Science \& Education Publishing

A Nonlinear Extension of Fibonacci Sequence

M. Tamba*, Y.S. Valaulikar
Department of Mathematics, Goa University, Taleigaon Plateau, Goa, India
*Corresponding author: tamba@unigoa.ac.in

Abstract

A new extension of Fibonacci sequence which yields a nonlinear second order recurrence relation is defined. Some identities and congruence properties for the new sequence are obtained.

Keywords: fibonacci sequence, nonlinear recurrence relation, congruence properties
Cite This Article: M. Tamba, and Y.S. Valaulikar, "A Nonlinear Extension of Fibonacci Sequence." Turkish Journal of Analysis and Number Theory, vol. 4, no. 4 (2016): 109-112. doi: 10.12691/tjant-4-4-4.

1. Introduction

The well-known Fibonacci sequence $F(n)$ is defined by $F(n+2)=F(n+1)+F(n),(n>0), F(0)=0, F(1)=1$. (1.1)
$\mathrm{F}(\mathrm{n})$ is called the nth Fibonacci number. The Fibonacci sequence has been extended in many ways and it has many interesting properties and applications in different fields ([5,6]). In recent years, Fibonacci numbers are also seen in many combinatorial problems ($[1,3]$).

In this note, we present yet another extension of Fibonacci sequence and call it Fibosenne sequence $\{P(n)\}$, defined by the relation

$$
\begin{equation*}
P(n)=2^{F(n)}-1 \quad n \geq 0 \tag{1.2}
\end{equation*}
$$

where $F(n)$ is the nth Fibonacci number. We call $\mathrm{P}(\mathrm{n})$ the nth Fibosenne number in view of its form like Mersenne number M_{n} [4]. It is clear that $P(n)=M_{F(n)}$. We shall establish various relations for $P(n)$ in line with those of $F(n)$. We shall also study some congruence properties of $P(n)$.

2. Fibosenne Sequence $\{\boldsymbol{P}(\boldsymbol{n})\}$

For $n \geq 0$, let $P(n)$ denote the $n t h$ Fibosenne number. Then the following results follow immediately from definition (1.2) and from results on Fibonacci number $F(n)([2,7])$.

Proposition 2.1

1. For $n \geq 0$,

$$
\log _{2}(1+P(n))=\frac{1}{\sqrt{5}}\left(\alpha^{n}-\beta^{n}\right)
$$

where α, β are the roots of the equation

$$
x^{2}=x+1
$$

2. For $n \geq 0, P(n)$ satisfies the nonlinear second order recurrence relation,

$$
\begin{equation*}
P(n+2)=P(n+1)+P(n)+P(n+1) P(n) \tag{2.1}
\end{equation*}
$$

with initial conditions $P(0)=0, P(1)=1$.
3. For $n \geq 1$,

$$
P(-n)=\left\{\begin{array}{c}
P(n), \text { if } n \text { is odd } \\
\frac{-P(n)}{1+P(n)}, \text { if } n \text { is even. }
\end{array}\right\} .
$$

Proof.

1. Follows from definition and Binet's formula for $F(n)$.
2. Follows from definition.
3. Follows from definition and

$$
F(-n)=(-1)^{n+1} F(n)
$$

The following properties can also be deduced easily. These properties are useful to find $P(n)$ using the earlier Fibosenne numbers.
Proposition 2.2 We have

1. $(1+P(n+2))=\frac{(1+P(n))^{3}}{(1+P(n-2))}$, for $n \geq 2$.
2. $(1+P(n+1))=\frac{(1+P(n-2))}{(1+P(n))^{2}}$, for $n \geq 2$.
3. For $m, n \geq 1$,
$P(m+n)=\left\{[1+P(m)]^{F(n+1)}[1+P(n)]^{F(m-1)}\right\}-1$.
4. For $m, n \geq 1$,

5. $P(m n) \equiv\left\{\begin{array}{l}\text { if } m n \text { is even, } m n \geq 2 \\ \left\{\begin{array}{l}\prod_{k=1}^{\frac{m n-1}{2}}[1+P(2 k)]\end{array}\right\}-1, \\ \text { if } m n \text { is odd }, m n \geq 1 .\end{array}\right\}$

Proof

1. Using definition of $P(n)$ and identity 18 for $F(n)$ given in ([2]), we get,

$$
\begin{aligned}
& (1+P(n+2))(1+P(n))(1+P(n-2)) \\
& =2^{F(n+2)+F(n)+F(n-2)} \\
& =2^{4 F(n)}=(1+P(n))^{4} .
\end{aligned}
$$

Hence the result follows.
2. Using (1), $(1+P(n))^{2}=\frac{(1+P(n+2))(1+P(n-2))}{1+P(n)}$.

By recurrence relation (2.1), we see that

$$
\frac{1+P(n+2)}{1+P(n)}=1+P(n+1)
$$

Combining 1. and 2. obtained in this proof gives desired result.
3. We have for $F(n)$ that

$$
F(m+n)=F(m+1) F(n+1)-F(m-1) F(n-1)
$$

(See [2] and [7]). Thus we arrive at the desired result. 4. Using the following identity and definition of $P(n)$ result follows.

$$
\begin{aligned}
F(m n) & =\sum_{k=1}^{m n / 2} F(2 k-1), m n \geq 2 \text { and even } \\
& =1+\sum_{k=0}^{m n-1} F(2 k), m n \text { odd. }
\end{aligned}
$$

The following results are concerning divisibility of $P(n)$.
Proposition 2.3

1. For $n \geq 0, \operatorname{gcd}(P(n), P(n+1))=1$.
2. If $n \mid F(m)$, then $M_{n} \mid P(m)$.
3. If $n \mid m$, then $P(n) \mid P(m)$.
4. If $p>2$ is a prime such that

$$
(p-1) \mid F(m) \text {, then } p \mid P(m) .
$$

Proof.

1. $\operatorname{gcd}(P(0), P(1))=\operatorname{gcd}(0,1)=1$. Suppose $n \geq 1$, $\operatorname{gcd}(P(n), P(n+1))>1$. Then there is a prime p such that p divides both $P(n)$ and $P(n+1)$. Hence by equation (2.1), p divides $P(n-1)$. Inductively, p divides $P(1)=1$, giving contradiction.

Proofs of (2) - (4) follows from the fact that, $n \mid m$, then $M_{n} \mid M_{m}$.

3. Some Congruence Properties of Fibosenne Sequence $\{\mathbf{P}(\mathbf{n})\}$

In this section, we present some congruence properties of Fibosenne sequence. The following table gives Fibosenne numbers for $0 \leq n \leq 12$.

A look at the Table 1 reveals that the last digit of $\mathrm{P}(\mathrm{n})$ follow the pattern $0113715,113715, \ldots$. Given $m \geq 2$, we have $P(0) \equiv 0(\bmod m)$ and $P(1) \equiv 1(\bmod m)$. For $n \geq 2$, the congruence properties of $\mathrm{P}(\mathrm{n})$ can be found by
using the recurrence relation (2.1). For $2 \leq m \leq 10$, we show the cycles of $P(n)(\bmod m)$ in Table 2.

Table 1. $P(n), 0 \leq n \leq 12$

Table 1.P $(\boldsymbol{n}), \mathbf{0} \leq \boldsymbol{n} \leq \mathbf{1 2}$	
n	$\mathrm{P}(\mathrm{n})$
0	0
1	1
2	1
3	3
4	7
5	31
6	255
7	8191
8	2097151
9	17179869183
10	36028797018963967
11	618970019642690137449562111
12	22300745198530623141535718272648361505980415

Table 2. Cycles of $\mathbf{P}(\mathbf{n})(\bmod m), b(m), t(m), \mathbf{2} \leq \boldsymbol{m} \leq 10$

m	$\mathrm{P}(\mathrm{n})(\bmod \mathrm{m})$	Base length $\mathrm{b}(\mathrm{m})$	Tail Period $\mathrm{t}(\mathrm{m})$
2	$(0) 11111 \ldots$	1	1
3	$011011011 \ldots$	0	3
4	$(011) 333333 \ldots$	3	1
5	$011321011321011321 \ldots$	0	6
6	$(0) 113113113 \ldots$	1	3
7	$0113033101130331 \ldots$	0	8
8	$(0113) 777777 \ldots$	4	1
9	$011374317614044671647341 \ldots$	0	24
10	$(0) 113715113715 \ldots$	1	6

Here we observe that $\mathrm{P}(\mathrm{n})$ modulo m show some pattern. After initial terms which we call "Base" there is periodic repetition of terms. We call it "Tail". This suggests that there is a pattern for congruence residues, which is different from that of Fibonacci sequence. For all sequences, which show such a pattern for congruence modulo m , we define the Base length as the number of terms in the base and denote it by $\mathrm{b}(\mathrm{m})$, the base length of the sequence modulo m . Similarly, we define the Tail Period as the minimum number of terms repeating in the tail of the sequence modulo m and denote it by $t(m)$. For example when $m=4$, the sequence is $0,1,1,3,3, \ldots$. Here $0,1,1$ is the base and $3,3,3, \ldots$ the tail. There are three terms in the base and hence $b(4)=3$. In the tail number 3 repeats and so $t(4)=1$. In the second column of Table 2, base is shown in brackets. If there are no initial terms forming base, then $b(\mathrm{~m})=0$ and the bracket is omitted. It is noteworthy that for $\mathrm{m}=11, \mathrm{~b}(11)=46$ and $\mathrm{t}(11)=12$.

From Table 2, for $\mathrm{m}=10$, the following result follows immediately.
Proposition 3.1. For $u \geq 0$,

$$
P(6 u+r) \equiv\left\{\begin{array}{c}
1(\bmod 10), \text { if } r=1,2,5 . \\
3(\bmod 10), \text { if } r=3 . \\
5(\bmod 10), \text { if } r=6 \\
7(\bmod 10), \text { if } r=4
\end{array}\right\}
$$

The following result also from Table 2.

Proposition 3.2

1. For $1 \leq r \leq 4$ and $u \geq 0$,

$$
P(4 u+r) \equiv P(r)(\bmod 5)
$$

2. For $1 \leq r \leq 3$ and $u \geq 0$,

$$
P(3 u+r) \equiv P(r)(\bmod 6) .
$$

For $n \geq 1$, let $[n]_{F}$ be the largest n_{1} such that $F\left(n_{1}\right) \leq$ n. For example, $[1]_{F}=2,[2]_{F}=4,[3]_{F}=5,[4]_{F}=5, \ldots$ etc.
Proposition 3.3 For $n \geq 1, P(k) \equiv 2^{n}-1\left(\bmod 2^{n}\right)$, for

Proof. For $k \geq[n]_{F}$.

$$
\begin{align*}
& P(k)=2^{F(k)}-1, \\
& =2^{n}\left(2^{F(k)-n}\right)-1, F(k)-n \geq 0, \tag{3.1}\\
& \equiv-1\left(\bmod 2^{n}\right) \\
& \equiv 2^{n}-1\left(\bmod 2^{n}\right) .
\end{align*}
$$

Given $m \geq 2$, considering the Fibonacci numbers $F(n)$ and the smallest residues $R_{n}(m)$ of the terms modulo m, it was observed ([9], Chap.VII) that the sequence $R_{n}(m)$ repeats after $\pi(m)$ term as are given in ([9]) which we tabulate here:

Table 3. Values of $\boldsymbol{\pi}(\boldsymbol{m})$ for $2 \leq \boldsymbol{m} \leq \mathbf{3 0}$

| Table 3. Values of $\boldsymbol{\pi}(\boldsymbol{m})$ for $\mathbf{2} \leq \boldsymbol{m} \leq \mathbf{3 0}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| m 2 3 4 5 6 7 8
 9 10
 $\pi(m)$ 3 8 6 20 24 16 12
 24 60
 m 11 12 13 14 15 16 17 18
 19 20
 $\pi(m)$ 10 24 28 48 40 24 36 24
 18 60
 m 21 22 23 24 25 26 27 28
 29 30
 $\pi(m)$ 16 30 48 24 100 84 72 48
 14 120 | |
| $\pi(m)$ is called pisano period of $F(n)$ modulo m. From | |

the definition of $\pi(m)$, it is clear that
Lemma 3.4 For $m \geq 2$ and $u \geq 0$,

$$
F(\pi(m) u+r) \equiv F(r)(\bmod m), \text { where } 0 \leq r<\pi(m) .
$$

Using this lemma we prove the following:
Proposition 3.5 For $m \geq 2$ and $u \geq 0$, we have

$$
F(\pi(m) u+r) \equiv F(r)(\bmod m), \text { where } 0 \leq r<\pi(m)
$$

and $2^{m} \equiv 1(\bmod k)$, for some $k>1$, then

$$
P(\pi(m) u+r) \equiv P(r)(\bmod k)
$$

Proof. We have

$$
\begin{align*}
& P(\pi(m) u+r)=2^{F(\pi(m) u+r)}-1, \\
& =2^{m j+F(r)}-1, \text { for some } j \geq 0, \tag{3.2}\\
& =\left(2^{m}\right)^{j} 2^{F(r)}-1, \\
& \equiv 2^{F(r)}-1(\bmod k) .
\end{align*}
$$

Notice that in Proposition $3.5,2^{m} \equiv 1(\bmod k)$ suggest that k is odd. The case when k is power of 2 is dealt in Proposition 3.3. When k is even, but not power of 2, we have the following:
Proposition 3.6 For $\boldsymbol{m} \geq 2$ and $\boldsymbol{u} \geq \mathbf{0}$, if

$$
F(\pi(m) u+r) \equiv F(r)(\bmod m)
$$

where $0 \leq r<\pi(m)$ and $2^{m} \equiv 1(\bmod k)$, for some $k>1$, then for $s \geq 1, P(\pi(m) u+r) \equiv N(r)\left(\bmod 2^{s} k\right)$, where $N(r)$ is independent of u. Here $b\left(2^{s} k\right)=[s]_{F}$.
Proof. We see for $F(\pi(m) u+r)-s \geq 0$ that

$$
\begin{align*}
& P(\pi(m) u+r)=2^{F(\pi(m) u+r)}-1, \\
& =2^{m j+F(r)}-1, \text { fors ome } j \geq 0, \\
& =2^{s}\left(2^{m j+F(r)-s}\right)-1 \tag{3.3}\\
& =2^{s}\left(k q+r_{1}\right)-1 \\
& =2^{s} k q+2^{s} r_{1}-1 \\
& \equiv 2^{s} r_{1}-1\left(\bmod 2^{s} k\right)
\end{align*}
$$

where r_{1} is the remainder when $2^{m j+F(r)-s}$ is divided by k.
We have the following corollaries.
Corollary 3.7. For $n \geq 0$, we have

$$
P(3 n+r) \equiv\left\{\begin{array}{c}
0(\bmod 3), \text { if } r=0 \\
1(\bmod 3), \text { if } r=1,2 .
\end{array}\right\}
$$

Proof. Follows from Proposition 3.5 as $\pi(2)=3$ and taking $k=3$.
Corollary 3.8. For $n \geq 0$,

$$
P(6 n+r) \equiv\left\{\begin{array}{c}
0(\bmod 15), \text { if } r=0 \\
1(\bmod 15), \text { if } r=1,2,5 \\
3(\bmod 15), \text { if } r=3 \\
7(\bmod 15), \text { if } r=4
\end{array}\right\} .
$$

Proof. As $\pi(4)=6, F(6 u+r) \equiv F(r)(\bmod 4)$ so taking $k=15$, Proposition 3.5, $P(6 u+r) \equiv P(r)(\bmod 15)$.
When $r=1, P(6 u) \equiv 0(\bmod 15)$.
When $r=0, P(6 u+1) \equiv 0(\bmod 15)$.
Hence, by (1.2), for $r=2, P(6 u+2) \equiv 1(\bmod 15)$.
Similarly the congruence relations for $r \geq 3$ can be obtained recursively.
Corollary 3.9. For $n \geq 0$,

$$
P(20 n+r) \equiv\left\{\begin{array}{c}
0(\bmod 31), \text { if } r=0,5,10,15 \\
1(\bmod 31), \text { if } r=1,2,8,19 \\
3(\bmod 31), \text { if } r=3,14,16,17 \\
7(\bmod 31), \text { if } r=4,6,7,13 \\
15(\bmod 31), \text { if } r=9,11,12,18
\end{array}\right\}
$$

Proof. As $\pi(5)=20$, taking $k=31$, and using Proposition 3.5 and proceeding as in the proof of Corollary 3.8 the result follows.
We have the following results on $t(m)$, the tail period.
Proposition 3.10

1. If $m>2$ is an odd integer,then $b(m)=0$ and $t(m) \mid \pi(\phi(m))$, where $\phi(n)$ is Euler's $\phi-$ function. In particular, if $p>2$ is prime, then $t(p) \mid \pi(p-1)$.
2. For $m \geq 1, t\left(2^{m}\right)=1$.
3. Let $m \geq 2$ be an integer such that $2^{m} \equiv 1(\bmod k)$, then $t(k) \mid \pi(m)$.
Proof
4. $\quad P(n)=2^{F(n)}-1$ $=2^{\phi(m)+k+F(r)}-1$

$$
\equiv 2^{F(r)}-1(\bmod m)
$$

Thus the pattern in $P(n)(\bmod m)$ repeats after $\pi(\phi(m))$ terms. So $\pi(\phi(m))$ must be a multiple of $t(m)$. Also since the cycle repeats right from the beginning, $b(m)=0$.
2. For $F(k) \geq m$,

$$
P(k)=2^{F(k)}-1 \equiv-1\left(\bmod 2^{m)}\right) .
$$

3. $\quad P(n)=2^{F(n)}-1$
$=2^{m s+F(r)}-1$ $\equiv 2^{F(r)}-1(\bmod k)$.
Using result (3) in Proposition 3.10, we have the following properties.

Proposition 3.11

1. For $u \geq 2$, if $m \mid M_{2^{u}}$, then $t(m) \mid 3\left(2^{u-1}\right)$.
2. For $u \geq 1$, if $m \mid M_{5^{u}}$, then $t(m) \mid 4\left(5^{u}\right)$.
3. If r is the largest integer such that $\pi\left(p^{r}\right)=\pi(p)$, and $m \mid M_{p^{u}}$ for some prime p, then $\mathrm{t}(m) \mid p^{u-r} \pi(p)$, for all $u>r$.
4. If $p \neq 5$ is a prime and $m \mid M_{p}$, then $t(m) \mid p^{2}-1$.
5. If p is a prime of the form $10 k \pm$ 1 and $m \mid M_{p}$, then $t(m) \mid p-1$.
6. If prime p is of the form $10 k \pm 3$ and $m \mid M_{p}$, then $t(m) \mid 2 p+2$.
Proof
7. For $u \geq 2$, if $m \mid M_{2^{u}}$ then $m \mid 2^{2^{u}}-1$. Hence by Proposition 3.10 (3), $t(m) \mid \pi\left(2^{u}\right)$. Result now follows by ([8], Prop 3.5).
8. Follows as in (1) above from Proposition 3.10 (3) and ([8], Prop 3.7).
9. Follows as in (1) above from Proposition 3.10 (3) and ([8], Prop 3.8).
10. If $p \neq 5$ is a prime and $m \mid M_{p}$, then $m \mid 2^{p}-1$.

Then by Proposition 3.10 (3), $t(m) \mid \pi(p)$. Hence $\pi(m) \mid p^{2}-1$ by ([8], Prop 3.11).
5. Follows as in (4) above from Proposition 3.10 (3) and ([8], Prop 3.12).
6. Follows as in (4) above from Proposition 3.10 (3) and ([8], Prop 3.13).

4. Conclusion

The new sequence defined using nonlinear second order recurrence relation has most of the identities satisfied by Fibonacci sequence. However the congruence properties of this sequence are different from those of Fibonacci sequence.

References

[1] Z.Akyuz, S. Halici, On Some Combinatorial Identities involving the terms of generalized Fibonacci and Lucas sequences, Hacettepe Journal of Mathematics and Statistics, Volume 42 (4) (2013), 431-435.
[2] A.T. Benjmin, J.J. Quinn, Proofs that really count: The Art of Combinatorial Proof, Mathematical Association of America, Washington, D.C., 2003.
[3] A.T. Benjmin, J.J. Quinn, The Fibonacci Numbers Exposed More Discretely, Mathematics Magazine 76:3 (2003), 182-192.
[4] D. Burton, Elementary Number Theory, 6th edition, Tata McGraw-Hill, 2006.
[5] M. Edson, O. Yayenie, A new generalization of Fibonacci sequence and extended Binet's formula, Integers, Volume 9, Issue 6, Pages 639-654, ISSN (Print) 1867-0652.
[6] J. Kappraff, G.W. Adamson, Generalized Binet Formulas, Lucas polynomials and Cyclic constants, Forma,19,(2004) 355-366.
[7] M. Renault, The Fibonacci sequence under various moduli, Masters Thesis, 1996.
[8] S. Vajda, Fibonacci and Lucas numbers and the Golden section: Theory and Applications, Dover Publications, 2008.

