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Adaptive filters have become vastly popular in the area of digital signal processing.  

However, adaptive filtering algorithms assume infinite-precision whereas in reality, 

digital hardware is of finite-precision.  The effects of finite-precision on adaptive 

algorithms are studied in this thesis and techniques rendering these effects are presented.  

Simulation results are also presented to verify the techniques targeting specifically to the 

Least Mean Square (LMS) algorithm.  Finally, a fixed-point-based adaptive transversal 

filter is simulated in a new family of FPGA devices with embedded DSP blocks.  The 

cost-benefit and tradeoff of pipelining are studied.  The performance of this new family 

of FPGA devices is compared against DSP processors, as well as traditional FPGA 

devices that do not have embedded DSP blocks.   
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CHAPTER 1 
INTRODUCTION 

1.1 Problem Statement 

Significant contributions have been made in the past thirty years in the signal 

processing field.  Particularly digital signal processing (DSP) systems have become 

attractive due to the advances in digital circuit design and the systems’ reliability, 

accuracy and flexibility.  One of the DSP applications is called filtering, where the digital 

system’s objective is to process a signal in order to manipulate the information contained 

in the input signal.  As described in DiCarlo [7], a filter is a device that maps its input 

signal to another output signal facilitating the extraction of the desired information 

contained in the input signal.  For a time-invariant filter, the internal parameters and the 

structure of the filter are fixed.  Once specifications are given, the filter’s transfer 

function and the structure defining the algorithm are fixed. 

An adaptive filter is time-varying since their parameters are continually changing in 

order to meet certain performance requirement.  Usually the definition of the 

performance criterion requires the existence of a reference signal, which is absent in 

time-invariant filters.   The general set up of an adaptive filtering environment is 

illustrated in Figure 1-1, where n is the iteration index, x(n) denotes the input signal, y(n) 

is the adaptive filter’s output signal, and d(n) defines the reference or desired signal.  The 

error signal e(n) is the difference between the desired d(n) and filter output y(n).  The 

error signal is used as a feedback to the adaptation algorithm in order to determine the 

appropriate updating of the filter’s coefficients, or tap weights.  The minimization 
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objective is for the adaptive filter’s output signal matching the desired signal in some 

sense.   

 

Figure 1-1.  Conventional Adaptive Filter Configuration 

The minimization objective can be viewed as a function of the input, desired, and output 

signals, or consequently a function of the error signal.  One of the most commonly used 

objectives is to minimize the mean square error, that is, the objective function is defined 

as 

)]([)]([ 2 neEneF =    .  (1.1) 

Adaptive filters can be implemented either in Finite Impulse Response (FIR) form 

or in Infinite Impulse Response (IIR) form.  FIR filters are usually implemented in non-

recursive structures, whereas IIR filters employ recursive realizations.  In the case of FIR 

realizations, the most widely used adaptive filter structure is the transversal filter, also 

known as tapped delay line structure.   

As will be derived in Chapter 2, all adaptive algorithms including the Least Mean 

Square (LMS) algorithm for example, assume infinite precision.  In other words, there is 

infinite storage for information needed to perform adaptation.  However, it is not the case 
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in reality, where computers or digital hardware which implement adaptive algorithms all 

contain limited storage for information, that is, numbers are stored in finite precisions.   

Due to finite precisions in digital hardware, quantization must be performed in 

either or all of the following areas: 

• Input and reference signals; 

• Product quantization in convolution stage;  

• Coefficient quantization in adaptation stage. 

Quantization noise is introduced in all of the above areas.  The effects of quantization are 

discussed in this thesis. 

DSP applications including adaptive systems have traditionally been implemented 

with either fixed-point or floating-point microprocessors.  However, with its growing die 

size as well as incorporating the embedded DSP block, the FPGA devices have become a 

serious contender in the signal processing market.  Although it is not yet feasible to use 

floating-point arithmetic in modern FPGAs, it is sufficient to use fixed-point arithmetic 

and still achieve tap-weight convergence for adaptive filters.  This thesis also investigates 

the performance among FGPAs and DSP processors in terms of speed and power 

consumption.   

1.2 Tradeoffs in Choosing Fixed-point Representation 

Since infinite precision is not available in the real world, tradeoffs must be made in 

implementation of adaptive systems in finite precision.  By increasing the wordlength, a 

system can increase the data precision in which it can represent.  However, the amount of 

hardware also increases, and that leads to larger circuitry and slower system speed.  If 

wordlength is insufficient, saturation or stalling may occur due to the inadequacy of data 
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storage, even though smaller wordlength reduces amount of hardware.  Therefore, the 

system engineer must deal with the tradeoffs between overall feasibility of the 

implementation, and the functionality of the system. 

Quantization may create effects such as saturation and stalling.  These effects, if 

not dealt with carefully, may render the adaptive filter useless.  Let us take multiplication 

as an example for illustration: when two N-bit numbers are multiplied, the result is 2N 

bits and the product is usually quantized into a number that is M-bit long, where M<2N.  

Refer to Figure 1-2, there are two options for quantization:  a) the upper significant bits 

are quantized resulting loss of large amount of information; b) the lower significant bits 

are quantized resulting loss of data precision. 

a) Quantize upper significant bits b) Quantize lower significant bits 

Figure 1-2.  Two Options of Quantization 

By choosing option a), one is exposed to the danger of saturation, where the filter 

becomes useless due to the loss of large amount of information.  Saturation may be 

avoided by increasing the wordlength, or by the clamping technique.  Alternatively, if 

option b) is chosen, stalling phenomenon may occur when tap weight update parameters 
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become smaller than the least significant bit of the binary representation and 

consequently are quantized into zeros.  When stalling occurs, the adaptation process is 

terminated prematurely due to lack of update information.  We will show that stalling 

may be avoided by either incrementing the step size parameter, use the sign algorithm, or 

by dithering. 

Slowdown may also occur in finite precision environments, in which the tap weight 

convergence is slower than in infinite precision environments.  We will show that 

wordlength of the tap weights plays significant parts in cause of slowdown and by 

allocating more bits to represent coefficients, slowdown can be avoided. 

1.3 Motivation and Outline of the Thesis 

As stated earlier, adaptive filters have become growing interests in the DSP field.  

Most adaptive algorithms that run inside the adaptive filters have been derived under the 

assumption of infinite precision.  However, since finite precision takes place in the real 

world, it is advantageous to study what effects finite precision can impose on adaptive 

filters and furthermore what techniques may be employed to mitigate, if not eliminate 

these effects.   

Once the effects are studied thoroughly, a finite precision based adaptive filter is 

implemented by first experimenting in software environment to obtain feasibility, and 

then turning the software experiment into digital hardware realization.    

Chapter 2 presents the theoretic backgrounds on adaptive algorithms, and the LMS 

algorithm is derived.  Chapter 3 focuses on the effects created by finite precision 

environment as well as techniques to reduce such effects.  Chapter 4 demonstrates a 

software implementation of a finite precision based adaptive filter where in Chapter 5, 

based on the feasibility analysis from Chapter 4, details of a transversal adaptive filter 
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implemented in an FPGA device is given.  In order to boost data rates, pipelining is 

implemented.  Tradeoffs in introducing pipelining are also studied.  Comparison is also 

presented in choosing hardware for adaptive DSP application implementation.  Finally, 

conclusion and future work are presented in Chapter 6.  

 



CHAPTER 2 
THEORETICAL BACKGROUND ON LINEAR ADAPTIVE ALGORITHMS 

2.1 Discrete Stochastic Processes 

In most signals and systems discussion, the signals are defined by analytical 

expressions, difference equations or even arbitrary graphs.  However most signals in the 

real world are random, or containing random components due to factors such as additive 

noise or quantization errors.  Such signals therefore, require the use of statistical methods 

rather than analytical expressions for their descriptions.     

Haykin [16] defines the term stochastic process as a term to describe the time 

evolution of a statistical phenomenon according to probabilistic laws.  The time evolution 

implies that the stochastic process is a set of functions of time.  According to 

Probabilistic laws implies that the outcomes of the stochastic process cannot be 

determined before conducting experiments.   

A stochastic process is not a single function of time.  Rather, it represents an 

infinite number of different realizations of the process [16].  One example of the 

realizations is a discrete-time series, in which the process is sampled at each sampling 

period.  For example, the sequence [u(n), u(n-1), …, u(n-M)]  represents a partial 

discrete-time observation consisting samples of the present value and M past values of 

the process. 

2.1.1 Autocorrelation Function 

Consider a discrete-time series representation of a stochastic process [u(n), u(n-1), 

…, u(n-M)], the autocorrelation function is defined as following: 
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r(n, n-k) = E[u(n)u*(n-k)], k = 0, +1, +2, …                             (2.1) 

Where E[] denotes the expectation operator and * denotes complex conjugate.  This 

second-order characterization of the process offers two important advantages:  First, it 

lends itself to practical measurements and second, it is well suited for linear operations on 

stochastic processes [16].   

Note that if only real-world signals are considered, the conjugate form is omitted 

and the auto-correlation is simply the mean square of the signal.  This consideration is 

true for the rest of the thesis.   

The autocorrelation function described in equation 2.1 depends only on the 

difference between the observation time n and n – k, or the lag k.  Therefore,  

          r(n, n – k) = r(k)     .  (2.2) 

2.1.2 Correlation Matrix 

Let the M-by-1 observation vector u(n) represent the discrete-time series u(n), u(n-

1), …, u(n-M+1).  The composition of the vector can then be written as 

         u(n) = [u(n), u(n-1), …, u(n-M+1)]T  ,  (2.3) 

where T denotes transposition. 

The correlation matrix of a discrete-time stochastic process can be defined as the 

expectation of the outer product of the observation vector u(n) with itself.  The dimension 

of the correlation matrix is M-by-M and is denoted as R as following: 

    R = E[u (n)uT (n)]    .  (2.4) 

By substituting Eq. (2.3) into Eq. (2.4) and using the property defined in Eq. (2.1), the 

expanded matrix form of the correlation matrix can be expressed as follows: 
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2.1.3 Yule-Walker Equation 

An autoregressive process (AR) of order M is defined by the difference equation 

  u(n) + a1u(n-1) + a2u(n-2) + … + aMu(n-1) = v(n)  ,            (2.6) 

where a1, a2, …, aM  are constants and v(n) is white noise.  Eq. (2.6) can be rewritten in the 

form 

  u(n) = w1u(n-1) + w2u(n-2) + … + wMu(n-1) + v(n) ,  (2.7) 

where wk = -ak.  Eq. (2.7) states that the present value of the process, u(n), is a finite 

linear combination of past values, u(n-1), u(n-2), …, u(n-M), plus an error term v(n). 

By multiplying both sides of Eq. (2.6) by u(n – l), where l > 0, and then applying 

the expectation operator, we obtain the following equation: 

      .    (2.8) [ ])()()()(
0

lnunvElnuknuaE
M
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Since the expectation E[u(n – k)u(n – l)] equals to the autocorrelation function of 

the AR process with lag of l – k, and the E[v(n)u(n – l) is zero for l > 0,  Eq. (2.8) can be 

simplified to  

                       l > 0 .      (2.9) ,0)(
0

=−∑
=

klra
M

k
k

The autocorrelation function of the AR process thus satisfies the difference equation  

r(l) = w1r(l – 1) + w2r(l – 2) + … + wMr(l – M),  l > 0          .                     (2.10) 
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By expanding Eq. (2.10) for all l = 1, 2, …, M, a set of M simultaneous equations is 

formed with the values of the autocorrelation function as known quantities and the AR 

parameters as unknowns.  The set of equations may appear in matrix form 

   (2.11) 
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This set of equations in (2.11) is called the Yule-Walker Equations.  By using the 

expression introduced in Eq. (2.5), the Yule-Walker equations may be written in its 

compact matrix form  

      Rw = r                .  (2.12) 

Assume that R-1 exists, the solution for the AR parameters can be obtained by 

          w =  R-1 r     .    (2.13) 

2.1.4 Wiener Filters 

Consider a Finite Impulse Response (FIR) filtering problem described in Figure 2-1, 

the input of the filter consists of time series u(0), u(1), u(2), …, and the filter has an 

impulse response, or tap weights,  w0, w1, …, wM, where M is the length of the filter. The 

impulse response are selected so that the filter output match as closely as possible with a 

desired signal denoted by d(n).  The estimation error e(n) is defined as the difference 

between d(n) and the filter output y(n).  Statistical optimization may be applied to 

minimize e(n).  One such optimization is to minimize the mean square value of e(n).   

According to the Principle of Orthogonality, if the FIR filter depicted in Figure 2-1 

operates under optimum condition, the filter output y[n] best estimates the desired signal 
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d[n].  The Wiener-Hopf equation is derived from the same principle to solve for the 

optimum condition. 

 

Figure 2-1. Block diagram of a Statistical Filtering Problem. 

Let R be the M-by-M correlation matrix of the filter inputs u(n), where u(n) = [ 

u(n), u(n-1), …, u(n-M+1)].  According to Eq. (2.3) to (2.5), the correlation matrix is in 

the form of  

                   (2.14) 
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Also let p denote the M-by-1 cross correlation vector between the filter inputs and the 

desired response: 

p = E[u(n)d(n)]       ,  (2.15) 

or in the expanded vector form: 

 p = [p(0), p(-1), …, p(1-M)]T   . (2.16) 

The Wiener-Hopf equation is thus defined as the following: 

                Rwo = p  ,  (2.17) 

where wo is the M-by-1 optimum tap weight s of the FIR filter described in Figure 2-1.  

To solve for the Wiener-Hopf equation for wo, we assume that R-1 exists and multiply it 

to both sides of Eq. (2.17) to obtain the following: 
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 wo = R-1p   (2.18) 

Note that in order to calculate the optimum tap weight vector wo with Eq. (2.18), 

both the autocorrelation matrix of the filter input and the cross-correlation vector between 

input and desired have to be known a priori, that is, the statistical information of the 

entire tap inputs vector and the desired are known before wo is calculated.  Eq. (2.18) is 

also computational expensive, an inverse operation of an M-by-M matrix is performed 

follow by a matrix-vector multiplication. 

2.2 Method of Steepest Descent 

As described in Section 2.1.4, the Wiener filter employs the minimization of the 

mean square of its error signal e(n)  to optimally match the filter output signal y(n) with 

the desired signal d(n) employs the minimization of the mean square of its error signal 

e(n).  Furthermore, the particular Wiener filter has fixed tap weights for all filter inputs 

and the tap weights are calculated a priori using the Wiener-Hopf Equation. 

The method of steepest descent involves updating the tap weights of the filter at 

each time step in a feedback system.  It does not require the entire statistics of the filter 

inputs; instead, it provides an algorithmic solution that allows for the tracking of time 

variations in the signal’s statistics without having using the Wiener-Hopf Equation. 

2.2.1 Steepest Descent Algorithm 

Let us define J(w) to be the cost function of some unknown weight vector w and 

that J(w) is continuously differentiable with respect to w.  The optimum weight vector wo 

thus satisfies the following condition: 

    J(wo) < J(w)           for all w.                              (2.19)  

Eq. (2.19) may be extended according local iterative descent.  An initial 

presumption for J(w) is made, at each time interval, a new set of w is generated so that  
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            J(w(n+1)) < J(w(n))   ,   (2.20) 

where w(n) is the previous tap weight vector and w(n+1) is the updated version. 

One particular method of the local iterative descent is the method of steepest 

descent.  At each iteration, the tap weight vector is adjusted in the direction opposite to 

the gradient vector of the cost function J(w).  The gradient vector is defined as 

w
wJg

∂
∂

=
)(           (2.21) 

Therefore the steepest descent algorithm is defined as 

      w(n+1) = w(n) – µg(n)                                       (2.22) 

The term µ is the step size.  Details of the step size are given later.  Justification for Eq. 

(2.22) satisfying the criteria defined in Eq. (2.20) can be seen in [16]. 

2.2.2 Wiener Filters with Steepest Descent Algorithm 

Figure 2-1 depicts a Wiener filter with fixed tap weights where the tap weights are 

optimal and are calculated using the Wiener-Hopf equation.  There is no adjustment to 

the weights.  By incorporating the method of steepest descent, a new structure of the 

Wiener filter with weight adjustment is shown in Figure 2-2. 

 

Figure 2-2.  Block Diagram of an Adaptive FIR Filter 
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The gradient function g(t) may be in the form of the autocorrelation matrix of the filter 

inputs and the cross-correlation vector between filter input and the desired response, if 

the cost function J(w) is a function of t, as described in Eq. (2.20) [16].  Eq (2.22) can 

then be rewritten as 

                                           w(n+1) = w(n) – µ [ p – Rw(n) ]                   ,                (2.23) 

where p denotes the cross-correlation vector, R denotes the autocorrelation matrix and µ 

denotes step size.  In order to guarantee convergence of the steepest descent algorithm, 

two conditions must be satisfied: 

• The process is wide-sense stationary. 

• 
max

10
λ

µ << , where maxλ is the largest eigenvalue of R. 

2.3 Least Mean Square Algorithm 

The most widely used adaptive algorithm is the Least Mean Square (LMS) 

algorithm.  The key feature of the LMS algorithm is its simplicity.  It requires neither any 

measurement of the correlation function, nor any matrix inversion or multiplication.   

2.3.1 Overview 

The LMS adaptive filter bears the same structure as the one shown in Figure 2-1.  

The filter output y(n) should be made to resemble the desired signal d(n).  The difference 

of d(n) and y(n) is the error signal e(n).  As described in Section 2.2, a linear adaptive 

filter consists of two basic processes.  The first process involves performing convolution 

sum of the filter taps with the tap weights.  The other process involves performing 

adaptation process on the tap weights.  In the case of the LMS algorithm, the weight 

adjustments requires the current error signal e(n) along with filter taps to produce the 

updated tap weight vectors.  Details of the algorithm are given in the next section. 
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2.3.2 The Algorithm 

The Steepest Descent method has progressed from a fixed tap-weight structure to a 

step-by-step adaptive structure.  However, when applying Steepest Descent method into 

the Wiener filter, we still require prior knowledge of the autocorrelation matrix R and the 

cross-correlation vector p.  In order to avoid measurement of any correlation function and 

avoid any matrix computations, and to establish a truly adaptive system, estimates of R 

and p are calculated using only available data. 

The simplest estimation may use only the current available taps and the current 

desired response to estimate autocorrelation matrix and cross-correlation vector.  The 

new equation to adapt tap weights using the instantaneous taps and desired response, 

according to Eq. (2.23), is therefore given as follows: 

w(n+1) = w(n) + µu(n)[ d(n) – u(n)w(n) ]   .  (2.24) 

Since the filter output is the convolution sum of the taps and tap weights, or  

     y(n) = u(n)w(n)    .  (2.25) 

Furthermore, the estimated error signal e(n) is defined as the difference between the 

desired response and the filer response, or 

     e(n) = d(n) – y(n)    (2.26) 

Therefore, Eq. (2.24) can be rewritten in terms of the error signal and the taps: 

w(n+1) = w(n) + µu(n)e(n)         (2.27) 

Eq. (2.27) is the formula for the LMS algorithm.  As illustrated in the equation, 

each tap weight adaptation at each time interval requires merely the knowledge of the 

current taps and the current error signal, which is produced with the knowledge of the 

desired response.  The algorithm does not require any prior knowledge of the entire 
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autocorrelation matrix or the cross-correlation vector, nor does it require matrix 

computations.  

The algorithm requires an initial “guess” of the tap weight vector.   In general, if no 

prior knowledge of the environment is known, the tap weight vector is initialized to all 

zeros.    

The step size parameter, µ, plays an important role in determining the LMS 

algorithm’s speed of convergence and misadjustment (the difference between true 

minimum cost value Jinf and the minimum cost value produced by the LMS algorithm).  

Unfortunately, there is no clear mathematical analysis to derive the quantities.  Only 

through experiments may we obtain a feasible solution.  Several authors including 

authors in [1] have proposed modified LMS algorithm in which the step size parameter is 

a part of the adaptation along with tap weights.  In general, µ should obey the following 

inequality:  

 0 < µ < 
max

2
MS

        ,  (2.28) 

where M is the filter length and Smax is the maximum value of the power spectral density 

of the tap inputs [16]. 

2.3.3 Applications 

The LMS algorithm is considered the most widely used adaptive algorithms for 

many signals and systems applications.  Here we present two applications as examples. 

2.3.3.1 Adaptive noise cancellation 

Figure 2-3 describes a simple structure on interference noise canceling where the 

desired response is composed of a signal s(n) and a noise component v(n), which is 

uncorrelated with s(n).  The filter input is a sequence of noise, v’(n), which is correlated 
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with the noise component in the desired signal.  By using the LMS algorithm inside the 

adaptive filter, the error term e(n) produced by this system is then the original signal s(n) 

with the noise signal v(n) cancelled.   

 

Figure 2-3.  Adaptive Noise Cancellation Block Diagram 

2.3.3.2 Adaptive line enhancement 

A sinusoidal waveform, denoted by s(n), is transmitted thru a medium and is 

corrupted by noise, denoted by v(n).  A delayed version of this corrupted signal serves as 

the input of the LMS adaptive filter and the original corrupted signal serves as the desired 

signal.  The adaptive filter’s output y(n) becomes an enhanced version of the original 

sinusoid.  The block diagram for the line enhancer is shown in Figure 2-4. 

 

Figure 2-4.  Adaptive Line Enhancer Block Diagram 

 



CHAPTER 3 
FINITE PRECISION EFFECTS ON ADAPTIVE ALGORITHMS 

Theories of adaptive algorithms such as the LMS algorithm presented in Chapter 2 

assume the systems to be models with real values, that is, the systems retain infinite 

precision for the input signal, the internal calculations, as well as the result of the system.  

But in reality, computers or digital hardware that implement adaptive algorithms all 

involve finite precision architectures.  The analog input signals have to first be converted 

digitally before it is fed into the system; the arithmetic operation results have to be 

quantized or even scaled to prevent overflow of the registers.  If not dealt with carefully, 

these factors can cause a disastrous outcome on the adaptive system.   

There are two ways to represent a value based on finite precision: fixed-point and 

floating-point.  In fixed-point representation, the radix point is fixed by specifying 

number of bits for integer part and number of bits for fractional part.  Although it has a 

restricted dynamic range of numbers it can represent, the fixed-point representation’s 

resolution is fixed.  In floating-point representation, the total number of bits is fixed but 

the radix point can “float” anywhere, resulting a wider dynamic range of numbers in 

which it can represent.  However, since the radix point floats, the resolution is not fixed 

and therefore quantization is required at both additions and multiplications, which creates 

more quantization noise.  Conversely, quantization is required only after multiplications 

in fixed-point arithmetic.  Since we are dealing with minimizing the effects due to finite 

precision in this chapter, it is desirable to choose fixed-point representation for analysis. 

18 
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Additionally, since the radix point is fixed for fixed-point representation, adders 

and multipliers have much simpler logic equations than for floating-point representation.  

This initiative leads to simpler circuit design and better circuit performance in terms of 

speed.  For hardware implementations of DSP applications, it is advantageous to choose 

fixed-point based architectures. 

Chapter 3 presents some of the common effects, as well as some well-known 

techniques against these effects in dealing with finite precision adaptive systems. 

3.1 Quantization Effects 

Due to finite precision architectures of most digital hardware, the analog input 

signal, as well as each register that holds any intermediate or final arithmetic results has 

to be quantized within certain wordlength.   Quantization can be done in two ways:  

rounding and truncation. These two techniques will be discussed in details in this Section.  

The quantizing step is defined as the weight of the least significant bit of the binary 

representation and is denoted by q.  It will be shown that errors created by quantization 

are directly related to the quantizing step. 

3.1.1 Rounding 

Quantization by rounding leads an infinite precision value to a result of a finite 

precision code whose value is closest to the actual value [8].  If q is the quantizing steps, 

the sampled value lying between qn 




−

2
1


 and qn 






 +

2
1 are all rounded to .  

Mathematically, rounding can be expressed as the following: 

nq

,)( nqnTfr =     qnnTqn 





 +<≤






 −

2
1

2
1   . (3.1) 

 



20 

Figure 3-1 shows the rounding result of a continuous signal of an arbitrary sinusoid 

rounded to the nearest integer values, i.e., q = 1. 

 

Figure 3-1. Rounding Effects 

Let x be the error caused by rounding, x then can be assumed to be a uniformly 

distributed random variable between 
q
2

−  and
q
2 .  The probability density function for 

rounding error, according to definitions given in [22], is shown in Eq. (3.2). 



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qxpr      .             (3.2) 

Since the probability density function of the rounding error is uniformly distributed 

between 
2
q

−  and
2
q , the expectation of the rounding error, denoted by , is given by )(xEr

0)()(
2/

2/

=== ∫ ∫
−

dx
q
xdxxxpxE

q

q
r   .  (3.3) 
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The variance, or the power spectral density of the rounding error, denoted by 2
rσ , is 

derived by its definition and is equal to 

[ ]
12

)()()(
22/

2/

2
2222 qdx

q
xxExExE

q

q
rrr ===−= ∫

−

σ   (3.4) 

3.1.2 Truncation 

Quantization by truncation leads an infinite precision value to a finite precision 

result that is closest to but always less than the value [8].  Again, if q is the quantizing 

step, the value lying between and nq qn )1( + is truncated to nq .  Truncation is expressed 

in the following equation: 

,)( nqnTft =   ( )qnnTnq 1+<≤   .     (3.5) 

Figure 3-2 shows the truncated result of the same continuous signal used in Figure 3-1 

truncated to the nearest integer values with sampling period T = 0.1.   

 

Figure 3-2. Truncation Effects 
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Let x be the error caused by truncation, x then again can be assumed uniformly 

distributed between and 0.  The probability density function for the truncation error is 

therefore 

q−







>

≤≤−
=

0,0

0,1
)(

x

xq
qxpt    .              (3.6) 

Again by assuming the probability density function of the truncation error is 

uniformly distributed between q− and 0, the expectation of the truncation error, denoted 

by , is given by )(xEt

2
)()(

0 qdx
q
xdxxxpxE

q
t −=== ∫ ∫

−

              . (3.7) 

The power spectral density of the truncation error, denoted by , is equal to 2
tσ

 [ ]
124

)()(
220 2

222 qqdx
q
xxExE

q
ttt =−=−= ∫

−

σ   . (3.8) 

 
3.1.3 Rounding vs. Truncation 

From the above derivations of both the mean and the variance (power) of two 

different quantization techniques, we can see that although they produce the same error 

power, rounding the number results in zero mean error while truncation results in mean 

error of
2
q

− .  The errors associated with a nonzero value, although small, tend to 

propagate through the filter [8].  It is especially true in adaptive filters, since the filter is 

not only a linear systems, in that any error terms are processed by the filter just as an 

input and thus contaminate the output of the filter; but the filter is also a feedback system, 

in that error signal produced in the output circulates back to the filter to create even more 
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errors.  Therefore, rounding is more attractive compare to truncation when it comes to 

signal quantization.  Simulation results in Section 3.4.1 will verify this finding. 

3.2 Input Quantization Effects 

Before an analog signal may be accepted for processing by a digital system, such as 

a computer or microprocessor, it must be converted into digital form.  The first step in the 

digitization process is to take samples of the signal at regular time intervals to convert a 

continuous signal with time variable t into real instances with sample variable n.  Next, 

the instances are quantized.  That is, the amplitudes of the instances are converted into 

discrete levels, and then we assign these discrete levels as quantization levels.  Finally, 

the quantized instances are encoded into a sequence of binary codes according to each 

instance’s quantization level. 

This process of sampling, quantization and encoding is usually called analog-to-

digital (A/D) conversion.   

The difference between the actual analog input sample and the corresponding 

binary-coded quantized value is called quantization noise and is the first source of 

degradation [3].   

As shown in Section 3.1, the mean error and power spectral density is zero and
12

2q , 

respectively, if rounding is used.  After quantization, the input to the filter becomes 

)()()( nTnTfnTfq ε+=    , (3.9) 
 

where is the original sampled signal and)(nTf )(nTε is the quantization noise.  Since the 

filter is a linear system, the noise signal is also filtered by the filter’s transfer function.  

We will show now how the newly introduced noise term affects the filter’s output. 

 



24 

Let l be the number of bits to represent the quantized signal, then the signal’s 

maximum allowable amplitude is  

2
2l

m
qA ⋅

=      . (3.10) 

 
Further the signal’s peak power, denoted by pc, is defined as the power in which the 

quantized signal can pass without clipping.  Thus, Pc is given by 
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Under the assumption that the quantization noise has zero mean and variance
12

2q , 

that is, rounding is used instead of truncation, the ratio of the peak power and the input 

quantization noise, denoted by Ri, is therefore 

)2(3 12
2

−== l

r

c
i

P
R

σ
  ,    (3.12) 

or 

dBlSNRi 76.102.6 +=           .                           (3.13) 
 

For example, a 16-bit input quantizer’s signal to noise ratio is ideally according to Eq. 

(3.13), approximately 100dB.  The calculation is done without considering any other 

noise source.  In practice, however, in order to obtain the desired signal to noise ratio, one 

more bit is added to ensure filter’s ideal SNR performance. 

3.3 Arithmetic Rounding Effects 

Digital implementation of filters, including adaptive filters, relies heavily upon 

arithmetic operations.  There are two processes involved in an adaptive system, the 

convolution of the tap weights with its taps, and the adaptation process to update the 

coefficients.  The Multiply-and-Accumulate (MAC) operation is central for performing 
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these two processes.  Specifically, for an adaptive FIR filter using the LMS algorithm, 

(M+1) multiply-and-Accumulate operations are needed for calculating the convolution, 

where M is the filter length.  On top of that, refer to the LMS equation given in Eq. 

(2.27), each tap weight update requires a MAC operation.  Therefore, 2  MAC 

operations are needed for an adaptive FIR filter with LMS algorithm.  Note that Eq. 

(2.27) involves two multiplications before a tap weight is updated, but if power-of-two 

scheme is used, the step-size parameter multiplication becomes a bit-wise shift right 

operation.  Details of this scheme are discussed in Chapter 5. 

)1( +× M

As stated earlier, if fixed-point representation is used, quantization only needs to be 

performed after multiplications, not after addition.  Therefore, the source of quantization 

noise is from the multiplications at both the convolution stage and at the adaptation stage.  

The effects of product quantization are discussed below. 

3.3.1 Product Rounding Effects 

Consider a fixed-point MAC unit shown in Figure 3-3, where two N-bit numbers 

are multiplied, rounded to an N-bit product, and then accumulated with another N-bit 

number to get an N-bit MAC result.   

 

Figure 3-3.  MAC Unit Block Diagram 

Assume the Quantization is done by rounding, the same statistical results hold for the 

product quantization, where the error created by rounding has power spectral density 
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of
12

2q .  Since the adaptive LMS filter contains )1(2 +× M  MAC operations, and again 

assuming absence of any other noise source, the total error power spectrum produced by 

product quantization is  

       
6

)1(
12

)1(2
22 qMqMp

+
=+=ε   .   (3.14) 

Given peak power Pc defined in Eq. (3.11), the ratio of the peak power and the product 

quantization noise, denoted by Rp is therefore 
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or 
 dBMlSNRp 25.1)1log(1002.6 −+−=   . (3.16) 

For example, a 9th order LMS FIR adaptive filter with 16-bit wordlength has signal to 

noise ratio of about 85dB due to product quantization.  Again, the calculation is 

performed by assuming no any other noise sources. 

3.3.2 Coefficient Rounding Effects 

In this section, we wish to analyze how product quantization noise is created due to 

coefficient rounding in the tap weight adaptation.  The LMS algorithm updates the filter’s 

coefficients, or tap weights according to Eq. (2.27), which is replicated here: 

w(n+1) = w(n) + µu(n)e(n)   .      (3.17) 

As shown in the above equation, the update parameter, namely µu(n)e(n), must be 

quantized to less than or equal to wordlength of w(n) in order to produce the proper result 

for the updates.  Again, the update parameter only involves one set of multiplication if 

the step size parameter is power-of-two.  The quantization of the update parameter results 
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in quantization noise described in the previous section, that is, for an Mth-order FIR 

filter, the tap weight updates result in noise power of
12

)1( 2qM + . 

Since coefficient quantization is performed on the tap weights, i.e., before the 

convolution stage, the quantization noise associated with coefficient quantization is also 

process at the convolution stage.  Therefore, the adaptive systems are more sensitive 

toward coefficient quantization.   

Coefficient quantization may result in slowdown or stalling phenomenon, in which 

the rate of convergence is either slower or after convergence, tap weights fail to comply 

with the weights if infinite precision were used.  The slowdown and stalling phenomenon 

will be studied in next section.   Furthermore, noise produced by coefficient quantization 

can be potentially hazardous if an IIR filter structure is used.  Since the coefficients 

directly affect the stability of an IIR filter, in that any noise introduced in the coefficients 

may shift the poles outside of the unit circle and cause the IIR filter to diverge the output.   

3.3.3 Slowdown and Stalling 

The LMS algorithm may stop adapting due to the finite precision implementation of 

the digital hardware.  If the result of the update parameter, namely )()( nune ⋅⋅µ is less 

than the least significant bit of the binary representation after quantization, that is, if  

qnuneQ <⋅⋅ ))()(( µ   ,   (3.18) 

where q is the quantizing step, the adaptation fails to update due to the fact that if the 

update parameter is less than q, it is quantized into zero.   

The step size parameter µ plays an essential role for LMS algorithm stalling.  It can 

be shown in [7] that by incorporating a lower bound for µ, the stalling phenomenon can 

be avoided.  The lower bound is described below: 
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where  and denote variance of the error signal and variance of the quantization 

noise, respectively.  By combining Eq. (3.19) with Eq. (2.28), the range of µ is restricted 

to the following: 
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Also according to [23], with fixed-point arithmetic, it can be advantageous to leave µ as a 

higher value when possible.  

The sign algorithm is another way of preventing stalling and is presented in [19].  

Instead of calculating the update parameter by multiplying the tap and the error term, the 

sign algorithm only takes the sign of the error term into consideration.  That is, the update 

parameter is calculated as following: 

[ ])()()()1( nesignnnn uww ⋅⋅+=+ µ   .    (3.21) 

The sign algorithm decreases the chance of stalling and simplifies the hardware 

requirements.  Since no multipliers are needed to update tap weights, the sign algorithm 

also decreases noise created by product quantization. Although the sign algorithm 

introduces nonlinearity in the adaptation process, it does not prevent the algorithm from 

converging.  However, the sign algorithm will always converge slower than the LMS 

algorithm [5].   

Another method involving dithering is proposed by [16] to prevent stalling.  Here 

dithers are inserted at the input of the quantizers of update parameters, where a dither 

consist of a random sequence that, if added to the input, guarantee the input to be greater 
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than the quantization step.  The effect of additive dither can be eliminated by shaping the 

power spectrum of the dither so that it is rejected by the algorithm anyways. 

The LMS algorithm running under finite precision also may encounter the 

slowdown phenomenon, in which the effect of quantization causes the rate of 

convergence to be slower than its infinite counter part.  In this case, the tap weights may 

achieve the intended values only at a slower rate.  The slowdown phenomenon can be 

eliminated by proper choice of data and coefficient wordlength.  It is shown in [15] that 

for most practical cases, more bits should be allocated to coefficients than input data to 

prevent slowdown.  

3.3.4 Saturation 

A filter’s internal registers to hold any arithmetic results are fixed.  It is possible for 

an arithmetic result to overflow during addition and multiplication, that is, the number of 

bits to represent the integer part of the summation does not store all the necessary 

information.  Such a phenomenon is called Saturation.  For example, refer to Figure 3-4, 

which shows a MAC operation of two N-bit numbers.  Saturation may occur when two 

N-bit numbers are added to produce an N-bit sum, since (N+1) bits are needed to 

represent a full addition without concerning saturation.  Similarly, saturation can also 

occur when two N-bit numbers are multiplied and the product is quantized to M bits, 

where M < 2N.  Saturation can introduce major distortions into a system’s output, since 

large amount of information is vanished due to the loss of the upper significant bits of the 

addition or multiplication result.   

Saturation can render a filter useless.  Therefore, it is essential for the filter designer 

to study the nature of the input data to eliminate the effects of saturation.   
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One of the most common solutions for saturation is to scale the input signals [8].  

By scaling down the input signals, the probability of any internal arithmetic overflow is 

decreased.  However, as suggested in [25], input scaling also decrease the precision of the 

data and may result in rough filter outputs or even stalling.  This is of particularly 

interests for the LMS adaptive filter, since the criteria for the performance of such filter is 

the misadjustment of the error signal.  Misadjustment, as defined in Chapter 2, is the 

difference between the weights produced by the optimum Wiener solution and the 

adapted weights produced by the LMS adaptive filter.  Therefore, tradeoffs exists as to 

the amount of scaling applied to input signal to avoid saturation, at the same time retain 

or minimize misadjustment due to the effect of scaling. The only way to achieve such 

goal is to carefully study the nature of the input data and calculate the upper bound of the 

magnitude of the input signals. 

Besides scaling the input signals, increasing wordlength can also reduce the effect 

of saturation, that is, to increase the number of bits for each registers.  However, this 

technique may not be available for some digital implementations.  For example, common 

DSP processors have fixed wordlength and cannot be modified.  Also, wordlength 

increment introduces more hardware and reduces the speed of the digital hardware 

considerably.    

Another way to minimize the effects of saturation is proposed by [25] called 

clamping.  Clamping will, upon detecting an overflow, clamp the adder’s output to the 

most positive or negative values.  That is, the output of an N-bit adder is defined as 

following: 
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Note that Eq. (3.22) assumes 2’s complement form for arithmetic operations. 

3.3.5 Solutions for Arithmetic Quantization Effects 

Eweda in [10] proposes an algorithm in which the tap weight updates are repeatedly 

frozen for a certain period of time and then updating them on the base of the average 

innovation period during the freezing period.  During each innovation period, the 

adaptation parameter, i.e., u(n)e(n) is accumulated and update is only performed at the 

end of the innovation period.  This innovation period accumulation can smooth out the 

quantization errors and therefore increase the output SNR. 

It is also shown in [11] that the quantization noise can be reduced exponentially by 

increasing the wordlength of the registers.  For the same reason stated earlier, this 

technique may not be available.  If wordlength increment is in fact available, commercial 

software exists for wordlength optimization in DSP applications.  Such software usually 

includes the synthesis tool presented in [18]. 

3.4 Simulation Result 

Throughout this section, one particular application of the LMS algorithm, namely 

the system identification application is used.  Consider the module depicted in Figure 3-4, 

where the LMS adaptive filter is to model the unknown system by using the unknown 

system’s output as the desired signal to the adaptive filter.  The adaptive filter’s task is to 

adapt its tap weights such that its output matches the unknown system’s output. 
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Figure 3-4.  System Identification Block Diagram 

3.4.1 Rounding vs. Truncation 

An experiment is set up to verify the conclusion drawn up from Section 3.1, that is, 

for signal quantization, rounding creates less quantization noise than truncation.  Refer to 

Figure 3-4, both input signal and desired signals are quantized before fed into the 

adaptive filter.  Arithmetic quantization is not considered at this stage, in other words, the 

results from either convolution sum or the adaptation process are not quantized.  Since 

the LMS algorithm uses minimum mean square error as the criteria, we can safely opt 

rounding over truncation if rounding produces less mean square error over truncation. 

 

Figure 3-5.  Experimental Setup for Rounding vs. Truncation 
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The two quantization techniques are tested in the two quantizers shown in Figure 3-

5.  The adaptive filter length is fixed at four where the input sequence consists of 5000 

normally distributed random samples.  Additionally, the quantizing step q is chosen to 

hold the following values: [2-1, 2-2, 2-3, 2-4, 2-5, 2-6].  At each value of q, the 

misadjustment produced by the adaptive system is captured for both rounding and 

truncation and the result is shown in Figure 3-6.  As shown in Figure 3-6, rounding 

clearly produces less noise than truncation for each value of q and only as the 

quantization step decreases, the effects of truncation becomes impartial over rounding. 

 

Figure 3-6.  Simulation Result for Rounding vs. Truncation 

3.4.2 Effects of Product Rounding at the Convolution Stage 

In this section, we wish to further experiment the effects from quantization.  In 

addition to the quantizers shown in Figure 3-7, rounding is also performed at each 

multiplication at the convolution stage.  Refer to Figure 3-7, for the same 4th-order 

adaptive filter used in the previous section, four more quantizers are added.   
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Figure 3-7.  Additional Quantizers at the Convolution Stage 

We again experiment the effects of product quantization by a set of different q 

values [2-1, 2-2, 2-3, 2-4, 2-5, 2-6].  For each value of q, the adaptive filter’s misadjustment 

is captured and plotted.  The simulation result is shown in Figure 3-7, where as the 

quantization step decreases, so does the quantization noise caused by multipliers.    

 

Figure 3-8.  Effects of Product Quantization at the Convolution Stage 

The figure also verifies the conclusion drawn up in Eq. (3.14), which shows the error 

power spectrum decreases exponentially as the quantization step decreases. 
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3.4.3 Effects of Product Rounding at the Adaptation Stage 

Coefficient rounding contributes greater quantization noise in the product 

quantization noise.  In this section, update parameters are also quantized.  The same 

structure is used as the previous sections and the same set of normally distributed data is 

applied.  Refer to Figure 3-9, quantization is also performed at the adaptation stage.  

 

Figure 3-9.  Additional Quantizers at the Adaptation Stage 

Simulation result for this experiment is plotted in Figure 3-10.  Note that two sets of 

misadjustments were plotted.  The red bars correspond to misadjustment due to product 

quantization at the convolution stage, whereas the blue bars correspond to misadjustment 

due to quantization at the adaptation stage.  Clearly, quantization at the adaptation stage 

creates significantly larger noise than at the convolution stage for reason stated earlier.   

It is apparent that an adaptive filter’s performance is more sensitive to coefficient 

quantization noise.  Thus, as suggested in Section 3.3.3, more bits should be allocated for 

coefficient representation. 
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Figure 3-10. Effects of Product Quantization at the Convolution and Adaptation Stages 

3.4.4 Clamping Technique 

An experiment is setup to simulate the saturation phenomenon on an adaptive LMS 

filter.  System identification practice described in Figure 3-4 again is used, where tap 

weight adaptation is performed so that the adaptive filter’s output matches the unknown 

system’s output.  For simplicity, all inputs are positive.  An upper bound is set for 

wordlength of results from either multiplications or additions.  If wordlength of the result 

exceeds this upper bound, two scenarios are tested, one is to do nothing, that is, the upper 

most significant bits are lost due to saturation; the other is by the use of clamping, in 

which upon detection of saturation, the result is clamped to most positive number that the 

upper bound can represent.  A set of normally distributed data is tested in this 

experiment, where the adaptive filter’s ideal tap weights are [4 5 1] after convergence. 

The results of this experiment are shown in Figure 3-11 and Figure 3-12, where both the 

misadjustment curve and the tap weights are plotted.   
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Figure 3-11.  Tap weight Track for Clamping Technique 

In Figure 3-11, the blue lines track tap weights if no clamping were used whereas 

the red lines track tap weights if clamping were used.  The black lines represent the ideal 

tap weights if a 64-bit floating-point system were used, which is considered ideal.  It is 

apparent that tap weights simply diverge if clamping is not used.  The divergence of the 

tap weights indicates the adaptive filter has become ineffective.   

Figure 3-12 shows the misadjustment plot of the experiment.  The mean square 

error of each system is capture at every 30 samples.  As can be seen, the mean square 

error of the non-clamping result is never reduced due to tap weight divergence whereas in 

the clamping case, the misadjustment is very close to the ideal result. 
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Figure 3-12.  Misadjustment Plot for Clamping Technique 

3.4.5 Sign Algorithm 

The sign algorithm presented in the previous section is a way of preventing stalling 

when the update parameter result is less than the quantizing step.  System identification is 

again used in this simulation.   A set of small scale input and desired signal are used and 

various quantizing step values are tried.  It was determined that for q < 2-4, tap weights 

simply diverge.  Therefore, quantizing steps q = [2-3, 2-4, 2-5] are used for this experiment.  

The effectiveness of the sign algorithm with respect to the LMS algorithm using various 

q values is studied.  Figure 3-13 shows the misadjustment plot for the adaptive filter with 

same sets of input and same filter order with respect to various q values.  Misadjustment 

is again captured at every 30 samples.  The step size for the sign algorithm is slightly 

larger than the LMS algorithm in order for it to converge due to reason stated in [7].  As 

shown in Figure 3-13, tap weights diverge when q = 2-3 due to insufficient fractional bits.  

In the case of q = 2-4, due to limited precision, the LMS algorithm stalls and results in 

larger misadjustment than the sign algorithm, that is, the sign algorithm is able to obtain 

better convergence result than the LMS algorithm.  Only by decreasing q, the LMS 
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algorithm is able to outperform the sign algorithm, as can be seen in the case when q = 2-5 

for LMS algorithm. 

 

Figure 3-13.  Misadjustment for Sign Algorithm vs. LMS 

3.5 Remarks 

The effects due to finite precision on adaptive systems are presented in this Chapter.  

Due to quantization at various stages of the system, quantization noise is introduced.  The 

quantization noise propagates through the system just as an input.  Due to quantization 

noise, the saturation and the stalling phenomenon may occur and thus severely diminish 

the adaptive filter’s performance.  Some techniques that are helpful in reducing the 

effects are presented.  However, quantization noise cannot be eliminated and thus the 

system engineer must study and make tradeoffs between the performance and practicality 

of the system. 

 



CHAPTER 4 
SOFTWARE SIMULATION OF A FIXED-POINT-BASED POWER-OF-TWO 

ADAPTIVE NOISE CANCELLER 

The effects of finite precision are elaborated in Chapter 3.  In this Chapter, we wish 

to translate theories into reality, where a floating-point based system is compared with a 

fixed-point based system.  As stated in Chapter 3, a floating-point based system can 

represent larger dynamic range of data in the cost of losing resolution and introducing 

more quantization noise, where a fixed-point-based system’s dynamic range is limited 

with respect to its quantizing step, but holds the advantage of simpler circuit design, since 

additions and multiplications are composed of simpler logic equations.  Therefore, for 

implementation of a finite precision adaptive system, fixed-point architecture is preferred 

over floating-point.  It is the goal of this chapter to obtain the feasibility of implementing 

fixed-point based adaptive system due to its simplicity. 

As described in Chapter 2, the LMS algorithm is the most widely used adaptive 

algorithms and bears many applications.  Two examples were explored in Chapter 2, 

namely the noise canceller and the line enhancer.  In this Chapter, a software simulation 

of a noise canceller is implemented and the LMS algorithm is fixed-point based.  The 

step size parameter utilizes power-of-two scheme, that is, µ can only take up values 

of , where n is a positive integer.   n−2

Consider a scenario where a speaker is giving out a speech, while the housekeeper 

insists on vacuuming the floor at the same time.   The vacuuming noise obscured the 

speech to an extend that it was not audible.  The contaminated speech, i.e., original 
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speech plus noise, and the noise itself are recorded.  An experiment is set up to use the 

Adaptive Noise Canceling technique to retrieve the original speech.  The noise signal 

itself serves as the primary filter input, and the contaminated signal is the reference input, 

or the desired signal to the system.  We wish to investigate the effect of finite wordlength 

due to this particular application.  Specifically, can the speech be recovered by this 

integer-based system?  And how much does this fixed-point-based system differ from a 

floating-point based counterpart?  If the fixed-point-based system makes no striking 

difference on the outcome of noise canceller, i.e., the original speech can still be 

recovered and be heard by human, then a hardware implementation based on this 

software experiment becomes feasible since fixed-point-based adaptive system is ideal 

due to its simplicity and practicality.  

4.1 Modular Overview 

The Adaptive Noise Canceller block diagram was presented in Figure 2-3 in 

Chapter 2 and is replicated below in Figure 4-1.   

 

Figure 4-1. Adaptive Noise Canceller Block Diagram 

The sampled desired discrete signal, composed of both the speaker’s speech and the 

vacuum noise, is served as the Noise Canceller’s reference signal; another vacuum noise, 

also sampled, is served as the filter’s primary input signal.  Upon processing, the vacuum 
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noise will be reduced due to the adaptation of the filter tap weights.  And the error signal 

produced by the adaptive system is in close resemblance of the original speech.   

Figure 3-4 shows the internal structure of the adaptive filter, including the 

quantizers to quantize all inputs and tap weights to fixed wordlengths.  The filter uses tap 

delay line architecture and thus, for an Mth-order filter, M+1 multiplications are needed 

at the convolution stage and M+1 more at the adaptation stage.    

 

Figure 4-2. Internal Structure of the Noise Canceller with Quantizers 

4.2 Data Quantization 

As seen in Figure 4-2, quantization takes place in four stages:  at the primary input 

signal, the reference signal, and in both convolution and adaptation.  Rounding is used for 

quantization.  Since the primary and reference signal quantization is unavoidable due to 

A/D conversion, the only source of error that can be controlled by the designer is then 

product quantization noise at both the convolution stage and the adaptation stage.  The 

quantizing step determines how many fractional bits are remained after quantization.  It is 

established that product quantization noise is inversely exponential with respect to 

quantizing step. 
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4.3 Simulation Results 

The primary and reference signals are assumed proper sampled. By 

experimentation, the filter length is chosen to be four and the step size µ is chosen to 

be .  A set of quantizing steps, q = [2-5, 2-6, 2-7, 2-8], are used to show the 

misadjustment due to product quantization error.  For simplicity reason, the number of 

bits to represent integer parts of products is assumed to be sufficient, that is, saturation is 

not considered in this experiment.  Figure 4-3 and 4-4 show the weight tracks and the 

misadjustment curves with respect to various values of q, respectively.  The performances 

of the four fixed-point systems are compared against a 64-bit floating point system.  As 

can be seen in the figure, when q = 2-8, the fixed-point system performs just as well as the 

floating-point system.  More importantly, although the speech filtered by the fixed-point-

based system is noisier, largely due to quantization noise, the recovered speech tends to 

be intact and coherent.  

72−

 

Figure 4-3.  Weight Tracks for Fixed-point Systems 
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Figure 4-4.  Misadjustment Plots of Fixed-point Systems and a Floating-point System 

The success of this software experiment proves that for adaptive applications such 

as noise cancellations, the system is not as sensitive to input A/D conversion and data 

quantization.  And as can be shown in simulation, fixed-point systems with limited 

quantizing step perform just as well as a 64-bit floating-point system.  Without sacrificing 

enormous amount of hardware if a floating-point system were applied, hardware 

implementation of a fixed-point system therefore becomes very appealing and feasible.  

In fact, Chapter 5 illustrates a VLSI based noise canceller that is fixed-point-based and 

takes advantages of the power-of-two scheme.

 



CHAPTER 5 
HARDWARE IMPLEMENTATION OF AN INTEGER-BASED POWER OF TWO 

ADAPTIVE NOISE CANCELLER IN STRATIX DEVICES 

Chapter 4 presented a software simulation of an adaptive noise canceller based on 

fix-point approach.  By experimenting the fixed-point based system, it is believed that 

noise cancellers are one of the adaptive applications that are practical for a fixed-point-

based hardware implementation.   

DSP applications, including adaptive algorithms involve heavily upon arithmetic 

operations such as multiplication and addition.  By incorporating fixed-point only, adder 

and multipliers that are essential to DSP applications require less amount of logic 

elements as opposed to if the applications were implemented in floating-point based.  In a 

VLSI circuit design, this feature is particular of interest, since VLSI devices have limited 

logic elements and simpler circuit generally translates into faster performance. 

The newest FPGA families, Altera’s Stratix device family for example, 

incorporates embedded DSP blocks within the FPGA chip to have dedicated circuitry to 

perform common DSP operations including multiply and accumulate.    This family of 

FPGA devices is compared with another family of FPGA devices that does not include 

embedded DSP blocks.  Performance comparison is done in two areas, which include 

amount of logic elements occupied and maximum frequency allowed.  The power-of-two 

scheme is used to avoid implementing area-consuming division circuitry.   
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Software package Quartus II is used to produce a waveform simulation, along with 

logic state analyzer's captured waveform are presented to verify the hardware 

functionality.   

DSP applications including adaptive systems have traditionally been implemented 

using general-purpose DSP processors due to their ability to perform fast arithmetic 

operations.  Advancement in FPGA devices including the embedded DSP blocks has 

made FPGA devices serious contenders in the DSP market.  It is advantageous to 

examine the performance of the adaptive filter implemented in Stratix devices against 

both fixed-point based DSP processor and floating-point based DSP processor.  Two 

criteria, system speed and power consumption are examined and the results are shown in 

this Chapter. 

5.1 Stratix Devices 

5.1.1 Device Architecture 

The Stratix family is the newest family of programmable logic devices from Altera.  

The Stratix devices have three times the size of memory blocks compared to traditional 

FPGAs.  The Stratix devices also contain embedded DSP blocks, which have dedicated 

pipelined multiplier and accumulator circuits.  With the embedded DSP blocks, the 

Stratix devices can perform high speed multiply-and-accumulate operations. 

Stratix devices contain a two-dimensional row and column based architecture to 

implement custom logic.  A network of varying length and speed, row and column 

interconnects provide signal interconnections between Logic Array Blocks (LABs), 

memory blocks, and embedded DSP blocks.  Each LAB consists of 10 Logic Elements 

(LEs).  LABs are grouped into rows and columns across the device.  The memory blocks 

are RAM based.  These memory blocks provide dedicated simple dual-port or single port 
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memory up to 36 bits wide and up to 291MHz access speed.  The DSP blocks can 

implement multiplications in various bit length with add or subtract features.  The blocks 

also contain 18-bit input shift registers for applications such as Finite Impulse Response 

(FIR) or Infinite Impulse Response (IIR) filters.  Figure 5-1 shows the block diagram of a 

typical Stratix device [2].   

 

Figure 5-1. Stratix Device Block Diagram 

5.1.2 Embedded DSP Blocks 

The most commonly used DSP functions include multiplication, addition, and 

accumulation.  The Stratix devices provide DSP blocks to meet the arithmetic 

requirements of these functions.  Each Stratix device has two columns of DSP blocks to 

efficiently implement DSP functions faster than LE-based implementations.   

Each DSP block can be configured to support one set of the following: 

• Eight 9 x 9 bit multipliers 

• Four 18 x 18 bit multipliers 

• One 36 x 36 bit multiplier 
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DSP block multipliers can optionally feed an adder/subtractor or accumulator within 

the block.  This feature saves LE routing resources and increase performance, since all 

inter-connections and blocks are all within the DSP block.  The DSP block input registers 

can also be configured as shift registers for FIR filter applications.  Figure 2 is a block 

diagram for a typical component inside the DSP block.   

 

Figure 5-2. Embedded DSP Block Diagram 

5.2 Design Specifications 

5.2.1 Structural Overview 

The noise canceller implementation assumes FIR filter structure.  The design shown 

in Figure 5-3 depicts a structural view of such FIR filter.  As shown in the figure, the 

main components of the filter consist of m Unit Delay Registers and m+1 Weight 

Updates.   The Unit Delay Registers are simply D Flip-Flops.  Each Weight Update 

component updates the filter coefficient according to the LMS equation presented in 

Chapter 2, Eq. (2.27).  The adaptive filter’s input is the primary input, which is the 

vacuum noise.  The filter output is subtracted from the desired signal, in this case, the 
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original speech plus noise, to produce an error signal.  The error signal, i.e., the recovered 

speech is a buffer, which is fed back to the Weight Update components to produce next 

sets of filter coefficients. 

 

Figure 5-3.  Adaptive Transversal Filter Block Diagram 

5.2.2 The Power-of-Two Scheme 

Weight Updates perform logics according to Eq (2.27).  Arithmetic operations 

needed include two multiplications and one subtraction.  However, the step-size 

parameter µ is a fractional number that is always less than 1.  Also, by multiplying a 

fractional number is equivalent of dividing its reciprocal.  Therefore, in order to avoid 

implementing complicated and area-consuming division circuitry, or multiplication for 

floating-point numbers, Arithmetic Shift Right (ASR) operation is used instead to 

simplify and boost the run-time frequency of the design.   

The ASR operates on a 2’s complement integer by shifting the number n bits to the 

right (direction of the least significant bit), while preserving the sign bit (the most 

significant bit).  By shifting the number n bits to the right, it is equivalent of multiplying 

this number by 2-n.   Therefore, in order to achieve simplicity and feasibility, this design 

restricts the value of µ to be µ = 2-n, where n is a positive integer.  This is the so-called 

power-of-two scheme. 
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5.2.3 Data Flow and Quantization 

As depicted in Figure 5-3, there are two inputs to the system, the primary filter 

input and the reference or desired signal.  The adaptive filter’s output is subtracted from 

desired signal to produce a buffered error signal.  This error signal is in turn fed back to 

all the weight update components for the LMS algorithm tap weight updates.   

In order to preserve the simplicity of the design, all input and output signals share 

the same wordlength.  That is, the primary and reference input, the intermediate signals, 

along with the error term all have wordlength of n, including the sign bit.  Based upon 

this preservation, quantization takes places in the weight update component, where 

according to the weight update equation 

w(n+1) = w(n)+ µe(n)x(n) ,    (5.1) 

 if e(n) and x(n) are both n bits, the product of these two terms has 2n bits.  After shifting 

the product to the right, as described in power-of-two scheme, the 2n bit term is 

quantized into n bits, by keeping the least significant (n - 1) bits while retaining the sign 

bit.  This n bit update parameter is then added from the n bit current tap weight to 

produce the updated n bit tap weight.  The same quantization technique is applied to all 

weight update components. 

In addition to quantization, saturation is another potential hazard, where each 

addition, in either adaptation or in convolution, could create saturation.  In our adaptive 

filter design, the nature of the experimental data is first studied to obtain suitable 

wordlength, thereby avoiding saturation. 

5.3 Dynamic Component Instantiation in VHDL 

Refer to the structural diagram shown in Figure 5-6, if filter length is to be 

incremented to one more, an additional weight update, unit delay, multiplier and adder 
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are all needed to be instantiated. But both the length of the adaptive filter and the 

wordlength to represent data bus should be easily changed without spending too much 

time on the architectural level.  Since this adaptive filter is written in VHDL, we now 

show how to dynamically instantiate a component in VHDL.   

In a separate “header” file, a package is created to include not only the components 

definition, but also constants such as filter length and bus width information. A portion of 

the “header” file is shown below: 

 

This header file is included into the project and upon compiling, the package information 

is used in the structural port map statements in the top hierarchy to determine the number 

of components to be instantiated.  Therefore, by changing the numbers in the package 

field, the designer is able to dynamically instantiate however many number of 

components needed for the specific design.  For additional helpful VHDL tutorials please 

refer to [26]. 
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5.4 Simulation and Implementation Results 

It can be argued that since input signals have to be converted from analog to digital, 

and A/D operations involves converting real values into 2’s-complement binary values, 

adaptive systems are therefore naturally suitable for integer-based.  The sampled primary 

and reference signals are scaled and rounded to be integers before it is fed into the 

system. 

Altera’s Quartus II software package is used to compile the VHDL-based package 

and a vector waveform simulation is produced.  The primary and reference signals are 

stored into the device’s internal memory with equal depth.  Update parameter remains the 

same throughout the process, while the address line that controls the internal memory is 

incremented in every clock cycle.  A snapshot of the waveform simulation is captured 

and shown in Figure 5-4.  Upon convergence, the tap weights become [0001, FFFA, 

FFFF, 0002, FFFD].  Converting these hexadecimal numbers into decimal, the weights 

are [1, -6, -1, 2, -3]. 

 

Figure 5-4.  Waveform Simulation Result of the Adaptive Noise Canceller 
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The project is implemented into Altera's DSP development board and the lower 5 

bits of each weight are captured using a logic state analyzer.  The analyzer's result is 

shown in Figure 5-5 below. 

 

Figure 5-5.  Logic State Analyzer Result of the Adaptive Noise Canceller 

Implementation result shows that lower 5-bits of the weights are [00001, 11010, 11111, 

00010, 11101].  2’s complement forms are indeed [1, -6, -1, 2, -3], which are equivalent 

to the waveform simulation demonstrated in Figure 5-4.    

5.5 Performance Comparison of Stratix and Traditional FPGAs 

Area and speed are the two main measurements in evaluating FPGA performance of 

this filter.  Since the Stratix devices have embedded DSP blocks built in, they should 

occupy less LEs and have faster maximum clock frequency.  Area and Speed issues were 

studied with a Stratix Device and a FPGA device without embedded DSP blocks, namely 

an APEX device also from Altera.  Figures 5-5 and 5-6 show the varying filter orders vs. 

area and speed plots, respectively, for both the Stratix and APEX devices.  Area is 

measured by number of LEs occupied, whereas speed is measured by longest register-to-

register delay.   
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5.5.1 Speed 

Refer to Figure 5-3, for each additional tap, the longest register-to-register path is 

elongated as well, resulting allowable frequency to plunge. Figure 5-6 shows as the 

number of taps increase, the allowable speed of the adaptive filter decreases, that is, the 

clock frequency decreases.  Timing for Stratix device is obtained from Quartus 

simulation result, since a Stratix device is not readily available.  For the APEX device, 

timing is obtained by using a functional generator to generate a clock signal as the 

system's clock signal.  Clearly, if the functional generator's clock signal period exceeds 

the longest register-to-register delay, it will cause erroneous computational result, since 

logic elements need the time period specified by longest register-to-register delay to 

perform correct computation.   Therefore, the maximum frequency is obtained from the 

fastest frequency in which the adaptive system can run while still able to obtain intended 

tap weight convergence.  
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Figure 5-6.  Plot of Filter Order vs. Speed 

5.5.2 Area 

For each additional tap, a separate weight update, multiplier, and adder also have to 

be instantiated.  These components all occupy LEs.  Therefore, when the number of taps 
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increases, so does the number of occupied LEs.  Figure 5-7 shows this relationship.  Note 

that for the Stratix device at filter length of 20, all embedded DSP blocks have been 

occupied with multipliers and adders.  The DSP block elements do not count as logic 

elements.  Each additional multiplier and adder required by the increase of filter length, 

they is implemented in regular LEs, which results in a exponential growth from filter 

length 10 to filter length 25.   
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Figure 5-7. Plot of Filter Order vs. Area 

From the above two graphs, we can easily see that the Stratix device is 

overwhelmingly favored over traditional FPGA devices. When it comes to DSP 

applications implemented in FPGA devices, the Stratix device not only occupies less LEs 

due to the dedicated circuitry within the DSP blocks, but it also allows faster clock 

frequency. 

5.6 Pipelining 

Although the design depicted in Figure 5-3 fully utilizes the parallelism advantage 

of FPGA devices in full, the speed performance decays substantially as the filter order 

increases, since the longest register-to-register delay elongates from the first weight 
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update component on the left to the subtractor on the right.  Two methods can be 

incorporated into the existing design to reduce the longest register-to-register delay.  The 

first method is to introduce pipelined multipliers.  Multipliers occupy large amount of 

logic, by partitioning the entire multiplier logic into smaller elements and incorporate 

pipeline registers in between, the register-to-register delay can be decreased, resulting in 

an increase of the maximum system clock frequency.  The other method involves 

inserting buffers into the chain of adders at the convolution stage.  The amount of 

sequential adders increases linearly as filter order increases.  Therefore the amount of 

LEs to implement these adders also increases, resulting in an overwhelming decrease in 

system speed.  If buffers are added into the adder-chain, the system's maximum data rate 

can be increased.  The two methods can be combined together to obtain an adaptive 

system with optimal performance in terms of data rate.  

Latencies are also introduced by incorporating the above two methods.  Latencies 

introduced in multipliers or in adder-chain effectively create phase shifts into the 

convolution stage, since full result of the multiplication is delayed by the number of 

pipeline levels.  Consequently, this phase shift also affects the error output signal because 

error output is also delayed.  If the phase shift created by latency becomes sufficiently 

large, it can remove the correlation between the reference signal and the primary signal 

and force the adaptive system to diverge.  In fact, the error produced by the adaptive 

system is a function of the primary and reference signals, and the error signal is also a 

feedback signal to the weight updates.  We will, in this section, investigate techniques to 

cope with latency effects in adaptation. 
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Synthesis tools that partition the multiplier logic can be investigated to obtain 

optimal number of pipeline stages.  Optimal number of pipeline stages is defined as the 

smallest number of pipeline stages for which further increase does not enhance 

multiplier’s speed.  The maximum speed of the pipelined multiplier serves as a guideline 

to how many buffers are inserted into the adder-chain.  We wish to insert minimal 

number of buffers onto the adder-chain to minimize latencies, and also to minimize 

register-to-register path.  Procedures on how to obtain optimal pipeline stages are now 

discussed. 

5.6.1 Optimal Multiplier Pipeline Stages  

In order to investigate the synthesis tool provided by Quartus software, a multiplier 

block is instantiated according to Figure 5-8.  Without pipelining the multiplier, the 

longest register-to-register delay is from the input register to the output register.  If 

pipelines are introduced within the multiplier, the longest register-to-register delay is 

reduced.   

 

Figure 5-8.  Pipelined Multiplier Test Module 

Performance improvement in speed with various numbers of pipelines for different 

sizes of multipliers is studied using the Quartus synthesis tool.  It can be shown according 

to Figure 5-9 that, for an 8-bit multiplier, the optimal pipeline stage is 1, since 

incrementing the number of pipeline stages does not generate better multiplier 
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performance.  Similarly, the optimal pipeline stages for 16-bit multiplier and 32-bit 

multiplier are 2 and 3, respectively. 
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Figure 5-9.  Maximum Data Rate of three Multipliers with Various Pipeline Stages 

5.6.2. Optimal Adder-chain Pipeline Stages 

Refer to the structural diagram in Figure 5-3, adders used in convolution may 

become a burden to system performance in terms of speed, because the adder-chain 

occupies more logic elements as filter order increases.  As discussed in the previous 

section, multipliers can be pipelined in optimal pipeline stages with respect to their input 

bus size.  In this section, we wish to investigate further improvement in the adaptive 

system's speed performance by inserting buffers into the adder-chain.  The goal is to 

minimize the number of buffers while not increasing the longest register-to-register 

delay.  It is apparent that the upper bound constraint for the number of adders in between 

buffers should be less than the speed of the pipelined multiplier. 

According to results found in the previous section, an 8-bit, 16-bit, and 32-bit 

multiplier can be pipelined and have optimal speed of 335MHz, 278MHz, 278MHz, 
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respectively.  An adder-chain component described in Figure 5-10 is instantiated to 

observe the number of adders that can be included within the multiplier's speed range.   

 

Figure 5-10.  Adder-chain Test Module 

Results of 8-bit, 16-bit, and 32-bit adders are shown in Figure 5-11.  For 8-bit 

adders, it is found that in order to satisfy the speed constraint set by the multipliers, one 

buffer can be added for every two adders in the adder-chain to optimize system 

performance.  Three adders between buffers already exceed the propagation delay of an 

8-bit pipelined multiplier.  Similarly for 16-bit and 32-bit adders, the maximum numbers 

of adders that can be included between two buffers are also two.  
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Figure 5-11. Adder-chain Data Rate with Respect to Number of Adders 

Incorporating pipelined multipliers and buffering adders in the adder-chain can 

reduce the longest register-to-register delay.  As an example, the structural view of a 4th-
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order adaptive system is shown in Figure 5-12 below, where multipliers are pipelined 

with two stages and buffers are added for every two adders in the adder-chain. 

 

 

Figure 5-12. Pipelined and Buffered Adaptive System Block Diagram 

Note that since a buffer is added after the second adder on the adder-chain, buffers 

are also added to the fourth and fifth multiplier outputs in order to compensate the latency 

introduced by the adder-chain buffer. 

5.6.3 Tradeoffs in Introducing Latency into Adaptive Systems 

As described earlier, an adaptive system consists of both convolution and 

adaptation stages.  These two stages are expressed mathematically in Eq. (2.25) – Eq. 

(2.27).  By introducing pipelining and buffers, an adaptive system can be expressed in the 

following two equations representing error signal computation and adaptation: 

)()()()( nDnTndne uwD −−=    ,  (5.2) 

)()()()1( nnenn uww Dµ+=+        ,     (5.3) 

where D represents levels of latencies and eD represents delayed error signal.  As 

described earlier, if latency is large, an adaptive system can due to phase shift caused by 

latencies.   
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 Recall that the criteria for the step size parameter µ is derived in Chapter 2, in that 

µ must satisfy the following inequality: 

max

10
λ

µ <<    ,   (5.4) 

 where maxλ is the largest eigenvalue of R.  It can be shown in [17] that in order to 

guarantee convergence of the adaptive system with latencies, µ must be restricted to an 

even smaller constraint: 

)12(2
sin20

max +
<<

D
π

λ
µ    . (5.5) 

Note that Eq. (5.5) also shows that as number of pipeline stages increase, range for 

appropriate µ decreases. 

It can also be shown in [17] that a pipelined LMS system always converges slower 

than an un-pipelined LMS system.  Several authors have investigated in improving the 

pipelined LMS systems' convergence rate.  In [9], a correction term is incorporated into 

generating the error signal in that 

)()()()()( ncnDnTndne uwD −−−=    ,  (5.6) 

)1()()( )( −= nEnRnc DT    , (5.7) 

where RT(n) is the D-dimensional input correlation vector and E(D)(n-1) is a vector of past 

errors.  It was shown that the modified method of calculating error signal results in equal 

performance with respect to un-pipelined LMS system.  However, more computation is 

introduced as well and thus essentially nullifies the purpose of pipelining.  Convergence 

rate can also be improved by updating the weight according to LMS algorithm, at the 
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same time modifying the step size according to the following update equation proposed 

in [28]: 

)()(
)()(

)()1( DneDn
DnDn

nn uuuww T −−
−−

+=+
µ  . (5.8) 

Again this method introduces more computation overhead and thus is not desired.  In 

addition, the software tool MMAlpha is used in [13] to automatically derive a VHDL 

description of a pipelined LMS architecture to optimize speed and sacrificing 50% 

increase in area. 

Based upon evidence presented above, by introducing pipelines into the adaptive 

system, the system’s speed is increase in the expense of either slower convergence rate or 

more computation.  However, by aligning the terms shown in Eq. (5.2) and (5.3), we can 

reduce the effects of phase shifts caused by pipelining.  Refer to structural diagram 

depicted in Figure 5-12.  If multipliers are pipelined, and buffers are added to adder-

chain, latencies are propagated into the error signal calculation.  The delayed error signal 

is fed back into the weight update components to perform adaptation.  Buffers can be 

added onto the system's reference signal to align the error signal calculation.  

Furthermore, weight updates can also be aligned by using delayed filter taps.  This time 

alignment scheme can be expressed by the following three equations:  

)()()( nnTny uwD =     , (5.9) 

   )()()( nyDndne DD −−=     ,  (5.10) 

)()()()1( Dnnenn uww D −+=+ µ      .  (5.11) 

With this scheme the weight update at sample n is done with the input and desired signals 

at sample n-D.  For signals that do not change a lot between sampling points, this scheme 
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provides a close fit to the un-pipelined architecture.  This means over-sampling is 

suggested when using the time-align scheme.  Otherwise there will be a penalty in 

convergence rate. The new architecture applied to the structure depicted in Figure 5-12 is 

shown in Figure 5-13 below: 

 

Figure 5-13. Time-aligned Adaptive System Block Diagram 

Compared with previous solutions described in literature mentioned earlier, this time 

alignment scheme does not introduce more computation.  It does, however, introduce 

more hardware in terms of buffers.  The convergence rate for this pipelined system is still 

slower than an un-pipelined system. 

5.6.4 Performance of the Pipelined Adaptive System 

Performance of the un-pipelined design in terms of speed is illustrated in Figure 5-

5.  In this section, pipelines are added into the multipliers as shown in Figure 5-3.  The 

pipelined adaptive system is compared against the un-pipelined system.  Buffers are 

further added into the adder-chain.  The Stratix device is used for the implementation.  

The multiplier bus width is set at 16 and thus according to Figure 5-9, optimal pipeline 

stage is set at 2.  Buffers are inserted for every two adders within the adder-chain.  By 

varying the filter order in the system, maximum data rates of three scenarios are plotted 
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in Figure 5-14 with respect to filter orders.  The three scenarios are the following: an un-

pipelined system, a pipelined system, and a system with pipelined multipliers and buffers.   
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Figure 5-14. Pipelined Adaptive System Performance 

Note that although a pipelined-and-buffered adaptive system can have maximum data 

rate up to 60MHz regardless of filter order, it also has the most stages of latency. 

To summarize, an adaptive system's speed performance can be increased 

significantly by either pipelining multipliers, adding buffers onto the adder-chain, or 

both.  Latency is introduced such that the adaptive system may diverge its tap weight 

adaptation, due to the delayed error signal is also a feedback signal to weight updates. 

Buffering the desired signal can time-align the error signal computation and the tap 

weight update computation.  The time-aligned scheme does not require correction terms 

described in Eq. (5.6), nor does it require modifying the step size as described in Eq. 

(5.7).  Experiments have shown that the time-align scheme reduces the effects of latency.  

However, since latency cannot be completely compensated, convergence rate for the 

time-aligned adaptive system is still slower than an un-pipelined adaptive system.  In 
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real-time applications where high data rates are given, slower convergence rate can be an 

acceptable tradeoff [20]. 

5.7 Performance Comparison of FPGAs and DSP Processors 

DSP applications have traditionally been implemented with DSP processors.  Due 

to recent advancement in FPGA devices, it is valuable to compare the performance of 

adaptive system in both FPGA devices and DSP processors in terms of speed and power 

consumption. 

FPGAs maintain the advantages of custom functionality while avoiding the high 

development costs and the inability to make design modifications after production [14].  

Compare with DSP processors, FPGAs also hold the advantage of parallelism, in that 

multiple operations can be performance at one time instance, whereas DSP processors are 

only able to perform one instruction per time instance.  It is evident that according to 

Figure 5-3, by instantiating multiple adders and multipliers, the system is able to perform 

convolution and adaptation on the fly.  If the design is implemented in DSP processors, 

then only one instruction is performed at a time.  However, it is also apparent that as the 

filter order increases, so does the register-to-register delay in FPGA design, which will 

eventually overcome the parallelism advantage.  Therefore, performance in terms of 

speed is investigated using two devices, namely the Stratix FPGA device and Texas 

Instruments' TMS320VC33 floating-point DSP processor. 

Power consumption is also a main concern in choosing between various devices.  

Power consumption is assumed fixed for DSP processors, since the internal structure is 

fixed.  FPGA devices’ power consumption varies with respect to amount of LEs 

programmed, number clock-driven registers, and DSP block utilization.  Issue of power 
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consumption is also investigated in this section using Stratix device, a floating-point 

processor and a fixed-point processor. 

5.7.1 Speed 

Pipelined adaptive system presented in Section 5.5 is used to compare with a 

floating-point DSP processor.  The processor of choice is Texas Instruments’ 

TMS320VC33 floating-point DSP processor.  The floating-point processor has maximum 

speed of 150 Million Floating-Point Operations per Second (MFLOPS) at 60MHz.  

Speed is measured by amount of time it takes to update a set of weights for an adaptive 

system with various number of filter order.  Based on benchmark data obtained from Mr. 

Scott Morrison of Computational NeuroEngineering Laboratory, University of Florida, 

for a single channel LMS adaptive filter, the C33 processor updates tap weights in the 

order of microseconds where as the FPGA LMS adaptive filter can perform tap weight 

updates in the order of nanoseconds.  For example, it takes the APEX device 

implementation 67ns to update all tap weights for an adaptive filter of order 10, whereas 

it takes the DSP processor 2.3µs to do so.  Parallelism works in full advantages over DSP 

processors in this LMS adaptive application.  A shortcoming for FGPA implementation 

however, is that the amount of LEs are limited for a given device, which restricts the 

order of filter to be fit in a particular FPGA.  There is no such problem for DSP 

processors, since they rely on either internal or external memory to store information, and 

computations are done sequentially.  Furthermore, floating-point implementation is not 

yet feasible in FPGA devices, because the devices have limited LEs.  For any 

applications that require large data dynamic range, DSP processors still are devices of 

choice. 
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5.7.2 Power Consumption 

 Power consumption for DSP processors is generally fixed.  It is found that worst-

case power consumption is 500mW for the TMS320VC33 floating point DSP processor 

[26].  For the DSP 56309 fixed-point processor, benchmark information obtained in [6] 

indicates that the LMS algorithm can be performed at 1.5mA/MHz.  If 100MHz oscillator 

is applied to the processor and since the core processor's voltage is 3.3V, estimated power 

consumption for running the adaptive system in this fixed-point processor is therefore 

514mW.   

On the other hand, FPGA devices' power consumption varies depend on the size of 

the design.  For our adaptive system, instances of components increase as filter order 

increases, resulting larger amount of logics needed to fit into the FPGA.  Therefore as the 

filter order increases, so does power consumed by the device.  By using the Stratix power 

calculator provided by Altera, Inc, estimated power consumption is obtained with various 

filter order. Figure 5-15 illustrates the relationship between filter order and power 

consumption for FPGAs, as well as comparison between the three devices of choice.  
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Figure 5-15.  Power Consumption Plot for Various Devices 
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As seen in Figure 5-15, if energy conservation is desired, FPGA implementation 

should be considered over the two DSP processors for an adaptive filter with filter order 

less than 25.  For filter order over 25, Stratix device consume more energy than the DSP 

processors and therefore becomes unattractive. 

 

 



CHAPTER 6 
CONCLUSION AND FUTURE WORK 

6.1 Conclusion  

 Finite precision effects on adaptive algorithms have been studied in this thesis.  

Several common effects were studied and solutions were provided to mitigate the effects.  

An adaptive noise canceller was first simulated in software for its effectiveness in an 

integer-based system.  The noise canceller was then implemented in a VLSI-based 

hardware due to its success in software simulation.   

One commonly used adaptive algorithm, namely the LMS algorithm was derived in 

Chapter 2.  The LMS algorithm is based on minimum mean square error as criteria and 

an adaptive filter which uses LMS algorithm assumes FIR filter structure.  During 

adaptation, the adaptive filter updates its tap weights to make the filter output as close as 

the reference input of the system and the difference between the reference input and the 

filter output, or the error term, is attempted to be minimized.   

Mathematical expressions for adaptive algorithms that were presented in Chapter 2 

assume infinite precision, i.e., they do not consider the wordlength of the calculation.  

However in reality, digital hardware used to implement an adaptive algorithm has limited 

wordlength.  Because of this, finite precision effects on adaptive algorithms, specifically, 

the LMS algorithm should be studied.   

Finite precision effects can be grouped in three groups.  First, in order to maintain 

wordlength, any input signals and intermediate arithmetic results must be quantized.  
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Quantization is performed via either rounding or truncation.  It is found that rounding is 

preferred over truncation, since rounding produces zero mean error signal.   

Secondly, filter applications rely heavily upon arithmetic operations, these results 

must be rounded as well due to finite precisions.  It was found that for an Mth order FIR 

adaptive filter, the error power created by arithmetic quantization is
6

)1()(
2qMn +

=ε , 

where q is the quantization step and M is the filter length.  By increasing either the 

wordlength or use a periodical update scheme, the effects result from arithmetic rounded 

can be reduced.   

Thirdly, saturation and stalling can arise due to finite precision constraints.  

Saturation can be dealt with either by scaling the input signals so that saturation becomes 

less probable, or by using the clamping technique in which upon detecting saturation, the 

result is “clamped” to the most positive or most negative number, depending on the sign 

bit.  The step size parameter µ may cause the algorithm to stall, that is, tap weights fail to 

update due to the update parameter is smaller than the quantization step.  Stalling can be 

avoided by incorporating a lower bound for µ.  Alternatively, the sign algorithm is 

another way to reduce/avoid stalling. 

A fixed-point based adaptive noise canceller was simulated in software.  It was 

found that the fixed-point based system with sufficient number of bits makes no striking 

difference from a system that is floating-point based.  The simulation result suggests that 

a low cost hardware realization of this noise canceller is possible, since a fixed-point 

based adaptive filter requires significantly less circuitry than if the system were based on 

floating-point.   
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The adaptive noise canceller was implemented in an FPGA device with embedded 

DSP blocks, e.g., a Stratix device.  The DSP blocks are dedicated circuitry to perform 

common DSP operations including multiply-and-add.  Due to the embedded DSP blocks, 

the Stratix device outperforms traditional FPGAs to implement the same adaptive filters 

because it allows faster clock frequency and it utilizes less logic elements.  Since the 

design is written in VHDL, dynamic component instantiation becomes available for filter 

designers to quickly modify the filter length and/or wordlength.  Pipelining is also 

introduced in the adaptive system design.  By applying pipelines into the design, 

maximum data rate of the adaptive system can be increased compared to an un-pipelined 

system.  By introducing pipelining, latency is also introduced and thus slows down 

convergence.  But in real-time high speed applications, slower convergence rate can be 

an acceptable tradeoff.  Performance of the FPGA based adaptive system in terms of 

speed and power consumption is also compared against traditional DSP processors.  It 

was found that FPGAs fully utilizes its parallelism advantage resulting in much faster 

filter performance.  However, as filter order increases, the FPGA implementation 

becomes less attractive due to limitation on amount of logic elements within an FPGA 

and higher power consumption when compared with DSP processors.  For lower order 

adaptive filter implementation, FPGAs should be seriously considered.  On the other 

hand DSP processors should be used for higher order filters. 

6.2 Future Work 

Finite precision effects were experimented in fixed-point based systems only, in 

which the signals are quantized.  This is due to the current limitation on FPGA devices.  

In the future, as the number of logic elements becomes sufficiently abundant, FPGA 

based floating-point adaptive filters may become feasible to implement. 
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Multi-channel adaptive systems are useful in that multiple channels can be trained 

using the same adaptive filter, by multiplexing the channels.  Internal memory within the 

FPGA may be used to read/write each channel's taps and tap weights.  The multi-channel 

system requires a few more components that include multiplexers for multiplexing 

primary and reference signal of the system input, and a RAM arbiter to control memory 

I/O of each channel's taps and tap weights.   

Pseudo-floating-point scheme was proposed in [24] and was shown that it out-

performs ordinary fixed-point scheme in adaptive LMS systems.  This scheme can be 

easily implemented with the existed architecture shown in this Thesis with minor 

modifications.  The scheme can further be used to compare with our fixed-point 

architecture in terms of speed, area, and rate of convergence.

 



APPENDIX A 
MATLAB SCRIPTS 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%              Author : Andy Lin                               %% 
%%              File Name:  LMS.m                               %% 
%%              Date   : 02/12/02                               %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% 
%% the LMS function uses LMS Algorithm to produce updated 
%% weights for the filter. 
%%  Usage   : [W, error] = LMS(xx, desired, order, mu, winit); 
%% 
%%  order   : the order of the filter, or the dimension of Rx  
%%            and Px,y 
%%  desired : desired signal, the desired will subtract the output 
%%            produced by the filter to get error 
%%  xx      : input to the Adaptive Filter 
%%  mu      : step-size 
%%  winit   : initial weights 
%% 
%%  J       : learning rate 
%%  W       : weight track matrix with dimension  
%%            (order of filter x # of samples) 
%%  error   : sum of desired  and - (filter output) 
 
 
function [J, W, error] = LMS(xx, desired, order, mu, winit); 
Lx = length(xx); 
[m,n] = size(xx); 
if n>m, 
   xx = xx.'; 
end; 
 
%add zero padding to initial states 
xx = [zeros(order-1,1); xx]; 
%initialization steps 
l = 1; 
sumMSE = 0;      %sum of mean square error 
error = desired; 
w = winit; 
W = zeros(order, Lx); 
 
for k = 1:Lx,              % update every sampling period 
    X = xx(k+order-1:-1:k); 
    y = w'*X; 
    error(k) = desired(k)-y;    
    sumMSE = sumMSE + error(k)*error(k); 
    w = w + mu*error(k)*X; 
    W(:, k) = w; 
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    if (mod(k, 30) == 0) 
        J(l) = sumMSE / k; 
        l = l + 1; 
    end;  
end; 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%              Author : Andy Lin                               %% 
%%              File Name:  clamping_LMS.m                      %% 
%%              Date   : 03/12/03                               %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%% the LMS function uses LMS Algorithm to produce updated 
%% weights for the filter.  Clamping is used with respect to wordlength 
%% 
%%  Usage   : [W, error] = LMS(xx, desired, order, mu, winit, 
wordlength); 
%% 
%%  order   : the order of the filter, or the dimension of Rx  
%%            and Px,y 
%%  desired : desired signal, the desired will subtract the output 
%%            produced by the filter to get error 
%%  xx      : input to the Adaptive Filter 
%%  mu      : step-size 
%%  winit   : initial weights 
%%  wordlength: MSB position 
%%  J       : learning rate 
%%  W       : weight track matrix with dimension  
%%            (order of filter x # of samples) 
%%  error   : sum of desired  and - (filter output) 
 
 
function [J, W, error] = clamping_LMS(xx, desired, order, mu, winit, 
wordlength); 
 
 
Lx = length(xx); 
[m,n] = size(xx); 
if n>m, 
   xx = xx.'; 
end; 
 
%calculate the clamping value, which is the maximum 
%value the wordlength can represent 
max = 0; 
for i=0:wordlength-1, 
    max = max + 2^i; 
end; 
 
%add zero padding to initial states 
xx = [zeros(order-1,1); xx]; 
%initialization steps 
l = 1; 
sumMSE = 0;      %sum of mean square error 
error = desired; 
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w = winit; 
W = zeros(order, Lx); 
 
for k = 1:Lx,              % update every sampling period 
    X = xx(k+order-1:-1:k); 
    y = w'*X; 
     
    %simulate saturation effect 
    tmpy = dec2bin(y); 
    %if saturation occurs, clamp to the largest number wordlength can  
    %represent. 
    if (length(tmpy) > wordlength) 
        y = max; 
    end; 
    
    error(k) = desired(k)-y;    
    sumMSE = sumMSE + error(k)*error(k); 
    w = w + mu*error(k)*X; 
    W(:, k) = w; 
     
    if (mod(k, 30) == 0) 
        J(l) = sumMSE / k; 
        l = l + 1; 
    end; 
     
end; 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%              Author : Andy Lin                               %% 
%%              File Name:  sign_LMS.m                          %% 
%%              Date   : 03/12/03                               %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%% Sign algorithm is used to produce weight update 
%%  Usage   : [W, error] = LMS(xx, desired, order, mu, winit); 
%%  order   : the order of the filter, or the dimension of Rx  
%%            and Px,y 
%%  desired : desired signal, the desired will subtract the output 
%%            produced by the filter to get error 
%%  xx      : input to the Adaptive Filter 
%%  mu      : step-size 
%%  winit   : initial weights 
 
%%  J       : learning rate 
%%  W       : weight track matrix with dimension  
%%            (order of filter x # of samples) 
%%  error   : sum of desired  and - (filter output) 
 
function [J, W, error] = sign_LMS(xx, desired, order, mu, winit, q); 
 
Lx = length(xx); 
[m,n] = size(xx); 
if n>m, 
   xx = xx.'; 
end; 
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%add zero padding to initial states 
xx = [zeros(order-1,1); xx]; 
%initialization steps 
l = 1; 
sumMSE = 0;      %sum of mean square error 
error = desired; 
w = winit; 
W = zeros(order, Lx); 
 
for k = 1:Lx,              % update every sampling period 
    X = xx(k+order-1:-1:k); 
    %quantization at convolution stage 
    y = round(w'*X .* q)/q; 
    error(k) = desired(k)-y;    
    sumMSE = sumMSE + error(k)*error(k); 
    %quantization at adaptation stage and use sign(e) only 
    w = w + round(mu*sign(error(k)).*X .*q)/q; 
    W(:, k) = w; 
     
    if (mod(k, 30) == 0) 
        J(l) = sumMSE / k; 
        l = l + 1; 
    end; 
     
end; 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%              Author : Andy Lin                               %% 
%%              File Name:  LMS_with_q.m                        %% 
%%              Date   : 03/12/03                               %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% 
%% quantized any computation with respect to q. 
%%  Usage   : [W, error] = LMS(xx, desired, order, mu, winit, q); 
%% 
%%  order   : the order of the filter, or the dimension of Rx  
%%            and Px,y 
%%  desired : desired signal, the desired will subtract the output 
%%            produced by the filter to get error 
%%  xx      : input to the Adaptive Filter 
%%  mu      : step-size 
%%  winit   : initial weights 
%%  q       : quantization step 
%%  J       : learning rate 
%%  W       : weight track matrix with dimension  
%%            (order of filter x # of samples) 
%%  error   : sum of desired  and - (filter output) 
 
 
function [J, W, error] = LMS(xx, desired, order, mu, winit, q); 
 
 
Lx = length(xx); 
[m,n] = size(xx); 
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if n>m, 
   xx = xx.'; 
end; 
 
%add zero padding to initial states 
xx = [zeros(order-1,1); xx]; 
%initialization steps 
l = 1; 
sumMSE = 0;      %sum of mean square error 
error = desired; 
w = winit; 
W = zeros(order, Lx); 
 
for k = 1:Lx,              % update every sampling period 
    X = xx(k+order-1:-1:k); 
    %rounding at the convolution stage 
    y = round(w'*X *q)/q; 
    error(k) = desired(k)-y;    
    sumMSE = sumMSE + error(k)*error(k); 
    %%rounding at the adaptation stage 
    w = w + round( mu*error(k)*X *q) / q; 
    W(:, k) = w; 
     
    if (mod(k, 10) == 0) 
        J(l) = sumMSE / k; 
        l = l + 1; 
    end; 
  
end;

 



APPENDIX B 
VHDL CODES 

------------------------------------------------------------- 
-- Author :     Andrew Y. Lin 
-- Date   :  04/03/02 
-- File   : header.vhd 
------------------------------------------------------------- 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
 
package header is 
   
 -- fl indicates filter length, or filter order 
 -- bussize indicates the size of the input data bus. 
 constant fl  : integer:= 4; 
 constant bussize :   integer:= 16; 
 constant depth : integer:= 12; 
  
 subtype  buss is std_logic_vector(bussize-1 downto 0); 
 
 type   pbus is array (fl downto 0) of buss; 
 type  qbus is array (fl-1 downto 0) of buss; 
 
 
 component xadder port (  
   a : in std_logic_vector(bussize-1 downto 0); 
   b : in std_logic_vector(bussize-1 downto 0); 
   y :  out std_logic_vector(bussize-1 downto 
0)); 
 end component; 
 
 component subtractor port(  
   clk  : in std_logic; 
   a  : in std_logic_vector(bussize-1 
downto 0); 
   b  : in std_logic_vector(bussize-1 
downto 0); 
   y  :  buffer std_logic_vector(bussize-1 
downto 0)); 
 end component; 
 
 component multiplier port( 
   a : in std_logic_vector(bussize-1 downto 0); 
   b : in std_logic_vector(bussize-1 downto 0); 
   y  : out std_logic_vector(bussize-1 downto 
0)); 
 end component; 
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 component wgenerator port( 
   clk  : in std_logic; 
   reset : in std_logic; 
   mu  : in std_logic_vector(3 downto 0); 
    xx  : in std_logic_vector(bussize-1 
downto 0); 
   ee  : in std_logic_vector(bussize-1 
downto 0); 
   ww  : buffer std_logic_vector(bussize-1 
downto 0)); 
 end component; 
 
 component UnitDelay port( 
   clk  : in std_logic; 
   reset : in std_logic; 
   inp  : in std_logic_vector(bussize-1 
downto 0); 
   outp : buffer std_logic_vector(bussize-1 downto 
0)); 
 end component; 
 
 component LMSMaster port( 
   clk  : in std_logic; 
   reset : in std_logic; 
   mu  : in std_logic_vector(3 downto 0); 
   x  : in std_logic_vector(bussize-1 
downto 0); 
   d  : in std_logic_vector(bussize-1 
downto 0); 
   w  : buffer pbus; 
   err  : buffer std_logic_vector(bussize-1 
downto 0)); 
 end component; 
  
end header; 
 
 
------------------------------------------------------------- 
-- Author :     Andrew Y. Lin 
-- Date   :  04/03/02 
-- File   : Multiplier.vhd 
------------------------------------------------------------- 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
use work.header.all; 
 
LIBRARY lpm;   
USE lpm.lpm_components.ALL; 
 
entity multiplier is port( 
  a : in std_logic_vector(bussize-1 downto 0); 
  b : in std_logic_vector(bussize-1 downto 0); 
  y  : out std_logic_vector(bussize-1 downto 0)); 
end multiplier; 
 
architecture behave of multiplier is 
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  signal product : std_logic_vector(2*bussize-1 
downto 0); 
begin 
 
  Mult: lpm_mult          -- product = a*b;     
        GENERIC MAP (  LPM_WIDTHA =>bussize,  
        LPM_WIDTHB =>bussize,  
                       LPM_REPRESENTATION => "SIGNED",  
                       LPM_WIDTHP => 2*bussize,  
                       LPM_WIDTHS => 2*bussize)   
        PORT MAP (   dataa => a, 
                     datab => b,  
      result => product);  
 
 
  --take the sign bit "and" with the lower  
  y <= product(2*bussize-1) & product(bussize-2 downto 0); 
 
end behave; 
 
 
------------------------------------------------------------- 
-- Author :    Andrew Y. Lin 
-- Date   :  04/03/02 
-- File   : Subtractor.vhd 
------------------------------------------------------------- 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
use work.header.all; 
 
LIBRARY lpm;   
USE lpm.lpm_components.ALL; 
 
 
entity subtractor is port( 
  clk  : in std_logic; 
  a  : in std_logic_vector(bussize-1 downto 0); 
  b  : in std_logic_vector(bussize-1 downto 0); 
  y  :  buffer std_logic_vector(bussize-1 downto 
0)); 
end subtractor; 
 
architecture behave of subtractor is 
 
  signal yy : std_logic_vector(bussize-1 downto 0); 
   
begin 
 
  sub: lpm_add_sub        -- y = a - b 
  GENERIC MAP ( LPM_WIDTH => bussize, 
      LPM_REPRESENTATION => "SIGNED", 
      LPM_DIRECTION => "SUB") 
  PORT MAP (  dataa => a, 
      datab => b, 
      result => yy); 
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  --latch the subtraction on rising edge of clk 
  process (clk) 
  begin 
   if (clk'event and clk='0') then 
    y <= yy; 
   end if; 
  end process; 
        
end behave;  
 
 
------------------------------------------------------------- 
-- Author :    Andrew Y. Lin 
-- Date   :  04/03/02 
-- File   : xadder.vhd 
------------------------------------------------------------- 
 
LIBRARY ieee;  
USE ieee.std_logic_1164.ALL; 
USE ieee.std_logic_arith.ALL; 
USE ieee.std_logic_signed.ALL; 
use work.header.all; 
 
LIBRARY lpm;   
USE lpm.lpm_components.ALL; 
 
 
entity xadder is port( 
  a : in std_logic_vector(bussize-1 downto 0); 
  b : in std_logic_vector(bussize-1 downto 0); 
  y : out std_logic_vector(bussize-1 downto 0)); 
end xadder; 
 
architecture behave of xadder is 
  
begin 
   
 
  add: lpm_add_sub        -- y = a + b 
  GENERIC MAP ( LPM_WIDTH => bussize, 
      LPM_REPRESENTATION => "SIGNED", 
      LPM_DIRECTION => "ADD") 
  PORT MAP (  dataa => a, 
      datab => b, 
      result => y);  
end behave;  
 
 
------------------------------------------------------------- 
-- Author :    Andrew Y. Lin 
-- Date   :  04/03/02 
-- File   : UnitDelay.vhd 
------------------------------------------------------------- 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
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use IEEE.std_logic_arith.all; 
use work.header.all; 
 
entity UnitDelay is port( 
  clk  : in std_logic; 
  reset : in std_logic; 
  inp  : in std_logic_vector(bussize-1 downto 0); 
  outp : buffer std_logic_vector(bussize-1 downto 0)); 
end UnitDelay; 
 
architecture behave of UnitDelay is 
 
begin 
  
 process(clk) 
 begin 
  if (rising_edge(clk)) then 
   if (reset = '1') then 
    outp <= (others=>'0'); 
   else 
    outp <= inp; 
   end if; 
  end if; 
 end process; 
 
end behave; 
 
------------------------------------------------------------- 
-- Author :     Andrew Y. Lin 
-- Date   :  04/03/02 
-- File   : WGenerator.vhd 
------------------------------------------------------------- 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
use work.header.all; 
 
LIBRARY lpm;   
USE lpm.lpm_components.ALL; 
 
 
entity WGenerator is port(  
   clk  : in std_logic; 
   reset : in std_logic; 
   mu  : in std_logic_vector(3 downto 0); 
    xx  : in std_logic_vector(bussize-1 
downto 0); 
   ee  : in std_logic_vector(bussize-1 
downto 0); 
   ww  : buffer std_logic_vector(bussize-1 
downto 0)); 
end WGenerator; 
 
 
architecture behave of WGenerator is 
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 signal ee_mult_xx : std_logic_vector(2*bussize-1 downto 0); 
 signal  ee_mult_xx_div_mu : std_logic_vector(bussize-1 downto 0); 
 signal ww_updated : std_logic_vector(bussize-1 downto 0);  
 
-- this function divides input by shifting input "len" bits to the 
right 
function div  (a  : std_logic_vector(2*bussize-1 downto 0); 
     len : std_logic_vector(3 downto 0)) 
  return std_logic_vector is 
 
 variable temp : std_logic_vector(2*bussize-1 downto 0); 
begin 
 temp := a; 
  
 -- if input is positive 
 if (temp(2*bussize-1) = '0') then 
  case len is 
   when "0001" => 
    temp := '0' & temp(2*bussize-1 downto 1); 
   when "0010" => 
    temp := "00" & temp(2*bussize-1 downto 2); 
   when "0011" => 
    temp := "000" & temp(2*bussize-1 downto 3); 
   when "0100" => 
    temp := "0000" & temp(2*bussize-1 downto 4); 
   when "0101" => 
    temp := "00000" & temp(2*bussize-1 downto 5); 
   when "0110" => 
    temp := "000000" & temp(2*bussize-1 downto 6); 
   when "0111" => 
    temp := "0000000" & temp(2*bussize-1 downto 7); 
   when "1000" => 
    temp := "00000000" & temp(2*bussize-1 downto 
8); 
   when "1001" => 
    temp := "000000000" & temp(2*bussize-1 downto 
9); 
   when "1010" => 
    temp := "0000000000" & temp(2*bussize-1 downto 
10); 
   when "1011" => 
    temp := "00000000000" & temp(2*bussize-1 downto 
11); 
   when "1100" => 
    temp := "000000000000" & temp(2*bussize-1 
downto 12); 
   when "1101" => 
    temp := "0000000000000" & temp(2*bussize-1 
downto 13); 
   when "1110" => 
    temp := "00000000000000" & temp(2*bussize-1 
downto 14); 
   when "1111" => 
    temp := "000000000000000" & temp(2*bussize-1 
downto 15); 
   when others => 
    null; 
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  end case; 
 -- if input is negative 
 else 
  case len is 
   when "0001" => 
    temp := '1' & temp(2*bussize-1 downto 1); 
   when "0010" => 
    temp := "11" & temp(2*bussize-1 downto 2); 
   when "0011" => 
    temp := "111" & temp(2*bussize-1 downto 3); 
   when "0100" => 
    temp := "1111" & temp(2*bussize-1 downto 4); 
   when "0101" => 
    temp := "11111" & temp(2*bussize-1 downto 5); 
   when "0110" => 
    temp := "111111" & temp(2*bussize-1 downto 6); 
   when "0111" => 
    temp := "1111111" & temp(2*bussize-1 downto 7); 
   when "1000" => 
    temp := "11111111" & temp(2*bussize-1 downto 
8); 
   when "1001" => 
    temp := "111111111" & temp(2*bussize-1 downto 
9); 
   when "1010" => 
    temp := "1111111111" & temp(2*bussize-1 downto 
10); 
   when "1011" => 
    temp := "11111111111" & temp(2*bussize-1 downto 
11); 
   when "1100" => 
    temp := "111111111111" & temp(2*bussize-1 
downto 12); 
   when "1101" => 
    temp := "1111111111111" & temp(2*bussize-1 
downto 13); 
   when "1110" => 
    temp := "11111111111111" & temp(2*bussize-1 
downto 14); 
   when "1111" => 
    temp := "111111111111111" & temp(2*bussize-1 
downto 15); 
   when others => 
    null;     
  end case; 
 end if; 
 return temp(2*bussize-1) & temp(bussize-2 downto 0); --take only 
the least significant bits 
end;  -- of function "div" 
 
 
begin -- of architecture 
 
 
  --concurrent statement 
  ee_mult_xx_div_mu <= div(ee_mult_xx, mu); 
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  process(clk) 
  begin 
   if (rising_edge(clk)) then 
    if reset = '1' then 
     ww <= (others=>'0'); 
    else 
     ww <= ww_updated; 
    end if; 
   end if; 
  end process; 
   
   
   
  Mult: lpm_mult          -- ee*xx      
        GENERIC MAP (  LPM_WIDTHA =>bussize,  
        LPM_WIDTHB =>bussize,  
                       LPM_REPRESENTATION => "SIGNED",  
                       LPM_WIDTHP => 2*bussize,  
                       LPM_WIDTHS => 2*bussize)   
        PORT MAP (   dataa => xx, 
                     datab => ee,  
      result => ee_mult_xx);  
 
 
  sub: lpm_add_sub        -- ww = ww + ee*xx / mu 
  GENERIC MAP ( LPM_WIDTH => bussize, 
      LPM_REPRESENTATION => "SIGNED", 
      LPM_DIRECTION => "ADD") 
  PORT MAP (  dataa => ww, 
      datab => ee_mult_xx_div_mu, 
      result => ww_updated);  
 
 
end behave;  
 
 
------------------------------------------------------------- 
-- Author :     Andrew Y. Lin 
-- Date   :  04/03/02 
-- File   : LMSMaster.vhd 
------------------------------------------------------------- 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
use work.header.all; 
 
entity LMSMaster is port( 
 clk  : in std_logic; 
 reset : in std_logic; 
 mu  : in std_logic_vector(3 downto 0); 
 x  : in std_logic_vector(bussize-1 downto 0); 
 d  : in std_logic_vector(bussize-1 downto 0); 
 w  : buffer pbus; 
 err  : buffer std_logic_vector(bussize-1 downto 0)); 
end LMSMaster; 
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architecture struct of LMSMaster is 
 
 
 --signal  w   :   pbus; 
 signal qx : qbus; 
 signal qy : qbus; 
 signal pm : pbus; 
 
begin 
  
 --component instantiations 
 UDMi : for i in fl-1 downto 0 generate 
    F1: if i = (fl-1) generate 
      UDM:  UnitDelay port map (clk=>clk, 
             
reset =>reset, 
             inp 
=> x, 
             
outp => qx(i)); 
    end generate; 
 
    F2: if i /= (fl-1) generate 
     UDi:  UnitDelay port map (clk=>clk, 
             
reset => reset, 
             inp 
=> qx(i+1), 
             
outp => qx(i)); 
    end generate; 
  end generate; 
   
 WGMi :  for i in fl downto 0 generate 
 
    F3 : if i = fl generate 
     WGM : WGenerator port map ( clk => clk, 
              
 reset => reset, 
           
 mu => mu, 
           
 xx => x, 
           
 ee => err, 
           
 ww => w(i)); 
    end generate; 
 
      
    F4 : if i /= fl generate 
     WGA : WGenerator port map( clk => clk,  
           
 reset => reset, 
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 mu => mu, 
           
 xx => qx(i), 
           
 ee => err, 
           
 ww => w(i)); 
    end generate; 
   end generate; 
 
 MULMi :  for i in fl downto 0 generate 
 
    F5 : if i = fl generate 
     MULM : multiplier port map (a => x, 
           
 b => w(i), 
           
 y => pm(i)); 
    end generate; 
 
    F6 : if i /= fl generate  
     MUL : multiplier port map( a => qx(i), 
           
 b => w(i), 
           
 y => pm(i)); 
    end generate; 
   end generate; 
 
 ADDMi :  for i in fl-1 downto 0 generate 
 
    F7 : if i = fl-1 generate 
     ADDM : xadder port map ( a => 
pm(i+1), 
           b => 
pm(i), 
           y => 
qy(i)); 
    end generate; 
 
    F8 : if i /= fl-1 generate 
     ADD : xadder port map( a => pm(i), 
           b => 
qy(i+1), 
           y => 
qy(i)); 
    end generate; 
   end generate; 
 
 SUB  : subtractor port map( 
     clk => clk, 
     a => d, 
     b => qy(0), 
     y => err); 
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end struct; 
 
  
------------------------------------------------------------- 
-- Author :   Andrew Y. Lin 
-- Date   :  01/12/03 
-- File   : Overall.vhd 
------------------------------------------------------------- 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
use IEEE.std_logic_unsigned.all; 
use work.header.all; 
 
LIBRARY lpm;   
USE lpm.lpm_components.ALL; 
 
entity Overall is port( 
 clk  : in std_logic; 
 reset : in std_logic; 
 mu  : in std_logic_vector(3 downto 0); 
 addr : in std_logic_vector(9 downto 0); 
 weights : buffer pbus; 
 q  : out std_logic_vector(bussize-1 downto 0); 
 err  : buffer std_logic_vector(bussize-1 downto 0)); 
end Overall; 
 
architecture struct of Overall is 
 
 signal desired, x_in : std_logic_vector(bussize-1 downto 0); 
 --signal  addr : std_logic_vector(9 downto 0); 
  
begin 
 
 --This ROM contains the desired signal  
 Desired_ROM: lpm_rom  
 GENERIC MAP ( 
  lpm_widthad => 10, 
  lpm_width => bussize, 
  lpm_address_control => "REGISTERED", 
  lpm_outdata => "UNREGISTERED", 
  lpm_file => "c:\andy lin\testdata\LMSDesired.mif") 
 PORT MAP ( 
  inclock => clk, 
  q => desired, 
  address => addr);   
   
 
 --This ROM contains the input signal  
 input_ROM: lpm_rom  
 GENERIC MAP ( 
  lpm_widthad => 10, 
  lpm_width => bussize, 
  lpm_address_control => "REGISTERED", 
  lpm_outdata => "UNREGISTERED", 
  lpm_file => "c:\andy lin\testdata\LMSinput.mif") 
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 PORT MAP ( 
  inclock => clk, 
  q => x_in, 
  address => addr);   
   
    
 --This RAM contains error signal 
 err_RAM : lpm_ram_dq 
    GENERIC MAP( 
  LPM_WIDTH => bussize, 
       LPM_WIDTHAD => 10, 
       LPM_INDATA => "REGISTERED", 
  LPM_OUTDATA => "UNREGISTERED", 
       LPM_ADDRESS_CONTROL => "UNREGISTERED") 
    PORT MAP( 
  address => addr, 
       inclock => clk, 
       we => '1', 
       data => err, 
  q => q); 
  
   
 --LMS FIR instantiation 
 FIR : LMSMaster PORT MAP (  
  clk  => clk, 
  reset => reset, 
  mu  => mu, 
  x  => x_in, 
  d  => desired, 
  w  => weights, 
  err  => err); 
   
   
 --process(clk) 
 --begin 
 -- if (clk'event and clk='1') then 
 --  if (reset = '1') then 
 --   addr <= (others=>'0'); 
 --  else 
 --   addr <= addr + '1'; 
 --  end if; 
 -- end if; 
 --end process; 
   
   
end struct; 
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