
Preface

There has been an explosion of interest in, and books on object-oriented programming (OOP). Why have
yet another book on the subject? In the past a basic education was said to master the three r’s: reading,
’riting, and ’rithmetic. Today a sound education in engineering programming leads to producing code that
satisfy the four r’s: readability, reusability, reliability, and really-efficient. While some object-oriented
programming languages have some of these abilities Fortran 90/95 offers all of them for engineering
applications. Thus this book is intended to take a different tack by using the Fortran 90/95 language as its
main OOP tool. With more than one hundred pure and hybrid object-oriented languages available, one
must be selective in deciding which ones merit the effort of learning to utilize them. There are millions
of Fortran programmers, so it is logical to present the hybrid object-oriented features of Fortran 90/95 to
them to update and expand their programming skills. This work provides an introduction to Fortran 90
as well as to object-oriented programming concepts. Even with the current release (Fortran 95) we will
demonstrate that Fortran offers essentially all of the tools recommended for object-oriented programming
techniques. It is expected that Fortran 200X will offer additional object-oriented capabilities, such as
declaring ”extensible” (or virtual) functions. Thus, it is expected that the tools learned here will be of
value far into the future.

It is commonly agreed that the two decades old F77 standard for the language was missing several
useful and important concepts of computer science that evolved and were made popular after its release,
but it also had a large number of powerful and useful features. The following F90 standard included
a large number of improvements that have often been overlooked by many programmers. It is fully
compatible with all old F77 standard code, but it declared several features of that standard as obsolete.
That was done to encourage programmers to learn better methods, even though the standard still supports
those now obsolete language constructs. The F90 standards committee brought into the language most of
the best features of other more recent languages like Ada, C, C++, Eiffel, etc. Those additions included in
part: structures, dynamic memory management, recursion, pointers (references), and abstract data types
along with their supporting tools of encapsulation, inheritance, and the overloading of operators and
routines. Equally important for those involved in numerical analysis the F90 standard added several new
features for efficient array operations that are very similar to those of the popular MATLAB environment.
Most of those features include additional options to employ logical filters on arrays. All of the new array
features were intended for use on vector or parallel computers and allow programmers to avoid the bad
habit of writing numerous serial loops. The current standard, F95, went on to add more specific parallel
array tools, provided “pure” routines for general parallel operations, simplified the use of pointers, and
made a few user friendly refinements of some F90 features. Indeed, at this time one can view F90/95 as
the only cross-platform international standard language for parallel computing. Thus Fortran continues
to be an important programming language that richly rewards the effort of learning to take advantage of
its power, clarity, and user friendliness.

We begin that learning process in Chapter 1 with an overview of general programming techniques.
Primarily the older “procedural” approach is discussed there, but the chapter is closed with an outline of
the newer “object” approach to programming. An experienced programmer may want to skip directly to
the last section of Chapter 1 where we outline some object-oriented methods. In Chapter 2, we introduce
the concept of the abstract data types and their extension to classes. Chapter 3 provides a fairly detailed
introduction to the concepts and terminology of object-oriented programming. A much larger supporting
glossary is provided as an appendix.

For the sake of completeness Chapter 4 introduces language specific details of the topics discussed in

c2002 J.E. Akin i

the first chapter. The Fortran 90/95 syntax is used there, but in several cases cross-references are made to
similar constructs in the C++ language and the MATLAB environment. While some readers may want to
skip Chapter 4, it will help others learn the Fortran 90/95 syntax and/or to read related publications that
use C++ or MATLAB . All of the syntax of Fortran 90 is also given in an appendix.

Since many Fortran applications relate to manipulating arrays or doing numerical matrix analysis,
Chapter 5 presents a very detailed coverage of the powerful intrinsic features Fortran 90 has added to
provide for more efficient operations with arrays. It has been demonstrated in the literature that object-
oriented implementations of scientific projects requiring intensive operations with arrays execute much
faster in Fortran 90 than in C++. Since Fortran 90 was designed for operations on vector and parallel
machines that chapter encourages the programmer to avoid unneeded serial loops and to replace them
with more efficient intrinsic array functions. Readers not needing to use numerical matrix analysis may
skip Chapter 5.

Chapter 6 returns to object-oriented methods with a more detailed coverage of using object-oriented
analysis and object-oriented design to create classes and demonstrates how to implement them as an OOP
in Fortran 90. Additional Fortran 90 examples of inheritance and polymorphism are given in Chapter
7. Object-oriented programs often require the objects to be stored in some type of “container” or data
structure such as a stack or linked-list. Fortran 90 object-oriented examples of typical containers are
given in Chapter 8. Some specialized topics for more advanced users are given in Chapter 9, so beginning
programmers could skip it.

To summarize the two optional uses of this text; it is recommended that experienced Fortran program-
mers wishing to learn to use OOP cover Chapters 2, 3, 6, 7, 8, and 9, while persons studying Fortran for
the first time should cover Chapters 1, 2, 3, and. Anyone needing to use numerical matrix analysis should
also include Chapter 5.

A OO glossary is included in an appendix to aid in reading this text and the current literature on OOP.
Another appendix on Fortran 90 gives an alphabetical listing on its intrinsic routines, a subject based
list of them, a detailed syntax of all the F90 statements, and a set of example uses of every statement.
Selected solutions for most of the assignments are included in another appendix along with comments
on those solutions. The final appendix gives the C++ versions of several of the F90 examples in the
text. They are provided as an aid to understanding other OOP literature. Since F90 and MATLAB are so
similar the corresponding MATLAB versions often directly follow the F90 examples in the text.

Ed Akin, Rice University, 2002

Acknowledgements
We are all indebted to the hundreds of programmers that labor on various standards committees to con-
tinually improve all programming languages. Chapter 1 is a modification of introductory programming
notes developed jointly with Prof. Don Johnson at Rice University. I would like to thank Prof. Tinsley
Oden and the Texas Institute for Computational Mathematics for generously hosting my sabbatical leave
where most of this work was developed, and Rice University for financing the sabbatical. Special thanks
go to my wife, Kimberly, without whose support and infinite patience this book would not have been
completed.

Source Codes
All of the example programs and selected solutions are included on the CD-ROM provide with the book.
To be readable on various platforms they have been written with the ISO9660 standard format. Additional
files are provided to relate the ISO standard short filenames to the full length program names used in the
book. Of course, the source files will have to be processed through a Fortran 90 or 95 or 2000 compiler
to form executables. All of the figures are also provided as encapsulated Postscript (tm) files.

c2002 J.E. Akin ii

Index

�, 53, 56
<=, 53
>=, 53
n, 122
*, 10, 56
**, 56
+, 53, 56
/, 10, 56
::, 25, 53
=, 10
=>, 143
%, 51, 143
&, 10, 34, 37, 42
/= , 53
==, 53
=>, 121

ABS function, 56, 162, 250
absolute value, 56, 162
abstract class, 285
abstract data type, 15, 23, 27, 285
abstraction, 19, 27, 285
access, 36
access operation, 142
access restriction, 19
accessibility, 19
accessor, 18, 285
ACHAR function, 77, 80
ACOS function, 56, 162
actual argument, 56
Ada, 15, 33
addition, 56
ADJUSTL function, 77
ADJUSTR function, 77
ADT, seeabstract data type
ADVANCE specifier, 42, 102
agent, 18
AIMAG function, 56, 162
AINT function, 56, 162
algorithm, 51
ALL function, 162, 255
all mask elements true, 162
allocatable array, 156, 157, 285
ALLOCATABLE attribute, 183
ALLOCATABLE statement, 15

allocate, 42
ALLOCATE statement, 15, 74, 92, 181, 183
ALLOCATED function, 15, 181, 183
allocation status, 74, 181, 258
AND operand, 42, 63, 104
AND operator, 53
ANINT function, 162
ANY function, 162, 181
any mask element true, 162
arc cosine, 56
arc sine, 56
arc tangent, 56
arccosine, 162
arcsine, 162
arctangent, 162
arctangent for complex number, 162
area, 34
argument, 285

inout, 69
input, 69
interface, 75
none, 69
number of, 75
optional, 75, 76
order, 75
output, 69
rank, 75
returned value, 75
type, 75

array, 26, 60, 66, 82, 135, 149, 285
allocatable, 156
assumed shape, 76
automatic, 89, 156
Boolean, 164
constant, 156
dummy dimension, 156
flip, 166
mask, 164, 179
of pointers, 135
rank, 76, 155, 157, 166
rectangular, 166
reshape, 155
shape, 155
shift, 168

1

size, 155
total, 162
unknown size, 76
variable rank, 156

array operations, 159
array pointer, 285
array shape vector, 162
ASCII character set, 23, 76, 77, 98, 159
ASIN function, 56, 162
assembly language, 15
assignment operator, 10, 39, 189, 285
assignment statement, 285
ASSOCIATED function, 15, 75, 88, 130, 132,

181
association, 285
associative, 172, 173
asterisk (*), 58
ATAN function, 56, 162
ATAN2 function, 13, 56, 162
attribute, 103, 104, 107, 119, 123, 192, 285

name, 19
private, 27, 123
public, 27
terminator, 25

attribute terminator, 25
attributes, 19, 27
automatic array, 89, 156, 157, 285
automatic deallocation, 29

BACKSPACE statement, 75
bad style, 158
base 10 logarithm, 56, 162
base class, 119, 286
behavior, 104, 107
binary file, 159
binary operator, 286
binary read, 268
binary write, 183
bit

clear, 74
extract, 74
set, 74
shift, 74
test, 74

bit function
BIT SIZE, 74
BTEST, 74
IAND, 74
IBCLR, 74
IBITS, 74
IBSET, 74
IEOR, 74
IOR, 74
ISHFT, 74

ISHFTC, 74
MVBITS, 74
NOT, 74
TRANSFER, 74

bit manipulation, 74
blanks

all, 77
leading, 77
trailing, 77

Boolean type, 53
Boolean value, 23
bottom-up, 4
boundary condition, 192
bounds, 155
bubble sort, 92, 94

ordered, 95
bug, 9

C, 1, 33, 52
C++, 1, 10, 14, 24, 33, 52, 58, 59, 76, 81, 102,

121
call by reference, 286
call by value, 286
CALL statement, 42, 76, 86, 89, 92, 97, 121,

123, 124, 131, 137, 140, 142, 143,
149

CASE DEFAULT statement, 63, 188
CASE statement, 63, 188, 272
cases, 62
CEILING function, 56, 162
central processor unit, 72
CHAR function, 77
character, 81

case change, 80
control, 76
from number, 80
functions, 77
non-print, 76, 102
strings, 76
to number, 80

character set, 23
CHARACTER type, 23, 26, 53
chemical element, 25
chemical element, 128
circuits, 166
circular shift, 168
circular-linked list, 185
class, 15, 19, 33, 286

base, 18
Date, 118, 121
derived, 18
Drill, 103
Employee, 123
Geometric, 118

c2002 J.E. Akin 2

Global Position, 112
Great Arc, 112
hierarchy, 33
instance, 33
iterator, 192
Manager, 123, 133
Person, 118, 121
polymorphic, 131
Position Angle, 107, 112
Professor, 121
sparse vector, 258
Student, 118, 121

class attribute, 286
class code

class Angle, 112
class Circle, 34
class Date, 37
class Employee 1, 122
class Employee 2, 123
class Employee 3, 124
class Fibonacci Number, 29
class Manager 1, 123
class Manager 2, 123
class Manager 3, 124
class Object, 143
class Person, 37
class Position Angle, 270
class Professor, 121
class Queue, 140
class Rational, 42
class Rectangle, 34
class sparse Vector, 258
class Stack, 137
class Student, 37
class Vector, 257
Drill, 104
elem type data class, 181
Global Position, 112
Great Arc, 112
Is A Member Class, 131
Member 1 Class, 131
Member 2 Class, 131
Position Angle, 112

class descriptor, 286
class inheritance, 286
clipping function, 14, 69
CLOSE statement, 74, 92, 97, 271
CMPLX function, 162
Coad/Yourdon method, 18
code reuse, 194
colon operator, 56, 60, 61, 77, 156, 159, 163,

166, 267
syntax, 56

column major order, 177
column matrix, 170
column order, 158
comma, 98
comment, 1, 2, 7, 9, 12, 51, 52
commutative, 100, 172, 173
compiler, 10, 15, 90
complex, 10, 81, 161
complex conjugate, 56
COMPLEX type, 23, 24, 53
component

assignment, 82
declaring, 82
initializing, 82
interpretation, 82
referencing, 82
syntax, 82

component selector, 34, 37, 42
composition, 34, 36, 190, 194
concatanate, 122
conditional, 7–9, 11, 51, 58
conformable, 172
CONJG function, 56, 162
conjugate of complex number, 162
connectivity, 166
constant array, 156
constructor, 18, 29, 34, 123, 132, 133, 136, 149,

255, 286
default, 18
intrinsic, 18, 26, 34, 39
manual, 36
public, 37
structure, 26

container, 135
container class, 286
CONTAINS statement, 29, 33, 34, 72, 75, 85
continuation marker, 10
control key, 78
conversion factors, 29
convert real to complex, 162
convert to integer, 162
convert to real, 162
COS function, 56, 162, 249
COSH function, 56, 162
cosine, 56, 162
COUNT function, 162, 259, 263
count-controlled DO, 12, 13
CPU,seecentral processor unit
curve fit, 90
CYCLE statement, 65, 66, 260, 263

data abstraction, 19
data hiding, 36, 286
data structure, 135

c2002 J.E. Akin 3

data types, 10
intrinsic, 23
user defined, 23

date, 99, 265
DATE AND TIME intrinsic, 265
deallocate, 18, 42, 181
DEALLOCATE statement, 15, 74, 183
deallocation, 287
debugger, 17, 287
debugging, 16
declaration statement, 287
default case, 63
default constructor, 287
default value, 29
defined operator, 287
dereference, 58
dereferencing, 287
derived class, 119
derived type, 15, 23, 287

component, 82
nested, 82
print, 84
read, 84

destructor, 29, 34, 41, 48, 254, 287
determinant, 175
diagonal matrix, 170
dimension

constant, 157
extent, 155
lower bound, 155
upper bound, 155

distributive, 173
division, 56
division remainder, 56
DO statement, 29, 58, 61
DO WHILE statement, 66
DO-EXIT pair, 67, 68
documentation, 17
domain, 19
dot product, 162
dot product, 12
DOT PRODUCT intrinsic, 12, 162
double, 24
DOUBLE PRECISION type, 23, 24, 53
doubly linked list, 149
drop fraction, 56
dummy argument, 57, 72, 287
dummy array, 287
dummy dimension, 157
dummy dimension array, 156
dummy pointer, 287
dummy variable, 72
dynamic binding, 18, 287

dynamic data structures, 38
dynamic dispatching, 130
dynamic memory, 74, 181

allocation, 15
de-allocation, 15
management, 15

dynamic memory management, 88

e, 25
EBCDIC character set, 23, 76
efficiency, 194
Eiffel, 18
electric drill, 103
ELSE statement, 42, 63, 66
encapsulate, 15
encapsulation, 27, 33, 192, 194, 287
end off shift, 168
end-of-file, 75
end-of-record, 75
end-of-transmission, 77
EOF,seeend-of-file
EOR,seeend-of-record
EOT,seeend of transmission
EPSILON function, 162
equation

number, 169
EQV operator, 53
error checking, 18
exception, 74, 287
exception handler, 74
exception handling, 18
exercises, 21, 31, 48, 99, 118, 132, 154, 178,

195
EXIT statement, 65, 66, 251, 260, 262, 263,

265, 269, 272, 273
EXP function, 56, 162, 250
explicit interface, 288
explicit loop, 11
exponent range, 24
exponential, 56, 162
exponentiation, 56
expression, 10, 51, 52, 88
external

file, 89
subprogram, 89

external file, 288
external procedure, 288
external subprogram, 76

factorization, 174, 175, 179
FALSE result, 62
Fibonacci number, 29
file, 74

access, 151

c2002 J.E. Akin 4

binary, 183
column count, 99
direct access, 150
I/O, 151
internal, 80
line count, 99
modify, 151
random, 151
random access, 150
read status, 99
record number, 150
scratch, 183
unit number, 100

FILE= specifier, 271
finite difference method, 179
finite element, 43
finite element analysis, 181
flip, 163, 166
float, 53
floating point,seereal, 23, 24, 179
FLOOR function, 56, 162
flow control, 11, 51, 58
forever loop,seeinfinite loop
FORM= specifier, 271
FORMAT statement, 34, 112
function, 7, 9, 51, 68

argument, 13, 15
extensible, 130
generic, 183
INTEGER, 140
LOGICAL, 137, 140
recursive, 42, 101
result, 69
return, 13
TYPE, 137, 140
variable, 15

function code
Add, 29
add Rational, 42
add Real to Vector, 253
add Vector, 253
Angle , 112
assign, 253
circle area, 34
clip, 69
convert, 42
copy Rational, 42
copy Vector, 254
Create Q, 140
Date , 37
Decimal min, 112
Decimal sec, 112
Default Angle, 112

dot Vector, 255, 259
Drill , 104, 106
D L new, 149
el by el Mult, 259
equality operator point, 188
equal to Object, 143
gcd, 42, 101
getEmployee, 123, 124
getName, 123
getNameE, 122, 124
getNameM, 123, 124
getRate, 122, 124
GetX, 188
GetY, 188
get Arc, 112
Get Capacity of Q, 140
get Denominator, 42
get element, 260
Get Front of Q, 140
get item cost, 264
get item count, 264
get item delay, 264
get item name, 264
get Latitude, 112
Get Length of Q, 140, 142
get Longitude, 112
get menu, 273
get mr rate, 104
get next io unit, 102, 269
Get Next Unit, 98
get Numerator, 42
Get Obj at Ptr, 149
get Person, 37
get person, 37
Get Ptr to Obj, 149
get torque, 104
Global Position , 112
Great Arc , 112
initialize item, 264
inputCount, 92, 265
Int deg, 112
Int deg min, 112
Int deg min sec, 112
is equal to, 42, 255, 260
is item empty, 264
Is Q Empty, 140
is Q Empty, 142
Is Q Full, 140
is Q Full, 142
is Stack Empty, 137
is Stack Full, 137
is S L empty, 143
largest index, 260

c2002 J.E. Akin 5

length, 260
lengthnormalize Vector, 255
less than Object, 143
make Person, 37
make Professor, 121
make Rational, 42
make Rectangle, 36
make Stack, 137
make Student, 37
make Vector, 253
Manager , 123, 124
maximum, 70
mid value, 69
mult Fraction, 86
mult Rational, 42
new Fibonacci Number, 29
next generation, 251
norm, 262
normalize Vecto, 262
pay, 123
payE, 122, 124
payM, 123, 124
Person, 121
Person , 37
pop from Stack, 137
print, 121
Professor, 121
Rational, 42
Rational , 42
real mult Sparse, 262
real mult Vector, 255
rectangle area, 34
rows of, 262
setDataE, 122, 124
setDataM, 123, 124
set Date, 37
set Lat and Long at, 112
size of, 262
size Vector, 255
Sparse mult real, 262
Student, 37, 121
Student , 37
subtract Real, 255
subtract Vector, 255
Sub Sparse Vectors, 263
Sum Sparse Vectors, 263
S L new, 143
toc, 72
to Decimal Degrees, 112
to lower, 80
to Radians, 112
to upper, 80, 100, 266
values, 255

values of, 263
Vector , 255
Vector max value, 255, 263
Vector min value, 255, 263
Vector mult real, 255
Vector To Sparse, 263
zero sparse, 263

function definition, 288
FUNCTION statement, 29

Game of Life, 4
Gamma, 25
gather-scatter, 168
gcd,seegreatest common divisor
generic function, 33, 34, 183, 288
generic interface, 132
generic linked list, 149
generic name, 34
generic object, 42
generic operator, 288
generic routine, 121
generic subprogram, 76
geometric shape, 34
global positioning satellite, 106
global variable, 14, 72
GO TO statement, 64, 65
GPS,seeglobal positioning satellite
Graham method, 18
graphical representation, 27, 118
greatest common divisor, 42, 101
greatest integer, 162
grid, 190

Has-A, 107, 194
header file, 129
heat transfer, 185
Hello world, 7
hello world, 52, 100
hierarchie

kind of, 18
part of, 18

High Performance Fortran, 195
horizontal tab, 77
host association, 288
Hubbard, J.R., 36
HUGE function, 162
hyperbolic cosine, 56, 162
hyperbolic sine, 56, 162
hyperbolic tangent, 56, 102, 162

I/O, seeInput-Output
IACHAR function, 77, 80
ICHAR function, 77
identity matrix, 178

c2002 J.E. Akin 6

IF, 62
nested, 62

if, 12
IF ELSE statement, 62
IF statement, 29, 37, 42, 62
if-else, 12
IF-ELSE pair, 63
IF-ELSEIF, 130
imaginary part, 56, 162
IMPLICIT COMPLEX, 53
IMPLICIT DOUBLE PRECISION, 53
IMPLICIT INTEGER, 52
implicit loop, 12
IMPLICIT NONE, 26, 29
IMPLICIT REAL, 52
implied loop, 60, 61, 156, 166
INCLUDE line, 37, 42, 89
INDEX function, 77, 80, 266, 273
indexed loop, 11
infinite loop, 9, 68, 269
information hiding, 288
inheritance, 18, 33, 34, 72, 119, 190, 193, 194,

288
rename, 119
selective, 119

inherited, 37
initialize random number, 162
inner loop, 61
INQUIRE intrinsic, 92, 97, 102, 268, 269
INQUIRE statement, 75
instance, 33, 122, 288
INT function, 162
integer, 10, 81, 161
integer nearest to real, 162
INTEGER type, 23, 24, 53
intent, 289

in, 29, 100
inout, 29
out, 100
statement, 29

INTENT attribute, 142
INTENT statement, 29, 58, 69, 93
interface, 2, 6, 9, 13, 15, 27, 34, 75, 92, 104,

107, 121, 136, 189, 258, 289
general form, 76
human, 18
input/output, 18
prototype, 18

interface assignment, 258
INTERFACE ASSIGNMENT (=) block, 86
interface block, 34, 76
interface body, 76
interface code

Add to Q, 140
assign, 131
Create Q, 140
display, 131
getName, 124
Get Capacity of Q, 140
Get Front of Q, 140
Get Length of Q, 140
Init, 188, 190
Is Q Empty, 140
Is Q Full, 140
is Stack Empty, 136
is Stack Full, 136
make Stack, 136
MyPrint, 188
new, 131
orthonormal basis, 257
pop from Stack, 136
Position Angle , 270
PrintPay, 123, 124
push on Stack, 136
Remove from Q, 140
Set, 188
swap, 127
testing basis, 257

interface operator, 188, 258
interface operator (<), 143
interface operator (*), 39
interface operator (==), 143
INTERFACE OPERATOR block, 85, 86
INTERFACE OPERATOR statement, 166
interface prototype, 103, 104, 123
INTERFACE statement, 34
internal file, 80, 289
internal sub-programs, 72
internal subprogram, 251, 289
interpreter, 10, 15
intrinsic, 166
intrinsic constructor, 85, 98, 106, 136, 289
intrinsic function, 12, 68
inverse, 178
IOLENGTH result, 268
IOSTAT= variable, 74, 75, 271
Is-A, 106, 107, 124, 194
ISO VARIABLE LENGTH STRING, 23
iterator, 143, 149, 191, 192, 289

keyword, 121, 289
KIND intrinsic, 24
Kind-Of, 107, 123

largest integer, 56
largest number, 162
latitude, 106

c2002 J.E. Akin 7

least integer, 162
least squares, 90, 266, 267
LEN function, 77, 80
LEN intrinsic, 77, 80
length

line, 52
name, 52

LEN TRIM function, 77
LEN TRIM intrinsic, 77
lexical operator, 94
lexically

greater than, 77
less than, 77
less than or equal, 77

LGE function, 77
LGT function, 77
library function, 16
line continuation, 100
linear equations, 173, 174, 179, 184
linked list, 38, 87, 88, 142, 149, 289

doubly, 149
linked-list, 191
linker, 16, 89, 289
list

circular, 139, 185, 190
doubly-linked, 88
empty, 149
length, 139
singly-linked, 88

LLE function, 77
LLT function, 77
local name, 119
LOG function, 56, 162
LOG10 function, 56, 162
logarithm, 68, 91, 162
logical, 81

AND, 63
equal to, 63
EQV, 63
greater than, 63
less than, 63
NEQV, 63
NOT, 63
operator, 63
OR, 63

logical expression, 11
logical mask, 61
LOGICAL type, 23, 42, 137
long, 24
long double, 24
long int, 24
longitude, 106
loop, 5, 7–9, 11, 51, 58, 179

abort, 66, 67
breakout, 65
counter, 59
cycle, 65, 66
exit, 59, 65, 66
explicit, 58
implied, 60
index, 100
infinite, 60, 67, 68
nested, 61, 65
pseudocode, 58
skip, 65
until, 66, 67
variable, 60
while, 66

loop construct, 59
loop control, 60, 158
loop index, 100
loop variable, 11
lower triangle, 171, 174

manual constructor, 85, 104
manual page, 17
mask, 161, 164, 165, 179, 259
masks, 61
Mathematica, 51
mathematical constants, 25
mathematical functions, 56
Matlab, 1, 10, 14, 52, 60, 68, 99, 102
MATMUL intrinsic, 162, 173
matrix, 155, 170, 289

addition, 172
algebra, 155
column, 170
compatible, 172
determinant, 175
diagonal, 170
factorization, 174
flip, 163
identity, 174
inverse, 89, 174
multiplication, 159, 172
non-singular, 174
null, 170
skew symmetric, 171
solve, 89
sparse, 192
square, 170, 171
symmetric, 171
Toeplitz, 171
transpose, 159, 171
triangular, 171, 174
tridiagonal, 179

matrix addition, 177, 178

c2002 J.E. Akin 8

matrix algebra, 155, 172
matrix multiplication, 162, 165, 173, 178
matrix operator, 38
matrix transpose, 162, 165
maximum array element location, 162
maximum array element value, 162
maximum values, 70
MAXLOC function, 70, 162
MAXVAL function, 70, 162, 263
mean, 69
member, 119
memory count, 183, 274
memory leak, 183
memory management, 181
message, 27
message passing, 289
method, 192, 289
methods, 3

private, 27
public, 27

military standards, 74
minimum array element location, 162
minimum array element value, 162
minimum values, 70
MINLOC function, 70, 162
MINVAL function, 70, 162
MOD function, 56
modular design, 6
module, 15, 25, 33, 68, 289
module code

class Angle, 112
class Circle, 34
class Date, 37
class Employee 1, 122
class Employee 2, 123
class Employee 3, 124
class Fibonacci Number, 29
class Global Position, 112
class Great Arc, 112
class Manager 1, 123
class Manager 2, 123
class Manager 3, 124
class Object, 143
class Person, 37
class Position Angle, 112, 270
class Professor, 121
class Queue, 140
class Rational, 42
class Rectangle, 34
class sparse Vector, 258
class Stack, 137
class Student, 37
class Vector, 253, 256, 257

Conversion Constants, 252
doubly linked list, 149
elem type data class, 181
exceptions, 75, 137
Fractions, 86
Gauss Module, 190
inventory object, 49, 264
inventory system, 270
Is A Member Class, 131
Math Constants, 25
Member 1 Class, 131
Member 2 Class, 131
Memory Status Count, 183, 274
object type, 136
Physical Constants, 252
Point Module, 188
Queue of Objects, 140
Queue type, 139
record Module, 97
singly linked lis, 143
singly linked list, 143
stack type, 136
swap library, 127
tic toc, 72, 99

module procedure, 289
MODULE PROCEDURE statement, 34, 39, 85,

86, 166
MODULE statement, 29
module variable, 29
modulo, 56
MODULO function, 56
modulo function, 56
multiple inheritanc, 119
multiplication, 56
Myer, B., 18

NAG, seeNational Algorithms Group
named

CYCLE, 65, 66
DO, 59, 66
EXIT, 65, 66
IF, 63
SELECT CASE, 63

National Algorithms Group, 90
natural logarithm, 56
NEQV operator, 53
nested, 289

DO, 66
IF, 62

new line, 78, 102
Newton-Raphson method, 11
NINT function, 56, 162
node

current, 142, 149

c2002 J.E. Akin 9

dummy, 149
header, 139, 142, 149
linked list, 142
next, 149
null, 142
previous, 142, 149
root, 142
tail, 139

non-advancing I/O, 42
normalized sign, 162
NOT operator, 53
NULL function (f95), 88
nullify, 132
NULLIFY statement, 15, 88, 132
number

bit width, 24
common range, 24
label, 58
significant digits, 24
truncating, 162
type, 24

number of true masks, 162
numberic type, 24
numeric types, 23
numerical computation, 38

object, 15, 19, 33
object oriented

analysis, 18, 43, 103, 107, 118
approach, 18
design, 18, 43, 103, 107, 118, 190
language, 18
programming, 18, 103
representation, 18

Object Pascal, 18
ONLY keyword, 119
OOA, seeobject oriented analysis
OOD,seeobject oriented design
OOP,seeobject oriented programming
OPEN statement, 74, 92, 97, 159, 271
operator, 27

.dot., 258

.op., 86, 165

.solve., 89, 90

.t., 166

.x., 166
assignment, 39
binary, 86
defined, 18, 86
extended, 86
overloaded, 18, 143, 149, 189
overloading, 39, 85, 258
symbol, 86
unary, 86

user defined, 76, 165
operator overloading, 10, 189, 260, 290
operator precedence, 52
operator symbol, 165
optional argument, 29, 37, 75
OPTIONAL attribute, 29, 36, 104, 137
OR operand, 37
OR operator, 53
order vector, 99
ordering array, 95
orthonormal basis, 256, 257
outer loop, 61
overflow, 290
overloaded member, 121
overloading, 39, 48, 85, 189, 290

operators, 42
testing, 86

package, 15
parallel computer, 43
PARAMETER attribute, 25, 29, 37, 60, 69, 70,

75, 82, 104, 112
Part-Of, 107
partial derivative, 176
partial differential equation, 183
partitioned matrix, 171
pass by reference, 57, 76, 87, 253
pass by value, 57, 58, 76, 253
pass-by-value, 290
path name, 37
pi, 25
Platypus, 194
pointer, 10, 23, 75, 86, 290

address, 150
allocatable, 15
allocate, 142
arithmetic, 87
array, 135
assignment, 88
association, 87
deallocate, 142
declaration, 87
dereference, 58
detrimental effect, 87
in expression, 88
inquiry, 88
nullify, 88
nullifying, 88
status, 15, 87
target, 87
writting, 150

pointer array, 290
pointer assignment, 290
pointer object, 131

c2002 J.E. Akin 10

pointer variable, 86
polymorphic class, 131
polymorphic interface, 118
polymorphism, 18, 33, 34, 119, 124, 194, 290
pop, 137
portability, 15
pre-condition checking, 137
pre-processor, 129
precedence order, 53
precedence rules, 11
precision, 179, 192

double, 81
kind, 24
portable, 81
single, 81
specified, 81
underscore, 24
user defined, 24

precision kind, 24
PRESENT function, 29, 36, 37, 42, 75, 253
PRINT * statement, 29
private, 33, 104, 187, 290
PRIVATE attribute, 29, 36
private attributes, 37
PRIVATE statement, 27
procedural programming, 18
procedure, 68
PRODUCT function, 162
product of array elements, 162
program

documentation, 17
executable, 17
scope, 14

program code
Another Great Arc, 270
array indexing, 60
check basis, 257
check vector class, 256
clip an array, 69
create a type, 26
create Student, 37
Date test, 37
declare interface, 76
Dynamic Dispatching, 131
Fibonacci, 29
game of life, 251
geometry, 34
if else logic, 63
linear fit, 92
Logical operators, 63
maximum, 70
Memory Leak, 183
Memory Leak Counted, 274

Newton, 250
No Copy Reallocate, 183
operate on strings, 78
Person inherit, 37
random access file, 151
Rational test, 42
relational operators, 63
Revise employee manager, 273
simple loop, 60
string to numbers, 80
structure components, 84
Testing a Queue, 142
Testing a Stack, 137
test bubble, 97
Test Conversion, 252
Test doubly linked, 149
test Drill, 106
test Employee 1, 122
test four classes, 121
test Fractions, 86
test Great Arc, 112
test inventory system, 272
test Manager 2, 123
test Manager 3, 124, 133
Test Physical, 252
test singly linked, 143
two line lsq fit, 267
watch, 265

program keyword, 56
PROGRAM statement, 26, 29
projectile, 101
prototype, 6, 75
pseudo-pointer, 95
pseudo-random numbers, 162
pseudocode, 5, 14, 51, 69, 101, 291

if, 13
if-else, 13
indexed loop, 9
nested if, 13
post-test loop, 9
pre-test loop, 9

public, 33, 123, 136, 187, 291
PUBLIC attribute, 29
public constructor, 37
public method, 27
PUBLIC statement, 27
push, 137

quadratic equation, 3
query, 191
queue, 88, 135, 139

raise to power, 56
random access, 150

c2002 J.E. Akin 11

RANDOM NUMBER subroutine, 162
RANDOM SEED subroutine, 162
rank, 157, 291
rational number, 38, 39
read error, 102
READ statement, 29, 61, 75
real, 10, 81, 161
REAL function, 162
REAL type, 23, 24, 53
real whole number, 162
reallocate, 183, 195
recursive algorithm, 87
RECURSIVE qualifier, 42, 101
reference, 10
referencing components, 82
relational operator, 52, 53, 63, 77, 142, 143, 149
remainder, 56
rename, 119
rename modifier, 119
REPEAT function, 77
reshape, 158
reshape an array, 162
RESHAPE intrinsic, 162
RESULT option, 29
result value, 69
return, 157
RETURN statement, 65
REWIND statement, 75, 183, 265, 266, 268
round number, 56

sample data, 98
SCAN function, 77
scatter, 169
scope, 14, 291
SELECT CASE statement, 63, 188, 272
SELECTED INT KIND, 23, 24
SELECTED REAL KIND, 23, 24
selector symbol, 26, 29, 34
server, 18
SHAPE function, 162
short, 24
side effect, 142, 291
SIGN function, 162
signum, 162
SIN function, 56, 162, 249
sine, 56, 162
SINH function, 56, 162
size, 12
SIZE intrinsic, 69, 89, 92, 155, 162
smallest integer, 56
smallest number, 162
smallest positive number, 162
Smalltalk, 18
sort, 86, 90, 92, 95, 125

bubble, 92
characters, 94
object, 96
objects, 94
strings, 94

sorting, 42
sparse matrix, 192
sparse storage, 263
sparse vector, 49, 149, 258
sparse vector class, 179
specification, 4, 190
SQRT function, 27, 56, 112, 162
square root, 27, 56, 68, 162
stack, 88, 135, 139, 291
STAT = variable, 74
statement, 2, 9
statement block, 12, 58
statements, 1
status

FILE, 75
IOSTAT=, 75
MODE, 75
OPENED=, 75

status checking, 157
STATUS= specifier, 271
stiffness matrix, 191, 192
STOP statement, 37, 70, 151, 181, 188
storage

column wise, 155
row wise, 155

string, 23, 56, 150
adjust, 77
case change, 80
character number, 77
collating sets, 77
colon operator, 77
concatenate, 77
copy, 77
dynamic length, 76
from number, 80
functions, 77
length, 77
logic, 77
repeat, 77
scan, 77
to number, 80
trim, 77
verify, 77

strings, 76
strong typing, 53, 291
struct, 53
structure, 23, 25, 33, 84
structure constructor, 26

c2002 J.E. Akin 12

structured programming, 13
submatrix, 171
subprogram, 68

recursive, 101
subroutine, 68, 69
subroutine code

Add to Q, 140, 142
allocate type application, 181
Alloc Count Int, 183
assign, 86, 131
assign memb 1, 131
assign memb 2, 131
Change, 76
deallocate type application, 181
Dealloc Count Int, 183
delete Rational, 42
delete Sparse Vector, 258
delete Vector, 255
destroy D L List, 149
detroy D L List, 149
display all, 271
display members, 131
display memb 1, 131
display memb 2, 131
D L insert before, 149
enter entry, 272
enter item, 264
enter update, 272
equal Fraction, 86
equal Integer, 42
equal Real, 255
equal Vector, 260
exception, 137, 140
exception status, 75, 142
file read, 264
file write, 264
in, 104, 106
increase Size, 271
initialize, 272
Init Point, 188
Init Point Another, 188
Init Point Vctr, 188
Integer Sort, 95, 97, 98
invert, 42
list, 42, 86, 255
List Angle, 112
List Great Arc, 112
List Position, 112
List Position Angle, 112
List Pt to Pt, 112
list type alloc status, 181
lsq fit, 92
make Sparse Vector, 258

mult Fraction, 86
MyPrint Point, 188
new, 131
new member 1, 131
new member 2, 131
No Change, 76
nullify Is A Member, 131
orthonormal basis, 257
out, 104, 106
pretty, 262
Print, 29
print, 121
PrintPay, 123, 124
PrintPayEmployee, 123, 124
PrintPayManager, 123, 124
print Date, 37
print DOB, 37
print DOD, 37
print DOM, 37
print D L list, 149
print GPA, 37
print item, 264
print Name, 37
print Nationality, 37
print Sex, 37
print S L list, 143
push on Stack, 137
readData, 92, 100, 266
read Date, 37
Read Position Angle, 112
read Vector, 255, 262
read xy file, 268
reduce, 42
Remove from Q, 142
Resize Count Int OneD, 183
restore system, 271
save system, 271
setData, 123
setSalaried, 123, 124
set DOB, 37
set DOD, 37
set DOM, 37
set element, 262
set Latitude, 112
set Longitude, 112
Set Point, 188
set Size, 271
Set Vec, 188
Set X, 188
Set XY, 188
show, 262
show Data, 97
show r v, 262

c2002 J.E. Akin 13

simple arithmetic, 56
Sort Reals, 93
Sort String, 94
Spy, 251
String Sort, 97, 98
swap objects, 126
swap real, 127
swap type, 128
S L delete, 143
S L insert, 143
testing basis, 257
test Manager 1, 123
test matrix, 89
tic, 72

SUBROUTINE statement, 29
subroutines, 33
subscript, 26, 59, 155

bounds, 155
range, 177
vector, 166

subscript triplet, 291
subtraction, 56
subtype, 131
subtyping, 124, 130
sum, 12
SUM function, 12, 69, 162
SUM intrinsic, 92, 165
sum of array elements, 162
super class, 119
syntactic error, 17
SYSTEM CLOCK intrinsic, 72

tab, 78, 98, 102
TAN function, 56, 162
tangent, 56, 162
TANH function, 56, 162
TARGET, 15
target, 23, 75, 87, 88, 292
template, 43, 124, 126, 292
tensor, 155
testing, 15
time, 265
time of day, 99
TINY function, 162
Toeplitz matrix, 171
top-down, 4
total of elements in array, 162
transformational functions, 165
transpose, 159, 171, 173
TRANSPOSE intrinsic, 162, 166
tree, 292
tree structure, 38, 87, 88
tridiagonal matrix, 179
TRIM function, 77

triplet, seecolon operator
true, 12
TRUE result, 62
truncate to real whole number, 162
truss, 166
type

conversion, 80
default, 52
implicit, 52

TYPE declaration, 26, 29
TYPE statement, 27, 34

unary operator, 292
underflow, 292
unexpected result, 165
upper triangle, 171, 174
USE association, 119, 123, 190
USE statement, 29, 33, 34, 37, 85, 89
USE, ONLY, 119
user defined operator, 165
user interface, 2

validation, 29
variable, 8, 10, 23, 51

global, 14
name, 10
type, 10

variable rank array, 156
vector, 155, 292
vector class, 48, 179, 252, 256
vector subscript, 61, 166, 292
VERIFY function, 77
volume, 48

weakness, 193
WHERE construct, 165
WHERE statement, 61, 66, 165
while-true, 67
wildcard, 126
WRITE statement, 34, 61, 75

c2002 J.E. Akin 14

