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Schedule 
•  Lecture 8:00 – 10:00  

– Sampling and aliasing, signal processing, 
dynamic systems, integration techniques, etc. 

•  Assisted Pre-lab: 10:00 – 12:00 
– Material specific to the lab exercise: pulsewidth 

modulation, quadrature decoding, A/D 
conversion, etc. 

–  I’ll present required information in the lecture 
room, then we’ll move to the lab   



Important Points 
•  No textbook 

–  www.idsc.ethz.ch/education/lectures/
embedded-control-systems.html 

–  Lecture notes, microprocessor reference material, 
laboratory exercises, and other important information 

–  Day to day list of reference materials on website 

•  No required homework problems 
–  Matlab, Simulink, Stateflow 
 



Important Points 
•  Laboratory exercises 

–  8 laboratory exercises in 10 days using the 
Freescale MPC5553 microprocessor 

•  Most labs are “1-day” 
•  First lab will be Monday and Tuesday 
•  Schedule posted 

–  33 registered students   
–  11 lab stations with 3 students (“self organize”) 

 



Important Points 
•  Laboratory exercises have 3 parts: 

–  Assisted Pre-lab (10AM-12PM): questions that require 
you to read the microprocessor reference material and 
gather the information required to complete the lab 
exercise 

–  Assisted In-lab (1-4PM): the experiment 
–  Post-lab (4-5PM) : questions that should reinforce what 

you learned in the lab exercise (due 10AM the next 
day) 

•  You must attend 8 lab sessions and hand in 
all 8 lab assignments (pre-, in- and post-lab) 
to receive credit for the course 



Everyday Time Schedule 

151-0593-00 Schedule Embedded Control Systems (Fall 2015) Prof. L. 
Guzzella

Prof. R. 
D'Andrea

 Lectures Week 1 in Room ML F 34    (8 to 10 a.m.)  Lab in Room ML K31
No. Date Topic No. Topic

1 2015-09-07 Course introduction. Start on A/D conversion, sampling and aliasing; simple anti-
aliasing filter design

1 Familiarization and Digital I/O. Reading in 
MPC5553 Referense Manual, introduction 
to hardware (oscilloscope, signal generator, 
etc.)

2 2015-09-08 Finish A/D conversion, sampling and aliasing; simple anti-aliasing filter design; 
introduction to Matlab and Simulink; demonstrate Simulink by doing "Problem 
set 1" filter design.

1 Continue with Lab 1

3 2015-09-09 Introduction to Stateflow, in particular, demonstrate problem set 2, building a 
Stateflow quadrature decode model. Introduction to DC motors; derive steady-
state motor equations. Present lecture material on optical encoders, quadrature 
decoding, over/underflow and typecasting.

2 Quadrature Decoding using the enhanced 
Time Processing Unit (eTPU)

Post-Lab

4 2015-09-10 Discuss motor control (speed control, torque control, power amplifiers); Pulse 
width modulation; virtual worlds, wall "chatter" and the virtual wall.

3 Queued Analog-To-Digital Conversion 
(QADC)

Post-Lab

5 2015-09-11 Dynamic systems and transient specifications (review); develop dynamic motor 
model block diagram and implement in Simulink (domonstrate problem set 3). 
Develop motor frequency response and demonstrate input PWM attenuation.

4 Pulse Width Modulation (PWM) and Virtual 
Worlds without Time

In-Lab Post-Lab

 Lectures Week 2 in Room HG E 23    (8 to 10 a.m.)  Lab in Room ML K31  
No. Date Topic No. Topic

6 2015-09-14 Develop Stateflow model of the virtual wall (demonstrate problem set 5). 
Develop virtual spring-mass system dynamics (harmonic oscillator). Introduce 
Euler Integration and pseudo-code for the spring-mass system. 

5 Interrupts, Timing, and Frequency Analysis 
of PWM Signals

Post-Lab

7 2015-09-15 Introduction to z-transforms and numerical instability. Develop the virtual spring-
mass-damper (calculate how much damping is required to create a discrete 
harmonic oscillator using Forward Euler).  Introduce state-space notation. 
Discuss other numerical integration methods; discuss how Matlab does 
numerical integration

6 Virtual Worlds with Time

Post-Lab

8 2015-09-16 Software architecture, real-time operating systems and scheduling algorithms. 
Rapid prototyping and automatic code generation.

7 Code Generation with SIMULINK (RAppID 
Toolbox)

9 2015-09-17 Software architecture; presentation of MathWorks on Autocode generation with 
SIMULINK

7 Continue with Lab 7, catch up with other 
labs

10 2015-09-18 Introduction to CAN networks. 8 Controller Area Network

Post-Lab

IMPORTANT: You must attend 8 lab sessions and hand in all 8 assignments (pre-, in- and post-lab) to receive credit for the course. Pre-labs are due at the start of the In-labs, Post-labs are due at 5 p.m.

In-Lab

In-Lab In-Lab Post-Lab

Pre-Lab In-Lab

Introduction Pre-Lab

Pre-, In- & Post-Lab

Pre-Lab

In-Lab

In-Lab

In-Lab

In-Lab

Pre-Lab

Pre-Lab

Pre-Lab

Pre-Lab

Pre-, In- & Post-Lab

Pre-, In- & Post-LabPre-, In- & Post-Lab

Mathwork                
(location ML F 34)

10 a.m.        11 12 a.m. 1 p.m.            2                 3                  4              5 p.m.

10 a.m.        11 12 a.m. 1 p.m.            2                 3                  4              5 p.m.



What is an Embedded System? 
•  Technology containing a microprocessor as a 

component 
–  cell phone 
–  digital camera 

•  Constraints not found in desktop applications 
–  cost 
–  power 
–  memory   
–  user interface 

     Embedded processor is often the performance and 
cost limiting component! 

 

⇒



What is an Embedded Control System? 

•  Technology containing a microprocessor as a 
component used for control: 
–  automobiles                                   
–  aircraft 
–  household appliances 
–  copy machines 
–  wind turbines 

 

–  hospital beds 
–  laser printers 
–  civil structures 
–  manufacturing 
–  energy harvesters 
–  medical devices 



Characteristics of Embedded Control Systems 
•  Interface with external environment  

–  sensors and actuators 
•  Real time critical 

–  performance and safety 
–  embedded software must execute in synchrony with 

physical system 
•  Hybrid behavior 

–  continuous dynamics 
–  state machines 

•  Distributed control 
–  networks of embedded microprocessors 

Prime Example: today’s automobile! 



The Automobile in 1977 

16 electrical 
systems 
•  spark timing 
•  air/fuel 

IEEE Spectrum special issue on the Automobile, Nov 1977  

1976 Chrysler 
•  analog  control 
 
1977 GM  Olds Toronado 
1978 Ford Lincoln Versailles 
•  microprocessor control 



The Future in 1977 

IEEE Spectrum special issue on the Automobile, Nov 1977  

Gas turbine engines 
 
>100 proposed electrical systems 
 
High end automobiles: as many as 8 microprocessors, one per cylinder (Aston Martin) 
 
10K ROM: plenty unused capacity to control other engine functions 
 
Obstacles: 
 
   high cost of sensors and actuators 
 
  “the inability of the electrical engineer to characterize the mechanical system  
  for microprocessor programmers” 



The Automobile in 2015 
•  Drivetrain 

-  Variable geometry turbochargers 
-  Variable cam timing (intake, exhaust, dual-equal, dual independent) 
-  Variable valve timing 
-  Variable compression ratio 
-  Automatic transmission, continuously variable tranmission 

•  Chassis control 
-  antilock brakes 
-  traction control 
-  stability control 

•  Body control 
-  seats 
-  windows 
-  wipers 
-  locks 

•  Infotainment/GPS systems 

•  Driver assistance & active safety systems 

è Cars today are safer, less polluting, more fuel efficient, and more convenient than in 1977! 



The Automobile in 2010 

Harvard Business Review, 2010 



Industry Hiring Needs	
  
•  “The	
  auto	
  industry	
  is	
  …	
  hiring	
  a	
  different	
  breed	
  of	
  engineer	
  [to]	
  invent	
  the	
  

next	
  genera9on	
  of	
  complex	
  so>ware	
  [for]	
  m.p.g.,	
  clean	
  emissions	
  and	
  crash	
  
avoidance	
  technologies.”*	
  

•  “GM's	
  biggest	
  engineering	
  recrui9ng	
  challenges	
  are	
  so>ware	
  and	
  controls	
  
engineering”*	
  

•  Ford:	
  greatest	
  hiring	
  need	
  is	
  for	
  so>ware	
  and	
  electronics	
  skills**	
  

•  2012	
  SAE	
  salary	
  survey***:	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  EEs	
  working	
  in	
  automo9ve	
  sector	
  earn	
  $10K/year	
  more	
  than	
  MEs	
  
	
  	
  

	
  
*Detroit Free Press, October 2012 
** USA Today, July 2013 
*** www.sae.org/membership/salarysurvey/ 
 
 



An Industry Request: 1998 
Dr.	
  Ken	
  BuSs:	
  
•  Ford	
  Research	
  (currently	
  Toyota)	
  
•  Founding	
  member,	
  MATHWORKS	
  Automo9ve	
  Advisory	
  Board	
  (1998)	
  

“Why	
  can’t	
  I	
  hire	
  students	
  trained	
  to	
  do	
  embedded	
  control	
  so6ware	
  development?”	
  
	
  
	
  “And	
  why	
  don’t	
  the	
  students	
  I	
  hire	
  know	
  how	
  to	
  talk	
  to	
  one	
  another?”	
  
	
  
	
  
Skills	
  required:	
  
•  Control	
  algorithms	
  
•  Computer	
  so>ware	
  
•  Computer	
  hardware	
  
•  Electronics	
  
•  Mechanical	
  engineering	
  

	
  
	
  	
  



Outcome: Two Courses 
•  UofMichigan: EECS 461, Embedded Control Systems 
–  16th year 
–  ~ 200 students/year 
–  Jeff Cook, formerly Ford Research 
–  Student body:  

•  EE and CE, seniors and masters  
•  Space permitting, grad students from other departments 

•  ETH Zurich: 151-0593-00, Embedded Control Systems 
–  8th year as two week block course 
–  33 students/year 
–  Mechanical Engineering Graduate Students  
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Laboratory Overview 
•  MPC5553 Microcontroller (Freescale) 

•  Development Environment 
–  Debugger (P&E Micro) 
–  Codewarrior C compiler (Freescale) 

•  Haptic Interface 
–  Force feedback system for human/computer interaction 

•  Rapid Prototyping Tools 
–  Matlab/Simulink/Stateflow, Embedded Coder (The Mathworks) 
–  RAppID Toolbox (Freescale) 

 
 



Freescale MPC5553 Microcontroller 
•  32 bit PPC core  

–  floating point   
–  132 MHz 
–   -40 to +125 °C temperature range 

•  Programmable Time Processing Unit (eTPU)  
–  Additional, special purpose processor handles I/O that would otherwise 

require CPU interrupt service (or separate chip) 
–  Quadrature decoding 
–  Pulse Width Modulation 

•  Control Area Networking (CAN) modules 
•  2nd member of the MPC55xx family 

–  real time control requiring computationally complex algorithms 
–  MPC5554 replaces MPC555 for powertrain control 
–  MPC5553 has on-chip Ethernet for manufacturing applications 



MPC5553 EVB 

• Evaluation board (Freescale) 
- 32 bit PPC core  
- floating point   
- 128 MHz 
 

•  Interface board (UofM) 
–  buffering 
–  dipswitches 
–  LEDs 
–  rotary potentiometer 



Nexus Compliant Debugger (P&E Micro) 



Haptic Interface 
•  Enables human/computer interaction through sense of touch 

–  force feedback 
–  virtual reality simulators (flight, driving) 
–  training (surgery, assembly) 
–  teleoperation (manufacturing, surgery) 
–  X-by-wire cars 

•  Human visual sensor:   30 Hz 
•  Human haptic sensor:   500Hz-1kHz 

•  Ideal pedagogical tool…. 
–  student satisfaction 
–  virtual reality algorithms easy to understand 
–  tricky to get right 



Force Feedback 



Haptic Wheel & Lab Station 
•  Haptic Interface 

–  DC motor 
–  PWM amplifier w/ current controller 
–  optical encoder 
–  3rd generation 



Lectures (I) 
•  Quantization 
•  Sampling 
•  Linear filtering 
•  Quadrature decoding 
•  DC motors 
•  Pulse Width Modulation (PWM) amplifiers 
•  Motor control: current (torque) vs. speed 
•  MPC5553 architecture. Peripherals: eMIOS, eTPU… 
•  Haptic interfaces.   

–  virtual wall 
–  virtual spring/mass/damper   

•  Simulink/Stateflow modeling of hybrid dynamical systems 
•  Numerical integration.  



Lectures (II) 
•  Networking: 

–  Control Area Network (CAN) protocol. 
–  Distributed control 

•  Interrupt routines: timing and shared data 
•  Software architecture 

–  Round robin 
–  Round robin with interrupts 
–  Real time operating systems (RTOS) 
–  Multitasking 

•  Shared data: semaphores, priority inheritance, priority ceiling 
•  Real time computation. Rate monotonic scheduling. 
•  Rapid prototyping. Autocode generation. 
•  Model based embedded control software development 
•  PID control design 



Laboratory Exercises 

•  Lab 1: Familiarization and digital I/O 
•  Lab 2: Quadrature decoding using the eTimer 
•  Lab 3: Queued A-D conversion 
•  Lab 4: Pulse Width Modulation and simple virtual worlds 
•  Lab 5: Interrupt timing and frequency analysis of PWM signals 
•  Lab 6: Virtual worlds with dynamics   
•  Lab 7: Rapid Prototyping 
•  Lab 8: Controller Area Network (CAN) 

•  Each teaches  
–  a peripheral on the MPC5553  
–  a signals and systems concept 
–  Labs 1-6, 8: program in C 
–  Lab 7: autocode generation 
–  Each lab reuses concepts (and code!) from the previous labs 



Lab 1: Familiarization and Digital I/O 
•  Use General Purpose Input/Output (GPIO) on MPC5553  
•  Use “union” command to write C code to perform bit 

manipulations 
•  Read two 4-bit numbers set by dipswitches 

–  add and display on LEDS 
•  Write C header file to access various bits in a 16 bit register: 
    typedef union SIU_CONFIG_UNION { 
            /* This allows access to all 16-bits in the register */ 
            unsigned short REG; 
            /* This structure allows access to the individual bytes of the register */ 
            struct { 
                    unsigned short UPPER:8; /* access to the top 8 bits */ 
                    unsigned short LOWER:8; /* access to the bottom 8 bits */ 
           } BYTE; 
           /* This structure splits apart the different fields of the register */ 
          struct { 
                   unsigned short :2; /* indicates 2 unused bits in the register */ 
                   unsigned short FIELD1:8; /* access to the 8-bit field named FIELD1 */ 
                   unsigned short FIELD2:6; /* access to the next 6-bit field */ 
          } FIELDS; 
   } EXAMPLE_REGISTER; 
•  Remaining labs use Freescale supplied header files 



Lab 2: Quadrature Decoding 

•  Optical encoder attached to motor generates two 90° out 
of phase square waves: 

 

•  QD function on MPC5553 eTPU:  
   decodes quadrature signal into counter 
•  CPU must read counter before overflow 
Issue: How fast can wheel turn before counter overflows? 



Lab 3: A/D Conversion 
•  Uses QADC on the MPC5553 
•  Acquire analog input from potentiometer or signal generator 
•  Measure time required for one conversion by toggling bit 
•  Investigate aliasing 
•  Software oscilloscope: 



Lab 4: Pulse Width Modulation 
•  Drive DC motor with a PWM signal 

–  Switching frequency 20 kHz 
–  Duty cycle 40% 
–  eMIOS peripheral on MPC5553 
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Lab 4: Virtual Wall 

•   Software loop 
–   read position from encoder 
–   compute force F = 0 or F = kx 
–   set PWM duty cycle 

•   Rotary motion 
–   degrees       encoder count 
–   torque        PWM duty cycle 
–  1 degree into wall        400 N-mm 

torque 

•  Wall	
  chaSer	
  
–  large	
  k	
  required	
  to	
  make	
  s9ff	
  

wall	
  
–  limit	
  cycle	
  due	
  to	
  sampling	
  and	
  

quan9za9on	
  
	
  

⇔
⇔
⇔



Lab 5: Interrupt Timing and PWM Frequency 
Analysis 

•  Use interrupt timer to generate a time step for numerical differentiation 
and integration 

•  Periodically modulate duty cycle of a 20kHz PWM signal by writing 
an ISR that either 
–  Samples 100 hz sine wave.  
–  Calls C sine function 
–  Uses lookup table 

•  Time ISR by toggling a bit 
•  Filter PWM signal to remove 
    20kHz switching frequency. 
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Lab 6: Virtual Spring-Mass System 
•  Virtual spring-mass system: reaction force F = k(w-z) 
•  Measure z, must obtain w by numerical integration 
•  Use interrupt timer to generate a time step 

 w + k
m w = k

m z

 
θw + k

Jw
θw = k

Jw
θz



Design Specifications 
•  Choose k and Jw so that 

–  virtual wheel oscillates at 1Hz 
–  maximum torque in response to 45 degree step in wheel      
position is < 800Nmm  

•  Verify design in Simulink before testing on hardware 



Numerical Integration 
• 	
  Forward	
  Euler:	
  	
  

– 	
  easy	
  to	
  program	
  in	
  real	
  9me	
  	
  
– 	
  no	
  direct	
  feedthrough,	
  no	
  algebraic	
  loops	
  
– 	
  numerically	
  unstable!	
  

• 	
  Ques9on:	
  Can	
  we	
  restore	
  stability	
  by	
  adding	
  virtual	
  damping?	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Yes!	
  	
  	
  Can	
  compute	
  b	
  mathema;cally.	
  



Lab 8: Controller Area Networking (CAN) 
•  Networking protocol used in time-critical applications 
•  Messages have unique identifiers: priorities 
•  Allows computation of worst case response time 
•  Lab exercises: 
–  implement virtual wall remotely 
–  estimate network utilization 
–  virtual “daisy chain” 

T = k θi −θ( )+ k θ j −θ( )



Autocode Generation (I) 

•  Derive a mathematical model of system to be controlled 
•  Develop a Simulink/Stateflow model of the system. 
•  Design and test a control algorithm using this model. 
•  Use Simulink Coder to generate C-code. 
•  Eliminates coding errors. 

•  Rapid prototyping: Speeds product development as generated 
code can be tested in many design cycles  

•  Autocode in production: 
–  Nonconsumer market: NASA, aerospace 
–  Automotive: body control 
                          powertrain control?? 



Autocode Generation (II) 

•  Need Simulink blocks: 
–  device drivers 
–  processor and peripheral initialization 

•  Issues: 
–  efficiency of generated code 
–  structure of code 

•  Multitasking 
–  with RTOS, task states 
–  without RTOS, nested interrupts 



RAppID Toolbox (Freescale) 
•  Processor and peripheral initialization blocks 
•  Device driver blocks 
•  Enables multitasking with nested interrupts 

RA ppID M PC5554 Target Setup

System  Clock : 128 MHz
Target : MPC5554

Compi ler : m etrowerks
Target Type : In tRAM

Operating System  : simpletarget

RAppID-E C



Lab 7: Two virtual wheels  

Total reaction torque 



Multirate Simulation for Code Generation 



Fast and slow subsystems 

Fast	
  subsystem	
  

Slow	
  subsystem	
  



Device Drivers 

Read	
  encoder	
  and	
  
translate	
  to	
  degrees	
  

Convert	
  torque	
  to	
  	
  
duty	
  cycle	
  and	
  write	
  
to	
  PWM	
  



UM Project: Adaptive Cruise Control 
• 	
  Driving	
  simulator	
  
• 	
  Bicycle	
  model	
  of	
  vehicle	
  
• 	
  6	
  vehicles	
  interac9ng	
  
	
  	
  	
  over	
  CAN	
  network	
  
• 	
  “Lane	
  centering”	
  
• 	
  ACC	
  algorithm:	
  3	
  states	
  

– 	
  manual	
  (sliding	
  pot)	
  
– 	
  constant	
  speed	
  
– 	
  constant	
  distance	
  

	
  



Controller Block Diagram  



Observations 
 
•  Multidisciplinary 
•  Multiple layers of abstraction 

•  Successful embedded engineers understand time 
–  Mechanical/electrical engineers: time in the application domain (physics) 
–  Computer engineers: time on the microprocessor (           ) 

•  “pure” software engineers lack necessary background. 

•  Applications in many areas 
–  aerospace 
–  household appliances 
–  robotics 
–  civil engineering 
–  defense 
–  medical devices 

 

 

 1 0



The Automobile and the Future 
More fuel efficient  
vehicles = lighter  
& less survivable 
in an accident. 
 
Solution: avoid  
accidents by  
eliminating driver  
error. 
 
 
èMore jobs for embedded 
control engineers 

Lino Guzzella ETH,    IEEE Spectrum May 2014 



Active Safety Systems 

!*# $# %&'#"()*# $# +,-./#&%0-12&+# $# 3402.-5%610006,-7 ILLUSTRATION BY mckibillo

tems detects road hazards and draws your 
attention to them. It adjusts your speed and 
the distance from the car or truck in front 
of you based on levels you set, and it can 
even bring you to a full stop when the vehi-
cle ahead does the same. It also helps when 
you’re backing out of a parking spot, using 
visual alerts, sounds, and seat vibrations to 
warn of approaching cross traffic. The system 
sets off similar alarms if you start drifting out 
of a lane without the turn signal activated. 

A car equipped with this package can 
avoid many low-speed crashes, such as 
those in parking lots or in stop-and-go 
traffic, with a low-speed emergency auto-
matic braking system that kicks in when it 
 senses an  object ahead and notices that the 
 driver is not  reacting appropriately. And at 
 higher speeds, this same system automati-
cally brakes to help avoid—or at least reduce 
the severity of—an impending rear-ender. 

Smarts like these require some high-tech 
sensors. A long-range radar, positioned in 
the grille behind the Cadillac logo, scans for 
 objects as far ahead as 150 meters. Short-
range radars, which can sense cars a few 
dozen  meters away, hide behind the plastic 
that covers the bumpers—two radars in the 
front and three in the rear. A video camera 
attached to the windshield behind the rear-
view mirror registers lane markings and ve-
hicles ahead. Another camera near the rear 
license plate surveys the scene behind the 

car. Eight ultra sonic sen-
sors, four on the front 
bumper and four on the 
rear, detect objects at 
very close range, which 
is helpful when you’re 
trying to parallel park. 

The data from all 
these sensors go to 
a central computer, 
which uses the infor-
mation to figure out 
what kinds of objects 
are around the car, rec-
ognizing that in certain 
situations some sensors 
are more reliable than 
others. For example, 
when you’re traveling 
at highway speeds, the 
readings from the ultra-

ronically, while technology will 
ultimately protect us from acci-
dents on the road, sometimes it 
does the opposite. That’s because 

so many people make phone calls, 
text, manipulate GPS units, and fiddle with 
infotainment systems when they should be 
concentrating on their driving. And even the 
most diligent drivers can choose the wrong 
moment to glance at a navigation screen. 
According to the National Highway Traffic 
Safety Administration, driver distraction is 
a factor in almost 20 percent of crashes in 
which someone is injured. 

But a class of technological aids called  
active-safety systems is beginning to address 
this problem by raising drivers’ awareness 
of crash threats that may exist in the sur-
rounding traffic. Virtually every car sold 
in developed countries today uses passive-
safety features, like seat belts, air bags, and 
car frames that absorb impact to protect 
 occupants during a crash. Active safety goes 
further by using loud sounds, visual alerts, 
and vibrations to direct the driver’s atten-
tion to imminent danger. Some systems 
can even operate the brakes to help avert 
disaster. These active-safety systems are 
the building blocks for the crash-avoiding 
cars of the future. 

Consider Cadillac’s Driver Assist pack-
age, which our company (General Motors) 
introduced in 2012. This group of safety sys-

sonic sensors aren’t helpful, whereas they 
are nearly essential when you’re navigat-
ing your car into a tight parking space. The 
central computer then decides what kind of 
alert needs to be activated or what level 
of automatic braking needs to be applied. 

These active-safety systems are enor-
mously helpful, but they aren’t enough to 
make a car truly crash proof or able to take 
over the driving. They can’t grab the wheel 
from you and take evasive action when brak-
ing alone won’t do, for example, and they 
can’t stop you from steering out of your 
lane into danger if you ignore all the alerts. 

While fully autonomous vehicles are a 
ways off yet, we believe cars that can pilot 
themselves briefly under certain conditions 
should be in showrooms before the end of 
the decade. 

Actually, self-driving vehicles are already 
here, although you can’t yet buy one at your 
local dealer. In November 2007, a  Chevrolet 
Tahoe modified by researchers at Carne-
gie Mellon University and GM along with 
other partners won the Defense Advanced 
Research Projects Agency (DARPA) Urban 
Challenge, a closed-course competition that 
tested the ability of autonomous cars to 
drive in traffic. Since then, companies and 
universities have built upon the  technology 
showcased in the challenge. Google, for 
 example, has a fleet of driverless Toyota 
Priuses, which have reportedly traveled an 
 aggregate of 500 000 kilometers.

To drive itself, a car requires four basic 
things. It needs a satellite-navigation sys-
tem and digital maps to know where it is. It 
needs to be able to see 360 degrees around 
itself under all sorts of conditions. It needs 
to be able to communicate with other vehi-
cles and with certain parts of the road infra-
structure, like traffic lights, school zones, 
and tollbooths. Finally, it needs software 
intelligent enough to determine what the 
car should do and electronic controls and 
actuators to make the car do it. All these 
technologies exist on some level today, and 
many of them are already on vehicles, as in 
Cadillac’s Driver Assist package. But these 
systems need to be more capable before 
they usher in the era of fully self-driving cars.

Satellite navigation and digital maps are 
old news: GM incorporated GPS, digital maps, 

A TYPICAL ACTIVE-SAFETY SYSTEM uses a central computer 
to collect  information from a variety of sensors—including long- and 
short-range radars, video cameras, and ultrasonic distance detectors. 
The computer activates alerts or brakes automatically based on its 
analysis of the sensor inputs.
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A Cautionary Note 

Wall Street Journal, December 2013: “Will tort law kill driverless cars?” 
Fox News, March 2014:  “Justice Department announces $1.2 billion settlement with Toyota” 
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Page 1 of 3http://online.wsj.com/news/article_email/SB10001424052702304403804579264261779925166-lMyQjAxMTAzMDEwODExNDgyWj#printMode

See a sample reprint in PDF format.

Dow Jones Reprints: This copy is for your personal, non-commercial use only. To order presentation-ready copies for distribution to your colleagues, clients or
customers, use the Order Reprints tool at the bottom of any article or visit www.djreprints.com

Order a reprint of this article now

BUSINESS WORLD

Holman Jenkins: Will Tort Law Kill
Driverless Cars?
Toyota is required to prove a negative in cases of runaway acceleration.

Dec. 17, 2013 6:43 p.m. ET

Those lusting after the self-driving car ought to pay attention to the Toyota litigation, which suggests that
Software Sammy is not about to become everyman's personal chauffeur anytime soon.

Toyota had been vigorously fighting hundreds of complaints that its cars are prone to unintended
acceleration. Now it's moving toward a global settlement as a consequence of a single Oklahoma lawsuit
that appears to establish that Toyota can't prevail if it can't prove a negative—that its software didn't go
haywire in some untraceable and unreplicable manner.

Attorneys for Jean Bookout didn't mess around with suspect
floor mats, a sticky gas pedal or imprecise hits that Toyotas
are unsafe due to a pattern of "other similar incidents." They
went right after a defect in Toyota's electronic throttle control
that nobody can find or replicate.

The Bookout jury was apparently impressed by the
testimony of software expert Michael Barr. He said a single
"bit flip" (the smallest instance of data corruption) could
cause uncontrolled acceleration when the driver had been
using cruise control, stopped using cruise control, then
resumed using cruise control to let the car accelerate back

to its selected speed.

The car would just keep accelerating due to stoppage of a set of software functions and safety checks
dubbed "Task X." The only way to restart Task X, Mr. Barr said, was to turn the car off and on again. In
the meantime, the driver would have to remove his foot from the brake and then step on the brake again
to engage a safety feature unrelated to Task X to close the throttle.

A Toyota Camry after crashing off Interstate 80 in
Wendover, Utah, 2010. Associated Press

By HOLMAN W. JENKINS, JR.
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Testimony 
Expert	
  witnesses:	
  
	
  
Phil	
  Koopman,	
  CMU	
  -­‐	
  “Code	
  had	
  >10,000	
  global	
  variables*”	
  
	
  
Michael	
  Barr,	
  Barr	
  Group	
  –	
  “Code	
  had	
  bugs	
  that	
  could	
  cause	
  unintended	
  accelera9on**”	
  
	
  
	
  
Wall	
  Street	
  Journal:	
  “how	
  is	
  a	
  car	
  maker	
  supposed	
  to	
  defend	
  itself	
  when	
  it	
  can't	
  prove	
  
	
  that	
  its	
  so>ware	
  behaves	
  safely	
  under	
  all	
  circumstances?”	
  
	
  
The	
  Google	
  car	
  has	
  been	
  driven	
  500K	
  miles	
  with	
  no	
  accident	
  
	
  
Toyota	
  Camrys	
  were	
  driven	
  billions	
  of	
  miles	
  before	
  so>ware	
  error	
  (if	
  it	
  was	
  that)	
  emerged	
  

*Jack	
  Ganssle	
  “A	
  Pox	
  on	
  Globals”,	
  embedded.com,	
  Oct.	
  2006	
  

**www.safetyresearch.net/2013/11/07/	
  



National Science Foundation Research 
Cyber-­‐physical	
  systems	
  (CPS):	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  interac9on	
  between	
  computa9onal	
  elements	
  and	
  physical	
  world.	
  
	
  
~	
  networks	
  of	
  embedded	
  control	
  systems	
  
	
  
Since	
  comprehensive	
  tes9ng	
  is	
  not	
  feasible…	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  how	
  to	
  write	
  so>ware	
  that	
  works	
  because	
  it	
  is	
  wriSen	
  correctly?	
  	
  
	
  
NSF	
  CPS	
  Fron9er	
  Project	
  (UofM,	
  hSp://www.dynamiccps.org):	
  	
  
	
  
“Correct-by-Design Control Software Synthesis for Highly Dynamic Systems” 	
  
	
  
	
  
Pedagogical	
  Challenge:	
  CPS	
  requires	
  students	
  to	
  be	
  educated	
  	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  “outside	
  the	
  tradi9onal	
  academic	
  stovepipes”	
  
	
  



Impact on Pedagogy  
Michael Barr: Top 10 embedded software bugs 
 
The ones we learn about in EECS 461 are underlined! 

Race Condition 
Non-reentrant function 
Missing volatile keyword 
Stack Overflow 
Heap Fragmentation 

Memory leak 
Deadlock 
Priority inversion 
Incorrect priority assignment 
Jitter 

www.embedded.com  2010 



Another Issue 

www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/ 

Wired Magazine, July 21, 2015:  
                   Hackers Remotely Kill a Jeep on the Highway—With Me in It  

After the brakes were remotely disabled: 

Cybersecurity is beyond the scope of EECS 461, yet former EECS 461 students are working 
in industry on connected vehicles today! 



Conclusions 
Electronics and software in automobiles has been a roaring success! 
           cleaner 
           safer 
           more sustainable 
 
Many other application areas: 
           aerospace 
           defense 
           medical 
           appliances 
 
The future will require more embedded control systems! 
 
Big questions:  
 

 are we creating technology too complex to understand and maintain?  
 how do we train the workforce? 

 
First step:   Take Embedded Control Systems! 


