
Embedded Control Systems

Jim Freudenberg
jfr@umich.edu
Fabian Byland

fbyland@student.ethz.ch

Stijn van Dooren
stijnva@student.ethz.ch

Marianne Schmid
 marischm@ethz.ch

ETH – Institute for Dynamic Systems and Control
September 7 to 11 and 14 to 18, 2015

Schedule
•  Lecture 8:00 – 10:00

– Sampling and aliasing, signal processing,
dynamic systems, integration techniques, etc.

•  Assisted Pre-lab: 10:00 – 12:00
– Material specific to the lab exercise: pulsewidth

modulation, quadrature decoding, A/D
conversion, etc.

–  I’ll present required information in the lecture
room, then we’ll move to the lab

Important Points
•  No textbook

–  www.idsc.ethz.ch/education/lectures/
embedded-control-systems.html

–  Lecture notes, microprocessor reference material,
laboratory exercises, and other important information

–  Day to day list of reference materials on website

•  No required homework problems
–  Matlab, Simulink, Stateflow

Important Points
•  Laboratory exercises

–  8 laboratory exercises in 10 days using the
Freescale MPC5553 microprocessor

•  Most labs are “1-day”
•  First lab will be Monday and Tuesday
•  Schedule posted

–  33 registered students
–  11 lab stations with 3 students (“self organize”)

Important Points
•  Laboratory exercises have 3 parts:

–  Assisted Pre-lab (10AM-12PM): questions that require
you to read the microprocessor reference material and
gather the information required to complete the lab
exercise

–  Assisted In-lab (1-4PM): the experiment
–  Post-lab (4-5PM) : questions that should reinforce what

you learned in the lab exercise (due 10AM the next
day)

•  You must attend 8 lab sessions and hand in
all 8 lab assignments (pre-, in- and post-lab)
to receive credit for the course

Everyday Time Schedule

151-0593-00 Schedule Embedded Control Systems (Fall 2015) Prof. L.
Guzzella

Prof. R.
D'Andrea

 Lectures Week 1 in Room ML F 34 (8 to 10 a.m.) Lab in Room ML K31
No. Date Topic No. Topic

1 2015-09-07 Course introduction. Start on A/D conversion, sampling and aliasing; simple anti-
aliasing filter design

1 Familiarization and Digital I/O. Reading in
MPC5553 Referense Manual, introduction
to hardware (oscilloscope, signal generator,
etc.)

2 2015-09-08 Finish A/D conversion, sampling and aliasing; simple anti-aliasing filter design;
introduction to Matlab and Simulink; demonstrate Simulink by doing "Problem
set 1" filter design.

1 Continue with Lab 1

3 2015-09-09 Introduction to Stateflow, in particular, demonstrate problem set 2, building a
Stateflow quadrature decode model. Introduction to DC motors; derive steady-
state motor equations. Present lecture material on optical encoders, quadrature
decoding, over/underflow and typecasting.

2 Quadrature Decoding using the enhanced
Time Processing Unit (eTPU)

Post-Lab

4 2015-09-10 Discuss motor control (speed control, torque control, power amplifiers); Pulse
width modulation; virtual worlds, wall "chatter" and the virtual wall.

3 Queued Analog-To-Digital Conversion
(QADC)

Post-Lab

5 2015-09-11 Dynamic systems and transient specifications (review); develop dynamic motor
model block diagram and implement in Simulink (domonstrate problem set 3).
Develop motor frequency response and demonstrate input PWM attenuation.

4 Pulse Width Modulation (PWM) and Virtual
Worlds without Time

In-Lab Post-Lab

 Lectures Week 2 in Room HG E 23 (8 to 10 a.m.) Lab in Room ML K31
No. Date Topic No. Topic

6 2015-09-14 Develop Stateflow model of the virtual wall (demonstrate problem set 5).
Develop virtual spring-mass system dynamics (harmonic oscillator). Introduce
Euler Integration and pseudo-code for the spring-mass system.

5 Interrupts, Timing, and Frequency Analysis
of PWM Signals

Post-Lab

7 2015-09-15 Introduction to z-transforms and numerical instability. Develop the virtual spring-
mass-damper (calculate how much damping is required to create a discrete
harmonic oscillator using Forward Euler). Introduce state-space notation.
Discuss other numerical integration methods; discuss how Matlab does
numerical integration

6 Virtual Worlds with Time

Post-Lab

8 2015-09-16 Software architecture, real-time operating systems and scheduling algorithms.
Rapid prototyping and automatic code generation.

7 Code Generation with SIMULINK (RAppID
Toolbox)

9 2015-09-17 Software architecture; presentation of MathWorks on Autocode generation with
SIMULINK

7 Continue with Lab 7, catch up with other
labs

10 2015-09-18 Introduction to CAN networks. 8 Controller Area Network

Post-Lab

IMPORTANT: You must attend 8 lab sessions and hand in all 8 assignments (pre-, in- and post-lab) to receive credit for the course. Pre-labs are due at the start of the In-labs, Post-labs are due at 5 p.m.

In-Lab

In-Lab In-Lab Post-Lab

Pre-Lab In-Lab

Introduction Pre-Lab

Pre-, In- & Post-Lab

Pre-Lab

In-Lab

In-Lab

In-Lab

In-Lab

Pre-Lab

Pre-Lab

Pre-Lab

Pre-Lab

Pre-, In- & Post-Lab

Pre-, In- & Post-LabPre-, In- & Post-Lab

Mathwork
(location ML F 34)

10 a.m. 11 12 a.m. 1 p.m. 2 3 4 5 p.m.

10 a.m. 11 12 a.m. 1 p.m. 2 3 4 5 p.m.

What is an Embedded System?
•  Technology containing a microprocessor as a

component
–  cell phone
–  digital camera

•  Constraints not found in desktop applications
–  cost
–  power
–  memory
–  user interface

 Embedded processor is often the performance and
cost limiting component!

⇒

What is an Embedded Control System?

•  Technology containing a microprocessor as a
component used for control:
–  automobiles
–  aircraft
–  household appliances
–  copy machines
–  wind turbines

–  hospital beds
–  laser printers
–  civil structures
–  manufacturing
–  energy harvesters
–  medical devices

Characteristics of Embedded Control Systems
•  Interface with external environment

–  sensors and actuators
•  Real time critical

–  performance and safety
–  embedded software must execute in synchrony with

physical system
•  Hybrid behavior

–  continuous dynamics
–  state machines

•  Distributed control
–  networks of embedded microprocessors

Prime Example: today’s automobile!

The Automobile in 1977

16 electrical
systems
•  spark timing
•  air/fuel

IEEE Spectrum special issue on the Automobile, Nov 1977

1976 Chrysler
•  analog control

1977 GM Olds Toronado
1978 Ford Lincoln Versailles
•  microprocessor control

The Future in 1977

IEEE Spectrum special issue on the Automobile, Nov 1977

Gas turbine engines

>100 proposed electrical systems

High end automobiles: as many as 8 microprocessors, one per cylinder (Aston Martin)

10K ROM: plenty unused capacity to control other engine functions

Obstacles:

 high cost of sensors and actuators

 “the inability of the electrical engineer to characterize the mechanical system
 for microprocessor programmers”

The Automobile in 2015
•  Drivetrain

-  Variable geometry turbochargers
-  Variable cam timing (intake, exhaust, dual-equal, dual independent)
-  Variable valve timing
-  Variable compression ratio
-  Automatic transmission, continuously variable tranmission

•  Chassis control
-  antilock brakes
-  traction control
-  stability control

•  Body control
-  seats
-  windows
-  wipers
-  locks

•  Infotainment/GPS systems

•  Driver assistance & active safety systems

è Cars today are safer, less polluting, more fuel efficient, and more convenient than in 1977!

The Automobile in 2010

Harvard Business Review, 2010

Industry Hiring Needs	

•  “The	
 auto	
 industry	
 is	
 …	
 hiring	
 a	
 different	
 breed	
 of	
 engineer	
 [to]	
 invent	
 the	

next	
 genera9on	
 of	
 complex	
 so>ware	
 [for]	
 m.p.g.,	
 clean	
 emissions	
 and	
 crash	

avoidance	
 technologies.”*	

•  “GM's	
 biggest	
 engineering	
 recrui9ng	
 challenges	
 are	
 so>ware	
 and	
 controls	

engineering”*	

•  Ford:	
 greatest	
 hiring	
 need	
 is	
 for	
 so>ware	
 and	
 electronics	
 skills**	

•  2012	
 SAE	
 salary	
 survey***:	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 EEs	
 working	
 in	
 automo9ve	
 sector	
 earn	
 $10K/year	
 more	
 than	
 MEs	

	
 	

	

*Detroit Free Press, October 2012
** USA Today, July 2013
*** www.sae.org/membership/salarysurvey/

An Industry Request: 1998
Dr.	
 Ken	
 BuSs:	

•  Ford	
 Research	
 (currently	
 Toyota)	

•  Founding	
 member,	
 MATHWORKS	
 Automo9ve	
 Advisory	
 Board	
 (1998)	

“Why	
 can’t	
 I	
 hire	
 students	
 trained	
 to	
 do	
 embedded	
 control	
 so6ware	
 development?”	

	

	
 “And	
 why	
 don’t	
 the	
 students	
 I	
 hire	
 know	
 how	
 to	
 talk	
 to	
 one	
 another?”	

	

	

Skills	
 required:	

•  Control	
 algorithms	

•  Computer	
 so>ware	

•  Computer	
 hardware	

•  Electronics	

•  Mechanical	
 engineering	

	

	
 	

Outcome: Two Courses
•  UofMichigan: EECS 461, Embedded Control Systems
–  16th year
–  ~ 200 students/year
–  Jeff Cook, formerly Ford Research
–  Student body:

•  EE and CE, seniors and masters
•  Space permitting, grad students from other departments

•  ETH Zurich: 151-0593-00, Embedded Control Systems
–  8th year as two week block course
–  33 students/year
–  Mechanical Engineering Graduate Students

Total&Enrollment:&1618&

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

200"

220"

"00(01" "01(02" "02(03" "03(04" "04(05" "05(06" "06(07" "07(08" "08(09" "09(10" "10(11" "11(12" "12(13" 13(14" 14(15"

st
ud

en
ts
&

Academic&Year&

Embedded&Control&Enrollment:&UM&andÐ&

Fall"(ETH)"

Spring"(EECS"461)"

Winter"(EECS461)"

Fall"(EECS"461)""

Fall"(EECS"498)"

Laboratory Overview
•  MPC5553 Microcontroller (Freescale)

•  Development Environment
–  Debugger (P&E Micro)
–  Codewarrior C compiler (Freescale)

•  Haptic Interface
–  Force feedback system for human/computer interaction

•  Rapid Prototyping Tools
–  Matlab/Simulink/Stateflow, Embedded Coder (The Mathworks)
–  RAppID Toolbox (Freescale)

Freescale MPC5553 Microcontroller
•  32 bit PPC core

–  floating point
–  132 MHz
–  -40 to +125 °C temperature range

•  Programmable Time Processing Unit (eTPU)
–  Additional, special purpose processor handles I/O that would otherwise

require CPU interrupt service (or separate chip)
–  Quadrature decoding
–  Pulse Width Modulation

•  Control Area Networking (CAN) modules
•  2nd member of the MPC55xx family

–  real time control requiring computationally complex algorithms
–  MPC5554 replaces MPC555 for powertrain control
–  MPC5553 has on-chip Ethernet for manufacturing applications

MPC5553 EVB

• Evaluation board (Freescale)
- 32 bit PPC core
- floating point
- 128 MHz

•  Interface board (UofM)
–  buffering
–  dipswitches
–  LEDs
–  rotary potentiometer

Nexus Compliant Debugger (P&E Micro)

Haptic Interface
•  Enables human/computer interaction through sense of touch

–  force feedback
–  virtual reality simulators (flight, driving)
–  training (surgery, assembly)
–  teleoperation (manufacturing, surgery)
–  X-by-wire cars

•  Human visual sensor: 30 Hz
•  Human haptic sensor: 500Hz-1kHz

•  Ideal pedagogical tool….
–  student satisfaction
–  virtual reality algorithms easy to understand
–  tricky to get right

Force Feedback

Haptic Wheel & Lab Station
•  Haptic Interface

–  DC motor
–  PWM amplifier w/ current controller
–  optical encoder
–  3rd generation

Lectures (I)
•  Quantization
•  Sampling
•  Linear filtering
•  Quadrature decoding
•  DC motors
•  Pulse Width Modulation (PWM) amplifiers
•  Motor control: current (torque) vs. speed
•  MPC5553 architecture. Peripherals: eMIOS, eTPU…
•  Haptic interfaces.

–  virtual wall
–  virtual spring/mass/damper

•  Simulink/Stateflow modeling of hybrid dynamical systems
•  Numerical integration.

Lectures (II)
•  Networking:

–  Control Area Network (CAN) protocol.
–  Distributed control

•  Interrupt routines: timing and shared data
•  Software architecture

–  Round robin
–  Round robin with interrupts
–  Real time operating systems (RTOS)
–  Multitasking

•  Shared data: semaphores, priority inheritance, priority ceiling
•  Real time computation. Rate monotonic scheduling.
•  Rapid prototyping. Autocode generation.
•  Model based embedded control software development
•  PID control design

Laboratory Exercises

•  Lab 1: Familiarization and digital I/O
•  Lab 2: Quadrature decoding using the eTimer
•  Lab 3: Queued A-D conversion
•  Lab 4: Pulse Width Modulation and simple virtual worlds
•  Lab 5: Interrupt timing and frequency analysis of PWM signals
•  Lab 6: Virtual worlds with dynamics
•  Lab 7: Rapid Prototyping
•  Lab 8: Controller Area Network (CAN)

•  Each teaches
–  a peripheral on the MPC5553
–  a signals and systems concept
–  Labs 1-6, 8: program in C
–  Lab 7: autocode generation
–  Each lab reuses concepts (and code!) from the previous labs

Lab 1: Familiarization and Digital I/O
•  Use General Purpose Input/Output (GPIO) on MPC5553
•  Use “union” command to write C code to perform bit

manipulations
•  Read two 4-bit numbers set by dipswitches

–  add and display on LEDS
•  Write C header file to access various bits in a 16 bit register:
 typedef union SIU_CONFIG_UNION {
 /* This allows access to all 16-bits in the register */
 unsigned short REG;
 /* This structure allows access to the individual bytes of the register */
 struct {
 unsigned short UPPER:8; /* access to the top 8 bits */
 unsigned short LOWER:8; /* access to the bottom 8 bits */
 } BYTE;
 /* This structure splits apart the different fields of the register */
 struct {
 unsigned short :2; /* indicates 2 unused bits in the register */
 unsigned short FIELD1:8; /* access to the 8-bit field named FIELD1 */
 unsigned short FIELD2:6; /* access to the next 6-bit field */
 } FIELDS;
 } EXAMPLE_REGISTER;
•  Remaining labs use Freescale supplied header files

Lab 2: Quadrature Decoding

•  Optical encoder attached to motor generates two 90° out
of phase square waves:

•  QD function on MPC5553 eTPU:
 decodes quadrature signal into counter
•  CPU must read counter before overflow
Issue: How fast can wheel turn before counter overflows?

Lab 3: A/D Conversion
•  Uses QADC on the MPC5553
•  Acquire analog input from potentiometer or signal generator
•  Measure time required for one conversion by toggling bit
•  Investigate aliasing
•  Software oscilloscope:

Lab 4: Pulse Width Modulation
•  Drive DC motor with a PWM signal

–  Switching frequency 20 kHz
–  Duty cycle 40%
–  eMIOS peripheral on MPC5553

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 10−4

0

0.2

0.4

0.6

0.8

1

time,seconds

PW
M

 s
ig

na
l

duty cycle = 40 %, switching frequency = 20000 Hz

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
x 105

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10−3 duty cycle = 40 %, switching frequency = 20000 Hz

frequency, Hz

Lab 4: Virtual Wall

•  Software loop
–  read position from encoder
–  compute force F = 0 or F = kx
–  set PWM duty cycle

•  Rotary motion
–  degrees encoder count
–  torque PWM duty cycle
–  1 degree into wall 400 N-mm

torque

•  Wall	
 chaSer	

–  large	
 k	
 required	
 to	
 make	
 s9ff	

wall	

–  limit	
 cycle	
 due	
 to	
 sampling	
 and	

quan9za9on	

	

⇔
⇔
⇔

Lab 5: Interrupt Timing and PWM Frequency
Analysis

•  Use interrupt timer to generate a time step for numerical differentiation
and integration

•  Periodically modulate duty cycle of a 20kHz PWM signal by writing
an ISR that either
–  Samples 100 hz sine wave.
–  Calls C sine function
–  Uses lookup table

•  Time ISR by toggling a bit
•  Filter PWM signal to remove
 20kHz switching frequency.

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

time, seconds

filtered PWM output

Lab 6: Virtual Spring-Mass System
•  Virtual spring-mass system: reaction force F = k(w-z)
•  Measure z, must obtain w by numerical integration
•  Use interrupt timer to generate a time step

 w + k
m w = k

m z

θw + k

Jw
θw = k

Jw
θz

Design Specifications
•  Choose k and Jw so that

–  virtual wheel oscillates at 1Hz
–  maximum torque in response to 45 degree step in wheel
position is < 800Nmm

•  Verify design in Simulink before testing on hardware

Numerical Integration
• 	
 Forward	
 Euler:	
 	

– 	
 easy	
 to	
 program	
 in	
 real	
 9me	
 	

– 	
 no	
 direct	
 feedthrough,	
 no	
 algebraic	
 loops	

– 	
 numerically	
 unstable!	

• 	
 Ques9on:	
 Can	
 we	
 restore	
 stability	
 by	
 adding	
 virtual	
 damping?	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Yes!	
 	
 	
 Can	
 compute	
 b	
 mathema;cally.	

Lab 8: Controller Area Networking (CAN)
•  Networking protocol used in time-critical applications
•  Messages have unique identifiers: priorities
•  Allows computation of worst case response time
•  Lab exercises:
–  implement virtual wall remotely
–  estimate network utilization
–  virtual “daisy chain”

T = k θi −θ()+ k θ j −θ()

Autocode Generation (I)

•  Derive a mathematical model of system to be controlled
•  Develop a Simulink/Stateflow model of the system.
•  Design and test a control algorithm using this model.
•  Use Simulink Coder to generate C-code.
•  Eliminates coding errors.

•  Rapid prototyping: Speeds product development as generated
code can be tested in many design cycles

•  Autocode in production:
–  Nonconsumer market: NASA, aerospace
–  Automotive: body control
 powertrain control??

Autocode Generation (II)

•  Need Simulink blocks:
–  device drivers
–  processor and peripheral initialization

•  Issues:
–  efficiency of generated code
–  structure of code

•  Multitasking
–  with RTOS, task states
–  without RTOS, nested interrupts

RAppID Toolbox (Freescale)
•  Processor and peripheral initialization blocks
•  Device driver blocks
•  Enables multitasking with nested interrupts

RA ppID M PC5554 Target Setup

System Clock : 128 MHz
Target : MPC5554

Compi ler : m etrowerks
Target Type : In tRAM

Operating System : simpletarget

RAppID-E C

Lab 7: Two virtual wheels

Total reaction torque

Multirate Simulation for Code Generation

Fast and slow subsystems

Fast	
 subsystem	

Slow	
 subsystem	

Device Drivers

Read	
 encoder	
 and	

translate	
 to	
 degrees	

Convert	
 torque	
 to	
 	

duty	
 cycle	
 and	
 write	

to	
 PWM	

UM Project: Adaptive Cruise Control
• 	
 Driving	
 simulator	

• 	
 Bicycle	
 model	
 of	
 vehicle	

• 	
 6	
 vehicles	
 interac9ng	

	
 	
 	
 over	
 CAN	
 network	

• 	
 “Lane	
 centering”	

• 	
 ACC	
 algorithm:	
 3	
 states	

– 	
 manual	
 (sliding	
 pot)	

– 	
 constant	
 speed	

– 	
 constant	
 distance	

	

Controller Block Diagram

Observations

•  Multidisciplinary
•  Multiple layers of abstraction

•  Successful embedded engineers understand time
–  Mechanical/electrical engineers: time in the application domain (physics)
–  Computer engineers: time on the microprocessor ()

•  “pure” software engineers lack necessary background.

•  Applications in many areas
–  aerospace
–  household appliances
–  robotics
–  civil engineering
–  defense
–  medical devices

 1 0

The Automobile and the Future
More fuel efficient
vehicles = lighter
& less survivable
in an accident.

Solution: avoid
accidents by
eliminating driver
error.

èMore jobs for embedded
control engineers

Lino Guzzella ETH, IEEE Spectrum May 2014

Active Safety Systems

!*# $# %&'#"()*# $# +,-./#&%0-12&+# $# 3402.-5%610006,-7 ILLUSTRATION BY mckibillo

tems detects road hazards and draws your
attention to them. It adjusts your speed and
the distance from the car or truck in front
of you based on levels you set, and it can
even bring you to a full stop when the vehi-
cle ahead does the same. It also helps when
you’re backing out of a parking spot, using
visual alerts, sounds, and seat vibrations to
warn of approaching cross traffic. The system
sets off similar alarms if you start drifting out
of a lane without the turn signal activated.

A car equipped with this package can
avoid many low-speed crashes, such as
those in parking lots or in stop-and-go
traffic, with a low-speed emergency auto-
matic braking system that kicks in when it
 senses an object ahead and notices that the
 driver is not reacting appropriately. And at
 higher speeds, this same system automati-
cally brakes to help avoid—or at least reduce
the severity of—an impending rear-ender.

Smarts like these require some high-tech
sensors. A long-range radar, positioned in
the grille behind the Cadillac logo, scans for
 objects as far ahead as 150 meters. Short-
range radars, which can sense cars a few
dozen meters away, hide behind the plastic
that covers the bumpers—two radars in the
front and three in the rear. A video camera
attached to the windshield behind the rear-
view mirror registers lane markings and ve-
hicles ahead. Another camera near the rear
license plate surveys the scene behind the

car. Eight ultra sonic sen-
sors, four on the front
bumper and four on the
rear, detect objects at
very close range, which
is helpful when you’re
trying to parallel park.

The data from all
these sensors go to
a central computer,
which uses the infor-
mation to figure out
what kinds of objects
are around the car, rec-
ognizing that in certain
situations some sensors
are more reliable than
others. For example,
when you’re traveling
at highway speeds, the
readings from the ultra-

ronically, while technology will
ultimately protect us from acci-
dents on the road, sometimes it
does the opposite. That’s because

so many people make phone calls,
text, manipulate GPS units, and fiddle with
infotainment systems when they should be
concentrating on their driving. And even the
most diligent drivers can choose the wrong
moment to glance at a navigation screen.
According to the National Highway Traffic
Safety Administration, driver distraction is
a factor in almost 20 percent of crashes in
which someone is injured.

But a class of technological aids called
active-safety systems is beginning to address
this problem by raising drivers’ awareness
of crash threats that may exist in the sur-
rounding traffic. Virtually every car sold
in developed countries today uses passive-
safety features, like seat belts, air bags, and
car frames that absorb impact to protect
 occupants during a crash. Active safety goes
further by using loud sounds, visual alerts,
and vibrations to direct the driver’s atten-
tion to imminent danger. Some systems
can even operate the brakes to help avert
disaster. These active-safety systems are
the building blocks for the crash-avoiding
cars of the future.

Consider Cadillac’s Driver Assist pack-
age, which our company (General Motors)
introduced in 2012. This group of safety sys-

sonic sensors aren’t helpful, whereas they
are nearly essential when you’re navigat-
ing your car into a tight parking space. The
central computer then decides what kind of
alert needs to be activated or what level
of automatic braking needs to be applied.

These active-safety systems are enor-
mously helpful, but they aren’t enough to
make a car truly crash proof or able to take
over the driving. They can’t grab the wheel
from you and take evasive action when brak-
ing alone won’t do, for example, and they
can’t stop you from steering out of your
lane into danger if you ignore all the alerts.

While fully autonomous vehicles are a
ways off yet, we believe cars that can pilot
themselves briefly under certain conditions
should be in showrooms before the end of
the decade.

Actually, self-driving vehicles are already
here, although you can’t yet buy one at your
local dealer. In November 2007, a Chevrolet
Tahoe modified by researchers at Carne-
gie Mellon University and GM along with
other partners won the Defense Advanced
Research Projects Agency (DARPA) Urban
Challenge, a closed-course competition that
tested the ability of autonomous cars to
drive in traffic. Since then, companies and
universities have built upon the technology
showcased in the challenge. Google, for
 example, has a fleet of driverless Toyota
Priuses, which have reportedly traveled an
 aggregate of 500 000 kilometers.

To drive itself, a car requires four basic
things. It needs a satellite-navigation sys-
tem and digital maps to know where it is. It
needs to be able to see 360 degrees around
itself under all sorts of conditions. It needs
to be able to communicate with other vehi-
cles and with certain parts of the road infra-
structure, like traffic lights, school zones,
and tollbooths. Finally, it needs software
intelligent enough to determine what the
car should do and electronic controls and
actuators to make the car do it. All these
technologies exist on some level today, and
many of them are already on vehicles, as in
Cadillac’s Driver Assist package. But these
systems need to be more capable before
they usher in the era of fully self-driving cars.

Satellite navigation and digital maps are
old news: GM incorporated GPS, digital maps,

A TYPICAL ACTIVE-SAFETY SYSTEM uses a central computer
to collect information from a variety of sensors—including long- and
short-range radars, video cameras, and ultrasonic distance detectors.
The computer activates alerts or brakes automatically based on its
analysis of the sensor inputs.

C e n t ra l
c o m p u t e r

V i d e o c a m e ra

L o n g - ra n g e
ra d a r

S h o r t- ra n g e
ra d a r

U l t ra s o n i c
s e n s o r

U l t ra s o n i c
s e n s o r

U l t ra s o n i c s e n s o r

U l t ra s o n i c
s e n s o r

V i d e o c a m e ra

05.CrashProofCar.NA.indd 34 4/14/14 9:29 AM

IEEE	
 Spectrum	
 May	
 2014,	
 “The	
 Rise	
 of	
 the	
 Crash	
 Proof	
 Car”	

Adap9ve	
 cruise	
 control	

Collision	
 avoidance	

Lane	
 departure	
 warning	

Lane	
 following	

Fully Autonomous Vehicles?

May	
 27,	
 2014	

A Cautionary Note

Wall Street Journal, December 2013: “Will tort law kill driverless cars?”
Fox News, March 2014: “Justice Department announces $1.2 billion settlement with Toyota”

12/18/13 9:57 AMHolman Jenkins: Will Tort Law Kill Driverless Cars? - WSJ.com

Page 1 of 3http://online.wsj.com/news/article_email/SB10001424052702304403804579264261779925166-lMyQjAxMTAzMDEwODExNDgyWj#printMode

See a sample reprint in PDF format.

Dow Jones Reprints: This copy is for your personal, non-commercial use only. To order presentation-ready copies for distribution to your colleagues, clients or
customers, use the Order Reprints tool at the bottom of any article or visit www.djreprints.com

Order a reprint of this article now

BUSINESS WORLD

Holman Jenkins: Will Tort Law Kill
Driverless Cars?
Toyota is required to prove a negative in cases of runaway acceleration.

Dec. 17, 2013 6:43 p.m. ET

Those lusting after the self-driving car ought to pay attention to the Toyota litigation, which suggests that
Software Sammy is not about to become everyman's personal chauffeur anytime soon.

Toyota had been vigorously fighting hundreds of complaints that its cars are prone to unintended
acceleration. Now it's moving toward a global settlement as a consequence of a single Oklahoma lawsuit
that appears to establish that Toyota can't prevail if it can't prove a negative—that its software didn't go
haywire in some untraceable and unreplicable manner.

Attorneys for Jean Bookout didn't mess around with suspect
floor mats, a sticky gas pedal or imprecise hits that Toyotas
are unsafe due to a pattern of "other similar incidents." They
went right after a defect in Toyota's electronic throttle control
that nobody can find or replicate.

The Bookout jury was apparently impressed by the
testimony of software expert Michael Barr. He said a single
"bit flip" (the smallest instance of data corruption) could
cause uncontrolled acceleration when the driver had been
using cruise control, stopped using cruise control, then
resumed using cruise control to let the car accelerate back

to its selected speed.

The car would just keep accelerating due to stoppage of a set of software functions and safety checks
dubbed "Task X." The only way to restart Task X, Mr. Barr said, was to turn the car off and on again. In
the meantime, the driver would have to remove his foot from the brake and then step on the brake again
to engage a safety feature unrelated to Task X to close the throttle.

A Toyota Camry after crashing off Interstate 80 in
Wendover, Utah, 2010. Associated Press

By HOLMAN W. JENKINS, JR.

October	
 2013:	
 $3	
 million	
 seSlement	

	
 	
 	
 	
 	
 	
 	
 	
 Bookout	
 vs	
 Toyota	
 	

	
 	
 	
 	
 	
 	
 	
 	
 unintended	
 accelera9on	

	

March	
 2014:	
 $1.2	
 billion	
 seSlement	

Testimony
Expert	
 witnesses:	

	

Phil	
 Koopman,	
 CMU	
 -­‐	
 “Code	
 had	
 >10,000	
 global	
 variables*”	

	

Michael	
 Barr,	
 Barr	
 Group	
 –	
 “Code	
 had	
 bugs	
 that	
 could	
 cause	
 unintended	
 accelera9on**”	

	

	

Wall	
 Street	
 Journal:	
 “how	
 is	
 a	
 car	
 maker	
 supposed	
 to	
 defend	
 itself	
 when	
 it	
 can't	
 prove	

	
 that	
 its	
 so>ware	
 behaves	
 safely	
 under	
 all	
 circumstances?”	

	

The	
 Google	
 car	
 has	
 been	
 driven	
 500K	
 miles	
 with	
 no	
 accident	

	

Toyota	
 Camrys	
 were	
 driven	
 billions	
 of	
 miles	
 before	
 so>ware	
 error	
 (if	
 it	
 was	
 that)	
 emerged	

*Jack	
 Ganssle	
 “A	
 Pox	
 on	
 Globals”,	
 embedded.com,	
 Oct.	
 2006	

**www.safetyresearch.net/2013/11/07/	

National Science Foundation Research
Cyber-­‐physical	
 systems	
 (CPS):	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 interac9on	
 between	
 computa9onal	
 elements	
 and	
 physical	
 world.	

	

~	
 networks	
 of	
 embedded	
 control	
 systems	

	

Since	
 comprehensive	
 tes9ng	
 is	
 not	
 feasible…	

	

	
 	
 	
 	
 	
 	
 	
 	
 how	
 to	
 write	
 so>ware	
 that	
 works	
 because	
 it	
 is	
 wriSen	
 correctly?	
 	

	

NSF	
 CPS	
 Fron9er	
 Project	
 (UofM,	
 hSp://www.dynamiccps.org):	
 	

	

“Correct-by-Design Control Software Synthesis for Highly Dynamic Systems” 	

	

	

Pedagogical	
 Challenge:	
 CPS	
 requires	
 students	
 to	
 be	
 educated	
 	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 “outside	
 the	
 tradi9onal	
 academic	
 stovepipes”	

	

Impact on Pedagogy
Michael Barr: Top 10 embedded software bugs

The ones we learn about in EECS 461 are underlined!

Race Condition
Non-reentrant function
Missing volatile keyword
Stack Overflow
Heap Fragmentation

Memory leak
Deadlock
Priority inversion
Incorrect priority assignment
Jitter

www.embedded.com 2010

Another Issue

www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

Wired Magazine, July 21, 2015:
 Hackers Remotely Kill a Jeep on the Highway—With Me in It

After the brakes were remotely disabled:

Cybersecurity is beyond the scope of EECS 461, yet former EECS 461 students are working
in industry on connected vehicles today!

Conclusions
Electronics and software in automobiles has been a roaring success!
 cleaner
 safer
 more sustainable

Many other application areas:
 aerospace
 defense
 medical
 appliances

The future will require more embedded control systems!

Big questions:

 are we creating technology too complex to understand and maintain?
 how do we train the workforce?

First step: Take Embedded Control Systems!

