

IMPLEMENTATION CONSIDERATIONS FOR FPGA-BASED ADAPTIVE

TRANSVERSAL FILTER DESIGNS

By

ANDREW Y. LIN

A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF ENGINEERING

UNIVERSITY OF FLORIDA

2003

Copyright 2003

by

Andrew Y. Lin

ACKNOWLEDGMENTS

I would like to thank my advisory committee members, Dr. Jose Principe, Dr. Karl

Gugel and Dr. John Harris, for their guidance, advice, and encouragement toward

successful completion of this project.

I also thank my fellow Applied Digital Design Laboratory members, Scott

Morrison, Jeremy Parks, Shalom Darmanjian and Joel Fuster, for their unconditional help

of my research everyway they can.

My special thanks go to my parents, who have been supportive and caring

throughout every step of my life, including my graduate years at University of Florida.

Altera Corp. has provided software and hardware in support of my thesis.

iii

TABLE OF CONTENTS
 Page

ACKNOWLEDGMENTS ... iii

LIST OF FIGURES .. vii

ABSTRACT... ix

CHAPTER

1 INTRODUCTION ..1

1.1 Problem Statement..1
1.2 Tradeoffs in Choosing Fixed-point Representation..3
1.3 Motivation and Outline of the Thesis ...5

2 THEORETICAL BACKGROUND ON LINEAR ADAPTIVE ALGORITHMS.......7

2.1 Discrete Stochastic Processes ...7
2.1.1 Autocorrelation Function..7
2.1.2 Correlation Matrix ..8
2.1.3 Yule-Walker Equation..9
2.1.4 Wiener Filters ...10

2.2 Method of Steepest Descent ...12
2.2.1 Steepest Descent Algorithm ...12
2.2.2 Wiener Filters with Steepest Descent Algorithm13

2.3 Least Mean Square Algorithm..14
2.3.1 Overview ..14
2.3.2 The Algorithm ..15
2.3.3 Applications..16

2.3.3.1 Adaptive noise cancellation ...16
2.3.3.2 Adaptive line enhancement ..17

3 FINITE PRECISION EFFECTS ON ADAPTIVE ALGORITHMS18

3.1 Quantization Effects ...19
3.1.1 Rounding ..19
3.1.2 Truncation...21
3.1.3 Rounding vs. Truncation ..22

3.2 Input Quantization Effects..23
3.3 Arithmetic Rounding Effects ..24

iv

3.3.1 Product Rounding Effects...25
3.3.2 Coefficient Rounding Effects ...26
3.3.3 Slowdown and Stalling...27
3.3.4 Saturation..29
3.3.5 Solutions for Arithmetic Quantization Effects ...31

3.4 Simulation Result..31
3.4.1 Rounding vs. Truncation ..32
3.4.2 Effects of Product Rounding at the Convolution Stage..............................33
3.4.3 Effects of Product Rounding at the Adaptation Stage................................35
3.4.4 Clamping Technique ..36
3.4.5 Sign Algorithm ...38

3.5 Remarks ..39

4 SOFTWARE SIMULATION OF A FIXED-POINT-BASED POWER-OF-TWO

ADAPTIVE NOISE CANCELLER...40

4.1 Modular Overview..41
4.2 Data Quantization ...42
4.3 Simulation Results ..43

5 HARDWARE IMPLEMENTATION OF AN INTEGER-BASED POWER OF TWO

ADAPTIVE NOISE CANCELLER IN STRATIX DEVICES..................................45

5.1 Stratix Devices..46
5.1.1 Device Architecture..46
5.1.2 Embedded DSP Blocks...47

5.2 Design Specifications ...48
5.2.1 Structural Overview..48
5.2.2 The Power-of-Two Scheme..49
5.2.3 Data Flow and Quantization...50

5.3 Dynamic Component Instantiation in VHDL...50
5.4 Simulation and Implementation Results...52
5.5 Performance Comparison of Stratix and Traditional FPGAs53

5.5.1 Speed ..54
5.5.2 Area ..54

5.6 Pipelining..55
5.6.1 Optimal Multiplier Pipeline Stages ..57
5.6.2. Optimal Adder-chain Pipeline Stages ...58
5.6.3 Tradeoffs in Introducing Latency into Adaptive Systems..........................60
5.6.4 Performance of the Pipelined Adaptive System...63

5.7 Performance Comparison of FPGAs and DSP Processors65
5.7.1 Speed ..66
5.7.2 Power Consumption ...67

6 CONCLUSION AND FUTURE WORK ...69

6.1 Conclusion ..69

v

6.2 Future Work..71

APPENDIX

A MATLAB SCRIPTS...73

B VHDL CODES ...78

LIST OF REFERENCES...90

BIOGRAPHICAL SKETCH ...93

vi

LIST OF FIGURES

Figure page

1-1. Conventional Adaptive Filter Configuration...2

1-2. Two Options of Quantization ..4

2-1. Block diagram of a Statistical Filtering Problem. ..11

2-2. Block Diagram of an Adaptive FIR Filter ...13

2-3. Adaptive Noise Cancellation Block Diagram ...17

2-4. Adaptive Line Enhancer Block Diagram...17

3-1. Rounding Effects ..20

3-2. Truncation Effects ..21

3-3. MAC Unit Block Diagram ..25

3-4. System Identification Block Diagram ...32

3-5. Experimental Setup for Rounding vs. Truncation ...32

3-6. Simulation Result for Rounding vs. Truncation..33

3-7. Additional Quantizers at the Convolution Stage ...34

3-8. Effects of Product Quantization at the Convolution Stage..34

3-9. Additional Quantizers at the Adaptation Stage ...35

3-10. Effects of Product Quantization at the Convolution and Adaptation Stages............36

3-11. Tap weight Track for Clamping Technique ..37

3-12. Misadjustment Plot for Clamping Technique..38

3-13. Misadjustment for Sign Algorithm vs. LMS...39

4-1. Adaptive Noise Canceller Block Diagram ...41

vii

4-2. Internal Structure of the Noise Canceller with Quantizers...42

4-3. Weight Tracks for Fixed-point Systems..43

4-4. Misadjustment Plots of Fixed-point Systems and a Floating-point System..............44

5-1. Stratix Device Block Diagram..47

5-2. Embedded DSP Block Diagram ...48

5-3. Adaptive Transversal Filter Block Diagram..49

5-4. Waveform Simulation Result of the Adaptive Noise Canceller................................52

5-5. Logic State Analyzer Result of the Adaptive Noise Canceller53

5-6. Plot of Filter Order vs. Speed ..54

5-7. Plot of Filter Order vs. Area ...55

5-8. Pipelined Multiplier Test Module..57

5-9. Maximum Data Rate of three Multipliers with Various Pipeline Stages58

5-10. Adder-chain Test Module..59

5-11. Adder-chain Data Rate with Respect to Number of Adders59

5-12. Pipelined and Buffered Adaptive System Block Diagram60

5-13. Time-aligned Adaptive System Block Diagram...63

5-14. Pipelined Adaptive System Performance ...64

5-15. Power Consumption Plot for Various Devices..67

viii

Abstract of Thesis Presented to the Graduate School

of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Engineering

IMPLEMENTATION CONSIDERATIONS FOR FPGA-BASED ADAPTIVE
TRANSVERSAL FILTER DESIGNS

By

Andrew Y. Lin

August, 2003

Chair: José C. Príncipe
Major Department: Electrical and Computer Engineering

Adaptive filters have become vastly popular in the area of digital signal processing.

However, adaptive filtering algorithms assume infinite-precision whereas in reality,

digital hardware is of finite-precision. The effects of finite-precision on adaptive

algorithms are studied in this thesis and techniques rendering these effects are presented.

Simulation results are also presented to verify the techniques targeting specifically to the

Least Mean Square (LMS) algorithm. Finally, a fixed-point-based adaptive transversal

filter is simulated in a new family of FPGA devices with embedded DSP blocks. The

cost-benefit and tradeoff of pipelining are studied. The performance of this new family

of FPGA devices is compared against DSP processors, as well as traditional FPGA

devices that do not have embedded DSP blocks.

ix

CHAPTER 1
INTRODUCTION

1.1 Problem Statement

Significant contributions have been made in the past thirty years in the signal

processing field. Particularly digital signal processing (DSP) systems have become

attractive due to the advances in digital circuit design and the systems’ reliability,

accuracy and flexibility. One of the DSP applications is called filtering, where the digital

system’s objective is to process a signal in order to manipulate the information contained

in the input signal. As described in DiCarlo [7], a filter is a device that maps its input

signal to another output signal facilitating the extraction of the desired information

contained in the input signal. For a time-invariant filter, the internal parameters and the

structure of the filter are fixed. Once specifications are given, the filter’s transfer

function and the structure defining the algorithm are fixed.

An adaptive filter is time-varying since their parameters are continually changing in

order to meet certain performance requirement. Usually the definition of the

performance criterion requires the existence of a reference signal, which is absent in

time-invariant filters. The general set up of an adaptive filtering environment is

illustrated in Figure 1-1, where n is the iteration index, x(n) denotes the input signal, y(n)

is the adaptive filter’s output signal, and d(n) defines the reference or desired signal. The

error signal e(n) is the difference between the desired d(n) and filter output y(n). The

error signal is used as a feedback to the adaptation algorithm in order to determine the

appropriate updating of the filter’s coefficients, or tap weights. The minimization

1

2

objective is for the adaptive filter’s output signal matching the desired signal in some

sense.

Figure 1-1. Conventional Adaptive Filter Configuration

The minimization objective can be viewed as a function of the input, desired, and output

signals, or consequently a function of the error signal. One of the most commonly used

objectives is to minimize the mean square error, that is, the objective function is defined

as

)]([)]([2 neEneF = . (1.1)

Adaptive filters can be implemented either in Finite Impulse Response (FIR) form

or in Infinite Impulse Response (IIR) form. FIR filters are usually implemented in non-

recursive structures, whereas IIR filters employ recursive realizations. In the case of FIR

realizations, the most widely used adaptive filter structure is the transversal filter, also

known as tapped delay line structure.

As will be derived in Chapter 2, all adaptive algorithms including the Least Mean

Square (LMS) algorithm for example, assume infinite precision. In other words, there is

infinite storage for information needed to perform adaptation. However, it is not the case

3

in reality, where computers or digital hardware which implement adaptive algorithms all

contain limited storage for information, that is, numbers are stored in finite precisions.

Due to finite precisions in digital hardware, quantization must be performed in

either or all of the following areas:

• Input and reference signals;

• Product quantization in convolution stage;

• Coefficient quantization in adaptation stage.

Quantization noise is introduced in all of the above areas. The effects of quantization are

discussed in this thesis.

DSP applications including adaptive systems have traditionally been implemented

with either fixed-point or floating-point microprocessors. However, with its growing die

size as well as incorporating the embedded DSP block, the FPGA devices have become a

serious contender in the signal processing market. Although it is not yet feasible to use

floating-point arithmetic in modern FPGAs, it is sufficient to use fixed-point arithmetic

and still achieve tap-weight convergence for adaptive filters. This thesis also investigates

the performance among FGPAs and DSP processors in terms of speed and power

consumption.

1.2 Tradeoffs in Choosing Fixed-point Representation

Since infinite precision is not available in the real world, tradeoffs must be made in

implementation of adaptive systems in finite precision. By increasing the wordlength, a

system can increase the data precision in which it can represent. However, the amount of

hardware also increases, and that leads to larger circuitry and slower system speed. If

wordlength is insufficient, saturation or stalling may occur due to the inadequacy of data

4

storage, even though smaller wordlength reduces amount of hardware. Therefore, the

system engineer must deal with the tradeoffs between overall feasibility of the

implementation, and the functionality of the system.

Quantization may create effects such as saturation and stalling. These effects, if

not dealt with carefully, may render the adaptive filter useless. Let us take multiplication

as an example for illustration: when two N-bit numbers are multiplied, the result is 2N

bits and the product is usually quantized into a number that is M-bit long, where M<2N.

Refer to Figure 1-2, there are two options for quantization: a) the upper significant bits

are quantized resulting loss of large amount of information; b) the lower significant bits

are quantized resulting loss of data precision.

a) Quantize upper significant bits b) Quantize lower significant bits

Figure 1-2. Two Options of Quantization

By choosing option a), one is exposed to the danger of saturation, where the filter

becomes useless due to the loss of large amount of information. Saturation may be

avoided by increasing the wordlength, or by the clamping technique. Alternatively, if

option b) is chosen, stalling phenomenon may occur when tap weight update parameters

5

become smaller than the least significant bit of the binary representation and

consequently are quantized into zeros. When stalling occurs, the adaptation process is

terminated prematurely due to lack of update information. We will show that stalling

may be avoided by either incrementing the step size parameter, use the sign algorithm, or

by dithering.

Slowdown may also occur in finite precision environments, in which the tap weight

convergence is slower than in infinite precision environments. We will show that

wordlength of the tap weights plays significant parts in cause of slowdown and by

allocating more bits to represent coefficients, slowdown can be avoided.

1.3 Motivation and Outline of the Thesis

As stated earlier, adaptive filters have become growing interests in the DSP field.

Most adaptive algorithms that run inside the adaptive filters have been derived under the

assumption of infinite precision. However, since finite precision takes place in the real

world, it is advantageous to study what effects finite precision can impose on adaptive

filters and furthermore what techniques may be employed to mitigate, if not eliminate

these effects.

Once the effects are studied thoroughly, a finite precision based adaptive filter is

implemented by first experimenting in software environment to obtain feasibility, and

then turning the software experiment into digital hardware realization.

Chapter 2 presents the theoretic backgrounds on adaptive algorithms, and the LMS

algorithm is derived. Chapter 3 focuses on the effects created by finite precision

environment as well as techniques to reduce such effects. Chapter 4 demonstrates a

software implementation of a finite precision based adaptive filter where in Chapter 5,

based on the feasibility analysis from Chapter 4, details of a transversal adaptive filter

6

implemented in an FPGA device is given. In order to boost data rates, pipelining is

implemented. Tradeoffs in introducing pipelining are also studied. Comparison is also

presented in choosing hardware for adaptive DSP application implementation. Finally,

conclusion and future work are presented in Chapter 6.

CHAPTER 2
THEORETICAL BACKGROUND ON LINEAR ADAPTIVE ALGORITHMS

2.1 Discrete Stochastic Processes

In most signals and systems discussion, the signals are defined by analytical

expressions, difference equations or even arbitrary graphs. However most signals in the

real world are random, or containing random components due to factors such as additive

noise or quantization errors. Such signals therefore, require the use of statistical methods

rather than analytical expressions for their descriptions.

Haykin [16] defines the term stochastic process as a term to describe the time

evolution of a statistical phenomenon according to probabilistic laws. The time evolution

implies that the stochastic process is a set of functions of time. According to

Probabilistic laws implies that the outcomes of the stochastic process cannot be

determined before conducting experiments.

A stochastic process is not a single function of time. Rather, it represents an

infinite number of different realizations of the process [16]. One example of the

realizations is a discrete-time series, in which the process is sampled at each sampling

period. For example, the sequence [u(n), u(n-1), …, u(n-M)] represents a partial

discrete-time observation consisting samples of the present value and M past values of

the process.

2.1.1 Autocorrelation Function

Consider a discrete-time series representation of a stochastic process [u(n), u(n-1),

…, u(n-M)], the autocorrelation function is defined as following:

7

8

r(n, n-k) = E[u(n)u*(n-k)], k = 0, +1, +2, … (2.1)

Where E[] denotes the expectation operator and * denotes complex conjugate. This

second-order characterization of the process offers two important advantages: First, it

lends itself to practical measurements and second, it is well suited for linear operations on

stochastic processes [16].

Note that if only real-world signals are considered, the conjugate form is omitted

and the auto-correlation is simply the mean square of the signal. This consideration is

true for the rest of the thesis.

The autocorrelation function described in equation 2.1 depends only on the

difference between the observation time n and n – k, or the lag k. Therefore,

 r(n, n – k) = r(k) . (2.2)

2.1.2 Correlation Matrix

Let the M-by-1 observation vector u(n) represent the discrete-time series u(n), u(n-

1), …, u(n-M+1). The composition of the vector can then be written as

 u(n) = [u(n), u(n-1), …, u(n-M+1)]T , (2.3)

where T denotes transposition.

The correlation matrix of a discrete-time stochastic process can be defined as the

expectation of the outer product of the observation vector u(n) with itself. The dimension

of the correlation matrix is M-by-M and is denoted as R as following:

 R = E[u (n)uT (n)] . (2.4)

By substituting Eq. (2.3) into Eq. (2.4) and using the property defined in Eq. (2.1), the

expanded matrix form of the correlation matrix can be expressed as follows:

9

 . (2.5)



















+−+−

−−
−

=

)0()2()1(

)2()0()1(
)1()1()0(

rMrMr

Mrrr
Mrrr

R
L

MOMM

L

L

2.1.3 Yule-Walker Equation

An autoregressive process (AR) of order M is defined by the difference equation

 u(n) + a1u(n-1) + a2u(n-2) + … + aMu(n-1) = v(n) , (2.6)

where a1, a2, …, aM are constants and v(n) is white noise. Eq. (2.6) can be rewritten in the

form

 u(n) = w1u(n-1) + w2u(n-2) + … + wMu(n-1) + v(n) , (2.7)

where wk = -ak. Eq. (2.7) states that the present value of the process, u(n), is a finite

linear combination of past values, u(n-1), u(n-2), …, u(n-M), plus an error term v(n).

By multiplying both sides of Eq. (2.6) by u(n – l), where l > 0, and then applying

the expectation operator, we obtain the following equation:

 . (2.8) [])()()()(
0

lnunvElnuknuaE
M

k
k −=












−−∑

=

Since the expectation E[u(n – k)u(n – l)] equals to the autocorrelation function of

the AR process with lag of l – k, and the E[v(n)u(n – l) is zero for l > 0, Eq. (2.8) can be

simplified to

 l > 0 . (2.9) ,0)(
0

=−∑
=

klra
M

k
k

The autocorrelation function of the AR process thus satisfies the difference equation

r(l) = w1r(l – 1) + w2r(l – 2) + … + wMr(l – M), l > 0 . (2.10)

10

By expanding Eq. (2.10) for all l = 1, 2, …, M, a set of M simultaneous equations is

formed with the values of the autocorrelation function as known quantities and the AR

parameters as unknowns. The set of equations may appear in matrix form

 (2.11)



















=





































+−+−

−−
−

)(

)2(
)1(

)0()2()1(

)2()0()1(
)1()1()0(

2

1

Mr

r
r

w

w
w

rMrMr

Mrrr
Mrrr

m

MM

L

MOMM

L

L

This set of equations in (2.11) is called the Yule-Walker Equations. By using the

expression introduced in Eq. (2.5), the Yule-Walker equations may be written in its

compact matrix form

 Rw = r . (2.12)

Assume that R-1 exists, the solution for the AR parameters can be obtained by

 w = R-1 r . (2.13)

2.1.4 Wiener Filters

Consider a Finite Impulse Response (FIR) filtering problem described in Figure 2-1,

the input of the filter consists of time series u(0), u(1), u(2), …, and the filter has an

impulse response, or tap weights, w0, w1, …, wM, where M is the length of the filter. The

impulse response are selected so that the filter output match as closely as possible with a

desired signal denoted by d(n). The estimation error e(n) is defined as the difference

between d(n) and the filter output y(n). Statistical optimization may be applied to

minimize e(n). One such optimization is to minimize the mean square value of e(n).

According to the Principle of Orthogonality, if the FIR filter depicted in Figure 2-1

operates under optimum condition, the filter output y[n] best estimates the desired signal

11

d[n]. The Wiener-Hopf equation is derived from the same principle to solve for the

optimum condition.

Figure 2-1. Block diagram of a Statistical Filtering Problem.

Let R be the M-by-M correlation matrix of the filter inputs u(n), where u(n) = [

u(n), u(n-1), …, u(n-M+1)]. According to Eq. (2.3) to (2.5), the correlation matrix is in

the form of

 (2.14)



















+−+−

−−
−

=

)0()2()1(

)2()0()1(
)1()1()0(

rMrMr

Mrrr
Mrrr

R
L

MOMM

L

L

Also let p denote the M-by-1 cross correlation vector between the filter inputs and the

desired response:

p = E[u(n)d(n)] , (2.15)

or in the expanded vector form:

 p = [p(0), p(-1), …, p(1-M)]T . (2.16)

The Wiener-Hopf equation is thus defined as the following:

 Rwo = p , (2.17)

where wo is the M-by-1 optimum tap weight s of the FIR filter described in Figure 2-1.

To solve for the Wiener-Hopf equation for wo, we assume that R-1 exists and multiply it

to both sides of Eq. (2.17) to obtain the following:

12

 wo = R-1p (2.18)

Note that in order to calculate the optimum tap weight vector wo with Eq. (2.18),

both the autocorrelation matrix of the filter input and the cross-correlation vector between

input and desired have to be known a priori, that is, the statistical information of the

entire tap inputs vector and the desired are known before wo is calculated. Eq. (2.18) is

also computational expensive, an inverse operation of an M-by-M matrix is performed

follow by a matrix-vector multiplication.

2.2 Method of Steepest Descent

As described in Section 2.1.4, the Wiener filter employs the minimization of the

mean square of its error signal e(n) to optimally match the filter output signal y(n) with

the desired signal d(n) employs the minimization of the mean square of its error signal

e(n). Furthermore, the particular Wiener filter has fixed tap weights for all filter inputs

and the tap weights are calculated a priori using the Wiener-Hopf Equation.

The method of steepest descent involves updating the tap weights of the filter at

each time step in a feedback system. It does not require the entire statistics of the filter

inputs; instead, it provides an algorithmic solution that allows for the tracking of time

variations in the signal’s statistics without having using the Wiener-Hopf Equation.

2.2.1 Steepest Descent Algorithm

Let us define J(w) to be the cost function of some unknown weight vector w and

that J(w) is continuously differentiable with respect to w. The optimum weight vector wo

thus satisfies the following condition:

 J(wo) < J(w) for all w. (2.19)

Eq. (2.19) may be extended according local iterative descent. An initial

presumption for J(w) is made, at each time interval, a new set of w is generated so that

13

 J(w(n+1)) < J(w(n)) , (2.20)

where w(n) is the previous tap weight vector and w(n+1) is the updated version.

One particular method of the local iterative descent is the method of steepest

descent. At each iteration, the tap weight vector is adjusted in the direction opposite to

the gradient vector of the cost function J(w). The gradient vector is defined as

w
wJg

∂
∂

=
)((2.21)

Therefore the steepest descent algorithm is defined as

 w(n+1) = w(n) – µg(n) (2.22)

The term µ is the step size. Details of the step size are given later. Justification for Eq.

(2.22) satisfying the criteria defined in Eq. (2.20) can be seen in [16].

2.2.2 Wiener Filters with Steepest Descent Algorithm

Figure 2-1 depicts a Wiener filter with fixed tap weights where the tap weights are

optimal and are calculated using the Wiener-Hopf equation. There is no adjustment to

the weights. By incorporating the method of steepest descent, a new structure of the

Wiener filter with weight adjustment is shown in Figure 2-2.

Figure 2-2. Block Diagram of an Adaptive FIR Filter

14

The gradient function g(t) may be in the form of the autocorrelation matrix of the filter

inputs and the cross-correlation vector between filter input and the desired response, if

the cost function J(w) is a function of t, as described in Eq. (2.20) [16]. Eq (2.22) can

then be rewritten as

 w(n+1) = w(n) – µ [p – Rw(n)] , (2.23)

where p denotes the cross-correlation vector, R denotes the autocorrelation matrix and µ

denotes step size. In order to guarantee convergence of the steepest descent algorithm,

two conditions must be satisfied:

• The process is wide-sense stationary.

•
max

10
λ

µ << , where maxλ is the largest eigenvalue of R.

2.3 Least Mean Square Algorithm

The most widely used adaptive algorithm is the Least Mean Square (LMS)

algorithm. The key feature of the LMS algorithm is its simplicity. It requires neither any

measurement of the correlation function, nor any matrix inversion or multiplication.

2.3.1 Overview

The LMS adaptive filter bears the same structure as the one shown in Figure 2-1.

The filter output y(n) should be made to resemble the desired signal d(n). The difference

of d(n) and y(n) is the error signal e(n). As described in Section 2.2, a linear adaptive

filter consists of two basic processes. The first process involves performing convolution

sum of the filter taps with the tap weights. The other process involves performing

adaptation process on the tap weights. In the case of the LMS algorithm, the weight

adjustments requires the current error signal e(n) along with filter taps to produce the

updated tap weight vectors. Details of the algorithm are given in the next section.

15

2.3.2 The Algorithm

The Steepest Descent method has progressed from a fixed tap-weight structure to a

step-by-step adaptive structure. However, when applying Steepest Descent method into

the Wiener filter, we still require prior knowledge of the autocorrelation matrix R and the

cross-correlation vector p. In order to avoid measurement of any correlation function and

avoid any matrix computations, and to establish a truly adaptive system, estimates of R

and p are calculated using only available data.

The simplest estimation may use only the current available taps and the current

desired response to estimate autocorrelation matrix and cross-correlation vector. The

new equation to adapt tap weights using the instantaneous taps and desired response,

according to Eq. (2.23), is therefore given as follows:

w(n+1) = w(n) + µu(n)[d(n) – u(n)w(n)] . (2.24)

Since the filter output is the convolution sum of the taps and tap weights, or

 y(n) = u(n)w(n) . (2.25)

Furthermore, the estimated error signal e(n) is defined as the difference between the

desired response and the filer response, or

 e(n) = d(n) – y(n) (2.26)

Therefore, Eq. (2.24) can be rewritten in terms of the error signal and the taps:

w(n+1) = w(n) + µu(n)e(n) (2.27)

Eq. (2.27) is the formula for the LMS algorithm. As illustrated in the equation,

each tap weight adaptation at each time interval requires merely the knowledge of the

current taps and the current error signal, which is produced with the knowledge of the

desired response. The algorithm does not require any prior knowledge of the entire

16

autocorrelation matrix or the cross-correlation vector, nor does it require matrix

computations.

The algorithm requires an initial “guess” of the tap weight vector. In general, if no

prior knowledge of the environment is known, the tap weight vector is initialized to all

zeros.

The step size parameter, µ, plays an important role in determining the LMS

algorithm’s speed of convergence and misadjustment (the difference between true

minimum cost value Jinf and the minimum cost value produced by the LMS algorithm).

Unfortunately, there is no clear mathematical analysis to derive the quantities. Only

through experiments may we obtain a feasible solution. Several authors including

authors in [1] have proposed modified LMS algorithm in which the step size parameter is

a part of the adaptation along with tap weights. In general, µ should obey the following

inequality:

 0 < µ <
max

2
MS

 , (2.28)

where M is the filter length and Smax is the maximum value of the power spectral density

of the tap inputs [16].

2.3.3 Applications

The LMS algorithm is considered the most widely used adaptive algorithms for

many signals and systems applications. Here we present two applications as examples.

2.3.3.1 Adaptive noise cancellation

Figure 2-3 describes a simple structure on interference noise canceling where the

desired response is composed of a signal s(n) and a noise component v(n), which is

uncorrelated with s(n). The filter input is a sequence of noise, v’(n), which is correlated

17

with the noise component in the desired signal. By using the LMS algorithm inside the

adaptive filter, the error term e(n) produced by this system is then the original signal s(n)

with the noise signal v(n) cancelled.

Figure 2-3. Adaptive Noise Cancellation Block Diagram

2.3.3.2 Adaptive line enhancement

A sinusoidal waveform, denoted by s(n), is transmitted thru a medium and is

corrupted by noise, denoted by v(n). A delayed version of this corrupted signal serves as

the input of the LMS adaptive filter and the original corrupted signal serves as the desired

signal. The adaptive filter’s output y(n) becomes an enhanced version of the original

sinusoid. The block diagram for the line enhancer is shown in Figure 2-4.

Figure 2-4. Adaptive Line Enhancer Block Diagram

CHAPTER 3
FINITE PRECISION EFFECTS ON ADAPTIVE ALGORITHMS

Theories of adaptive algorithms such as the LMS algorithm presented in Chapter 2

assume the systems to be models with real values, that is, the systems retain infinite

precision for the input signal, the internal calculations, as well as the result of the system.

But in reality, computers or digital hardware that implement adaptive algorithms all

involve finite precision architectures. The analog input signals have to first be converted

digitally before it is fed into the system; the arithmetic operation results have to be

quantized or even scaled to prevent overflow of the registers. If not dealt with carefully,

these factors can cause a disastrous outcome on the adaptive system.

There are two ways to represent a value based on finite precision: fixed-point and

floating-point. In fixed-point representation, the radix point is fixed by specifying

number of bits for integer part and number of bits for fractional part. Although it has a

restricted dynamic range of numbers it can represent, the fixed-point representation’s

resolution is fixed. In floating-point representation, the total number of bits is fixed but

the radix point can “float” anywhere, resulting a wider dynamic range of numbers in

which it can represent. However, since the radix point floats, the resolution is not fixed

and therefore quantization is required at both additions and multiplications, which creates

more quantization noise. Conversely, quantization is required only after multiplications

in fixed-point arithmetic. Since we are dealing with minimizing the effects due to finite

precision in this chapter, it is desirable to choose fixed-point representation for analysis.

18

19

Additionally, since the radix point is fixed for fixed-point representation, adders

and multipliers have much simpler logic equations than for floating-point representation.

This initiative leads to simpler circuit design and better circuit performance in terms of

speed. For hardware implementations of DSP applications, it is advantageous to choose

fixed-point based architectures.

Chapter 3 presents some of the common effects, as well as some well-known

techniques against these effects in dealing with finite precision adaptive systems.

3.1 Quantization Effects

Due to finite precision architectures of most digital hardware, the analog input

signal, as well as each register that holds any intermediate or final arithmetic results has

to be quantized within certain wordlength. Quantization can be done in two ways:

rounding and truncation. These two techniques will be discussed in details in this Section.

The quantizing step is defined as the weight of the least significant bit of the binary

representation and is denoted by q. It will be shown that errors created by quantization

are directly related to the quantizing step.

3.1.1 Rounding

Quantization by rounding leads an infinite precision value to a result of a finite

precision code whose value is closest to the actual value [8]. If q is the quantizing steps,

the sampled value lying between qn 




−

2
1


 and qn 






 +

2
1 are all rounded to .

Mathematically, rounding can be expressed as the following:

nq

,)(nqnTfr = qnnTqn 





 +<≤






 −

2
1

2
1 . (3.1)

20

Figure 3-1 shows the rounding result of a continuous signal of an arbitrary sinusoid

rounded to the nearest integer values, i.e., q = 1.

Figure 3-1. Rounding Effects

Let x be the error caused by rounding, x then can be assumed to be a uniformly

distributed random variable between
q
2

− and
q
2 . The probability density function for

rounding error, according to definitions given in [22], is shown in Eq. (3.2).










>

≤
=

2
,0

2
,1

)(
qxif

qxif
qxpr . (3.2)

Since the probability density function of the rounding error is uniformly distributed

between
2
q

− and
2
q , the expectation of the rounding error, denoted by , is given by)(xEr

0)()(
2/

2/

=== ∫ ∫
−

dx
q
xdxxxpxE

q

q
r . (3.3)

21

The variance, or the power spectral density of the rounding error, denoted by 2
rσ , is

derived by its definition and is equal to

[]
12

)()()(
22/

2/

2
2222 qdx

q
xxExExE

q

q
rrr ===−= ∫

−

σ (3.4)

3.1.2 Truncation

Quantization by truncation leads an infinite precision value to a finite precision

result that is closest to but always less than the value [8]. Again, if q is the quantizing

step, the value lying between and nq qn)1(+ is truncated to nq . Truncation is expressed

in the following equation:

,)(nqnTft = ()qnnTnq 1+<≤ . (3.5)

Figure 3-2 shows the truncated result of the same continuous signal used in Figure 3-1

truncated to the nearest integer values with sampling period T = 0.1.

Figure 3-2. Truncation Effects

22

Let x be the error caused by truncation, x then again can be assumed uniformly

distributed between and 0. The probability density function for the truncation error is

therefore

q−







>

≤≤−
=

0,0

0,1
)(

x

xq
qxpt . (3.6)

Again by assuming the probability density function of the truncation error is

uniformly distributed between q− and 0, the expectation of the truncation error, denoted

by , is given by)(xEt

2
)()(

0 qdx
q
xdxxxpxE

q
t −=== ∫ ∫

−

 . (3.7)

The power spectral density of the truncation error, denoted by , is equal to 2
tσ

 []
124

)()(
220 2

222 qqdx
q
xxExE

q
ttt =−=−= ∫

−

σ . (3.8)

3.1.3 Rounding vs. Truncation

From the above derivations of both the mean and the variance (power) of two

different quantization techniques, we can see that although they produce the same error

power, rounding the number results in zero mean error while truncation results in mean

error of
2
q

− . The errors associated with a nonzero value, although small, tend to

propagate through the filter [8]. It is especially true in adaptive filters, since the filter is

not only a linear systems, in that any error terms are processed by the filter just as an

input and thus contaminate the output of the filter; but the filter is also a feedback system,

in that error signal produced in the output circulates back to the filter to create even more

23

errors. Therefore, rounding is more attractive compare to truncation when it comes to

signal quantization. Simulation results in Section 3.4.1 will verify this finding.

3.2 Input Quantization Effects

Before an analog signal may be accepted for processing by a digital system, such as

a computer or microprocessor, it must be converted into digital form. The first step in the

digitization process is to take samples of the signal at regular time intervals to convert a

continuous signal with time variable t into real instances with sample variable n. Next,

the instances are quantized. That is, the amplitudes of the instances are converted into

discrete levels, and then we assign these discrete levels as quantization levels. Finally,

the quantized instances are encoded into a sequence of binary codes according to each

instance’s quantization level.

This process of sampling, quantization and encoding is usually called analog-to-

digital (A/D) conversion.

The difference between the actual analog input sample and the corresponding

binary-coded quantized value is called quantization noise and is the first source of

degradation [3].

As shown in Section 3.1, the mean error and power spectral density is zero and
12

2q ,

respectively, if rounding is used. After quantization, the input to the filter becomes

)()()(nTnTfnTfq ε+= , (3.9)

where is the original sampled signal and)(nTf)(nTε is the quantization noise. Since the

filter is a linear system, the noise signal is also filtered by the filter’s transfer function.

We will show now how the newly introduced noise term affects the filter’s output.

24

Let l be the number of bits to represent the quantized signal, then the signal’s

maximum allowable amplitude is

2
2l

m
qA ⋅

= . (3.10)

Further the signal’s peak power, denoted by pc, is defined as the power in which the

quantized signal can pass without clipping. Thus, Pc is given by

() 322
2

2 2
2
2

2
1

2
1 −=









 ⋅
== l

l

mc qqAP . (3.11)

Under the assumption that the quantization noise has zero mean and variance
12

2q ,

that is, rounding is used instead of truncation, the ratio of the peak power and the input

quantization noise, denoted by Ri, is therefore

)2(3 12
2

−== l

r

c
i

P
R

σ
 , (3.12)

or

dBlSNRi 76.102.6 += . (3.13)

For example, a 16-bit input quantizer’s signal to noise ratio is ideally according to Eq.

(3.13), approximately 100dB. The calculation is done without considering any other

noise source. In practice, however, in order to obtain the desired signal to noise ratio, one

more bit is added to ensure filter’s ideal SNR performance.

3.3 Arithmetic Rounding Effects

Digital implementation of filters, including adaptive filters, relies heavily upon

arithmetic operations. There are two processes involved in an adaptive system, the

convolution of the tap weights with its taps, and the adaptation process to update the

coefficients. The Multiply-and-Accumulate (MAC) operation is central for performing

25

these two processes. Specifically, for an adaptive FIR filter using the LMS algorithm,

(M+1) multiply-and-Accumulate operations are needed for calculating the convolution,

where M is the filter length. On top of that, refer to the LMS equation given in Eq.

(2.27), each tap weight update requires a MAC operation. Therefore, 2 MAC

operations are needed for an adaptive FIR filter with LMS algorithm. Note that Eq.

(2.27) involves two multiplications before a tap weight is updated, but if power-of-two

scheme is used, the step-size parameter multiplication becomes a bit-wise shift right

operation. Details of this scheme are discussed in Chapter 5.

)1(+× M

As stated earlier, if fixed-point representation is used, quantization only needs to be

performed after multiplications, not after addition. Therefore, the source of quantization

noise is from the multiplications at both the convolution stage and at the adaptation stage.

The effects of product quantization are discussed below.

3.3.1 Product Rounding Effects

Consider a fixed-point MAC unit shown in Figure 3-3, where two N-bit numbers

are multiplied, rounded to an N-bit product, and then accumulated with another N-bit

number to get an N-bit MAC result.

Figure 3-3. MAC Unit Block Diagram

Assume the Quantization is done by rounding, the same statistical results hold for the

product quantization, where the error created by rounding has power spectral density

26

of
12

2q . Since the adaptive LMS filter contains)1(2 +× M MAC operations, and again

assuming absence of any other noise source, the total error power spectrum produced by

product quantization is

6

)1(
12

)1(2
22 qMqMp

+
=+=ε . (3.14)

Given peak power Pc defined in Eq. (3.11), the ratio of the peak power and the product

quantization noise, denoted by Rp is therefore

1
2

4
3

6
)1(

2 2

2

322

+
⋅=

+
==

−

MqM
qP

R
ll

p

c
p ε

 , (3.15)

or
 dBMlSNRp 25.1)1log(1002.6 −+−= . (3.16)

For example, a 9th order LMS FIR adaptive filter with 16-bit wordlength has signal to

noise ratio of about 85dB due to product quantization. Again, the calculation is

performed by assuming no any other noise sources.

3.3.2 Coefficient Rounding Effects

In this section, we wish to analyze how product quantization noise is created due to

coefficient rounding in the tap weight adaptation. The LMS algorithm updates the filter’s

coefficients, or tap weights according to Eq. (2.27), which is replicated here:

w(n+1) = w(n) + µu(n)e(n) . (3.17)

As shown in the above equation, the update parameter, namely µu(n)e(n), must be

quantized to less than or equal to wordlength of w(n) in order to produce the proper result

for the updates. Again, the update parameter only involves one set of multiplication if

the step size parameter is power-of-two. The quantization of the update parameter results

27

in quantization noise described in the previous section, that is, for an Mth-order FIR

filter, the tap weight updates result in noise power of
12

)1(2qM + .

Since coefficient quantization is performed on the tap weights, i.e., before the

convolution stage, the quantization noise associated with coefficient quantization is also

process at the convolution stage. Therefore, the adaptive systems are more sensitive

toward coefficient quantization.

Coefficient quantization may result in slowdown or stalling phenomenon, in which

the rate of convergence is either slower or after convergence, tap weights fail to comply

with the weights if infinite precision were used. The slowdown and stalling phenomenon

will be studied in next section. Furthermore, noise produced by coefficient quantization

can be potentially hazardous if an IIR filter structure is used. Since the coefficients

directly affect the stability of an IIR filter, in that any noise introduced in the coefficients

may shift the poles outside of the unit circle and cause the IIR filter to diverge the output.

3.3.3 Slowdown and Stalling

The LMS algorithm may stop adapting due to the finite precision implementation of

the digital hardware. If the result of the update parameter, namely)()(nune ⋅⋅µ is less

than the least significant bit of the binary representation after quantization, that is, if

qnuneQ <⋅⋅))()((µ , (3.18)

where q is the quantizing step, the adaptation fails to update due to the fact that if the

update parameter is less than q, it is quantized into zero.

The step size parameter µ plays an essential role for LMS algorithm stalling. It can

be shown in [7] that by incorporating a lower bound for µ, the stalling phenomenon can

be avoided. The lower bound is described below:

28

224 neu

q

σσσ
µ

+
> , (3.19)

where and denote variance of the error signal and variance of the quantization

noise, respectively. By combining Eq. (3.19) with Eq. (2.28), the range of µ is restricted

to the following:

2
eσ 2

nσ

max22

2

4 MS
q

neu

<<
+

µ
σσσ

 . (3.20)

Also according to [23], with fixed-point arithmetic, it can be advantageous to leave µ as a

higher value when possible.

The sign algorithm is another way of preventing stalling and is presented in [19].

Instead of calculating the update parameter by multiplying the tap and the error term, the

sign algorithm only takes the sign of the error term into consideration. That is, the update

parameter is calculated as following:

[])()()()1(nesignnnn uww ⋅⋅+=+ µ . (3.21)

The sign algorithm decreases the chance of stalling and simplifies the hardware

requirements. Since no multipliers are needed to update tap weights, the sign algorithm

also decreases noise created by product quantization. Although the sign algorithm

introduces nonlinearity in the adaptation process, it does not prevent the algorithm from

converging. However, the sign algorithm will always converge slower than the LMS

algorithm [5].

Another method involving dithering is proposed by [16] to prevent stalling. Here

dithers are inserted at the input of the quantizers of update parameters, where a dither

consist of a random sequence that, if added to the input, guarantee the input to be greater

29

than the quantization step. The effect of additive dither can be eliminated by shaping the

power spectrum of the dither so that it is rejected by the algorithm anyways.

The LMS algorithm running under finite precision also may encounter the

slowdown phenomenon, in which the effect of quantization causes the rate of

convergence to be slower than its infinite counter part. In this case, the tap weights may

achieve the intended values only at a slower rate. The slowdown phenomenon can be

eliminated by proper choice of data and coefficient wordlength. It is shown in [15] that

for most practical cases, more bits should be allocated to coefficients than input data to

prevent slowdown.

3.3.4 Saturation

A filter’s internal registers to hold any arithmetic results are fixed. It is possible for

an arithmetic result to overflow during addition and multiplication, that is, the number of

bits to represent the integer part of the summation does not store all the necessary

information. Such a phenomenon is called Saturation. For example, refer to Figure 3-4,

which shows a MAC operation of two N-bit numbers. Saturation may occur when two

N-bit numbers are added to produce an N-bit sum, since (N+1) bits are needed to

represent a full addition without concerning saturation. Similarly, saturation can also

occur when two N-bit numbers are multiplied and the product is quantized to M bits,

where M < 2N. Saturation can introduce major distortions into a system’s output, since

large amount of information is vanished due to the loss of the upper significant bits of the

addition or multiplication result.

Saturation can render a filter useless. Therefore, it is essential for the filter designer

to study the nature of the input data to eliminate the effects of saturation.

30

One of the most common solutions for saturation is to scale the input signals [8].

By scaling down the input signals, the probability of any internal arithmetic overflow is

decreased. However, as suggested in [25], input scaling also decrease the precision of the

data and may result in rough filter outputs or even stalling. This is of particularly

interests for the LMS adaptive filter, since the criteria for the performance of such filter is

the misadjustment of the error signal. Misadjustment, as defined in Chapter 2, is the

difference between the weights produced by the optimum Wiener solution and the

adapted weights produced by the LMS adaptive filter. Therefore, tradeoffs exists as to

the amount of scaling applied to input signal to avoid saturation, at the same time retain

or minimize misadjustment due to the effect of scaling. The only way to achieve such

goal is to carefully study the nature of the input data and calculate the upper bound of the

magnitude of the input signals.

Besides scaling the input signals, increasing wordlength can also reduce the effect

of saturation, that is, to increase the number of bits for each registers. However, this

technique may not be available for some digital implementations. For example, common

DSP processors have fixed wordlength and cannot be modified. Also, wordlength

increment introduces more hardware and reduces the speed of the digital hardware

considerably.

Another way to minimize the effects of saturation is proposed by [25] called

clamping. Clamping will, upon detecting an overflow, clamp the adder’s output to the

most positive or negative values. That is, the output of an N-bit adder is defined as

following:

31









−≤−
−<<−

≥−
=

−−

−−

−−

11

11

11

2,2
122,

2,12

NN

NN

NN

sum
sumsum

sum
result (3.22)

Note that Eq. (3.22) assumes 2’s complement form for arithmetic operations.

3.3.5 Solutions for Arithmetic Quantization Effects

Eweda in [10] proposes an algorithm in which the tap weight updates are repeatedly

frozen for a certain period of time and then updating them on the base of the average

innovation period during the freezing period. During each innovation period, the

adaptation parameter, i.e., u(n)e(n) is accumulated and update is only performed at the

end of the innovation period. This innovation period accumulation can smooth out the

quantization errors and therefore increase the output SNR.

It is also shown in [11] that the quantization noise can be reduced exponentially by

increasing the wordlength of the registers. For the same reason stated earlier, this

technique may not be available. If wordlength increment is in fact available, commercial

software exists for wordlength optimization in DSP applications. Such software usually

includes the synthesis tool presented in [18].

3.4 Simulation Result

Throughout this section, one particular application of the LMS algorithm, namely

the system identification application is used. Consider the module depicted in Figure 3-4,

where the LMS adaptive filter is to model the unknown system by using the unknown

system’s output as the desired signal to the adaptive filter. The adaptive filter’s task is to

adapt its tap weights such that its output matches the unknown system’s output.

32

Figure 3-4. System Identification Block Diagram

3.4.1 Rounding vs. Truncation

An experiment is set up to verify the conclusion drawn up from Section 3.1, that is,

for signal quantization, rounding creates less quantization noise than truncation. Refer to

Figure 3-4, both input signal and desired signals are quantized before fed into the

adaptive filter. Arithmetic quantization is not considered at this stage, in other words, the

results from either convolution sum or the adaptation process are not quantized. Since

the LMS algorithm uses minimum mean square error as the criteria, we can safely opt

rounding over truncation if rounding produces less mean square error over truncation.

Figure 3-5. Experimental Setup for Rounding vs. Truncation

33

The two quantization techniques are tested in the two quantizers shown in Figure 3-

5. The adaptive filter length is fixed at four where the input sequence consists of 5000

normally distributed random samples. Additionally, the quantizing step q is chosen to

hold the following values: [2-1, 2-2, 2-3, 2-4, 2-5, 2-6]. At each value of q, the

misadjustment produced by the adaptive system is captured for both rounding and

truncation and the result is shown in Figure 3-6. As shown in Figure 3-6, rounding

clearly produces less noise than truncation for each value of q and only as the

quantization step decreases, the effects of truncation becomes impartial over rounding.

Figure 3-6. Simulation Result for Rounding vs. Truncation

3.4.2 Effects of Product Rounding at the Convolution Stage

In this section, we wish to further experiment the effects from quantization. In

addition to the quantizers shown in Figure 3-7, rounding is also performed at each

multiplication at the convolution stage. Refer to Figure 3-7, for the same 4th-order

adaptive filter used in the previous section, four more quantizers are added.

34

Figure 3-7. Additional Quantizers at the Convolution Stage

We again experiment the effects of product quantization by a set of different q

values [2-1, 2-2, 2-3, 2-4, 2-5, 2-6]. For each value of q, the adaptive filter’s misadjustment

is captured and plotted. The simulation result is shown in Figure 3-7, where as the

quantization step decreases, so does the quantization noise caused by multipliers.

Figure 3-8. Effects of Product Quantization at the Convolution Stage

The figure also verifies the conclusion drawn up in Eq. (3.14), which shows the error

power spectrum decreases exponentially as the quantization step decreases.

35

3.4.3 Effects of Product Rounding at the Adaptation Stage

Coefficient rounding contributes greater quantization noise in the product

quantization noise. In this section, update parameters are also quantized. The same

structure is used as the previous sections and the same set of normally distributed data is

applied. Refer to Figure 3-9, quantization is also performed at the adaptation stage.

Figure 3-9. Additional Quantizers at the Adaptation Stage

Simulation result for this experiment is plotted in Figure 3-10. Note that two sets of

misadjustments were plotted. The red bars correspond to misadjustment due to product

quantization at the convolution stage, whereas the blue bars correspond to misadjustment

due to quantization at the adaptation stage. Clearly, quantization at the adaptation stage

creates significantly larger noise than at the convolution stage for reason stated earlier.

It is apparent that an adaptive filter’s performance is more sensitive to coefficient

quantization noise. Thus, as suggested in Section 3.3.3, more bits should be allocated for

coefficient representation.

36

Figure 3-10. Effects of Product Quantization at the Convolution and Adaptation Stages

3.4.4 Clamping Technique

An experiment is setup to simulate the saturation phenomenon on an adaptive LMS

filter. System identification practice described in Figure 3-4 again is used, where tap

weight adaptation is performed so that the adaptive filter’s output matches the unknown

system’s output. For simplicity, all inputs are positive. An upper bound is set for

wordlength of results from either multiplications or additions. If wordlength of the result

exceeds this upper bound, two scenarios are tested, one is to do nothing, that is, the upper

most significant bits are lost due to saturation; the other is by the use of clamping, in

which upon detection of saturation, the result is clamped to most positive number that the

upper bound can represent. A set of normally distributed data is tested in this

experiment, where the adaptive filter’s ideal tap weights are [4 5 1] after convergence.

The results of this experiment are shown in Figure 3-11 and Figure 3-12, where both the

misadjustment curve and the tap weights are plotted.

37

Figure 3-11. Tap weight Track for Clamping Technique

In Figure 3-11, the blue lines track tap weights if no clamping were used whereas

the red lines track tap weights if clamping were used. The black lines represent the ideal

tap weights if a 64-bit floating-point system were used, which is considered ideal. It is

apparent that tap weights simply diverge if clamping is not used. The divergence of the

tap weights indicates the adaptive filter has become ineffective.

Figure 3-12 shows the misadjustment plot of the experiment. The mean square

error of each system is capture at every 30 samples. As can be seen, the mean square

error of the non-clamping result is never reduced due to tap weight divergence whereas in

the clamping case, the misadjustment is very close to the ideal result.

38

Figure 3-12. Misadjustment Plot for Clamping Technique

3.4.5 Sign Algorithm

The sign algorithm presented in the previous section is a way of preventing stalling

when the update parameter result is less than the quantizing step. System identification is

again used in this simulation. A set of small scale input and desired signal are used and

various quantizing step values are tried. It was determined that for q < 2-4, tap weights

simply diverge. Therefore, quantizing steps q = [2-3, 2-4, 2-5] are used for this experiment.

The effectiveness of the sign algorithm with respect to the LMS algorithm using various

q values is studied. Figure 3-13 shows the misadjustment plot for the adaptive filter with

same sets of input and same filter order with respect to various q values. Misadjustment

is again captured at every 30 samples. The step size for the sign algorithm is slightly

larger than the LMS algorithm in order for it to converge due to reason stated in [7]. As

shown in Figure 3-13, tap weights diverge when q = 2-3 due to insufficient fractional bits.

In the case of q = 2-4, due to limited precision, the LMS algorithm stalls and results in

larger misadjustment than the sign algorithm, that is, the sign algorithm is able to obtain

better convergence result than the LMS algorithm. Only by decreasing q, the LMS

39

algorithm is able to outperform the sign algorithm, as can be seen in the case when q = 2-5

for LMS algorithm.

Figure 3-13. Misadjustment for Sign Algorithm vs. LMS

3.5 Remarks

The effects due to finite precision on adaptive systems are presented in this Chapter.

Due to quantization at various stages of the system, quantization noise is introduced. The

quantization noise propagates through the system just as an input. Due to quantization

noise, the saturation and the stalling phenomenon may occur and thus severely diminish

the adaptive filter’s performance. Some techniques that are helpful in reducing the

effects are presented. However, quantization noise cannot be eliminated and thus the

system engineer must study and make tradeoffs between the performance and practicality

of the system.

CHAPTER 4
SOFTWARE SIMULATION OF A FIXED-POINT-BASED POWER-OF-TWO

ADAPTIVE NOISE CANCELLER

The effects of finite precision are elaborated in Chapter 3. In this Chapter, we wish

to translate theories into reality, where a floating-point based system is compared with a

fixed-point based system. As stated in Chapter 3, a floating-point based system can

represent larger dynamic range of data in the cost of losing resolution and introducing

more quantization noise, where a fixed-point-based system’s dynamic range is limited

with respect to its quantizing step, but holds the advantage of simpler circuit design, since

additions and multiplications are composed of simpler logic equations. Therefore, for

implementation of a finite precision adaptive system, fixed-point architecture is preferred

over floating-point. It is the goal of this chapter to obtain the feasibility of implementing

fixed-point based adaptive system due to its simplicity.

As described in Chapter 2, the LMS algorithm is the most widely used adaptive

algorithms and bears many applications. Two examples were explored in Chapter 2,

namely the noise canceller and the line enhancer. In this Chapter, a software simulation

of a noise canceller is implemented and the LMS algorithm is fixed-point based. The

step size parameter utilizes power-of-two scheme, that is, µ can only take up values

of , where n is a positive integer. n−2

Consider a scenario where a speaker is giving out a speech, while the housekeeper

insists on vacuuming the floor at the same time. The vacuuming noise obscured the

speech to an extend that it was not audible. The contaminated speech, i.e., original

40

41

speech plus noise, and the noise itself are recorded. An experiment is set up to use the

Adaptive Noise Canceling technique to retrieve the original speech. The noise signal

itself serves as the primary filter input, and the contaminated signal is the reference input,

or the desired signal to the system. We wish to investigate the effect of finite wordlength

due to this particular application. Specifically, can the speech be recovered by this

integer-based system? And how much does this fixed-point-based system differ from a

floating-point based counterpart? If the fixed-point-based system makes no striking

difference on the outcome of noise canceller, i.e., the original speech can still be

recovered and be heard by human, then a hardware implementation based on this

software experiment becomes feasible since fixed-point-based adaptive system is ideal

due to its simplicity and practicality.

4.1 Modular Overview

The Adaptive Noise Canceller block diagram was presented in Figure 2-3 in

Chapter 2 and is replicated below in Figure 4-1.

Figure 4-1. Adaptive Noise Canceller Block Diagram

The sampled desired discrete signal, composed of both the speaker’s speech and the

vacuum noise, is served as the Noise Canceller’s reference signal; another vacuum noise,

also sampled, is served as the filter’s primary input signal. Upon processing, the vacuum

42

noise will be reduced due to the adaptation of the filter tap weights. And the error signal

produced by the adaptive system is in close resemblance of the original speech.

Figure 3-4 shows the internal structure of the adaptive filter, including the

quantizers to quantize all inputs and tap weights to fixed wordlengths. The filter uses tap

delay line architecture and thus, for an Mth-order filter, M+1 multiplications are needed

at the convolution stage and M+1 more at the adaptation stage.

Figure 4-2. Internal Structure of the Noise Canceller with Quantizers

4.2 Data Quantization

As seen in Figure 4-2, quantization takes place in four stages: at the primary input

signal, the reference signal, and in both convolution and adaptation. Rounding is used for

quantization. Since the primary and reference signal quantization is unavoidable due to

A/D conversion, the only source of error that can be controlled by the designer is then

product quantization noise at both the convolution stage and the adaptation stage. The

quantizing step determines how many fractional bits are remained after quantization. It is

established that product quantization noise is inversely exponential with respect to

quantizing step.

43

4.3 Simulation Results

The primary and reference signals are assumed proper sampled. By

experimentation, the filter length is chosen to be four and the step size µ is chosen to

be . A set of quantizing steps, q = [2-5, 2-6, 2-7, 2-8], are used to show the

misadjustment due to product quantization error. For simplicity reason, the number of

bits to represent integer parts of products is assumed to be sufficient, that is, saturation is

not considered in this experiment. Figure 4-3 and 4-4 show the weight tracks and the

misadjustment curves with respect to various values of q, respectively. The performances

of the four fixed-point systems are compared against a 64-bit floating point system. As

can be seen in the figure, when q = 2-8, the fixed-point system performs just as well as the

floating-point system. More importantly, although the speech filtered by the fixed-point-

based system is noisier, largely due to quantization noise, the recovered speech tends to

be intact and coherent.

72−

Figure 4-3. Weight Tracks for Fixed-point Systems

44

Figure 4-4. Misadjustment Plots of Fixed-point Systems and a Floating-point System

The success of this software experiment proves that for adaptive applications such

as noise cancellations, the system is not as sensitive to input A/D conversion and data

quantization. And as can be shown in simulation, fixed-point systems with limited

quantizing step perform just as well as a 64-bit floating-point system. Without sacrificing

enormous amount of hardware if a floating-point system were applied, hardware

implementation of a fixed-point system therefore becomes very appealing and feasible.

In fact, Chapter 5 illustrates a VLSI based noise canceller that is fixed-point-based and

takes advantages of the power-of-two scheme.

CHAPTER 5
HARDWARE IMPLEMENTATION OF AN INTEGER-BASED POWER OF TWO

ADAPTIVE NOISE CANCELLER IN STRATIX DEVICES

Chapter 4 presented a software simulation of an adaptive noise canceller based on

fix-point approach. By experimenting the fixed-point based system, it is believed that

noise cancellers are one of the adaptive applications that are practical for a fixed-point-

based hardware implementation.

DSP applications, including adaptive algorithms involve heavily upon arithmetic

operations such as multiplication and addition. By incorporating fixed-point only, adder

and multipliers that are essential to DSP applications require less amount of logic

elements as opposed to if the applications were implemented in floating-point based. In a

VLSI circuit design, this feature is particular of interest, since VLSI devices have limited

logic elements and simpler circuit generally translates into faster performance.

The newest FPGA families, Altera’s Stratix device family for example,

incorporates embedded DSP blocks within the FPGA chip to have dedicated circuitry to

perform common DSP operations including multiply and accumulate. This family of

FPGA devices is compared with another family of FPGA devices that does not include

embedded DSP blocks. Performance comparison is done in two areas, which include

amount of logic elements occupied and maximum frequency allowed. The power-of-two

scheme is used to avoid implementing area-consuming division circuitry.

45

46

Software package Quartus II is used to produce a waveform simulation, along with

logic state analyzer's captured waveform are presented to verify the hardware

functionality.

DSP applications including adaptive systems have traditionally been implemented

using general-purpose DSP processors due to their ability to perform fast arithmetic

operations. Advancement in FPGA devices including the embedded DSP blocks has

made FPGA devices serious contenders in the DSP market. It is advantageous to

examine the performance of the adaptive filter implemented in Stratix devices against

both fixed-point based DSP processor and floating-point based DSP processor. Two

criteria, system speed and power consumption are examined and the results are shown in

this Chapter.

5.1 Stratix Devices

5.1.1 Device Architecture

The Stratix family is the newest family of programmable logic devices from Altera.

The Stratix devices have three times the size of memory blocks compared to traditional

FPGAs. The Stratix devices also contain embedded DSP blocks, which have dedicated

pipelined multiplier and accumulator circuits. With the embedded DSP blocks, the

Stratix devices can perform high speed multiply-and-accumulate operations.

Stratix devices contain a two-dimensional row and column based architecture to

implement custom logic. A network of varying length and speed, row and column

interconnects provide signal interconnections between Logic Array Blocks (LABs),

memory blocks, and embedded DSP blocks. Each LAB consists of 10 Logic Elements

(LEs). LABs are grouped into rows and columns across the device. The memory blocks

are RAM based. These memory blocks provide dedicated simple dual-port or single port

47

memory up to 36 bits wide and up to 291MHz access speed. The DSP blocks can

implement multiplications in various bit length with add or subtract features. The blocks

also contain 18-bit input shift registers for applications such as Finite Impulse Response

(FIR) or Infinite Impulse Response (IIR) filters. Figure 5-1 shows the block diagram of a

typical Stratix device [2].

Figure 5-1. Stratix Device Block Diagram

5.1.2 Embedded DSP Blocks

The most commonly used DSP functions include multiplication, addition, and

accumulation. The Stratix devices provide DSP blocks to meet the arithmetic

requirements of these functions. Each Stratix device has two columns of DSP blocks to

efficiently implement DSP functions faster than LE-based implementations.

Each DSP block can be configured to support one set of the following:

• Eight 9 x 9 bit multipliers

• Four 18 x 18 bit multipliers

• One 36 x 36 bit multiplier

48

DSP block multipliers can optionally feed an adder/subtractor or accumulator within

the block. This feature saves LE routing resources and increase performance, since all

inter-connections and blocks are all within the DSP block. The DSP block input registers

can also be configured as shift registers for FIR filter applications. Figure 2 is a block

diagram for a typical component inside the DSP block.

Figure 5-2. Embedded DSP Block Diagram

5.2 Design Specifications

5.2.1 Structural Overview

The noise canceller implementation assumes FIR filter structure. The design shown

in Figure 5-3 depicts a structural view of such FIR filter. As shown in the figure, the

main components of the filter consist of m Unit Delay Registers and m+1 Weight

Updates. The Unit Delay Registers are simply D Flip-Flops. Each Weight Update

component updates the filter coefficient according to the LMS equation presented in

Chapter 2, Eq. (2.27). The adaptive filter’s input is the primary input, which is the

vacuum noise. The filter output is subtracted from the desired signal, in this case, the

49

original speech plus noise, to produce an error signal. The error signal, i.e., the recovered

speech is a buffer, which is fed back to the Weight Update components to produce next

sets of filter coefficients.

Figure 5-3. Adaptive Transversal Filter Block Diagram

5.2.2 The Power-of-Two Scheme

Weight Updates perform logics according to Eq (2.27). Arithmetic operations

needed include two multiplications and one subtraction. However, the step-size

parameter µ is a fractional number that is always less than 1. Also, by multiplying a

fractional number is equivalent of dividing its reciprocal. Therefore, in order to avoid

implementing complicated and area-consuming division circuitry, or multiplication for

floating-point numbers, Arithmetic Shift Right (ASR) operation is used instead to

simplify and boost the run-time frequency of the design.

The ASR operates on a 2’s complement integer by shifting the number n bits to the

right (direction of the least significant bit), while preserving the sign bit (the most

significant bit). By shifting the number n bits to the right, it is equivalent of multiplying

this number by 2-n. Therefore, in order to achieve simplicity and feasibility, this design

restricts the value of µ to be µ = 2-n, where n is a positive integer. This is the so-called

power-of-two scheme.

50

5.2.3 Data Flow and Quantization

As depicted in Figure 5-3, there are two inputs to the system, the primary filter

input and the reference or desired signal. The adaptive filter’s output is subtracted from

desired signal to produce a buffered error signal. This error signal is in turn fed back to

all the weight update components for the LMS algorithm tap weight updates.

In order to preserve the simplicity of the design, all input and output signals share

the same wordlength. That is, the primary and reference input, the intermediate signals,

along with the error term all have wordlength of n, including the sign bit. Based upon

this preservation, quantization takes places in the weight update component, where

according to the weight update equation

w(n+1) = w(n)+ µe(n)x(n) , (5.1)

 if e(n) and x(n) are both n bits, the product of these two terms has 2n bits. After shifting

the product to the right, as described in power-of-two scheme, the 2n bit term is

quantized into n bits, by keeping the least significant (n - 1) bits while retaining the sign

bit. This n bit update parameter is then added from the n bit current tap weight to

produce the updated n bit tap weight. The same quantization technique is applied to all

weight update components.

In addition to quantization, saturation is another potential hazard, where each

addition, in either adaptation or in convolution, could create saturation. In our adaptive

filter design, the nature of the experimental data is first studied to obtain suitable

wordlength, thereby avoiding saturation.

5.3 Dynamic Component Instantiation in VHDL

Refer to the structural diagram shown in Figure 5-6, if filter length is to be

incremented to one more, an additional weight update, unit delay, multiplier and adder

51

are all needed to be instantiated. But both the length of the adaptive filter and the

wordlength to represent data bus should be easily changed without spending too much

time on the architectural level. Since this adaptive filter is written in VHDL, we now

show how to dynamically instantiate a component in VHDL.

In a separate “header” file, a package is created to include not only the components

definition, but also constants such as filter length and bus width information. A portion of

the “header” file is shown below:

This header file is included into the project and upon compiling, the package information

is used in the structural port map statements in the top hierarchy to determine the number

of components to be instantiated. Therefore, by changing the numbers in the package

field, the designer is able to dynamically instantiate however many number of

components needed for the specific design. For additional helpful VHDL tutorials please

refer to [26].

52

5.4 Simulation and Implementation Results

It can be argued that since input signals have to be converted from analog to digital,

and A/D operations involves converting real values into 2’s-complement binary values,

adaptive systems are therefore naturally suitable for integer-based. The sampled primary

and reference signals are scaled and rounded to be integers before it is fed into the

system.

Altera’s Quartus II software package is used to compile the VHDL-based package

and a vector waveform simulation is produced. The primary and reference signals are

stored into the device’s internal memory with equal depth. Update parameter remains the

same throughout the process, while the address line that controls the internal memory is

incremented in every clock cycle. A snapshot of the waveform simulation is captured

and shown in Figure 5-4. Upon convergence, the tap weights become [0001, FFFA,

FFFF, 0002, FFFD]. Converting these hexadecimal numbers into decimal, the weights

are [1, -6, -1, 2, -3].

Figure 5-4. Waveform Simulation Result of the Adaptive Noise Canceller

53

The project is implemented into Altera's DSP development board and the lower 5

bits of each weight are captured using a logic state analyzer. The analyzer's result is

shown in Figure 5-5 below.

Figure 5-5. Logic State Analyzer Result of the Adaptive Noise Canceller

Implementation result shows that lower 5-bits of the weights are [00001, 11010, 11111,

00010, 11101]. 2’s complement forms are indeed [1, -6, -1, 2, -3], which are equivalent

to the waveform simulation demonstrated in Figure 5-4.

5.5 Performance Comparison of Stratix and Traditional FPGAs

Area and speed are the two main measurements in evaluating FPGA performance of

this filter. Since the Stratix devices have embedded DSP blocks built in, they should

occupy less LEs and have faster maximum clock frequency. Area and Speed issues were

studied with a Stratix Device and a FPGA device without embedded DSP blocks, namely

an APEX device also from Altera. Figures 5-5 and 5-6 show the varying filter orders vs.

area and speed plots, respectively, for both the Stratix and APEX devices. Area is

measured by number of LEs occupied, whereas speed is measured by longest register-to-

register delay.

54

5.5.1 Speed

Refer to Figure 5-3, for each additional tap, the longest register-to-register path is

elongated as well, resulting allowable frequency to plunge. Figure 5-6 shows as the

number of taps increase, the allowable speed of the adaptive filter decreases, that is, the

clock frequency decreases. Timing for Stratix device is obtained from Quartus

simulation result, since a Stratix device is not readily available. For the APEX device,

timing is obtained by using a functional generator to generate a clock signal as the

system's clock signal. Clearly, if the functional generator's clock signal period exceeds

the longest register-to-register delay, it will cause erroneous computational result, since

logic elements need the time period specified by longest register-to-register delay to

perform correct computation. Therefore, the maximum frequency is obtained from the

fastest frequency in which the adaptive system can run while still able to obtain intended

tap weight convergence.

0
5

10
15
20
25
30
35
40

Max.Freq.
(MHz)

3 5 10 25 35 50
Filter Order

Stratix
APEX

Figure 5-6. Plot of Filter Order vs. Speed

5.5.2 Area

For each additional tap, a separate weight update, multiplier, and adder also have to

be instantiated. These components all occupy LEs. Therefore, when the number of taps

55

increases, so does the number of occupied LEs. Figure 5-7 shows this relationship. Note

that for the Stratix device at filter length of 20, all embedded DSP blocks have been

occupied with multipliers and adders. The DSP block elements do not count as logic

elements. Each additional multiplier and adder required by the increase of filter length,

they is implemented in regular LEs, which results in a exponential growth from filter

length 10 to filter length 25.

0
10000
20000
30000
40000
50000
60000

LEs

3 5 10 25 35 50
Filter Order

Stratix

APEX

Figure 5-7. Plot of Filter Order vs. Area

From the above two graphs, we can easily see that the Stratix device is

overwhelmingly favored over traditional FPGA devices. When it comes to DSP

applications implemented in FPGA devices, the Stratix device not only occupies less LEs

due to the dedicated circuitry within the DSP blocks, but it also allows faster clock

frequency.

5.6 Pipelining

Although the design depicted in Figure 5-3 fully utilizes the parallelism advantage

of FPGA devices in full, the speed performance decays substantially as the filter order

increases, since the longest register-to-register delay elongates from the first weight

56

update component on the left to the subtractor on the right. Two methods can be

incorporated into the existing design to reduce the longest register-to-register delay. The

first method is to introduce pipelined multipliers. Multipliers occupy large amount of

logic, by partitioning the entire multiplier logic into smaller elements and incorporate

pipeline registers in between, the register-to-register delay can be decreased, resulting in

an increase of the maximum system clock frequency. The other method involves

inserting buffers into the chain of adders at the convolution stage. The amount of

sequential adders increases linearly as filter order increases. Therefore the amount of

LEs to implement these adders also increases, resulting in an overwhelming decrease in

system speed. If buffers are added into the adder-chain, the system's maximum data rate

can be increased. The two methods can be combined together to obtain an adaptive

system with optimal performance in terms of data rate.

Latencies are also introduced by incorporating the above two methods. Latencies

introduced in multipliers or in adder-chain effectively create phase shifts into the

convolution stage, since full result of the multiplication is delayed by the number of

pipeline levels. Consequently, this phase shift also affects the error output signal because

error output is also delayed. If the phase shift created by latency becomes sufficiently

large, it can remove the correlation between the reference signal and the primary signal

and force the adaptive system to diverge. In fact, the error produced by the adaptive

system is a function of the primary and reference signals, and the error signal is also a

feedback signal to the weight updates. We will, in this section, investigate techniques to

cope with latency effects in adaptation.

57

Synthesis tools that partition the multiplier logic can be investigated to obtain

optimal number of pipeline stages. Optimal number of pipeline stages is defined as the

smallest number of pipeline stages for which further increase does not enhance

multiplier’s speed. The maximum speed of the pipelined multiplier serves as a guideline

to how many buffers are inserted into the adder-chain. We wish to insert minimal

number of buffers onto the adder-chain to minimize latencies, and also to minimize

register-to-register path. Procedures on how to obtain optimal pipeline stages are now

discussed.

5.6.1 Optimal Multiplier Pipeline Stages

In order to investigate the synthesis tool provided by Quartus software, a multiplier

block is instantiated according to Figure 5-8. Without pipelining the multiplier, the

longest register-to-register delay is from the input register to the output register. If

pipelines are introduced within the multiplier, the longest register-to-register delay is

reduced.

Figure 5-8. Pipelined Multiplier Test Module

Performance improvement in speed with various numbers of pipelines for different

sizes of multipliers is studied using the Quartus synthesis tool. It can be shown according

to Figure 5-9 that, for an 8-bit multiplier, the optimal pipeline stage is 1, since

incrementing the number of pipeline stages does not generate better multiplier

58

performance. Similarly, the optimal pipeline stages for 16-bit multiplier and 32-bit

multiplier are 2 and 3, respectively.

0

50

100

150

200

250

300

350

400

0 1 2 3 4

Pipeline Stages

M
ul

tip
lie

r D
at

a
R

at
e

(M
H

z)

8-bit
16-bit
32-bit

Figure 5-9. Maximum Data Rate of three Multipliers with Various Pipeline Stages

5.6.2. Optimal Adder-chain Pipeline Stages

Refer to the structural diagram in Figure 5-3, adders used in convolution may

become a burden to system performance in terms of speed, because the adder-chain

occupies more logic elements as filter order increases. As discussed in the previous

section, multipliers can be pipelined in optimal pipeline stages with respect to their input

bus size. In this section, we wish to investigate further improvement in the adaptive

system's speed performance by inserting buffers into the adder-chain. The goal is to

minimize the number of buffers while not increasing the longest register-to-register

delay. It is apparent that the upper bound constraint for the number of adders in between

buffers should be less than the speed of the pipelined multiplier.

According to results found in the previous section, an 8-bit, 16-bit, and 32-bit

multiplier can be pipelined and have optimal speed of 335MHz, 278MHz, 278MHz,

59

respectively. An adder-chain component described in Figure 5-10 is instantiated to

observe the number of adders that can be included within the multiplier's speed range.

Figure 5-10. Adder-chain Test Module

Results of 8-bit, 16-bit, and 32-bit adders are shown in Figure 5-11. For 8-bit

adders, it is found that in order to satisfy the speed constraint set by the multipliers, one

buffer can be added for every two adders in the adder-chain to optimize system

performance. Three adders between buffers already exceed the propagation delay of an

8-bit pipelined multiplier. Similarly for 16-bit and 32-bit adders, the maximum numbers

of adders that can be included between two buffers are also two.

0

50

100

150

200

250

300

350

400

450

1 2 3

Number of Adders in Adder-Chain

A
dd

er
 D

at
a

R
at

e
(M

H
z)

8 bit

16 bit

32 bit

Figure 5-11. Adder-chain Data Rate with Respect to Number of Adders

Incorporating pipelined multipliers and buffering adders in the adder-chain can

reduce the longest register-to-register delay. As an example, the structural view of a 4th-

60

order adaptive system is shown in Figure 5-12 below, where multipliers are pipelined

with two stages and buffers are added for every two adders in the adder-chain.

Figure 5-12. Pipelined and Buffered Adaptive System Block Diagram

Note that since a buffer is added after the second adder on the adder-chain, buffers

are also added to the fourth and fifth multiplier outputs in order to compensate the latency

introduced by the adder-chain buffer.

5.6.3 Tradeoffs in Introducing Latency into Adaptive Systems

As described earlier, an adaptive system consists of both convolution and

adaptation stages. These two stages are expressed mathematically in Eq. (2.25) – Eq.

(2.27). By introducing pipelining and buffers, an adaptive system can be expressed in the

following two equations representing error signal computation and adaptation:

)()()()(nDnTndne uwD −−= , (5.2)

)()()()1(nnenn uww Dµ+=+ , (5.3)

where D represents levels of latencies and eD represents delayed error signal. As

described earlier, if latency is large, an adaptive system can due to phase shift caused by

latencies.

61

 Recall that the criteria for the step size parameter µ is derived in Chapter 2, in that

µ must satisfy the following inequality:

max

10
λ

µ << , (5.4)

 where maxλ is the largest eigenvalue of R. It can be shown in [17] that in order to

guarantee convergence of the adaptive system with latencies, µ must be restricted to an

even smaller constraint:

)12(2
sin20

max +
<<

D
π

λ
µ . (5.5)

Note that Eq. (5.5) also shows that as number of pipeline stages increase, range for

appropriate µ decreases.

It can also be shown in [17] that a pipelined LMS system always converges slower

than an un-pipelined LMS system. Several authors have investigated in improving the

pipelined LMS systems' convergence rate. In [9], a correction term is incorporated into

generating the error signal in that

)()()()()(ncnDnTndne uwD −−−= , (5.6)

)1()()()(−= nEnRnc DT , (5.7)

where RT(n) is the D-dimensional input correlation vector and E(D)(n-1) is a vector of past

errors. It was shown that the modified method of calculating error signal results in equal

performance with respect to un-pipelined LMS system. However, more computation is

introduced as well and thus essentially nullifies the purpose of pipelining. Convergence

rate can also be improved by updating the weight according to LMS algorithm, at the

62

same time modifying the step size according to the following update equation proposed

in [28]:

)()(
)()(

)()1(DneDn
DnDn

nn uuuww T −−
−−

+=+
µ . (5.8)

Again this method introduces more computation overhead and thus is not desired. In

addition, the software tool MMAlpha is used in [13] to automatically derive a VHDL

description of a pipelined LMS architecture to optimize speed and sacrificing 50%

increase in area.

Based upon evidence presented above, by introducing pipelines into the adaptive

system, the system’s speed is increase in the expense of either slower convergence rate or

more computation. However, by aligning the terms shown in Eq. (5.2) and (5.3), we can

reduce the effects of phase shifts caused by pipelining. Refer to structural diagram

depicted in Figure 5-12. If multipliers are pipelined, and buffers are added to adder-

chain, latencies are propagated into the error signal calculation. The delayed error signal

is fed back into the weight update components to perform adaptation. Buffers can be

added onto the system's reference signal to align the error signal calculation.

Furthermore, weight updates can also be aligned by using delayed filter taps. This time

alignment scheme can be expressed by the following three equations:

)()()(nnTny uwD = , (5.9)

)()()(nyDndne DD −−= , (5.10)

)()()()1(Dnnenn uww D −+=+ µ . (5.11)

With this scheme the weight update at sample n is done with the input and desired signals

at sample n-D. For signals that do not change a lot between sampling points, this scheme

63

provides a close fit to the un-pipelined architecture. This means over-sampling is

suggested when using the time-align scheme. Otherwise there will be a penalty in

convergence rate. The new architecture applied to the structure depicted in Figure 5-12 is

shown in Figure 5-13 below:

Figure 5-13. Time-aligned Adaptive System Block Diagram

Compared with previous solutions described in literature mentioned earlier, this time

alignment scheme does not introduce more computation. It does, however, introduce

more hardware in terms of buffers. The convergence rate for this pipelined system is still

slower than an un-pipelined system.

5.6.4 Performance of the Pipelined Adaptive System

Performance of the un-pipelined design in terms of speed is illustrated in Figure 5-

5. In this section, pipelines are added into the multipliers as shown in Figure 5-3. The

pipelined adaptive system is compared against the un-pipelined system. Buffers are

further added into the adder-chain. The Stratix device is used for the implementation.

The multiplier bus width is set at 16 and thus according to Figure 5-9, optimal pipeline

stage is set at 2. Buffers are inserted for every two adders within the adder-chain. By

varying the filter order in the system, maximum data rates of three scenarios are plotted

64

in Figure 5-14 with respect to filter orders. The three scenarios are the following: an un-

pipelined system, a pipelined system, and a system with pipelined multipliers and buffers.

0

10

20

30

40

50

60

70

M
ax

 F
re

q
(M

H
z)

3 5 10 25 35 50

Filter Order

un-pipelined

pipelined

pipelined and buffered

Figure 5-14. Pipelined Adaptive System Performance

Note that although a pipelined-and-buffered adaptive system can have maximum data

rate up to 60MHz regardless of filter order, it also has the most stages of latency.

To summarize, an adaptive system's speed performance can be increased

significantly by either pipelining multipliers, adding buffers onto the adder-chain, or

both. Latency is introduced such that the adaptive system may diverge its tap weight

adaptation, due to the delayed error signal is also a feedback signal to weight updates.

Buffering the desired signal can time-align the error signal computation and the tap

weight update computation. The time-aligned scheme does not require correction terms

described in Eq. (5.6), nor does it require modifying the step size as described in Eq.

(5.7). Experiments have shown that the time-align scheme reduces the effects of latency.

However, since latency cannot be completely compensated, convergence rate for the

time-aligned adaptive system is still slower than an un-pipelined adaptive system. In

65

real-time applications where high data rates are given, slower convergence rate can be an

acceptable tradeoff [20].

5.7 Performance Comparison of FPGAs and DSP Processors

DSP applications have traditionally been implemented with DSP processors. Due

to recent advancement in FPGA devices, it is valuable to compare the performance of

adaptive system in both FPGA devices and DSP processors in terms of speed and power

consumption.

FPGAs maintain the advantages of custom functionality while avoiding the high

development costs and the inability to make design modifications after production [14].

Compare with DSP processors, FPGAs also hold the advantage of parallelism, in that

multiple operations can be performance at one time instance, whereas DSP processors are

only able to perform one instruction per time instance. It is evident that according to

Figure 5-3, by instantiating multiple adders and multipliers, the system is able to perform

convolution and adaptation on the fly. If the design is implemented in DSP processors,

then only one instruction is performed at a time. However, it is also apparent that as the

filter order increases, so does the register-to-register delay in FPGA design, which will

eventually overcome the parallelism advantage. Therefore, performance in terms of

speed is investigated using two devices, namely the Stratix FPGA device and Texas

Instruments' TMS320VC33 floating-point DSP processor.

Power consumption is also a main concern in choosing between various devices.

Power consumption is assumed fixed for DSP processors, since the internal structure is

fixed. FPGA devices’ power consumption varies with respect to amount of LEs

programmed, number clock-driven registers, and DSP block utilization. Issue of power

66

consumption is also investigated in this section using Stratix device, a floating-point

processor and a fixed-point processor.

5.7.1 Speed

Pipelined adaptive system presented in Section 5.5 is used to compare with a

floating-point DSP processor. The processor of choice is Texas Instruments’

TMS320VC33 floating-point DSP processor. The floating-point processor has maximum

speed of 150 Million Floating-Point Operations per Second (MFLOPS) at 60MHz.

Speed is measured by amount of time it takes to update a set of weights for an adaptive

system with various number of filter order. Based on benchmark data obtained from Mr.

Scott Morrison of Computational NeuroEngineering Laboratory, University of Florida,

for a single channel LMS adaptive filter, the C33 processor updates tap weights in the

order of microseconds where as the FPGA LMS adaptive filter can perform tap weight

updates in the order of nanoseconds. For example, it takes the APEX device

implementation 67ns to update all tap weights for an adaptive filter of order 10, whereas

it takes the DSP processor 2.3µs to do so. Parallelism works in full advantages over DSP

processors in this LMS adaptive application. A shortcoming for FGPA implementation

however, is that the amount of LEs are limited for a given device, which restricts the

order of filter to be fit in a particular FPGA. There is no such problem for DSP

processors, since they rely on either internal or external memory to store information, and

computations are done sequentially. Furthermore, floating-point implementation is not

yet feasible in FPGA devices, because the devices have limited LEs. For any

applications that require large data dynamic range, DSP processors still are devices of

choice.

67

5.7.2 Power Consumption

 Power consumption for DSP processors is generally fixed. It is found that worst-

case power consumption is 500mW for the TMS320VC33 floating point DSP processor

[26]. For the DSP 56309 fixed-point processor, benchmark information obtained in [6]

indicates that the LMS algorithm can be performed at 1.5mA/MHz. If 100MHz oscillator

is applied to the processor and since the core processor's voltage is 3.3V, estimated power

consumption for running the adaptive system in this fixed-point processor is therefore

514mW.

On the other hand, FPGA devices' power consumption varies depend on the size of

the design. For our adaptive system, instances of components increase as filter order

increases, resulting larger amount of logics needed to fit into the FPGA. Therefore as the

filter order increases, so does power consumed by the device. By using the Stratix power

calculator provided by Altera, Inc, estimated power consumption is obtained with various

filter order. Figure 5-15 illustrates the relationship between filter order and power

consumption for FPGAs, as well as comparison between the three devices of choice.

200

250

300

350

400

450

500

550

600

650

3 5 10 25 35 50
Filter Order

Po
w

er
 (m

W
)

Stratix
TMS320VC33
DSP56309

Figure 5-15. Power Consumption Plot for Various Devices

68

As seen in Figure 5-15, if energy conservation is desired, FPGA implementation

should be considered over the two DSP processors for an adaptive filter with filter order

less than 25. For filter order over 25, Stratix device consume more energy than the DSP

processors and therefore becomes unattractive.

CHAPTER 6
CONCLUSION AND FUTURE WORK

6.1 Conclusion

 Finite precision effects on adaptive algorithms have been studied in this thesis.

Several common effects were studied and solutions were provided to mitigate the effects.

An adaptive noise canceller was first simulated in software for its effectiveness in an

integer-based system. The noise canceller was then implemented in a VLSI-based

hardware due to its success in software simulation.

One commonly used adaptive algorithm, namely the LMS algorithm was derived in

Chapter 2. The LMS algorithm is based on minimum mean square error as criteria and

an adaptive filter which uses LMS algorithm assumes FIR filter structure. During

adaptation, the adaptive filter updates its tap weights to make the filter output as close as

the reference input of the system and the difference between the reference input and the

filter output, or the error term, is attempted to be minimized.

Mathematical expressions for adaptive algorithms that were presented in Chapter 2

assume infinite precision, i.e., they do not consider the wordlength of the calculation.

However in reality, digital hardware used to implement an adaptive algorithm has limited

wordlength. Because of this, finite precision effects on adaptive algorithms, specifically,

the LMS algorithm should be studied.

Finite precision effects can be grouped in three groups. First, in order to maintain

wordlength, any input signals and intermediate arithmetic results must be quantized.

69

70

Quantization is performed via either rounding or truncation. It is found that rounding is

preferred over truncation, since rounding produces zero mean error signal.

Secondly, filter applications rely heavily upon arithmetic operations, these results

must be rounded as well due to finite precisions. It was found that for an Mth order FIR

adaptive filter, the error power created by arithmetic quantization is
6

)1()(
2qMn +

=ε ,

where q is the quantization step and M is the filter length. By increasing either the

wordlength or use a periodical update scheme, the effects result from arithmetic rounded

can be reduced.

Thirdly, saturation and stalling can arise due to finite precision constraints.

Saturation can be dealt with either by scaling the input signals so that saturation becomes

less probable, or by using the clamping technique in which upon detecting saturation, the

result is “clamped” to the most positive or most negative number, depending on the sign

bit. The step size parameter µ may cause the algorithm to stall, that is, tap weights fail to

update due to the update parameter is smaller than the quantization step. Stalling can be

avoided by incorporating a lower bound for µ. Alternatively, the sign algorithm is

another way to reduce/avoid stalling.

A fixed-point based adaptive noise canceller was simulated in software. It was

found that the fixed-point based system with sufficient number of bits makes no striking

difference from a system that is floating-point based. The simulation result suggests that

a low cost hardware realization of this noise canceller is possible, since a fixed-point

based adaptive filter requires significantly less circuitry than if the system were based on

floating-point.

71

The adaptive noise canceller was implemented in an FPGA device with embedded

DSP blocks, e.g., a Stratix device. The DSP blocks are dedicated circuitry to perform

common DSP operations including multiply-and-add. Due to the embedded DSP blocks,

the Stratix device outperforms traditional FPGAs to implement the same adaptive filters

because it allows faster clock frequency and it utilizes less logic elements. Since the

design is written in VHDL, dynamic component instantiation becomes available for filter

designers to quickly modify the filter length and/or wordlength. Pipelining is also

introduced in the adaptive system design. By applying pipelines into the design,

maximum data rate of the adaptive system can be increased compared to an un-pipelined

system. By introducing pipelining, latency is also introduced and thus slows down

convergence. But in real-time high speed applications, slower convergence rate can be

an acceptable tradeoff. Performance of the FPGA based adaptive system in terms of

speed and power consumption is also compared against traditional DSP processors. It

was found that FPGAs fully utilizes its parallelism advantage resulting in much faster

filter performance. However, as filter order increases, the FPGA implementation

becomes less attractive due to limitation on amount of logic elements within an FPGA

and higher power consumption when compared with DSP processors. For lower order

adaptive filter implementation, FPGAs should be seriously considered. On the other

hand DSP processors should be used for higher order filters.

6.2 Future Work

Finite precision effects were experimented in fixed-point based systems only, in

which the signals are quantized. This is due to the current limitation on FPGA devices.

In the future, as the number of logic elements becomes sufficiently abundant, FPGA

based floating-point adaptive filters may become feasible to implement.

72

Multi-channel adaptive systems are useful in that multiple channels can be trained

using the same adaptive filter, by multiplexing the channels. Internal memory within the

FPGA may be used to read/write each channel's taps and tap weights. The multi-channel

system requires a few more components that include multiplexers for multiplexing

primary and reference signal of the system input, and a RAM arbiter to control memory

I/O of each channel's taps and tap weights.

Pseudo-floating-point scheme was proposed in [24] and was shown that it out-

performs ordinary fixed-point scheme in adaptive LMS systems. This scheme can be

easily implemented with the existed architecture shown in this Thesis with minor

modifications. The scheme can further be used to compare with our fixed-point

architecture in terms of speed, area, and rate of convergence.

APPENDIX A
MATLAB SCRIPTS

%%
%% Author : Andy Lin %%
%% File Name: LMS.m %%
%% Date : 02/12/02 %%
%%
%%
%% the LMS function uses LMS Algorithm to produce updated
%% weights for the filter.
%% Usage : [W, error] = LMS(xx, desired, order, mu, winit);
%%
%% order : the order of the filter, or the dimension of Rx
%% and Px,y
%% desired : desired signal, the desired will subtract the output
%% produced by the filter to get error
%% xx : input to the Adaptive Filter
%% mu : step-size
%% winit : initial weights
%%
%% J : learning rate
%% W : weight track matrix with dimension
%% (order of filter x # of samples)
%% error : sum of desired and - (filter output)

function [J, W, error] = LMS(xx, desired, order, mu, winit);
Lx = length(xx);
[m,n] = size(xx);
if n>m,
 xx = xx.';
end;

%add zero padding to initial states
xx = [zeros(order-1,1); xx];
%initialization steps
l = 1;
sumMSE = 0; %sum of mean square error
error = desired;
w = winit;
W = zeros(order, Lx);

for k = 1:Lx, % update every sampling period
 X = xx(k+order-1:-1:k);
 y = w'*X;
 error(k) = desired(k)-y;
 sumMSE = sumMSE + error(k)*error(k);
 w = w + mu*error(k)*X;
 W(:, k) = w;

73

74

 if (mod(k, 30) == 0)
 J(l) = sumMSE / k;
 l = l + 1;
 end;
end;

%%
%% Author : Andy Lin %%
%% File Name: clamping_LMS.m %%
%% Date : 03/12/03 %%
%%

%% the LMS function uses LMS Algorithm to produce updated
%% weights for the filter. Clamping is used with respect to wordlength
%%
%% Usage : [W, error] = LMS(xx, desired, order, mu, winit,
wordlength);
%%
%% order : the order of the filter, or the dimension of Rx
%% and Px,y
%% desired : desired signal, the desired will subtract the output
%% produced by the filter to get error
%% xx : input to the Adaptive Filter
%% mu : step-size
%% winit : initial weights
%% wordlength: MSB position
%% J : learning rate
%% W : weight track matrix with dimension
%% (order of filter x # of samples)
%% error : sum of desired and - (filter output)

function [J, W, error] = clamping_LMS(xx, desired, order, mu, winit,
wordlength);

Lx = length(xx);
[m,n] = size(xx);
if n>m,
 xx = xx.';
end;

%calculate the clamping value, which is the maximum
%value the wordlength can represent
max = 0;
for i=0:wordlength-1,
 max = max + 2^i;
end;

%add zero padding to initial states
xx = [zeros(order-1,1); xx];
%initialization steps
l = 1;
sumMSE = 0; %sum of mean square error
error = desired;

75

w = winit;
W = zeros(order, Lx);

for k = 1:Lx, % update every sampling period
 X = xx(k+order-1:-1:k);
 y = w'*X;

 %simulate saturation effect
 tmpy = dec2bin(y);
 %if saturation occurs, clamp to the largest number wordlength can
 %represent.
 if (length(tmpy) > wordlength)
 y = max;
 end;

 error(k) = desired(k)-y;
 sumMSE = sumMSE + error(k)*error(k);
 w = w + mu*error(k)*X;
 W(:, k) = w;

 if (mod(k, 30) == 0)
 J(l) = sumMSE / k;
 l = l + 1;
 end;

end;

%%
%% Author : Andy Lin %%
%% File Name: sign_LMS.m %%
%% Date : 03/12/03 %%
%%

%% Sign algorithm is used to produce weight update
%% Usage : [W, error] = LMS(xx, desired, order, mu, winit);
%% order : the order of the filter, or the dimension of Rx
%% and Px,y
%% desired : desired signal, the desired will subtract the output
%% produced by the filter to get error
%% xx : input to the Adaptive Filter
%% mu : step-size
%% winit : initial weights

%% J : learning rate
%% W : weight track matrix with dimension
%% (order of filter x # of samples)
%% error : sum of desired and - (filter output)

function [J, W, error] = sign_LMS(xx, desired, order, mu, winit, q);

Lx = length(xx);
[m,n] = size(xx);
if n>m,
 xx = xx.';
end;

76

%add zero padding to initial states
xx = [zeros(order-1,1); xx];
%initialization steps
l = 1;
sumMSE = 0; %sum of mean square error
error = desired;
w = winit;
W = zeros(order, Lx);

for k = 1:Lx, % update every sampling period
 X = xx(k+order-1:-1:k);
 %quantization at convolution stage
 y = round(w'*X .* q)/q;
 error(k) = desired(k)-y;
 sumMSE = sumMSE + error(k)*error(k);
 %quantization at adaptation stage and use sign(e) only
 w = w + round(mu*sign(error(k)).*X .*q)/q;
 W(:, k) = w;

 if (mod(k, 30) == 0)
 J(l) = sumMSE / k;
 l = l + 1;
 end;

end;

%%
%% Author : Andy Lin %%
%% File Name: LMS_with_q.m %%
%% Date : 03/12/03 %%
%%
%%
%% quantized any computation with respect to q.
%% Usage : [W, error] = LMS(xx, desired, order, mu, winit, q);
%%
%% order : the order of the filter, or the dimension of Rx
%% and Px,y
%% desired : desired signal, the desired will subtract the output
%% produced by the filter to get error
%% xx : input to the Adaptive Filter
%% mu : step-size
%% winit : initial weights
%% q : quantization step
%% J : learning rate
%% W : weight track matrix with dimension
%% (order of filter x # of samples)
%% error : sum of desired and - (filter output)

function [J, W, error] = LMS(xx, desired, order, mu, winit, q);

Lx = length(xx);
[m,n] = size(xx);

77

if n>m,
 xx = xx.';
end;

%add zero padding to initial states
xx = [zeros(order-1,1); xx];
%initialization steps
l = 1;
sumMSE = 0; %sum of mean square error
error = desired;
w = winit;
W = zeros(order, Lx);

for k = 1:Lx, % update every sampling period
 X = xx(k+order-1:-1:k);
 %rounding at the convolution stage
 y = round(w'*X *q)/q;
 error(k) = desired(k)-y;
 sumMSE = sumMSE + error(k)*error(k);
 %%rounding at the adaptation stage
 w = w + round(mu*error(k)*X *q) / q;
 W(:, k) = w;

 if (mod(k, 10) == 0)
 J(l) = sumMSE / k;
 l = l + 1;
 end;

end;

APPENDIX B
VHDL CODES

-- Author : Andrew Y. Lin
-- Date : 04/03/02
-- File : header.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

package header is

 -- fl indicates filter length, or filter order
 -- bussize indicates the size of the input data bus.
 constant fl : integer:= 4;
 constant bussize : integer:= 16;
 constant depth : integer:= 12;

 subtype buss is std_logic_vector(bussize-1 downto 0);

 type pbus is array (fl downto 0) of buss;
 type qbus is array (fl-1 downto 0) of buss;

 component xadder port (
 a : in std_logic_vector(bussize-1 downto 0);
 b : in std_logic_vector(bussize-1 downto 0);
 y : out std_logic_vector(bussize-1 downto
0));
 end component;

 component subtractor port(
 clk : in std_logic;
 a : in std_logic_vector(bussize-1
downto 0);
 b : in std_logic_vector(bussize-1
downto 0);
 y : buffer std_logic_vector(bussize-1
downto 0));
 end component;

 component multiplier port(
 a : in std_logic_vector(bussize-1 downto 0);
 b : in std_logic_vector(bussize-1 downto 0);
 y : out std_logic_vector(bussize-1 downto
0));
 end component;

78

79

 component wgenerator port(
 clk : in std_logic;
 reset : in std_logic;
 mu : in std_logic_vector(3 downto 0);
 xx : in std_logic_vector(bussize-1
downto 0);
 ee : in std_logic_vector(bussize-1
downto 0);
 ww : buffer std_logic_vector(bussize-1
downto 0));
 end component;

 component UnitDelay port(
 clk : in std_logic;
 reset : in std_logic;
 inp : in std_logic_vector(bussize-1
downto 0);
 outp : buffer std_logic_vector(bussize-1 downto
0));
 end component;

 component LMSMaster port(
 clk : in std_logic;
 reset : in std_logic;
 mu : in std_logic_vector(3 downto 0);
 x : in std_logic_vector(bussize-1
downto 0);
 d : in std_logic_vector(bussize-1
downto 0);
 w : buffer pbus;
 err : buffer std_logic_vector(bussize-1
downto 0));
 end component;

end header;

-- Author : Andrew Y. Lin
-- Date : 04/03/02
-- File : Multiplier.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use work.header.all;

LIBRARY lpm;
USE lpm.lpm_components.ALL;

entity multiplier is port(
 a : in std_logic_vector(bussize-1 downto 0);
 b : in std_logic_vector(bussize-1 downto 0);
 y : out std_logic_vector(bussize-1 downto 0));
end multiplier;

architecture behave of multiplier is

80

 signal product : std_logic_vector(2*bussize-1
downto 0);
begin

 Mult: lpm_mult -- product = a*b;
 GENERIC MAP (LPM_WIDTHA =>bussize,
 LPM_WIDTHB =>bussize,
 LPM_REPRESENTATION => "SIGNED",
 LPM_WIDTHP => 2*bussize,
 LPM_WIDTHS => 2*bussize)
 PORT MAP (dataa => a,
 datab => b,
 result => product);

 --take the sign bit "and" with the lower
 y <= product(2*bussize-1) & product(bussize-2 downto 0);

end behave;

-- Author : Andrew Y. Lin
-- Date : 04/03/02
-- File : Subtractor.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use work.header.all;

LIBRARY lpm;
USE lpm.lpm_components.ALL;

entity subtractor is port(
 clk : in std_logic;
 a : in std_logic_vector(bussize-1 downto 0);
 b : in std_logic_vector(bussize-1 downto 0);
 y : buffer std_logic_vector(bussize-1 downto
0));
end subtractor;

architecture behave of subtractor is

 signal yy : std_logic_vector(bussize-1 downto 0);

begin

 sub: lpm_add_sub -- y = a - b
 GENERIC MAP (LPM_WIDTH => bussize,
 LPM_REPRESENTATION => "SIGNED",
 LPM_DIRECTION => "SUB")
 PORT MAP (dataa => a,
 datab => b,
 result => yy);

81

 --latch the subtraction on rising edge of clk
 process (clk)
 begin
 if (clk'event and clk='0') then
 y <= yy;
 end if;
 end process;

end behave;

-- Author : Andrew Y. Lin
-- Date : 04/03/02
-- File : xadder.vhd

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_signed.ALL;
use work.header.all;

LIBRARY lpm;
USE lpm.lpm_components.ALL;

entity xadder is port(
 a : in std_logic_vector(bussize-1 downto 0);
 b : in std_logic_vector(bussize-1 downto 0);
 y : out std_logic_vector(bussize-1 downto 0));
end xadder;

architecture behave of xadder is

begin

 add: lpm_add_sub -- y = a + b
 GENERIC MAP (LPM_WIDTH => bussize,
 LPM_REPRESENTATION => "SIGNED",
 LPM_DIRECTION => "ADD")
 PORT MAP (dataa => a,
 datab => b,
 result => y);
end behave;

-- Author : Andrew Y. Lin
-- Date : 04/03/02
-- File : UnitDelay.vhd

library IEEE;
use IEEE.std_logic_1164.all;

82

use IEEE.std_logic_arith.all;
use work.header.all;

entity UnitDelay is port(
 clk : in std_logic;
 reset : in std_logic;
 inp : in std_logic_vector(bussize-1 downto 0);
 outp : buffer std_logic_vector(bussize-1 downto 0));
end UnitDelay;

architecture behave of UnitDelay is

begin

 process(clk)
 begin
 if (rising_edge(clk)) then
 if (reset = '1') then
 outp <= (others=>'0');
 else
 outp <= inp;
 end if;
 end if;
 end process;

end behave;

-- Author : Andrew Y. Lin
-- Date : 04/03/02
-- File : WGenerator.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use work.header.all;

LIBRARY lpm;
USE lpm.lpm_components.ALL;

entity WGenerator is port(
 clk : in std_logic;
 reset : in std_logic;
 mu : in std_logic_vector(3 downto 0);
 xx : in std_logic_vector(bussize-1
downto 0);
 ee : in std_logic_vector(bussize-1
downto 0);
 ww : buffer std_logic_vector(bussize-1
downto 0));
end WGenerator;

architecture behave of WGenerator is

83

 signal ee_mult_xx : std_logic_vector(2*bussize-1 downto 0);
 signal ee_mult_xx_div_mu : std_logic_vector(bussize-1 downto 0);
 signal ww_updated : std_logic_vector(bussize-1 downto 0);

-- this function divides input by shifting input "len" bits to the
right
function div (a : std_logic_vector(2*bussize-1 downto 0);
 len : std_logic_vector(3 downto 0))
 return std_logic_vector is

 variable temp : std_logic_vector(2*bussize-1 downto 0);
begin
 temp := a;

 -- if input is positive
 if (temp(2*bussize-1) = '0') then
 case len is
 when "0001" =>
 temp := '0' & temp(2*bussize-1 downto 1);
 when "0010" =>
 temp := "00" & temp(2*bussize-1 downto 2);
 when "0011" =>
 temp := "000" & temp(2*bussize-1 downto 3);
 when "0100" =>
 temp := "0000" & temp(2*bussize-1 downto 4);
 when "0101" =>
 temp := "00000" & temp(2*bussize-1 downto 5);
 when "0110" =>
 temp := "000000" & temp(2*bussize-1 downto 6);
 when "0111" =>
 temp := "0000000" & temp(2*bussize-1 downto 7);
 when "1000" =>
 temp := "00000000" & temp(2*bussize-1 downto
8);
 when "1001" =>
 temp := "000000000" & temp(2*bussize-1 downto
9);
 when "1010" =>
 temp := "0000000000" & temp(2*bussize-1 downto
10);
 when "1011" =>
 temp := "00000000000" & temp(2*bussize-1 downto
11);
 when "1100" =>
 temp := "000000000000" & temp(2*bussize-1
downto 12);
 when "1101" =>
 temp := "0000000000000" & temp(2*bussize-1
downto 13);
 when "1110" =>
 temp := "00000000000000" & temp(2*bussize-1
downto 14);
 when "1111" =>
 temp := "000000000000000" & temp(2*bussize-1
downto 15);
 when others =>
 null;

84

 end case;
 -- if input is negative
 else
 case len is
 when "0001" =>
 temp := '1' & temp(2*bussize-1 downto 1);
 when "0010" =>
 temp := "11" & temp(2*bussize-1 downto 2);
 when "0011" =>
 temp := "111" & temp(2*bussize-1 downto 3);
 when "0100" =>
 temp := "1111" & temp(2*bussize-1 downto 4);
 when "0101" =>
 temp := "11111" & temp(2*bussize-1 downto 5);
 when "0110" =>
 temp := "111111" & temp(2*bussize-1 downto 6);
 when "0111" =>
 temp := "1111111" & temp(2*bussize-1 downto 7);
 when "1000" =>
 temp := "11111111" & temp(2*bussize-1 downto
8);
 when "1001" =>
 temp := "111111111" & temp(2*bussize-1 downto
9);
 when "1010" =>
 temp := "1111111111" & temp(2*bussize-1 downto
10);
 when "1011" =>
 temp := "11111111111" & temp(2*bussize-1 downto
11);
 when "1100" =>
 temp := "111111111111" & temp(2*bussize-1
downto 12);
 when "1101" =>
 temp := "1111111111111" & temp(2*bussize-1
downto 13);
 when "1110" =>
 temp := "11111111111111" & temp(2*bussize-1
downto 14);
 when "1111" =>
 temp := "111111111111111" & temp(2*bussize-1
downto 15);
 when others =>
 null;
 end case;
 end if;
 return temp(2*bussize-1) & temp(bussize-2 downto 0); --take only
the least significant bits
end; -- of function "div"

begin -- of architecture

 --concurrent statement
 ee_mult_xx_div_mu <= div(ee_mult_xx, mu);

85

 process(clk)
 begin
 if (rising_edge(clk)) then
 if reset = '1' then
 ww <= (others=>'0');
 else
 ww <= ww_updated;
 end if;
 end if;
 end process;

 Mult: lpm_mult -- ee*xx
 GENERIC MAP (LPM_WIDTHA =>bussize,
 LPM_WIDTHB =>bussize,
 LPM_REPRESENTATION => "SIGNED",
 LPM_WIDTHP => 2*bussize,
 LPM_WIDTHS => 2*bussize)
 PORT MAP (dataa => xx,
 datab => ee,
 result => ee_mult_xx);

 sub: lpm_add_sub -- ww = ww + ee*xx / mu
 GENERIC MAP (LPM_WIDTH => bussize,
 LPM_REPRESENTATION => "SIGNED",
 LPM_DIRECTION => "ADD")
 PORT MAP (dataa => ww,
 datab => ee_mult_xx_div_mu,
 result => ww_updated);

end behave;

-- Author : Andrew Y. Lin
-- Date : 04/03/02
-- File : LMSMaster.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use work.header.all;

entity LMSMaster is port(
 clk : in std_logic;
 reset : in std_logic;
 mu : in std_logic_vector(3 downto 0);
 x : in std_logic_vector(bussize-1 downto 0);
 d : in std_logic_vector(bussize-1 downto 0);
 w : buffer pbus;
 err : buffer std_logic_vector(bussize-1 downto 0));
end LMSMaster;

86

architecture struct of LMSMaster is

 --signal w : pbus;
 signal qx : qbus;
 signal qy : qbus;
 signal pm : pbus;

begin

 --component instantiations
 UDMi : for i in fl-1 downto 0 generate
 F1: if i = (fl-1) generate
 UDM: UnitDelay port map (clk=>clk,

reset =>reset,
 inp
=> x,

outp => qx(i));
 end generate;

 F2: if i /= (fl-1) generate
 UDi: UnitDelay port map (clk=>clk,

reset => reset,
 inp
=> qx(i+1),

outp => qx(i));
 end generate;
 end generate;

 WGMi : for i in fl downto 0 generate

 F3 : if i = fl generate
 WGM : WGenerator port map (clk => clk,

 reset => reset,

 mu => mu,

 xx => x,

 ee => err,

 ww => w(i));
 end generate;

 F4 : if i /= fl generate
 WGA : WGenerator port map(clk => clk,

 reset => reset,

87

 mu => mu,

 xx => qx(i),

 ee => err,

 ww => w(i));
 end generate;
 end generate;

 MULMi : for i in fl downto 0 generate

 F5 : if i = fl generate
 MULM : multiplier port map (a => x,

 b => w(i),

 y => pm(i));
 end generate;

 F6 : if i /= fl generate
 MUL : multiplier port map(a => qx(i),

 b => w(i),

 y => pm(i));
 end generate;
 end generate;

 ADDMi : for i in fl-1 downto 0 generate

 F7 : if i = fl-1 generate
 ADDM : xadder port map (a =>
pm(i+1),
 b =>
pm(i),
 y =>
qy(i));
 end generate;

 F8 : if i /= fl-1 generate
 ADD : xadder port map(a => pm(i),
 b =>
qy(i+1),
 y =>
qy(i));
 end generate;
 end generate;

 SUB : subtractor port map(
 clk => clk,
 a => d,
 b => qy(0),
 y => err);

88

end struct;

-- Author : Andrew Y. Lin
-- Date : 01/12/03
-- File : Overall.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
use work.header.all;

LIBRARY lpm;
USE lpm.lpm_components.ALL;

entity Overall is port(
 clk : in std_logic;
 reset : in std_logic;
 mu : in std_logic_vector(3 downto 0);
 addr : in std_logic_vector(9 downto 0);
 weights : buffer pbus;
 q : out std_logic_vector(bussize-1 downto 0);
 err : buffer std_logic_vector(bussize-1 downto 0));
end Overall;

architecture struct of Overall is

 signal desired, x_in : std_logic_vector(bussize-1 downto 0);
 --signal addr : std_logic_vector(9 downto 0);

begin

 --This ROM contains the desired signal
 Desired_ROM: lpm_rom
 GENERIC MAP (
 lpm_widthad => 10,
 lpm_width => bussize,
 lpm_address_control => "REGISTERED",
 lpm_outdata => "UNREGISTERED",
 lpm_file => "c:\andy lin\testdata\LMSDesired.mif")
 PORT MAP (
 inclock => clk,
 q => desired,
 address => addr);

 --This ROM contains the input signal
 input_ROM: lpm_rom
 GENERIC MAP (
 lpm_widthad => 10,
 lpm_width => bussize,
 lpm_address_control => "REGISTERED",
 lpm_outdata => "UNREGISTERED",
 lpm_file => "c:\andy lin\testdata\LMSinput.mif")

89

 PORT MAP (
 inclock => clk,
 q => x_in,
 address => addr);

 --This RAM contains error signal
 err_RAM : lpm_ram_dq
 GENERIC MAP(
 LPM_WIDTH => bussize,
 LPM_WIDTHAD => 10,
 LPM_INDATA => "REGISTERED",
 LPM_OUTDATA => "UNREGISTERED",
 LPM_ADDRESS_CONTROL => "UNREGISTERED")
 PORT MAP(
 address => addr,
 inclock => clk,
 we => '1',
 data => err,
 q => q);

 --LMS FIR instantiation
 FIR : LMSMaster PORT MAP (
 clk => clk,
 reset => reset,
 mu => mu,
 x => x_in,
 d => desired,
 w => weights,
 err => err);

 --process(clk)
 --begin
 -- if (clk'event and clk='1') then
 -- if (reset = '1') then
 -- addr <= (others=>'0');
 -- else
 -- addr <= addr + '1';
 -- end if;
 -- end if;
 --end process;

end struct;

LIST OF REFERENCES

1. Al-Kindi, M. J., Al-Samarrie, A.K. and Al-Anbakee, T. M., Performance
improvements of adaptive FIR filters using adjusted step size LMS algorithm.
Seventh International Conference on HF Radio Systems and Techniques, pp. 454-
458, Jul. 1997.

2. Altera, Stratix Programmable Logic Device Family Data Sheet, Data Sheet DS-
STXFAMLY-2.1, Altera, Inc., Aug. 2002.

3. Baher, H., Analog and Digital Signal Processing. 2nd edition, John Wiley &
sons, LTD., New York, New York, 2001.

4. Chew, W. C., Farhang-Boroujeny, B., FPGA Implementation of Acoustic Echo
Cancelling. Proceedings of the IEEE Region 10 Conference TENCON 1999, vol.
1, pp. 263-266, 1999.

5. Claasen, T. A. C. M. and Mecklenbrauker, W. F. G., Comparison of the
Convergence of two Algorithms for Adaptive FIR Digital Filters. IEEE Trans.
Acoustic, Speech, Signal Processing, vol. ASSP-29, pp. 670-678, Jun. 1981.

6. DiCarlo, D., Characterizing CMOS DSP Core Current for Low-power
Applications, Data Sheet AN2013-D, Motorola, Inc., Oct. 2000.

7. Diniz, P. S. R., Adaptive Filtering – Algorithms and Practical Implementation. 2nd
Edition, Kluwer Academic Publishers, Norwell, Massachusetts, 2002.

8. Diniz, P. S. R., da Silva, E.A.B. and Netto, S.L., Digital Signal Processing –
System Analysis and Design. Cambridge University Press, Cambridge U.K., 2002.

9. Douglas, S. C., Zhu, Q. and Smith, K. F., A Pipelined LMS Adaptive FIR Filter
Architecture Without Adaptation Delay. IEEE Transactions on Signal Processing,
vol. 46, no. 3, pp. 775-779, Mar. 1998.

10. Eweda, E., Reducing the Effect of Finite Wordlength on the Performance of an
LMS Adaptive Filter. IEEE International Conference on Communications, vol. 2,
pp. 7-11, Jun. 1998.

11. Eweda, E., Convergence analysis and Design of an Adaptive Filter with Finite-bit
Power-of-Two Quantized Error. IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing, vol. 39, issue 2, pp. 113-115, Feb. 1992.

90

91

12. FU, R. and FORTIER, P., VLSI Implementation of Parallel-Serial LMS Adaptive
Filters, 18th Biennial Symposium on Communications, pp. 159-162, June, 1996.

13. Guillou, A., Quinton, P., Risset, T. and Massicotte, D., Automatic Design of VLSI
Pipelined LMS Architecture, Proceedings in International Conference on Parallel
Computing in Electrical Engineering, pp. 144-149, 2000.

14. Goslin, G. R., A Guide to Using Field Programmable Gate Arrays (FPGAs) for
Application-Specific Digital Signal Processing Performance, Digital Signal
Processing program report, Xilinx Inc., 1995.

15. Gupta, R. and Hero, A.O., Transient Behavior of Fixed Point LMS Adaptation.
Proceedings of IEEE International Conference on Acoustics, Speech and Signal
Processing, vol. 1, pp. 376-379, April, 2000.

16. Haykin, S. Adaptive Filter Theory. 4th edition, Prentice Hall, Upper Saddle River,
New Jersey, 2002.

17. Kabal, P. The Stability of Adaptive Minimum Mean Square Error Equalizers Using
Delayed Adjustment. IEEE Transactions on Communications, vol. COM-31, no. 3,
pp. 430-431, Mar. 1983.

18. Kum, K. and Sung W., Word-length Optimization for High Level Synthesis of
Digital Signal Processing Systems. IEEE Workshop on Signal Processing Systems,
pp. 569-578, October 1998.

19. Mathews, V. J. and Cho, S. H., Improved Convergence Analysis of Stochastic
Gradient Adaptive Filters Using the Sign Algorithm. IEEE Transactions on
Acoustic, Speech and Signal Processing, vol. 35, issue 4, pp. 450-454, April, 1987.

20. Meyer, M.D. and Agrawal, D. P., A High Sampling Rate Delayed LMS Filter
Architecture. IEEE Transactions on Circuits and Systems -- II: Analog and Digital
Signal Processing, vol. 40, No. 11, pp. 727-729, Nov. 1993.

21. Nichols, K., Moussa, M. and Areibi, S., Feasibility of Floating Point Arithmetic
in FPGA based ANNs. In Proceedings of the 15th International Conference on
Computer Applications in Industry and Engineering, pp. 8-13, November 2002.

22. Papoulis, A. and Pillai, S.U., Probability, Random Variables and Stochastic
Proceses. 4th edition, McGraw-Hill, New York, New York, 2001.

23. Schertler, T., Cancellation of Acoustic Echoes with Exponentially Weighted Step-
Size and Fixed Point Arithmetic. Conference records of the 32nd Asilomar
Conference on Signals, Systems and Computers, vol. 1, pp. 399-403, November
1998.

92

24. Song, M.S., Yang, P.P.N. and Shenoi, K., Nonlinear Compensation for Finite Word
Length Effects of an LMS Echo Canceller Algorithm Suitable for VLSI
Implementation. Proceedings of International Conference on Acoustics, Speech
and Signal Processing, vol. 3, pp. 1487-1490, April 1988.

25. Taylor, F., the Athena Group, Inc. and Mellott, J., Hands-on Digital Signal
Processing. McGraw-Hill, New York, New York, 1998.

26. Texas Instruments, TMS320VC33 Digital Signal Processor, Datasheet
TMS320VC33-Rev.D, July 2000.

27. Wakerly, J., Digital Design, Principles and Practices. 3rd edition, Prentice Hall,
Upper Saddle River, New Jersey, 2001.

28. Wang, T. and Wang C. L., Delayed Least-mean-square Algorithm. Electronics
Letters, vol. 3, issue 7, pp. 524-526, Mar. 1995.

BIOGRAPHICAL SKETCH

Andrew Lin was born in a small village in Southern China. He was raised in the

city of Shenzhen. He migrated to the United States to join his family in Tampa, Florida,

in 1993. He received his Bachelor of Science degree in computer engineering at the

University of Florida in 2000. Since 2000, he has been a graduate student in the

Department of Electrical and Computer Engineering at University of Florida, under the

supervisions of Dr. Jose Principe, Dr. Karl Gugel and Dr. John Harris. He is expected to

graduate in May 2003 with his Master of Engineering Degree. Upon graduation, he will

relocate to Austin, Texas, where he will become a full-time employee of Motorola.

93

	1.1 Problem Statement
	1.2 Tradeoffs in Choosing Fixed-point Representation
	1.3 Motivation and Outline of the Thesis
	2.1 Discrete Stochastic Processes
	2.1.1 Autocorrelation Function
	2.1.2 Correlation Matrix
	2.1.3 Yule-Walker Equation
	2.1.4 Wiener Filters

	2.2 Method of Steepest Descent
	2.2.1 Steepest Descent Algorithm
	2.2.2 Wiener Filters with Steepest Descent Algorithm

	2.3 Least Mean Square Algorithm
	2.3.1 Overview
	2.3.2 The Algorithm
	2.3.3 Applications
	2.3.3.1 Adaptive noise cancellation
	2.3.3.2 Adaptive line enhancement

	3.1 Quantization Effects
	3.1.1 Rounding
	3.1.2 Truncation
	3.1.3 Rounding vs. Truncation

	3.2 Input Quantization Effects
	3.3 Arithmetic Rounding Effects
	3.3.1 Product Rounding Effects
	3.3.2 Coefficient Rounding Effects
	3.3.3 Slowdown and Stalling
	3.3.4 Saturation
	3.3.5 Solutions for Arithmetic Quantization Effects

	3.4 Simulation Result
	3.4.1 Rounding vs. Truncation
	3.4.2 Effects of Product Rounding at the Convolution Stage
	3.4.3 Effects of Product Rounding at the Adaptation Stage
	3.4.4 Clamping Technique
	3.4.5 Sign Algorithm

	3.5 Remarks
	4.1 Modular Overview
	4.2 Data Quantization
	4.3 Simulation Results
	5.1 Stratix Devices
	5.1.1 Device Architecture
	5.1.2 Embedded DSP Blocks

	5.2 Design Specifications
	5.2.1 Structural Overview
	5.2.2 The Power-of-Two Scheme
	5.2.3 Data Flow and Quantization

	5.3 Dynamic Component Instantiation in VHDL
	5.4 Simulation and Implementation Results
	5.5 Performance Comparison of Stratix and Traditional FPGAs
	5.5.1 Speed
	5.5.2 Area

	5.6 Pipelining
	5.6.1 Optimal Multiplier Pipeline Stages
	5.6.2. Optimal Adder-chain Pipeline Stages
	5.6.3 Tradeoffs in Introducing Latency into Adaptive Systems
	5.6.4 Performance of the Pipelined Adaptive System

	5.7 Performance Comparison of FPGAs and DSP Processors
	5.7.1 Speed
	5.7.2 Power Consumption

	6.1 Conclusion
	6.2 Future Work

