Embedded Control Systems

ETH — Institute for Dynamic Systems and Control
September 7 to 11 and 14 to 18, 2015

Jim Freudenberg

Jfr@umich.edu

Fabian Byland
fbyland@student.ethz.ch

Stijn van Dooren
stijnvalstudent.ethz.ch

Marianne Schmid

marischm@ethz.ch

Schedule
e Lecture 8:00 — 10:00

— Sampling and aliasing, signal processing,
dynamic systems, integration techniques, etc.

e Assisted Pre-lab: 10:00 — 12:00

— Material specific to the lab exercise: pulsewidth
modulation, quadrature decoding, A/D
conversion, etc.

— I’ll present required information 1n the lecture
room, then we’ll move to the lab

Important Points
* No textbook

— www.ldsc.ethz.ch/education/lectures/
embedded-control-systems.html

— Lecture notes, microprocessor reference material,
laboratory exercises, and other important information

— Day to day list of reference materials on website

* No required homework problems
— Matlab, Simulink, Stateflow

Important Points

« Laboratory exercises

— &8 laboratory exercises in 10 days using the
Freescale MPC5553 microprocessor

« Most labs are “1-day”
 First lab will be Monday and Tuesday
e Schedule posted

— 33 registered students
— 11 lab stations with 3 students (“self organize”)

Important Points

» Laboratory exercises have 3 parts:

— Assisted Pre-lab (10AM-12PM): questions that require
you to read the microprocessor reference material and
gather the information required to complete the lab
exercise

— Assisted In-lab (1-4PM): the experiment

— Post-lab (4-5PM) : questions that should reinforce what
you learned 1n the lab exercise (due 10AM the next

day)

* You must attend & lab sessions and hand in
all 8 lab assignments (pre-, in- and post-lab)
to receive credit for the course

veryday Time Schedule

m Institute for
Dynamic Systems and Control

Eidgendssische Technische Hochschule Ziirich IDSC
Swiss Federal Institute of Technology Zurich Institut fir Dynamische Systeme
und Regelungstechnik
Prof. L. Prof. R.
151-0593-00 Schedule Embedded Control Systems (Fall 2015) Gumels DAndres
Lectures Week 1 in Room ML F 34 (8 to 10 a.m.) Lab in Room ML K31 10 a.m. 1 12a.m. 1 p.m. 2 4 5p.m.
No. |Date Topic No. [Topic ‘
1 2015-09-07 |Course introduction. Start on A/D conversion, sampling and aliasing; simple anti{ 4 |Familiarization and Digital I/O. Reading in
aliasing filter design MPC5553 Referense Manual, introduction X
to hardware (oscilloscope, signal generator, Introduction Pre-Lab In-Lab
etc.)
2 2015-09-08 |Finish A/D conversion, sampling and aliasing; simple anti-aliasing filter design; 1 |Continue with Lab 1
introduction to Matlab and Simulink; demonstrate Simulink by doing "Problem
set 1" filter design. In-Lab In-Lab Post-Lab
3 2015-09-09 |Introduction to Stateflow, in particular, demonstrate problem set 2, building a 2 |Quadrature Decoding using the enhanced
Stateflow quadrature decode model. Introduction to DC motors; derive steady- Time Processing Unit (eTPU)
state motor equations. Present lecture material on optical encoders, quadrature Pre-Lab In-Lab Post-Lab
decoding, over/underflow and typecasting.
4 2015-09-10 |Discuss motor control (speed control, torque control, power amplifiers); Pulse 3 [Queued Analog-To-Digital Conversion
width modulation; virtual worlds, wall "chatter" and the virtual wall. (QADC)
Pre-Lab In-Lab Post-Lab
5 2015-09-11 |Dynamic systems and transient specifications (review); develop dynamic motor 4 |Pulse Width Modulation (PWM) and Virtual
model block diagram and implement in Simulink (domonstrate problem set 3). Worlds without Time Mathwork
Develop motor frequency response and demonstrate input PWM attenuation. Pre-Lab In-Lab Post-Lab (location ML F 34)
Lectures Week 2 in Room HG E 23 (8 to 10 a.m.) Lab in Room ML K31 10 a.m. 1 12 a.m. 1 p.m. 2 4 5p.m.
No. (Date Topic No. |Topic
6 2015-09-14 |Develop Stateflow model of the virtual wall (demonstrate problem set 5). 5 |Interrupts, Timing, and Frequency Analysis
Develop virtual spring-mass system dynamics (harmonic oscillator). Introduce of PWM Signals
Euler Integration and pseudo-code for the spring-mass system. Pre-Lab In-Lab Post-Lab
7 2015-09-15 |Introduction to z-transforms and numerical instability. Develop the virtual spring-| ¢ |Virtual Worlds with Time
mass-damper (calculate how much damping is required to create a discrete
harmonic oscillator using Forward Euler). Introduce state-space notation. Pre-Lab In-Lab Post-Lab
Discuss other numerical integration methods; discuss how Matlab does
8 2015-09-16 [Software architecture, real-time operating systems and scheduling algorithms. 7 |Code Generation with SIMULINK (RAppID
Rapid prototyping and automatic code generation. Toolbox)
Pre-, In- & Post-Lab Pre-, In- & Post-Lab
9 2015-09-17 |Software architecture; presentation of MathWorks on Autocode generation with 7 |[Continue with Lab 7, catch up with other
SIMULINK labs
Pre-, In- & Post-Lab Pre-, In- & Post-Lab
10 | 2015-09-18 |Introduction to CAN networks. 8 |Controller Area Network
Pre-Lab In-Lab Post-Lab

IMPORTANT: You must attend 8 lab sessions and hand in all 8 assignments (pre-, in- and post-lab) to receive credit for the course. Pre-labs are due at the start of the In-labs, Post-labs are due at 5 p.m.

What 1s an Embedded System?

e Technology containing a microprocessor as a
component

— cell phone
— digital camera

* Constraints not found in desktop applications

— cost

— power

— memory

— user interface

— Embedded processor 1s often the performance and
cost limiting component!

What is an Embedded Control System?

* Technology containing a microprocessor as a
component used for control:

— automobiles — hospital beds
— aircraft — laser printers
— household appliances — civil structures

— manufacturing
— energy harvesters
— medical devices

— copy machines

— wind turbines

Characteristics of Embedded Control Systems

» Interface with external environment
— sensors and actuators

e Real time critical
— performance and safety

— embedded software must execute in synchrony with
physical system

« Hybrid behavior

— continuous dynamics
— state machines

 Distributed control
— networks of embedded microprocessors

Prime Example: today’s automobile!

The Automobile in 1977

REFERENCE

@ TIMING SET
.|

»

SyStemS ENGINE VACUUM —» MICROPROCESSOR]
al
° air/fuel + BATTERY | L% \/:jg

SENSOR DISTRIBUTOR
VACUUM SENSOR
COOLANT TEMPERATURE CHECK COOLANT

16 electrical N
* spark timing |)

1976 Chrysler
VACUUM CATALYTIC
REGULATOR (CARBURETOR ENGINE CONVERTER

 analog control S e e
ELECTRONIC ; ,\ ' e PIPE
S A N = e R A
- ot AT it B EXHAUST
£ I

]
1977 GM Olds Toronado CLOSED THROTTLE
1978 Ford Lincoln Versailles coL sTaRT swrcv__
* microprocessor control R

EXHAUST GAS
SENSOR. Z,

IEEE Spectrum special 1ssue on the Automobile, Nov 1977

The Future in 1977

Gas turbine engines
>100 proposed electrical systems
High end automobiles: as many as 8 microprocessors, one per cylinder (Aston Martin)
10K ROM: plenty unused capacity to control other engine functions
Obstacles:
high cost of sensors and actuators

“the inability of the electrical engineer to characterize the mechanical system
for microprocessor programmers”

IEEE Spectrum special 1ssue on the Automobile, Nov 1977

The Automobile 1n 2015

* Drivetrain
— Variable geometry turbochargers
— Variable cam timing (intake, exhaust, dual-equal, dual independent)
— Variable valve timing
— Variable compression ratio
— Automatic transmission, continuously variable tranmission

* Chassis control
— antilock brakes
— traction control
— stability control

* Body control
— seats
- windows
- wipers
— locks

* Infotainment/GPS systems

* Driver assistance & active safety systems

=» Cars today are safer, less polluting, more fuel efficient, and more ¢

The Automobile 1n 2010

N SYSTEM IN 2009
ERCEDES-BENZ
AVERAGE 2010
FORD AUTO
M BOEING 787
DREAMLINER
U.S. AIR FORCE F-35
JOINT STRIKE FIGHTER
2009 2010

h 7M U.S. AIR FORCE
o F-22 RAPTOR JET SOURCES IEEE; AUTOMOTIVE DESIGNLINE

Harvard Business Review, 2010

Industry Hiring Needs

* “The auto industry is ... hiring a different breed of engineer [to] invent the
next generation of complex software [for] m.p.g., clean emissions and crash
avoidance technologies.”*

« “GM's biggest engineering recruiting challenges are software and controls
engineering”*

* Ford: greatest hiring need is for software and electronics skills**

e 2012 SAE salary survey***:
EEs working in automotive sector earn $10K/year more than MEs

*Detroit Free Press, October 2012
** USA Today, July 2013
% www.sae.org/membership/salarysurvey/

An Industry Request: 1998

Dr. Ken Butts:
* Ford Research (currently Toyota)
* Founding member, MATHWORKS Automotive Advisory Board (1998)

“Why can’t | hire students trained to do embedded control software development?”

“And why don’t the students | hire know how to talk to one another?”

Skills required:

e Control algorithms

* Computer software
 Computer hardware

* Electronics
 Mechanical engineering

Outcome: Two Courses

* UofMichigan: EECS 461, Embedded Control Systems
— 16% year
— ~ 200 students/year
— Jeft Cook, formerly Ford Research
— Student body:

* EE and CE, seniors and masters
* Space permitting, grad students from other departments

 ETH Zurich: 151-0593-00, Embedded Control Systems

— 8™ year as two week block course
— 33 students/year
— Mechanical Engineering Graduate Students

students

220

200

180

160

140

120

100

80

60

40

20

0

Embedded Control Enrollment: UM and ETH

“ Fall (ETH)

I I K'Spring (EECS 461)

I Winter (EECS461)
i Fall (EECS 461)

i Fall (EECS 498)

ST

00-01 01-02 02-03 03-04 04-05 05-06 06-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15
Academic Year

Total Enrollment: 1618

Laboratory Overview
MPC5553 Microcontroller (Freescale)

Development Environment

— Debugger (P&E Micro)
— Codewarrior C compiler (Freescale)

Haptic Interface
— Force feedback system for human/computer interaction

Rapid Prototyping Tools

— Matlab/Simulink/Stateflow, Embedded Coder (The Mathworks)
— RAppID Toolbox (Freescale)

Freescale MPC5553 Microcontroller

32 bit PPC core
— floating point
— 132 MHz
— -40 to +125 °C temperature range

Programmable Time Processing Unit (eTPU)

— Additional, special purpose processor handles I/0 that would otherwise
require CPU interrupt service (or separate chip)

— Quadrature decoding
— Pulse Width Modulation

Control Area Networking (CAN) modules
274 member of the MPC55xx family

— real time control requiring computationally complex algorithms

— MPC5554 replaces MPC555 for powertrain control
— MPC5553 has on-chip Ethernet for manufacturing applications

MPC5553 EVB

*Evaluation board (Freescale)

—-32 bit PPC core
—floating point
-128 MHz

e Interface board (UofM)

— buffering
— dipswitches

— LEDs
— rotary potentiometer

Nexus Compliant Debugger (P&E Micro)

~. ICDPPCNEXUS Debugger - Yersion 1.03 1 [=] B3
File Execute Configuration Windows Help
HLa | RSM|RSM| RS HL, |HL, |HL | . L REG |MMLU| 5FR
<«| ¥lma| | aldalBe] m| o] Sl AT 2 ‘
. CPU H[=]E3 || - Memory Window 2 - Data Space M= E3|| - code Window 1 : Disassembly N [=] B3
PC 48081594 CR 88000020 00006108 7C 68 062 A6 90 AI 1140001594 7FE3FB78 OR R3,R31,R31 u
MSR 00000660 XER 00000000 00000105 ©1 00 24 93 E1 ..$.. - + 40001598 7FC4F378 OR R4,R30,R30
LR 400015986 CTR 460061540 gegee18a 60 1C 7C BF 2B ..|.+ - + 48688159C 4BFFFEBS BL virtualWallDamper
0000016F 79 93 C1 66 18 y.... ~ + 40001500 4BFFFFO1 BL outputTorque
R et R R L 00808114 7C 7E 1B 78 41 |~.xA B - 4808015A4 93ED8B40 STW R31,-7FCO(R13)
R2 480815988 R18 SCFAFDB7 08800119 82 @80 1C 7C 1E ...|. B -+ 4080015A8 83E1601C LWZ R31,081C(R1)
R3 41C5C669 R19 FBFFDBBE 0080011E 20 40 41 82 80 EA.. ~ + 188815AC 83C10018 LWZ R30,0018(R1)
R4 c4000008 R20 F76FDBFF 00006123 14 48 60 61 69 .H... LI - + 400015B6 83A10014 LWZ R29,0014(R1) LI
RS DAEBBOBO R21 FFEFFFF7
R6 FDBAEDD2 R22 7B9FF9D5 ~. Code Window 2 : Source {lab6.c) =] B3
R7 FFFFFED7 R23 F7FFE7FF [- (xxprev) 7 TiWEsTEP; . 4
RS 00000083 R24 FFSFFFEB U = (x-xpreb) § TEMESEEFS) =
RO 4808D9B8 R25 FF7FDEDF outputTorque(virtualSpringDamper{x,v));
R16 02000000 R26 00000320 Xprev = Xs .
R11 C1C5C669 R27 DABFFBDF SIU.GPDO[28].R = 8;
R12 400061598 R28 D2F1A9FC ¥
R13 40015968 R29 3F50624D i . __l
R14 000006680 R30 41C5C669 + + yold wdlsr{void) {
R15 000006680 R31 3CCA858A float x;
- static float xprev = 8;
General | 64BIT-1 | 64BIT-2 | Basic | float v;
<. Yariables Window =] B3 . x = updateAngle();
Add Varisble | _Add Register | List Variahles = (x - xprev) / TIMESTEP:
x_: Register GPR31 : 2.4721880E-00(|[""T go oy = y.
U : Register GPR30 :© 2.4721880E+ 000} . 3
Xprev : 0.8008008E+080008
void smIsr{void) { ;]
- Status Window - |Of x|
>HGO -

aiting for keystroke or breakpoint ...
instruction address compare debug event occured.(DBSR=500800000)
Preset breakpoint encountered.
>vrar
=var
>vrar

>var j

Ready ’

Haptic Interface

Enables human/computer interaction through sense of touch
— force feedback
— virtual reality simulators (flight, driving)
— training (surgery, assembly)
— teleoperation (manufacturing, surgery)
— X-by-wire cars

Human visual sensor: 30 Hz
Human haptic sensor: 500Hz-1kHz

Ideal pedagogical tool....
— student satisfaction
— virtual reality algorithms easy to understand
— tricky to get right

Force Feedback

behavior
sensor — Human actuators
(skin surface) (muscles)
position :
velocity Haplic . e— ¢5rce
force Device
sensor actuator
(encoder, tach, — *=| CPU (DC motor)
strain gauge)
algorithm

(virtual world)

Haptic Wheel & Lab Station

Haptic Interface
— DC motor
— PWM amplifier w/ current controller
— optical encoder
— 3 generation

Lectures (I)

Quantization

Sampling

Linear filtering

Quadrature decoding

DC motors

Pulse Width Modulation (PWM) amplifiers

Motor control: current (torque) vs. speed

MPC5553 architecture. Peripherals: eMIOS, eTPU...

Haptic interfaces.

— virtual wall
— virtual spring/mass/damper

Simulink/Stateflow modeling of hybrid dynamical systems
Numerical integration.

Lectures (1)

Networking:
— Control Area Network (CAN) protocol.
— Distributed control

Interrupt routines: timing and shared data

Software architecture
— Round robin
— Round robin with interrupts
— Real time operating systems (RTOS)
— Multitasking

Shared data: semaphores, priority inheritance, priority ceiling
Real time computation. Rate monotonic scheduling.

Rapid prototyping. Autocode generation.

Model based embedded control software development

PID control design

Laboratory Exercises

* Each teaches
— a peripheral on the MPC5553
— a signals and systems concept
— Labs 1-6, 8: program in C
— Lab 7: autocode generation
— Each lab reuses concepts (and code!) from the previous labs

* Lab 1: Famiharization and digital I/0

* Lab 2: Quadrature decoding using the eTimer

e Lab 3: Queued A-D conversion

* Lab 4: Pulse Width Modulation and simple virtual worlds

* Lab 5: Interrupt timing and frequency analysis of PWM signals
* Lab 6: Virtual worlds with dynamics

* Lab 7: Rapid Prototyping

* Lab 8: Controller Area Network (CAN)

Lab 1: Familiarization and Digital I/O

* Use General Purpose Input/Output (GPIO) on MPC5553

« Use “union” command to write C code to perform bit
manipulations

* Read two 4-bit numbers set by dipswitches
— add and display on LEDS

* Write C header file to access various bits in a 16 bit register:

typedef union SIU_CONFIG_UNION ¢{
/* This allows access to all 16-bits in the register */
unsigned short REG;
/* This structure allows access to the individual bytes of the register */
struct {
unsigned short UPPER:S8; /* access to the top 8 bits */
unsigned short LOWER:8; /* access to the bottom 8 bits */
} BYTE;
/* This structure splits apart the different fields of the register */
struct {
unsigned short :2; /* indicates 2 unused bits in the register */
unsigned short FIELD1:8; /* access to the 8-bit field named FIELD1 */
unsigned short FIELD2:6; /* access to the next 6-bit field */
} FIELDS;
} EXAMPLE_REGISTER;

* Remaining labs use Freescale supplied header files

Lab 2: Quadrature Decoding

* Optical encoder attached to motor generates two 90° out
of phase square waves:

channel A

—

o
¥

channel B

* QD function on MPC5553 ¢TPU:
decodes quadrature signal into counter
e CPU must read counter before overflow
Issue: How fast can wheel turn before counter overflows?

L.ab 3: A/D Conversion

Uses QADC on the MPC5553

Acquire analog input from potentiometer or signal generator
Measure time required for one conversion by toggling bit
Investigate aliasing

Software oscilloscope:

Raw Serial Data

14000 T

2000 | 1 | 1 1
0 50 100 150 200 250 300 350 400
Sample [#)

Serlal Port (COM1) Calibrated Data

1
450

4 T T

0 2 4 6 8 10 12 14
Time [ms]

Frequency Content of Serial Data

200 T T T T T T T T T T T 1

gmm |

Frequency [kHz]

TIOO| ST T I H B | [[[T T TN S N TN I SN N (N N
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Lab 4: Pulse Width Modulation

* Drive DC motor with a PWM signal
— Switching frequency 20 kHz
— Duty cycle 40%
— eMIOS peripheral on MPC5553
duty cycle = 40 %, switching frequency = 20000 Hz s x 107 duty cycle = 40 %, switching frequency = 20000 Hz
a4l
10— — — - - — J— — — -
3.5
0.8 3l
g 25
2 o6
z 2t
0.4 15
1L
0.2
05 l [
: :] B |
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
time,seconds x10™ frequency, Hz 10°

[Lab 4: Virtual Wall

virtual
= wall .
Puck E AMN—Puck
eXNe s WeNe
x|
<
* Software loop e« Wall chatter

— read position from encoder

— compute force F = 0 or F = kx — large k required to make stiff

— set PWM duty cycle wall
« Rotary motion — limit cycle due to sampling and
— degrees << encoder count quantization

— torque <= PWM duty cycle
— 1 degree into wall <= 400 N-mm
torque

Lab 5: Interrupt Timing and PWM Frequency
Analysis

Use interrupt timer to generate a time step for numerical differentiation
and integration

Periodically modulate duty cycle of a 20kHz PWM signal by writing
an ISR that either

— Samples 100 hz sine wave. e
— Calls C sine function o5
— Uses lookup table

Time ISR by toggling a bit

Filter PWM signal to remove

20kHz switching frequency.

-0.51

1 1 1 1 1 1 1 1 1
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
time, secon: ds

Lab 6: Virtual Spring-Mass System

* Virtual spring-mass system: reaction force /' = k(w-z)
* Measure z, must obtain w by numerical integration
* Use interrupt timer to generate a time step

%

g k

% Puck—A"— m
| SXe] 00
l W l
' >
! I

8,
(s

\/

haptic wheel

virtual wheel

W+ Ew=
m

k

e

Design Specifications

* Choose k and J , so that
— virtual wheel oscillates at 1Hz

— maximum torque in response to 45 degree step in wheel

position 1s < S0ONmMm

—) D)

wheel Position torque

thetawddot

1

angularspeed

thetawdot

1

s

thetaz

Step Integrator

spring 1fvirtual inertia
constant

p._

thetaw

s

Integratori

Virtual wheel
Position

 Verify design in Simulink before testing on hardware

Numerical Integration

e Forward Euler:

— easy to program in real time
—no direct feedthrough, no algebraic loops

— numerically unstable!

wheel| Position

| k
thetaz

Step .
spring
constant

torque angularspeed
thetawddot thetawd ot thetaw
T T
»%—» ~ K =
z1 z1 Vittual wheel
1ivitual ineria Discrete-Time Discrete-Time FPosition
Integrator Integratord
/b-‘
damping

e Question: Can we restore stability by adding virtual damping?
Yes! Can compute b mathematically.

Lab 8: Controller Area Networking (CAN)

* Networking protocol used in time-critical applications
* Messages have unique identifiers: priorities
* Allows computation of worst case response time

* Lab exercises:
— 1mplement virtual wall remotely
— estimate network utilization
— virtual “daisy chain”

Autocode Generation (I)

Derive a mathematical model of system to be controlled
Develop a Simulink/Stateflow model of the system.
Design and test a control algorithm using this model.
Use Simulink Coder to generate C-code.

Eliminates coding errors.

Rapid prototyping: Speeds product development as generated
code can be tested in many design cycles

Autocode in production:
— Nonconsumer market: NASA, aerospace
— Automotive: body control

powertrain control??

Autocode Generation (II)

e Need Simulink blocks:

— device drivers
— processor and peripheral initialization

e [ssues:
— efficiency of generated code
— structure of code

* Multitasking
— with RTOS, task states
— without RTOS, nested interrupts

RAppID Toolbox (Freescale)

* Processor and peripheral initialization blocks
* Device driver blocks
* Enables multitasking with nested interrupts

| YSTRIT
™ - MUEMM T TR N R e e

IRAppID MPC5554 Target Setup

System Clock: 128 MHz

Target : MPC5554
Compiler: metrowerks
Target Type : IntRAM

Operating System : smpletarget

RApPpIDEC

Lab 7: Two virtual wheels

(D

Hapchheel
osition
(D)
sub':ys;wm 12 angular speed2
thetaz thetawddot thetawdot thetaw 1000 react':on torque (analog njodel)
E O b _@ > é) > é 8oof
Step inetaz spring 1MVInual inertia2 Integrator3 Integrator2 w00
constant - ’II ‘ il H H y'l“
il u
ol i “l‘ﬂ ,111'|ll ’HH‘ | [;Hn |
— W“ WV \ ‘H"” ‘,’m Hll} HHM
I Hw | ,,' ryu (i
b (5) ol l“/ Hl'l’ m WM ‘ I
N bssggem 1orque angular speed1 h ’, ‘ J “ ’ ‘ aL
thetawddot thetawdot thetaw
spring 1vinual inertiat Integrator Integratort 1008 05 1 s 2 25 3 as 4 as 5
constant] time, seconds

Total reaction torque

Multirate Simulation for Code Generation

<-
= Jtl-l‘m
Scope
- —
[fgr
2 I
Slow Task Trigge ‘
\ 4

ast and slow subsystems

Fsaction Torgue

Write Reaction Torque

Fast subsystem

Hagtic Whee! Angle (degrees)

idgw Contraller

Read Whee! Angle

Haptic Wheel Position

o = o o fast virtual
iscrete-Time iscrete-Time wheel position
1hvetual inertia Ireogrator Integratort p
singe \hzl‘
damping
5 5
Haptic Wheel Position
nvironment
Wraa 16 Bits
Slow Torque
KT§" ot K 78" smigtan R @
z-1 o z-1 = slow virtual
: P Discrete-Time iscrete-Time wheel position
|
1/virtual inertia Integrator Integratort

<
single o1 I‘

damping

Device Drivers

«TPU Cuadrature Decoder

S«:lun:on:sT:(: l;nlnr Centrels Positions Count g il Rea d e n COd e r a n d
yps Conversion
So::fc‘:::rg::rnl 1 Are Vi
froper Gulsr Velocity {7 mx-—‘ﬁ. t I t t d
Positicn Coumer m:r«‘l':«::f‘fifmn&‘.’ﬁkgﬁgox ines on motor): 4095 : B Terminater ra n S a e O e g re e s

Fositicn Counts Scaling): PeationCounts X 4
FUNCTION NUMBER: FS_ETPU_GC_FUNCTION. NUMBER Urit Do
ENTHY TABLE ENCODING: FS_ETPU_CO_ TABLE_SELECT Direction (0-pos: 1-neg)
Terminator!

eTPU Quacrature Decodor

»
Hagtic Wheel Angle
(cegrees)

Unit Delsy?

7w DutyCycle Qutput Pulse Width and Frequency Modulation CO nve rt to rq ue tO

Pericd of the PWM (ticks) No EMIOS Channel Selected

> It Froquansy So0riz duty cycle and write
x | Frequency Internal Counter Bus
to PWM

Y

Torque
(N-mm) Conversion Factor

Product
Saturation EMIOS Output PWM

Constant2

UM Project: Adaptive Cruise Control

e Driving simulator

e Bicycle model of vehicle

* 6 vehicles interacting

over CAN network

e “Lane centering”

e ACC algorithm: 3 states
— manual (sliding pot)
— constant speed
— constant distance

natie -

Oessrad Spond

Is$oerng anglo

mnud _loogue Ohvatle)

JEIN LN) B ey ¢

C_INPUTS

- ’ arvlza
’ deserod spaood

P coorg ange

P tvorie dakn |+

P (50,08 05) .5

> ' Sherng Achisdce Torgue -
»u

C_ACC

'Vehicle1_Behind
A

o] |

File View Viewpoints Navigation Rendering Simulation Recording Help N

Vehiclel_Behind v | Fly v ED | d | @Wono.

IT=235.60 Fly Pos:[117.74 3.00 -98.34] Dir:[-0.01 0.00 -1.00]

L1}
Trgpe
| 23 » Targ P Seeing Torque
P e 8,0 el us b . el us (s.npel,us)l. 6 “» 1
(&N gaiust,, 6
~P Stooring Actuator Torgue 4 - P (s.n.09. 81,6
P_CAR C_OUTPUTS

M .

Constare 2

(sn.psd,usi1. 5

A

PosCTRL
during :
speed _en=0;
pos_en=1;
man_en=0;
state =4;

Controller Block Diagram

orebin
4 D loase
Aowng Datas
P
' >
- o > f > .
.0 . > » ..
s i >
‘oston Crt
Sutseytan B 2l
Chan
L
! | Constare *
] h 4
Tarrsemior 1 o]
) 7)] e St Pare
> doviad speod
Teersinadee 2
L I -~
Spend Citl
>
> p—
Saoer mg Aaw3t TIgee |
? > Sheang Achwoe Torguo
u 3 W g 1o
#oarng ange This system cortaing

M0 00N gic

gusi >us |l si-s>H)]

[(usi<=us && si-s<=H)]

~‘SpeedCT RL

L

during: u
speed _en=1; [enable]
pos_en=0;)
man_en=0;

state = 2;

['enable]

[lenable]

|-

otk

{ManCTRL

during::

speed _en =0;
pos_en =0;
man_en=1;
state =1;

Observations

Multidisciplinary
Multiple layers of abstraction

Successful embedded engineers understand time
— Mechanical/electrical engineers: time in the application domain (physics)
— Computer engineers: time on the microprocessor (1 &2 0)

“pure” software engineers lack necessary background.

Applications 1n many areas
— aerospace

— household appliances

— robotics

— civil engineering

— defense

— medical devices

The Automobile and the Future

N__ Y

Lino Guzzella ETH,

IEEE Spectrum May 2014

More fuel efficient
vehicles = lighter
& less survivable
1n an accident.

Solution: avoid
accidents by
eliminating driver
erTor.

=>» More jobs for embedded
control engineers

Active Safety Systems

Ultrasonic Central Ultrasonic
Sensor computer sensor

Video camera Ultrasanic
. : sensor
Ultrasonic sensor Video camera
Long-range
radar

Short-range
radar

Adaptive cruise control
Collision avoidance
Lane departure warning
Lane following

IEEE Spectrum May 2014, “The Rise of the Crash Proof Car”

Fully Autonomous Vehicles?

e == |

May 27,2014

A Cautionary Note

October 2013: S3 million settlement
Bookout vs Toyota
unintended acceleration

March 2014: $1.2 billion settlement

Wall Street Journal, December 2013: “Will tort law kill driverless cars?”
Fox News, March 2014: “Justice Department announces $1.2 billion settlement with Toyota”

Testimony

Expert witnesses:

Phil Koopman, CMU - “Code had >10,000 global variables*”

Michael Barr, Barr Group — “Code had bugs that could cause unintended acceleration™*”
Wall Street Journal: “how is a car maker supposed to defend itself when it can't prove
that its software behaves safely under all circumstances?”

The Google car has been driven 500K miles with no accident

Toyota Camrys were driven billions of miles before software error (if it was that) emerged

*Jack Ganssle “A Pox on Globals”, embedded.com, Oct. 2006

**www.safetyresearch.net/2013/11/07/

National Science Foundation Research

Cyber-physical systems (CPS):
interaction between computational elements and physical world.

~ networks of embedded control systems
Since comprehensive testing is not feasible...

how to write software that works because it is written correctly?
NSF CPS Frontier Project (UofM, http://www.dynamiccps.org):

“Correct-by-Design Control Software Synthesis for Highly Dynamic Systems”

Pedagogical Challenge: CPS requires students to be educated

“outside the traditional academic stovepipes”

Impact on Pedagogy

Michael Barr: Top 10 embedded software bugs

The ones we learn about in EECS 461 are underlined!

Race Condition
Non-reentrant function
Missing volatile keyword
Stack Overflow

Heap Fragmentation

www.embedded.com 2010

Memory leak
Deadlock

Priority inversion

Incorrect priority assignment

Jitter

Another Issue

Wired Magazine, July 21, 2015:
Hackers Remotely Kill a Jeep on the Highway—With Me in It

Wi g

After the brakes were remotely disabled:

Cybersecurity is beyond the scope of EECS 461, yet former EECS 461 students are working
in industry on connected vehicles today!

www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

Conclusions

Electronics and software in automobiles has been a roaring success!
cleaner
safer
more sustainable

Many other application areas:
aerospace
defense
medical
appliances
The future will require more embedded control systems!

Big questions:

are we creating technology too complex to understand and maintain?
how do we train the workforce?

First step: Take Embedded Control Systems!

