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Abstract. To learn semantic attributes, existing methods train one dis-
criminative model for each word in a vocabulary of nameable properties.
This “one model per word” assumption is problematic: while a word
might have a precise linguistic definition, it need not have a precise visual
definition. We propose to discover shades of attribute meaning. Given an
attribute name, we use crowdsourced image labels to discover the latent
factors underlying how annotators perceive the named concept. Struc-
ture in those latent factors helps reveal shades, i.e., interpretations for
the attribute shared by some group of annotators. Using these shades,
we train classifiers to capture the variants of the attribute. The resulting
models are both semantic and visually precise, and improve attribute
prediction accuracy on novel images.

1 Introduction

Attributes are semantic properties of objects and scenes. By injecting language
into visual analysis, attributes broaden the visual recognition problem—from
labeling images, to describing them. Typically one defines a vocabulary of at-
tribute words relevant to the domain at hand. Then one gathers labeled images
depicting each attribute, and trains a model to recognize each word [1–10].

The problem with this standard approach, however, is that there is often
a gap between language and visual perception. In particular, the words in an
attribute vocabulary need not be visually precise. An attribute word may con-
note multiple “shades” of meaning—whether due to polysemy, variable context-
specific meanings, or differences in humans’ perception. For instance, the at-
tribute open can describe a door that’s ajar, a fresh countryside scene, a peep-
toe high heel, or a backless clog. Each shade may require dramatically different
visual cues to correctly capture. Thus, the standard approach of learning a single
classifier for the attribute as a whole may break down.

Unfortunately, neither bottom-up attribute “discovery” nor relative attributes
solve the problem. Unsupervised discovery methods detect clusters or splits
in the low-level image descriptor space [11–16], but they need not be human-
nameable (semantic). Further, discovery methods are intrinsically biased by the
choice of features. Relative attributes [8] do not address the existence of shades,
either. Just like categorical attributes, relative attributes assume that there is
some single interpretation of the property—namely, that a single ordering of
images from least to most [attribute] is possible.
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Fig. 1. Our method discovers factors responsible for an attribute’s presence, then learns
predictive models based on those visual cues. For example, for the attribute open, our
method will discover peep-toed (open at toe) vs. slip-on (open at heel) vs. sandal-like
(open at toe and heel), which are three visual definitions of openness. Since these shades
are not coherent in terms of their global descriptors, they’d be difficult to discover using
traditional image clustering.

Our goal is to automatically discover the shades of an attribute. An attribute
“shade” is a visual interpretation of an attribute name that one or more people
apply when judging whether that attribute is present in an image. See Figure 1.

Note that work in automatically finding the multiple “senses” of a polysemous
word [17–20] is orthogonal to our goal, as it focuses on nouns/object categories,
not descriptive properties. Further, the visual differences of polysemous nouns
are stark (e.g., a river bank or financial bank). In contrast, attribute shades are
often subtle differences in interpretation. Unlike noun senses, attribute shades
cannot be easily enumerated in a dictionary.

2 Approach

Given a semantic attribute name, we want to discover and model its multiple
visual interpretations. Rather than attempt to manually enumerate the possible
shades, we propose to learn them indirectly from the crowd. First we ask many
annotators to label various images. We then estimate latent factors that repre-
sent the annotators in terms of the visual cues they associate with the attribute.
By clustering in the low-dimensional latent space, we identify the “schools of
thought” underlying the labels. (We use the terms “school” and “shade” inter-
changeably.) Finally, we use the positive exemplars in each school to train a
predictive model.

We use two datasets: Shoes [21, 9] and SUN Attributes [10]. To focus our
study on plausibly “shaded” words, we select 12 attributes (see Table 1) that
can be defined concisely in language, yet may vary in their visual instantiations.
We show definitions of these attributes to our workers on Amazon Mechanical
Turk. We sample N = 250 to 1000 representative images to be labeled per
attribute, and obtain annotations from M = 195 workers on average. We show
a random subset of 50 images to each worker, and ask him to state whether a
given attribute is present in the images. For a random set of 5 images, the worker
must also explain his label in free-form text. These questions slow the worker
down, helping quality control, and provide ground truth data for evaluation.

Now we use the label data to discover latent factors, which are needed to
recover the shades of meaning. Let L be the M ×N label matrix, where Lij ∈
{0, 1, ?} is a binary attribute label for image j by annotator i. A ? denotes
an unlabeled example. We suppose there is a small number D of unobserved
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factors that influence the annotators’ labels. This reflects that their decisions
are driven by some mid-level visual cues. The label matrix L can be factored
as the product of an M × D annotator latent factor matrix AT and a D × N
image latent factor matrix I: L = AT I. While a number of existing methods can
be used to factor this partially observed matrix, we use a probabilistic matrix
factorization algorithm (PMF) [22, 23] due to its efficiency. We represent each
annotator in terms of his association with each discovered factor. Details can be
found in our technical report [24].

Im 1 Im 2 Im 3 Im 4 

Annotator 1 1 ? 0 ? 

Annotator 2 ? 1 0 ? 

Annotator 3 1 ? ? 0 

Annotator 4 ? ? 1 1 

Annotator 5 ? 0 ? 1 

Factor 1 
(toe?) 

Factor 2 
(heel?) 

Annotator 1 0.85 0.12 

Annotator 2 0.72 0.21 

Annotator 3 0.91 0.17 

Annotator 4 0.50 0.92 

Annotator 5 0.15 0.75 

Shade 1 

Shade 2 

Attribute: “open” 

Fig. 2. Given an attribute label matrix (left), we recover its
latent factors and their influence on each annotator (middle).
We discover shades as clusters in this space (right).

Figure 2 illustrates
with a toy exam-
ple. Some annotators
tended to label im-
ages 1 and 2 as
having the attribute,
whereas others labeled
3 and 4 as positive.
Suppose we discover
D = 2 latent factors.

Though nameless, they align with semantic visual cues; suppose here they are
“toe is open” and “heel is open”. In this example, we see the first three annota-
tors labeled images 1 and 2 as open due to factor 1, whereas the others focused
on factor 2 in other images.

After recovering each user’s latent factor vector, we apply K-means to the
columns of A to obtain clusters {S1, . . . ,SK}. Each cluster is a shade. Annota-
tors in the same cluster show similar labeling behavior, meaning they interpret
similar combinations of mid-level visual cues as salient for the attribute at hand.
Depending on the visual precision of the word, some attributes may have only
one shade; others may have many. To automatically select K, we use the silhou-
ette coefficient [25].

Now we can use shades to improve attribute prediction accuracy. We rep-
resent each shade Sk as the total pool of images that its annotators labeled as
positive. If multiple annotators in the shade labeled an image, we perform a ma-
jority vote within the shade to decide on the label. We use the images to train
a classifier, using the Adapt-SVM objective [26] to regularize its parameters to
be similar to those of a generic model for this attribute trained with majority
vote labeled examples from any annotator [1–7, 10]. Then we apply the adapted
shade model for the cluster to which a user belongs, to predict the presence or
absence of the attribute in novel images.

Prior work on attribute learning uses one of two extremes—either a Generic
classifier, or a User-adaptive classifier trained by adapting that generic model
to satisfy an individual user’s training labels [27]. We propose an approach be-
tween these extremes. With shades, we can account for differing perceptions of
an attribute, yet avoid specializing predictions down to the level of each individ-
ual user. In contrast to [27], we can “borrow” labels from the user’s neighbors
in the crowd, and leverage the robustness of the intra-shade majority vote.
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COMFORTABLEOPEN OPEN AREA

Fig. 3. Top words and images for two shades per attribute. Best seen zoomed in PDF.

3 Results

Attribute Shades Generic User-adp
Pointy 76.3 (0.3) 74.0 (0.4) 74.8 (0.3)
Open 74.6 (0.4) 66.5 (0.5) 71.6 (0.3)

Ornate 62.8 (0.7) 56.4 (1.1) 61.1 (0.6)
Comfort. 77.3 (0.6) 75.0 (0.7) 75.5 (0.6)
Formal 78.8 (0.5) 76.2 (0.7) 77.1 (0.4)
Brown 70.9 (1.0) 69.5 (1.2) 68.5 (0.9)

Fashion. 62.2 (0.9) 58.5 (1.4) 62.0 (1.4)
Cluttered 64.5 (0.3) 60.5 (0.5) 63.1 (0.4)
Soothing 62.5 (0.4) 61.0 (0.5) 61.5 (0.4)
Open area 64.6 (0.6) 62.9 (1.0) 63.5 (0.5)
Modern 57.3 (0.8) 51.2 (0.9) 56.2 (1.1)
Rustic 67.4 (0.6) 66.7 (0.5) 67.0 (0.5)

Table 1. Accuracy of predicting per-
ceived attributes.

Table 1 shows the accuracy of predicting
personalized attributes. Our method out-
performs all other methods. For “open”,
we achieve an 8 point gain over Generic,
which indicates how distinct user percep-
tions of this attribute are. We also out-
perform User-adaptive [27], while re-
quiring the exact same labeling effort.
While that method learns personalized
models, shades leverage common percep-
tions and thereby avoid overfitting to a
user’s few labeled instances.

We next perform an image search test. Given a multi-attribute query (e.g.
“white formal shoes”), we measure the fraction of test images where a method’s
predictions on all requested attributes agree with the ground truth user labels.
For queries with 2 to 6 attributes, we see similar relative gain of our shades
approach as in Table 1.

We also find that the clusters our method discovers are more coherent than
alternative shade formation methods. For each given shade, we pool all the work-
ers’ (held-out) textual explanations for their labels, perform pLSA [28], and ex-
amine the distribution of topics in each school. Low-entropy clusters are better
as they correspond to more coherent sets of descriptions. Our method produces
more coherent clusters than an existing Attribute discovery method [14] that
mines for non-semantic attributes, and Image clusters: an image descriptor
clustering approach inspired by [18]. The corresponding figure can be found in
our technical report.

In Figure 3, we see that shades capture nuanced visual sub-definitions of
the attribute words. For “open”, one shade includes open-heeled shoes (top),
while another includes sandals open at the front and back (bottom). For “com-
fortable”, one shade emphasizes a low arch (top), while the other requires soft
materials (bottom). The “open area” attribute can be either outside (top) or
inside (bottom).

Our approach to discover attribute shades brings together language, crowd-
sourcing, human perception, and visual representations in a new way. Shades
show great promise to separate the (sub-)attributes involved in a person’s use
of an attribute vocabulary during search or organization of image content.
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