
RICE UNIVERSITY

OKL: A Unified Language for Parallel
Architectures

by
David Medina

A Thesis Submitted
in Partial Fulfillment of the
requirements for the degree

Doctor of Philosophy

Approved, Thesis Committee:

Timothy Warburton, Chair
Professor of Computational and Applied
Mathematics

Beatrice Riviere
Professor of Computational and Applied
Mathematics

Danny C. Sorensen
Noah Harding Professor of Computational
and Applied Mathematics

Keith D. Cooper
L. John and Ann H. Doerr Professor of
Computational Engineering

Houston, Texas

May, 2015



Abstract

OKL: A Unified Language for Parallel Architectures

David Medina

Rapid evolution of computer processor architectures has spawned multiple pro-

gramming languages and standards. This thesis strives to address the challenges caused

by fast and cyclical changes in programming models. The novel contribution of this

thesis is the introduction of an abstract unified framework which addresses portability

and performance for programming manycore devices. To test this concept, I developed

a specific implementation of this framework called occa. OCCA provides evidence

that it is possible to achieve high performance across multiple platforms.

The programming model investigated in this thesis abstracts a hierarchical rep-

resentation of modern manycore devices. The model at its lowest level adopts native

programming languages for these manycore devices, including serial code, OpenMP,

OpenCL, NVIDIA’s CUDA, and Intel’s COI. At its highest level, the ultimate goal is

a high level language that is agnostic about the underlying architecture. I developed a

multiply layered approach to bridge the gap between expert “close to the metal” low-

level programming and novice-level programming. Each layer requires varying degrees

of programmer intervention to access low-level features in device architectures.

I begin by introducing an approach for encapsulating programming language fea-

tures, delivering a single intermediate representation (occa IR). Built above the occa



iii Abstract

IR are two kernel languages extending the prominent programming languages C and

Fortran, the occa kernel language (okl) and the occa Fortran language (ofl). Ad-

ditionally, I contribute two automated approaches for facilitating data movement and

automating translations from serial code to okl kernels.

To validate occa as a unified framework implementation, I compare performance

results across a variety of applications and benchmarks. A spectrum of applications

have been ported to utilize occa, showing no performance loss compared to their

native programming language counterparts. In addition, a majority of the discussed

applications show comparable results with a single occa kernel.



Acknowledgements

I’m grateful to my advisor Professor Tim Warburton for his guidance and pro-

viding me a great working environment during my time at Rice University. With his

supervision, teachings, and collaboration, I was able to gain the valuable knowledge

and experience required for this thesis work. Through him, I’ve had the opportunity to

meet many colleagues from our research group and collaborators in academia, national

labs, and industry. Likewise, I’m thankful for the faculty at CAAM for teaching the

fundamentals required for my work. I would like to thank my committee, Prof. Riv-

iere, Prof. Symes, Prof. Sorensen, and Prof. Cooper, for their advice, feedback, and

support. I also want to mention my great thanks to Dr. Amik St-Cyr for his mentoring

and suggestions through my internships.

This would also not have been made possible without important people outside

my academic life. In particular, I would like to thank my wife Xiong for her constant

help, understanding, and coffee. Many colleagues are also very good friends outside of

school, helping me out when I need it. I’m lucky to have good friends, notably Rajesh

Gandham for being my awesome officemate and collaborator through many projects

and Jesse Chan for his constant help.



Table of Contents

Abstract ii

Acknowledgements iv

Table of Contents v

Nomenclature x

1 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

2 Languages and Standards . . . . . . . . . . . . . . . . . . . . . . . . . x

3 GPU Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

4 OCCA Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 Introduction 1

1.1 Overview of Computational Architectures . . . . . . . . . . . . . . . . 1

1.1.1 Central Processing Units . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Graphics Processing Units . . . . . . . . . . . . . . . . . . . . . 3

1.2 Programming Next-Generation Architectures . . . . . . . . . . . . . . . 4

1.2.1 Programming with CUDA and OpenCL . . . . . . . . . . . . . 4

1.2.2 Performance Differences Between CUDA and OpenCL . . . . . 6

1.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Directive Approach . . . . . . . . . . . . . . . . . . . . . . . . . 7



Table of Contents vi

1.3.2 Source-to-source Approach . . . . . . . . . . . . . . . . . . . . . 10

1.3.3 Wrapper Approach . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.1 Published Journal Articles . . . . . . . . . . . . . . . . . . . . . 13

1.4.2 Journal Articles in Progress . . . . . . . . . . . . . . . . . . . . 13

1.4.3 Conferences and Seminar Invitations . . . . . . . . . . . . . . . 14

1.4.4 Poster Presentations . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 OCCA: Unified Approach To Multithreading Languages 18

2.1 OCCA Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 CPU Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.2 GPU Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.3 CPU and GPU Similarities . . . . . . . . . . . . . . . . . . . . . 24

2.2 OCCA Intermediate Representation (IR) . . . . . . . . . . . . . . . . 25

2.2.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.2 Programming Model . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2.1 Kernel Arguments . . . . . . . . . . . . . . . . . . . . 32

2.2.2.2 Outside occaOuterFor . . . . . . . . . . . . . . . . . . 34

2.2.2.3 Between occaOuterFors . . . . . . . . . . . . . . . . . 34

2.2.2.4 Between occaOuterFor and occaInnerFor . . . . . . 34

2.2.2.5 Between occaInnerFors . . . . . . . . . . . . . . . . . 35

2.2.2.6 Inside occaInnerFors . . . . . . . . . . . . . . . . . . 35

2.2.3 Device Memory Hierarchy . . . . . . . . . . . . . . . . . . . . . 35

2.3 Application Programming Interface . . . . . . . . . . . . . . . . . . . . 37

2.3.1 Offload Model and Device Abstractions . . . . . . . . . . . . . . 37



vii Table of Contents

2.3.1.1 occa::device Class . . . . . . . . . . . . . . . . . . . 38

2.3.1.2 occa::memory Class . . . . . . . . . . . . . . . . . . . 39

2.3.1.3 occa::kernel Class . . . . . . . . . . . . . . . . . . . 40

2.3.2 Kernel Compilation . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.3 High Performance Computing Features . . . . . . . . . . . . . . 45

2.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 OKL and OFL: OCCA Kernel Languages 48

3.1 Compiler Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.1 Preprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.2 Parsing and Tokenization . . . . . . . . . . . . . . . . . . . . . . 50

3.1.3 Statement Labeling . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.4 Expression Trees . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.5 Types and Variable Information . . . . . . . . . . . . . . . . . . 55

3.2 OKL Specification and Features . . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 Exposing Parallelism . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.2 Memory Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.3 Device Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 OFL Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.1 Exposing Parallelism . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.2 Memory Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Support for CUDA and OpenCL . . . . . . . . . . . . . . . . . . . . . . 68

3.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Automated Data Movement 73



Table of Contents viii

4.1 Automated Data Movement Approaches . . . . . . . . . . . . . . . . . 73

4.2 Emulating Unified Memory . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 OAK: OCCA Automagic Kernel 80

5.1 Coding Patterns in Numerical Applications . . . . . . . . . . . . . . . . 81

5.1.1 Finite Difference . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.2 Finite Element and Discontinuous Galerkin Methods . . . . . . 86

5.2 Automagic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.1 Value Extractions . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.2 Detection of Loop Carried Dependencies . . . . . . . . . . . . . 95

5.2.3 Additional Language Constructs . . . . . . . . . . . . . . . . . . 98

5.3 Auto-generation of Kernels . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Implementation Studies and Benchmarks 107

6.1 Finite Difference Method . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3 Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4 Discontinuous Galerkin . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.5 Rodinia Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.5.1 Back Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.5.2 Breadth-First Search . . . . . . . . . . . . . . . . . . . . . . . . 120



ix Nomenclature

6.5.3 Gaussian Elimination . . . . . . . . . . . . . . . . . . . . . . . . 121

6.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7 Conclusions and Future Work 124

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A Appendix: OCCA Kernel Keywords 127

References 131



Nomenclature

1 Abbreviations

CPU Central Processing Unit

FPGA Field Programmable Gate Arrays

FPU Floating-Point Unit

GPU Graphics Processing Unit

HPC High Performance Computing

IR Intermediate Representation

NUMA Non-Uniform Memory Access

RAM Random Access Memory

SIMD Single-Instruction Multiple-Data

2 Languages and Standards

Heterogeneous

Computing

Combined use of CPUs and accelerators for computational

purposes

OpenMP Open standard for programming multithreaded systems

through directives.



xi Nomenclature

OpenMP 4.0 Open standard for programming heterogeneous systems

through directives.

OpenACC Open standard for programming GPUs through directives.

OpenCL Open standard for programming heterogeneous systems by

unifying parallel device architectures such as CPUs, GPUs,

and FPGAs.

CUDA NVIDIA’s proprietary language for programming NVIDIA

GPUs

COI Intel’s Coprocessor Offload Infrastructure used to program the

Xeon Phi

OKL OCCA Kernel Language (C-based)

OFL OCCA Fortran Language (Fortran-based)

3 GPU Terminology

GPGPU General Purpose Graphics Processing Unit, GPUs

used for general purpose computing

Host Processor(s) running an application, usually by a

CPU

Device Hardware targeted for offload computations to

such as a multicore CPU, GPU, or other accel-

erator

Kernel GPU Function



Nomenclature xii

(CUDA) Thread Manages work in the GPU at the finest granularity

level

(CUDA) Block Group of CUDA threads executing concurrently

(OpenCL) Work-item Manages work in the GPU at the finest granularity

level. Synonymous with threads in CUDA

(OpenCL) Work-group Group of OpenCL work-items executing concur-

rently. Synonymous with blocks in CUDA

Global memory Memory located on the device with the longest la-

tency in the device memory hierarchy

Shared memory Memory co-located with the processor’s cache, ac-

cessible by all FPUs on a compute unit

Register memory Processing unit’s register file, smallest latency in

the device memory hierarchy

4 OCCA Terminology

Mode Target language/specification for a device such as

Serial, OpenMP, OpenCL, and CUDA

Loop Tag Fourth clause in a for-loop indicating the type of

parallelism to be taken by the for-loop

Outer Loops For-loops with an outer tag, parallelized by

threads (CPU) or work-groups (GPU)

Inner Loops For-loops with an inner tag, able to be vectorized

(CPU) or work concurrently (GPU)



xiii Nomenclature

Shared memory Shared memory when using a GPU architecture,

otherwise a regular buffer

Exclusive memory Register memory unique to a inner-loop iteration,

value can jump inner-loop scopes



1 Introduction

With the collapse of single-processor computing in the high performance comput-

ing (HPC) field, a wave of parallel-computing has emerged. Alongside the paradigm

shift of multiprocessor computing, several hardware architectures tailored for paral-

lel computing have risen and fallen. Keeping confidence in numerical methods and

their implementations while engaging in this undetermined and changing environment

became a motivation for the work provided in this thesis.

The novelty presented in this thesis is the programming model used to abstract

modern manycore devices. Multiple layers in this model were developed, including

the representation of low-level features present in manycore architectures towards a

high-level model automating. These concepts were implemented throughout the occa

project to unify commonalities found across prominent architectures in the HPC com-

munity. We start with an introduction on the past, present and projected future

architectures and their programming models to set the background for the thesis work.

Although the work shown in this thesis generalizes current many-core models, knowl-

edge in architecture advancements provides insight on identifying recurring features

across generations of hardware designs.

1.1 Overview of Computational Architectures

We begin by discussing the general-purpose central processing unit (CPU) and

its architectural improvements through the last few decades. Following is an overview



CHAPTER 1. INTRODUCTION 2

on graphics processing units (GPU) and strides to the general-purpose programming

model we see today in CUDA and OpenCL.

1.1.1 Central Processing Units

Floating point units (FPUs) began as co-processors, replacements for software-

designed floating-point operations. Central processing units would offload floating-

precision work to external FPUs until the FPUs became integrated with the processor.

Transistors per area grew exponentially (modeled by Moore’s Law), increasing peak

FLOPS exponentially (Schaller 1997). Once power limitations became apparent, volt-

age and currents were scaled proportionally to transistor sizes (Dennard scaling) to

control power utilization and maintain the transistor density rate noted by Moore’s

Law (Dennard et al. 1974). Although Dennard scaling made the use of the transis-

tor count feasible, performance scaling was reduced around the year 2000, requiring

architectural improvements to continue scaling (Dally 2009).

The use of Beowulf clusters (computers networked together) gained traction as a

method to sidestep the limitations set by a single processing unit. A similar philosophy

was then applied to central processing units, resulting in multicore processor designs

with each core containing an independent instruction scheduler. Processors with 2-8

cores and motherboards containing 2-4 processor sockets became the industry stan-

dard. Together with increasing core-count, single-instruction multiple-data (SIMD)

cores became common on general-purpose and performance-based processing units.

This idea of reusing an instruction on multiple data entries is not new and has been

implemented since the CRAY-1 in 1976 (Russell 1978). Current SIMD vectorization

units not only allow for instruction reuse but decrease overall fetching latency due to

vector instructions operating on a contiguous data segment, usually requiring page

alignment of memory accesses.



3 CHAPTER 1. INTRODUCTION

While many aspects contributed to gains in computation performance, bandwidth

and latency has improved at different rates. The processor clock speeds increased at a

rate to which memory systems were incapable of continuously providing data for, hence

a computational bottleneck stemming from the memory bandwidth. Apart from pure

bandwidth increases, a hierarchy of cache levels were introduced to predict and prefetch

data directly for processing elements to avoid excessive data movement. Transfers

between memory and cache are automated to fetch fixed-sized memory segment cache

lines into cache following a non-cached memory access (cache miss). Likewise, cache

line evictions are also automated while maintaining coherence across cores.

Alongside with CPU architecture improvements, co-processors tailored for specific

computational tasks were also developed. Graphics-processing and embarrassingly-

parallel computations are currently common uses for co-processors while the central

processor is used for general-purpose computations. Well known co-processors include

graphics processing units (GPUs), field programmable gate arrays (FPGAs), Intel’s

Xeon Phi, and IBM’s Cell architecture. However, there are also architectures aiming

for performance with low-power consumption, such as massively parallel processor

arrays (MPPAs).

1.1.2 Graphics Processing Units

Graphics cards were developed due to the increasing demand for improved graphics

in video games. The architectural design for graphics cards was based on the linear

algebra operations used in 3D rendering. Rather than relying on the general-purpose

CPU, computations for rendering were offloaded onto graphics cards. Briefly stated,

programming practices for graphics rendering queue batches of identical instructions

which make use of an embarrassingly parallel architecture.

Programming graphics cards made use of a fixed pipeline, splitting work into



CHAPTER 1. INTRODUCTION 4

different stages for updating vertices and managing individual fragments. With the

potential of using graphics cards for general purpose computing, the Brook language

was developed to reduce the complexity of using the fixed pipeline for general purpose

computations (Buck et al. 2004). In 2007, Brook inspired CUDA, NVIDIA’s propri-

etary language, for using their graphics cards as general purpose GPUs (GPGPUs).

However, CUDA vendor-locks application development to NVIDIA GPUs for hardware

acceleration (Bodin and Bihan 2009).

To address this issue, the Khronos group, an open standards consortium, released

specifications for the OpenCL standard for programming heterogeneous platforms in-

cluding: CPUs, GPUs, Intel’s Xeon Phi and field-programmable gate arrays (FPGAs).

In 2008, a year after CUDA’s initial release, NVIDIA and Advanced Micro Devices

(AMD) presented their first functional OpenCL demo in Siggraph Asia 2008 (Mun-

shi 2008). Presently, programming for these accelerators requires either CUDA or

OpenCL, or approaches which make use of these languages.

1.2 Programming Next-Generation Architectures

With the rise of accelerator models, it is not known which architectures will endure.

For example, the IBM’s Cell architecture, that powered the Playstation 3 and in the

first petaflop-capable machine, was put on hiatus less than a decade after development

(Campbell 2009). The uncertainty in lasting architectures could cause applications to

become defunct in the future. This systemic risk for software development presents

a challenge for code longevity. I will briefly discuss programming differences between

CUDA and OpenCL together with their respective advantages and disadvantages.

1.2.1 Programming with CUDA and OpenCL



5 CHAPTER 1. INTRODUCTION

The similarities between CUDA and OpenCL become evident in their program-

ming model but their popularity in use differ. NVIDIA releases their own compiler

wrapper, nvcc, to allow CUDA kernels to be embedded in the application code, while

OpenCL separates host code (application code) with the device code (kernels), which

steepens the learning curve. The simplicity of combining host and device code is one

of the reasons CUDA is somewhat more popular than OpenCL which separates device

kernels (functions written for the GPU) from application code. Despite this, OpenCL

is favorable largely due to its open standard which has been implemented for a large

range of architectures. Fortunately, kernels written in CUDA can be translated to

OpenCL without much effort as seen in AMD’s “Porting into OpenCL” (Advanced

Micro Devices 2013) site; however, the same could not be said about the host-device

interaction. As seen in code listing 1.1, CUDA allows mixing host and device code;

whereas OpenCL requires separate files.



CHAPTER 1. INTRODUCTION 6

// (1) CUDA: Embedded file holding type
// definitions and functions

class vector3 {
public :

float x, y, z;

__host__ __device__ float normalize (){
const float norm = sqrt ((x*x) +

(y*y) +
(z*z));

x /= norm;
y /= norm;
z /= norm;

}
};

__global__
void normalizeArray ( vector3 *array ,

const int entries ){

const int n = threadIdx .x +
( blockIdx .x * blockDim .x);

if(n < entries )
array [n]. normalize ();

}

// (2) OpenCL : External file holding type
// definitions and functions

struct vector3 {
float x, y, z;

};

float normalize ( vector3 *v){
const float x2 = (v->x)*(v->x);
const float y2 = (v->y)*(v->y);
const float z2 = (v->z)*(v->z);

const float norm = sqrt(x2 + y2 + z2);

v->x /= norm;
v->y /= norm;
v->z /= norm;

}

__kernel
void normalizeArray ( vector3 *array ,

const int entries ){

const int n = get_global_id (0);

if(n < entries )
normalize ( &( array [n]) );

}

Listing 1.1: Examples of object-oriented programming in (1) CUDA and (2) OpenCL

1.2.2 Performance Differences Between CUDA and OpenCL

There are striking differences between NVIDIA’s proprietary language and run-

time API compared with OpenCL’s low-level API (with flexibility on platform-choice).

Hence, approaches have been taken to combine advantages from each language. The

benefits for developing multithreaded GPGPU applications in CUDA inspired the ques-

tion whether a translation between CUDA and OpenCL would be possible and use-

ful. Various papers have benchmarked well-known suites on both CUDA and OpenCL,

summarizing that comparable performance can be achieved in both, but depend on the

hardware and optimizations (Karimi et al. 2010, Fang et al. 2011, Du et al. 2012, Wang

et al. 2014). For example, fluctuations in performance can be seen across NVIDIA’s



7 CHAPTER 1. INTRODUCTION

CUDA, NVIDIA’s OpenCL and AMD’s OpenCL platforms running the same ker-

nel, with one-to-one translations, due to varying optimizations found on the different

platforms. A similar occurrence is found when comparing with performance across

compilers on the same application code.

Different approaches have been taken to address portability and performance when

uniting these two frameworks. Some approaches try to minimize adjustments to legacy

codes to prevent refactoring on the host-device model by using directives, inspiring

standards such as OpenMP and OpenACC (Dolbeau et al. 2007). Other approaches

accept the host-device programming model and strive to combine CUDA’s language

features with OpenCL’s flexibility, motivating source-to-source solutions. Lastly, we

discuss libraries which hide the underlying languages by providing specialized routines,

such as BLAS (Basic Linear Algebra Subprograms).

1.3 Literature Review

The next chapter describes in detail the initial development of occa (Medina

2014), including the occa IR kernel language. This section provides a spectrum

of approaches for achieving similar code portability throughout a range of hardware.

Analyzing these present and past approaches motive the choices taken in the develop-

ment of the occa IR. These approaches are grouped into three categories: the use of

directives which allow the compiler to provide code transformations; source-to-source

transformations between programming languages; and lastly, providing a set of tailored

operations, hand-coded for each provided backend.

1.3.1 Directive Approach

The first approach we will discuss makes use of directives in the form of #pragma’s

or comment regions to shift code manipulation to the compiler. OpenMP is a promi-



CHAPTER 1. INTRODUCTION 8

nent example of a specification which uses directives. Rather than using a low-level

management of threads, OpenMP eases multithreading development by automating

thread management.

With the introduction of GPUs used in high performance computing (HPC), it

was of interest to achieve the simplification seen in multithreading for these new ac-

celerators. In 2009, hiCuda was one of the first directive-based project to address this

issue, handling device tasks such as memory management and kernel generation (Han

and Abdelrahman 2009, Han and Abdelrahman 2011). In the same year, a Star Super-

scalar (StarSs) programming model extension was proposed, anticipating an extension

of OpenMP to introduce multithreaded programming on GPGPUs (Ayguadé et al.

2009). These projects were followed by a large number of standards and standard

proposals, resulting in OpenACC and OpenMP 4.0. OpenACC was the first com-

mercial release, supported at the time by compilers from Cray, NVIDIA, CAPS and

PGI. Open-source projects such as openMPC (Lee and Eigenmann 2010) and IPMACC

(Lashgar et al. 2014) gave open-source alternatives to using OpenACC in application

codes. Meanwhile, OpenMP received a few proposals for its 4.0 specification (Ferrer

et al. 2011, Duran et al. 2011). There are currently few compilers supporting OpenMP

4.0 due to the specification being relatively new.

While there have been promising results, it should be noted that several bench-

marks were embarrassingly parallel and could be described with simple access patterns

(Han and Abdelrahman 2009, Wienke et al. 2012, Herdman et al. 2012, Reyes et al.

2012). It was of interest to not only note the performance, but the amount of labor

required to enable GPGPU support on traditional CPU applications through directives

as opposed to refactorization with OpenCL and/or CUDA (Wienke et al. 2012, Wang

et al. 2014). The paper by (Wienke et al. 2012) showed a drop of 90% performance

when using an OpenACC implementation of their non-linear optimization algorithm



9 CHAPTER 1. INTRODUCTION

when using naive placements of #pragmas compared to OpenCL, and a 60%-80% drop

when restructuring the parallel loops. Similarly, (Wang et al. 2014) reported a 20%-40%

performance drop when comparing on a Fermi GPU, Kepler GPU, and the Xeon Phi

for their finite difference implementation. However, the restructuring required for the

naive OpenACC implementations in both papers required 1%-2% line changes when

compared to their OpenCL and CUDA implementation counterparts. The tailored

OpenACC kernels which achieved 40%-60% relative performance, line changes were

still less than 45% when comparing with OpenCL and CUDA. The fact that there

are missing or immature elements required for GPU optimization cannot be hidden,

including:

Access to manually manipulate shared memory

Manual memory retainment between the host and device

Forced global synchronization across certain parallel regions

Light asynchronous support

Limited use of functions (required to be inline but not guaranteed to work)

Nevertheless, while some algorithms could be deemed inefficient with this ap-

proach, others generate comparable CUDA/OpenCL kernels as to their hand-coded

counterparts; an important factor when balancing developer time with performance.

There are tools to attempt different optimizations with code transformations; for ex-

ample, some machine-learning-based methods automatically test for performance im-

provements, but their use in practice still needs investigation (Grewe et al. 2013, Lee

and Vetter 2014).

To summarize, the use of directives puts greater value on the learning curve and

development time as opposed to computational performance. Preliminary results have

been positive for simple kernel examples, but the specification appears to be lacking



CHAPTER 1. INTRODUCTION 10

low-level features for leveraging the full targeted architecture. In contrast with the

directive approach, the following discussed approach makes use of the advantages in

CUDA, for it’s simpler programming language, and OpenCL, for it’s portability across

multiple architectures.

1.3.2 Source-to-source Approach

The second approach discussed is a source-to-source approach, where code trans-

formation occurs prior to compilation or at the compilation stage. Although not as sim-

ple as the directive approach, this approach allows users to take advantage of CUDA’s

language extensions which provide many features to ease GPGPU programming. For

example, NVIDIA has released toolkits for several optimized linear algebra routines,

such as cuBLAS and MAGMA, which facilitate many dense and sparse linear opera-

tions; something difficult to enable with the directive approach.

However, as previously mentioned, using CUDA limits the user to use NVIDIA

GPUs for accelerating codes. Two projects addressed this issue by creating source-

to-source translators from CUDA to OpenCL to achieve platform flexibility: CU2CL

(Martinez et al. 2011, Gardner et al. 2013) and SWAN (Harvey and De Fabritiis 2011).

The SWAN project came from industry and apparently stopped updating after the

introduction of NVIDIA’s Fermi architecture. Meanwhile CU2CL, an academic proto-

type, currently supports a core portion of later versions of CUDA which have added

many useful features.

A second approach to source-to-source conversion is based on analyzing the in-

termediate assembly produced by CUDA and converting it to assembly supported by

other platforms. GPU Ocelot (Diamos et al. 2010, Farooqui et al. 2011) and INSIEME

(Jordan et al. 2013) have taken this assembly approach towards platform flexibility. A

possible disadvantage arises when porting assembly to non-NVIDIA platforms or even



11 CHAPTER 1. INTRODUCTION

distinct hardware due to architecture-dependent optimizations applied on distinct ar-

chitectures.

Aside from pure CUDA-to-OpenCL and assembly transformations, a few other

translation projects have been released. Par4All is a project that was developed to

automatically detect loops from C and Fortran and transform them at compile-time

into OpenMP, OpenCL and CUDA (Amini et al. 2012, Ventroux et al. 2012). Similarly,

the project discussed in (Anderson 2014) is a prototype to convert Python code into

OpenCL kernels in a more controlled environment. These approaches resemble a black-

box due to automatic conversion, which may be overly intrusive and could create issues

interfacing with other libraries.

To summarize, the source-to-source approaches encounters difficulties due to the

transformation scope and the rapidly changing specifications. Similar to requirements

of directive-based approaches, which require access to the complete project source code,

source-to-source projects could require a full application transformation which may be

impractical in industrial codes. The last approach tries to prevent the global-scope

requirement and is robust to changes in specifications. By creating a wrapper around

CUDA and OpenCL, the next approach creates tailored frameworks which prioritize

in easy-to-use routines without sacrificing high performance.

1.3.3 Wrapper Approach

The “wrapper approach” focuses on creating libraries and objects wrappers. By

developing and implementing tailored algorithms for supported architectures, high per-

formance can be achieved while maintaining platform flexibility. While CUDA has

several exclusive mathematical libraries, such as cuBLAS and MTL4, there are also

libraries available for OpenCL, such as VexCL/ViennaCL (Demidov 2012, Demidov

et al. 2013). AMD has also released the open-source OpenCL counterpart, clBlas, as



CHAPTER 1. INTRODUCTION 12

well as Bolt, the standard template library (STL) styled library for executing com-

mon algorithms on vector structures (Rogers and FELLOW 2013). Other industrial

approaches include Intel’s Thread Building Blocks (TBB) and Microsoft’s specification

for C++ AMP, a collection of highly templated libraries for executing parallel tasks

(Pheatt 2008, Gregory and Miller 2012).

SkePU is another C++ library which focuses on the map-reduce model for kernel

generation (Enmyren and Kessler 2010, Dastgeer et al. 2011). By providing “skeleton”

code, users have limited templates with which to create kernels. While SkePU can

generate OpenCL and CUDA kernels, the code skeletons offered to generated kernels

with require simple access patterns.

The motivation for platform flexibility has increased with the growing number of

architectures, and so have the available libraries. Several national labs have investigated

possible portable solutions for next generation codes. The Sandia National Laboratory

has developed Kokkos, a C++ library which supports Pthreads, OpenMP and CUDA

(Edwards and Trott 2013). Kokkos is based on multidimensional arrays which cover

device memory and textures for linear algebra routines. Kokkos uses C++ and supports

CUDA and thus is able to implement API calls which take in functors as inputs for

generating code at compile-time. Likewise, Lawrence Livermore National Laboratory

developed RAJA, a C++ library focused on portability for simulation codes (Hornung

and Keasler 2013). Similar to Kokkos, RAJA focuses on kernel generation through

functors but relies in C++ 11 and lambdas. The Los Alamos National Laboratory

has instead focused on improving Thrust which support CUDA, OpenMP and Intel’s

TBB (Bell and Hoberock 2011). And lastly, the Oak Ridge National Laboratory been

working with directive approaches, such as OpenACC.

Relying on libraries to provide optimized subroutines can improve developer time,

but can also limit the scope of an application and cause excess data movement. These



13 CHAPTER 1. INTRODUCTION

tailored libraries, although allowing for minimal kernel generation, do not expose

enough flexibility for customizing complex kernels. Because our goal is to present a

portable solution for developing in heterogeneous environments, releasing a set number

of specialized routines is not sufficient. However, we acknowledge and adopt salient fea-

tures such as the simplification in between host and device interaction seen in libraries

like Thrust, Kokkos and RAJA.

1.4 Publications

During the thesis work, I had the opportunity to collaborate with various col-

leagues from Rice University, industry, and national laboratories. I would like to in-

clude the co-authored publications that have been accepted in peer-reviewed journals,

in submission, or in progress, together with a list of talk invitations and poster presen-

tations.

1.4.1 Published Journal Articles

Gandham, R., Medina, D. and Warburton, T. 2014, GPU Accelerated discontin-

uous Galerkin methods for shallow water equations, Communications in Com-

putational Physics. This paper discusses a high-order discontinuous Galerkin

method for the shallow water equations, implementing algorithms implemented

used occa.

Medina, D. S., St-Cyr, A. and Warburton, T. 2015, High-Order Finite-differences

on multi-threaded architectures using OCCA, in ’ICOSAHOM 2015’, Springer.

We discuss a high-order finite difference implementation for a seismic imaging.

An efficient algorithm implemented in occa is described for the wave equation

using a vertical transverse isotropy model.



CHAPTER 1. INTRODUCTION 14

1.4.2 Journal Articles in Progress

Medina, D. S., St-Cyr, A. and Warburton, T. 2014, OCCA: A unified approach

to multi-threading languages, arXiv preprint arXiv:1403.0968. The original pa-

per describing occa, it’s programming model and the macro-based occa IR

(intermediate representation) discussed in chapter 2.

Rahaman, R., Medina, D., Lund, A., Tramm, J., Warburton, T. and Seigel, A.

2015, Portability and Performance of Nuclear Reactor Simulations on Many-Core

Architectures, in ’77th EAGE Conference and Exhibition 2015’. This article came

from a collaboration with a group at the Center for the Exascale Simulation of

Advanced Reactors (CESAR) at the Argonne National Laboratory. We compare

a neutronics Monte Carlo algorithm on various architectures and programming

approaches, such as occa and OpenACC.

Fahrenholtz, S. J., Moon, T., Franco, M., Medina, D., Danish, S., Gowda, A.,

Shetty, A., Maier, F., Hazle, J., Stafford, R. J., Warburton, T. and Fuentes, D.

n.d., A model evaluation study for treatment planning of laser induced thermal

therapy. This article discusses the use of a spectral element method for simulating

heat transfer from a laser induced thermal therapy. The efficient implementation

uses occa to utilize modern architectures.

1.4.3 Conferences and Seminar Invitations

OKL: A unified kernel language for parallel architectures, Sandia National Lab-

oratory, May 2015

OKL: A unified kernel language for parallel architectures, SIAM CSE ’15, March

2015



15 CHAPTER 1. INTRODUCTION

OKL: A unified kernel language for parallel architectures, Rice Oil & Gas ’15,

March 2015

OKL: A unified kernel language for parallel architectures, Chevron, February

2015

Tutorial on OCCA, CESAR Sound-off meeting at Argonne National Lab, De-

cember 2014

OCCA: A unified approach to multi-threading languages, Computation-Institute

for Scientific Computing Research at Lawrence Livermore National Lab, Septem-

ber 2014

OCCA: A unified approach to multi-threading languages, ICOSAHOM 2014,

June 2014

High-order Numerical Methods for High-Contrast Seismic Imaging, Rice Oil &

Gas ’13, February 2013

1.4.4 Poster Presentations

OKL: A unified kernel language for parallel architectures, SIAM CSE ’15, March

2015

OCCA: A unified approach to multi-threading languages, Rice Oil & Gas ’14,

March 2014

1.5 Outline

The goals for this thesis include a portable solution for current and future architec-

tures, an ease for the development of parallel codes, and the ability to expose as much

parallelism as possible for achieving optimal performance; in other words, uniting the



CHAPTER 1. INTRODUCTION 16

advantages from the approaches previously mentioned. A portable solution is devel-

oped using the occa intermediate representation discussed in chapter 2, a macro-based

approach using the preprocessor for source-to-source transformation. Facilitating the

development for heterogeneous platforms is addressed by introducing okl and ofl,

minor extensions to C and Fortran (discussed in chapter 3) which replaces #pragma’s

with more familiar loop structures. Lastly, by requiring users to expose parallelism,

the okl and ofl languages avoid unintentionally removing features seen in multicore

and many-core architectures.

The thesis content is split into the different components that make up the occa

project. Chapter 2 details the host API and the occa intermediate representation

which describes how portability is achieved. Also included in chapter 2 are updates to

occa since the original papers (Medina 2014, Medina et al. 2014) such as: current and

future language support, methods which make occa non-intrusive, and HPC-related

features. Chapter 3 outlines the tools, specifications and features for the proposed

kernel languages, the occa kernel language (okl) and the occa Fortran language

(ofl). The minimal extensions to C and Fortran seen in okl and ofl respectively,

which allows occa to embed kernels into the application code in the future, similar

to CUDA. With the compiler tools developed and discussed in chapter 3, it is possible

to give an option which assimilates the kernel languages without much change to the

application host. Chapter 4 and chapter 5 finish the occa specifications by describing

two additional layers of assistance towards developers. Chapter 4 introduces unified

virtual addressing, its focus being on the implemented automatic data movement for

obscuring data movement between the host and device. Chapter 5 introduces a method

for automatically detecting loop-carried dependencies on serial code, auto-tagging for-

loops to generate okl kernel instances, and run them for detecting efficient kernels

generated. Chapter 6 details current applications based on occa with preliminary

results jointly with benchmarks for performance and portability validation. The thesis



17 CHAPTER 1. INTRODUCTION

concludes with a synopsis of the thesis work and future work in chapter 7.



2 OCCA: Unified Approach To
Multithreading Languages

The novel contribution detailed in this chapter comes from the abstracted program-

ming model used to encapsulate native programming languages for manycore devices.

An implementation of this model resulted in the occa intermediate representation (IR)

which supports serial code, Pthreads, OpenMP, CUDA, OpenCL, and COI. Construct-

ing the occa IR used a generalization of current parallel architectures to unify the

different languages and standards for heterogeneous computing. Furthermore, I discuss

an abstract offload model demonstrating a runtime compilation design with the ability

to pick a target architecture at runtime and utilize native compilers for their respective

language standard.

In this chapter, I discuss an abstract programming model for manycore devices.

To further motivate the use of a unified programming model, I first demonstrate the

architecture similarities between traditional multicore processors and current graphics

processing units (GPUs). The similarities in manycore devices motivate features in the

proposed unified programming model. An implementation of this concept was devel-

oped, producing the occa intermediate representation (IR) which generalizes current

parallel architectures to unify the different languages and standards for heterogeneous

computing, including serial code, Pthreads, OpenMP, CUDA, OpenCL, and COI.

Accompanying the occa IR is an abstracted offload model for the supported

backends and a unified interface to manage it, where the offload model defines the host

as the computational processing unit running an application, offloading computations



19 CHAPTER 2. OCCA: UNIFIED APPROACH TO MULTITHREADING LANGUAGES

to the device, the targeted hardware used for additional computations. We conclude

the chapter by discussing shortcomings in the macro-based language and transition

towards the kernel language discussed in chapter 3.

2.1 OCCA Background

Prior to the occa project, I developed and translated industrial and academic

numerical simulation codes between OpenMP, OpenCL, and CUDA. Through this ex-

perience, it became apparent that optimizations between parallel languages did not

differ much due to the commonality across their programming models as inferred by

the approaches mentioned in section 1.3. It was of interest to investigate a method for

leveraging the common aspects found in OpenMP, OpenCL, and CUDA. Thus I devel-

oped a prototype for occa to offer a unified frontend for those languages and standards

through an offload model. The offload model retains the programming model seen in

OpenCL and CUDA, where the host uses the developed frontend to communicate with

the device. However, because the coding standards for each device still differed, I cre-

ated the occa intermediate representation to also unify the OpenMP, OpenCL and

CUDA compute kernels. I discuss current parallel architecture similarities, a motiva-

tion for the development of a single kernel language which can maintain performance

across distinct platforms.

Chapter 1 gave a brief introduction to the development of current architectures.

In this section, I elaborate on CPU and GPU architectures and their programming

models. By describing architectural similarities, we motivate the development of the

occa IR and occa application programming interface (API) discussed in the next

sections. We start by outlining the traditional CPU architecture, the most common

processor currently used in HPC, followed by analogous descriptions for the GPU



CHAPTER 2. OCCA: UNIFIED APPROACH TO MULTITHREADING LANGUAGES 20

Figure 2.1: Current relationship between supported frontends, the occa languages
(okl, ofl, occa IR), and supported backends

architecture.

2.1.1 CPU Architecture

As mentioned in subsection 1.1.1, it has become common for architectures to

feature a hierarchy of cache. When data is queried by the processor, a segment of data

is moved to cache if not already in cache, as seen in figure 2.2. Common optimization

algorithms tailored for modern CPUs try to make use of data locality to maintain

needed data in cache, otherwise the segment (cache line) could be evicted.

An increase in clock frequency was slowly followed by an increase in data load-

ing capabilities (Wulf and McKee 1995). With the plateau in clock speed, different

approaches to increasing computational speed were examined, such as vectorization.

Vectorization is a computational complement to local data fetching in caching policies

which applies one instruction to consecutive data as seen in figure 2.3



21 CHAPTER 2. OCCA: UNIFIED APPROACH TO MULTITHREADING LANGUAGES

Figure 2.2: When data is accessed from DRAM, neighboring data is sent and stored
through the different cache levels.

Figure 2.3: With large registers and vectorization instructions, multiple consecutive
data entries can be updated in parallel.

Intel’s MMX vectorization instruction set introduced single-instruction multiple-

data (SIMD) operations for the x86 architectures, allowing for operations on 64-bit

registers to occur concurrently. MMX was followed by the streaming SIMD extension

(SSE) instruction set family (SSE, SSE2, SSE3, SSE4) which operated on 128-bit

registers. The most current vectorization instruction set by Intel is the advanced

vector extensions (AVX) supporting 256-bit registers and 512-bit registers in the case

of Intel’s Xeon Phi.

Multithreading is the last CPU architecture feature that will be discussed. A large

advancement has been made since the first dual-core processor in 2001, to consumer-

level processors possessing up to eight cores. Akin to creating a network of computing

units (such as those found in Beowulf clusters and current supercomputers) multi-

threading integrates multiple independent compute units in a processor. By incorpo-



CHAPTER 2. OCCA: UNIFIED APPROACH TO MULTITHREADING LANGUAGES 22

rating multithreading, it is possible to scale algorithms by the number of cores while

still making use of the architecture optimizations mentioned above. This next sec-

tion will go over major optimizations used in the GPU architecture which are then

compared with the architecture features discussed in this section.

2.1.2 GPU Architecture

Graphics processing units were originally developed to manage computations needed

in 3D rendering procedures. By using programmable graphics shaders, such as OpenGL’s

shading language (GLSL) and DirectX’s high-level shader language (HLSL), processes

were able to offload data and processing to graphics cards. The graphics pipeline

can be generalized into three parts: primitive processing, primitive culling, and frag-

ment processing. While the first two steps detect the primitives (such as triangles and

quadrilaterals) which will be rendered, the fragment processing step is usually the most

computational intensive processes in the graphics pipeline. Each fragment represents

the smallest unit in the rendered buffer, analogous to a pixel and it’s display, and

whose value is calculated through a graphics shader. All fragments run through the

same computational shader, an embarrassingly parallel task.

Figure 2.4 shows the GPU architecture layout and memory hierarchy. The com-

pute units in the GPU are denoted by work-items, or threads in CUDA, which are

grouped into work-groups, blocks in CUDA, using a SIMD operation approach, re-

labed as SIMT (single-instruction multiple-threads) by NVIDIA. A synchronization

between all work-groups can only occur when a kernel finishes executing since the

standard allows for more work-groups than available hardware to execute them; in

other words, there is an implicit loop over work-groups that need to be launched for

every kernel. In order to expose enough parallelism for GPUs, the user must lay out

instructions to be executed as a work-item. Work-items which reside on specific hard-



23 CHAPTER 2. OCCA: UNIFIED APPROACH TO MULTITHREADING LANGUAGES

Figure 2.4: GPU Hierarchy showing work-group and work-item relation as well as the
different memory types and their scopes.

ware groups (as wavefronts in AMD terminology and warps in NVIDIA terminology)

are issued the same instruction to execute with the option of calling a NOOP, no op-

eration, instruction when branching occurs. Figure 2.5 shows kernel execution with

branching.

Figure 2.5: Work-items on the same hardware groups (half-warp or wavefront) follow
the same instruction or call a NOOP (No Operation) instruction.

In the memory hierarchy seen in figure 2.4, each work-item is associated with its

own private register set, using the memory layer with the fastest fetching times. Shared

memory is the second-fastest memory type found on GPU architectures, which uses

the same physical hardware as cache. Apart from latency, shared memory is useful for



CHAPTER 2. OCCA: UNIFIED APPROACH TO MULTITHREADING LANGUAGES 24

synchronizing and communicating data across work-items. Global memory refers to

the DRAM found in GPUs, having the longest latency in the GPU memory hierarchy.

Data resident in global memory can be fetched from all work-items with support for

atomic operations across work-groups.

Aside from GPU shared memory, the existence of registers, cache and DRAM are

also seen in CPU architectures. Similarly, the global bandwidth is distributed to the

memory managers between the large number of compute units found on modern GPUs;

hence, bandwidth is also a common bottleneck in most numerical applications.

Figure 2.6: Having consecutive work-items load from global memory consecutive data,
otherwise known as coalescing reads, allows full use of the bus which vectorizes loads.

If we compare memory access speeds on an NVIDIA K40, NVIDIA’s newest single-

processor workstation card at this time, the bandwidth for global memory accesses is

288 GB/s while shared memory bandwidth is around 1.2 - 1.8 TB/s using NVIDIA’s

profiler. The large gap in bandwidth often forces optimizations and best-practices

to avoid global memory fetches. The cost of global memory fetches can be reduced

through consecutive work-items loading consecutive data (coalesced reads) by making

use of the GPU’s large bus (384 and 512 bits on current NVIDIA and AMD cards

respectively), as seen in figure 2.6. Likewise, shared and register data can be used as

intermediate storage for computations.

2.1.3 CPU and GPU Similarities



25 CHAPTER 2. OCCA: UNIFIED APPROACH TO MULTITHREADING LANGUAGES

By looking at the optimizations discussed for both CPU and GPU architectures,

we identify shared features in their programming practices. The key features include:

memory accesses, vectorization and efficient multithreading.

Efficient GPU memory accesses make use of the large bus width by using consecu-

tive strides in memory. In comparison, the CPU would make use of resident cache lines

by also loading consecutive strides in cached memory. As for vectorization, hardware

mapped to consecutive work-items, such as a half-warp or wavefront, could be thought

of entities in a vector unit. Being forced to apply the same instruction or call a NOOP is

analogous to a CPU’s vector instruction operating on a large register. Lastly, the GPU

programming model makes an assumption that there is no interdependence between

work-groups. If we make the same assumption on a CPU multithreaded program that

work is split in the work-group/work-item paradigm, each thread would become inde-

pendent aside from atomic operations. Forks and joins are no longer present through

the assumption that threads operate on independent work-groups.

Similarities in optimization procedures between the CPU and GPU create the

foundation on which occa is developed. Making use of the work-group/work-item

model while exposing shared memory unifies most optimizations found in the CPU

and GPU architectures. Unfortunately, as is discussed in chapter 6, performance is

not always portable between architectures. However, language has enough flexibility

to include architecture-specific kernel optimizations to achieve near-optimal perfor-

mance.

2.2 OCCA Intermediate Representation (IR)

This section discusses the approach taken to integrate different heterogeneous

parallel programming languages and standards. While the focus for the unified pro-

gramming model arose from the CPU and GPU, as described in section 2.1, the occa



CHAPTER 2. OCCA: UNIFIED APPROACH TO MULTITHREADING LANGUAGES 26

IR targets a variety of devices. Given the support for the initial backends (OpenMP,

CUDA, and OpenCL), occa is usable on traditional CPUs, GPUs, Intel’s Xeon Phi,

and FPGAs. However, the number of available backends was extended during the the-

sis work to include Pthreads, COI, and a prototype for HSA (Heterogeneous System

Architecture).

We start by motivating the derivation of the occa IR by comparing with prior

approaches, identifying features used (or improved upon) together with disadvantages

which were overcome. Next, we describe the programming model specification for the

occa IR kernel specification. Additionally, we describe the device memory hierarchies

found in the occa IR and their use in HPC applications.

2.2.1 Derivation

Key features found in GPU architectures, and later in the Intel’s Knights Land-

ing containing large on-chip memory storage, must be made accessible for the high

performance focus of the project. Our programming model must be flexible in or-

der to incorporate future architectures and language standards. Recalling section 1.3,

portability approaches across multiple backends were categorized into directive, source-

to-source, and wrapper approaches. Here we give short summaries of their advantages,

which we adopt into the occa IR, as well as their disadvantages which we address

through the occa project.

The directive approach, as seen in OpenMP and OpenACC, relies on a proper

mapping between user code and its mapped compiler code transformation. Unfortu-

nately, aside from trivial code snippets, directing proper code transformations tailored

for the GPU requires the user to properly manage code transformations through ad-

ditional #pragma’s. In addition, interactions between the host and device such as data

allocation, data movement and data freeing requires user management if performance is



27 CHAPTER 2. OCCA: UNIFIED APPROACH TO MULTITHREADING LANGUAGES

of importance. This user management turns the directive approach usage of #pragma’s

to be equivalent to a library API combined with attribute language extensions, in

order to give compiler information about variables and statements. The adoption and

improvements of automatic data movement is discussed in chapter 4 and automatic

code transformation in chapter 5; however, the aim of the occa IR is that of creating

a single programming format towards multiple devices.

The source-to-source approach, at least in the context of CUDA to OpenCL,

has the advantage of assuming the user is writing in the GPU programming model.

CUDA and OpenCL have options for low-level optimizations and multiple memory

hierarchies, permitting the use of a higher descriptive language compared to traditional

languages, such as C and Fortran. However, available source-to-source translators

handle only a subset of CUDA or it’s assembly language (PTX) as mentioned in section

1.3. Rather than relying on a proprietary programming language with no standard, a

custom programming language became an appealing solution.

Lastly, the wrapper approach was not an option due to the limitation on their

routines. However, being able to develop libraries and wrappers using occa was a

requirement due to their use in application development.

The first step towards creating a custom programming language was to develop

an intermediate representation. Developing the occa programming model started

with a macro-based approach, covering major keywords used in supported modes and

unraveling macros based on the chosen backend. By developing the occa IR as a

macro-based language, there exists the option to further append additional backends.

We introduce the occa IR through its programming model and specification.

2.2.2 Programming Model



CHAPTER 2. OCCA: UNIFIED APPROACH TO MULTITHREADING LANGUAGES 28

Before covering the set of macros making up the occa IR, we introduce the

programming model For a comprehensive list of the occa IR macros, the reader can

refer to appendix A. While the occa IR programming model is based on the GPU

programming model, the major difference is the inclusion of explicit loops to denote

parallelism. As discussed in subsection 2.1.3, modern CPU and GPU architectures

contain similar aspects in their programming models. Visually shown in figure 2.7 are

the similarities between GPU work-group independence and CPU thread-independence,

as well as the work granularity between GPU work-items operations and SIMD vector-

lane operations. However, rather than imposing implicit iterations over work-groups

and work-items as seen in OpenCL and CUDA, we expose work distribution with

the for-loop-like macros seen in code listing 2.1 and code listing 2.2. Code listing 2.1

compares the occa IR mapping to CUDA and OpenCL while code listing 2.2 compares

its mapping to OpenMP.

Figure 2.7: Aside from memory hierarchy similarities, current multicore processors
equipped with vector instructions are similar to graphics processing units



29 CHAPTER 2. OCCA: UNIFIED APPROACH TO MULTITHREADING LANGUAGES

// (1) CUDA:
// Example kernel
// with a thread ’s
// scope of work

__global__ void kern (){

// Thread Work

}

// (2) OpenCL :
// Example kernel
// with a work -item ’s
// scope of work

__kernel void kern (){

// Work -item Scope

}

// (3) OCCA:
// Example kernel
// showing different
// scopes of
// parallelization

occaKernel void kern (){
occaOuterFor0 {

// Work - group Scope
occaInnerFor0 {

// Work -item Scope
}

}
}

Listing 2.1: Difference between implicit loops in CUDA and explicit loops in the
occa IR.

// (1) OpenMP :
// Example kernel
// with OpenMP
// # pragmas

extern ‘‘C’’ void kern (){
# pragma omp for
for(int t = 0; t < 8; ++t){

// Thread scope
# pragma simd 8
for(int v = 0; v < 8; ++v){

// Vectorization Operations
}

}
}

// (2) OCCA:
// Example kernel
// showing different
// scopes of
// parallelization

occaKernel void kern (){

occaOuterFor0 {
// Thread scope

occaInnerFor0 {
// Vectorization Operations

}
}

}

Listing 2.2: Difference between implicit loops in CUDA and explicit loops in the
occa IR.

We first discuss the occa IR for-loop keywords shown in code listing 2.1 and code

listing 2.2. Similar to the current GPU programming models, the occaOuterForX loops

iterate over independent groupings of compute units where X P {0, 1, 2} allowing

groupings of work-groups in up to three dimensions. Likewise, work-groups can be com-

posed as 1, 2, or 3 dimensional groupings of work-items dictated by occaInnerForX

where X P {0, 1, 2}. If OpenCL and CUDA took this approach for their program-



CHAPTER 2. OCCA: UNIFIED APPROACH TO MULTITHREADING LANGUAGES 30

ming models, the outcome would look similar to that seen in code listing 2.3 and code

listing 2.4. The complete macro expansions for the OpenMP, CUDA, and OpenCL

modes in occa IR for-loops are seen in code listing 2.5.

__kernel void kern (){
for(int wgZ = 0; wgZ < get_num_groups (2); ++ wgZ){ // Loop Grouping (1)

for(int wgY = 0; wgY < get_num_groups (1); ++ wgY){
for(int wgX = 0; wgX < get_num_groups (0); ++ wgX){

// Work - group Scope

for(int wiZ = 0; wiZ < get_local_size (2); ++ wiZ){ // Loop Grouping (2)
for(int wiY = 0; wiY < get_local_size (1); ++ wiY){

for(int wiX = 0; wiX < get_local_size (0); ++ wiX){
// Work -item Scope

}}}
}}}

}

Listing 2.3: The code listing expands the implicit for-loops found in OpenCL kernels.
Loop grouping (1) expands multidimensional work-groups and loop grouping (2)
expands multidimensional work-items.

__global__ void kern (){
for(int wgZ = 0; wgZ < gridDim .z; ++ wgZ){ // Loop Grouping (1)

for(int wgY = 0; wgY < gridDim .y; ++ wgY){
for(int wgX = 0; wgX < gridDim .x; ++ wgX){

// Block Scope

for(int wiZ = 0; wiZ < blockDim .z; ++ wiZ){ // Loop Grouping (2)
for(int wiY = 0; wiY < blockDim .y; ++ wiY){

for(int wiX = 0; wiX < blockDim .x; ++ wiX){
// Thread Scope

}}}
}}}

}

Listing 2.4: The code listing expands the implicit for-loops found in CUDA kernels.
Loop grouping (1) expands multidimensional work-groups and loop grouping (2)
expands multidimensional work-items.



31 CHAPTER 2. OCCA: UNIFIED APPROACH TO MULTITHREADING LANGUAGES

// ---[ (A) OpenMP Mode ]-------------------------------------------------------

extern ‘‘C’’ void kern (){
# pragma omp parallel for
for(int wgZ = 0; wgZ < occaOuterDim2 ; ++ wgZ){ // Loop Grouping (1)

for(int wgY = 0; wgY < occaOuterDim1 ; ++ wgY){
for(int wgX = 0; wgX < occaOuterDim0 ; ++ wgX){

// Block Scope

for(int wiZ = 0; wiZ < occaInnerDim2 ; ++ wiZ){ // Loop Grouping (2)
for(int wiY = 0; wiY < occaInnerDim1 ; ++ wiY){

for(int wiX = 0; wiX < occaInnerDim0 ; ++ wiX){
// Thread Scope

}}}
}}}

}

// ---[ (B) CUDA Mode ]---------------------------------------------------------

__global__ void kern (){
{{{

// Block Scope
{{{

// Thread Scope
}}}

}}}
}

// ---[ (C) OpenCL Mode ]-------------------------------------------------------

__kernel void kern (){
{{{

// Work - group Scope
{{{

// Work -item Scope
}}}

}}}
}

Listing 2.5: The code listing shows simplified expansions of the occa-for loops for (A)
OpenMP-mode, (B) CUDA-mode, and (C) OpenCL-mode.

To truly create a unified programming model that will maintain correctness across

the supported backends, we introduce the occa IR specification. We begin by stating

what is permitted and not permitted between scopes in an occa IR kernel as seen

in code listing 2.6. More specifically, allowed statements in the following 6 specialized

scopes:

A) Kernel arguments

B) Outside occaOuterFor loops



CHAPTER 2. OCCA: UNIFIED APPROACH TO MULTITHREADING LANGUAGES 32

C) Between occaOuterFor loops

D) Between an occaOuterFor and occaInnerFor loops

E) Between occaInnerFor

F) Inside occaInnerFor.

occaKernel void kernelName ( occaKernelInfoArgs , ... /* (A) */){
// (B)
occaOuterFor1 {

// (C)
occaOuterFor0 {

//(D)
occaInnerFor1 {

//(E)
occaInnerFor2 {

// (F)
}

}
}

}
}

Listing 2.6: The code listing shows the specialized scopes inside an occa IR kernel.

2.2.2.1 Kernel Arguments
The scope covered in this subsection is denoted by (A) in the code listing 2.6.

We aim to enable any type as a kernel argument, thus provided multiple keywords

for describing kernel arguments. The CUDA specification and OpenCL standard con-

tain routines for additional languages to utilize them and thereby allowing occa to

generate and launch kernels with ease. With the CPU-based backends (serial, OpenMP,

and Pthreads), however, we faced restrictions due to the C/C++ language. Two con-

straints appear: calling kernels with arbitrary arguments and seamlessly passing the

occaOuterFor and occaInnerFor bounds.



33 CHAPTER 2. OCCA: UNIFIED APPROACH TO MULTITHREADING LANGUAGES

// ---[ 1. Regular C ]------------------
void kernelName (int * A,

int & B){}
// ---[ 2. OCCA IR ]------------------
void kernelName ( occaKernelInfoArgs ,

occaPointer int * A,
int occaVariable B){}

Listing 2.7: The code listing shows the distinct kernel argument types, where A
corresponds to arrays and B to arguments passed by value.

Similarly to Fortran, passing all arguments by reference allowed for a non-templated

approach for launching kernels with varying arguments dynamically. While there exists

branching to pick the correct function pointer which will launch the occa IR kernel,

the portable method can be used with multiple frontend languages. Code listing 2.7

shows additional keywords (occaPointer and occaVariable) used to decorate ker-

nel arguments, abstracting data types to control how they’re treated by the compiler.

occaPointer is used to declare the scope of the memory object in GPU-based modes,

while it is mere decoration for CPU-based modes. On the other hand, occaVariable

is used as decoration in the GPU-based modes, but allows arguments to be passed by

their address in CPU-based modes.

The second requirement relevant to the kernel arguments is the addition of

occaKernelInfoArgs. CUDA and OpenCL kernels require loop dimensions prior to

launching, a trait lacking on CPU-based modes. In the occa IR expansions for CPU-

modes, the occaOuterFor and occaInnerFor loops expand to for-loops whose bounds

are passed through the occaKernelInfoArgs macro.

const int * occaKernelArgs , int occaInnerId0 , int occaInnerId1 , int occaInnerId2

where occaKernelArgs stores the loop bound information, and the variables occaInnerIdX

are the inner loop iterators.



CHAPTER 2. OCCA: UNIFIED APPROACH TO MULTITHREADING LANGUAGES 34

2.2.2.2 Outside occaOuterFor

The scope covered in this subsection is denoted by (B) in the code listing 2.6.

Following the kernel arguments, the kernel usually begins with an occaOuterFor

statement. Statements inside the occa IR kernel scope but outside of an occaOuterFor

are restricted to constant variable definitions. Because the outer and inner scopes are

emulated in GPU-modes, statements are executed once per work-item/thread while

statements are only executed once for CPU-modes.

2.2.2.3 Between occaOuterFors

The scope covered in this subsection is denoted by (C) in the code listing 2.6.

Between the occaOuterFor scopes, non-constant Variable definitions are sup-

ported with restrictions. Variables decorated with occaShared and occaPrivate can

be defined in this scope but not initialized; definitions of these qualifiers are found in

subsection 2.2.3. However, variables can only be initialized and not updated due to

the emulated scopes in the GPU-modes.

Lastly, occaOuterFor loops are not guaranteed to be executed the given nest-

ing in order. Hence, the iterator for the occaOuterForX loop which is denoted by

occaOuterIdX where X P {0, 1, 2} could execute in any permutation.

2.2.2.4 Between occaOuterFor and occaInnerFor

The scope covered in this subsection is denoted by (D) in the code listing 2.6.

occaInnerFor loops are located inside occaOuterFor loop scopes, but more state-

ments are allowed inside occaOuterFor loops. Declared variables are still required to be

constant or decorated with occaShared or occaPrivate; however, conditional state-

ments and loops are supported. The only limitation on conditional statements and

loops is that each must contain an occaInnerFor.



35 CHAPTER 2. OCCA: UNIFIED APPROACH TO MULTITHREADING LANGUAGES

2.2.2.5 Between occaInnerFors

The scope covered in this subsection is denoted by (E) in the code listing 2.6.

Between occaInnerFor loops, variable declarations must be decorated with const,

occaShared, or occaPrivate. No other statements are supported in this scope.

2.2.2.6 Inside occaInnerFors

The scope covered in this subsection is denoted by (F) in the code listing 2.6.

Inside the inner-most occaInnerFor scope, anything supported by C is supported

in the occa IR. Similar to occaOuterFor loops, occaInnerFor are not guaranteed to

be executed in order. Hence, the iterator for the occaInnerForX loop which is denoted

by occaInnerIdX where X P {0, 1, 2} could execute in any permutation.

2.2.3 Device Memory Hierarchy

With the exposure of loop-structures already described, we begin to describe the

memory hierarchy exposed by the occa IR. Recalling that memory has become one

central issue in optimizing for performance, we emphasize memory hierarchy exposure

in the occa programming model. There are three types of memory layers: global

memory, shared memory and register memory; all which are exposed in the occa

IR. The simplest level of memory to explain is global memory which represents data

residing in RAM, be it CPU or GPU DRAM.

Because the concept of shared memory differs between CPU and GPU architec-

tures, the mention of shared memory throughout the thesis proposal will correspond

with the GPU shared memory terminology. Shared memory resides in the same physi-

cal location as cache for GPUs and can be described as a memory scratchpad found in

fast-memory. Important features of shared memory include fast data fetching as well

as a synchronization method between work-items in a work-group. By encompassing



CHAPTER 2. OCCA: UNIFIED APPROACH TO MULTITHREADING LANGUAGES 36

work-items in a work-group in the shared memory scope, algorithms can make use of

parallel data fetching and storage with visibility throughout the work-group. In the

occa IR, we represent shared memory with the qualifier occaShared as seen in code

listing 2.8. With shared memory being a supported feature in occa, we also include

local and global barriers to synchronize across work-items in a work-group. An example

is given in code listing 2.8.

occaKernel void swap16 ( occaKernelInfoArgs ,
occaPointer float *ptr){

occaOuterFor0 {
occaShared float s_ptr [16];

occaInnerFor0 {
if( occaInnerId0 < 16)

s_ptr [ occaInnerId0 ] = ptr[ occaInnerId0 ];
}

occaBarrier ( occaLocalMemFence );

occaInnerFor0 {
if( occaInnerId0 < 16)

ptr[ occaInnerId0 ] = s_ptr [16 - occaInnerId0 ];
}

}
}

Listing 2.8: Shown is the barrier implementation to synchronize across a work-group as
splitting inner-loops, explicitly stating that all work-items have finished the instructions
prior to the barrier.

Lastly, we will discuss registers and some issues surrounding their use. Data stored

in registers utilize the fastest memory layer in the memory hierarchy for both CPU and

GPU architectures. Hence programmers and compilers try to find a balance between

data storage on registers and the amount of registers available to the hardware (for

example, prefetching onto registers and reusing them as opposed to fetching from higher

latency memory layers). However, the use of barriers causes an issue for occa-modes

which treat inner-loops serially, such as OpenMP, Pthreads and COI. For example,

in code listing 2.9, the variables reg and regArray would normally be overwritten in

each loop iteration. In order to keep the code from overwriting reg and regArray,

we implement a wrapper for types through the occaPrivate call. For occa IR, the



37 CHAPTER 2. OCCA: UNIFIED APPROACH TO MULTITHREADING LANGUAGES

variable holds an array with an entry for each work-item, allowing mutual exclusion of

variables through behaving as one in the kernel code.

occaKernel void kern( occaKernelInfoArgs ){
occaOuterFor0 {

occaPrivate (int , reg); // Register : int reg;
occaPrivateArray (int , regArray , 2); // Register Array : int regArray [2];

// . . .

occaInnerFor0 {
reg = occaGlobalId0 ; // reg would normally be overwritten by the loop
regArray [0] = 0; // regArray would also normally be overwritten
regArray [1] = 1;
// . . .

}

occaBarrier ( occaLocalMemFence );

occaInnerFor0 {
int i = reg; // Allocating registers normally for only one scope
int d = regArray [0];
// . . .

}
}

}

Listing 2.9: Shown is a simple example of private variable use to prevent overwriting
during each loop iteration.

2.3 Application Programming Interface

Apart from the occa IR, occa implements an application programming interface

(API) based on an offload model. This section introduces the abstractions used to gen-

eralize modern parallel architectures into an offload model containing features present

in high performance computing. We begin with the device, memory, and kernel ab-

stractions, followed by kernel compilation and concluding with additional HPC-related

features.

2.3.1 Offload Model and Device Abstractions



CHAPTER 2. OCCA: UNIFIED APPROACH TO MULTITHREADING LANGUAGES 38

While section 2.2 discussed abstractions for programming current parallel architec-

tures, this section discusses the API which make the offload model abstraction possible.

The model consists on the three key components that influenced the occa host API

development: the device, the device memory, and the device kernels.

2.3.1.1 occa::device Class

An occa device acts as a layer of abstraction between the occa API and the

API from supported languages. One of the essential features in occa is the ability to

target a device at run-time. Choosing the preferred platform at run-time is possible

due to just-in-time code generation as seen in code listing 2.10.

occa :: device device1 ("mode = Serial ");
occa :: device device2 , device3 , device4 , device5 , device6 ;

device2 . setup ("mode = Pthreads , threadCount = 8, schedule = compact ");
device3 . setup ("mode = OpenMP , threadCount = 8, schedule = compact ");
device4 . setup ("mode = OpenCL , platformID = 0, deviceID = 0");
device5 . setup ("mode = CUDA , deviceID = 0");
device6 . setup ("mode = COI , deviceID = 0");

Listing 2.10: The code listing shows the occa::device class initialization, choosing a
backend at run-time while providing a portable and modular method.

An occa device generates a self-contained context and stream from the chosen

device, being a socketed processor, GPU or other OpenCL supported devices such as a

Xeon Phi or an FPGA. Although multiple contexts within a device are not supported,

asynchronous computations are supported through the use of multiple occa device

instances. The device’s main purpose is to allocate memory and compile kernels for

the chosen device. Additional responsibilities of the device wrapper include stream

management. Work enqueued onto a stream are launched sequentially, but streams give

greater access to asynchronous work; examples can be seen in code listing 2.11.



39 CHAPTER 2. OCCA: UNIFIED APPROACH TO MULTITHREADING LANGUAGES

occa :: device device ;
// ...
// Get current stream
occa :: stream streamA = device . getStream ();
// Generate a new stream
occa :: stream streamB = device . createStream ();
// Switch stream
device . setStream ( streamB );

occa :: streamTag startTag = device . tagStream ();
// Work
occa :: streamTag endTag = device . tagStream ();
double timeTaken = device . timeBetween (startTag , endTag );

Listing 2.11: The code listing shows the occa::device class options for creating,
updating, and destroying streams as well as timing work between streams.

2.3.1.2 occa::memory Class

The occa memory class abstracts the different device memory handles and pro-

vides some useful information such as device array sizes. Although memory handling

in occa facilitates host-device communication, the management of reading and writ-

ing between host and device, for performance reasons, currently requires programmer

management. Chapter 4 describes an alternative to manual data management using

emulated unified memory addressing and automatic data management.

Basic memory initialization, similar to malloc in C, and data transfer can be seen

in code listing 2.12.



CHAPTER 2. OCCA: UNIFIED APPROACH TO MULTITHREADING LANGUAGES 40

occa :: device device ;
// ...
// Allocate memory on the host
int *A = (int *) malloc (10 * sizeof (int));
// Allocate memory on the device
occa :: memory memoryA = device . malloc (10 * sizeof (int), A);
occa :: memory memoryB = device . malloc (10 * sizeof (int));
// Forms of transfering data between
// host and device
memoryA . copyTo ( memoryB );
memoryB . copyTo (A);
memoryB . copyFrom (A, 10 * sizeof (int));
// Asynchronous data transfer
memoryA . asyncCopyTo ( memoryB );
memoryB . asyncCopyTo (A);
memoryB . asyncCopyFrom (A, 10 * sizeof (int));

Listing 2.12: The code listing shows the occa::memory initialization and data transfer
options.

2.3.1.3 occa::kernel Class

The occa kernel class unites device function handles with a single interface,

whether for a function pointer (CPU-based modes), cl kernel (OpenCL), or cuFunction

(CUDA). When using the OpenCL and CUDA kernel handles, passing the arguments

through their respective API is simple, but there are discrepancies when comparing

to the OpenMP wrapper. For example, OpenCL and CUDA kernels work-items have

access to work-group and work-item counts implicitly. However, C++ functions only

have access to the function scope and global namespace, requiring the work-group and

work-item counts to be passed as macros or as an argument to the kernel.

Two formats are available for launching occa::kernels, through the function-like

() operator or with an argument list. Before launching a kernel, the user is required

to pass the outer and inner loop bounds. Examples of kernel building and launching

are given in code listing 2.13.



41 CHAPTER 2. OCCA: UNIFIED APPROACH TO MULTITHREADING LANGUAGES

occa :: device device ;
// ...
// Allocate memory on the device
occa :: memory memoryA = device . malloc (10 * sizeof (int));
// Build kernel from source
occa :: kernel kernelA = device . buildKernel (" filename .occa",

" kernelName ");
// Build kernel from a string
occa :: kernel kernelB = device . buildKernel (

" occaKernel void kernelName ( occaKernelInfoArgs ,"
" occaPointer int *A){}",
" kernelName ");

// Set kernel work dimensions
kernelA . setWorkingDims (1, occa :: dim (16) , occa :: dim (1));
kernelB . setWorkingDims (1, occa :: dim (16) , occa :: dim (1));

// Launch kernel natively
kernelA ( memoryA );
// Launch kernel through an argument list
kernelB . addArgument (0, memoryA );
kernelB . runFromArguments ();

Listing 2.13: The code listing shows the occa::kernel initialization and launching
options.

2.3.2 Kernel Compilation

To enable run-time platform selection and provide users the ability to write custom

kernels, we chose to use run-time compilation. The major advantage of this compilation

method is the language flexibility presented over wrapper approaches which are lim-

ited to their available routines. A performance-based advantage is the ability to reveal

run-time processed information to the compiler for additional compiler optimizations;

for example, compiling with known element polynomial order for finite element meth-

ods and finite-difference stencil size for aiding compiler vectorization. An example of

injecting run-time information into occa kernels is given in code listing 2.14.



CHAPTER 2. OCCA: UNIFIED APPROACH TO MULTITHREADING LANGUAGES 42

occa :: device device ;
// ...
// Hypothetical parameter N
int N = 10;
// Initializing kernel information
occa :: kernelInfo kernelAInfo ;
kernelAInfo . addDefine ("N", N);
// Build kernel from source using
// additional information stored
// inside kernelAInfo
occa :: kernel kernelA = device . buildKernel (" filename .occa",

" kernelName ",
kernelAInfo );

Listing 2.14: The code listing shows code injection prior to building an occa::kernel.

Application development can also benefit from run-time compilation. Libraries

such as occa are primarily used for offloading heavy computations, a relatively small

portion of large applications. Being able to compile specific sections of code allows

for rapid prototyping by reducing overall compilation time. Additionally, parameter

testing is simplified through the use of occa::kernelInfo as shown in code listing

2.14 by providing parameters at run-time.

Utilizing a run-time compilation strategy allowed for the inclusion of one additional

feature, building a kernel from a string rather than from a file. Compiling from a string

is essentially equivalent to compilation from a file; however, by providing this feature

without requiring users to safely handle file generation, projects developed with occa

gain extended flexibility. Code listing 2.15 provides an example where a user can create

a skeleton kernel with a user-specified operation on arrays.



43 CHAPTER 2. OCCA: UNIFIED APPROACH TO MULTITHREADING LANGUAGES

occa :: kernel arrEq2Arr (occa :: device &device ,
const std :: string &aType , const std :: string &aName ,
const std :: string &bType , const std :: string &bName ,
const std :: string &cType , const std :: string &cName ,
const std :: string & aEqFbc ){

std :: stringstream ss;
ss << " occaKernel void arrEq2Arr ( occaConst int occaVariable entries ,\n"

<< " occaPointer " << aType << " *_" << bName " ,\n"
<< " occaConst occaPointer " << bType << " *_" << bName " ,\n"
<< " occaConst occaPointer " << cType << " *_" << cName "){\n"
<< " occaOuterFor0 {\n"
<< " occaInnerFor0 {\n"
<< " const int n = ( occaOuterId0 * occaInnerDim0 ) + occaInnerId0 ;\n"
<< " if(n < entries ){\n"
<< " " << aType << ’ ’ << aName << ";\n"
<< " " << bType << ’ ’ << bName << " = _" << bName << "[n];\n"
<< " " << cType << ’ ’ << cName << " = _" << cName << "[n];\n"
<< " " << aEqFbc << ";\n"
<< " _" << aName << "[n] = " << aName << "\n"
<< " }\n"
<< " }\n"
<< " }\n"
<< "}\n";

return device . buildKernel (ss.str () , " arrEq2Arr ");
}

// ...

occa :: device device ;

occa :: kernel sumArrays = arrEq2Arr (device ,
" float ", "a",
" float ", "b",
" float ", "c",
"a = (b + c)");

occa :: kernel multiplyArrays = arrEq2Arr (device ,
" float ", "a",
" float ", "b",
" float ", "c",
"a = (b * c)");

Listing 2.15: The code listing shows the use of kernel building from string to provide
a templated occa::kernel.

Caveats to the run-time compilation model arose while working with industrial

codes and their respective computational clusters. The first issue became apparent

due to the amount of time spent continuously compiling all kernels at run-time each

time an application is run. Additional issues emerged with the run-time compilation

model including: potentially time-consuming kernel setup; network file system (NFS)

issues with parallel compilations; overloading the compiler license manager; lacking a

compiler outside login nodes in supercomputers/clusters; and safety in releasing an

application without revealing the source code.

Kernel caching was implemented to provide a solution towards the continuous

kernel compilation setup when an application using occa runs. When a kernel is com-



CHAPTER 2. OCCA: UNIFIED APPROACH TO MULTITHREADING LANGUAGES 44

piled, the binary is saved and accessible through a hash of its content and compilation

information. For example, the occa backend and compilation flags used to generate

the kernel binary are included along with the kernel content when producing the hash.

Prior to building a kernel, a search is launched for the kernel’s generated hash where

the kernel binaries are cached. If found, the binary is used to avoid the unnecessary

compilation; otherwise, the kernel is compiled and it’s binary cached.

Two additional complications surfaced when running occa on computational clus-

ters at an industrial site. The first issue came from running an MPI-based job and

caching the kernels within the cluster’s NFS. Each MPI process attempted to compile

a kernel and would overwrite the intermediate occa IR files generated, causing com-

pilations (and thus the application) to fail. Restricting each MPI process to compile in

separate directories was a simple fix which exhibited the second problem with running

occa on an NFS. Using a proprietary compiler controlled by a license manager, such as

Intel’s icpc, would result in failure due to the large query of license instances. Adding

an NFS-safe lock for kernel generation fixed both complications through the use of file

locks.

The use of supercomputers in industrial and academic settings revealed another

issue with run-time compilation in computation clusters. Users accessed the cluster

through a login node which, while unable to run application codes, allowed for jobs to

be queued into the cluster. When an application is compiled and sent to the cluster

for execution, problems arise when the application requires a compiler for building

kernels at run-time. A prototype for compiling kernels at compile-time was developed,

where kernels would be built for available devices and packaged with the application

binary.

The last problem became relevant through inquiries from industrial collaborators:

how occa could be used without releasing the application’s source code. While the



45 CHAPTER 2. OCCA: UNIFIED APPROACH TO MULTITHREADING LANGUAGES

amount of code used in occa kernels would most likely be a small fraction of the

overall application, occa kernels usually target the computational intensive portions

of an application, customarily containing the core application code. Although occa

kernel binaries can be bundled together with the main application binary, they have yet

to be unitized and analyzed for production. A prototype was developed for compiling

kernels in the available backends and archived into a single database. Rather than

building the kernels from source, we provide the following call to allow users to load

from the produced database, or library.

kernel & loadFromLibrary ( const char *library ,
const std :: string & functionName );

2.3.3 High Performance Computing Features

The occa library development has been and will continue to be in C++, restricting

user applications to C++ if they use occa. Therefore, I added a C wrapper for occa

which enabled quick native distribution to other languages. Subsequently, the occa

API is available now with library interfaces for C, C++, C#, Fortran, Python, Julia

and MATLAB. Additionally, I focused on backend support and added two modes to

support multithreading through Pthreads and Intel’s Xeon Phi backend, COI (Intel’s

Coprocessor Offload Infrastructure).

Supporting multiple frontend and backend features enables programmers to use

a wide variety of programming languages to use occa, yet it maintained to be an

intrusive library. By obscuring object handles from each backend, the user was forced

to use occa disjointly from other libraries, which was one of the issues with the wrapper

approach discussed in chapter 1. I added methods to wrap and obtain backend related

object handles to give users the ability of combining occa seamlessly with pure usage

of the backends and other libraries. Thus, a developer could reuse existing objects



CHAPTER 2. OCCA: UNIFIED APPROACH TO MULTITHREADING LANGUAGES 46

with occa and avoid copying the object into memory twice as shown in code listing

2.16.

// Initialize device
occa :: device device ("mode = Serial ");

// Allocate memory in the host
const int N = 10;
int *a = new int[N];
// Wrap a into an occa :: memory object
occa :: memory o_a = device . wrapMemory (a, 10 * sizeof (int));

Listing 2.16: The code listing shows the use of memory wrappers to reuse memory
objects from other libraries.

2.4 Concluding Remarks

This chapter described the abstracted programming model targeting manycore

devices and the occa IR specification to test the model. In addition, the API imple-

mentation to manage the discussed abstract offload model was included. Advantages

for the run-time compilation model were outlined while describing ways to resolve its

deficiencies. Although occa IR was itself a functional unified kernel language, it also

serves as the foundation for two more kernel languages whose specifications are intro-

duced in the following chapter. By developing a parser which serves for transforming

and analyzing occa kernels, I was able to extend the C and Fortran languages and

transform them to the occa IR. Rather than programming with the occa IR, the

introduced languages okl (C-based) and ofl (Fortran-based) allow for native-like

kernels.

Currently, the occa IR contributes as an intermediate layer to facilitate okl

and ofl code transformation. Further development on the occa IR will be most

likely limited to adding arithmetic support functions such as trigonometric and special

functions. Additional features will presumably be implemented through the okl and



47 CHAPTER 2. OCCA: UNIFIED APPROACH TO MULTITHREADING LANGUAGES

ofl specifications to further ease kernel development.



3 OKL and OFL: OCCA Kernel
Languages

The contributions depicted in this chapter center around a language design for

facilitating low-level programming of manycore devices. Two implementations were

developed to extend C and Fortran, prominent programming languages in the high per-

formance computing (HPC) community. The occa kernel language ( okl) is based

on C and the occa Fortran kernel language ( ofl) is based on Fortran 90. The lan-

guage designs are built above the occa intermediate representation (IR) from chapter

2. To realize these kernel languages, I designed a parser for C and Fortran with core

extensions in the language specifications for parallel execution.

In this chapter, I discuss a design for unifying parallel languages and standards

for heterogeneous computing. The language design described in this chapter is built

above the occa intermediate representation (occa IR) from chapter 2. Using the

underlying occa IR, I present okl (occa Kernel Language), a minor proposal to

extend C, exposing parallelism for current many-core architectures. Similarly, I present

ofl (occa Fortran Language) as a minor extension to Fortran, the Fortran counterpart

to okl. I have designed a C and Fortran parser with core extensions in the extended

language specifications for parallel execution.

I begin by discussing some compiler-aided tools and the compiler-based approach

taken for the development of okl and ofl. Following the description of development

tools, I introduce the okl language specifications and its mapping to the occa IR.

Lastly I introduce ofl by noting structural differences between okl and ofl.



49 CHAPTER 3. OKL AND OFL: OCCA KERNEL LANGUAGES

During the initial process in designing okl, the specification was constantly being

modified due to inspirations for useful features for this new language. It became appar-

ent that full control over the language would be the fastest way for implementing the

okl language, specially under the time constraints for the thesis work. Thus, I imple-

mented a C parser that would structure parsed code such that the generated abstract

syntax tree (AST) was highly modifiable. For example, the parser can easily patch

run-time generated source code into the AST and analyze constituents of expression

trees to generate variable dependency graphs. With the parser available, I designed

ofl and by reusing the tools found in C parser, implemented features required to load

Fortran and store C-equivalent statements during the parsing stage. Therefore any

updates to okl will automatically affect ofl, offering support to both, the C and

Fortran community. An additional motivation to develop a parser was to maintain

the open-source occa library without additional library dependencies aside from the

enabled backends.

3.1 Compiler Tools

Various tools for parsing languages have been made available, such as the gcc-

extension MELT (Starynkevitch 2011), LLVM’s tool-chain used in clang (Lattner and

Adve 2004, Lattner 2002), the ROSE compiler from Lawrence Livermore National

Laboratory (Quinlan 2000) and others (Johnson 1975). Because this thesis proposal

focuses more on the language than compiler tools, for a more in-depth explanation

in the compilation process the reader is referred to the similar tools mentioned or

compiler development sources (Cooper and Torczon 2011, Turbak 2008). This section,

however, will briefly discuss the approach taken for developing okl and ofl, starting

with language parsing and language-specific features. Code transformation between

the kernel languages to the occa IR occurs through four steps:



CHAPTER 3. OKL AND OFL: OCCA KERNEL LANGUAGES 50

Merging and splitting file by lines while preprocessing macros and directives

Parsing lines into tokens representing preset-values such as numbers or strings,

unknowns and built-ins

Detecting the statement type in each line and generating an expression tree from

its tokens

Code transformations of okl and ofl to the occa IR

For simplification, discussions will focus on the C-syntax and okl unless explicitly

stated.

3.1.1 Preprocessor

A working C-preprocessor was implemented to maintain compatibility with C,

usable in okl and ofl. Code is scanned in a top-down fashion, merging lines containing

escape characters and progressively removing comments and comment blocks from

segments or complete lines. Macros and directives are then loaded and applied to the

resulting lines of code.

3.1.2 Parsing and Tokenization

Following the preprocessor step, the code goes through the second step of code

transformation by tokenizing the resulting lines of code. Each line is partitioned into

tokens comprising of numbers (integers or floating-precision constants), string segments

surrounded by quotes, and special keywords such as operators, types, and built-ins.

Aside from keeping line numbers for debugging purposes, all tokens are then stored

in a linear format since effects from new-line characters were processed prior to this

stage.

Number detection is done by detecting either [0-9] or .[0-9]. We purposely



51 CHAPTER 3. OKL AND OFL: OCCA KERNEL LANGUAGES

ignore the - and + unary symbols since they are later handled by the expression tree

formatting. Number loading, however, takes the form:

INT[.][e[+-]INT][fFlL],

where INT represents [0-9]* and content inside [] is optional.

We skip loading string segments since they are detected by pairs of quotes. Special

keywords, such as operators, types, and built-ins, are mapped prior parsing to the

representation type or types. For instance, the * operator can be considered as a

multiplication operator or dereference operator Similarly, long, short, signed and

unsigned can be used as both, qualifiers and specifiers. During this stage, all types

are stored and later resolved when building the expression trees.

To fully support the Fortran-community, we handle part of the Fortran-to-C trans-

lation during this phase by converting Fortran such as operators (.LT., .GT, . . . ) and

.NOT. and literals (.TRUE., .FALSE.). Operators such as the power operator denoted

by ** in Fortran are transformed to the proper pow() functions in the fourth stage of

the code transformation. Because white-space is important in Fortran, we add a token

to signify when an end-of-line took place and maintain a linear chain of tokens after

this parsing phase.

3.1.3 Statement Labeling

At this point, each line has been tokenized and labeled into a sequence of to-

kens with minor code transformations between Fortran to C. By doing a left-to-right

search on the tokens, we’re able to label sequences of tokens as statement types, in-

cluding:

Declaration statements (e.g. int x;, int x = 0, y = 1;)



CHAPTER 3. OKL AND OFL: OCCA KERNEL LANGUAGES 52

Update statements (e.g. x = 0;, x = y = pow(1,1);, kernelCall(x,y);)

Flow-control statements (for, while, do, if, else if, else, switch, goto)

Function declaration and definition statements (int one(); and int one(return

1;))

Block statements (e.g. {int x;})

Struct definitions (e.g. struct int2 { int x, y; };)

For example, statements beginning with the token:

for, while, do, if, else if, else, switch, goto

are taken to be

For loop

While loop

Do-while loop

If, else-if, else statements

Switch statement

Goto label

respectively. More complex statement labeling can be found when scanning keywords

such as:

struct, union, enum

which could be used to provide extra information about the following type or could be

used to begin a new type definition as seen in code listing 3.1.



53 CHAPTER 3. OKL AND OFL: OCCA KERNEL LANGUAGES

struct int2 { int x, y; };
struct int2 int2Var ;

Listing 3.1: Keywords such as struct could be used on different statement types

All tokens making up a statement are initially stored and later processed into

expression trees. Statement objects store a reference to its parent statement and all

nested statements through a linked-list as seen in figure 3.1, allowing for simple modi-

fications to the abstract syntax tree (AST) through API calls.

if(N < 256){
for(int i = 0; i < N; ++i; outer0 ){
}

}

N = 0;

3.1.4 Expression Trees

After a statement is detected, the consequent tokens are used to build expression

trees to describe the statement. A statement might contain multiple expression trees

to ease data analysis and extraction. For example, the okl for-loop

for(int i = 0; i < N; ++i; outer0)

would be expressed by four expression trees as seen in figure 3.2. The linear chain

of tokens is organized with respect to operator precedence from the C and Fortran

specifications. Similarly, custom types and variable definitions are loaded and stored

separately as the expression trees are being built, rather than using basic tokens to

express

int i;



CHAPTER 3. OKL AND OFL: OCCA KERNEL LANGUAGES 54

Figure 3.1: Statements are stored by linked-list nodes, containing it’s parent, next node,
and contained nodes. Depending on the statement type, each statement is contained
by one or many expression trees for simplification.



55 CHAPTER 3. OKL AND OFL: OCCA KERNEL LANGUAGES

as seen in figure 3.2. Modifying and finding data types becomes simple and helps the

modification of okl and ofl code to the occa IR.

Figure 3.2: The okl for-loop statement is described by four expression trees for keeping
edits to the AST simple. Likewise, variable and type definitions are stored through
their native storage class rather than a multi-node branch in the expression tree.

A few modifications are handled at this step when translating from Fortran to C.

Fortran multidimensional arrays are flattened and their strides are stored for updating

array accesses. Another difference comes from the operator ** which is not defined in

C and hence is replaced by a pow() call.

3.1.5 Types and Variable Information

The initial parser prototype only used tokenization and statement labeling, using

metadata for distinguishing between statement types and the tokenization to describe

each statement. Analysis quickly became complex and thus the expression trees were

used, facilitating data management for statements and proper ordering of operations

rather than using a left-to-right token chain. However, qualifiers, types, variables, and

functions were still maintained through tokens in expression trees. While metadata

for each token supplied information of the token type, fetching variable or function

information also become convoluted. Hence, types and variables were stored in special

tokens inside expression trees.

Code listing 3.2 shows the original tokenization (OLD) compared to the current



CHAPTER 3. OKL AND OFL: OCCA KERNEL LANGUAGES 56

implementation (NEW). Combining the statement and token metadata to provide print-

ing information, we’re able to use references to variables and types for facilitating code

analysis.

const int i = j;
// OLD: [ const ] [int] [i] [=] [j]
// NEW: [ varInfo : const int i] [=] [ varInfo : j]

typedef struct {
int x, y, z;

} int3;

// OLD: [ typedef ] [ struct ] [{] [int3]
// v
// [int] [x] [,] [y] [,] [z] [;]
//
// NEW: [ typeInfo : typedef struct { int x, y, z } int3] [;]

Listing 3.2: This code listing shows two simple statements with their original
tokenization and updated parser format.

3.2 OKL Specification and Features

This section will introduce the mapping between okl to the occa IR. Although

we use the developed parsing tool, okl was designed to try and achieve minimal exten-

sions to the native C languages respectively. I discuss some language benefits through

the use of the parser, including dynamic work-range/work-group setup, multiple kernel

instances, automatic barrier detection for shared/global memory.

3.2.1 Exposing Parallelism

Chapter 2 discusses the approach taken to unify multithreading platforms by ex-

posing parallelism. Rather than using the occaFor macros, okl extends the C for-loops

by adding a fourth statement as seen in code listing 3.3 Aside from showing the ex-

plicit loops, okl now has the feature to automatically assign working dimensions to

the offload model through the outer and inner loops. A kernel launch in OpenCL and



57 CHAPTER 3. OKL AND OFL: OCCA KERNEL LANGUAGES

CUDA are always separate from the kernel source, but maintain a connection through

the working dimensions used in a kernel execution. Errors due to a mismatch between

a kernel and kernel launch are now resolved solely in the outer-loop source code.

kernel void kern( const int N){
for(int group = 0; group < N; group += 16; outer0 ){

for(int item = 0; item < 16; ++ item; inner0 ){
// Work -item body here

}
}

}

Listing 3.3: OKL extends native C for-loops by using the fourth statement to tag the
type of loop

The start, end, and strides used in the outer and inner loops support argument-

based variables and the working dimensions are resolved at run-time. Currently, work-

ing dimensions must stay constant across on all inner-loops defined in a single outer-

loop; dynamic working dimensions is work in progress. Additionally, okl loop iterators

can be dependent on each other only if the working dimensions stay constant. For ex-

ample, kern seen in code listing 3.3 could be reinterpreted in code listing 3.4.

kernel void kern( const int N){
for(int group = 0; group < N; group += 16; outer0 ){

for(int item = group ; item < ( group + 16); ++ item; inner0 ){
// Work -item body here

}
}

}

Listing 3.4: OKL loop iterators can only be dependent if the working dimensions for
the inner-loops do not change.

Code listing 3.5 shows the exact transformation between the gathered loop bounds

from code listing 3.4 and the occa IR counterpart. The bounds and their depen-

dencies are appended to the host-kernel which in turn uses those dependencies to

setup the occa::kernel’s and launch them. Because the work dimensions for nested



CHAPTER 3. OKL AND OFL: OCCA KERNEL LANGUAGES 58

occa::kernels are gathered from the bounds, it is apparent that the kernel bounds

contain restrictions. For example, bounds cannot be adjusted through the use of a

for-loop as seen in code listing 3.6 although for-loops are still supported in okl and

ofl. Additionally, because loop bounds are obtained and used in the host kernel, ac-

cesses from pointer kernel arguments cannot be used for deriving inner and outer loop

bounds.

occaKernel void kern( occaKernelInfoArg , occa :: kernel * nestedKernels , occaConst int
occaVariable N) {

{
const int dims = 1;
occa :: dim outer , inner ;
outer [0] = (((N) - (0) + ((16) - 1)) / ((16) ));
occaConst int group = 0 + (0 * (16));
inner [0] = (((( group + 16)) - ( group ) + ((1) - 1)) / ((1)));
nestedKernels [0]. setWorkingDims (dims , inner , outer );
nestedKernels [0](N);

}
}

occaKernel void kern0 ( occaKernelInfoArg , occaConst int occaVariable N) {
occaParallelFor0
occaOuterFor0 {

occaConst int group = 0 + ( occaOuterId0 * (16));
occaInnerFor0 {

occaConst int item = group + occaInnerId0 ;
// Work -item body here

}
}

}

Listing 3.5: This code listing shows the okl to occa IR transformation displayed in
code listing 3.4.

kernel void kern( const int N){
for(int group = 0; group < N; group += 16; outer0 ){

for(int innerSize = 0; innerSize < 16; ++ innerSize ){
for(int item = group ; item < ( group + innerSize ); ++ item; inner0 ){

// Work -item body here
}

}
}

}

Listing 3.6: This code listing shows a combination of for-loops and okl inner loops
which are not supported due to the bounds depending on a changing variable.



59 CHAPTER 3. OKL AND OFL: OCCA KERNEL LANGUAGES

Currently, the only tags introduced as the fourth statement in for-loops used to

expose parallelism include outerX and innerX where X P {0, 1, 2}. These outer

and inner tags were derived from the occaOuterFor and occaInnerFor loops found in

the occa IR. An additional tile tag was introduced to facilitate kernel development

due to many kernels only requiring the use of simple bounds and iteration strides.

Code listing 3.7 shows two examples of the tile tag, tiling for-loops as one and two

dimensional sets of inner/outer loops. The fourth statement could be used for further

describing work inside for-loops in future architectures and programming models.

kernel void kern( const int N){
// ---[ 1D tile loop ]----------------
for(int i = 0; i < N; ++i; tile (16){
}

// ---[ 1D tile loop expansion ]------
for(int o = 0; o < N; o += 16; outer0 ){

for(int i = o; i < (o + 16); ++i; inner0 ){
}

}

// ---[ 2D tile loop ]----------------
for(int2 i(0 ,0); i.x < N, i.y < N; ++i.x, ++i.y; tile (16 ,16){
}

// ---[ 2D tile loop expansion ]------
for(int o1 = 0; o1 < N; o1 += 16; outer1 ){

for(int o0 = 0; o0 < N; o0 += 16; outer0 ){
for(int iy = o; iy < (o1 + 16); ++ iy; inner1 ){

for(int ix = o; ix < (o0 + 16); ++ ix; inner0 ){
int2 i(ix ,iy);

}
}

}
}

}

Listing 3.7: This code listing shows the use of the tile tag as outer-loops.

Introducing explicit outer and inner loops facilitates development by facilitating

the comprehension of the kernel code for the programmer and future readers of the

code. We further augment kernel development by supporting loops and flow control

statements containing outer and inner-loops; an example is displayed in code listing

3.8. Similarly, multiple outer-loops are supported inside a single kernel. An example is



CHAPTER 3. OKL AND OFL: OCCA KERNEL LANGUAGES 60

given in code listing 3.9 which displays two sets of outer-loops followed by a simplified

code listing that would be generated from the okl parser. Restrictions on for-loops

follow those from outer and inner loops where values from array entries cannot be used

as loop bounds.

kernel void kern( const int iterations , const int N){
for(int iteration = 0; iteration < iterations ; ++ iterations ){

if( iteration < N){
for(int group = 0; group < N; group += 16; outer0 ){

for(int innerSize = 0; innerSize < 16; ++ innerSize ){
for(int item = group ; item < ( group + innerSize ); ++ item; inner0 ){

// Work -item body here
}

}
}

}
}

}

Listing 3.8: This code listing shows a combination of for-loops and conditionals
containing okl outer-loops.



61 CHAPTER 3. OKL AND OFL: OCCA KERNEL LANGUAGES

kernel void kern( const int N){
// True kernel 1
for(int group = 0; group < N; group += 16; outer0 ){

for(int item = 0; item < 16; ++ item; inner0 ){
// Work -item body here

}
}

// True kernel 2
for(int group = 0; group < N; group += 16; outer0 ){

for(int item = 0; item < 16; ++ item; inner0 ){
// Work -item body here

}
}

}

// ---[ Expands to ]---------------------

// Host function
void kern( const int N){

kern1 (N); // Call OKL kernel 1
kern2 (N); // Call OKL kernel 2

}

// OKL kernel 1
kernel void kern1 ( const int N){

for(int group = 0; group < N; group += 16; outer0 ){
for(int item = 0; item < 16; ++ item; inner0 ){

// Work -item body here
}

}
}

// OKL kernel 2
kernel void kern2 ( const int N){

for(int group = 0; group < N; group += 16; outer0 ){
for(int item = 0; item < 16; ++ item; inner0 ){

// Work -item body here
}

}
}

Listing 3.9: The code listing displays pseudocode of the transformation occurring when
an okl kernel kern contains multiple okl-tagged loops. The code transformation
shown below contains the host kernel kern which calls the separated kernels kern1
and kern2.

3.2.2 Memory Types

Two memory types are introduced through the occa IR, occaShared and occaPrivate.

In okl, we introduce these memory types through the qualifiers shared and exclusive,

respectively, due to private already being a C keyword. Rather than using non-



CHAPTER 3. OKL AND OFL: OCCA KERNEL LANGUAGES 62

intuitive macros, their okl and ofl counterparts enable a more native approach to

decorating variables. A comparison between the occa IR, okl, and ofl can be seen

in code listing 3.10.

// ---[ OCCA IR ]----------------------
occaShared float s_A [16];
occaPrivate (float , p_A);
occaPrivateArray (float , p_B , 10);

// ---[ OKL ]--------------------------
shared float s_a [16];
exclusive float p_A , p_B [10];

// ---[ OFL ]--------------------------
real (4) , shared :: s_a (16)
real (4) , exclusive :: p_A , p_B (10)

Listing 3.10: This code listing shows a comparison between the use of occaShared and
occaPrivate in the occa IR, and their respective shared and exclusive qualifiers
in okl and ofl.

A large caveat using occaPrivate in the occa IR for CPU-modes, such as Serial,

OpenMP, Pthreads, and COI, is the lack support for structs. Because occaPrivate is

implemented as a class, accessing member variables or functions with the underlying

type would result in a class-formatting error. An occaPrivate variable cannot support

structs, making certain important data types for HPC inaccessible, such as float2 and

float4. The CPU-based implementation for exclusive uses linear arrays, similar to the

occaPrivate class, which transforms variable accesses into a work-item’s proper array

access. By exposing the underlying array and treating exclusive variables as linearly

iterating accesses in an array, the compiler vectorization is facilitated for vectorizing

operations on exclusive variables.

Additional benefits arise from using code transformations to deal with the different

memory types. In GPU-based architectures, shared memory guarantees the use of cache

for data storage while expecting cache reuse in CPU-based modes. For the upcoming

Intel’s Knights Landing (Bender et al. 2015), a special scratchpad of memory in the



63 CHAPTER 3. OKL AND OFL: OCCA KERNEL LANGUAGES

processor will become available. Although the latency and bandwidth is inferior to

cache, the parser can make use of it automatically through pre-allocating memory

needed for shared arrays in okl and ofl kernel. Adjusting to future architectures

becomes easier through the introduction of custom qualifiers, allowing programmers to

further decorate code to express their programming intentions.

3.2.3 Device Functions

There are two types of functions in okl, a function called from an inner-loop and

another called from an outer-loop. An example is given in code listing 3.11 where

function groupReduce256 is designed to be called from an outer-loop and function one

is called from an inner-loop. Automatic differentiation between device function scopes

allows for additional code reuse.



CHAPTER 3. OKL AND OFL: OCCA KERNEL LANGUAGES 64

// (1) Device function with a work - group scope , launching an inner -loop
int groupReduce (int *ptr , int N){

for(int off = N/2; 0 < off; off /= 2){
for(int i = 0; 0 < N; ++i; inner0 ){

if(i < off)
ptr[i] += ptr[i + off ];

}
}

}

// (2) Device function with a work -item scope
int one (){

return 1;
}

// Assume ASize is given through the
// occa :: kernelInfoArg

kernel void kern(int *A){
for(int o = 0; o < 1; ++o; outer0 ){

shared int s_A[ ASize ];

for(int i = 0; i < N; ++i; inner0 ){
// one () is used inside an inner -loop
s_A[i] = one ();

}

// Example of an inner -loop function
// called inside an outer -loop
groupReduce (s_A , ASize );

}
}

Listing 3.11: Device functions can be called with a work-group scope (1) or a work-item
scope (2).

Dynamic inner-loop sizes are currently not supported, where different inner-loops

inside a group of outer-loops contain varying bounds. Detection of inner-loop bounds

inside inner-loop device functions such as groupReduce in code listing 3.11 is also not

currently supported. Basic analysis on kernel code is the extent of the parser, hence an

inner-loop must be present inside an outer-loop. Future work on inlining non-recursive

functions will permit inner-loop functions to be used more freely. Likewise, adding

varying bounds to kernel inner-loops will eliminate the restriction of entrusting pro-

grammers to maintain identical bounds on an outer-loop’s inner-loop bounds. Enabling

dynamic inner-loop bounds will be solved by adding checks inside inner-loops based on

their bounds and the maximum inner-loop bounds as shown in code listing 3.12.



65 CHAPTER 3. OKL AND OFL: OCCA KERNEL LANGUAGES

kernel void kern(int *A, int N){
for(int o = 0; o < 1; ++o; outer0 ){

for(int iSize = 0; iSize < N; ++ iSize ){
for(int i = 0; i < iSize ; ++i; inner0 ){

// Inner -loop work
}

}
}

}

// Transformed into

kernel void kern(int *A, int N){
for(int o = 0; o < 1; ++o; outer0 ){

for(int iSize = 0; iSize < N; ++ iSize ){
for(int i = 0; i < N; ++i; inner0 ){

if(i < iSize ){
// Inner -loop work

}
}

}
}

}

Listing 3.12: This code listing shows a proposed solution for enabling dynamic inner-
loop bounds.

3.3 OFL Specification

The development of ofl was motivated by the limited support for Fortran to

program accelerators, even though Fortran is a prominent language in the high per-

formance community. This section will introduce the ofl specification and mapping

between ofl and okl. Using the code organization in the okl parser, a Fortran to

C translator was built-in to reuse the code transformations supported by okl. Hence,

features added to okl will therefore be automatically enabled in ofl.

3.3.1 Exposing Parallelism

The same concept of using tags on for-loops is taken in ofl. By tagging DO loops

in ofl, the programmer exposes parallel regions of code to the parser. An example is



CHAPTER 3. OKL AND OFL: OCCA KERNEL LANGUAGES 66

given in code listing 3.13

kernel subroutine kern(N){
integer (4) , intent (in) :: N

integer :: group , item

do group = 1, entries , 16, outer0
do item = 1, 16, inner0

! Work -item body here
end do

end do
end subroutine kern

Listing 3.13: Shown in the code listing is the use of ofl tags on DO loops to expose
parallelism. The okl counterpart to this code listing can be seen in code listing 3.3

Issues quickly arose regarding variable dependence across kernels when designing

ofl. Fortran uses constant bounds when launching DO loops, even if the variables in-

troduced inside bounds are updated inside the loop. For example, the translation for a

DO loop in ofl can be seen in code listing 3.14. In order to handle the variable depen-

dencies for each outer-loop-generated kernel, a data dependency graph is generated to

find each outer-loop’s dependent statements. Additionally, modifications of variables

inside outer-loops cannot be propagated across outer-loops due to the programming

model.



67 CHAPTER 3. OKL AND OFL: OCCA KERNEL LANGUAGES

INTEGER :: I

DO I = 1, N, 2, OUTER0
END DO

DO I = 1, N, OUTER0
END DO

// ---[ Translates to ]---------------------------------------------

int I;

const int doStart0 = 1;
const int doEnd0 = N;
const int doStride0 = 2;
const int doStrideSign0 = (1 - (2*( doStride0 < 0)));

for(I = doStart0 ; 0 <= ( doStrideSign *( doEnd0 - I)); I += 2; outer0 ){
}

const int doStart1 = 1;
const int doEnd1 = N;

for(I = doStart1 ; I <= doEnd1 ; ++I; outer0 ){
}

Listing 3.14: DO loops in ofl use constant evaluations for it’s iterator’s initial value,
stride and final value check. The translation to okl can be seen in this code listing

3.3.2 Memory Types

The qualifiers to label variables to use distinct memory types are synonymous to

those found in okl. Both shared and exclusive are supported in ofl and can be

implemented as such:

integer (4) , shared :: sharedVar
integer (4) , exclusive :: exclusiveVar

Some language differences between Fortran and C have been identified and resolved.

For example, Fortran natively supports multidimensional arrays:

integer (4) , shared :: sharedVar (X,Y,Z)

The parser resolved this issue by using the stored stride information and flattening the

multidimensional arrays when called. Therefore, array accesses such as



CHAPTER 3. OKL AND OFL: OCCA KERNEL LANGUAGES 68

integer (4) , shared :: sharedVar (X,Y,Z)
sharedVar (1 ,2 ,3) = 0;

are converted to

shared int sharedVar [X*Y*Z];
sharedVar [3*(X*Y) + 2*X + 1] = 0;

3.4 Support for CUDA and OpenCL

With the parser available, it was of interest to provide additional capability to

support OpenCL and CUDA kernel languages. We discussed okl as a language ex-

tension for C and now introduce support for OpenCL and CUDA. Because occa was

derived from GPU-languages and both OpenCL and CUDA extend the C language, it’s

possible to convert OpenCL and CUDA to the occa IR. A prototype was developed

which would properly translate simple kernels with support for GPU memory types,

barriers, and function calls.

The code transformation contains some challenges, many which were embedded

in the occa IR, such as occaPrivate or exclusive in okl. For example, the trans-

lation from code listing 3.15 to code listing 3.16 shows the effect when a variable’s

scope crosses a barrier. The prototype implemented can handle such detections and

transformations.

__kernel__ void kern( __global float *A){
int r_A = 0;
// ...
barrier ( localMemFence );
// ...
r_A = A[ get_global_id (0) ];
// ...

}

Listing 3.15: Simple OpenCL example with a variable’s scope crossing barriers



69 CHAPTER 3. OKL AND OFL: OCCA KERNEL LANGUAGES

occaKernel void kern( occaKernelInfoArg , occaPointer float *A){
occaOuterFor0 {

occaPrivate (int , r_A);

occaInnerFor0 {
r_A = 0;
// ...

}

occaBarrier ( occaLocalMemFence );

occaInnerFor0 {
// ...
r_A = A[ occaOuterId0 * occaInnerDim1 + occaInnerId0 ];
// ...

}
}

}

Listing 3.16: Translation of code listing 3.15 to the occa IR. Note the transformation
applied to r A due to it’s scope crossing a barrier.

Properly transforming loops and conditional statements to the occa IR represen-

tation remains a complication for portable performance. Using a GPU-based backend

on the occa IR kernels generated from CUDA or OpenCL will maintain a one-to-

one mapping. Different loop orderings on a CPU-based backend, however, changes

performance of the kernel. While occa does not guarantee portable performance, it

is of interest to maintain properly mapped code transformations between CUDA and

OpenCL to the CPU counterparts. Different injections of occaInnerFor loop trans-

lations of code listing 3.17 are shown in code listing 3.18, code listing 3.19, and code

listing 3.20. Currently, option (1) in code listing 3.18 is chosen by default, but fu-

ture work could include detection operation count and estimate which permutation

generates better vectorization by the compiler.



CHAPTER 3. OKL AND OFL: OCCA KERNEL LANGUAGES 70

__kernel__ void kern( __global float *A){
const int id = get_global_id (0);
int a = 0;

if(id % 2)
a = 1;

for(int i = 0; i < 16; ++i)
a += A[16 * id + i];

A[16 * id] = a;
}

Listing 3.17: This code listing displays an example CUDA kernel used for displaying
multiple combinations of inserting occa IR inner-loops inside for-loops found in code
listing 3.18, code listing 3.19, and code listing 3.20.

// (1) Loops inside occaInnerFor loops
occaKernel void kern( occaKernelInfoArg , occaPointer float *A){

occaOuterFor0 {
occaPrivate (int , id);
occaPrivate (int , a);

occaInnerFor0 {
id = ( occaOuterId0 * occaInnerDim0 ) + occaInnerId0 ;
a = 0;

}

occaInnerFor0 {
if(id % 2)

a = 1;
}

for(int i = 0; i < 16; ++i){
occaInnerFor0

a += A[16 * id + i];
}

occaInnerFor0 {
A[16 * id] = a;

}

Listing 3.18: This code listing displays combination 1 of translating code listing 3.17
to occa IR.



71 CHAPTER 3. OKL AND OFL: OCCA KERNEL LANGUAGES

// (2) Only loops inside occaInnerFor loops
occaKernel void kern( occaKernelInfoArg , occaPointer float *A){

occaOuterFor0 {
occaPrivate (int , id);
occaPrivate (int , a);

occaInnerFor0 {
id = ( occaOuterId0 * occaInnerDim0 ) + occaInnerId0 ;
a = 0;

if(id % 2)
a = 1;

}

for(int i = 0; i < 16; ++i){
occaInnerFor0

a += A[16 * id + i];
}

occaInnerFor0 {
A[16 * id] = a;

}

Listing 3.19: This code listing displays combination 2 of translating code listing 3.17
to occa IR.

// (3) Loops and conditionals inside occaInnerFor loops
occaKernel void kern( occaKernelInfoArg , occaPointer float *A){

occaOuterFor0 {
occaInnerFor0 {

const int id = ( occaOuterId0 * occaInnerDim0 ) + occaInnerId0 ;
int a = 0;

if(id % 2)
a = 1;

for(int i = 0; i < 16; ++i)
a += A[16 * id + i];

A[16 * id] = a;
}

}
}

Listing 3.20: This code listing displays combination 3 of translating code listing 3.17
to occa IR..

3.5 Concluding Remarks



CHAPTER 3. OKL AND OFL: OCCA KERNEL LANGUAGES 72

Two kernel language specifications based on the occa IR discussed in chapter

2 were presented: okl (occa Kernel Language) and ofl (occa Fortran Language).

Both kernel languages adequately extend the C and Fortran languages to expose par-

allelism found in current many-core architectures. A parser was developed to explore

and analyze C, assembled to simplify code analysis, code transformations, and code

generation. Kernels written in ofl are translated from C to Fortran by the parser,

guaranteeing code transformations present in okl will be automatically applied to the

ofl specification. Developing a custom parser allowed for the rapid prototyping of the

okl and ofl specifications while being sufficiently modular to amend the specifica-

tions. Future work on the specifications will focus on facilitating kernel development,

for example the use of attributes discussed in Subsection 5.2.3. The goal is, however, to

incorporate okl and ofl kernels with their respective native languages, incorporating

kernels with the application code. Steps toward blending kernels with the host code

have been developed for automatic data movement (chapter 4) and automatic kernel

generation (chapter 5).



4 Automated Data Movement

Contributions discussed in this chapter target the automation of data movement

in the abstract offload model used in occa. The abstract offload model is augmented

through the use of a unified memory address space. An implementation of the proposed

automation of data movement is provided in the occa API.

Chapter 2 focused on developing an intermediate representation for a unified ker-

nel language, followed by chapter 3 which introduced okl and ofl kernel languages

to facilitate kernel development. This chapter discusses the second layer of assistance

towards developers by providing an option to automate data movement between the

host and device. By adding the feature to remove memory management between the

host and device, we can provide an environment for easing programming for the of-

fload model and allow for more rapid prototyping. I include current ways to achieve

automatic data movement and the proposed method for the thesis work. Likewise, I

indicate the additional control over the automated data movement through the occa

API.

4.1 Automated Data Movement Approaches

Using the offload model in occa, we assume the host and device are separate

entities and thus assume their memory spaces are disjoint. We wish to emulate unified

memory that will treat memory from the host and device through a single address space,

approaches found in CUDA and tentatively in the OpenCL 2.0 standard. Completely



CHAPTER 4. AUTOMATED DATA MOVEMENT 74

hiding the distinction between host and device memory would further simplify the

offload model. I will discuss two approaches that make it possible to hide device

memory through emulating a unified address space.

The first approach that has automated data movement mimics the use of Ope-

nACC and OpenMP 4.0 directives. By default, data is always copied to and from the

device for each parallel region. However, the user can specify whether the respective

data is allocated, copied and/or written before and after each parallel region as seen

in code listing 4.1. We avoid this approach to avoid the user from having to specify

address ranges and data transfers prior to each kernel call.

# pragma omp target map(from:a[0: entries ]) \
map(to:b) \
map(to:c[0: entries ])

{
# pragma omp parallel for

for(i = 0; i < entries ; ++i){
a[i] = b * c[i];

}
}

Listing 4.1: Code listing of an OpenMP 4.0 example showing manual data transfers
and ranges

The second approach discussed is taken by CUDA, and tentatively the OpenCL 2.0

standard. The cudaMallocManaged() in CUDA’s specifications returns a host-pointer

that can be passed to CUDA kernels. By default, the host has ownership over managed

pointers but loses said ownership between a CUDA kernel launch using it’s mapped

device memory and a cudaDeviceSynchronize(). This approach relies on full data

transfers across the host and device during kernel launches and device synchronization

if needed. In comparison, the directive approach can reduce redundant data transfers

by labeling “dirty” regions that require synchronization at the price of having the

programmer input the required mapping for each address-range used. Aside from a few

optimizations, such as checking which address ranges were declared constant, automatic

data transferring would not be used for high performance computing. However, the



75 CHAPTER 4. AUTOMATED DATA MOVEMENT

reasoning of automated memory management is to ease programmers into developing

for the heterogeneous programming model and for prototyping, where efficiency is of

less importance.

4.2 Emulating Unified Memory

We adopt a similar approach seen in CUDA’s cudaMallocManaged() by main-

taining ownership information in our map between virtual addresses to their respective

occa::memory objects. An implementation is discussed in this thesis and an implemen-

tation will be provided for the final thesis work, together with benchmark comparisons

discussed in chapter 6.

To first hide the device memory, memory associated with occa::memory objects

must be mapped to an address space in the host. Memory managers assume that no

two distinct and proper memory allocations contain an overlap of addresses. Thus,

reserving a matching sized address range from the host guarantees the address range

received is reserved. When a user queries memory allocation in the device, we reserve

a virtual address range of the same size through the use of mmap on Unix-based oper-

ating systems and VirtualAlloc on Windows operating systems. A map is used to

contain the starts and ends of each virtual address resulting from device::malloc,

device::textureAlloc, and device::managedMalloc calls and map them to their

respective occa::memory objects. With the implementations discussed, we have a

method of obtaining occa::memory objects corresponding to a host address range.

The next step is to use host memory with automatic device synchronization. Prior

to an occa kernel launch, data is managed by the host and presumed to be correct.

When an occa kernel is launched, the respective occa::memory objects are obtained

through the memory map implementation, an O(log(n)) operation; likewise when mem-

ory copies are called through occa::memcpy. For each kernel argument in a kernel



CHAPTER 4. AUTOMATED DATA MOVEMENT 76

launch, the device memory is synchronized if it’s the kernel argument’s first use. Be-

tween the device memory synchronization and an device::finish() function call, the

memory is managed by the device. During the gap between the device synchronization

and ttfdevice::finish(), using the data in the host becomes undefined behavior. Code

listing 4.2 shows an example of using automatic memory management found in the

occa API.



77 CHAPTER 4. AUTOMATED DATA MOVEMENT

// ---[ addVectors .okl ]----------------
kernel void addVectors ( const int N,

const int *a,
const int *b,
int *ab){

for(int i = 0; i < N; ++i; tile (16)){
if(i < N)

ab[i] = a[i] + b[i];
}

}

// -------------------------------------

int main(int argc , char ** argv){
occa :: device device ("mode = CUDA , deviceID = 0");
occa :: kernel addVectors = device . buildKernel (" addVectors .okl",

" addVectors ");

int N = 10;

// Allocate data simulataneously on the device
// similar to malloc ()
int *a = (int *) device . managedUvaMalloc (N * sizeof (int));
int *b = (int *) device . managedUvaMalloc (N * sizeof (int));
int *ab = (int *) device . managedUvaMalloc (N * sizeof (int));

// Update in the host
for(int i = 0; i < N; ++i){

a[i] = i;
b[i] = (1 - i);
ab[i] = 0;

}

// Call a kernel using host data
addVectors (N, a, b, ab);

// Synchronize with the device
device . finish ();

for(int i = 0; i < N; ++i)
std :: cout << "a[" << i << "] = " << a[i] << ’\n’;

return 0;
}

Listing 4.2: The code listing displays how automatic memory management occurs with
the occa API.

4.3 Optimizations

Automatic data transfers facilitate managing the offload model provided by the

occa API but unfortunately can diminish performance drastically. Fortunately, the



CHAPTER 4. AUTOMATED DATA MOVEMENT 78

custom parser used for okl and ofl contains features to analyze kernels to prevent ex-

traneous data transfer. Although counter intuitive, manual management for automatic

managed data is also available through the occa API.

The addVectors kernel shown in code listing 4.2 contains four arguments: const

int N, const int *a, const int *b, int *ab. Omitting N since it’s passed by value,

we can infer a and b are not modified throughout addVectors due to their const

qualifier. Hence, only the kernel argument represented by ab requires a memory transfer

back to the host. Were the const qualifiers missing from the kernel arguments, code

analysis on the kernel would provide the same conclusion. Conservative analysis is

currently used applied to handle conditional statements. Code listing 4.3 contains a

similar kernel found in code listing 4.2 without kernel argument decorations but gives

the same conclusion as addVectors found in code listing 4.2. Statements inside loop

(1) are analyzed due to the conditional statement (i < N) only known at run-time

while loop (2) is omitted.

kernel void addVectors ( const int N,
int *a,
int *b,
int *ab){

for(int i = 0; i < N; ++i; tile (16)){
if(i < N) // (1)

ab[i] = a[i] + b[i];

if( false ) // (2)
a[i] = 0;

}
}

Listing 4.3: The code listing contains a kernel with conditional statements, some known
at compile-time and others only at run-time.

Code analysis, even with a less conservative approach compared to that of the

current implementation, will always limit the data transfer efficiency. When data is

updated in an occa kernel, it can no longer be assumed to be synchronized with the



79 CHAPTER 4. AUTOMATED DATA MOVEMENT

host and thus requires a data transfer. In the instance where data should be kept in the

device but occa::device synchronization is required (i.e. timing kernels or waiting

for kernels), the user should possess the option of intervening with data management.

Manual residency of data can be achieved through the use of

bool needsSync (void *ptr);
void dontSync (void *ptr);

Additionally, the user can use

void syncToDevice (void *ptr , const uintptr_t bytes );
void syncFromDevice (void *ptr , const uintptr_t bytes );

to specify the memory ranges used in the device.

4.4 Concluding Remarks

The work described in this chapter targeted automatic data movement between

the host and device. Using the host to initialize and modify data simultaneously used

in occa::kernels facilitates development and porting attempts to use occa. Future

work on the automatic data movement includes less conservative approaches for iden-

tifying possible read and writes to prevent extraneous data transfer between the host

and device. For example, implementing constant propagation for identifying unwritten

data through function calls (Callahan et al. 1986) and detecting unused data segments

as opposed to the assumption the complete data array was modified.



5 OAK: OCCA Automagic Kernel

The contributions described in this chapter introduce an additional layer of au-

tomation for the proposed unified programming model. Code patterns in numerical

method implementations are analyzed to detect obstructions in code analysis. Through

the use of language constructs and run-time capabilities available in occa, auxiliary

information can be passed for additional code analysis. Examples of automatic kernel

generation from serial codes are presented.

Chapters 2, 3, and 4 have discussed the occa intermediate representation (IR),

native-based kernel languages, and automating data movement; each chapter focusing

on a set of features, supplying additional layers of code automation to ease developers

onto heterogeneous-programming. The occa IR unified multiple backend program-

ming languages and standards which would be used by programmers with prior knowl-

edge on GPU programming. With the addition of the okl and ofl kernel languages,

a programmer writes a serial-like code but still requires the knowledge to label par-

allel loops. Lastly, adding unified virtual addressing and managed memory removed

the need to manually transfer data between devices, requiring only device synchro-

nizations. This chapter discusses another level of automation for automating parallel

detection in serial code.

While occa is a general purpose approach for facilitating programming current

architectures, the current approach taken for automatically detecting parallelism is

tailored for numerical applications. I first discuss patterns that emerge from numerical

applications and how they can be used to automatically detect parallel loops. Following



81 CHAPTER 5. OAK: OCCA AUTOMAGIC KERNEL

the pattern descriptions, I describe common polyhedral optimization methods used in

compilers for extracting code information. I implemented and augmented some of

the described methods and introduce two additional types of kernels: oak (occa

automagic kernel) and oaf (occa automagic Fortran). Both oak and oaf take serial

code with the option of additional qualifiers to automatically generate parallel kernels,

falling back to guiding users when code does not match discussed patterns. In addition

to its primary purpose, the discussed code-analysis tools can benefit the development

okl and ofl kernels. Detections of loop-carried dependencies, or data dependencies

inside loops requiring a loop to be executed serially to avoid undefined behavior, can

offer guidance on the correctness of okl and ofl kernels.

5.1 Coding Patterns in Numerical Applications

Promising the automatic transformation of any code is beyond the scope of this

project. Rather, the implementations and developed tools tailor common routines

found in numerical methods and other HPC-related topics. I analyze three different nu-

merical methods and high performing algorithms used for their implementations.

5.1.1 Finite Difference

The first numerical method whose algorithm patterns are analyzed is the finite

difference (FD) method. We take the wave equation, a simple partial differential equa-

tion (PDE) used to describe the FD method. Assuming a three dimensional problem,

the wave equation is given by

B2u

Bt2
“ c2∆u (5.1)

where u represents pressure or displacement over time t on a domain whose material

coefficients are denoted by a spatial-dependent variable c. Analytical derivatives are



CHAPTER 5. OAK: OCCA AUTOMAGIC KERNEL 82

approximated by Taylor expansion based integration rules, such as trapezoidal, Simp-

son’s, or higher order rules. Hence, the domain of interest Ω is usually approximated

by block-based structured discretization to obtain solution values at integration points

efficiently.

We’ll generalize the integration method for the discretized derivatives of equation

(5.1) to

Bnu

Bxn
i
«

N
ÿ

i“0
wiup~xiq, ~xi P R3

ˆ r0, T q (5.2)

Note that the set of parameters N,wi, ~xi are chosen for each discretized derivative

and thus can differ between x, y, z, t. Rather than creating a matrix representing the

discrete operator ∆u, the stencils are applied to generate the right-hand side of equation

(5.1) for each time step. The pseudocode for marching the FD method in time can be

shown in algorithm 1, where wi is kept the same for all dimensions with a first-order

integration scheme in time.

Algorithm 1 Pseudocode for the finite difference method implementation of equation
(5.1)

1: for all n P r2, T s do { For each time step }
2: for all points pi, j, kq do { For each point in our discrete domain }
3: lapÐ 0
4: for ´r ď r̂ ď r do { For all nodes in the 1D stencil }
5: lapÐ lap` wo

`

c2pi`r̂,j ,k qunpi` r̂, j , k q `

c2pi ,j`r̂,k qunpi , j ` r̂, k q `

c2pi ,j ,k`r̂qunpi , j , k ` r̂q
˘

{ Update lap }

6: end for
7: un`1pi, j, kq Ð

`

´ ∆2t ˚ lap
` un´1pi, j, kq
´ 2unpi, j, kq

˘

{ Store solution at t “ tn`1}

8: end for
9: end for

Implementing algorithm 1 efficiently has been thoroughly investigated for CPU

and GPU based architectures. Optimizations for the CPU methods include vectoriza-



83 CHAPTER 5. OAK: OCCA AUTOMAGIC KERNEL

tion of the stencil operations, cache blocking (or tiling) for spatial data re-use, and

time skewing for a combination of spatial and temporal data re-use (Datta et al. 2008,

Zhou et al. 2014, Medina et al. 2015). We won’t focus on time skewing due to their

complexity when additional phases are introduced in a single time step; for example,

checkpointing to save data in time or using data transfers in parallel applications. Code

listing 5.1 outlines how common optimization techniques would be applied to algorithm

1.

// Block points such that each block can be optimally be stored in cache
for(int blockZ = r; blockZ < ( pointsZ - r); blockZ += blockOffZ ; outer2 ){

for(int blockY = r; blockY < ( pointsY - r); blockY += blockOffY ; outer1 ){
for(int blockX = r; blockX < ( pointsX - r); blockX += blockOffX ; outer0 ){

// Points updated in this scope will begin to be
// fetched to cache and remain there
for(int z = blockZ ; z < ( blockZ + blockOffZ ); ++z; inner2 ){

for(int y = blockY ; y < ( blockY + blockOffY ); ++y; inner1 ){
for(int x = blockX ; x < ( blockX + blockOffX ); ++x; inner0 ){

float lap = 0;
// Vectorization occurs in the inner -most loop
// which pertains to the stencil applicaiton
// for each dimension
for(int i = -r; i <= r; ++i)

lap += w[i]*( u0[z ][y ][x+i] +
u0[z ][y+i][x ] +
u0[z+i][y ][x ]);

u2[z][y][x] = -dt2*c2[z][y][x]* lap + u0[z][y][x] + u1[z][y][x];
}}}

}}}

Listing 5.1: Code listing showing the use of vectorization and code blocking for the
update step implementation of algorithm 1

Although GPUs are architecturally similar to CPUs, the parallel model and ex-

plicit use of cache allows for alternative algorithms to be used. A common GPU

implementation for the finite difference method uses coalesced loads for efficient global

memory fetches which are stored into shared memory for reuse (Micikevicius 2009,

Medina et al. 2015). The domain is partitioned into blocks, similar to cache blocking

on the CPU implementation found in code listing 5.1 but differs in the update of each

block. The work on each block is partitioned into xy planes, sharing the xy plane data



CHAPTER 5. OAK: OCCA AUTOMAGIC KERNEL 84

for each CUDA block while maintaining the z data in each block in a register array.

Code listing 5.2 outlines the efficient implementation discussed in (Micikevicius 2009)

when applied to algorithm 1.

// Block points to partition work for each block /work - group
for(int blockZ = r; blockZ < ( pointsZ - r); blockZ += blockOffZ ; outer2 ){

for(int blockY = r; blockY < ( pointsY - r); blockY += blockOffY ; outer1 ){
for(int blockX = r; blockX < ( pointsX - r); blockX += blockOffX ; outer0 ){

shared float s_xy[ blockOffY + 2*r][ blockOffX + 2*r];
exclusive float r_z[ blockOffZ + 2*r];

// Gather all z values in a register array
for(int y = 0; y < blockOffY ; ++y; inner1 ){

for(int x = 0; x < blockOffX ; ++x; inner0 ){
for(int z = -r; z <= ( blockOffZ + r); ++z)

r_z[z + r] = u0[ blockZ + z][y][x];
}}

// Update shared memory per z plane
for(int z = 0; z < blockOffZ ; ++z){

for(int y = 0; y < blockOffY ; ++y; inner1 ){
for(int x = 0; x < blockOffX ; ++x; inner0 ){

const int y2 = y + blockOffY ;
const int x2 = x + blockOffX ;

// Store inner square
s_xy[y+r][x+r] = u0[z][ blockY + y][ blockX + x];

// Store top and bottom halo
if(x < r){

s_xy[y + r][x] = u0[z][ blockY + y ][ blockX + x - r];
s_xy[y2 + r][x] = u0[z][ blockY + y2 ][ blockX + x - r];

}

// Store left and right halo
if(y < r){

s_xy[y][x + r] = u0[z][ blockY + y - r][ blockX + x ];
s_xy[y][ x2 + r] = u0[z][ blockY + y - r][ blockX + x2 ];

}
}}

barrier ( localMemFence );

for(int y = 0; y < blockOffY ; ++y; inner1 ){
for(int x = 0; x < blockOffX ; ++x; inner0 ){

const int gx = ( blockX + x);
const int gy = ( blockY + y);
const int gz = ( blockZ + z);

float lap = 0;
// Vectorization occurs in the inner -most loop
// which pertains to the stencil applicaiton
// for each dimension
for(int i = 0; i < (2*r + 1); ++i)

lap += w[i]*( s_xy[y ][x+i] +
s_xy[y+i][x ] +
r_z[z+i]);

u2[gz ][ gy ][ gx] = -dt2*c2[gz ][ gy ][ gx ]* lap + u0[gz ][ gy ][ gx] + u1[gz ][ gy ][ gx ];
}}}

}}}

Listing 5.2: Code listing showing the use of vectorization and code blocking for the
update step implementation of algorithm 1

Both implementations found in code listing 5.1 and code listing 5.2 fit the okl

programming model and hence were described with it. On a naive implementation,



85 CHAPTER 5. OAK: OCCA AUTOMAGIC KERNEL

the loops on code listing 5.1.

// Block points such that each block can be optimally be stored in cache
for(int blockZ = r; blockZ < ( pointsZ - r); blockZ += blockOffZ ; outer2 ){

for(int blockY = r; blockY < ( pointsY - r); blockY += blockOffY ; outer1 ){
for(int blockX = r; blockX < ( pointsX - r); blockX += blockOffX ; outer0 ){

// Points updated in this scope will begin to be
// fetched to cache and remain there
for(int z = blockZ ; z < ( blockZ + blockOffZ ); ++z; inner2 ){

for(int y = blockY ; y < ( blockY + blockOffY ); ++y; inner1 ){
for(int x = blockX ; x < ( blockX + blockOffX ); ++x; inner0 ){

would be written as

for(int z = r; z < ( pointsZ - r); ++z){
for(int y = r; y < ( pointsY - r); ++y){

for(int x = r; x < ( pointsX - r); ++x){

If no loop carried dependencies are detected in the naive loops, for-loops can be auto-

matically tagged as okl outer loops and splitting them to produce inner loops; note

tiling the loops reproduces code listing 5.1. Although it would not reproduce code

listing 5.2, the preliminary generated okl kernels detect no loop-carried dependencies

on the x, y, and z loops in code listing 5.3.



CHAPTER 5. OAK: OCCA AUTOMAGIC KERNEL 86

// ---[ Parameters ]-------------------------------
# define pointsX 1000
# define pointsY 1000
# define pointsZ 1000

# define pointsXY ( pointsX * pointsY )

# define r 5
// ================================================

kernel void fdUpdate ( float *u0 ,
float *u1 ,
float *u2 ,
float *w,
float *c2 ,
const float dt2){

for(int z = r; z < ( pointsZ - r); ++z){
for(int y = r; y < ( pointsY - r); ++y){

for(int x = r; x < ( pointsX - r); ++x){
float lap = 0;

for(int i = -r; i <= r; ++i)
lap += w[i]*( u0 [(z )* pointsXY + (y )* pointsX + (x+i)] +

u0 [(z )* pointsXY + (y+i)* pointsX + (x )] +
u0 [(z+i)* pointsXY + (y )* pointsX + (x )]);

const int id = (z* pointsXY + y* pointsX + x);

u2[id] = -dt2*c2[id ]* lap + u0[id] + u1[id ];
}

}
}

}

Listing 5.3: Code listing includes an oak kernel from a serial finite difference
implementation. No loop-carried dependencies are detected in the x, y, and z
loops. Note that the parameters would be passed at run-time through the use of
occa::kernelInfo.

5.1.2 Finite Element and Discontinuous Galerkin Methods

The second and third numerical methods analyzed are the finite element method

(FEM) and discontinuous Galerkin method (DG). Both methods act on elements, or

cells, approximating the domain of interest but differ when managing the connectivity

between elements. We take the same wave equation described in subsection 5.1.1 as

a simple partial differential equation (PDE) used to describe the the FEM and DG

methods. The domain of interest, Ω, is then discretized to an approximate domain

Ωh “
Ť

k Dk decomposable into elements Dk. A mapping between a reference element

D̂ and each triangular element Dk allows each element to be processed identically, with



87 CHAPTER 5. OAK: OCCA AUTOMAGIC KERNEL

some exceptions; for example, boundary conditions or external source terms.

pt “´ c
2
pux ` vy ` wzq (5.3)

ut “´ px

vt “´ py

wt “´ pz

Equation (5.3) shows the first-order form of the wave equation in equation (5.1),

where p is the pressure field, the vector pu, v, wq denotes the particle velocity com-

ponents, and c2 corresponds to the material coefficients in the domain. The matrix

formulation of equation (5.3) is given by equation (5.4).

qt “´∇ ¨ F pqq, (5.4)

where

q “

»

—

—

—

—

—

—

—

–

p

u

v

w

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, F “
`

Â1e1 ` Â2e2 ` Â3e3
˘

.

I abuse the notation for ∇ ¨ F pqq to mean

∇ ¨ F pqq “ ∇ ¨ Â1qe1 ` Â2qe2 ` Â3qe3

“
BÂ1q

Bx
`
BÂ2q

By
`
BÂ3q

Bz
,



CHAPTER 5. OAK: OCCA AUTOMAGIC KERNEL 88

where

Â1 “

»

—

—

–

0 c2 0 0
´1 0 0 0
0 0 0 0
0 0 0 0

fi

ffi

ffi

fl

, Â2 “

»

—

—

–

0 0 c2 0
0 0 0 0
´1 0 0 0
0 0 0 0

fi

ffi

ffi

fl

, Â3 “

»

—

—

–

0 0 0 c2

0 0 0 0
0 0 0 0
´1 0 0 0

fi

ffi

ffi

fl

.

Due to computational limitations, the test space is then constrained to the span

of a finite number of basis functions belonging to the desired test space presented, say

V . The variational formulation of equation (5.4) is given by

pqt, φqΩh
looomooon

A

“ ´p∇ ¨ F pqq, φqΩh
looooooooomooooooooon

B

`pG˚pqq ¨ ~n, φqΩh
loooooooomoooooooon

C

, @φ P V (5.5)

where the numerical flux (C) is present in discontinuous Galerkin methods but vanishes

in finite element methods.

There is a large literature on FEM and DG and multiple formulations of each

method and because it is over the reach of the thesis to investigate each method, only

two methods are detailed. The first method uses nodal basis functions to add another

layer of granularity for computing element updates (Hesthaven and Warburton 2007,

Klöckner et al. 2009, Gandham et al. 2015, Modave et al. 2015). Specialized methods

using nodal basis exist, such as the use of tensor-product basis for efficiency and low-

memory costs, yet are usually applicable only on quadrilateral and hexahedral elements

(Fischer et al. 2008, Fischer et al. 2007, Giraldo and Rosmond 2003, Fahrenholtz

et al. 2015). The examples covered will assume no structural composition of the basis

functions. The second method covers implementations represented by building the

global matrix, dense or sparse, (Bangerth et al. 2007, Besson and Foerch 1997) used

to apply the FEM or DG operators (Rivière 2008). In no way do these methods

cover every implementation possible, but they do cover a majority of implementations.

The second approach which opts to use a matrix application will not be covered in



89 CHAPTER 5. OAK: OCCA AUTOMAGIC KERNEL

this chapter due to it being a thoroughly covered topic (Golub and Van Loan 2012,

Williams et al. 2009, Bell and Garland 2008) and hence we focus on the first and second

methods which avoid assembling stiffness matrices.

Treating equation (5.4) numerically allows us to represent the operators as ma-

trices as seen in equation (5.6), later applied in a matrix-free fashion (Hesthaven and

Warburton 2007).

Bq

Bt
“ ´M´1`SxA1q ` SyA2q ` SzA3q

˘

loooooooooooooooooooomoooooooooooooooooooon

B

`LIFT
`

pG ¨ ~nq˚ ´ pG ¨ ~nq
˘

looooooooooooooomooooooooooooooon

C

(5.6)

“

„

Dr, Ds, Dt



¨

˚

˚

˚

˚

˝

»

—

—

—

—

–

re
x

se
x

tex

fi

ffi

ffi

ffi

ffi

fl

A1q `

»

—

—

—

—

–

re
y

se
y

tey

fi

ffi

ffi

ffi

ffi

fl

A2q `

»

—

—

—

—

–

re
z

se
z

tez

fi

ffi

ffi

ffi

ffi

fl

A3q

˛

‹

‹

‹

‹

‚

(5.7)

` LIFT ppG ¨ ~nq˚ ´ pG ¨ ~nq´q. (5.8)

(5.9)

The Jacobian for the reference mapping is given by

»

—

—

—

—

–

re
x se

x tex

re
y se

y tey

re
z se

z tez,

fi

ffi

ffi

ffi

ffi

fl

which are precomputed for each element De. For implementation efficiency, we note

the matrices Dr,Ds, and Dt are independent of the element and thus can be reused

for each element. Methods for numerically computing parts pBq and pCq in equation

(5.4) are given in code listing 5.4 and code listing 5.5 respectively.



CHAPTER 5. OAK: OCCA AUTOMAGIC KERNEL 90

for(int e = 0; e < elements ; ++e; outer0 ){
shared float s_p[ nodesPerElement ];
shared float s_u[ nodesPerElement ];
shared float s_v[ nodesPerElement ];
shared float s_w[ nodesPerElement ];
shared float s_geo [9];

for(int n = 0; n < nodesPerElement ; ++n; inner0 ){
if(n < 9)

s_geo [n] = g_geo [9*e + n];

int Np = nodesPerElement ;

s_p[n] = g_Q[e*Np* fields + 0* Np + n]; // Fields = 4 in this case
s_u[n] = g_Q[e*Np* fields + 2* Np + n];
s_v[n] = g_Q[e*Np* fields + 3* Np + n];
s_w[n] = g_Q[e*Np* fields + 4* Np + n];

}

barrier ( localMemFence ); // Make sure shared memory is in sync

for(int n = 0; n < nodesPerElement ; ++n; inner0 ){
for(int m = 0; m < Np; ++m){

// Define :
// [rx ,sx ,tx] = s_geo [0 ,1 ,2]
// [ry ,sy ,ty] = s_geo [3 ,4 ,5]
// [rz ,sz ,tz] = s_geo [6 ,7 ,8]

p_dx = rx*g_Dr[m][n] + sx*g_Ds[m][n] + tx*g_Dt[m][n];
p_dy = ry*g_Dr[m][n] + sy*g_Ds[m][n] + ty*g_Dt[m][n];
p_dz = rz*g_Dr[m][n] + sz*g_Ds[m][n] + tz*g_Dt[m][n];

p_px += p_dx*s_p[m];
p_py += p_dy*s_p[m];
p_pz += p_dz*s_p[m];
p_Du += (p_dx*s_u[m] + p_dy*s_v[m] + p_dz*s_w[m]);

}

p_c2 = g_c2[e*Np + n]; // c2

Q2[e*Np* fields + 0* Np + n] = -p_c2*p_Du;
Q2[e*Np* fields + 1* Np + n] = -p_px;
Q2[e*Np* fields + 2* Np + n] = -p_py;
Q2[e*Np* fields + 3* Np + n] = -p_pz;

}
}

Listing 5.4: Pseudocode for computing part pBq in equation (5.4), the volume integral
computation for updating the solution of equation (5.1)



91 CHAPTER 5. OAK: OCCA AUTOMAGIC KERNEL

for(int e = 0; e < elements ; ++e; outer0 ){
shared float s_p[ nodesPerFace * facesPerElement ];
shared float s_u[ nodesPerFace * facesPerElement ];
shared float s_v[ nodesPerFace * facesPerElement ];
shared float s_w[ nodesPerFace * facesPerElement ];

const int Nfp = nodesPerFace ;
const int Nfaces = facesPerElement ;

for(int n = 0; n < nodesPerElement ; ++n; inner0 ){
if(n < (Nfp* Nfaces )){

int face = (n / Nfp);

// Get values for node and normal dot - product
// on the (-) side of the element
int idM = k*2* Nfp* Nfaces + n;
float pM = fQ[idM + 0* Nfp* Nfaces ];
float ndotuM = fQ[idM + 1* Nfp* Nfaces ];

// Get values for node and normal dot - product
// on the (+) side of the element
int idP = mToP[n + k*Nfp* Nfaces ];
float pP = fQ[idP + 0* Nfp* Nfaces ];
float ndotuP = fQ[idP + 1* Nfp* Nfaces ];

// Jumps between element nodes
float dp = (pP - pM);
float ndotdU = ( ndotuP - ndotuM );

// Get geometric factors
float nx = g_geo [face + 0* Nfaces + 16*k];
float ny = g_geo [face + 1* Nfaces + 16*k];
float nz = g_geo [face + 2* Nfaces + 16*k];
float Fscale = g_geo [face + 3* Nfaces + 16*k];

float pTmp = -0.5*c*( ndotdU - dp)* Fscale ;
float pTmp = -0.5* (dp - ndotdU )* Fscale ;

s_p[n] = pTmp;
s_u[n] = uTmp * nx;
s_v[n] = uTmp * ny;
s_w[n] = uTmp * nz;

}
}

barrier ( localMemFence ); // Make sure shared memory is in sync

for(int n = 0; n < nodesPerElement ; ++n; inner0 ){
float p_lift = 0;
float u_lift = 0;
float v_lift = 0;
float w_lift = 0;

for(int m = 0; m < (Nfp* Nfaces ); ++m){
float lift = LIFT[n + m* nodesPerElement ];

p_lift = LIFT*s_p[m];
u_lift = LIFT*s_u[m];
v_lift = LIFT*s_v[m];
w_lift = LIFT*s_w[m];

}

int id = n + k* Nfields * nodesPerElement ;

rhsQ[id + 0* nodesPerElement ] = p_lift ;
rhsQ[id + 1* nodesPerElement ] = u_lift ;
rhsQ[id + 2* nodesPerElement ] = v_lift ;
rhsQ[id + 3* nodesPerElement ] = w_lift ;

}
}

Listing 5.5: Pseudocode for computing part pCq in equation (5.4), the sufrace integrals
along boundary faces for updating the solution of equation (5.1)



CHAPTER 5. OAK: OCCA AUTOMAGIC KERNEL 92

for(int dof = 0; dof < dofCount ; ++ dof){
int dofOffset = dofOffsets [dof ];
int dofCount = ( dofOffsets [dof + 1] - dofOffset );

float u_sum = 0;

// Gather the values of each degree of freedom copy
for(int i = dofOffset ; i < ( dofOffset + dofCount ); ++i)

u_sum += u[ LToG[i] ];

// Scatter the real value back to each copy
for(int i = dofOffset ; i < ( dofOffset + dofCount ); ++i)

u[ LToG[i] ] = u_sum ;
}

Listing 5.6: Pseudocode for applying a gather and scatter operation to incorporate and
update values of each degree of freedom copy

We note the parallelism found in both methods by providing the okl loop tags

in code listing 5.4 and code listing 5.5. The volume integrals for each element can

be updated in parallel but require an additional processing step to include element

connectivity. In DG implementations, the weak connectivity across face nodes is han-

dled with the surface integrals consisting of the flux across elements. However, FEM

implementations that contain the same memory structure as that of DG retain copies

of a nodal value for each element containing it; hence, each copy is gathered to obtain

the global solution and scattered back to update each copy as seen in code listing 5.6.

Finding loop-carried dependencies in code listing 5.6 would not be possible without

additional knowledge about the LToG mapping. Subsection 5.2.3 discusses attributes

used to bypass the claimed compiler-issues and avoid false positives in the loop-carried

dependency analysis.

5.2 Automagic Analysis

Using the compiler, not just for machine-code generation, but as an optimization

tool for code has been prevalent since before the 1980’s (Allen and Cocke 1972, Padua

and Wolfe 1986, Allen and Johnson 1988). As hardware evolved, such as with the intro-



93 CHAPTER 5. OAK: OCCA AUTOMAGIC KERNEL

duction of vectorization instructions and multicore processors, compiler optimizations

adapted. I’ll describe some basic compiler tools used to detect loop-carried dependen-

cies tailored for the methods discussed in section 5.1. Assumptions on the tailored

analysis are more conservative and demanding for these preliminary pattern detec-

tions when compared to libraries focused on polyhedral optimization and integer-set

constraint detections (Grosser et al. 2011, Benabderrahmane et al. 2010). The notion

of using language constructs to portray additional information about the program is

explored for the analysis tools. The additional constructs and their capabilities are

further explained throughout this section, targeting code patterns described in section

5.1. To experiment these concepts, I implemented an analyzer for detecting parallelism

in serial code with features discussed throughout this section.

5.2.1 Value Extractions

For-loops, or DO loops in Fortran, are the main targets for code analysis due to the

objective being guiding users towards writing loops without loop-carried dependencies

and auto-generating the resulting kernels. Although other libraries only require the

loop bounds and strides to be constant or affine at compile-time, I target constant-

valued loop bounds and strides. Making use of the run-time compilation capabilities

in the occa library, strides and bound expressions in targeted for-loops can be given

during compile-time using the occa API. I now discuss the extent of the analyzer

developed for oak and oaf.

The analyzer stores information about each variable, accesses, and if known, it’s

current value. For example, variables used as for-loop iterators are tagged as iterators

and their bounds and strides are kept. Values are symbolically simplified by expanding

expressions, an example shown in code listing 5.7



CHAPTER 5. OAK: OCCA AUTOMAGIC KERNEL 94

1 + 2*x + 3*(x + 4*y)
ë 1 + 2*x + 3*x + 3*4*y
ë 1 + (2 + 3)*x + 12*y
ë 1 + 5*x + 12*y

Listing 5.7: Example showing symbolic simplification of an expression

Values in the analyzer are stored as either constant values or stride expressions. If

the symbolic simplification of the expression is constant at compile-time, the constant

value is stored. If the simplified expression is not constant, the expression is split by

their summed parts as seen in code listing 5.8.

1 + 2*x + 3*(x + 4*y) + x*y
ë 1 + 5*x + 12*y + x*y
ë [1(1) , x(5) , y(12) , x*y]

Listing 5.8: Example showing the symbolic simplification split by its summed parts

Code listing 5.8 shows an offset of 1 with iterators (x, y) and their respective

strides (5, 12). Note that the expression x*y, because not a linear combination of

variables or iterators, is labeled as complex and thus not given a stride. This same

processes of evaluating expression information is done for loop-bounds. For example,

code listing 5.9 displays a for-loop and it’s respective expression information.

for(int i = 0; i < 10; ++i){} // (1)
ë [ Bounds : [0, 10) , Stride : [ 1]]

for(int i = A; 0 <= i; --i){} // (2)
ë [ Bounds : [0, A ], Stride : [ -1]]

for(int i = A; i < B; ++i){} // (3)
ë [ Bounds : [A, B ), Stride : [ 1]]

// Dead code , not analyzed (4)
for(int i = 0; i < 0; ++i){}

Listing 5.9: Loop information extracted for different cases

Example (1) in code listing 5.9 contains loop-bounds known at compile-time and



95 CHAPTER 5. OAK: OCCA AUTOMAGIC KERNEL

can be extensively used for loop-carried dependency analysis. Example (2) has it’s

lower-bound and stride known at compile-time while it’s upper-bound and example (3)

bounds are limited by their symbolic expressions. Example (4) is an example where

the analyzer ignores code segments which will never get executed. This leads to the

following subsection where there loop-carried dependency analysis is described.

5.2.2 Detection of Loop Carried Dependencies

Variable information gathered through value extractions discussed in subsection

5.2.1 are used to determine the existence of loop-carried dependencies in code. Reads

and writes of each variable is recorded sequentially in addition to the accesses for all

pointer variables. Two forms of loop-carried dependencies are inspected, reductions

and access conflicts.

When a variable is updated relative to its own value, for example with operators

+=, -=, *=, /=, a dependence is formed with itself. For example, code listing 5.10 shows

the variable sum used to store a reduction of the iterator i.

int sum = 0;

for(int i = 0; i < 10; ++i)
sum += i;

Listing 5.10: The variable sum stores the reduction of i, thus causing a loop-carried
dependency on the i for-loop.

The scope of the loop-carried dependency can propagate across multiple statements,

not just on the loop containing the reduction variable. A statement containing a de-

pendency on a reduction variable will cause the loop-carried dependency to propagate

across. To be specific, the least common ancestor of the statement containing the

reduction variable and statements depending on the reduction variable must be serial-

ized to prevent undefined behavior. The code listing 5.11 contains an example with a



CHAPTER 5. OAK: OCCA AUTOMAGIC KERNEL 96

reduction variable sum which is then stored in a subsequent for-loop, hence requiring

the j for-loop to be run serially.

for(int j = 0; j < 10; ++j){
int sum = 0;

for(int i = 0; i < 10; ++i)
sum += i;

for(int i = 0; i < 10; ++i)
sumArray [i] = sum;

}

Listing 5.11: The loop-carried dependence formed by the sum reduction is propagated
to the j for-loop due to its use in updating sumArray.

The second cause of loop-carried dependencies is caused by read-write accesses that

would cause undefined behavior if executed out-of-order. Code listing 5.12 contains two

loops with different access patterns, the first containing a loop-carried dependence and

the second can be executed in parallel due to no read-write conflicts.

// Reads : [1, 2, ... , 10]
// Writes : [0, 1, ... , 9]
// Conflicts : [1, 2, ... , 9]
for(int i = 0; i < 10; ++i)

A[i] = A[i + 1];

// Reads : [0, 2, ... , 8]
// Writes : [1, 3, ... , 9]
// No conflicts
for(int i = 0; i < 10; i += 2)

B[i] = B[i + 1];

Listing 5.12: In this code listing, the accesses in the first loop form a loop-carried
dependence while the second loop avoids it due to reads in odd entries and writes in
even entries.

The analysis is not done for each possible read and write, but rather a conserva-

tive approach for detecting duplicate solutions to the Diophantine equations is used.

Assuming two accesses,

A

«

N
ÿ

i“0
αis

1
i

ff

, A

«

M
ÿ

i“0
βis

2
i

ff

,



97 CHAPTER 5. OAK: OCCA AUTOMAGIC KERNEL

with coefficients αi, βi and strides s1
i , s

2
i are given, an access conflict exists if and only

if a solution to the Diophantine equation

N
ÿ

i“0
αis

1
i “

M
ÿ

i“0
βis

2
i ,

exists within the bounds given by the coefficients and strides. Instead of detecting

for multiple solutions, bounds for each stride and coefficient are computed to expose

overlapping bounds. I will use the following notation for simplification To compress

the notation, I use the following simplification

[Bounds: [0, 10), Stride: [1]] Ñ [0,10)(1)

for(int i = 0; i < 10; ++i){
// ë i: [ Bounds : [0, 10) , Stride : [1]]

// Strides consist of i and 1
A[i] = A[i + 1];
// ë A (Read) : [1(i) + 0(1)]
// ë : [[0 , 10) (1) + [0 ,0](1)]

// ë A ( Write ): [1(i) + 1(1)]
// ë : [[0 , 10) (1) + [1 ,1](1)]

}

for(int i = 0; i < 10; i += 2){
// ë i: [ Bounds : [0, 10) , Stride : [2]]

// Strides consist of i and 1
B[i] = B[i + 1];
// ë B (Read) : [1(i) + 1(1)]
// ë : [[0 , 10) (2) + [1 ,1](1)]

// ë B ( Write ): [1(i) + 0(1)]
// ë : [[0 , 10](2) + [0 ,0](1)]

}

Listing 5.13: The analysis tools generate the following detections based on code listing
5.12.

Code listing 5.13 displays the metadata obtained from code listing 5.12. The read

and write statements in the first loop in would generate race conditions due to the



CHAPTER 5. OAK: OCCA AUTOMAGIC KERNEL 98

conflict between the offset 1 and range [0, 10)(1). Although similar, the second loop

wouldn’t generate a conflict due to the range having a stride of 2. Assume the following

two accesses are present

A

«

ÿ

i

rLB1
i , UB

1
i qpS

1
i q

ff

, A

«

ÿ

i

rLB2
i , UB

2
i qpS

2
i q

ff

,

where LB,UB, and S correspond to the lower bound, upper bound, and strides of the

access. No conflict exists if

UB1
i ď pLB

2
j ` S

2
j q or UB2

j ď pLB
1
i ` S

1
i q, @i, j,

otherwise a conservative approach is taken which will possibly detect a false positive.

Similar to reduction variables, if conflicts are discovered, the loop-carried dependency

is propagated to the least common ancestor of the two access statements.

Because simple affine access patterns are currently being targeted, the discussed

conservative approach is sufficient for the analyzed serial codes. However, future work

includes the implementation of methods which can analyze access conflicts more ac-

curately. For example, possessing the stride and bound information can lead to a

more flexible approach towards detecting access conflicts by solving the Diophantine

equations (Banerjee et al. 1979).

5.2.3 Additional Language Constructs

As previously mentioned, the analysis focuses on language constructs to provide

additional code information at compile-time. Rather than using #pragma’s for decorat-

ing statements, I opted for the use of attributes for a more compact form of decorating

code. The use of decorations gives developers another layer of expressing programming

motives to facilitate compiler optimizations (Lattner and Adve 2004, Necula et al.



99 CHAPTER 5. OAK: OCCA AUTOMAGIC KERNEL

2002, Pominville et al. 2000); however, using attributes does not follow the language

specifications similar to #pragma to concise the decoration.

I added the use of the @ symbol to the okl and ofl specifications for a preliminary

implementation of attributes, shorter than the use of attribute (()) seen in GCC

and LLVM based compilers. The use of the attribute symbol can be applied to give

additional information to the compiler about variables and their use or statements in

general. Code listing 5.14 shows different forms of using @ with variable declarations,

variable update statements, and loop statements.

void kernelName (int *A,
int *k @( permutation )){

for(int i = 0; i < 10; ++i) @(safe) {
A[ k[i] ] = i @(safe);

}
}

Listing 5.14: The use of @ attribute symbol is shown through the its use in a variable
declaration, variable update statement, and a loop statement

Currently, only the safe and permutation attributes are supported. A statement

decorated with @(safe) is ignored when checking loop-carried dependencies. Variables

decorated with @(permutation) is used to indicate a one-to-one mappings which would

be impossible for the compiler to validate at compile-time unless the whole array is

known. Using the @(permutation) attribute would indicate loop-carried dependencies

that were falsely found on the gather and scatter in . However, the gather and scatter

jointly causes a read-write conflict detection; hence, using the attribute @(safe) would

be used to indicate the lack of read-write conflicts and kernels would be automatically

generated.

With the prototype implementation in effect, future types would be added to

augment okl and ofl kernels and the depth of the oak and oaf analyzer. For

example, adding a @(dim(16,16)) or @(dim(X,Y)) could allow bounds to be known



CHAPTER 5. OAK: OCCA AUTOMAGIC KERNEL 100

at compile-time by value or relatively to other variables. Notation could be abused for

simpler development, for example

void kernelName (int *A,
int *k @( permutation , dim (16 ,16))){

for(int j = 0; j < 16; ++j) @(safe) {
for(int i = 0; i < 16; ++i) @(safe)

A[ k(j,i) ] = i @(safe);
}

}

Listing 5.15: The code listing shows a predicted use of @(dim(...)) simplifying kernel
development

5.3 Auto-generation of Kernels

The detection tools and language constructs previously mentioned are used to

detect loop candidates to be tagged as outer or inner loops. We refer back to the

specifications detailed in subsection 3.2.1 for the requirements on outer and inner loops.

To summarize, outer or inner loops must contain no loop-carried dependencies. In addi-

tion, outer loops must only contain variable declarations, constant variable definitions,

and statements embedded with inner loop candidates with the same bounds.

I will give an example showing the use of oak kernels from serial code. Given the

following serial code,

for(int i = 0; i < N; ++i)
A[i] = B[i] + C[i];

Listing 5.16: An example serial code summing two arrays

the user would pack the serial code into an oak kernel as such



101 CHAPTER 5. OAK: OCCA AUTOMAGIC KERNEL

kernel void addVectors (int N,
float * restrict A,
float * restrict B,
float * restrict C){

for(int i = 0; i < N; ++i)
A[i] = B[i] + C[i];

}

Listing 5.17: The kernel displayed shows code listing 5.16 wrapped in an oak kernel

Note the use of restrict, a keyword used to denote pointers are not aliased and can

hence be treated as non-overlapping with other pointers. Running the oak parser on

the addVectors kernel would generate the following okl code which is composed of

occa API, occa IR, and okl.

occaKernel void addVectors (int N, float * occaRestrict A, float * occaRestrict B,
float * occaRestrict C) {

occa :: setupMagicFor (A);
occa :: setupMagicFor (B);
occa :: setupMagicFor (C);
addVectors0 (N, A, B, C);
occa :: syncToDevice (A);
occa :: syncToDevice (B);
occa :: syncToDevice (C);
addVectors1 (N, A, B, C);
occa :: syncToDevice (A);
occa :: syncToDevice (B);
occa :: syncToDevice (C);
addVectors2 (N, A, B, C);
occa :: syncToDevice (A);
occa :: syncToDevice (B);
occa :: syncToDevice (C);
addVectors3 (N, A, B, C);
occa :: syncToDevice (A);
occa :: syncToDevice (B);
occa :: syncToDevice (C);
addVectors4 (N, A, B, C);
occa :: syncToDevice (A);
occa :: syncToDevice (B);
occa :: syncToDevice (C);
addVectors5 (N, A, B, C);

}

Listing 5.18: The kernel displayed will launch a variety of kernels based on code listing
5.17



CHAPTER 5. OAK: OCCA AUTOMAGIC KERNEL 102

occaKernel void addVectors0 (int N, float * occaRestrict A, float * occaRestrict B,
float * occaRestrict C) {

for(int i = 0; i < N; ++i; tile (8)) {
A[i] = B[i] + C[i];

}
}

occaKernel void addVectors1 (int N, float * occaRestrict A, float * occaRestrict B,
float * occaRestrict C) {

for(int i = 0; i < N; ++i; tile (16)) {
A[i] = B[i] + C[i];

}
}

occaKernel void addVectors2 (int N, float * occaRestrict A, float * occaRestrict B,
float * occaRestrict C) {

for(int i = 0; i < N; ++i; tile (32)) {
A[i] = B[i] + C[i];

}
}

occaKernel void addVectors3 (int N, float * occaRestrict A, float * occaRestrict B,
float * occaRestrict C) {

for(int i = 0; i < N; ++i; tile (64)) {
A[i] = B[i] + C[i];

}
}

occaKernel void addVectors4 (int N, float * occaRestrict A, float * occaRestrict B,
float * occaRestrict C) {

for(int i = 0; i < N; ++i; tile (128) ) {
A[i] = B[i] + C[i];

}
}

occaKernel void addVectors5 (int N, float * occaRestrict A, float * occaRestrict B,
float * occaRestrict C) {

for(int i = 0; i < N; ++i; tile (256) ) {
A[i] = B[i] + C[i];

}
}

Listing 5.19: The kernels displayed are automatically generated based on code listing
5.17

If nested loops existed, however, additional kernels would be generated. For ex-

ample

for(int i = 0; i < 16; ++i)
for(int j = 0; j < 16; ++j)

A[i*16 + j] = 0;

would generate not only tiled kernels, but auto-detect the available outer/inner loop



103 CHAPTER 5. OAK: OCCA AUTOMAGIC KERNEL

combination as well as experiment with tiling on each feasible loop.

// ...

occaKernel void addVectors5 (int N, float * occaRestrict A, float * occaRestrict B,
float * occaRestrict C) {
for(int i = 0; i < 16; ++i; tile (256) ) {

for(int j = 0; j < 16; ++j) {
A[i * 16 + j] = 0;

}
}

}

// ...

occaKernel void addVectors6 (int N, float * occaRestrict A, float * occaRestrict B,
float * occaRestrict C) {

for(int i = 0; i < 16; ++i; outer0 ) {
for(int j = 0; j < 16; ++j; inner0 ) {

A[i * 16 + j] = 0;
}

}
}

// ...

occaKernel void addVectors12 (int N, float * occaRestrict A, float * occaRestrict B,
float * occaRestrict C) {

for(int i = 0; i < 16; ++i) {
for(int j = 0; j < 16; ++j; tile (256) ) {

A[i * 16 + j] = 0;
}

}
}

Note that the bounds were explicitly stated due to the assumptions taken in oak

kernels, as mentioned in subsection 5.2.3. In addition to the kernel generations, errors

are reported when conflicts in accesses are detected. If j iterated between 0 and 32,

the error

Access strides overlap: [VI: i (C: 16) + VI: j (C: 1)]

would be presented and kernels would fail to be generated. To show the functionality

of these tools, I present some serial code from the Rodinia benchmarks (code listing

5.20) and a few of its auto-generated okl kernels (code listing 5.21).



CHAPTER 5. OAK: OCCA AUTOMAGIC KERNEL 104

// ---[ Parameters ]------------------------------
# define ETA 0.1
# define MOMENTUM 0.2

# define n1 100
# define n2 1000
// ===============================================

kernel void bpnn_layerforward ( float *l1 ,
float *l2 ,
float *conn // ,
// int n1 ,
// int n2
){

float sum;
int j, k;

l1 [0] = 1.0;

for (j = 1; j <= n2; j++) {
sum = 0.0;

for (k = 0; k <= n1; k++)
sum += conn[k*n2 + j] * l1[k];

l2[j] = squash (sum);
}

}

# define ndelta 1000
# define nly 10

kernel void bpnn_adjust_weights ( float *delta ,
// float ndelta ,
float *ly ,
// float nly ,
float *w,
float *oldw){

float new_dw ;
int k, j;

const int kOff = ( ndelta + 1);

ly [0] = 1.0;

for (j = 1; j <= ndelta ; j++) {
for (k = 0; k <= nly; k++) {

new_dw = (( ETA * delta [j] * ly[k]) + ( MOMENTUM * oldw[k*kOff + j]));

w[k*kOff + j] += new_dw ;
oldw[k*kOff + j] = new_dw ;

}
}

}

Listing 5.20: The back propagation kernels from the Rodinia benchmark suite were
taken and wrapped in oak kernels. Modifications on the source-code included the
explicit bounds passed as defines (normally kernelInfo::addDefine would be used
in the application)



105 CHAPTER 5. OAK: OCCA AUTOMAGIC KERNEL

// ...
occaKernel void bpnn_layerforward5 ( float *l1 , float *l2 , float *conn , int n1 , int n2) {

float sum;
int j, k;
l1 [0] = 1.0;
for(j = 1; j <= n2; j++; tile (256) ) {

sum = 0.0;
for(k = 0; k <= n1; k++) {

sum += conn[k * n2 + j] * l1[k];
}
l2[j] = squash (sum);

}
}

occaKernel void bpnn_layerforward6 ( float *l1 , float *l2 , float *conn , int n1 , int n2) {
float sum;
int j, k;
l1 [0] = 1.0;
for(j = 1; j <= n2; j++; outer0 ) {

sum = 0.0;
for(k = 0; k <= n1; k++; inner0 ) {

sum += conn[k * n2 + j] * l1[k];
}
l2[j] = squash (sum);

}
}

// ...

occaKernel void bpnn_adjust_weights5 ( float *delta , float *ly , float *w, float *oldw) {
float new_dw ;
int k, j;
occaConst int kOff = (1000 + 1);
ly [0] = 1.0;
for(j = 1; j <= 1000; j++; tile (256) ) {

for(k = 0; k <= 10; k++) {
new_dw = ((0.1 * delta [j] * ly[k]) + (0.2 * oldw[k * kOff + j]));
w[k * kOff + j] += new_dw ;
oldw[k * kOff + j] = new_dw ;

}
}

}

occaKernel void bpnn_adjust_weights6 ( float *delta , float *ly , float *w, float *oldw) {
float new_dw ;
int k, j;
occaConst int kOff = (1000 + 1);
ly [0] = 1.0;
for(j = 1; j <= 1000; j++; outer0 ) {

for(k = 0; k <= 10; k++; inner0 ) {
new_dw = ((0.1 * delta [j] * ly[k]) + (0.2 * oldw[k * kOff + j]));
w[k * kOff + j] += new_dw ;
oldw[k * kOff + j] = new_dw ;

}
}

}

// ...

Listing 5.21: This code listing contains a few auto-generated kernels resulting from the
Rodinia benchmark back propagation kernels in code listing 5.20.

5.4 Concluding Remarks

I presented methods for utilizing the occa run-time tools and analyzing serial code

to attempt generation proper okl kernels. By detecting loop-carried dependencies,



CHAPTER 5. OAK: OCCA AUTOMAGIC KERNEL 106

we can guide developers to convert serial code to fit the occa programming model.

After recognizing at least one loop without loop-carried dependencies, kernels can be

generated to test performance and provide further guidance on proper loop-labeling.

Future work for the oak and oaf kernels include examining additional polyhedral

optimization and integer set tools. Analysis methods are comprised of code movement

of loop-invariant statements, inlining non-recursive functions, and additional tests for

detecting access conflicts.



6 Implementation Studies and
Benchmarks

A careful set of validations are performed to support claims stated throughout

this thesis proposal. For example, I choose to compare the performance obtained us-

ing occa mediated kernels with the native language counterpart, such as OpenMP,

OpenCL, and CUDA. Likewise, the chosen benchmarks not only for examine perfor-

mance comparisons with native counterparts, but examine portable performance across

backends using the kernel language portability.

In this chapter, I briefly cover a careful set of benchmarks that will be used to

validate performance and portability when using occa. It is also of interest to discuss

performance differences alongside portability challenges, specially for HPC-tailored nu-

merical applications. Two applications from Argonne National Laboratory (ANL) are

being developed for simulating neutron transport: XSBench and SimpleMOC. Other

affiliated applications include gNuma, a mini-app of the non-hydrostatic unified at-

mospheric model (NUMA) from the naval postgraduate school and group applications

using finite element, discontinuous Galerkin, and spectral element methods. When

available, examples compare occa IR or okl with the backend’s native language

counterpart such as OpenMP, OpenCL, and CUDA.

6.1 Finite Difference Method

In a collaboration with Dr. Amik St-Cyr, I investigated the capability of the occa

IR on finite difference method implementations. One major goal of this collaboration



CHAPTER 6. IMPLEMENTATION STUDIES AND BENCHMARKS 108

was to test the performance obtained with occa IR compared to an already optimized

application developed at Shell. I summarize the problem and performance comparisons

outlined in (Medina et al. 2015).

Because finite difference is computationally efficient on modern architectures, it is

a commonly used method in seismic imaging. For this application, a mini-application

was developed using occa with occa IR kernels to implement a high-order wave

propagator for the model using vertical transversely isotropic (VTI) media (Du et al.

2008). The model is given by

ptt “ c2`
p1` 2εqppxx ` pyyq `

?
1` 2δpqzzq

˘

, (6.1)

qtt “ c2`?1` 2δppxx ` pyyq ` pqzzq
˘

where p and q are the horizontal and vertical stress components, c is the acoustic

velocity of the material, and ε and δ are the Thomsen anisotropy parameters (Thomsen

1986). A first order time-stepping method is applied to equation (6.1) and a stencil of

radius r is used for the spatial derivative discretization giving

pn`1
pxi, yj, zkq “2pn

pxi, yj, zkq ´ p
n´1
pxi, yj, zkq (6.2)

´ dt2c2
r
ÿ

s“´r

p1` 2εq
`

wk
xp

n
pxi`s, yi, zkq ` w

k
yp

n
pxi, yj`s, zkq

˘

´ dt2c2
r
ÿ

s“´r

?
1` 2δpwk

zq
n
pxi, yj, zk`sqq,

qn`1
pxi, yj, zkq “2qn

pxi, yj, zkq ´ q
n´1
pxi, yj, zkq

´ dt2c2
r
ÿ

s“´r

?
1` 2δ

`

wk
xp

n
pxi`s, yi, zkq ` w

k
yp

n
pxi, yj`s, zkq

˘

´ dt2c2
r
ÿ

s“´r

wk
zq

n
pxi, yj, zk`sq

where wk
˚ are the finite difference stencil weights. Two algorithms for implementing



109 CHAPTER 6. IMPLEMENTATION STUDIES AND BENCHMARKS

equation (6.2) tailored for the CPU and GPU architectures respectively were imple-

mented, both detailed in code listing 5.1 and code listing 5.2.

Performance results for the finite difference kernels were taken on a dual-socket

node equipped with Intel Xeon E5-2640 processors for comparing OpenMP and the

occa OpenMP-mode. GPU timings were also obtained on NVIDIA K10 and K20x

GPUs comparing CUDA and the occa CUDA-mode. Two occa IR kernels each

tailored for the CPU or GPU architecture were developed for fair comparisons, but

both are also compared to each other as an example where performance portability is

lacking.

Project Distribution 1 Thread 2 Threads 4 Threads 8 Threads 16 Threads
Native Compact 92 183 (98%) 360 (96%) 668 (89%) 1226 (82%)
Native Scatter 92 183 (98%) 356 (95%) 686 (92%) 1191 (80%)
OCCA Compact 115 229 (99%) 448 (97%) 820 (89%) 1548 (84%)
OCCA Scatter 115 230 (100%) 454 (98%) 884 (96%) 1411 (76%)

Table 6.1: Displayed are the nodes updated per second (in millions) together with
multithreading scaling using alternative thread distributions on two Xeon E5-2640
Processors (higher is better).

Table 6.1 contains results between the original application using native OpenMP

and the occa IR kernels using OpenMP-mode, both with scatter and compact thread

pinning arrangements. Timings are displayed in million of node updates per second,

a common way of showing performance in finite difference applications, together with

the scaling factors between thread counts. Note that the occa IR kernels resulted

in better performance compared with the native OpenMP kernels. The option of

injecting run-time information when building the occa IR kernels, such as the finite

difference stencil-size or manually unrolling the finite difference stencil updates, allowed

for more compiler optimizations. As expected, when substituted, running the OpenMP

translations of the occa IR kernels resulted in identical performance on the original

application.



CHAPTER 6. IMPLEMENTATION STUDIES AND BENCHMARKS 110

Project Kernel Language K10 (1-chip) K20x
Native CUDA 1068 1440
Native (2) CUDA 1296 2123
OCCA OCCA:CUDA 1241 1934
OCCA (2) OCCA:CUDA 1579 2431
OCCA OCCA:OpenCL 1303 1954
OCCA (2) OCCA:OpenCL 1505 2525

Table 6.2: Displayed are the nodes updated per second (in millions) for four different
kernels, two CUDA kernels and two occa IR kernels run on CUDA and OpenCL
modes (higher is better). Update kernels use 1-point updates per work-item/thread
or are labeled with (2) to represent 2-point update kernels. Two NVIDIA GPUs were
used, a single processor of a dual-processor K10 GPU and a K20x GPU.

Table 6.2 contains results between the original application using native CUDA and

the occa IR kernels using the CUDA and OpenCL modes on NVIDIA K10 and K20x

GPUs. Each kernel was modified to update two nodes per GPU work-item/thread

and included in the performance timings, also displayed in million of node updates

per second. Note that the occa IR kernels in both, CUDA and OpenCL modes also

resulted in better performance compared with the native CUDA kernels.

CPU-tailored Kernel GPU-tailored Kernel
occa::OpenMP 1548 364 (23%)
occa::CUDA (1 K10 core) 515 (41%) 1241
occa::OpenCL (1 K10 core) 665 (51%) 1302

Table 6.3: Displayed are performance comparisons between the GPU and CPU tailored
code running on the OpenMP, CUDA and OpenCL modes to examine performance
portability.

We examining table 6.3 by joining table 6.1 and table 6.2 timings and compare

performance portability. At best, OpenCL running on the CPU-tailored occa IR

kernel ran at 51% efficiency compared to running on the GPU-based kernel. At worst,

OpenMP running on the GPU-tailored occa IR kernel ran at 23% efficiency compared

to running on the CPU-based kernel. The GPU-tailored kernel used shared-memory

to store spatially-local but not memory-local data in cache memory, while the CPU-

mode only emulates it. Likewise, the CPU-tailored kernel makes the assumption local



111 CHAPTER 6. IMPLEMENTATION STUDIES AND BENCHMARKS

data is automatically loaded into cache which is not as mature on GPU architectures.

These implementation features, when heavily used, can cause a lack of performance

portability.

6.2 Monte Carlo

In addition to the collaboration with Shell, I collaborated with Ron Rahaman and

Amanda Lund from Argonne National Laboratory in Monte Carlo mini-apps. The dis-

cussed mini-app is XSBench, currently being developed by the Center for the Exascale

Simulation of Advanced Reactors (CESAR) group at the ANL (Tramm et al. 2014).

The project is based on OpenMC, an application which models neutron transport at a

macroscopic scale using Monte Carlo (Romano and Forget 2013). Rather than optimiz-

ing the whole application, XSBench extracts the computationally intensive tasks from

OpenMC for focusing on the application bottlenecks. Computations needed for the

Monte Carlo calculations consist of around 85% of total runtime, making XSBench a

lightweight single-kernel mini-app for testing purposes. The developers have looked at

different approaches which address performance and portability for the heterogeneous

programming model, namely through the use of OpenMP, OpenACC, CUDA and okl

(Rahaman et al. 2015).

To compare the original XSBench kernels and the okl ports, we display the num-

ber of lookups calculated per second where a lookup represents a single Monte Carlo

simulation. Two okl kernels were implemented, the first tailored for the CPU architec-

ture and the second for the GPU architecture. Table 6.16 compares the performance

results between the native XSBench implementation and the okl ports using two

8-core Intel Xeon E5-2650 processors. The okl implementation showed comparable

performance with its OpenMP counterpart and displayed better thread scaling. For

this application, the GPU-based kernel outperformed and scaled better than the CPU-



CHAPTER 6. IMPLEMENTATION STUDIES AND BENCHMARKS 112

based kernel in addition to the native OpenMP implementation. The emphasis on the

parallel model used in the GPU architecture exploited the thread and vectorization

parallel hierarchy seen in the multicore CPUs.

Implementation 1 Thread 2 Threads 4 Threads 8 Threads 16 Threads
Native 0.20 0.37 (90%) 0.73 (89%) 1.33 (81%) 2.38 (72%)
okl (CPU-based) 0.19 0.40 (103%) 0.60 (78%) 1.24 (81%) 2.37 (78%)
okl (GPU-based) 0.18 0.37 (103%) 0.72 (102%) 1.41 (99%) 2.78 (97%)

Table 6.4: The table displays performance and scaling between the native XSBench
OpenMP kernel, and two okl port running in OpenMP-mode, each tailored for the
CPU and GPU respectively. Performance is presented as million lookups per second,
where a lookup represents the number of times a neutron changes energy or crosses a
material boundary per second. Tests were run to compute 1.5 million lookups on two
8-core Intel Xeon CPU E5-2650 processors.

A similar comparison between the original CUDA implementation and the okl::CUDA

implementation is given in table 6.5. Timings were run on an NVIDIA K40m GPU

and tested occupancy through a varying number of threads per block. When compared

with the native CUDA kernel, the GPU-based okl kernel outperformed it by 8% while

the CPU-based okl kernel matched 98% of its performance.

Implementation 32 threads 64 threads 96 threads 128 threads
Native 3.31 3.27 3.14 3.21
okl (CPU-based) 3.25 2.00 1.69 1.90
okl (GPU-based) 3.52 2.77 2.85 2.65

Table 6.5: The table displays performance between the original XSBench CUDA ker-
nel, and two okl port running in CUDA-mode, each tailored for the CPU and GPU
respectively. Performance is presented as million lookups per second, where a lookup
represents the number of times a neutron changes energy or crosses a material bound-
ary per second. Tests were run to compute 1.5 million lookups on different number of
threads per block with an NVIDIA K40m graphics card.

Because okl kernels are portable across supported platforms, we are able to dis-

play the performance of OpenMP on the CUDA-tailored kernel and vice-versa intable

6.6. This is an example where performance is portable across the CPU and GPU

architectures, showing optimal performance using the GPU-tailored kernel. Using an



113 CHAPTER 6. IMPLEMENTATION STUDIES AND BENCHMARKS

okl kernel based on the native OpenMP code is still comparable to the GPU-tailored

kernel, the major difference arises from the efficiency in scaling.

CPU-tailored Kernel GPU-tailored Kernel
okl::OpenMP (16 threads) 2.37 2.78 (117%)
okl::CUDA (32 threads) 3.25 (92%) 3.52

Table 6.6: The table displays portable performance available with occa. OpenMP
achieved an increase of 17% overall performance using the GPU-tailored okl kernel
when compared to the CPU-tailored okl kernel. The CPU-tailored kernel on CUDA
achieved 92% overall performance when compared to the GPU-tailored kernel, showing
portable performance even across the different targeted architectures. Tests were run
on two 8-core Intel Xeon CPU E5-2650 processors and an NVIDIA K40m graphics
card.

6.3 Finite Element Method

The third project examined is gNek, a spectral element method (SEM) solver

for the incompressible Navier Stokes equations seen in equation (6.3) (Stilwell 2013).

gNek uses a spectral element method with tensor product basis which was derived from

the open source project Nek5000 led by Paul Fischer at Argonne National Laboratory

(Fischer et al. 2008, Fischer and RÃČÂÿnquist 1994, Fischer and Patera 1991). The

mini-app was ported to use occa from the core operations found in the Nek5000

computational fluid dynamics (CFD) solver.

ut ` pu ¨∇qu “ ´∇p` ν∆u (6.3)

∇ ¨ u “ 0 (6.4)

A splitting scheme found in (Karniadakis et al. 1991) is used to treat the nonlinear



CHAPTER 6. IMPLEMENTATION STUDIES AND BENCHMARKS 114

term found in Equation (6.3) explicitly, giving

1
∆t
pũ´ unq “ ´pun

¨∇qun,

1
∆t

`˜̃u´ ũ
˘

“ ´∇pn`1, (6.5)

1
∆t

`

un`1 ´ ˜̃u
˘

“ v∆un`1.

The second and third equations in equation (6.5), however, can be generalized as

´∆u` λ2u “ f, (6.6)

with the variational formulation

p∇u,∇φqΩ ` λ
2
pu, φqΩ ´ p∇u ¨ n, φqBΩ “ pf, φqΩ @v P V, (6.7)

Although a brief description of the finite element method can be found in subsection

5.2.3, we leverage the tensor product structure of the basis functions to more efficiently

apply the discrete SEM operator found in equation (6.7). The pseudocode for the

operator application is given in code listing 6.1 and I refer the reader to (Medina 2014)

for a more in-depth explanation of the method.



115 CHAPTER 6. IMPLEMENTATION STUDIES AND BENCHMARKS

for(int e = 0; e < elementCount ; ++e; outer0 ){
shared float LD[N][N];
shared float Lu[N][N], Lv[N][N], Lw[N][N];
exclusive float uk[N];
exclusive float lapu[N];

exclusive float ur , us , ut;
exclusive float GDut , lapuk ;

for(int j = 0; j < N; ++j; inner1 ){
for(int i = 0; i < N; ++i; inner0 ){

// Load derivative matrix onto shared memory
LD[i][j] = g_D[N*j + i];

// Load the z direction values onto a register array
for(int k = 0; k < N; ++k){

uk[k] = u[e*N3 + k*N2 + j*N + i];
lapu[k] = 0;

}
}

}

for(int k = 0; k < N; ++k){
for(int j = 0; j < N; ++j; inner1 ){

for(int i = 0; i < N; ++i; inner0 ){
// Store a plane of data
Lu[j][i] = uk[k];

// Derivative in the z direction
ut = 0;

for(int m = 0; m < N; ++m)
ut += LD[k][m] * uk[m];

}
}

for(int j = 0; j < N; ++j; inner1 ){
for(int i = 0; i < N; ++i; inner0 ){

// Derivative in the x and y directions
ur = us = 0;

for(int m = 0; m < N; ++m){
ur += LD[i][m] * Lu[j][m];
us += LD[m][j] * Lu[m][i];

}

Lv[j][i] = rx[e]* ur + sx[e]* us + tx[e]* ut;
Lw[j][i] = ry[e]* ur + sy[e]* us + ty[e]* ut;
GDut = rz[e]* ur + sz[e]* us + tz[e]* ut;

lapuk = J[e] * ( lambda * uk[k]);
}

}

for(int j = 0; j < N; ++j; inner1 ){
for(int i = 0; i < N; ++i; inner0 ){

for(int m = 0; m < N; ++m)
lapuk += LD[m][j] * Lv[m][i];

for(int m = 0; m < N; ++m)
lapuk [m] += LD[k][m] * GDut;

for(int m = 0; m < N; ++m)
lapuk [m] += LD[m][i] * Lw[j][m]

lapuk [k] += lapuk ;
}

}

for(int j = 0; j < N; ++j; inner1 ){
for(int i = 0; i < N; ++i; inner0 ){

u2[e*N3 + k*N2 + j*N + i] = lapu[k];
}

}
}

}

Listing 6.1: Pseudocode for the discrete spectral element method operator found in
equation (6.7)



CHAPTER 6. IMPLEMENTATION STUDIES AND BENCHMARKS 116

For this application, it was of interest to examine performance in high-order meth-

ods. Hence, the provided timings are used to display the performance with relation to

the polynomial order of the method. Timing comparisons in table 6.7 include OpenMP

with 12 threads and OpenCL running on an Intel i7-3930K. Intel’s icpc compiler and

the GNU gcc compiler were compared alongside AMD’s and Intel’s OpenCL imple-

mentations. Performance results match with the data-reuse found at higher polynomial

orders, thus increasing the floating point operations per byte loaded.

Kernel\Poly. Order 1 2 3 4 5 6
occa::OpenMP (gcc) 9.45803 14.8285 21.9099 23.1743 25.162 26.0598
occa::OpenMP (icpc) 14.9699 20.0807 21.5094 23.4524 25.8857 27.682
occa::OpenCL (Intel) 9.8729 14.0412 16.7597 19.2133 26.7667 34.9429
occa::OpenCL (AMD) 2.97154 3.67021 3.97436 4.09612 4.16386 4.1186

Table 6.7: This table displays performance in GFLOPS, comparing OpenMP and
OpenCL on the same CPU processor. In addition, we capture the performance dif-
ference when using different compilers for the OpenMP backend as well as different
OpenCL vendor implementations. Tests were run on a 6-core Intel i7-3930K processor.

To examine the performance of these algorithms in a GPU architecture, timing

comparisons were provided in table 6.8 to include CUDA and OpenCL running on an

NVIDIA K40c GPU and OpenCL on an AMD Radeon 7990. Although the kernel is

the same, the gap in performance between running CUDA and OpenCL on the K40 is

substantial yet NVIDIA provides the drivers for both implementations.

Kernel\Poly. Order 1 2 3 4 5 6
occa::CUDA 20.334 53.8351 107.857 162.347 159.477 206.594
occa::OpenCL (NVIDIA) 15.2936 36.2901 70.3809 95.6581 100.876 123.208
occa::OpenCL (AMD) 15.3175 42.6366 91.9491 225.795 280.854 289.601

Table 6.8: This table displays performance in GFLOPS, comparing CUDA and
OpenCL on an NVIDIA K40, and OpenCL on an AMD 7990. In addition, we cap-
ture the performance difference when using NVIDIA’s CUDA and NVIDIA’s OpenCL
implementation although they use the same LLVM backend.

As opposed to labeling a specific backend as the best, the portability gained using

occa allows users to pick the best-performing backend for each device. Two cases were



117 CHAPTER 6. IMPLEMENTATION STUDIES AND BENCHMARKS

illustrated through timing this application, testing the OpenMP compiler and choos-

ing between CUDA or OpenCL when running on an NVIDIA GPU. While OpenCL

provides portability to multiple backends, the performance is dependent on the vendor

and thus having the option to re-run the same kernel using the CUDA backend often

benefits in performance.

6.4 Discontinuous Galerkin

The last project discussed is PasiDG, a discontinuous Galerkin (DG) numerical

solver for the shallow water equations (SWE) (Gandham et al. 2015). The equations

examined are the two dimensional non-linear equations to simulate tsunami propaga-

tions,

Bh

Bt
`
Bphuq

Bx
`
Bphvq

By
“ 0, (6.8)

B

Bt
phuq `

B

Bx

ˆ

hu2
`

1
2gh

2
˙

`
B

By
phuvq “ ´gh

BB

Bx
,

B

Bt
phvq `

B

Bx
phuvq `

B

By

ˆ

hu2
`

1
2gh

2
˙

“ ´gh
BB

By
,

with water depth h, spatial velocities u, v, bathymetry B, and gravity g. Grouping

equation (6.8) by partial derivatives simplifies the equations to

qt `∇ ¨ rF pqq, Gpqqs “ Spqq, (6.9)



CHAPTER 6. IMPLEMENTATION STUDIES AND BENCHMARKS 118

where

q “

»

—

—

—

—

—

—

—

–

p

u

v

w

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, F pqq “

»

—

—

—

—

—

–

hu

hu` gh2

2

huv

fi

ffi

ffi

ffi

ffi

ffi

fl

, Gpqq “

»

—

—

—

—

—

–

hv

huv

hv ` gh2

2

fi

ffi

ffi

ffi

ffi

ffi

fl

, Spqq “

»

—

—

—

—

—

—

–

0

´gh
BB

Bx

´gh
BB

By

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Although a brief description of the DG method was provided in subsection 5.2.3,

the example was based on the wave equation. The similarities between the two con-

servative equations, equation (5.4) and equation (6.9), causes a similarity between

the SWE operators and those found in code listing 5.4 and code listing 5.5. I refer

the reader to (Gandham et al. 2015) or (Gandham 2015) for additional detail in the

implementations.

For this application, it was of interest to examine performance in high-order meth-

ods. Hence, the provided timings are used to display the performance with relation to

the polynomial order of the method. Timing comparisons in table 6.9 include OpenMP

with 12 threads and OpenCL running on an Intel i7-3930K. Performance results show

the matrix-free algorithm behaves better at higher-orders, mainly due to the data-reuse

and thus increasing the floating point operations per byte loaded.

To examine the performance of these algorithms in a GPU architecture, timing

comparisons were provided in table 6.10 to include CUDA and OpenCL running on an

NVIDIA K40 GPU and OpenCL on an AMD Radeon 7990. Similar to the results ob-

tained for the spectral element method, a performance gap is visible between NVIDIA’s

CUDA and OpenCL implementations on the K40 GPU.

6.5 Rodinia Benchmarks



119 CHAPTER 6. IMPLEMENTATION STUDIES AND BENCHMARKS

Kernel\Poly. Order 1 2 3 4 5 6
occa::OpenMP (icpc) 45.7 58.6 64.2 64.0 47.6 35.0
occa::OpenCL (Intel) 38.7 49.8 188 112.8 98.7 104

Table 6.9: This table displays performance in GFLOPS, comparing OpenMP using the
icpc compiler and Intel’s OpenCL implementation on the same CPU processor. Tests
were run on a 6-core Intel i7-3930K processor.

Kernel\Poly. Order 1 2 3 4 5 6
occa::CUDA 824 1047 1255 1361 752 659
occa::OpenCL (NVIDIA) 576 707 856 1025 464 410
occa::OpenCL (AMD) 446 716 1121 1253 913 729

Table 6.10: This table displays performance in GFLOPS, comparing CUDA and
OpenCL on an NVIDIA K40, and OpenCL on an AMD 7990. In addition, we cap-
ture the performance difference when using NVIDIA’s CUDA and NVIDIA’s OpenCL
implementation although they use the same LLVM backend.

Performance validations are shown through a range of algorithms by implementing

a subset of benchmarks seen in Rodinia (Che et al. 2009). The benchmarks were mo-

tivated by a study aiming to encompass an abundance of the applications found in the

HPC community (Asanovic et al. 2006). From the benchmarks, I picked the back prop-

agation, breadth-first-search, and Gaussian elimination mini-apps to benchmark and

compare. All occa ports used automatic memory management and a single okl kernel

to assist the validation of performance, portability, and ease-of-development.

Comparisons include timing results using OpenMP, CUDA, and OpenCL in ad-

dition to multithreaded scaling results for OpenMP. Timings for the native OpenMP

and occa OpenMP backend implementations were conducted on an Intel Xeon CPU

E5-2650 and an Intel i7-4820K. The GPUs used to test the CUDA, OpenCL and their

occa counterparts include an NVIDIA K20c and an NVIDIA 980.

6.5.1 Back Propagation



CHAPTER 6. IMPLEMENTATION STUDIES AND BENCHMARKS 120

Implementation 1 Thread 2 Threads 4 Threads 8 Threads 16 Threads
(1) Native 0.218 0.171 (64%) 0.096 (56%) 0.075 (36%) 0.036 (38%)
(1) okl 0.225 0.181 (62%) 0.102 (55%) 0.053 (52%) 0.033 (42%)

(2) Native 0.209 0.115 (91%) 0.067 (77%) 0.054 (49%) 0.107 (12%)
(2) okl 0.205 0.113 (91%) 0.079 (65%) 0.038 (67%) 0.066 (19%)

Table 6.11: The table displays timings and scaling between the native back propagation
OpenMP kernel and its respective okl port running in OpenMP-mode. Tests were run
to compute X on: (1) two 8-core Intel Xeon CPU E5-2650 processors, (2) 4-core Intel
i7-4820K.

Implementation Timings in seconds
(1) Native CUDA 0.0484
(1) Native OpenCL 0.0344
(1) okl::CUDA 0.0084
(1) okl::OpenCL 0.0105

(2) Native CUDA 0.0243
(2) Native OpenCL 0.0378
(2) okl::CUDA 0.0177
(2) okl::OpenCL 0.0190

Table 6.12: The table displays timings and speedups from using occa from the native
back propagation CUDA kernel and its respective okl port, comparing CUDA and
OpenCL. Tests were run to compute X on: (1) NVIDIA K20c, (2) NVIDIA 980.

6.5.2 Breadth-First Search

Implementation 1 Thread 2 Threads 4 Threads 8 Threads 16 Threads
(1) Native 0.10218 0.06140 (83%) 0.05439 (47%) 0.04006 (32%) 0.03245 (20%)
(1) okl 0.13212 0.10250 (64%) 0.05944 (56%) 0.03767 (44%) 0.02840 (29%)

(2) Native 0.07699 0.04809 (80%) 0.03371 (57%) 0.05505 (17%) 0.04739 (10%)
(2) okl 0.10387 0.05600 (92%) 0.03243 (80%) 0.03375 (38%) 0.03412 (19%)

Table 6.13: The table displays timings and scaling between the native breadth-first
search OpenMP kernel and its respective okl port running in OpenMP-mode. Tests
were run to compute X on: (1) two 8-core Intel Xeon CPU E5-2650 processors, (2)
4-core Intel i7-4820K.



121 CHAPTER 6. IMPLEMENTATION STUDIES AND BENCHMARKS

Implementation Timings in seconds
(1) Native CUDA 0.00845
(1) Native OpenCL 0.00918
(1) okl::CUDA 0.01044
(1) okl::OpenCL 0.01033

(2) Native CUDA 0.00533
(2) Native OpenCL 0.00537
(2) okl::CUDA 0.00493
(2) okl::OpenCL 0.00840

Table 6.14: The table displays timings and speedups from using occa from the native
breadth-first search CUDA kernel and its respective okl port, comparing CUDA and
OpenCL. Tests were run to compute X on: (1) NVIDIA K20c, (2) NVIDIA 980.

6.5.3 Gaussian Elimination

Implementation 1 Thread 2 Threads 4 Threads 8 Threads 16 Threads
(1) okl 2.47567 1.34976 (92%) 0.92982 (67%) 0.65721 (47%) 0.49321 (31%)

(2) okl 1.81264 0.98354 (92%) 0.74674 (61%) 0.39831 (57%) 0.65954 (17%)

Table 6.15: The table displays timings and scaling for the Gaussian elimination kernels
ported into okl, no native OpenMP code was given for this benchmark. Tests were
run to compute X on: (1) two 8-core Intel Xeon CPU E5-2650 processors, (2) 4-core
Intel i7-4820K.



CHAPTER 6. IMPLEMENTATION STUDIES AND BENCHMARKS 122

Implementation Timings in seconds (Speedup relative to native code)
(1) Native CUDA 0.292
(1) Native OpenCL 0.277
(1) okl::CUDA 0.112
(1) okl::OpenCL 0.182

(2) Native CUDA 0.178
(2) Native OpenCL 0.126
(2) okl::CUDA 0.103
(2) okl::OpenCL 0.129

Table 6.16: The table displays timings and speedups from using occa from the native
Gaussian elimination CUDA kernel and its respective okl port, comparing CUDA and
OpenCL. Tests were run to compute X on: (1) NVIDIA K20c, (2) NVIDIA 980.

6.6 Concluding Remarks

A spectrum of numerical methods were investigated to demonstrate the perfor-

mance and their portability of occa kernels. The finite difference method comparisons

showed occa kernels can match and surpass natively coded kernels, but can lack in per-

formance portability. Results for the finite element method and discontinuous Galerkin

examples exhibited high throughput with varying performance across different back-

ends, for example CUDA vs OpenCL. The last demonstrated numerical method came

from a collaboration with Argonne National Lab to optimize a Monte Carlo mini-app,

where a single occa-mediated kernel out-performed the OpenMP and CUDA native

implementations.

Additionally, a subset of benchmarks from the Rodinia benchmark suite were

ported to use occa and compared with the available OpenMP, OpenCL, and CUDA

implementations. In all cases, one kernel was used to outperform the native OpenMP,

OpenCL, and CUDA implementations.

I investigated the application of occa on various numerical methods and diverse



123 CHAPTER 6. IMPLEMENTATION STUDIES AND BENCHMARKS

benchmarks to validate that occa kernels compete with native implementations of

the supported backends. Aside of the range of testing, I also note that throughout

its development, occa has been included in other applications. Examples include:

discontinuous Galerkin for shallow water equations (Gandham et al. 2015), continuous

and discontinuous Galerkin methods for atmospheric modeling (Wilcox et al. 2013),

and lattice Boltzmann for core sampling (Chen et al. 2015).



7 Conclusions and Future Work

The aim of this thesis work was to provide a unified programming model towards

the evolving heterogeneous systems commonly seen in high performance computing.

While we can only predict the future, I analyzed the changes on traditional multicore

processors and popular many-core graphics processing units to reason the use of par-

allel models prevalent in current and upcoming architectures. By abstracting these

programming models, I have provided a model that when used obtains comparable

results with their native implementations. In addition, methods tailored for facilitate

programming numerical methods in the occa programming model are described and

implemented. I will briefly summarize contributions that have been stated throughout

the thesis and provide suggestions for future work on occa.

7.1 Conclusions

Chapter 2 and chapter 3 introduced kernel language specifications for unifying sev-

eral backends (serial code, multithreading with Pthreads, OpenMP, OpenCL, CUDA,

and COI) alongside their foundation intermediate representation. Chapter 2 described

the occa intermediate representation (IR), unifying parallel languages and specifica-

tions, and the occa application programming interface (API) used to interact with

the offload model. Chapter 3 covered the occa kernel language (okl) and occa For-

tran language (ofl), C and Fortran extensions which utilize the occa IR for exposing

parallelism in native languages. By providing a modular intermediate representation

and a customized parser, appending backends introduced in the future is possible and



125 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

has been shown with the incorporation of the COI backend.

Supplemental tools are described in chapter 4 and chapter 5 which focused on

adding additional layers of automating for kernel generations. Chapter 4 described

a solution for automating data movement between the host and device, masking the

offload model by only requiring the user to provide device synchronizations. Chapter

5 focused on automating kernel generation through the use of array bound analysis

and loop-carried dependency detections, expediting porting across serial code to okl

or ofl based kernels.

The thesis concludes by providing examples validating the portability and per-

formance proposed by the occa project in chapter 6. Investigated examples include

applications on a range of numerical applications and a subset of Rodinia benchmarks,

some which include a contrast between performance obtained with the use of occa

and its native counterpart. Although performance portability is not always achieved,

most comparisons exhibited occa kernels to perform equally or outperform their native

counterparts due to run-time information at compile-time.

7.2 Future Work

While I achieved the goal of providing and implementing kernel specifications to-

gether with automating tools, the substantial scope of the occa project leaves a large

number of unfinished tasks. For example, enhancements can be applied to the okl

and ofl kernel language specifications to leverage the parser on applying code trans-

formations as opposed to the programmer. Additional data segment detections can

be applied to the automated data movement, moderating the data transfers between

the host and device. Less conservative testing can lead to more accurate detection of

loop-carried dependencies in oak and oaf kernels, presenting a larger range of code

to be automatically ported to okl and ofl. All efforts end up cooperating for the



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 126

greater goal of providing embedded kernels inside application host code.



A Appendix: OCCA Kernel Keywords

Provided are occa keywords categorized in tables by their use or purpose. Each

table provides similar occa keywords on the left-most column. Adjacent to the occa

keyword column is the OpenMP macro expansion, followed by the OpenCL macro

expansion and the CUDA macro expansion on the right-most column.

OCCA OpenMP OpenCL CUDA

occaInnerId0 get local id(0) threadIdx.x

occaInnerId1 get local id(1) threadIdx.y

occaInnerId2 get local id(2) threadIdx.z

occaOuterId0 get group id(0) blockIdx.x

occaOuterId1 get group id(1) blockIdx.y

occaGlobalId0 occaInnerId0 get global id(0) threadIdx.x

+ occaInnerDim0*occaOuterId0 + blockIdx.x*blockDim.x

occaGlobalId1 occaInnerId1 get global id(1) threadIdx.y

+ occaInnerDim1*occaOuterId1 + blockIdx.y*blockDim.y

occaGlobalId2 occaInnerId2 get global id(2) threadIdx.z

Table A.1: occa keywords used to obtain a scope’s work-group and work-item ID.



APPENDIX A. APPENDIX: OCCA KERNEL KEYWORDS 128

OCCA OpenMP OpenCL CUDA

occaInnerDim0 occaDims[0] get local size(0) blockDim.x

occaInnerDim1 occaDims[1] get local size(1) blockDim.y

occaInnerDim2 occaDims[2] get local size(2) blockDim.z

occaOuterDim0 occaDims[3] get num groups(0) gridDim.x

occaOuterDim1 occaDims[4] get num groups(1) gridDim.y

occaGlobalDim0 occaInnerDim0*occaOuterDim0 get global size(0) occaInnerDim0*occaOuterDim0

occaGlobalDim1 occaInnerDim1*occaOuterDim1 get global size(1) occaInnerDim1*occaOuterDim1

occaGlobalDim2 occaInnerDim2*occaOuterDim2 get global size(2) occaInnerDim2

Table A.2: occa keywords related to storing work-group and work-item sizes.

OCCA OpenMP OpenCL CUDA

occaInnerFor occaInnerFor2 occaInnerFor1 occaInnerFor0

occaInnerFor2 for(occaInnerId2 = 0;

occaInnerId2 < occaInnerDim2;

++occaInnerId2)

occaInnerFor1 for(occaInnerId1 = 0;

occaInnerId1 < occaInnerDim1;

++occaInnerId1)

occaInnerFor0 for(occaInnerId0 = 0;

occaInnerId0 < occaInnerDim0;

++occaInnerId0)

occaOuterFor2 for(occaOuterId2 = 0;

occaOuterId2 < occaOuterDim2;

++occaOuterId2)

occaOuterFor1 for(occaOuterId1 = 0;

occaOuterId1 < occaOuterDim1;

++occaOuterId1)

occaOuterFor0 for(occaOuterId0 = 0;

occaOuterId0 < occaOuterDim0;

++occaOuterId0)

occaGlobalFor2 occaInnerFor2

occaGlobalFor1 occaOuterFor1 occaInnerFor1

occaGlobalFor0 occaOuterFor0 occaInnerFor0

Table A.3: occa keywords related to explicitly displaying work-group and work-item
loop scopes.



129 APPENDIX A. APPENDIX: OCCA KERNEL KEYWORDS

OCCA OpenMP OpenCL CUDA

occaShared local shared

occaPointer global

occaConstant constant constant

occaVariable

occaRestrict restrict restrict restrict

occaVolatile volatile volatile

occaConst const const const

occaAligned attribute ((aligned ( BIGGEST ALIGNMENT )))

Table A.4: occa keywords related to occa variables attributes.

OCCA OpenMP OpenCL CUDA

occaKernelInfoArg const int *occaDims global int *dims int *dims

occaFunctionInfoArg const int *occaDims, int dummy int dummy

int occaInnerId0,

int occaInnerId1,

int occaInnerId2

occaFunctionInfo occaDims, 999 1

occaInnerId0,

occaInnerId1,

occaInnerId2

occaKernel extern "C" kernel extern "C" global

occaFunction device

occaFunctionShared local

occaInnerReturn continue; return; return;

occaParallelFor Pragma("omp parallel for")

Table A.5: occa keywords related to kernel prototypes and kernel setup.



References 130

OCCA OpenMP OpenCL CUDA

occaLocalMemFence CLK LOCAL MEM FENCE

occaGlobalMemFence CLK GLOBAL MEM FENCE

occaBarrier(Fence) barrier(Fence) syncthreads();

Table A.6: occa barriers needed in parallel threading synchronization.

OCCA OpenMP OpenCL CUDA

occaPrivateArray occaPrivateClass<type,sz> name type name[n] type name[n]

occaPrivate occaPrivateClass<type,1 > name type name type name

Table A.7: occa keywords expanding to platform-dependent private memory types
and used to carry over loop-breaks in OpenMP due to barriers.

OCCA OpenMP OpenCL CUDA

occaCPU 1 0 0

occaGPU 0 1 1

occaOpenMP 1 0 0

occaOpenCL 0 1 0

occaCUDA 0 0 1

Table A.8: occa keywords specifying platform for platform-dependent kernel opti-
mization.



References

Advanced Micro Devices 2013, ‘Porting cuda applications to opencl’.
URL: http://developer.amd.com/resources/heterogeneous-computing/opencl-
zone/programming-in-opencl/porting-cuda-applications-to-opencl

Allen, F. E. and Cocke, J. 1972, Catalogue of Optimizing Transformations, in
R. Rustin, ed., ‘Design and Optimization of Compilers’, Prentice-Hall, Englewood
Cliffs, NJ, pp. 1–30.

Allen, R. and Johnson, S. 1988, Compiling C for vectorization, parallelization, and
inline expansion, in ‘ACM SIGPLAN Notices’, Vol. 23, ACM, pp. 241–249.

Amini, M., Creusillet, B., Even, S., Keryell, R., Goubier, O., Guelton, S., McMahon,
J. O., Pasquier, F.-X., Péan, G., Villalon, P. et al. 2012, Par4all: From convex array
regions to heterogeneous computing, in ‘IMPACT 2012: Second International
Workshop on Polyhedral Compilation Techniques HiPEAC 2012’.

Anderson, M. 2014, A Framework for Composing High-Performance OpenCL from
Python Descriptions.

Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Husbands, P., Keutzer, K.,
Patterson, D. A., Plishker, W. L., Shalf, J., Williams, S. W. et al. 2006, The
landscape of parallel computing research: A view from berkeley, Technical report,
Technical Report UCB/EECS-2006-183, EECS Department, University of
California, Berkeley.

Ayguadé, E., Badia, R. M., Igual, F. D., Labarta, J., Mayo, R. and Quintana-Ort́ı,
E. S. 2009, An extension of the StarSs programming model for platforms with
multiple GPUs, in ‘Euro-Par 2009 Parallel Processing’, Springer, pp. 851–862.

Banerjee, U., Chen, S.-C., Kuck, D. J. and Towle, R. A. 1979, Time and parallel
processor bounds for Fortran-like loops, Computers, IEEE Transactions on
100(9), 660–670.

Bangerth, W., Hartmann, R. and Kanschat, G. 2007, deal. II - a general-purpose
object-oriented finite element library, ACM Transactions on Mathematical Software
(TOMS) 33(4), 24.

Bell, N. and Garland, M. 2008, Efficient sparse matrix-vector multiplication on
CUDA, Technical report, Nvidia Technical Report NVR-2008-004, Nvidia
Corporation.

Bell, N. and Hoberock, J. 2011, Thrust: A productivity-oriented library for CUDA,



References 132

GPU Computing Gems 7.

Benabderrahmane, M.-W., Pouchet, L.-N., Cohen, A. and Bastoul, C. 2010, The
polyhedral model is more widely applicable than you think, in ‘Compiler
Construction’, Springer, pp. 283–303.

Bender, M. A., Berry, J., Hammond, S. D., Hemmert, K. S., McCauley, S., Moore,
B., Moseley, B., Phillips, C. A., Resnick, D. and Rodrigues, A. 2015, Two-Level
Main Memory Co-Design: Multi-Threaded Algorithmic Primitives, Analysis, and
Simulation.

Besson, J. and Foerch, R. 1997, Large scale object-oriented finite element code
design, Computer Methods in Applied Mechanics and Engineering 142(1), 165–187.

Bodin, F. and Bihan, S. 2009, Heterogeneous multicore parallel programming for
graphics processing units, Scientific Programming 17(4), 325–336.

Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M. and
Hanrahan, P. 2004, Brook for GPUs: stream computing on graphics hardware, in
‘ACM Transactions on Graphics (TOG)’, Vol. 23, ACM, pp. 777–786.

Callahan, D., Cooper, K. D., Kennedy, K. and Torczon, L. 1986, Interprocedural
constant propagation, in ‘ACM SIGPLAN Notices’, Vol. 21, ACM, pp. 152–161.

Campbell, A. 2009, ‘IBM have not stopped Cell processor development’.
URL: http://www.hardwareheaven.com/news.php?newsid=344

Chen, C., Wang, Z., Majeti, D., Vrvilo, N., Warburton, T., Sarkar, V. and Li, G.
2015, Optimization of Lattice Boltzmann Simulation by GPU Parallel Computing
and the Application in Reservoir Characterization.

Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee, S.-H. and Skadron,
K. 2009, Rodinia: A benchmark suite for heterogeneous computing, in ‘Workload
Characterization, 2009. IISWC 2009. IEEE International Symposium on’, IEEE,
pp. 44–54.

Cooper, K. and Torczon, L. 2011, Engineering a compiler, Elsevier.

Dally, W. 2009, The End of Denial Architecture and the Rise of Throughput
Computing, Keynote at Async Conference UNC.

Dastgeer, U., Enmyren, J. and Kessler, C. W. 2011, Auto-tuning skepu: a
multi-backend skeleton programming framework for multi-gpu systems, in
‘Proceedings of the 4th International Workshop on Multicore Software Engineering’,
ACM, pp. 25–32.

Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L., Patterson,
D., Shalf, J. and Yelick, K. 2008, Stencil computation optimization and auto-tuning
on state-of-the-art multicore architectures, in ‘Proceedings of the 2008 ACM/IEEE



133 References

conference on Supercomputing’, IEEE Press, p. 4.

Demidov, D. 2012, ‘VexCL: Vector Expression Template Library for OpenCL’.

Demidov, D., Ahnert, K., Rupp, K. and Gottschling, P. 2013, Programming CUDA
and OpenCL: A Case Study Using Modern C++ Libraries, SIAM Journal on
Scientific Computing 35(5), C453–C472.

Dennard, R. H., Gaensslen, F. H., Rideout, V. L., Bassous, E. and LeBlanc, A. R.
1974, Design of ion-implanted MOSFET’s with very small physical dimensions,
Solid-State Circuits, IEEE Journal of 9(5), 256–268.

Diamos, G. F., Kerr, A. R., Yalamanchili, S. and Clark, N. 2010, Ocelot: a dynamic
optimization framework for bulk-synchronous applications in heterogeneous systems,
in ‘Proceedings of the 19th international conference on Parallel architectures and
compilation techniques’, ACM, pp. 353–364.

Dolbeau, R., Bihan, S. and Bodin, F. 2007, HMPP: A hybrid multi-core parallel
programming environment, in ‘Workshop on General Purpose Processing on
Graphics Processing Units (GPGPU 2007)’.

Du, P., Weber, R., Luszczek, P., Tomov, S., Peterson, G. and Dongarra, J. 2012,
From CUDA to OpenCL: Towards a performance-portable solution for
multi-platform GPU programming, Parallel Computing 38(8), 391–407.

Duran, A., Ayguadé, E., Badia, R. M., Labarta, J., Martinell, L., Martorell, X. and
Planas, J. 2011, Ompss: a proposal for programming heterogeneous multi-core
architectures, Parallel Processing Letters 21(02), 173–193.

Du, X., Fletcher, R. and Fowler, P. 2008, A new pseudo-acoustic wave equation for
vti media, in ‘70th EAGE Conference & Exhibition’.

Edwards, H. C. and Trott, C. R. 2013, Kokkos: Enabling performance portability
across manycore architectures, in ‘Extreme Scaling Workshop (XSW), 2013’, IEEE,
pp. 18–24.

Enmyren, J. and Kessler, C. W. 2010, SkePU: a multi-backend skeleton
programming library for multi-GPU systems, in ‘Proceedings of the fourth
international workshop on High-level parallel programming and applications’, ACM,
pp. 5–14.

Fahrenholtz, S. J., Moon, T., Franco, M., Medina, D., Danish, S., Gowda, A.,
Shetty, A., Maier, F., Hazle, J., Stafford, R. J., Warburton, T. and Fuentes, D. 2015,
A model evaluation study for treatment planning of laser induced thermal therapy.

Fang, J., Varbanescu, A. L. and Sips, H. 2011, A comprehensive performance
comparison of CUDA and OpenCL, in ‘Parallel Processing (ICPP), 2011
International Conference on’, IEEE, pp. 216–225.



References 134

Farooqui, N., Kerr, A., Diamos, G., Yalamanchili, S. and Schwan, K. 2011, A
framework for dynamically instrumenting GPU compute applications within GPU
Ocelot, in ‘Proceedings of the Fourth Workshop on General Purpose Processing on
Graphics Processing Units’, ACM, p. 9.

Ferrer, R., Planas, J., Bellens, P., Duran, A., Gonzalez, M., Martorell, X., Badia,
R. M., Ayguade, E. and Labarta, J. 2011, Optimizing the exploitation of multicore
processors and GPUs with OpenMP and OpenCL, in ‘Languages and Compilers for
Parallel Computing’, Springer, pp. 215–229.

Fischer, P. F., Lottes, J. W. and Kerkemeier, S. G. 2008, nek5000 web page, Web
page: http://nek5000. mcs. anl. gov .

Fischer, P. F. and Patera, A. T. 1991, Parallel spectral element solution of the
Stokes problem, Journal of Computational Physics 92(2), 380–421.

Fischer, P. F. and RÃČÂÿnquist, E. M. 1994, Spectral element methods for large
scale parallel NavierÃćâĆňâĂİStokes calculations, Computer Methods in Applied
Mechanics and Engineering 116(1ÃćâĆňâĂĲ4), 69 – 76.
URL: http://www.sciencedirect.com/science/article/pii/S004578259480009X

Fischer, P., Lottes, J., Siegel, A. and Palmiotti, G. 2007, Large Eddy Simulation of
wire-wrapped fuel pins I: hydrodynamics in a Periodic Array, in ‘Joint International
Topical Meeting on Mathematics & Computation and Super computingin Nuclear
Applications (M&C+ SNA 2007)’.

Gandham, R. 2015, High Performance High-Order Numerical Methods:
Applications in Ocean Modeling, PhD thesis, Rice University.

Gandham, R., Medina, D. and Warburton, T. 2015, GPU Accelerated discontinuous
Galerkin methods for shallow water equations, Communications in Computational
Physics .

Gardner, M., Sathre, P., Feng, W.-c. and Martinez, G. 2013, Characterizing the
challenges and evaluating the efficacy of a CUDA-to-OpenCL translator, Parallel
Computing 39(12), 769–786.

Giraldo, F. X. and Rosmond, T. E. 2003, A scalable spectral element Eulerian
atmospheric model (SEE-AM) for NWP: dynamical core tests, Technical report,
DTIC Document.

Golub, G. H. and Van Loan, C. F. 2012, Matrix computations, Vol. 3, JHU Press.

Gregory, K. and Miller, A. 2012, C++ AMP: Accelerated Massive Parallelism with
Microsoft® Visual C++®, ” O’Reilly Media, Inc.”.

Grewe, D., Wang, Z. and O’Boyle, M. F. 2013, Portable mapping of data parallel
programs to opencl for heterogeneous systems, in ‘Code Generation and



135 References

Optimization (CGO), 2013 IEEE/ACM International Symposium on’, IEEE,
pp. 1–10.

Grosser, T., Zheng, H., Aloor, R., Simbürger, A., Größlinger, A. and Pouchet, L.-N.
2011, Polly-Polyhedral optimization in LLVM, in ‘Proceedings of the First
International Workshop on Polyhedral Compilation Techniques (IMPACT)’, Vol.
2011.

Han, T. D. and Abdelrahman, T. S. 2009, hi CUDA: a high-level directive-based
language for GPU programming, in ‘Proceedings of 2nd Workshop on General
Purpose Processing on Graphics Processing Units’, ACM, pp. 52–61.

Han, T. D. and Abdelrahman, T. S. 2011, hiCUDA: High-level GPGPU
programming, Parallel and Distributed Systems, IEEE Transactions on 22(1), 78–90.

Harvey, M. J. and De Fabritiis, G. 2011, Swan: A tool for porting CUDA programs
to OpenCL, Computer Physics Communications 182(4), 1093–1099.

Herdman, J., Gaudin, W., McIntosh-Smith, S., Boulton, M., Beckingsale, D.,
Mallinson, A. and Jarvis, S. A. 2012, Accelerating hydrocodes with OpenACC,
OpeCL and CUDA, in ‘High Performance Computing, Networking, Storage and
Analysis (SCC), 2012 SC Companion:’, IEEE, pp. 465–471.

Hesthaven, J. S. and Warburton, T. 2007, Nodal discontinuous Galerkin methods:
algorithms, analysis, and applications, Vol. 54, Springer Science & Business Media.

Hornung, R. and Keasler, J. 2013, A Case for Improved C++ Compiler Support to
Enable Performance Portability in Large Physics Simulation Codes, Technical
report, Lawrence Livermore National Laboratory (LLNL), Livermore, CA.

Johnson, S. C. 1975, Yacc: Yet another compiler-compiler, Vol. 32, Bell Laboratories
Murray Hill, NJ.

Jordan, H., Pellegrini, S., Thoman, P., Kofler, K. and Fahringer, T. 2013, INSPIRE:
The insieme parallel intermediate representation, in ‘Parallel Architectures and
Compilation Techniques (PACT), 2013 22nd International Conference on’, IEEE,
pp. 7–17.

Karimi, K., Dickson, N. G. and Hamze, F. 2010, A performance comparison of
CUDA and OpenCL, arXiv preprint arXiv:1005.2581 .

Karniadakis, G., Israeli, M. and Orszag, S. 1991, High-order splitting methods for
the incompressible Navier-Stokes equations , Journal of computational physics
97(2), 414–443.

Klöckner, A., Warburton, T., Bridge, J. and Hesthaven, J. S. 2009, Nodal
discontinuous galerkin methods on graphics processors, Journal of Computational
Physics 228(21), 7863–7882.



References 136

Lashgar, a., Majidi, A. and Baniasadi, A. 2014, IPMACC: Open Source OpenACC
to CUDA/OpenCL Translator, arXiv preprint arXiv:1412.1127 .

Lattner, C. A. 2002, LLVM: An infrastructure for multi-stage optimization, PhD
thesis, University of Illinois at Urbana-Champaign.

Lattner, C. and Adve, V. 2004, LLVM: A compilation framework for lifelong
program analysis & transformation, in ‘Code Generation and Optimization, 2004.
CGO 2004. International Symposium on’, IEEE, pp. 75–86.

Lee, S. and Eigenmann, R. 2010, OpenMPC: Extended OpenMP programming and
tuning for GPUs, in ‘Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis’, IEEE
Computer Society, pp. 1–11.

Lee, S. and Vetter, J. S. 2014, OpenARC: open accelerator research compiler for
directive-based, efficient heterogeneous computing, in ‘Proceedings of the 23rd
international symposium on High-performance parallel and distributed computing’,
ACM, pp. 115–120.

Martinez, G., Gardner, M. and Feng, W.-c. 2011, CU2CL: A CUDA-to-OpenCL
translator for multi-and many-core architectures, in ‘Parallel and Distributed
Systems (ICPADS), 2011 IEEE 17th International Conference on’, IEEE,
pp. 300–307.

Medina, D. 2014, ‘OCCA: A Unified Approach to Multi-Threading Languages’.

Medina, D. S., St-Cyr, A. and Warburton, T. 2014, OCCA: A unified approach to
multi-threading languages, arXiv preprint arXiv:1403.0968 .

Medina, D. S., St-Cyr, A. and Warburton, T. 2015, High-Order Finite-differences on
multi-threaded architectures using OCCA, in ‘ICOSAHOM 2015’, Springer.

Micikevicius, P. 2009, 3D finite difference computation on GPUs using CUDA, in
‘Proceedings of 2nd Workshop on General Purpose Processing on Graphics
Processing Units’, ACM, pp. 79–84.

Modave, A., St-Cyr, A., Warburton, T. and Mulder, W. 2015, Accelerated
Discontinuous Galerkin Time-domain Simulations for Seismic Wave Propagation, in
‘77th EAGE Conference and Exhibition 2015’.

Munshi, A. 2008, OpenCL: Parallel Computing on the GPU and CPU, SIGGRAPH,
Tutorial .

Necula, G. C., McPeak, S., Rahul, S. P. and Weimer, W. 2002, CIL: Intermediate
language and tools for analysis and transformation of C programs, in ‘Compiler
Construction’, Springer, pp. 213–228.

Padua, D. A. and Wolfe, M. J. 1986, Advanced compiler optimizations for



137 References

supercomputers, Communications of the ACM 29(12), 1184–1201.

Pheatt, C. 2008, Intel® threading building blocks, Journal of Computing Sciences in
Colleges 23(4), 298–298.

Pominville, P., Qian, F., Vallée-Rai, R., Hendren, L. and Verbrugge, C. 2000, A
framework for optimizing Java using attributes, in ‘Proceedings of the 2000
conference of the Centre for Advanced Studies on Collaborative research’, IBM
Press, p. 8.

Quinlan, D. 2000, ROSE: Compiler support for object-oriented frameworks, Parallel
Processing Letters 10(02n03), 215–226.

Rahaman, R., Medina, D., Lund, A., Tramm, J., Warburton, T. and Seigel, A. 2015,
Portability and Performance of Nuclear Reactor Simulations on Many-Core
Architectures, in ‘2015 Exascale Applications and Software Conference’.

Reyes, R., López, I., Fumero, J. and de Sande, F. 2012, A comparative study of
OpenACC implementations, Jornadas Sarteco .

Rivière, B. 2008, Discontinuous Galerkin methods for solving elliptic and parabolic
equations: theory and implementation, Society for Industrial and Applied
Mathematics.

Rogers, P. and FELLOW, A. C. 2013, Heterogeneous System Architecture
Overview, in ‘Hot Chips’.

Romano, P. K. and Forget, B. 2013, The OpenMC Monte Carlo particle transport
code, Annals of Nuclear Energy 51, 274–281.

Russell, R. M. 1978, The CRAY-1 computer system, Communications of the ACM
21(1), 63–72.

Schaller, R. R. 1997, Moore’s law: past, present and future, Spectrum, IEEE
34(6), 52–59.

Starynkevitch, B. 2011, MELT-a Translated Domain Specific Language Embedded
in the GCC Compiler, arXiv preprint arXiv:1109.0779 .

Stilwell, N. 2013, gNek: A GPU Accelerated Incompressible Navier Stokes Solver,
PhD thesis, Masters Thesis, Rice University. http://hdl.handle.net/1911/72043.

Thomsen, L. 1986, Weak elastic anisotropy, Geophysics 51(10), 1954–1966.

Tramm, J. R., Siegel, A. R., Islam, T. and Schulz, M. 2014, XSBench–The
development and verification of a performance abstraction for Monte Carlo reactor
analysis, mcs. anl. gov .

Turbak, F. 2008, Design Concepts in Programming Languages, MIT press.



References 138

Ventroux, N., Sassolas, T., Guerre, A., Creusillet, B. and Keryell, R. 2012,
SESAM/Par4All: a tool for joint exploration of MPSoC architectures and dynamic
dataflow code generation, in ‘Proceedings of the 2012 Workshop on Rapid
Simulation and Performance Evaluation: Methods and Tools’, ACM, pp. 9–16.

Wang, W., Xu, L., Cavazos, J., Huang, H. H. and Kay, M. 2014, Fast Acceleration
of 2D Wave Propagation Simulations Using Modern Computational Accelerators,
PloS one 9(1), e86484.

Wienke, S., Springer, P., Terboven, C. and an Mey, D. 2012, OpenACCâĂŤfirst
experiences with real-world applications, in ‘Euro-Par 2012 Parallel Processing’,
Springer, pp. 859–870.

Wilcox, L. C., Giraldo, F. X., Campbell, T., Klöckner, A., Warburton, T. and
Whitcomb, T. 2013, NPS-NRL-Rice-UIUC Collaboration on Navy
Atmosphere-Ocean Coupled Models on Many-Core Computer Architectures Annual
Report, Technical report, DTIC Document.

Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K. and Demmel, J. 2009,
Optimization of sparse matrix–vector multiplication on emerging multicore
platforms, Parallel Computing 35(3), 178–194.

Wulf, W. A. and McKee, S. A. 1995, Hitting the Memory Wall: Implications of the
Obvious, ACM SIGARCH computer architecture news 23(1), 20–24.

Zhou, M., Symes, W. W. et al. 2014, Wave Equation Based Stencil Optimizations on
Multi-Core CPU, in ‘2014 SEG Annual Meeting’, Society of Exploration
Geophysicists.


	Abstract
	Acknowledgements
	Table of Contents
	Nomenclature
	Abbreviations
	Languages and Standards
	GPU Terminology
	OCCA Terminology

	Introduction
	Overview of Computational Architectures
	Central Processing Units
	Graphics Processing Units

	Programming Next-Generation Architectures
	Programming with CUDA and OpenCL
	Performance Differences Between CUDA and OpenCL

	Literature Review
	Directive Approach
	Source-to-source Approach
	Wrapper Approach

	Publications
	Published Journal Articles
	Journal Articles in Progress
	Conferences and Seminar Invitations
	Poster Presentations

	Outline

	.2em OCCA: Unified Approach To Multithreading Languages
	OCCA Background
	CPU Architecture
	GPU Architecture
	CPU and GPU Similarities

	OCCA Intermediate Representation (IR)
	Derivation
	Programming Model
	Kernel Arguments
	Outside occaOuterFor
	Between occaOuterFors
	Between occaOuterFor and occaInnerFor
	Between occaInnerFors
	Inside occaInnerFors

	Device Memory Hierarchy

	Application Programming Interface
	Offload Model and Device Abstractions
	occa::device Class
	occa::memory Class
	occa::kernel Class

	Kernel Compilation
	High Performance Computing Features

	Concluding Remarks

	OKL and OFL: OCCA Kernel Languages
	Compiler Tools
	Preprocessor
	Parsing and Tokenization
	Statement Labeling
	Expression Trees
	Types and Variable Information

	OKL Specification and Features
	Exposing Parallelism
	Memory Types
	Device Functions

	OFL Specification
	Exposing Parallelism
	Memory Types

	Support for CUDA and OpenCL
	Concluding Remarks

	Automated Data Movement
	Automated Data Movement Approaches
	Emulating Unified Memory
	Optimizations
	Concluding Remarks

	OAK: OCCA Automagic Kernel
	Coding Patterns in Numerical Applications
	Finite Difference
	Finite Element and Discontinuous Galerkin Methods

	Automagic Analysis
	Value Extractions
	Detection of Loop Carried Dependencies
	Additional Language Constructs

	Auto-generation of Kernels
	Concluding Remarks

	Implementation Studies and Benchmarks
	Finite Difference Method
	Monte Carlo
	Finite Element Method
	Discontinuous Galerkin
	Rodinia Benchmarks
	Back Propagation
	Breadth-First Search
	Gaussian Elimination

	Concluding Remarks

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendix: OCCA Kernel Keywords
	References

