
1

Products of Domain Models1

Don Batory
Department of Computer Sciences

The University of Texas
Austin, Texas 78712

batory@cs.utexas.edu

Abstract

We argue that domain models should produce four basic products: identification of reusable soft-
ware components, definition of software architectures that explain how components can be com-
posed, a demonstration of architecture scalability, and a direct relationship of these results to
software generation of target systems.

1 Introduction

Conventional application modeling is aimed at producing software designs for one-of-a-kind applications.
Domain modeling, in contrast, takes a broader view to address designs for families of related applications.
The issues or products that distinguish domain modeling form application modeling include:

• reusable software components

• software architectures

• scalability

• software system generators

Although domain modeling can be justified for many reasons, we feel the ultimate benefit of domain mod-
eling is the development of tools that eliminate the mundane tasks of application programming within a
mature domain. That is, the automatic construction of software seems to be an inevitable end-product of
the evolution for a well-understood domain; we see domain modeling as the means to achieve this end.

2 Products of Domain Models

The identification of reusable software components is a critical product of domain modeling. The key to
their identification is recognizing fundamental abstractions of the domain. These recurring abstractions
appear in most systems of a family; by standardizing their programming interfaces, components that
implement these abstractions are plug-compatible, interchangeable, and interoperable. Plug-compatibility,
interchangeability, and interoperability increases likelihood that components will be reused.

The second product of domain modeling is software architectures for a domain. A software architecture
basically is a blue-print or template for defining how components fit together to form systems. Software
architectures express patterns of composition that recur within a domain, it explains various means by

1. This research was sponsored, in part, by the U.S. Department of Defense Advanced Research Projects Agency in
cooperation with the U.S. Air Force Wright Laboratory Avionics Directorate under contract F33615-91C-1788.

dsb
Text Box
ARPA Domain Modeling Workshop, George Mason University, September 1994

2

which compositions (or component communications) can physically occur, and it suggests guidelines for
selecting compositions for a given task [Gar92].

Scalability is the third product. It addresses the need for architectures and their components to evolve. The
ability to add new features to systems is the driving force for modeling families of systems; the need for
new features will always be present. Domain models must clearly demonstrate the capability of scaling to
ever larger families of systems without requiring significant revisions [Big94].

Domain models should be detailed enough to be used as blue-prints for software system generators; i.e.,
tools that can produce a target system from a domain directly from specifications. Specifications may
express high-level constraints to be satisfied, thereby entailing a degree of automatic programming on the
part of the generator to “fill in the gaps”, or it could rely exclusively on the domain analyst for specific
selections and compositions of components [Pou94]. Software system generators are among the most visi-
ble and concrete products that can come from domain modeling; a generator is often the centerpiece for
other analysis tools that are critical to applications development [Bat93].

3 Recap

We have an admittedly narrow focus on what should be the products of domain modeling; we concur that a
broader vision should be adopted by the software engineering community. However, we feel our focus is
justified as a consequence of years of work in the areas of reuse, software architectures, and software gen-
erators [Bat92-94]. For us to have demonstrated anything less than software system generation on our
projects would not have been sufficient to convince sponsors of the importance and viability of our con-
cepts of domain modeling. We believe that the demand for such concrete results is universal, and the prod-
ucts that we have identified go a long way for justifying the effort and commitment needed for domain
modeling.

4 References

[Bat92] D. Batory and S. O’Malley, “The Design and Implementation of Hierarchical Software
Systems with Reusable Components”, ACM Transactions on Software Engineering and
Methodology, October 1992.

[Bat93] D. Batory, L. Coglianese, M. Goodwin, and S. Shafer. “Creating Reference Architectures: An
Example from Avionics”, ADAGE Tech. Rep. UT-93-06, 1993.

[Bat94] D. Batory, V. Singhal, J. Thomas, S. Dasari, B. Geraci, and M. Sirkin, “The GenVoca Model of
Software-System Generators”, to appear in IEEE Software, September 1994.

[Big93] T. Biggerstaff, “An Assessment and Analysis of Software Reuse”, in Advances in Computers,
Vol. 34, Academic Press, 1992.

[Big94] T. Biggerstaff, “The Library Scaling Problem and the Limits of Concrete Component Reuse”,
3rd Conference on Software Reuse, Rio de Janerio, November 1994.

[Gar94] D. Garlan and M. Shaw, “An Introduction to Software Architecture”, in Adances in Software
Engineering and Knowledge Engineering, Volume I, World Scientific Publishing Company,
1993.

[Pou94] J. Poulin and W. Tracz, “WISR’93 Reuse Workshop Summary”, ACM Software Engineering
Notes, Vol. 19 #1, January 1994.

