that would trade in this market much like a technical trader would, and have it

be relatively autonomous. Unless the market does not move at all during a trading day,

there is always some strategy that would work on a given day to make a lot of money.

These strategies would then lose money on other days, when a degenerate do nothing

strategy would have been a better way to go. We may think of a ‘successful strategy’ to

be one that maximizes the number of profitable days, as well as has positive average

profits over a substantial period of time, coupled with reasonably consistent behavior.

What does it mean to be ‘consistent’? And what is a substantial period of time? In the

context of our experiments in this thesis, we examine these questions in later sections.

Further discussion of evaluation criteria for our strategies can be found in Chapter 2. In

this thesis, we aim to study the effect of combining multiple ‘intuitive’ trading rules

within the framework of the Penn Lehman Automated Trading (PLAT) project [19].

There have been numerous studies on the use of technical trading strategies in intraday

stock trading. Even with exhaustive optimization of parameters, most of these strategies

have often proved too simplistic and coarse to utilize the variation of high frequency

stock price variation [20], [21].

A possible solution is to combine these individual strategies much like a human

trader would do on the floor of the stock exchange. Where the trader would rely on

combining intuition and experience to make a final decision, the strategy we wish to test

here is to emulate this behavior by using a genetic algorithm to tune the relative merits of

the individual rules. In this thesis, we aim to verify the validity of a scheme of operation

wherein the automated agent trades based on a combination of signals it receives from the

various ‘simplistic’ rules. We explore two schemes of combining rules – adding weights

to the various trading suggestions and adding or deleting certain rules altogether.

 3

The two main contributions of this thesis are as follows. First, we propose that

technical indicators, although useful, are not as profitable when used alone, as they are

when used in conjunction with other technical trading rules. We explore two schemes of

combination of technical trading rules, using evolutionary algorithms (Genetic Algorithm

and Genetic Program) to optimize the combination of these rules, and conjecture that it

would work better than an ad-hoc combination. We develop agents with a weighted

majority design as well as one with provision for adding/deleting rules and the use of

Boolean operators as combining elements. Second, we look at improvements in fitness

functions for the evolutionary algorithms, so the model evolved by them are suited to

days of different price dynamics and increase profitability over days of all kinds of

behavior. To this end, we compare and contrast two different (but related) fitness

functions, and the performance of the resulting agents. Finally, we aim to present an

empirical study of performance of certain agent designs in controlled but fairly realistic

market simulations in an effort to explore possible vistas in profitable automated agent

development.

1.2 OUTLINE

The thesis aims to study the design, development and performance of an

automated trading strategy utilizing a composite technical trading strategy optimized by a

genetic algorithm. We also use a multiple model approach to control trading order

placement based on share position of the agent. Trading simulations and controlled

experiments are conducted to study the performance of this agent as well as its

components.

The rest of the thesis is organized as follows. Chapter 2 delves into some details

about the domain in which simulations are performed, background work and requisite

terminology. We also briefly touch upon the design of other agents we use in our tests.

Chapter 3 discusses the component technical trading strategies, as well as how they are

composed. A brief introduction to aspects of genetic algorithm and genetic programming

 4

optimization used in our strategy, along with some implementation issues, are also

included. Chapter 4 contains a summary of experiment design, tests and simulations that

were performed as well as the results and includes an analysis of the results. Finally

Chapter 5 summarizes key results and a limitation of the work described in the thesis, and

discusses some ideas for future work in the area.

 5

Chapter 2. Background and Related Work

2.1 BACKGROUND

In this section, we review some of the earlier work done by researchers in the

area. We also introduce basic trading concepts and discuss simulated trading

environments including the one used for experiments throughout this thesis.

2.1.1 Literature Survey

Stock markets have been around for centuries and the classic ‘scream’ across the

floor has been the medium of choice. Of late, however, markets have gone electronic.

NASDAQ is a distributed trading system completely run over networks of computers. It

allows customers' offers to be displayed on NASDAQ by their brokers or through ECNs

(Electronic Crossing Networks). ECNs such as Island [22] allow customers to display

their orders as well as trade orders with each other. Of course, trading in these markets on

an experimental basis is a costly exercise not only due to the transaction fees, but the

potential for steep penalties in the event of mistakes when a large amount of money is

risked. Additionally, experimentation to verify effects such as that of volume of trade on

profitability may involve high risks, as the downside to high volume trades is potentially

very high.

The factors described above warrant the use of trading simulators. These range

from in-class simulators, aimed at students to teach them the nuances of financial markets

[23], and financial simulators for exam preparation [24] to advanced market models like

the Santa Fe Artificial Stock Market [25]. However, various shortcomings of these and

other such simulators (like the failure to simulate a realistic market scenario and failure to

accommodate trading frequencies suitable to intra-day trading) have been addressed by

the PLAT domain. It uses real-world, real-time stock market data available over modern

ECNs and incorporates complete order book information; simulating the effects of

 6

matching orders on the market. It also provides numerous APIs that allow the participants

to program their own strategies and trade with other agents as well as the external market.

Technical Analysis has a long history among investment professionals. However,

it has been approached with a great deal of skepticism in academia, over the past few

decades, largely due to the belief in the efficient market hypothesis. Though this field has

remained marginalized in literature, the accumulating evidence against the efficiency of

the market [21] has caused a resurgence of interest in the claims of technical analysis as

the belief that the distribution of price dynamics is totally random is now being

questioned. These techniques assume that, notwithstanding the efficient market

hypothesis, there exist patterns in stock returns and that they can be exploited by analysis

of the history of stock prices, returns and other key indicators. [6] provides details on

technical analysis for stock trading. Contained in [26] is a very good description of their

utility for our problem.

Initial attempts at isolating factors that affect trading yielded mixed results, but

when exploring a relatively new domain, negative or inconclusive results may still

contain valuable information. A multitude of day trading strategies from ‘resistance and

support’ [27] to the ‘market making with volume control’ [10(b)] strategy discuss volume

of trades (or the size of the buy or sell trading order in number of shares) as a parameter,

in the former case, to aid the decision process and in the latter, as a control mechanism.

Most studies however, have considered this a secondary factor and hence, literature on

studies of its exclusive effect on intraday trading is scarce. Order imbalance in volume

[10(c)] emerged as a useful volume parameter. Initial tests and an attempt at designing a

useful day trading strategy yielded useful information, despite some inconclusive results,

regarding the merits of order volume as a consideration when designing a trading

strategy.

There exists an immense body of work on the mathematical analysis of the

behavior of stock prices, stock markets and successful strategies for trading in these

 7

environments. In recent years, the application of artificial intelligence (AI) techniques to

technical trading and finance has experienced significant growth. Neural networks [28]

have received the most attention in this regard and have shown various degrees of

success. The purpose of using neural networks is the ability to forecast data patterns that

are too complex for traditional statistical models. However, it is the lack of

interpretability of rules generated by a neural network that has caused a shift of interest in

favor of more transparent methods, and the genetic algorithm has risen in prominence as

an optimization tool in financial applications.

 Many traders aim to practice technical analysis as systematically as possible

without automation while others use technical analysis as the basis for constructing

systems that automatically recommend trade positions. A good example of research

where attention is paid to system construction as opposed to rule construction is [29].

Other work in this area includes [28] who proposed using the method of genetic-based

global learning in a trading system. Here, genetic algorithms are used to attempt to find

the best combination indicators for prediction and trading. Results are shown to be

profitable but are reported in too little detail for objective scrutiny.

In [14], a financial currency exchange system that uses genetic algorithms to

optimize parameters for a simple technical trading indicator is described. This work has

considerable merit since intraday data are used. It is noted that the ultimate aim of such a

project would be to create a system based on an ensemble of indicators as we attempt. A

framework for systematic trading system construction and adaptation, based on genetic

programs was suggested in [30]. In [1], the use of genetic programming to discover

profitable trading rules was explored. A good introduction to genetic algorithms can be

found at [31]. Additionally, their use in investment strategies is described in [32].

Work in using a multiple model approach for development of an effective

intraday trading strategy [10a] and attempts at designing a strategy in the PLAT domain

using reinforcement learning and hill climbing as well as a market maker to be used in

 8

competition in the PLAT domain have been explored to some extent [10b], but not in

conjunction with technical trading rules.

2.1.2 Relevant Trading Terminology

Before we discuss the environment and design involved in our work, we will

discuss the underlying mechanics of financial markets and exchanges, or the market

microstructure. In electronic markets such as NASDAQ, all orders are sent to the

exchange via an electronic interface and order-routing system. Since orders are cleared

electronically, the use of Electronic Crossing Networks (ECNs) has become prevalent.

One of the larger ECNs is Island [4].

Electronic Trading uses orders to buy or sell shares. These orders may be placed

at any price and any number of shares may be traded. Most commonly, we use market

and limit orders. A market order is an order to buy or sell shares at the current market

price. A limit order is an order to buy or sell a security at a specific price. In other words,

this kind of order is used to buy shares at a lower price than the current price or sell

shares at a higher price than the current. This kind of order does not guarantee a trade,

and such an order will be executed only if the current price happens to reach the quoted

price.

Most of the strategies described in this thesis use the limit order – and the terms

‘order’ and ‘limit order’ are used interchangeably in the following sections.

An order book is essentially a sorted list of orders placed by traders. The orders to sell

and buy are stored in the sell and buy order books respectively. Incoming (new) orders

are compared with corresponding orders in the opposite book – to check if it can be

executed immediately. If it can be executed, the corresponding order in the opposite book

is deleted to the extent to which it satisfies the order. If the incoming order is large, then

more than one order in the opposite book may be executed to satisfy the need. Incoming

orders that are not immediately executed (partly or fully) are entered into the appropriate

 9

order book in an appropriate position ranked by price and time of order placement (in

case of a tie).

 Figure 2.1: A typical electronic trading order book

Order book imbalance is the difference in price or volume of trades between the sell and

buy order books. Volume of trades is usually expressed as number of shares associated

with orders. Programs written by stock traders/organizations with the specific intent of

placing trading orders, according to an algorithm is defined as an agent in the following

sections. These agents monitor price variation, and based on the programmed algorithm,

place orders. Of course, various levels of autonomy can be assigned to the process.

Human intervention can be enforced to a high level – wherein the human trader uses the

algorithm purely as an indicator or recommendation, and on the other hand, the agent

may have more autonomy and is allowed to automatically place bids on behalf of the

trader. In this thesis, and all the following sections, we program strategies (that monitor

current market statistics, and based on the algorithm, decide the action to be taken) that

the agent uses to perform certain trading actions.

 10

2.1.3 Stock Market Simulators

Automatic trading has been an active area of research over the last decade, and a

primary requirement to this cause is a realistic simulation of the market – owing to the

high expenses associated with experimenting on the actual market. This has led to the

development of numerous simulators (virtual markets). These simulators have been

designed from various perspectives – from the study of market mechanism to classroom

teaching of finance fundamentals. The Santa Fe Artificial Stock market project is an

example of the former and [20], the latter. The Stock Market Game [33] is a simulator

where participants can study the tradeoffs in risks and rewards in making decisions

according to certain strategies. Another simulator that can be used by traders to

experiment on managing different portfolios is the Virtual Stock Exchange [34].

However most of these simulators create whole new stock exchanges, independent of the

real world trades.

The bids placed by the agent needs to affect the economy of the market it trades

in. So, in any scenario where virtual bids are placed at current prices over a period of

time and evaluated in a real world economy, the economy is not affected by any action of

the agent. All the above shortcomings in various stock market simulators motivated the

research of the Penn-Lehman Automated Trading (PLAT) group. The PLAT simulator

seamlessly combines the virtual orders from participating virtual trading agents with

orders in a real world ECN, to create an environment very close to the real world. The

Penn Exchange Server (PXS), a component of the PLAT project , is a platform for

developing novel, principled automated trading strategies. The real-data, real-time nature

of PXS lets us examine computationally intensive, high frequency, possibly high-volume

trading strategies.

2.1.4 PLAT Domain

The Penn Lehman Automated Trading (PLAT) domain uses the Penn Exchange

Server (PXS) to which the trading agents can plug in. PXS uses real-world, real-time

 11

stock market data for simulated automated trading. It frequently queries the Island

electronic crossing network’s (ECN) web-site to get the most recent stock prices and buy

and sell order books. A detailed discussion of the working of PXS can be found in [19].

PXS works in a manner very similar to a regular ECN. The order books maintained by

the PXS server are a combination of real orders and virtual orders (placed by the agents

that are plugged into it). Real orders correspond to those on the Island ECN. At every

processing cycle, an attempt is made to match virtual orders. All possible transactions are

processed, following which, an attempt is made to match the virtual orders with real

orders. After this is over, all remaining unmatched orders (virtual and real) are combined

to form a single pair of buy and sell order books. The simulator also computes the profit

and losses of each connected trading agent in real time, and displays it in an output file.

PXS is equipped for testing strategies on historical data and also for running in the

live mode, starting and ending at the same time with normal trading sessions of the

NASDAQ. The simulator supports limit orders only. The trading strategies connected to

the server, which we have until now referred to as an agent will now be used

interchangeably with client for the rest of this work. In the simulation, the best ask price

is the lowest price any seller (either trading agents or outside market customers) has

declared that they are willing to accept; the best bid price is the highest price any buyer

has declared that they are willing to pay. If a new buy order has bid price greater than or

equal to the best ask price or a new sell order has ask price less than or equal to the best

bid price, the order will be matched in the amount of the maximum available shares and

the trade is executed. If a bid price is higher than the ask price, the trading price is the

average of these two (bid and ask) prices. If orders cannot be matched immediately, they

are kept in the queue to wait for possible future matches.

 12

 Figure 2.2: PLAT System Architecture

Currently, PXS supports four stocks. However, during the early stages, they were

hardwired to Microsoft Stock (Symbol: MSFT). Hence, in this work, our focus is on

trading this stock alone. Trading agents in the simulation can buy or sell MSFT stocks

with limit orders. Agents can borrow stocks from the simulator and go short or borrow

money from the simulator without any interest to go long. However, the same amount of

money will be deducted from the agent's simulated cash account. The cash in the account

can be negative or positive. The value that a trading agent has in the simulation can be

approximated in real time by the formula: value = cash + holdings * current Price.

In the experiments in the rest of this thesis, we impose some rules that are the

same as the ones used in recent competitions held by the group responsible for the

running of the PLAT domain. We now discuss these rules, which were established

external to the working of the PXS server itself. An important feature of the trading

simulation is that the objective is to day trade (the objective of day trading is purely to

trade profitably over a day’s stock price variation, and the frequency of observation of

price variation as well as order placement is high – many times in a day) and hence, it is

strongly desirable to unwind one’s position, i.e., buy back all the shares from a short

position or sell all the shares from a long position by the end of the trading day, leaving

the agent at a neutral (zero surplus, zero deficit) position in terms of number of shares.

Failure to do so results in a penalty (specific penalty for our experiments are examined in

 LOCAL
MARKET

 PXS

Agent 1

Agent n

 Island

 13

later sections). Any excess shares held at the end of the day are valued at zero. Shares

that are short need to be bought back by the agent at twice the closing price.

Other factors to be accounted for are the fact that trading happens continuously

and in real time. The agent strategy cannot be externally changed in the middle of a

trading day. Also, PXS has provisions to accommodate transaction costs, much like the

real market. Each time a trade is executed by PXS, one side of the order exists in one of

the order books already, and the other side of the order is the incoming order. In order to

reward an agent for providing liquidity (providing the books with unfulfilled orders to

match potential orders from the other side of the book), the agent that has its order in the

book already – is rewarded with a rebate. The agent with the incoming order

correspondingly is charged a fee – as it eliminates liquidity from the order books. The

daily return is thus defined as:

Daily Return = Cash – Unwinding Penalty – Transaction fees + Trading Rebates

The transaction fees charged for trade, in the experiments in this thesis, follows exactly

the pricing mechanism of the Island ECN. For each trade executed by PXS, the agent

whose order was already in the books receives a REBATE of $0.002, and the agent who

placed the incoming order (that was executed immediately) pays a transaction FEE of

$0.003. This way, agents are rewarded for maintaining liquidity on the server and

penalized for depleting the liquidity. Within the framework defined so far, the objective

of the agent strategy is to maximize profits. Specifically, the expected return, measured

by the Sharpe ratio, is to be maximized (section 2.4). There are competing objectives at

play here. The need to maximize profits implies that an extreme position be taken by

trading as much as possible when an opportunity for profit is seen. On the other hand, the

need to unwind one’s position at the end of the day as well as the strict statistical measure

of performance suggests a more cautious approach. There are no limits to how many

shares an agent may buy or sell in a day, or how many shares an agent may hold (or have

a deficit of) at any given point of the day. So there is room for exploration of strategies.

Unreasonable positions are avoided by most agents due to the focus on liquidity, but

 14

counter-intuitive, extreme strategies are accommodated within this framework.

A key point to note is that it is desirable to make consistent small profits over

many days, as opposed to adopting strategies that provide high returns but result in high

variance, thereby neutralizing the profits and resulting in a small Sharpe ratio. The need

for a controlled trading strategy is evident.

2.2 EARLY AGENT DESIGN AND THE NEED FOR A COMPOSITE STRATEGY

Some financial and commodity market traders study market price history with a

view to predicting future price changes in order to enhance trading profitability. This

study is called technical analysis. Technical trading rules involve the use of technical

analysis to design indicators that help a trader determine if current behavior is indicative

of a particular trend, as well as the timing of a potential future trade. Owing to the

difficulty of managing complex models of the market and using rigorous, adaptive

decision techniques, day traders tend to use simpler and more intuitive decision rules.

This ‘common sense’ approach has often proven quite effective [10a] and has been

considered a good candidate for automation [35].

The hypothesis is that a robust strategy can be designed by composing multiple

‘intuitive’ strategies. Robustness and relatively complex behaviors can be achieved by

synthesizing multiple, intuitive strategies. Basic stock trading is commonly perceived to

be governed by the dictum ‘buy low, sell high’. If an agent were to buy a share at a low

price and sell it at a higher price, then a profit of high price – low price has been made.

Numerous such trades over the day would accumulate profit for the trader. A problem in

stock markets is that the future is unknown and it is therefore unclear if a decision to buy

or sell in anticipation of a favorable movement in the future would yield profit. This

decision is further complicated by the strict need to unwind, as is the case in intraday

(high frequency) trading. The aim is to leverage the small price changes to one’s

advantage. A process of unwinding, i.e. the process of selling excessive shares if in

excess and buying the number of shares required to make up the deficit, when short, is

 15

implemented in the experiments in the following sections. (The case of possible retention

of a short or long position overnight, is a different body of research, and includes factors

such as overnight information, adjusted prices, etc).

Synthesis of multiple rules to come up with a composite trading strategy has been

tried before in various forms – with the component rules being everything from complete

rules [36] to very basic predicates and operators that are combined to generate complex

rules [37]. In this work, we aim to synthesize a strategy where the component rules are

independent strategies in themselves, so they would appeal to a human trader. It would be

hard to intuitively see the utility of a rule that was a long series of conjunctions and

disjunctions of basic predicates. So, we aim to see if existing, simple, intuitive strategies

can be composed in some way to make a robust, profitable strategy. In the following

subsections, we will briefly discuss some of the strategies that have been implemented

and tested in the PLAT domain, with emphasis on the ones we will use as competitive

agents in experiments in later sections.

2.2.1 Static Order Book Imbalance (SOBI) Strategy

The SOBI [10d] strategy bases its decision on the differences in the distribution of

volume at different prices in the BUY and SELLS order books.

Let bi (i = 1, 2, 3, 4) represent the volume-weighted average price (VWAP) of the top

i*25% of the volume in the buy order book. For instance, b1 is computed by taking the

top 25% of the buy order volume, and computing the average price offered per share.

Similarly, let si (i=1,2,3,4) be the volume-weighted average price of the top i*25% of the

volume in the sell order book. Also, let lastPrice be the most recently updated market

price.

Si: si – lastPrice

Bi: lastPrice - bi

Note that Si and Bi will always be positive numbers.

 16

They can be interpreted as a measure of the "distance" from the last price of the top

i*25% of the respective order book. The strategy computes the VWAP of the PXS BUY

and SELL order books, and compares them to the PXS last price.

The basic idea is that the the difference between the respective VWAPs and the

last price is an indicator of the level of support that the buyers and sellers show. For

example, if the VWAP of the buy book is much further from the last price than the

VWAP of the sell book, it is a sign that buyers are less supportive of this price than are

sellers, as indicated by their limit orders (statistically) standing further off. In this case,

SOBI will place an order to sell shares, on the theory that the weaker buy-side support

will cause the price to fall.

To summarize, the SOBI strategy, at every tick, computes Si and Bi and places

buy or sell orders according to the following rules:

If (Si - Bi > theta), place an order to buy volume(v) shares at (price);

If (Bi - Si > theta), place an order to sell volume(v) shares at (price);

theta being a controlled parameter.

2.2.2 Market Maker

A market maker buys stock when the price is increasing at an increasing rate and

sells stock when the price is decreasing at an increasing rate. However, rather than wait

for a trend reversal to unwind the accumulated share position, the agent always places

buy and sell orders in pairs. When the price is increasing at an increasing rate, the agent

places a buy order at price p (based on the order book) and immediately places a sell

order at price p + �, with the confidence that the latter will be matched shortly when the

price has gone up enough. The situation is assumed to be symmetric when the price is

decreasing at an increasing rate. For further discussion, the reader is pointed to [38]. In

our tests, this (having been a successful agent in past competitive tests) is used as a

competing agent.

 17

2.2.3 Volume Based Strategy

Volume of trades and order book volume imbalances have long been established

as important criteria in evaluating portfolios [39] and long term investment strategies.

The hypothesis [10c] is that it is an essential component of intraday trading strategies –

important enough to be effectively used exclusively as an indicator of the market

behavior. We conjectured that price based measures need to be coupled with order

imbalance in volume (the difference in total volume of shares on either side of the order

books) to make it more sensitive to the ‘confidence’ of the investors in the midst of a

trend. Unlike the SOBI strategy (section 2.2.1), where the volume weighted price

difference between either side of the order book is used to base a trading decision, we

conjectured that such a decision can be made using the volume of orders alone (on either

side of the order book).

Another hypothesis on volume effects was that very high volume of trade in the

market coupled by a period of unidirectional price increase/decrease indicates continued

unidirectional trade. An explanation for such behavior could be the occurrence of product

releases, earnings announcements, bullish and bearish announcements or other private

information that an agent might use to trade one way or another. This should be an

overriding factor in the agent decision process, and thus prevent the agent from going

very long or very short without any hope for recovery. If large volumes of trade are

coupled with unidirectional movement in price, this may be an indication of the

possibility of extreme long or short trading.

The basic strategy was implemented as follows. The order book data was obtained

for each update (in time, say t1) and the corresponding volume of unmatched shares on

the buy and sell sides of the book. The difference of these volumes is the buy-sell

difference. Then, this same difference is obtained for the next time update (say time t2).

 18

The decision rule is stated as:

If (buy – sell)t2 > (buy – sell)t1

 buyOrder(buyprice, ordervolume);

Else If (buy – sell)t1 > (buy – sell)t2

 sellOrder(sellprice, ordervolume);

Else do nothing

The volume of orders was tuned with an optimization algorithm that maximized the

function:

]21**2[)])}(*()*[{(volvolpriceteordervolumbuypriceeordervolumsellprice �−�−−�

where vol1 and vol2 are the buy and sell volumes respectively.

As discussed earlier, in the event that high trading volumes accompanied unidirectional

price movement, a cautionary approach was taken and implemented as:

check totalvolume

if (totalvolume is very high)

for (3 time steps)

 if (price increases for three time steps)

 buyvolume = sellvolume = 0 ;

 else if (price decreases for three time steps)

 buyvolume = sellvolume = 0 ;

Else do basic strategy

Although crude, this guard mechanism proved quite useful.All of these early attempts at

designing strategies seemed to indicate the need for combining many simple intuitive

strategies, as well as using a more efficient control mechanism to take care of cash and

share position.

2.2.4 Multiple Model Strategy

This approach was developed and implemented by Ramamoorthy [10(a)] as part

of a project for a class and was a successful agent in competitive simulations in April

2004 (Appendix 3). The intuition behind this strategy is that there are periods of time

when the behavior of the stock return is, in fact, mean reverting and a simple strategy

 19

with this assumption would, in a statistical sense, produce profits. When the markets

deviate from this favorable model, the resulting effect would be observed from

instantaneous cash and stock holdings. This could be used to trigger a mode switch to a

different strategy that does not assume the mean-reverting nature of stock prices. In the

case of the agents we aim to implement in our thesis, we incorporate this strategy (as is,

with a few very minor modifications) in conjunction with our algorithms, as a control

measure. Intuitively, we can think of this as a faucet that we turn to control various rated

of flow. If we think of the trading suggestion and suggested trading volume as the

suggested trading parameters, then it is regulated by the action mode (safe or regular)

suggested by the multiple model mechanism, which we describe [from 10(a)] below.

The problem of detecting the agent and the market’s mode can be approached by

thinking in terms of two key variables – cash held by the agent and net shares held by the

agent. This representation can be visualized as a two dimensional state space, the axes

being cash axis and share axis respectively. The idea is to move in the positive direction

on the Cash axis while trying to stay close to zero on the Share axis. The effect of the

market is to move the agent’s current position along the Cash axis towards the negative

side. The agent, on its part, can issue commands to move along the Share axis.

Occasionally, the agent’s state is far from the Share axis.

So, the idea is to explicitly control risk and rewards by tuning the one variable

available to the agent, the share holdings, in response to observed variables, the last price.

The allowed modes of trading the agent can follow are:

Regular: Perform trading as usual.

Safe: Try to divest holdings when profitable, otherwise, do nothing. This would never

increase holdings in the unfavorable direction (in the state space).

Risk Seeking: Trade with lower margins and larger volumes in expectation of higher

returns.

 20

These behaviors can be composed as shown in the table below:

Cash

Share

Very

Negative

Negative Zero Positive Very Positive

Very Short Safe Safe Safe Safe Safe

Short Safe Safe Regular Regular Safe

Zero Safe Regular Regular Regular Risk Seeking

Long Safe Regular Regular Risk Seeking Risk Seeking

Very Long Safe Safe Safe Safe Safe

Table 2.1: Mapping position in cash-share space to a mode of action

2.2.5 Other Strategies

Numerous other strategies have been implemented in the PLAT domain and

implemented in competitive runs, with varying degrees of success. Among the more

successful of these agent strategies, is the Reverse Strategy [48]. This strategy runs

counter to the traditional dictum of “sell when the price is falling and buy when it is

rising”. It buys when the price is dropping and sells when the price is rising. Other

techniques explored use trader message boards and gleaning information from the news

online [51]. In the following sections in this chapter, we briefly discuss evolutionary

algorithms and trading evaluation criteria with relevance to the central strategy discussed

in this thesis.

2.3 GENETIC ALGORITHMS AND GENETIC PROGRAMMING

The areas of artificial intelligence and its application to technical trading and

finance have seen a significant growth in interest over the past few years. Specifically,

the use of evolutionary methods such as genetic algorithms (GA) and genetic

programming (GP) in this domain has been examined. These approaches have found

financial applications in options pricing [40] and as an optimization tool in technical

trading applications [30].

 21

Evolutionary learning algorithms derive inspiration from Darwinian evolution. GAs are

population-based optimization algorithms and the first proposal of this idea has been

credited to Holland [41]. They have since found applications in a wide range of problems.

GPs are an extension of this idea proposed by Koza [42] with a view to evolving

computer programs.

GAs are iterative systems and aim to find near optimal solutions. They differ from

standard search algorithms in that they use a population of possible solutions rather than

tuning a single one. Although convergence to the global optimum is not guaranteed, they

are quite robust in producing near optimal solutions to a wide range of problems and, in

particular, those that are not easily reducible to a precise mathematical formulation. In

pseudo code below, a basic genetic algorithm (a formulation we stick to reasonably

accurately) is described.

PSEUDOCODE (adapted from [54]):

Begin GA
 g:=0 { generation counter }
 Initialize population P(g)
 Evaluate population P(g) {i.e., compute fitness values}
 while not done do
 g:=g+1
 Select P(g) from P(g-1)
 Crossover P(g)
 Mutate P(g)
 Evaluate P(g)
 end while
End GA

The starting point in using GAs to solve a problem is to represent the problem in a way

that a GA can work with. This often amounts to representing the solution space as a finite

number of strings of binary digits. Binary strings are an effective form of representation

since complex statements as well as numerical values of parameters can be represented in

this form. The resulting search space is finite when parameters take only discrete values

to yield a binary representation as a string of fixed length. Secondly, there needs to be a

means of evaluating the fitness of the constituents of the solution space, i.e. the suitability

 22

of each potential solution, for how well they perform. For example, in the case of

selecting trading rules the fitness could be viewed as the profitability of the rule tested

over a time series of historical price data, or a function of this variable.

Genetic Programs are a variation of the standard genetic algorithm, wherein string

lengths may vary within the solution space. Unlike in GAs, solutions in GP can be seen

as non-recombining decision trees [43] with non-terminal nodes as functions and the root

as the function output. These are usually the optimization algorithm of choice in cases of

evolving strategies based on Boolean operators – when the solution may be evolved with

varying depth in the tree [44]. It is inherently more flexible than the GA, but care needs

to be taken in representation to avoid over-fitting (the phenomenon where a classifier is

trained too minutely to fit the training data – causing diminished performance on data

outside of the training sample, also called out-of-sample data).

2.4 PERFORMANCE CRITERIA

A class of performance criteria commonly used in the financial community are

measures of risk-adjusted investment returns. Risk-adjusted returns are a measure of the

returns of an asset adjusted for risk or volatility. In other words, consistency is rewarded

and volatile trading patterns are not. Common measures within this class are the Sharpe

and Modified Sortino ratios.

2.4.1 Sharpe Ratio

Probably the most popular measure of performance of asset trading in finance is

the Sharpe ratio, introduced by William Sharpe [45], and originally introduced to

measure the performance of mutual funds. Essentially, it is excess return divided by risk

as measured by the standard deviation of return. For the rest of the thesis, we will assume

that ‘return’ is ‘daily return’. We recall from section 2.1.4 that daily return, for our

experiments, is defined as:

Daily Return = Cash – Unwinding Penalty – Transaction fees + Trading Rebates

 23

If the average daily return (defined as the amount of money made after money spent and

sale of remaining stocks are adjusted for, at the end of the trading day) is supposed to be

Ri then the average daily return is:

�
=

=
N

i
iR

N
R

1

1

The standard deviation of returns is,

)(
2/1

1

2

1
1

�
�

�
�
�

� −
−

= �
=

N

i
i RR

N
σ

Thus, the Sharpe ratio is,

Sharpe ratio =
σ
R

2.4.2 Modified Sortino Ratio

Despite the common use of Sharpe ratio in the field of financial performance

evaluation, quite often, traders are often not perturbed by the possibility of volatile return

structure provided the strategy is mostly profitable. Sortino ratio, introduced in the early

1980’s, is a modification of the Sharpe ratio that differentiates ‘harmful volatility’ from

volatility in general, using a value for downside deviation only. While it has limited basis

in theoretical study in the area [46], we hypothesize that it warrants a closer look,

especially in the domain of intraday trading agent performance evaluation.

The Sortino ratio, as defined in [46], is a more complex model - suitable for

rigorous statistical evaluation of asset returns – than we aim to use in the experiments of

our thesis. A usable form of this ratio, which we will use in following sections, is:

Modified Sortino Ratio =
neg

R
σ

where negσ is the standard deviation of negative returns only (over the given period of

time). R represents the returns (as described in section 2.4.1).

 24

2.5 THE DATA

The PLAT domain is an experimental test bed that is configured to run with the

historical as well as live mode data. The data comes from a mirror of the Island ECN

which trades NASDAQ stock. The only stock used here is the Microsoft (Symbol:

MSFT) stock. The stock data consists of a bid and an ask price table, that lists in order of

preference, the respective orders placed by agents/traders. The difference between the

topmost entries of this table is called the spread. A number of past trading days’ books

are stored in the PLAT project. The process of selection of data (trading days) used for

training and testing is as follows. There were days from early December 2003 to mid July

(archived in the PLAT project for MSFT) that we used as a baseline set of data for

consideration for our thesis. Over half of these days were eliminated due to incomplete

data over the day or corruption of data. Of the remaining days, attempts were made to

make sure the data included data representative of a number of different stock behaviors

over a training day. Specifically, we made a list of all the days in the archives, which we

deemed as tradable after weeding out incomplete data, and this list was checked with a

list of trading data we obtained from Yahoo! Finance pages [52]. The data, based on

details such as opening price, closing price, high and low prices of the day, was divided

into various categories such as increasing, decreasing, mean reverting, etc. Further

discussion on the classification of days based on price dynamics is included in

Appendices 1 and 2. Our final list included 60 days. Of these, 15 days were set aside for

our competitive tests with previously successful agents. The remaining days were split up

into training and test days, and we made sure that no experiment had any overlap between

its training and test set of days.

 25

Chapter 3. Agent Design

In this chapter, we will discuss design issues, and the techniques used in

development of agents for trading in PLAT domain. Our primary aim is to design trading

strategies that resemble a technical trader who would systematically, and based on a set

of pre-specified evaluation criteria; choose a subset of trading strategies from a larger set

of trading rules, and evaluate the performance of these strategies in various competitive

scenarios. The basic idea is to combine popular, ‘intuitive’ technical analysis indicators

and rules to profitably trade in the PLAT domain. Trading strategies and rules are

allowed to combine in two different mechanisms – with the use of genetic algorithms and

genetic programs – to evolve strategies that are aimed to be profitable, and perform well,

under the different evaluation criteria involved.

3.1 GENETIC ALGORITHM AGENT (GAA)

In an attempt to make a profitable, robust strategy using simple intuitive laws that

appeal to the human trader, we use multiple technical trading rules in a weighted

combination to produce a unified strategy. In addition to designing an automated strategy

that is intuitively appealing, the generation of effective strategies using complete,

comprehensible indicator strategies may help in the understanding of these component

strategies, their effects and limitations.

In this formulation, we use a number of basic (indicator) strategies in a weighted

combination to produce a cumulative trading action at every tick (a tick in the following

sections is the point in a trading day when the books are updated and fresh data is

available). The algorithm uses principles from the weighted majority algorithm [47] in

the use of suggestions from the component strategies and combining them using a

weighted majority. We propose the use of a similar suggestion or voting mechanism

wherein each indicator would signal a buy, sell or do nothing action. We recall that the

steps involved in trading in this environment include getting the raw order book data,

evaluation of a recommended action by each of the indicator strategies and combining

these indicators using the respective weights giving us a cumulative suggestion (a

 26

weighted majority). This is followed by a multiple model control mechanism that

determines the mode it should trade in (A discussion of modes of trading is in section

2.2.4). Earlier, we compared the control mechanism to a faucet, acting as the final

regulator on the trading decision and volume suggested by the composite strategy so far.

It has the power to veto a trading decision suggested by the composite algorithms, when

in the safe mode or allow the trade to continue unaltered in the regular mode.

The multiple model control mechanism determines the trading mode based on

current holdings of the agent (also called the share position). The share position is the

number of shares that the agent has accumulated (long position), or the number of shares

that is deficient (short position), over the trading day up to that point. It is not difficult to

imagine that a human trader would behave differently when in an extremely long or short

position (risk averse) as opposed to when he is in a relatively neutral share position (risk

neutral or risk seeking). A similar behavior is desired from an autonomous automated

agent in determining the trading action to be taken. The agent evaluates its current share

position and this helps keep the agent from following a possibly unidirectional market

trend to the end of the day, and reaching a very long or short position. In essence, this

mechanism is a control measure to ensure the agent achieves a share position as close to

neutral (zero accumulation or deficit) as possible. In section 2.1.4, we discussed that

unwinding is an important constraint and enforced external to the mechanism of PXS.

With the use of Sharpe and Sortino ratios, the imposition of this rule makes sense in that

it provides for a uniform set of statistics to evaluate trading agents on. We achieve the

objective of unwinding with the use of a multiple model mechanism. One of the changes

in our implementation, when compared to that in section 2.2.4, is that we have eliminated

the use of the ‘risk-seeking’ mode of operation. The reasoning behind this decision is that

such a behavior is proposed only for extremely high cash as well as share positions. This

is not only a highly unlikely occurrence, but also a situation where we hypothesize a

regular behavior should suffice in recovering a reasonable share position – keeping in

mind the relatively robust design of the market evaluation phase of the strategy. This

multiple model scheme examines the agent’s share position and provides a mode of

 27

operation that the agent should follow. This regulation is combined with the decision that

is output by the composite strategy and we arrive at a final trading decision to buy, sell or

do nothing, and the volume to be traded. In the figure, the four indicators (MAS, VS, PS

and PCBS) are the result of each component technical trading rule and their suggestion

based on the market information they receive. We will discuss these indicators in greater

detail at a later time. An important point to note at this time is that the indicators,

although complete strategies in themselves, provide us with nothing more than

suggestions to buy or sell. The reason for ignoring the volume of trade that may be

possible to obtain from each indicator is that this would require us to optimize the volume

parameter for each of the indicators, and then applied tuned weights to them. This adds to

the burden of computation, and is avoided in this thesis. We do not use these indicator

strategies to give us specifics such as the volume or price at which to place trading

orders. Weights (W1… W4) are applied to the indicators to arrive at a weighted suggestion

W*I. The final decision depends on this weighted suggestion as well as the output of

multiple model control mechanism to give us the final action to be performed by the

agent. The weighted suggestion to trade a certain way determines the volume of shares to

be traded at that tick.

The order placement is done online based on the information obtained from the updated

order books and current agent statistics (both of which are obtained from the PXS and

client statistics respectively). The weights (W1… W4) are tuned offline using a genetic

algorithm (GA). The weights are each represented as 2 discrete bits in a bit string. Also

included is a sign bit associated with each weight. The sign bit is used to evaluate the

effect of the weight on the rule. For example, if an indicator suggested a buy action, and

if the weight Wn had a negative sign, then the weighted suggestion would be to sell. This

representation is particularly useful in the expansion of search space available to the GA

as well as in compensating for some representations of the component (indicator)

strategies that may in fact be useful as a parameter to be observed, but the decision rule

may be quite the opposite of our assumption. A good example of such an occurence is the

use of ‘direct’ and ‘reverse’ strategies in [48]. In it, an initial attempt at using a simple

 28

decision rule based on current and previous price used a buy action when the price

increased and sell action when the price deceased. However, when they switched the

actions to use a sell action for increasing price and a buy action for an increasing price, it

yielded superior performance. Such occurrences would be compensated for with the use

of the sign bit in our bit string as the GA is expected to tune itself for better performance.

Figure 3.1: Overview of working of the GA agent

From Figure 3.2(a), we can see that the 2 bits corresponding to each weight can take on 3

discrete non-zero values for each of the positive and negative signs prefixing them. In all,

there are 7 possible values for each weight. In Figure 3.2(b), we’ve described the

structure of bit strings for buy and sell strings. Figure 3.2(c) describes how the weights

combine to affect the volume of trade. The weights (along with the sign) can combine to

give us a value of combined strength that ranges from -12 to +12. This combined strength

MAS VS

PS

PCBS

W1*MAS W2*VS W3*PS W4*PCBS

Buy/Sell
Suggestion

Market Statistics

Indicator
Strategies

Weights the Buy/Sell
Suggestion to give
Weighted Suggestion

Weighted Action

Composite Trading Decision Combining
Weighted Decisions. Gives Volume to be

Traded

Multiple Model Control

Agent
Share

Position Examines Agent Share Position and based
on mode of operation, decides on allowing,

disallowing the trading decision from the
composite strategy

Order Placed
Based on Multiple Model Control and Composite
Strategy, a Revised Trading Action is Performed.

Order is Placed.

 29

value is then multiplied with a constant volume factor (the value of this was fixed

empirically at 25 throughout this thesis) to give us the volume of shares to be traded at

that particular tick.

Figure 3.2 (a) Correspondence of bit patterns of weights to strength of suggestion

SIGN W1 SIGN W2 SIGN W3 SIGN W4 BUY
0 01 1 11 0 00 0 10

SIGN W1 SIGN W2 SIGN W3 SIGN W4 SELL
0 00 1 10 0 01 0 01

 Figure 3.2 (b) Structure of the buy and sell bit strings that populate the GA

 Figure 3.2 (c) Combining weights and volume factor to get volume of trade

Bit Pattern Strength of Suggestion

00 0 (No trade)

01 1 (Weak)

10 2 (Strong)

11 3 (Very Strong)

Combining Weights

W1 W2 W3 W4

-11 + -11 + -11 + -11

00 + 00 + 00 + 00

11 + 11 + 11 + 11

-12

0

12

Volume Factor

The combination of
weights is multiplied to

the volume factor to give
final volume to be traded

Volume of
Trade

 30

The length of the bit strings are limited to 12 bits (2 bits and a sign bit for each indicator),

due to the burden of computation time. The reasoning was that longer strings would make

the search space of possible solutions much larger (owing to the increased number of

unique combination of bits. The computation time of the GA, in its current format,

already runs into more than a day, as each generation is essentially a simulation over a

trading set (15 days run in historical mode) with multiple agents (in this case 20 per

generation). The time taken to run the simulation also increases with the number of

agents plugged in simultaneously. It is evident that an increase in the number of

individual bit strings per generation would be required to search a reasonable portion of

the search space, in case the number of bits per string was increased. This would

consequently lead to increase in computation time, and training would become a very

computationally intensive task. To avoid this predicament, we limited the bit strings to 12

bits, at the cost of increased granularity in weight values.

In preliminary work done in a class, we hypothesized that technical trading

indicators are sometimes not symmetrical. The market, as an aggregate, swings upward

or downward from an opposite trend – and these effects, when viewed on a chart, are

called shoulders. These shoulders may be wider when a downward trend ends and

narrower when an upward trend ends, or vice versa, depending on the setup of the

decision rule [49]. To incorporate this hypothesis in our design, the trading rules and

weights are split into buy and sell components. Each indicator strategy consists of a buy

and sell recommendation (suggestion) that is triggered by the ME phase. However, buy

rules are not necessarily the complementary to the sell rules in manner or strength.

Hence, to allow for these variations, we use separate buy and sell rules (Figure 3.2). This

reasoning for this modification is as follows. For example, order imbalance in volume on

the buy side may indicate strongly that buying stock is the right thing to do, but when the

imbalance is on the sell side, the sell signal may not be quite as strong. In many cases,

due to numerous factors, symmetrical trends on the buy and sell sides do not imply

complementary actions at all times, especially if the volume of trade is considered.

 31

Figure 3.3: The GA for one generation of execution

The final action to be taken is determined as:

)*()*()*()*(44332211 IWIWIWIWAction +++=

where)11,10,01,00(=nW and)1,0,1(−=nI , with -1 indicating a sell action, 1 indicating

buy action and 0 indicates a do nothing action. In the following sections, we will look at

details of implementation of the GA and briefly discuss the component strategies

(indicators).

3.1.1 Genetic Algorithm Implementation Issues

The genetic algorithm goes through the generation of population, fitness

calculation, crossover and mutation stages until convergence is achieved or the maximum

allowed number of iterations has occurred.

Population Initialization: In the very first generation (beginning of run), the population is

initialized using uniform pseudorandom integers which are translated to the strings that

101001010011(BUY)

101001010011(SELL)

Fitness1

Fitness20

Best K% Crossover Mutation

Initial
Population
Of 20

Generate new
population

Ranked in descending order

 32

constitute the initial population. We use a population of ten strings for each of the buy

and sell rules as the population for each generation. As can be seen in figure above, we

have 20 strings that populate every generation. Many factors go into choosing the size of

the population in a GA. Sufficient exploration of the search space necessitates a

reasonable size for the population. However, here, a mitigating factor was computation

time. Our training method included running the population over entire training periods

(15 days per training set), and a generation involved running 20 individuals

simultaneously on PXS over this entire period. This process took many hours (with 15

training days). For this reason, we found it necessary to keep the number of members in

the population down to a manageable number. However, we did introduce a few steps

like elitism (the selection of only the top ranking strings in terms of fitness) to encourage

convergence. Each subsequent generation is populated as a result of crossover and

mutation operations.

Fitness Calculation: The Sharpe and Sortino ratios (section 2.4) are used as the fitness

function to evaluate the performance of each member of a population in every generation.

The fitness was calculated as the Sharpe or Sortino ratio of the string over a period of

time (15 days if training sets in Appendix 2 are used). The training set of trading days

remained the same for each subsequent generation. Hence, the goal of the evolution

process is to maximize the fitness functions (and find the combination of weights that

does this) for a given set of training days. However, it is possible to find the right set of

weights to maximize the fitness over any given set of trading days (given sufficient time

and exploration), and we must keep in mind that the ultimate aim is to find the right

weights that will maximize profit over out-of-sample data (test data different from

training data). The strings of weights, after evaluation, are ranked in decreasing order of

fitness.

Crossover: Crossover is the process of cutting strategy string pairs at appropriate points

and exchanging tails between heads to make a new pair. Only the best k% of strategies is

 33

used for crossover, and bit strings are crossed over tail to head. The probability of being

selected for crossover is higher for strategies with higher fitness.

The selection of a string ranked i is calculated by the formula:

pi =

�
�
	

��

�

�
�
�

��

� ≥−

�
otherwise

Nki
i

iNk
Nk

;0

.;
.

.

1

where k is the percentage of population to be considered. N is the population size and i is

the rank of the string in the population. Based on this probability, pairs of strings are

independently selected (with replacement) from the population and crossed over [in a

manner as described in 21]. Once a pair has been selected, a cut point for both strings is

uniformly pseudo-randomly selected, so that both strings are cut into two pieces with the

‘head’ and ‘tail’ parts of both strings being the same length. Then these tails are crossed

over. The resulting strings are next analyzed to check uniqueness relative to the current

population by comparing each string bit by bit.

Mutation: Mutation is the process of randomly changing appropriate bits in a strategy

string and is executed in a bitwise manner. We maintain an elitist model since the top 2

strings (from each of the buy and sell sides) are spared mutation. This is done in order to

preserve strings with high fitness since in this kind of optimization we are searching for

maxima locally as well as globally, i.e. we attempt to generate an array of good solutions

rather than just the best. The generation of such a set of solutions rather than a single

good solution is done in an attempt to maintain a set of good solutions to search from

(and increase exploration). After each attempted mutation, the string is checked bit by bit

with the other solutions for uniqueness. In the event that duplicate strings are found, only

one of them is retained, and we dip into the remaining (unique) solutions and select the

one with the highest of the remaining fitness functions. Also, a brute force

implementation ensured that each generation had at least two sell and two buy rules

 34

generated, to ensure that there was never a case when all rules were of sell or buy type

exclusively.

We use a relatively high mutation rate, to compensate for the small population

size, and to ensure more exploration of the search space. If the population of strings

contains B bits, numbered 1 to B, then we would wish to mutate M = 0.1B of them. In this

case, M uniform pseudo-random integers are generated between 1 and B without

replacement. The M integers are ordered by magnitude and for each the correspondingly

numbered bit is mutated (0 goes to 1, 1 goes to 0). After each string has been passed by

the mutation process, a bit-by-bit check is performed to test for uniqueness, and duplicate

strings are eliminated in favor of unique ones. Elitism also ensures that an arbitrary

stopping of the algorithm after a few generations produces a good result.

A lower bound on number of generations is used so even if it converges to a

maximum before that, it goes on until a set number of generations are done. Also, an

upper limit of generations was used to ensure that it doesn’t go on to the point where it

takes too much time (as we stressed earlier, the process already takes over a whole day of

runtime). Convergence is said to occur when mean fitness of a user defined percentage of

the most fit strategies and maximum fitness both change by no more than 1% between the

previous and current generation.

Figure 3.4(a) shows the convergence of the fitness over generations, for a training

run (with training set T1), and the respective weight values allotted in each generation. In

our thesis, we used a minimum number of generations as 8 (to ensure that local minima

are avoided) and a maximum number of 10 generations. This proved to be a very small

range, and owing to the fact that the GA almost always converged in 8 generations (in the

case of our tests), we might as well have done away with the range and stuck to a fixed

number of (eight) generations. Figure 3.4(b) shows the corresponding weights at each

generation for the one test run that we documented. It may be argued that the

convergence seems to have occurred in a fairly low number of generations only because

 35

the resolution of weights is so low. This is true, but as we had explained earlier, we

decided to sacrifice resolution for the sake of manageable computation times for the

training process.

Convergence of fitness v generation

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2

1 2 3 4 5 6 7 8

Generation

Fi
tn

es
s

Figure 3.4: Convergence of fitness by generation

Generation W1 W2 W3 W4 Mean

Sharpe

Ratio

Maximum

Sharpe

Ratio

1 01 10 10 11
-0.38 0.012

2 10 10 10 10
-0.19 0.34

3 10 10 00 10
-0.141 0.742

4 11 10 00 10
-0.0897 0.911

5 11 10 01 01
-0.054 0.968

6 11 10 00 01
0.006 1.077

7 11 10 00 01
0.06 1.091

8 11 10 00 01
0.12 1.112

Table 3.1: Weights allotted to the indicators for the individual with best fitness in

each of the generations for a particular training run

Maximum
Sharpe Ratio

Mean Sharpe
Ratio

 36

3.1.2 Component Strategies or Indicators

So far, we have discussed how indicators are combined to produce a weighted

suggestion, and how this is used to arrive at a suitable trading action. We now look at the

component strategies that are used as indicators in the formulation discussed in earlier

sections. Although the strategies below are complete and give, as output, desired trading

action as well as the price and volume of the trading order to be placed, we implement

them as indicators alone. Thus, we only utilize the trading order suggestion from the

component technical trading strategies, and combine them using our weighted majority

algorithm to obtain trading volume.

At this point, we aim to clarify some implementation details, helping simplify

possible reconstruction of the experiments. Previously, we had assumed that once the

action was determined, it would be performed instantaneously. However, this is not

always the case. When a buy or sell order is placed, it is not necessary it will be filled. In

the event, a decision on the action to be performed was determined using the last price.

However, the actual execution involved looking at the order books and the existing

entries, and placing an order that is incrementally better than the best offer. The orders

placed were $0.0001 worse than the existing value. This value is small enough not to

make a substantial difference in price, yet helping the agent avoid much of the penalty for

removing liquidity in the order books by placing itself just behind the top order. In

pseudo code, this would be reflected as:

SellPrice = price of top sell order + 0.0001

BuyPrice = price of top buy order – 0.0001

We decided not to optimize the individual parameters (as suggested in section 3.1.1) in an

effort to avoid over-fitting the agent to the training data. So, the parameter choices, if

any, were determined empirically, over 15 sample days in the training set of days. In each

of our component strategies, we defined the order price to be the same and as described

above. We used a constant volume factor of 25 throughout the thesis. This volume factor

is the constant number of shares to be multiplied to the strength of the composite

 37

strategy’s suggestion. For example, if the four weights all added up to 5 for the buy rule,

then we would trade 5*25 = 125 shares at every point when a buy order is to be placed.

MOVING AVERAGES STRATEGY

The first strategy used was using the moving average crossover strategy. The moving

average of stock prices over a shorter and longer horizon respectively, is taken. The

simple moving average is taken as:

Moving Average = �
=

n

i
ilastprice

n 0

1

Here, n = N1 is a shorter horizon window and n = N2 is a longer horizon window such that

N2 > N1. Let moving average over N1 be MA1 and that over N2 is MA2.

The algorithm:

If (MA1 > MA2 + Threshold)

 Then Sell m shares @ sellprice

Else If (MA2 > MA1 + Threshold)

 Then Buy m shares @ buyprice

Else Do Nothing

A key aspect of this algorithm is that this strategy (depending on the parameters) is

capable of making large gains, but is equally capable of making large losses. This can be

attributed to a naïve dependence of the strategy on the mean reverting nature of intraday

price variation of stock. The decision rule is intuitively simple but has the common

problems. If the volume of each trade is too high, the extreme position is all too common

and unwinding may be difficult. If the volume is too low, then we are not efficiently

utilizing the potential for profit. Variation in the threshold is susceptible to the same

problems. A potential solution is to employ volume tuning using an optimization

algorithm similar to that in section. However, optimizing both these factors

simultaneously, involves finding an appropriate model and that is quite difficult.

Throughout this thesis, we used a constant value of threshold on the difference between

 38

two moving averages. The threshold was determined empirically. Setting it too low

would make the strategy too sensitive, and the true trend would probably not be captured.

Setting it too high would make it sluggish and unresponsive to anything but major

swings. We found that a value close to 0.01 proved to give good results. Also, window

sizes of 5 and 50 proved to yield good results.

VOLUME BASED STRATEGY

The strategy here remains the same as described in section 2.2.3. The basic strategy

involves obtaining the order book data for each update (in time, say t1) and getting the

corresponding volume of unmatched shares on the buy and sell sides of the book. The

difference of these volumes is the buy-sell difference. Then, this same difference is

obtained for the next time update (say time t2). The decision rule is stated as:

If (buy – sell)t2 > (buy – sell)t1 + Threshold

 buyOrder(buyprice, ordervolume);

Else If (buy – sell)t1 > (buy – sell)t2 + Threshold

 sellOrder(sellprice, ordervolume);

Else do nothing

In the volume based indicator strategy, a � factor of 0.1 proved to give us good

performance, where � was the multiplication factor in the volume threshold, Threshold =

�*(average of volumes in two order books).

SIMPLE PRICE BASED STRATEGY

This strategy is intuitively the simplest to understand. At any time during the simulation,

if the stock price goes up, it places a buy order; and if the stock price goes down, it places

a sell order. The motivation is that a price rise indicates likely further price rises. It is

written as:

If currentprice > lastprice

 Buy @ buyprice (ordervolume)

Else if lastprice > currentprice

 39

 Sell @ sellprice (ordervolume)

Else Do Nothing

The strategy described here is the same as the one described in [5], where its performance

is compared to the ‘reverse’ strategy. The reason for choosing the direct strategy in the

face of results that prove otherwise is to allow for the GA to tune the weights and sign to

choose the (presumably superior) ‘reverse’ strategy if necessary. Essentially, the model

we propose includes a sign for the buy or sell order signaled by the component strategies,

allowing for use of the strategy in either form.

PRICE CHANNEL BREAKOUT STRATEGY

This strategy involves defining Bollinger bands [53], which enclose a price range within

the maximum and minimum price of the last few time steps. The trading range is defined

by the upper and lower bounds obtained by finding the maximum and minimum prices

over the last few time steps.

UpperPriceBandLimit = max(price over last n steps)

LowerPriceBandLimit = min(price over last n steps)

If CurrentPrice > UpperPriceBandLimit

 Buy @ buyprice (ordervolume)

If CurrentPrice < LowerPriceBandLimit

 Sell @ sellprice (ordervolume)

Else Do Nothing

When the price crosses the upper limit from below, it indicates a breakthrough and

signals a buy action. When the price crosses the lower limit from above, it signals a sell

action. This is a simple strategy to grasp intuitively. It is easy to imagine that this strategy

is useful more as support scheme to bolster a trading signal or to promote cautiousness in

trade. The above four indicators are abbreviated as MAS, VS, PS and PCBS respectively,

 40

and will be referred to by these acronyms when the results of our experiments are

discussed (Chapter 4).

3.1.3 Training

A number of days needed to be selected for running the genetic algorithm and

evaluating the fitness of each member of the population for a generation. A primary

motivation for this large baseline pool of days to select days from – is that there tend to

be local consistency in the patterns that the days took. There may be days together when

the price ended lower or higher than it began, for example. Also, if the pool of selected

days consisted predominantly of a particular price dynamic (Appendices 1 and 2), then

the algorithm might assign weights that suit that day more than the others, as this would

prove to give very good fitness over the training period. However, the true test of

performance is over a test set of days different from the training sample. In order to avoid

fitting the weights too finely to a certain price dynamic, we aimed to include not only the

different major price dynamics (Appendix 1), but also include about the same number of

days of each type. This handpicked set of days (training sample) will be referred to as

training set, training sample or training days; in the following sections. For training,

numerous days from December 2003 to March 2004 were used (from the PLAT historical

books). After a weeding of a number of the days due to incomplete information or

corrupted files, 60 of the archived dates were split up fairly evenly into test and training

sets of days. In all the experiments in this thesis, the training and test sets for the given

test consist of different days, i.e. an intersection of their sets would be empty. A hybrid of

training days was used with some days being ‘representative’ (Appendix 1) of the desired

price dynamics and others being randomly chosen days from the set of days that were in

the pool for consideration as training data. A big problem when working with models of

financial prediction is the estimation of out-of-sample performance for the obtained

models or trading rules. In particular, it is very easy to jump to conclusions regarding

trading rules that exhibit extremely profitable behavior on certain training data. This

phenomenon is sometimes referred to as over fitting. When not enough validation done

 41

over out-of-sample data, the parameters are tuned finely to the training data, and the

systems’ general behavior is not very good.

Figure 3.5: Some representative price dynamics (Appendix 1 for details)

3.2 GENETIC PROGRAM AGENT (GPA)

The approach in this section uses a genetic programming methodology much like

the design in [30]. In a number of ways, the design of this agent is very similar to the one

in section 3.1.1. Genetic programs themselves are extensions of the basic GA, and

involve a number of the same evolutionary methods. A binary string (much like the one

used in section 3.1.1 in the design of the GA) is the starting point in using GP to solve the

problem at hand. Binary strings are an effective form of representation since complex

statements of Boolean logic as well as numerical values of parameters can be represented

in this form. For example, statements such as:

If ((Function 1)=True AND (Function 2) = False)OR(Function 3)=True;

 Sell @ sellprice (ordervolume)

 |

 |

Else If (Function 2)=False

 Buy @ buyprice (ordervolume)

 42

can be represented quite easily using a binary bit string. The primary difference between

this approach and the GAA is the allowance for growth of trading strategies based on

combination of rules and thus a variable number of component rules, and the use of

Boolean operators as combiners rather than the ‘weighted majority’ design in the GAA.

The use of GP allows for optimized strategies based on single rules as well as a fixed

number of chosen indicators. In a sense, the solution space of a GA is a subset of that of a

GP. Trading strategies are constructed by allowing the genetic selection engine to

combine the component indicator rules with Boolean operators. Strategies are once again

split into buy and sell rules (and are suffixed by ‘b’ and ‘s’ respectively). When a buy or

sell rule gives a buy or sell signal, the rule is evaluated and determined to be True or

False. For example, when a sell rule is true, it would imply that the indicator condition is

satisfied. In the case of the moving averages strategy (Section 3.1.1), it might imply that

MA1 is greater than MA2 + Threshold. If this rule were false, then it would indicate that

MA1 is not greater than MA2 + Threshold.

Let us take the example strategy statement,

If ((Function 1s)=True AND (Function 2s) = False)OR(Function 3s)=True;

 Sell @ sellprice (ordervolume)

 |

 |

 |

 If (Function 2b)=True

 Buy @ buyprice (ordervolume)

The rules 1s and 3s, etc are sell rules that are used as component strategies and possible

nodes in the GP decision tree (section 2.3). There are corresponding buy rules (2b) that

decides the buy criteria. In each case, the GP has the potential to choose from buy and

sell rules based on four technical indicators defined in section 3.1.1 (topic II). The

Boolean operators AND, OR and XOR are used to compose these buy and sell rules.

Finally, as a cash and share position management, we use the multiple model control

mechanism, like in GAA. The order price is similar to the price used in GAA and the

 43

order volume in GPA was throughout this thesis is 125 – this value determined

empirically over 10 sample days. We abandoned attempts to include volume as a tuning

factor in this experiment, in order to simplify the design. The structure of the strategy as

well as the binary string has certain changes from the representation in GAA (Figure 3.6).

We have Boolean connectors and the use of rule in use bits that tell us whether a certain

rule is selected for use or not.

 In Figure 3.7, we show how such a rule structure like the one in Figure 3.6

translates to a binary string. Each indicator has a particular bit that reflects that it is either

true or false by indicating 1 or 0, respectively. Also, each indicator pair has a Boolean

connector - AND, OR, XOR - represented by 00, 01 and 10, respectively. The last part of

the string indicates which indicators are to be ignored. This allows strategies containing

variable numbers of indicators to be represented without substantial change in design

from the GAA. Note that although the buy and sell rules are dependent on two and three

indicators, respectively, they are of the same length.

Rule 1 Rule
2

 Rule 3 Rule
4

Rule1
Used?

Rule2
Used?

Rule3
Used?

Rule4
Used?

B
U
Y

1
True

00
AND

1
True

01
OR

0
False

00
AND

1
True

1
Yes

0
No

1
Yes

0
No

Rule 1 Rule
2

 Rule
3

 Rule
4

Rule1
Used?

Rule2
Used?

Rule3
Used?

Rule4
Used?

S
E
L
L

1
True

00
AND

1
True

01
OR

0
False

10
XOR

1
True

1
Yes

1
Yes

1
Yes

0
No

 Figure 3.6: Structure of buy and sell bit strings that populate the GP

 44

Figure 3.7: Structure of the basic GPA strategy

Figure 3.8: Overview of working of the GP agent

IF

Rule 1

Rule 4

True/
False

AND

THEN

One Unit

Based on Combination of
Rules with Boolean operators,

a trading decision is made

Buy/Sell

Multiple Model Control

Agent
Share

Position

Multiple Model examines Agent Share
Position and based on mode of operation,

decides on allowing, disallowing the trading
decision from the composite strategy

Order Placed

Revised Order is placed

IF

Rule 1

Rule 4

True/
False

AND

THEN

ACTION

One Unit

 45

Each generation of evolving strategies in the GP follows the same steps (population

initialization, fitness calculation, crossover and mutation) as that of the GA (section

3.1.1) and the mechanics of these steps remain the same. Additionally, the training

process remains the same. Figure 3.8 shows how the change in this strategy is only in the

ME phase of the overall design, and the APE phase remains as it was in the GAA.

 46

Chapter 4. Results and Analysis

This chapter is divided into two segments. The first segment contains

experiments, results and analysis with the primary focus being on developmental results,

and exploration of various schemes of optimization of our basic algorithm. The second

segment contains results and analysis of our composite strategy in competition scenarios

with other agents.

4.1 DESIGN OF EXPERIMENTS

Controlled experiments were performed to evaluate the evolutionary agents

individually. This selection process was followed by competitive experiments to validate

the performance of these evolutionary agents in joint simulations. The training days were

chosen to fairly represent different price dynamics (Figure 3.5). With a view to testing the

strategies in various environments, an effort was made to include different price

dynamics in the test set of days as well. The experimental test dates were chosen from

two distinct periods of time, one around December 2003 and the other around April 2004.

In addition to tests performed at various stages of development of the agents (in order to

evaluate certain hypotheses that we made earlier), we performed controlled, structured

experiments in a competitive environment with other agents whose underlying strategies

differed from our evolutionary agents as well as between themselves.

Evolutionary algorithms involve a fitness function (which is optimized) to arrive

at a solution or set of solutions that are ‘superior’ to the explored potential solutions in

the search space. However, a change in the fitness function could cause a change in the

‘fitness’ of the solution, and it may no longer be superior. Earlier, we looked at the

Sharpe and Modified Sortino ratios as validation criteria. We hypothesized that using

these measures as fitness functions in comparison tests could shed some light on the issue

and provide interesting results. A matrix of tests (Table 4.1) was performed in an effort to

perform this study.

 47

 Table 4.1: Matrix of tests to be performed in competition with other agents

Unwinding, a rigid rule to enforce that the share holdings of the agent at the end of the

day is zero, was decided to be a key necessity in the competitive tests. However, since the

multiple model includes an effort to unwind, no additional rules were included in the

individual tests. The final cash score, for the individual evaluation of agents (section 4.2)

was computed to be the sum of cash value and shares valued at closing price. This

modification was made since we use some aspects of our agent design as partial agents –

and evaluate their performance against the complete agents. For example, we compare

the agents without multiple model with the complete GAA and GPA, respectively. In this

case, the multiple model, which is used to control share position and encourage

unwinding, is absent from the no multiple model versions. This may put them at a

disadvantage if the criteria of evaluation included penalties for not unwinding. In later

sections, when we compare the evolutionary agents with other complete agents, we

include the penalty for not unwinding one’s share position.

4.2 EVALUATION OF INDIVIDUAL AGENTS

In the tests in this section, we use Sharpe ratio alone as the fitness function, as

well as evaluation criteria. We compare the agent’s performance against the component

strategies running alone, with an unoptimized combination of indicators, and against the

agents without multiple model, respectively. These tests are an effort to ascertain if there

really is a benefit in using this design. Our first effort is to verify the agents’ performance

with their component strategies. We use the multiple model in all cases in order to

maintain similar design. The four component strategies are labeled (I1…I 4) respectively.

Evaluation Criteria

 Sharpe Ratio Modified Sortino Ratio

Sharpe Ratio X X Fi
tn

es
s

Fu
nc

tio
n

Modified Sortino Ratio X X

 48

 Table 4.2: Comparison of (a) GAA, above and (b) GPA, below, with
indicators for test set TE1

Days (TE1) GAA MAS VS PS PCBS

#1 1155 1181 -1113 2166 -2592
#2 1813 679 1152 50 35
#3 955 494 1198 -2386 -3670
#4 -1391 -2102 -3558 -1130 642
#5 1164 810 -179 3451 509
#6 985 243 -1647 -1066 -120
#7 -102 -508 2267 -1218 -1501
#8 1801 722 -1147 -65 36
#9 877 -198 -1951 144 -1980
#10 -1004 -1407 1737 -75 9
#11 1104 912 -1120 110 -351
#12 1213 309 672 134 19

Avg. Profit 714.17 94.58 -307.42 9.583333 -747
Sharpe 0.701 0.095 -0.177 0.006 -0.548

Days (TE1) GPA MAS VS PS PCBS

#1 1447 1034 562 1662 -1159
#2 1006 1624 374 14 405
#3 -1364 250 -843 -1932 -1074
#4 848 -988 -1090 -899 325
#5 -765 -1285 451 1010 4
#6 1536 1129 -1315 -102 -12
#7 1501 -151 322 -1441 -1921
#8 -1712 -1148 -114 70 244
#9 318 -11 -512 501 -126
#10 109 499 2201 1 165
#11 1004 152 -900 1002 -172
#12 -104 48 1006 632 101

Avg. Profit 318.666 96.083 11.833 43.166 -268.333
Sharpe 0.285 0.105 0.011 0.041 -0.371

 49

The training set of days used was TS1 because it is the only set of 16 days (of the four

listed in Appendix 2) that consists of all different price dynamics and does not favor any

one of them. For experimentation, the test set of days used were test set TE1 and TE2

(Appendix 2). Running the experiment on two test sets is a measure to see if the

performance superiority or inferiority of any of the competing agents is not a fluke (or a

rare slip-up). With this experiment we aim to verify if the composite agents are indeed

superior in performance to the component indicators. If they are not substantially better in

performance over many trading days, then it could imply that our design is not

necessarily a profitable one, or that the specific parameters chosen and optimization

algorithm needs to be changed. The results (Table 4.2) show that GAA and the GPA (in

independent tests) outperformed each of the component strategies in both test cases - an

important result in support of the composed strategies. Even within the component

strategies, we can see that there is quite a bit of variability between the various strategies’

performance, indicating that it may be useful to include different weights for the various

indicator suggestions.

Table 4.2: (c) Comparison of GAA with indicators for test set TE2

Days (TE2) GAA MAS VS PS PCBS

#1 281 -372 113 -1249 -1010
#2 -1412 138 1214 1567 335
#3 1801 1021 984 -431 -1367
#4 128 1991 -3558 1419 1599
#5 1441 81 179 -1132 64
#6 1013 1210 1547 191 -120
#7 630 -1223 1067 -1021 -1200
#8 1362 1031 -1147 -429 102
#9 -376 72 351 2457 -1889
#10 -1075 -2141 1737 -899 55
#11 -121 -224 -1120 -2214 -531
#12 1492 1201 672 -1293 199

Avg. Profit 430.33 232.08 169.91 -252.833 -313.583
Sharpe 0.411 0.201 0.114 -0.181 -0.333

 50

Table 4.2: (d) Comparison of GPA with indicators for test set TE2

This lends support to our initial hypothesis that technical indicators, when used in

combination, do not lend suggestions of equal power. This leads us to believe we’d be

better off with a weighted majority schema. In order to verify this in the case of GAA, we

compare the use of tuned weights against fixed and equal weights, for two different test

sets - TE1 and TE2 (Appendix 2). The training set was TS1 again owing to the fact that it is

the only training set with all representative days (Appendix 1). The results of this

comparison are tabulated in Table 4.3.We may venture to explain the advantage that

tuned agent has with the following:

- Equal weights would imply that each of these indicators were equally confident

when they gave a buy or sell recommendation at each time step. This may not be

the case. For example, a price breakout may be more of a ‘sure bet’ suggesting a

trend than the simple price check. So, the weights should be allowed to decide

accordingly.

Days (TE2) GPA MAS VS PS PCBS

#1 1102 -331 1094 1210 657
#2 821 1099 -1102 712 332
#3 1009 954 810 -1109 -1982
#4 -532 1002 243 303 1023
#5 908 -912 -208 1688 -16
#6 -1604 -112 722 -878 1102
#7 -199 58 -198 -1809 -1621
#8 1321 872 -1407 188 921
#9 188 18 940 248 -2211
#10 -901 -1704 -1101 -21 -556
#11 1121 775 114 110 -812
#12 663 809 232 312 91

Avg. Profit 324.75 210.6667 11.58333 79.5 -256
Sharpe 0.346 0.24 0.013 0.082 -0.217

 51

- Different weights for buy and sell sides accommodate the contingency that an

indicator may be more confident of a buy signal as opposed to a sell signal, or

vice versa.

It might have been a better strategy to include the entire suggestion from the indicator

strategies, i.e. take the suggestion as well as volume from the indicators, and average it in

some way to get the desired trading volume. However, this would only be useful if the

volumes we obtained were themselves optimized. This optimization would introduce

further computation, something we’ve tried to avoid all along. In the event, the fact that

the parameters we use for our indicator strategies are hand-picked means that it is not

very useful to use these values to get a final trading volume. We decide to extract only

the trading suggestion from the indicators, and use the confidence of this suggestion (sum

of weights) to obtain the trading volume.

Table 4.3: Comparison of tuned weights and equal weights for test sets TE1 and TE2

Days (TE1) GAA Equal Weights

#1 1155 966
#2 1813 489
#3 955 -505
#4 -1391 -1128
#5 1164 -1021
#6 985 1002
#7 -102 881
#8 1801 -1101
#9 877 908
#10 -1004 -765
#11 1104 1232
#12 1213 1177

Avg. Profit 714.17 177.9167
Sharpe 0.701 0.18

Days (TE2) GAA Equal Weights

#1 281 112
#2 -1412 723
#3 1801 -1121
#4 128 -998
#5 1441 -64
#6 1013 16
#7 630 -1101
#8 1362 1449
#9 -376 -19
#10 -1075 102
#11 -121 -1
#12 1492 749

Avg. Profit 430.33 -12.75
Sharpe 0.411 -0.016

 52

The above tests indicated that our initial hypothesis regarding the benefit of using

technical indicators in a weighted combination scheme like in GAA, had some merit to it.

To further explore this hypothesis, we isolated four different sets of training days to train

this agent over. These days had been chosen such that a majority of the days had different

price dynamics from the other sets of days. This would allow us to isolate the difference

in the solution weights over different scenarios. The four sets of days chosen had

majority monotonic, majority mean reverting, majority other and no majority price

dynamics and corresponded to the sets TS2, TS3, TS4, and TS1 (Appendix 2), respectively.

The result of this test proved very encouraging and supported our hypothesis. In Figure

4.1 we observe that the weights are uneven and favor some of the indicators more than

the others. In addition, we notice that there is a change in weights over the different

training sets. Both of these results concur with our hypothesis for this design.

Indicator Weights

0

0.5

1

1.5

2

2.5

3

3.5

#1 #2 #3 #4

Test Sets

W
ei

gh
ts

I1

I2

I3

I4

 Figure 4.1: Weights of indicators for training sets TS1, TS2, TS3, and TS4

On testing the agents tuned to these different training sets (on test set TE1), we notice that

the weights that were tuned to TS1 gave us the best performance on TE1, (Table 4.4), as

expected. TS1 contains all price dynamics and is not favored towards any particular one

of them. The agents whose weights were tuned over TS2, TS3 and TS4 were profitable

 53

(probably because these training sets do contain days of all price dynamics, although they

are largely biased towards particular price dynamics), but lagged in performance to the

agent whose weights were tuned to TS1. The number of training and test data available

are so few that no statistically significant conclusion can be made from these. We just use

these results as guidelines to the agents’ behavior over larger (more complete datasets),

and to try and glean some qualitative information out of them. Table 4.4 only reflects the

Sharpe ratio, and we performed this test only on TE1. The reason for performing only the

one test is that our primary aim with this experiment was to verify if the weights were

indeed different for various training sets, and if the appropriate choice of training sets did

affect the performance of the agent over test data. Further verification and an in-depth

look at performance of the agents with other test sets are included in later sections.

Training

set

Sharpe Ratio

(over test set TE1)

TS1 0.377

TS2 -0.181

TS3 0.142

TS4 0.212

Table 4.4: Performance of agents tuned on different training sets on test set TE1

So far, we have verified the utility of using a combination of indicators as opposed to

using them individually, and found that there is indeed an advantage in using a weighted

combination as opposed to a simple addition or averaging. It now remains to be seen if

there is indeed any advantage in using the multiple model mechanism to control share

position needs to be explored. In the event that there is no substantial performance

improvement using this mechanism, we could eliminate this aspect and simplify the

algorithm. A competing strategy we used for this test was the composite strategy without

the multiple model. In both GAA and GPA, the multiple model mechanism was

eliminated, and these stripped agents were tested with the complete agents. The training

set used was TS1 (the only training set with uniform number of different price dynamics)

 54

and the test set of days used was TE1 (the test set we use for all tests in this section).

From Table 4.5, we see that the evolutionary agents outperformed the ones without

multiple models.

Test Set TE1 Sharpe Ratio Test Set TE1 Sharpe Ratio

GAA 0.701 GPA 0.133

No Multiple Model 0.255 No Multiple Model -0.101

Table 4.5: Comparison of (a) GAA and (b) GPA with a no multiple model agent

A curious observation was that in the absence of the multiple model, the strategy tended

to trade lower volumes and allotted higher weights to indicator strategies that were safe

(that had higher thresholds). Figure 4.2 reflects this difference in volume of trades for one

of the trading days. A possible explanation is that in the presence of the multiple model,

the agent is willing to take a riskier position, with the confidence that it will be led back

to safety.

 There are two ways of optimizing the Sharpe ratio – increasing profit everyday,

or decreasing variance. Without multiple model mechanism, the optimization is possibly

favored with a lower variance and lower profit. With multiple model, the profit is higher

(due to higher volume of trades), but the variance is also higher. This indicates a slightly

more aggressive, but more profitable strategy. In this experiment, we limited the

experiments to only one test set of data (TE1). As we mentioned earlier, in these

experiments, we aim only to look at general behavior of the agents, and don’t aim to

prove anything with any significant statistical confidence. Moreover, we test the agents in

competitive environments in later sections. Finally, we compare the performance of each

of these agents independently with SOBI (section 2.2.1), a baseline agent provided by the

PLAT group. The price dynamics of the test sets we chose were monotonically

increasing, monotonically decreasing, mean reverting and no majority (all from TE1),

respectively. The tests were performed on certain hand picked days and aim only to

verify the performance of the agents over separate days with different price dynamics.

 55

Verification over a larger set of days and evaluation using Sharpe and Modified Sortino

Ratios follow in later sections, where SOBI was included as a competitive agent. We

consider the raw cash measure for the days below as a performance measure (with the

closing price sale of all excess shares at the end of the day, or closing price purchase of

all deficit shares).

 Figure 4.2: Volumes of trade on a typical trading day when comparing GAA with

 multiple model (above) and without (below). Notice the scale of the plots.

From Table 4.6, we find encouraging results from both the GAA and the GPA – each

outperforming SOBI on five of the seven days. On days of monotonic variation, both the

evolutionary algorithms showed promising results, GAA ending in the black on 3 of the

four days and GPA on two of them, but averaging positive cash over these days. The days

 56

when the price was mean reverting was closer, and on one of these days, SOBI

outperformed GPA. It shows that given the right circumstances, any strategy can prove

profitable on some days. While the cumulative results above do indicate that GAA as

well as GPA outperformed SOBI, we need to explore their performance further – in more

realistic economies (with competing agents).

 Cash Measures Cash Measures

Price Dynamics GAA SOBI GPA SOBI

Increasing 1401 1673 608 5

Increasing 882 -12340 -132 -11021

Decreasing 571 10211 810 8982

Decreasing -11 -11059 -208 146

Mean Reverting 2133 1912 621 4003

Mean Reverting 1514 -14402 102 -13106

Other 1224 -30023 1019 -25001

Table 4.6: Individual agent performance (cash measure) of (a) GAA and (b) GPA with
SOBI on select ‘representative’ days.

4.3 JOINT SIMULATION

In this section, we examine these agents’ performance in joint simulations (when

they were allowed to run against each other as well as other agents) in slightly more

realistic economies, with numerous different strategies. As opposed to earlier tests, when

the evolutionary agents were used in targeted experiments with a view to testing various

aspects of their design, our aim in this section is to test these agents in an environment

where the other agents have different strategies, are competitive and are all aiming to be

profitable. In this experiment, we used TS1 as the training set and TE2 as the test set of

days. As we had earlier tested these agents in various scenarios (section 4.2) using test set

TE1, we decided to use TE2 in this experiment, with a view to testing the agents over a

new set of test days. The training set we used was TS1 again, as it is the only set with

uniform number of days with different price dynamics. Table 4.7 below shows the results

 57

of the first joint simulation we performed. In addition to GAA and GPA, we use

competing agents SOBI, Market Maker (MM) and Volume-based agent (VBA). We

discussed these competing agents in Section 2.2. However, our aim in this section is only

to compare the performance of the GAA and GPA agents and evaluate the usefulness of

the Modified Sortino Ratio (MSR) as a fitness function in our design. We evaluate these

agents in a competitive test in later sections. Columns 1 and 2 of Table 4.7 display the

result of tests performed on GAA and GPA when they were tuned with Sharpe ratio as

the fitness function in training phase. Columns 3 and 4 of the table show the results of

similar tests performed on the evolutionary agents with Modified Sortino Ratio as the

fitness function. We also evaluate the agents below using the Sharpe and Modified

Sortino ratios, and additionally the raw profit (cash) score, as performance criteria; in

order to verify our hypothesis that the agents tuned to maximize profits and avoid only

negative volatility would do better than those which aimed to reduce all volatility. We

used the standard PLAT scoring policy and rules (discussed in Section 2.1.4), and enforce

unwinding penalties (in accordance with the rules imposed by the PLAT group in earlier

competitions).

At this point, as a means of evaluating the improvement in performance of agent,

we introduce a measure called the MSR to Sharpe ratio. This is the ratio of the values of

MSR and Sharpe ratios for a given column in our table. We see that GAA and GPA

(tuned with Sharpe ratio) showed values of 2.34 and 2.23 respectively, for this measure.

This value for GAA and GPA tuned with MSR was 5.12 and 2.49 respectively. We

observed that the agents tuned with MSR not only showed higher MSR values, but also

Sharpe ratios not too far below the SR-tuned agents. The difference between MSR and

Sharpe ratios was most stark in the case of GAA. This, coupled with the fact that the

Sharpe ratio was not too far off for GAA-MSR as compared to GAA-SR, is a good

indicator of the usefulness of the new fitness function in GAA. Also, from Figure 4.3 and

Table 4.7, we notice that the average profit as well as maximum profit was also higher for

GAA tuned with MSR. In the case of GPA, the MSR version did perform better than the

SR version in the MSR evaluation (and was very close in Sharpe ratio too), but the

 58

difference was not very much (as is evident from the similar MSR to Sharpe ratio values).

In general, we observe that the agents tuned with MSR as fitness function showed higher

average profits as well as higher total profit over the set of out-of-sample test days,

presumably since they did not have to worry about volatility in the positive. From the

table, we see that maximum profit over the period improved from 2536 to 7924 in GAA

and from 2034 to 3939 in GPA, when fitness function changed from SR to MSR.

Average profit similarly went up from 796 to 1773 for GAA and 415 to 660 for GPA.

Sharpe ratio as fitness function MSR as fitness function Test Days

(TE2) GAA GPA GAA GPA

#1
1008 1189 1250 1924

#2
2536 679 7924 3939

#3
1036 494 1251 1333

#4
-1447 -1102 -1512 -118

#5
1364 1210 1285 162

#6
855 331 2148 242

#7
175 -108 -499 -1253

#8
1692 735 4034 211

#9
715 -1123 598 1133

#10
-744 -450 -986 -1863

#11
1221 2034 2162 1892

#12
1145 1098 3624 322

Avg. Profit
796.3333 415.5833 1773.25 660.3333

Sharpe Ratio
0.751357 0.431729 0.691213 0.43023

MSR
1.761815 0.964018 3.540813 1.0708

MSR/Sharpe
2.344844 2.232922 5.122612 2.4889

Table 4.7: Joint simulation with Sharpe ratio and MSR used as fitness functions

 for evolutionary algorithms and as means of evaluation

 59

1 2 3 4 5 6 7 8 9 10 11 12
GAA-SR

-2000
-1000

0
1000
2000
3000
4000
5000
6000
7000
8000

Daily Profit

Test Days

GAA-SR vs GAA-MSR

GAA-SR

GAA-MSR

 Figure 4.3(a): Comparison of GAA-SR and GAA-MSR performance (test set TE2)

1 2 3 4 5 6 7 8 9 10 11 12
GPA-SR

-2000

-1000

0

1000

2000

3000

4000

Daily Profit

Test Days

GPA-SR vs GPA-MSR

GPA-SR

GPA-MSR

 Figure 4.3(b): Comparison of GPA-SR and GPA-MSR performance (test set TE2)

The comparison between SR and MSR shows that the use of MSR as fitness function in

our optimization procedure shows improved performance, not only when the criteria of

evaluation is MSR, but also in terms of average and maximum profit. When MSR was

used as fitness function, these agents also ranked very close to the performance of the

 60

SR-tuned agents, even when SR was used to evaluate these agents. Earlier, we had

hypothesized that the elimination of penalty for positive volatility would help improve

profitability, as we were penalizing agents for making large amounts of profits on a

trading day as much as we were penalizing them for losing large amounts on a day

(through the use of standard deviation). The results in this section validate our

hypothesis, and indicate that the use of better fitness functions, like MSR (which

penalizes only money losing behavior) may be a key factor in designing evolutionary

agents such as the ones in this thesis.

4.4 COMPETITIVE TESTS WITH OTHER AGENTS

In competitive tests, we use all four agents (GAA and GPA, each tuned with

Sharpe ratio and MSR) from the previous section, in addition to which we use SOBI,

MM and Multiple Model Agent (MuMo)[10a] – the last two were winners in two

previous competitions held in December 2003 and April 2004 (Appendix 3) respectively,

and were used to benchmark the performance of our evolutionary algorithms against

competitive agents. For the sake of readability, the GAA with Sharpe ratio as fitness

function was labeled GAA-SR and that with MSR as fitness function was labeled GAA-

MSR. The GPA counterparts were labeled GPA-SR and GPA-MSR respectively. The

training set for this run was TS1 again owing to the unbiased distribution of price

dynamics among the days in this set. To test the agents in a competitive test with

successful agents from past competitions, and to do so on days that were not used in

training or tests before, we use TE3 (Appendix 2) as the test set. In this test, we did not

use other agents such as the individual indicator strategies (section 3.1) since we had

already tested them over two datasets in previous tests (section 4.2). Also, we aimed to

limit the number of agents used in the test so computation as well as documentation

would be easier. Apart from the changes discussed above, the rules remained the same as

in the case of joint simulation (section 4.3). Table 4.8 below lays out the results of this

experiment.

The results of this experiment show that the performance of the evolutionary agents was

fairly competitive with the best agents from previous competitions (MM and MuMo) and

 61

substantially better than SOBI. Let us look at some comparisons that stand out from

observation of Table 4.8. For a clearer view and to make comparisons easier, the reader is

urged to refer Figure 4.4, which summarizes the information in plots.

 Table 4.8: Test of evolutionary agents’ performance with competitive agents

As expected, GAA-MSR and GPA-MSR outperformed GAA-SR and GPA-SR

respectively, in the evaluation criteria that favored them (MSR). Most interesting,

however, was that the average profit was higher for both the agents’ MSR versions than

the SR ones. Also, the maximum profit (over all days) for each of the MSR agents was

higher than the SR counterparts. This is an encouraging result, since it supports our

Days (TE3) GAA-SR GAA-MSR GPA-SR GPA-MSR MM MuMo SOBI

#1 2526 4655 1278 4416 223 2891 4133
#2 1249 2177 1045 492 312 3445 1698
#3 1567 2765 242 -253 184 1717 -2753
#4 82 -545 -1694 -130 271 1433 -7028
#5 1900 2402 1376 141 538 2037 -12182
#6 -132 1100 -376 49 -241 -141 -4422
#7 1145 2601 1441 2011 135 2465 481
#8 1112 5500 1141 1216 -12 1850 1233
#9 1429 2802 630 1134 656 2928 4399
#10 2457 7975 1707 1175 385 5229 12180
#11 -899 -1100 -1376 -755 142 -1349 -3405
#12 -1214 -1370 -775 -1076 461 -1562 -14092
#13 -1029 184 -102 125 122 1307 12333
#14 1723 4213 1090 2212 224 2509 -10120
#15 -1038 102 -221 -113 -213 -1338 231

Avg. Profit 725.2 2230.733 360.4 709.6 212.4 1561.4 1154.27
Sharpe 0.5521 0.851719 0.335342 0.509728 0.854144 0.807884 0.14735

MSR 1.517778 5.007865 0.658961 2.196996 2.574284 2.670785 0.18029

 62

decision to not only evaluate the agents differently from previous competitions, but also

to factor this into the agents’ behavior to increase average profit.

MM outperformed all the evolutionary agents (GAA-SR, GAA-MSR, GPA-SR,

GPA-MSR) in the Sharpe ratio evaluation. However, when MSR evaluation was

considered, the agents (particularly the ones with MSR as fitness function) were much

closer in performance to MM (GAA-MSR was much better than MM) and the average

profit of GAA-MSR as well as GPA-MSR was greater than that of MM. GAA-MSR had

a higher MSR than MM and GPA-MSR was only just beaten in this regard. Again, this is

an encouraging result in support of our designs. MuMo outperformed GPA-SR in both

SR and MSR evaluations. However, GAA-MSR managed to outperform MuMo in MSR

as well as SR evaluations and GAA-SR also outperformed MM in MSR evaluation,

barely losing out in SR.

Overall, the above results can be summarized by saying that the MSR versions of

the evolutionary agents performed well and were extremely competitive with the other

leading agents. Also, the GAA strategy seemed more useful than the GPA strategy,

possibly because the design of GPA needs a larger pool of indicators to choose from. The

results above suggest that the evolutionary design was fairly successful as was the

incorporation of MSR. An important observation is the superior performance of the

evolutionary agents when tuned by MSR instead of SR – especially in the weighted

majority case of GAA. A curious aspect of the live competition results in April 2004 was

that the GA agent used then (GAA-SR) lost out to MuMo, which implemented a basic

moving average strategy within the multiple model structure to trade. It raised the

question as to whether we were adding additional complexity for no reason. As a

hypothesis, this failure was attributed to the fact that tuning the agent with Sharpe ratio as

a fitness function may have been the wrong choice, as it may have imposed an upper

bound on trading profits on a given day to reduce volatility. To explore this possibility,

we introduced MSR as a measure limiting only downside volatility. This proved very

useful indeed, and contributes to this thesis, a very important result. It also strengthened

 63

our view that the weighted majority approach could indeed be useful, albeit with a more

sophisticated fitness function.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
GAA-SR

-2000
-1000

0
1000
2000
3000
4000
5000
6000
7000
8000

Daily Profit

Test Days

GAA-SR vs GAA-MSR

GAA-SR

GAA-MSR

 Figure 4.4(a): GAA-SR and GAA-MSR in the competitive run (test set TE3)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
GPA-SR

-2000

-1000

0

1000

2000

3000

4000

5000

Daily Profit

Test Days

GPA-SR vs GPA-MSR

GPA-SR

GPA-MSR

 Figure 4.4(b): GPA-SR and GPA-MSR in competitive runs (test set TE3)

 64

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
MM

-15000

-10000

-5000

0

5000

10000

15000

Daily Profit

Test Days

MM, MuMo and SOBI

MM

MuMo

SOBI

 Figure 4.4(c): MM, MuMo and SOBI in competitive runs (test set TE3)

 65

Chapter 5. Conclusions and Future Work

In this thesis, we have explored applications of evolutionary algorithms (GA and

GP) to technical trading rules in an effort to develop profitable agents for trade in the

PLAT domain, as well as to provide insight into the utility of such design to automated

trading scenarios. An important factor to consider is that this research was performed

purely as a study of certain agent schemes and as an exploration into the use of

evolutionary algorithms in the PLAT domain. Various limitations were imposed during

the course of this work, and although PXS is more realistic than most of the simulators

used in previous such studies, it is far from being realistic. The results in this thesis are

strictly within the confines of the test economy and no reasonable guarantees can be

made regarding its utility (as is) in actual trade markets. Our aim was to study the

implications of certain design aspects in a simulation and the study aims to be a launch

pad to more advanced and sophisticated agent designs of a similar nature.

Various studies have shown the benefits of technical trading as an effective day

trading strategy. However, their utility as effective strategies when used individually or in

combination but without the benefit of human ‘intuition’ has proven quite low. We have

found in this thesis that it is possible to profit from trading technical rules when the trade

entry signal is taken from combinations of indicators since this is the manner in which a

technical trader would use such indicators. The above work is just a sample of what can

be produced using such a system. Further adaptation techniques could include periodic

re-optimization with longer and shorter periods. As was previously stated, this first test of

our system aims to show that such a structure merits further work by analyzing results in

a general and unoptimized framework.

In this thesis, we proposed two frameworks for combining technical trading rules

in an effort to trade profitably in the PLAT domain. While the GPA design proved to be

only moderately successful in tests, it might have greater utility if parameter optimization

was done, especially the trading order volume. In this design, we used a fixed number

 66

(arrived at empirically). Including volume in the bit string for a GPA-like design may be

a possible solution. We did not explore this idea further, but suggest it as a possible fix.

The GAA design proved much more successful and not only outperformed GPA and the

baseline SOBI agent, but also beat or proved very competitive when pitted with

successful agents from previous competitions in our battery of tests. We found that GAA

performs better than its component indicator strategies. To test if any combination of

technical rules would do, we compared our weighted majority algorithm with an agent

where the component indicators were combined with each of them weighted equally.

Superior performance of our weighted agents vindicated our decision to use evolutionary

algorithms to optimize weights for GAA. Further, the use of multiple model share

position control mechanism seemed to provide for unwinding while performing better

than the basic agents without the multiple model. In further tests of the agent against

competitive agents over different test sets of trading days, GAA proved to be profitable

and better or as good as the most successful of existing agents in the PLAT domain.

The evolutionary agents (particularly GAA) were fairly successful, but not quite

competitive with the successful PLAT agents until we used a new fitness function

(MSR), that penalized only loss making volatility and not all volatility (as Sharpe ratio

does). When the agents used MSR as fitness function, they proved to have improved

performance including greater profitability. This leads us to believe that there is useful

information in technical indicators that can be exploited, and further development and the

use of carefully chosen fitness functions might mean that such a design may prove to be

even more successful. This is consistent with the claims of technical analysis. The use of

multiple model mechanism also proved quite effective as a control element to the

strategy, allowing our agents to ‘boldly’ hold positions with the confidence of being

shepherded back to a desirable state by this mechanism. The qualitative nature of this

mechanism also appeals to intuition, and this was in keeping with our theme of using an

intuitive combination of technical rules. By implementing a simple set of weights,

various human trader-like behaviors could be replicated. These include deciding how

 67

important a certain indicator is, and dropping certain indicators if they showed

consistently poor performance (by turning the weight down to zero).

What is evident is that more work has to be done in areas such as bit string

representation, fitness function choice and online optimization. Possible improvements

include finer resolution of weights using longer bit strings, the use of more indicators,

and development of more sophisticated fitness functions to include details finer than just

measures of profit and deviation over many days. Other feature additions could include a

method to run this optimization algorithm online (as a background process) and include

training days on the fly. This would make the agent more adaptive to immediate changes

and eliminate the need for time-intensive and periodic offline training.

This thesis is a small part of growing research in which computer-simulated

market interactions of autonomous agents are studied and an attempt is made not only to

develop a profitable trading strategy, but through these efforts, understand the working of

the market itself. The thesis provides us with a few solution concepts to certain aspects of

the automated trading problem, but has not been tested with any statistical significance

and the results we have obtained are by no means an indication that it is ready to be

deployed in the real world. It does point us (and walk us part of the way) towards

possible solution ideas that may be incorporated with further work to increase

profitability among automated trading agents. In a lot of ways, this thesis confirms the

difficulty of automated stock trading and suggests that further exploration of heuristic

solutions that may aid profitable trading is merited.

 68

Appendix 1

MSFT Trading Prices and Price Dynamics

In this section, we aim to explain what we mean by price dynamics and briefly look at

some of the prominent price dynamics that we isolate for studying agent behavior under

different conditions.

High-frequency data, as we use the term, are observations taken many times a day. Price

dynamics, in the context we use it in, refers to a broad characterization of this intraday

data over the entire trading day. In other words, we try and fit (an approximate fit)

patterns to the daily data. Of course, we do not use any modeling or curve-fitting

technique, but use very broad, intuitive labeling.

Details such as opening price, closing price, high and low prices of the day – for a few

sample days of each type of price dynamic we use, are listed in tables below; followed by

a plot of the day’s price variation. All data is of Microsoft Stock (Symbol: MSFT).

For monotonically increasing data, we choose days that not only ended higher than

opening price, but spent most of the day increasing in price.

Days Opening High Low Closing

12/26/03 27.05 27.25 27.00 27.21

12/29/03 27.21 27.53 27.16 27.46

01/06/04 28.19 28.28 28.07 28.24

 69

 12/26/03 12/29/03 01/06/04

Similarly, for monotonically decreasing data, we choose days that end lower than the

opening price, and spend most of the day decreasing in price.

Days Opening High Low Closing

01/08/04 28.39 28.48 28.00 28.16

01/13/04 27.55 27.62 27.24 27.43

04/28/04 27.01 27.05 26.47 26.56

 01/08/04 01/13/04 04/28/04

Mean reverting days imply days that ended within a small margin of the starting price

(we use 05.0± of a dollar as the margin). Additionally, these days spend substantial

amount of time on either side of the mean daily price.

 70

Days Opening High Low Closing

04/26/04 27.45 27.55 27.10 27.44

05/05/04 26.32 26.60 26.25 26.30

05/06/04 26.16 26.34 26.03 26.12

 04/28/04 05/05/04 05/06/04

All other patterns (or sub-patterns within the day) were more generally clubbed together

and labeled as other.

A more keen method of classifying the days might help increase the accuracy of our

experiments. However, owing to the effort that would need to go into it, and the fact that

we are primarily interested in the broad, qualitative behavior of the agents, we chose to

take the easy way out.

 71

Appendix 2

Training and Test Data

In this section, we list the contents of the training and test sets used in our experiments.

Training Sets:

TS1 (All representative days + others)
12/11/2003 12/15/2003 12/12/2003 12/19/2003 12/22/2003 12/24/2003
12/23/2003 04/28/2004 12/31/2003 04/29/2004 12/16/2003
12/17/2003 12/18/2003 12/26/2003 12/29/2003 12/30/2003

TS2 (Majority Monotonic)
12/16/2003 01/05/2004 12/18/2003 01/06/2004 12/26/2003 01/08/2004
01/09/2004 12/29/2003 04/28/2004 12/30/2003 04/30/2004
12/15/2003 12/11/2003 12/19/2003 12/12/2003 12/24/2003

TS3 (Majority Mean Reverting)
12/11/2003 12/12/2003 12/22/2003 12/23/2003 12/31/2003 04/29/2004
04/26/2004 04/27/2004 05/06/2004 05/04/2004 05/05/2004
04/30/2004 01/15/2004 12/17/2003 05/03/2004 05/07/2004

TS4 (Majority Other)
05/04/2004 05/05/2004 05/06/2004 04/27/2004 12/11/2003 04/29/2004
12/22/2003 12/12/2003 12/23/2003 04/30/2004 01/16/2004
01/12/2004 01/02/2004 12/17/2003 05/03/2004 05/07/2004

Test Sets:

TE1
01/12/2004 01/02/2004 12/17/2003 05/03/2004 05/07/2004 01/12/2004
04/26/2004 04/27/2004 05/06/2004 05/04/2004 05/05/2004 01/02/2004

TE2
01/30/2004 01/29/2004 01/28/2004 01/27/2004 01/26/2004 01/23/2004
01/22/2004 01/21/2004 01/20/2004 01/07/2004 01/14/2004 01/13/2004

TE3
06/30/2004 07/01/2004 07/02/2004 07/05/2004 07/06/2004
07/08/2004 07/09/2004 07/12/2004 07/13/2004 07/14/2004
07/15/2004 07/16/2004 07/19/2004 07/20/2004 07/21/2004

 72

Appendix 3

Live Competition Results – April 2004
(http://www.cis.upenn.edu/~mkearns/projects/0507corrected.htm)

Days of test:
04/26/2004 05/03/2004
04/27/2004 05/04/2004
04/28/2004 05/05/2004
04/29/2004 05/06/2004
04/30/2004 05/07/2004

Trading agents were split into two groups: Red Pool and Blue Pool. Below are the final
results over the two trading weeks.

RED POOL
Agent Name Sharpe Ratio

ggc14 0.8334
hariharan -0.1619
kenyon 1.1221

lkt -0.4232
henis* -12.6200

 * This agent was a VWAP agent and evaluated differently

BLUE POOL
Agent Name Sharpe Ratio

lo 0.7213
ramamoorthy 2.4963

sherstov 0.7559
subramanian 0.5778

wu 0.0432
henis* -12.5931

 * This agent was a VWAP agent and evaluated differently

 The agent subramanian in the Blue Pool above is the GAA agent in the thesis.

 73

References

[1] Neely C, Weller P and Dittmar R, Is technical analysis in the foreign exchange

market profitable? A genetic programming approach, Journal of Financial

Quantitative Analysis, Vol. 32, pp 405–26, 1997.

[2] Cohen J, Zinbarg E, Zeikel A, Investment Analysis and Portfolio Management,

 McGraw-Hill, 1986.

[3] Lewis C, The Day Trader’s Guide to Technical Analysis, McGraw Hill, 2000.

[4] Murphy J J, Technical Analysis of the Financial Markets: A Comprehensive

Guide to Trading Methods & Applications, PHI, 1999.

[5] Tradetrek Homepage: http://www.tradetrek.com

[6] Schwager J, Technical Analysis, Wiley 1996.

[7] Bauer R J, Dahlquist J R, Technical Market Indicators: Analysis & Performance,

 Wiley, 1998.

[8] Fang Y, Xu D, The Predictability of Asset Returns: an approach combining

technical analysis and time series forecasting, International Journal of

Forecasting, 2002.

[9] Kauffman P, Trading Systems and Methods, Wiley, 1998.

[10] Class Projects from CS395T: Agent Based E-Commerce at UT Austin

 (http://www.cs.utexas.edu/users/pstone/Courses/395Tfall03/resources/index.html)

(a) Ramamoorthy S, A Strategy for Stock Trading based on Multiple Models and

 trading rules.

 (b) Sherstov A, Automated Stock Trading in PLAT.

 (c) Subramanian H, Automated PLAT Trading Agent using Order Imbalance in

 Volume.

[11] Greenwald A, Jennings N R, Stone P, Agents and Markets, Guest Editor’s

Introduction, 18(6), Nov/Dec 2003

[12] Tino P, Schittenkopf C, Dorffner G, Financial Volatility Trading using Recurrent

Neural Networks, IEEE Transactions on Neural Networks, 12(4), 2001.

 74

[13] Wah B W, Qian M, Constrained Formulations and Algorithms for Stock

Predictions using Recurrent FIR Neural Networks, AAAI/IAAI, 2002.

[14] Dunis C and Zhou B, Nonlinear Modeling of High Frequency Financial Time

Series, Wiley 1998.

[15] Deboeck G (ed), Trading on the Edge: Neural, Genetic and Fuzzy Systems for

Chaotic Financial Markets, Wiley, 1994.

[16] E. F. Fama, Random Walks in Stock Market Prices, Financial Analysts Journal,

September/October 1965 (reprinted January-February 1995).

[17] Patrick S, Trading Volume and Autocorrelation: Empirical Evidence from the

Stockholm Stock Exchange, Stockholm School of Economics, 1997.

[18] Malkiel B, A Random Walk Down Wall Street, WW.Norton, 1996.

[19] Kearns M, Ortiz L, The Penn-Lehman Automated Trading project, IEEE

Intelligent Systems, 18(6), pp 22 – 31, Nov/Dec 2003.

[20] Hellstrom T, Holmstrom K, Parameter Tuning in Trading Algorithms using

ASTA, Computational Finance, pages 343-357, Cambridge, MA, MIT Press, 1999.

[21] Dunis C et al., Optimizing Intraday Trading Models with Genetic Algorithms,

Working Paper, Liverpool Business School, 1999.

[22] Island ECN: http://www.island.com

[23] Hennessey S, Using an In-Class Simulation to teach Financial Markets, Working

Paper, University of Prince Edward Island, 1998.

[24] Fincoach.com Website: http://fincoach.com

[25] LeBaron B, Building the Santa Fe Artificial Stock Market, Working Paper,

Brandeis University, 2002.

[26] Brock W, Lakonishok J, LeBaron B, Simple technical trading rules and the

stochastic properties of stock returns, Journal of Finance, 47(5), pp, Dec 1992.

[27] Resistance & Support Reference:

http://www.stockcharts.com/education/ChartAnalysis/supportResistance.html

[28] Refenes A P(ed.), Neural Networks in Capital Markets, Wiley 1995.

[29] Pictet O et al., Real-time trading models for foreign exchange rates, Neural

Network World Volume 6, 713–44, 1992.

 75

[30] Dempster M A H and Jones C M, A real-time adaptive trading system using

genetic programming, Quantitative Finance Vol. 1, Institute of Physics

Publishing, pp 397- 413, 2001.

[31] Mitchell M, An Introduction to Genetic Algorithms, MIT Press, 1996.

[32] Bauer R J, Genetic Algorithms and Investment Strategies, Wiley 1994.

[33] Stock Market Game website: http://www.smgww.org

[34] Virtual Stock Exchange website: http://www.virtualstockexchange.com

[35] Dempster M A H, Jones C M, Can Technical Pattern Trading be Profitably

Automated, Working Paper, Judge Institutes of Management Studies, 1999.

[36] Li J, Tsang E P K, Improving Technical Analysis Predictions: An Application of

Genetic Programming, Proceedings of Florida Artificial Intelligence Research

Symposium, 1999.

[37] Oussaidene M, Chopard B, Pictet O V, Tomassini M, Parallel Genetic

Programming and its application to Trading Model Induction, Parallel

Computing, Vol 23, 1997.

[38] Sherstov A, Stone P, Three Automated Stock Trading Agents: A Comparative

Study, AAMAS Workshop on Agent Mediated Electronic Commerce – VI, 2004.

[39] Gomes F, Portfolio Choice and Trading Volume with Loss-Averse Investors,

London Business School, 2003.

[40] Allen F, Karjalainen R, Using genetic algorithms to find technical trading rules,

J. Financial Economics, Vol.51, pp 245 – 271, 1999.

[41] Holland J H, Adaptation in Natural and Artificial Systems, University of

Michigan Press, Ann Arbor, 1975.

[42] Koza J R, Genetic Programming: On the Programming of Computers by means of

Natural Selection, MIT Press, 1992.

[43] Papagelis A, Kalles D, GA Tree: Genetically Evolved Decision Trees, ICTAI,

2000.

[44] Dempster M A H, Payne T W, Romahi Y, Thompson G W P, Computational

Learning Techniques for Intraday FX Trading Using Popular Technical

Indicators, IEEE Transactions on Neural Networks, 12(4), 2001.

 76

[45] Sharpe W F, Mutual Fund Performance, Journal of Business, January 1966.

[46] Pendersen C S, Derivatives and Downside Risk. Derivatives Use, Trading and

Regulation, 2001.

[47] Littlestone N, Warmuth M K, The Weighted Majority Algorithm, University of

California, Santa Cruz, 1992.

[48] Feng Y, Yu R, Stone P, Two Stock Trading Agents: Market Making and Technical

Analysis, Dept. of Computer Sciences, UT Austin.

[49] Chordia T, Subrahmanyam A, Order Imbalance and Individual Stock Returns,

Emory University, University of California, Los Angeles, 2002.

[50] PLAT website: http://www.cis.upenn.edu/~mkearns/projects/pat.html.

[51] Hariharan G, News Mining Agent for Automated Stock Trading, Thesis,

University of Texas, Austin, 2004.

[52] Yahoo! Finance Website: http://finance.yahoo.com/

[53] Bollinger Bands Website: http://www.bollingerbands.com/

[54] Genetic Algorithm Pseudo code: http://www.cs.bgu.ac.il/~sipper/ga.html

 77

Vita

Harish K Subramanian was born on April 3, 1981, the son of Lakshmi

Subramanian and Ramamoorthy Subramanian. After completing his work at Choithram

School, Indore, India, in 1998, he entered R.V. College of Engineering, Bangalore, India.

He received the degree of Bachelor of Engineering in Instrumentation Technology from

Visveswaraiah Technological University in July 2002. He entered The Graduate School

at The University of Texas at Austin in August 2002.

Permanent address: A3/23 Gagan Apts, 2 Cross, Atmananda Colony,

 Sultanpalya, Bangalore 560 032, India.

This thesis was typed by the author.

