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Abstract. The concept of bounded semantics of temporal logics has
not been sufficiently specified, and this has led to definitions of bounded
semantics of temporal logics that may not be appropriate with respect to
the potential usefulness as a basis for developing bounded model checking
approaches. On the other side, the research effort on bounded semantics
has mainly focused on existentially interpreted fragments of temporal
logics, due to the intricacy of defining appropriate bounded semantics for
universally interpreted fragments, or for temporal logics that are closed
under negation. This work1 addresses these two problems, by defining
the characteristics of bounded semantics for clarifying the concept of
bounded semantics, and presenting a bounded semantics for the full set
of CTL, a logic closed under negation, including possibility for specifying
both existential and universal properties.
Keywords. temporal logics; formal semantics; model checking; formal
methods;

1 Introduction

Bounded semantics of LTL with existential interpretation has been studied and
used as the theoretical basis for SAT-based bounded model checking [6, 13]. The
successfulness of this kind of model checking has led to extensive research on
bounded semantics for various (fragments of) temporal logics [33, 3, 40, 28, 38,
24, 34]. This kind of approaches is considered complementary to BDD-based
model checking [10, 9, 26, 12] for combating the state explosion problem [11, 7],
esp. for efficient error detection [37]. However, there are two problems with this
kind of research, one is that the concept of bounded semantics of temporal logics
has not been properly defined; the other is that the research effort on bounded
semantics has mainly focused on existentially interpreted fragments of temporal
logics. The first problem may lead to definitions of bounded semantics of tem-
poral logics (or fragments of such logics) that are not appropriate with respect
to the potential usefulness as a basis for developing bounded model checking
approaches, for instance, the one defined in [38]. The second problem makes
it difficult to use bounded semantics as a basis for verification of universally
1 This work merges and extends parts of the preliminary works presented at ICFEM
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specified properties. For verification purposes, one needs to reach a complete-
ness threshold or some termination criteria [23, 14, 20, 15, 1, 30] in order to show
the non-existence of a counter-example. Ideally, the principle of bounded model
checking for verification (called bounded verification for short) should be similar
to bounded error detection, such that we start with a small bounded model, if
this is not sufficient to make a conclusion, we increase the bound, until we have
a conclusion or we run out of resources. This work addresses these two problems,
by defining the characteristics of bounded semantics for clarifying the concept
of bounded semantics, and presenting a bounded semantics for the full set of
CTL, a logic closed under negation, including possibility for specifying both ex-
istential and universal properties. A QBF-encoding of CTL formulas based on
the bounded semantics and an algorithm for QBF-based bounded correctness
checking of CTL properties are also provided.

2 Bounded Semantics

Bounded semantics of temporal logics are considered, and we provide charac-
teristics of such semantics, and an analysis of the potential applications of such
semantics.

Given a set of models M and a set L of formulas interpreted on M. A
semantic relation R of L over M is a subset of M×L. Let N denote the set of
natural numbers {i | i ≥ 0}. A bounded semantics is represented by a family of
semantic relations (Ri)i∈N each of which is a subset of M×L.

The desirable properties of such a bounded semantics include:
⋃

i≥0 Ri = R

and
⋃n

i=0 Ri 6=
⋃

i≥0 Ri for all n ∈ N. The former provides a good relation
between the bounded semantics and the given semantics. The latter means that⋃

i≥0 Ri is not closed within
⋃n

i=0 Ri by any n, and is essential for the concept of
bounded semantics, such that each Ri may be thought of as an approximation
of

⋃
i≥0 Ri and the amount of information available up to Rn is not complete

for all n ∈ N.
The first property is divided into soundness and completeness, and the sec-

ond (referred to as the uncloseness property in the sequel) is refined to the
well-definedness condition of bounded semantics. For formal definitions of these
concepts, we narrow down our scope and assume that the temporal logics under
consideration are interpreted over Kripke structures [16], which are also called
transition systems in [21].

Definition 1 (Models). Let AP be a set of propositions. A Kripke structure
over AP is a quadruple M = 〈S, T, I, L〉 where S is a set of states, T ⊆ S × S
is a transition relation which is total, I ⊆ S is a non-empty set of initial states,
and L : S → 2AP is a labeling function that maps each state to a subset of
propositions of AP . A Kripke structure is also called a model.

A computation of M is an infinite sequence s0s1 · · · such that s0 ∈ I and
(si, si+1) ∈ T for i ≥ 0. A state s is reachable if it appears in some computation
of M .
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Definition 2 (Semantic Relations). Let M be a set of models, and L be the
set of formulas of some temporal logic interpreted on M. A semantic relation |=
of L over M is a subset of M×L. M |= ϕ denotes that M satisfies ϕ.

2.1 Characteristics of Bounded Semantics

For the purpose of defining the well-definedness condition, we first define the
concepts of k-expansion, distinguishability and boundedness.

Definition 3. The k-expansion of the Kripke structure M = 〈S, T, I, L〉 is a
Kripke structure M ′ = 〈S′, T ′, I ′, L′〉 defined as follows.

S′ =
⋃k−1

i=0 (Si) ∪ S′k
T ′ =

⋃k−1
i=0 (Ti) ∪ T ′k

I ′ = {(s, 0) | s ∈ I}
L′((s, i)) = L(s) for all (s, i) ∈ S′

S0 = I × {0}
Si = {s′ | (s, s′) ∈ T, s ∈ Si} × {i} for all i ≥ 1
Ti = {((s, i), (s′, i + 1)) | (s, s′) ∈ T} for all i ≥ 0
S′k = S × {k}
T ′k = {((s, k), (s′, k)) | (s, s′) ∈ T}

The 0-expansion of M is a copy of M with S′ = S × {0}. The (k + 1)-
expansion of M is a model such that S0 is the set of the initial states, and
the states reached in the first k-steps of the computation of M are collected
respectively in S1, ..., Sk, while S′k+1 together with T ′k+1 is a copy of M , which
constrains the rest of the computation.

Definition 4. A Kripke structure M ′′ = 〈S′′, T ′′, I ′′, L′′〉 is a variant of the k-
expansion of M = 〈S, T, I, L〉, if the following hold (where Si and Ti are as that
previously defined).

⋃k
i=0(Si) ⊆ S′′⋃k
i=0(Ti) ⊆ T ′′

I ′′ = {(s, 0) | s ∈ I}
L′′((s, i)) = L(s) for all (s, i) ∈ ⋃k

i=0(Si)
(T ′′ \⋃k

i=0(Ti)) ∩ {(s, s′) | s′ ∈
⋃k−1

i=0 (Si)} = ∅
(T ′′ \⋃k

i=0(Ti)) ∩ {(s, s′) | s ∈
⋃k−1

i=0 (Si)} = ∅
Informally, a variant of the k-expansion of M has the same structure as the

k-expansion within the first k + 1 levels (with initial states at level 1) of the
expansion, or in other words, within the first k steps of the computations.

Definition 5. Let |= be a semantic relation of L over M. Let ϕ ∈ L. Two
models M and M ′ are not distinguishable by (|=, ϕ), if M |= ϕ iff M ′ |= ϕ. Two
models M and M ′ are not distinguishable by (|=,L), if for all ϕ ∈ L, they are
are not distinguishable by (|=, ϕ).
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Definition 6. A semantic relation |=k of L over M is bounded, if for all ϕ ∈ L,
for all model M ∈M, there is an m, such that the variants of the m-expansion
of M are not distinguishable by (|=k, ϕ).

If |=k is bounded, then |=k has limited capability for utilizing the whole state
space of a large model in order to evaluate the truth of a formula in the model,
and therefore cannot distinguish models of which the initial parts (up to some
size) are identical, for instance, only the first m+1 levels of an expanded model
are relevant in such an evaluation.

Definition 7. A family of semantic relations (|=i)i∈N is a well-defined bounded
semantics, if for all i ≥ 0, |=i is bounded.

The well-definedness condition ensures that there is a hierarchy of the amount
of information in the different semantic relations of a bounded semantics that
may be used to assert the correctness of a property. However this does not
directly imply the uncloseness property. For the discussion of uncloseness, one
needs some additional assumptions on the semantics, that are to be defined in
the next subsection.

Definition 8. A bounded semantics (|=i)i∈N is sound with respect to |=, if the
following condition holds: for every i ≥ 0, if M |=i ϕ, then M |= ϕ.

The condition is equivalent to the following: if there exists i ≥ 0 such that
M |=i ϕ holds, then M |= ϕ also holds.

Definition 9. A bounded semantics (|=i)i∈N is complete with respect to |=, if
the following holds: if M |= ϕ then there is a i ≥ 0 such that M |=i ϕ.

2.2 Uncloseness Property

Definition 10. A family of semantic relations (|=i)i∈N satisfies the uncloseness
property, if

⋃n
i=0(|=i) 6=

⋃
i≥0(|=i) for all n ∈ N.

In order to be able to state additional assumptions for reasoning about
uncloseness, we define the concepts of structural equivalence, k-equivalence,
expansion-equivalence, and bounded formulas.

Definition 11. Let M1 = 〈S1, T1, I1, L1〉 and M2 = 〈S2, T2, I2, L2〉 be two mod-
els. M1 and M2 are structurally equivalent, if there is a bijective map f : S1 → S2

such that

(x, y) ∈ T1 ↔ (f(x), f(y)) ∈ T2

x ∈ I1 ↔ f(x) ∈ I2

L1(x) = L2(f(x))

Let a k-model of M be a simple variant of the corresponding k-expansion of
M , such that Sk only contains those states that are reachable from Sk−1 by one
step, and the transitions within Sk are all self-loops.
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Definition 12. M and M ′ are k-equivalent, if their k-models are structurally
equivalent. M and M ′ are expansion equivalent , if their k-models are structurally
equivalent, for all k ≥ 0.

Expansion-equivalence is entailed by structural equivalence as well as k-
expansion. On the other hand, it is a strong form of equivalence that entails
trace-equivalence [2] (a model is viewed as a set of infinite traces) and bisimu-
lation equivalence [4] (the reader is referred to Appendix A.2 for a discussion of
the relations), and therefore formulas of many commonly used temporal logics,
such as LTL [35, 36], CTL [17], CTL∗ [18] and µ-calculus [22], are not able to
distinguish expansion equivalent models.

Definition 13. Let |= be a semantic relation of L over M. A formula ϕ ∈ L is
bounded, if there is a k such that k-equivalent models are not distinguishable by
(|=, ϕ).

A bounded formula ϕ is a formula such that, for every model M , when M is
expanded as a set of infinite trees (with roots on the top), the nodes below level
k + 1 for some k (roots are nodes of level 1) do not affect the truth of ϕ.

Lemma 1. Let |= be a semantic relation of L over M. Assume that expan-
sion equivalent models are not distinguishable by (|=,L). Let (|=i)i∈N be a well-
defined, sound and complete bounded semantics with respect to |=. Then for
every unbounded formula ϕ, for all i ≥ 0, there exists M such that for all j ≤ i,
M 6|=j ϕ, and there is a k > i such that M |=k ϕ.

Proof. Let ϕ be an unbounded formula. Then for any m, there exist two
models M∗ and M∗∗ such that M∗ |= ϕ and M∗∗ 6|= ϕ.

– Let M∗(m−) and M∗∗(m−) denote respectively the m-model of M∗ and that
of M∗∗, then M∗(m−) and M∗∗(m−) are structurally equivalent. Therefore
we have

M∗(m−) |=j ϕ iff M∗∗(m−) |=j ϕ, for all j ≤ i.

– Let M∗(m) and M∗∗(m) be respectively the m-expansions of M∗ and M∗∗.
Then we have

M∗(m) |= ϕ iff M∗ |= ϕ, and M∗∗(m) |= ϕ iff M∗∗ |= ϕ.

– Since M∗(m−) is a variant of M∗(m) and M∗∗(m−) is a variant of M∗∗(m),
and |=0, ..., |=i are bounded, let m be large enough, then for all j ≤ i, we
have

M∗(m−) |=j ϕ iff M∗(m) |=j ϕ, and M∗∗(m−) |=j ϕ iff M∗∗(m) |=j ϕ.

– Combining the above with the conclusion obtained at the first item that
guarantees the equivalence of M∗(m−) |=j ϕ and M∗∗(m−) |=j ϕ, we have

M∗(m) |=j ϕ iff M∗∗(m) |=j ϕ, for all j ≤ i.
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– Since we have M∗∗ 6|= ϕ, we also have M∗∗(m) 6|= ϕ. Therefore M∗∗(m) 6|=j ϕ
for all j ≤ i (by soundness), and then M∗(m) 6|=j ϕ for all j ≤ i. On the
other hand, we have M∗ |= ϕ. Therefore M∗(m) |= ϕ, and then there is a k
such that M∗(m) |=k ϕ (by completeness). Let M = M∗(m), then we have
that needed to be proved. Therefore the lemma holds.

Theorem 1. Let |= be a semantic relation of L over M. Assume that expansion
equivalent models are not distinguishable by (|=,L), and that L has a nonempty
subset of unbounded formulas. Then a well-defined, sound and complete seman-
tics with respect to |= satisfies the uncloseness property.

This theorem follows from Lemma 1.

Example Let |= be a semantic relation of L over M. Assume that expansion
equivalent models are not distinguishable by (|=,L), and that L has a nonempty
subset of unbounded formulas. Let (|=i)i∈N be a family of semantic relations,
where M |=i ϕ is defined as M |= ϕ, for all i ∈ N. Obviously, (|=i)i∈N is sound
and complete with respect to |=, however, it is not a valid bounded semantics
for |=, because it does not satisfy the uncloseness property, and therefore is
not a well-defined bounded semantics. This uncloseness property is intended
for excluding non-interesting definitions of bounded semantics that violate the
incrementality of the ability to use the information provided by the models.
Examples of the definitions that satisfied this property is to be found in Section
3.2 and Section 4.1.

Discussion The above example of bounded semantics is a trivially non-valid one.
Looking at the existing bounded semantics, the bounded semantics of various
fragments of CTL* [18], including that of LTL with existential interpretation
[6], that of the existential fragment of CTL [33], and that of the existential
fragment of CTL* [40] are all well-defined, sound and complete with respect
to their respective target languages. However, the bounded semantics for CTL*
defined in [38] is a family of semantic relations that does not satisfy the proposed
soundness condition. Properties of the bounded semantics of LTL and that of
CTL∗ are to be further discussed in Section 4.1 and Section 4.2, respectively.

2.3 Potential Applications of Bounded Semantics

Let L be a language and M be a set of models. Let |= be a semantic relation
of L over M. In general, a corresponding bounded semantics may be defined on
a subset of L over a subset of M. The potential applications of the bounded
semantics may be different depending on whether it is only well-defined, sound
and complete with respect to a given part of the standard semantics |=. We
explain model checking approaches denoted bounded verification, bounded model
checking and a combined approach denoted bounded correctness checking.
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Bounded Verification Let (|=k)k∈N be a well-defined, sound and complete
bounded semantics with respect to the semantic relation |=. Such a bounded
semantics may be applied to bounded verification with falsification based on the
used of completeness thresholds, a concept similar to the one defined in [5].

Definition 14. The completeness threshold of the problem M |= ϕ for (|=k)k∈N

is defined as the least k such that if M |=k ϕ does not hold then M |=k′ ϕ does
not hold for all k′ > k.

The completeness threshold of the problem M |= ϕ for (|=k)k∈N exists. Let
ct denote this completeness threshold. The argument for the existence is divided
into two cases as follows.

– Case 1: M |=i ϕ does not hold for all i.
In this case, we have ct = 0, according to the definition.

– Case 2: M |=i ϕ holds for some i, and i0 is the least one of such i’s.
In this case, we have ct = i0. Therefore the completeness threshold exists.

If the completeness threshold ct of the problem M |= ϕ is known, then the
problem is almost solved. We have two cases.

– If ct = 0, then we only need to check whether M |=0 ϕ holds.
– If ct = i0 > 0, then we know that M |=i0 ϕ holds, and therefore M |= ϕ

holds according to the soundness of the bounded semantics.

Since computing the completeness threshold is difficult (at least as difficult
as the model checking problem), we may consider over-approximations of such
a threshold. Let ct(M, ϕ) denote the completeness threshold of the problem
M |= ϕ.

Definition 15. m is an over-approximations of ct(M, ϕ), if m ≥ ct(M, ϕ).

The following proposition follows from the definition of the completeness
threshold and that of over-approximation.

Proposition 1. Let ct0 be an over-approximation of ct(M, ϕ). M |= ϕ holds iff
M |=k ϕ for some k ≤ ct0.

Let N be the set of natural numbers with 0 as the least element.
Let µK.h denote the least fixpoint of h : N → N.
Let x/2 denote the integer division by 2.
Let odd(x) denote 1 if x is odd, 0 otherwise.
Let inc(x, y) denote x+y−odd(x). Then inc(x, 1) is the function that moves

x to the closest odd number (including itself), and inc(x, 2) is the function that
moves x to the closest even number larger than x.

Let ite(c, x, y) denote the function that returns x if c is true, and y otherwise.
The following are a fixpoint formulation and an algorithmic formulation for

the bounded verification approach. Let M be a model, and ϕ ∈ L be a formula.
The fixpoint formulation with the use of completeness threshold is as follows.
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Let ct0 be an over-approximation of ct(M, ϕ).
Let hbv

M,ϕ : N → N be a monotonic function defined by

hbv
M,ϕ(K) = ite((K/2 ≤ ct0), ite((M |=K/2 ϕ), inc(K, 1), inc(K, 2)),K).

Corollary 1 (Bounded Verification). Let M be a model, and ϕ ∈ L be a
formula. M |= ϕ iff odd(µK.hbv

M,ϕ) = 1.

This corollary characterizes the bounded verification approach. The existence
of such a least fixpoint and the correctness are guaranteed by Proposition 1. A
corresponding algorithmic formulation (with some simplification with respect to
the fixpoint formulation) is as follows.

Let ct0 be an over-approximation of ct(M, ϕ);
for (k = 0; k ≤ ct0; k++) { if (M |=k ϕ holds) break; }
report that M |= ϕ holds iff k ≤ ct0;

This bounded verification approach may be applied to quickly report that
ϕ holds when a small k is sufficient for proving M |=k ϕ. Note that for the
algorithmic efficiency, different optimizations may be considered, for instance, by
using other termination criteria, or increasing the value of k differently, however,
discussions around such optimizations are not essential for the purpose of this
paper.

Bounded Model Checking For bounded model checking, we may distinguish be-
tween a specification langauge L0 ⊆ L, a language L1 ⊆ L for which bounded
semantics is defined. In this setting, L1 is thought of as the negated set of formu-
las of L0, and the bounded semantics of L1 is defined over a subset M1 ⊆ M.
Such a bounded semantics may be applied to bounded falsification of formulas
of L0, while verification of such formulas may be done based on the used of com-
pleteness thresholds. Before presenting this bounded model checking approach,
we define a concept called ng-consistency for formally dealing with the mapping
between L0 and L1.

Definition 16 (ng-Consistency). Let ng : L0 → L1 be a partial function on
L. A semantic relation |= of L over M is ng-consistent, if the following holds:
there is a function wf : M→ 2M such that for all ϕ ∈ L0, M 6|= ϕ iff there is
some M ′ ∈ wf(M) such that M ′ |= ng(ϕ).

The function wf is called a witness function. The function ng is meant to be
the negation of a formula, however, it is not necessarily a syntactically negated
formula. Let (|=k)k∈N be a well-defined, sound and complete bounded semantics
with respect to the part of semantic relation |= restricted to formulas of L1 and
models of M1 ⊆M.

Proposition 2. Let |= be ng-consistent with f as a witness function satisfying
wf(M) ⊆ M1 for every M ∈M. Let ϕ ∈ L0. Let (|=k)k∈N be as stated above.
Then M 6|= ϕ iff there is a k such that ∃M ′ ∈ wf(M).(M ′ |=k ng(ϕ)).
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Let M be a model, and ϕ be a formula of L0 ⊆ L. Suppose that |= is ng-
consistent with wf as a witness function such that wf(M) ⊆ M1 for every
M ∈M. The fixpoint formulation of the bounded model checking approach is
as follows.

Let ct0 be an over-approximation of ct(M ′, ng(ϕ)) for all M ′ ∈ wf(M).
Let hbmc

M,ϕ : N → N be a monotonic function defined by

hbmc
M,ϕ(K) =

ite((K/2 ≤ ct0), ite((∃M ′ ∈ wf(M).(M ′ |=K/2 ng(ϕ))),K, inc(K, 2)), inc(K, 1)).

Corollary 2 (Bounded Model Checking). Let M be a model, and ϕ be a
formula of L0 ⊆ L. M |= ϕ iff odd(µK.hbmc

M,ϕ) = 1.

This corollary characterizes the bounded model checking approach. The exis-
tence of such a least fixpoint and the correctness are guaranteed by Proposition
2. A corresponding algorithmic formulation is as follows.

Let ct0 be an over-approximation of ct(M ′, ng(ϕ)) for all M ′ ∈ wf(M);
for (k = 0; k ≤ ct0; k++) { if (∃M ′ ∈ wf(M).(M ′ |=k ng(ϕ))) break; }
report that M |= ϕ does not hold iff k ≤ ct0;

This bounded model checking approach may be applied to quickly report
that ϕ does not hold when a small k is sufficient for proving M ′ |=k ng(ϕ) for
some M ′ ∈ wf(M). This approach corresponds to the usual bounded model
checking approach developed for, for instance, checking of LTL, ACTL, and
ACTL∗ properties [6, 33, 40].

Example Considering the bounded semantics in [6] as an example. Let ϕ be an
LTL formula. Let |=k denote the bounded semantics of LTL (for the details,
the reader is referred to Section 4.1). Let 〈M, s〉 denote M with I replaced by
{s}. By interpreting an LTL formula ϕ in the context M |= ϕ as a universally
quantified state formula Aϕ in CTL*, essentially we have the following:

M 6|= Aϕ
⇔ ∃s ∈ I.(〈M, s〉 |= E¬ϕ)
⇔ ∃k ≥ 0.∃s ∈ I.(〈M, s〉 |=k E¬ϕ)
⇔ ∃k ≥ 0.∃〈M, s〉 ∈ wf(M).(〈M, s〉 |=k E¬ϕ)

This complies with the above bounded model checking approach with

L0 = {Aϕ | ϕ ∈ LTL}
L1 = {Eϕ | ϕ ∈ LTL}
ng(Aϕ) = E¬ϕ
M1 = {〈S, T, {s}, L〉 ∈ M | s ∈ S}
|=k ⊆M1 × L1

wf(M) = {〈M, s〉 ∈ M1 | s ∈ I}
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Let ϕ be an LTL formula. Then according to Proposition 2, we have a
bounded model checking approach, which can be refined to be as follows.

Let ct0 be an over-approximation of ct(〈M, s〉, E¬ϕ) for all s ∈ I;
for (k = 0; k ≤ ct0; k++) { if (∃s ∈ I.(〈M, s〉 |=k E¬ϕ)) break; }
report that M |= Aϕ does not hold iff k ≤ ct0;

Bounded Correctness Checking For a bounded semantics defined for a language
closed under negation, we may apply the bounded semantics to both bounded
verification and bounded model checking. Let (|=k)k∈N be a well-defined, sound
and complete bounded semantics with respect to the semantic relation |=.

Proposition 3. Let ng : L → L be a total function on L. Let |= be ng-consistent
with wf as a witness function. Let (|=k)k∈N be as stated above. Then M |= ϕ
iff there is a k such that M |=k ϕ, and M 6|= ϕ iff there a k such that ∃M ′ ∈
wf(M).(M ′ |=k ng(ϕ)).

Let M be a model, and ϕ be a formula of L. Suppose that |= is ng-consistent
with wf as a witness function. The fixpoint formulation of the bounded cor-
rectness checking approach, that applies the bounded semantics to checking the
satisfiability of both of ϕ and ng(ϕ) in the model, is as follows.

Let hbcc
M,ϕ : N → N be a monotonic function defined by

hbcc
M,ϕ(K) =

ite((M |=K/2 ϕ), inc(K, 1), ite((∃M ′ ∈ wf(M)).(M ′ |=K/2 ng(ϕ))),K, inc(K, 2)).

Corollary 3 (Bounded Correctness Checking ). Let M be a model, and
ϕ ∈ L be a formula. M |= ϕ iff odd(µK.hbcc

M,ϕ) = 1.

This corollary characterizes the bounded correctness checking approach. The
existence of such a least fixpoint and the correctness are guaranteed by Propo-
sition 3. One of the features of this formulation is that there is no need of
completeness thresholds. This is explained as follows.

– If M |= ϕ, then according to completeness of the bounded semantics, we have
M |=n ϕ for a sufficiently large n, and then the least fixpoint calculation
terminates with K = 2k + 1 for some k ≤ n.

– If M 6|= ϕ, then (∃M ′ ∈ wf(M)).(M ′ |= ng(ϕ) according the ng-consistency
of |=. Then according to completeness of the bounded semantics, we have
(∃M ′ ∈ wf(M)).(M ′ |=n ng(ϕ)) for a sufficiently large n, and the least
fixpoint calculation terminates with K = 2k for some k ≤ n.

A corresponding algorithmic formulation is as follows.

for (k = 0; 1; k++) { if (M |=k ϕ or ∃M ′ ∈ wf(M)).(M ′ |=k ng(ϕ))) break; }
report that M |= ϕ holds iff M |=k ϕ holds;
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Discussion Bounded verification is a direct approach for verification of given
formulas. Bounded model checking is an approach aiming at quickly showing
unsatisfiability of given formulas, by defining bounded semantics for the negation
of such formulas. Bounded correctness checking is a combined approach relying
on bounded semantics defined for both the given formulas and the negation
of such formulas. Bounded model checking is more complicated than bounded
verification, because the properties to be checked are not directly represented by
the formulas for which the bounded semantics is defined.

3 Bounded Correctness Checking of CTL Formulas

The temporal logic CTL is considered, and we present a well-defined, sound and
complete bounded semantics for CTL. Such a bounded semantics naturally leads
to a bounded correctness checking approach for the verification of CTL formulas.

3.1 Computation Tree Logic

CTL is a propositional branching-time temporal logic [17] introduced by Emer-
son and Clarke as a specification language for finite state systems.

Syntax Let AP be a set of propositional symbols and p range over AP . The set
of CTL formulas Φ over AP is defined as follows:

Φ ::= p | ¬Φ | Φ ∧ Φ | Φ ∨ Φ |
AX Φ |AF Φ |AG Φ |A(Φ U Φ) |A(Φ R Φ) |
EX Φ | EF Φ | EG Φ | E(Φ U Φ) | E(Φ R Φ)

The property of a finite state system may be specified by such a formula, and
conversely, the truth of such a formula may be evaluated in a finite state system
represented by a Kripke structure.

Paths Let M = 〈S, T, I, L〉 be a Kripke structure. An infinite path of M is an
infinite sequence of states π = π0π1 · · · such that (πi, πi+1) ∈ T for all i ≥ 0. A
computation of M is then an infinite path π of M such that π0 ∈ I. Given a
path π = π0π1 · · ·, we use πi to denote the subpath of π starting at πi, use π(s)
to denote a path π with π0 = s. Then ∃π(s).ϕ means that there is a path π with
π0 = s such that ϕ holds, and ∀π(s).ϕ means that for every path π with π0 = s,
ϕ holds.

Definition 17 (Semantics of CTL). Let p be a propositional symbol, ϕ and
ψ CTL formulas. Let π = π0π1 · · · denote an infinite path of M . The relation
M, s |= ϕ is defined as follows.
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M, s |= p iff p ∈ L(s) .
M, s |= ¬ϕ iff M, s 6|= ϕ
M, s |= ϕ ∧ ψ iff (M, s |= ϕ) and (M, s |= ψ)
M, s |= ϕ ∨ ψ iff (M, s |= ϕ) or (M, s |= ψ)
M, s |= AXϕ iff ∀π(s).(M, π1 |= ϕ)
M, s |= AFψ iff ∀π(s).(∃k ≥ 0.(M, πk |= ψ)
M, s |= AGψ iff ∀π(s).(∀k ≥ 0.(M, πk |= ψ)
M, s |= A(ϕUψ) iff ∀π(s).(∃k ≥ 0.(M, πk |= ψ∧ ∀j < k.(M, πj |= ϕ)))
M, s |= A(ϕRψ) iff ∀π(s).(∀k ≥ 0.(M, πk |= ψ∨ ∃j < k.(M, πj |= ϕ)))
M, s |= EXϕ iff ∃π(s).(M, π1 |= ϕ)
M, s |= EFψ iff ∃π(s).(∃k ≥ 0.(M, πk |= ψ)
M, s |= EGψ iff ∃π(s).(∀k ≥ 0.(M, πk |= ψ)
M, s |= E(ϕUψ) iff ∃π(s).(∃k ≥ 0.(M, πk |= ψ∧ ∀j < k.(M, πj |= ϕ)))
M, s |= E(ϕRψ) iff ∃π(s).(∀k ≥ 0.(M, πk |= ψ∨ ∃j < k.(M, πj |= ϕ)))

Definition 18. M |= ϕ iff M, s |= ϕ for all s ∈ I.

Negation Normal Form A CTL formula is in the negation normal form (NNF),
if the negation ¬ is applied only to propositional symbols. Every CTL formula
can be transformed into an equivalent formula in NNF, by applying the following
equivalences.

¬(¬ϕ0) ≡ (ϕ0)
¬(ϕ0 ∧ ϕ1) ≡ (¬ϕ0 ∨ ¬ϕ1)
¬AXϕ0 ≡ EX¬ϕ0

¬AFϕ0 ≡ EG¬ϕ0

¬AGϕ0 ≡ EF¬ϕ0

¬A(ϕ0Uϕ1) ≡ E(¬ϕ0R¬ϕ1)
¬A(ϕ0Rϕ1) ≡ E(¬ϕ0U¬ϕ1)

Without loss of generality, in the following, we only consider formulas in
NNF. Formulas not in NNF are considered as an abbreviation of the equivalent
one in NNF.

Example of Unbounded Formulas CTL contains unbounded formulas. AFp is an
unbounded formula, since for any k, there exists k-equivalent models that are dis-
tinguishable by AFp, for instance, we may construct 〈S, T, I, L〉 and 〈S, T, I, L′〉
such that each has k+2 states with a single computation (s0...sk)(sk+1)ω, and in
the first model, L(si) = {p} for all i, while in the second model, L′ is defined by
L′(si) = {p} for i ≤ k and L′(sk+1) = {}, then the two models are k-equivalent
and distinguishable by AFp.

3.2 Bounded Semantics

The bounded semantics of CTL in this subsection has been presented in [45].
This bounded semantics extends that of ACTL presented in [43]. The latter



13

was inspired by the previous works on bounded model checking and bounded
verification [6, 33, 41, 42]. In addition to the soundness and completeness dis-
cussed in [45], this subsection also discusses the well-definedness and uncloseness
properties of the bounded semantics. In the following, we fix the model under
consideration to be M = 〈S, T, I, L〉.

Finite Paths A finite path ζ of M is a finite prefix of an infinite path of M .

rs-Paths Let ζ be a finite path. ζ is a path with repeating states is denoted by
rs(ζ). Then rs(ζ) implies that the number of different states appearing in ζ is
less that the length of ζ. An important property is that if ζ is a prefix of ζ ′, then
rs(ζ) → rs(ζ ′). For the idea of the use of rs-path, the reader is referred to [43]
(in which it is denoted eqs).

k-Paths Let k ≥ 0. A k-path of M is a finite path of M with length k + 1. ζ is
a k-path, if ζ = ζ0 · · · ζk such that ζi ∈ S for i = 0, ..., k and (ζi, ζi+1) ∈ T for
i = 0, ..., k− 1. For the idea of k-path, the reader is referred to [6]. The set of all
k-paths of M is denoted Mk.

Definition 19 (Bounded Semantics of CTL). Let s be a state, p a proposi-
tional symbol, ϕ and ψ CTL formulas. Let k ≥ 0. Let ζ = ζ0 · · · ζk ∈ Mk denote
a k-path. The semantics relation M, s |=k ϕ is defined as follows.

M, s |=k p iff p ∈ L(s) .
M, s |=k ¬p iff p 6∈ L(s)
M, s |=k ϕ ∧ ψ iff (M, s |=k ϕ) and (M, s |=k ψ)
M, s |=k ϕ ∨ ψ iff (M, s |=k ϕ) or (M, s |=k ψ)
M, s |=k AXϕ iff k ≥ 1 ∧ ∀ζ(s).(M, ζ1 |=k ϕ)
M, s |=k AFψ iff ∀ζ(s).(∃i ≤ k.(M, ζi |=k ψ))
M, s |=k AGψ iff ∀ζ(s).(rs(ζ)∧ (∀i ≤ k.(M, ζi |=k ψ)))
M, s |=k A(ϕUψ) iff ∀ζ(s).(∃i ≤ k.(M, ζi |=k ψ∧ ∀j < i.(M, ζj |=k ϕ)))
M, s |=k A(ϕRψ) iff ∀ζ(s).((∀i ≤ k.(M, ζi |=k ψ∨ ∃j < i.(M, ζj |=k ϕ))) ∧

(∃j ≤ k.(M, ζj |=k ϕ) ∨ rs(ζ)))
M, s |=k EXϕ iff k ≥ 1 ∧ ∃ζ(s).(M, ζ1 |=k ϕ)
M, s |=k EFψ iff ∃ζ(s).(∃i ≤ k.(M, ζi |=k ψ))
M, s |=k EGψ iff ∃ζ(s).(rs(ζ)∧ (∀i ≤ k.(M, ζi |=k ψ)))
M, s |=k E(ϕUψ) iff ∃ζ(s).(∃i ≤ k.(M, ζi |=k ψ∧ ∀j < i.(M, ζj |=k ϕ)))
M, s |=k E(ϕRψ) iff ∃ζ(s).((∀i ≤ k.(M, ζi |=k ψ∨ ∃j < i.(M, ζj |=k ϕ))) ∧

(∃j ≤ k.(M, ζj |=k ϕ) ∨ rs(ζ)))

Definition 20. M |=k ϕ iff M, s |=k ϕ for all s ∈ I.

Example Consider the Kripke structure in Fig. 1 and the two properties AFEFq
and AGEFq. The first one holds and the second one does not hold.

– For checking that AFEFq holds, we need to check for a k, all k-paths starting
from the initial states on whether there is a state on each such path satisfying
EFq. Let k = 1. The following are all such 1-paths that need to be checked.
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Fig. 1. Example Kripke Structure 1

s0s2

s1s3

Then it is sufficient to check that the state s2 and the state s3 satisfy EFq. It
is sufficient to check that there is a state satisfying q on each of the following
1-paths, which is true according to the bounded semantics.

s2s4

s3s2

This proves that the model satisfies AFEFq with k = 1.
– For checking that AGEFq does not hold, we have to check there is an initial

state that does not satisfy AGEFq, i.e., there is an initial state that satisfies
EFAG¬q. Then according to the bounded semantics, it is sufficient to check
that there is a state on the following 2-path satisfying AG¬q.

s0s2s4

Then for the state s4, the 2-paths starting from s4 are as follows.

s4s4s4

s4s5s4

It is easily checked that all states on these two paths satisfy ¬q, and rs(s4s4s4)
and rs(s4s5s4) hold. This proves that the model does not satisfy AGEFq
with k = 2.

In the following, we establish that the bounded semantics of CTL given in
Definition 20 is well-defined, sound and complete.

Lemma 2. Let ϕ be a formula. For all M ∈ M, there is an m such that the
variants of the m-expansion of M are not distinguishable by (|=k, ϕ).

Let m be larger than k times the number of the occurrences of temporal
operators in ϕ. Let M ′ and M ′′ be two variants of the m-expansion of M . Then
the evaluation of M ′ |=k ϕ is not able to use the information beyond the first m
levels of M ′ (according to the definition of |=k). Since the first m levels of M ′

and that of M ′′ are structurally equivalent, we have that M ′ |=k ϕ iff M ′′ |=k ϕ.
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Theorem 2 (Well-definedness). The family of semantic relations (|=k)k∈N

is a well-defined bounded semantics.

The well-definedness condition follows from Lemma 2.

Lemma 3. If M, s |=k ϕ, then M, s |=k+1 ϕ.

The main arguments are explained as follows. For the first, we observe that
every k-path in Mk is a prefix of a path in Mk+1, and every (k + 1)-path in
Mk+1 is an extension of a path in Mk. By looking at the definition, we can
be assured that there is no problem in the cases of AX, AF, AU,EX,EF,EU .
By recognizing that the semantics of AG and EG can be derived from that
of AR and ER (also in this bounded semantics), we only need to look further
at the two cases AR and ER. We first consider the case of AR. Suppose that
M, s |=k A(ϕRψ) holds and M, s |=k+1 A(ϕRψ) does not hold. Then there is a
ζ ∈ Mk+1 with ζ0 = s such that

(∀i ≤ k + 1.(M, ζi |=k+1 ψ ∨ ∃j < i.(M, ζj |=k+1 ϕ)))∧
(∃j ≤ k + 1.(M, ζj |=k+1 ϕ) ∨ rs(ζ))

(denote hereafter by (*)) does not hold. Let ζ ′ be the k-path that is at the same
time a prefix of ζ.

– Suppose that rs(ζ ′) does not hold.
Then by assumption, we have
(∀i ≤ k.(M, ζi |=k ψ ∨ ∃j < i.(M, ζj |=k ϕ))) ∧ (∃j ≤ k.(M, ζj |=k ϕ)).
Then by the induction hypothesis, we have
∀i ≤ k.(M, ζi |=k+1 ψ ∨ ∃j < i.(M, ζj |=k+1 ϕ)) ∧ (∃j ≤ k.(M, ζj |=k+1 ϕ)).
This contradicts to that (*) does not hold.

– Suppose that rs(ζ ′) holds.
Then by assumption, we have
(∀i ≤ k.(M, ζi |=k ψ ∨ ∃j < i.(M, ζj |=k ϕ))) ∧ rs(ζ ′).
Similarly, by the induction hypothesis, we have
(∀i ≤ k.(M, ζi |=k+1 ψ ∨ ∃j < i.(M, ζj |=k+1 ϕ))).
Since rs(ζ) is implied by rs(ζ ′), the only possible case that may fail (*) is
that (M, ζk+1 |=k+1 ψ ∨ ∃j < k + 1.(M, ζj |=k+1 ϕ)) does not hold.
Let ζ = ζ0 · · · ζkζk+1.
Since rs(ζ ′) holds, we have ζi = ζj for some 0 ≤ i < j ≤ k.
Let ζ ′′ = ζ0 · · · ζiζj+1 · · · ζkζk+1.
Then ζ ′′ is a prefix (not necessarily a proper one) of some k-path starting
with s.
Since M, s |=k A(ϕRψ), we have
∀i ≤ k.(M, ζ ′′i |=k ψ∨∃j < i.(M, ζ ′′j |=k ϕ))∧(∃j ≤ k.(M, ζ ′′j |=k ϕ)∨rs(ζ ′′)).
Let the position of ζk+1 in ζ ′′ be l + 1 (i.e. ζ ′′l = ζk+1).
Then we have (M, ζ ′′l |=k ψ ∨ ∃j < l.(M, ζ ′′j |=k ϕ)).
Again, by the induction hypothesis, we have
(M, ζ ′′l |=k+1 ψ ∨ ∃j < l.(M, ζ ′′j |=k+1 ϕ)).
Since ζ ′′l = ζk+1 and every elements of ζ ′′ is an element of ζ, we have
(M, ζk+1 |=k+1 ψ ∨ ∃j < k + 1.(M, ζj |=k+1 ϕ)).
This contradicts to that (*) does not hold.



16

For the case of ER, the reasoning is similar. A complete proof involving all
of the different cases can be formalized based on structural induction, and is to
be found in Appendix A.1.

Corollary 4. If M |=k ϕ, then M |=k+1 ϕ.

Lemma 4. If M, s |=i ϕ for some i ≥ 0, then M, s |= ϕ.

According to Lemma 3, if M, s |=i ϕ for some i, then M, s |=k ϕ holds for a
large k. Given a model, all properties other than those of the form

AGψ, A(ϕRψ), EGψ,E(ϕRψ)

can be witnessed by finite paths. Let k be largest number among the lengths
of such paths, the number of reachable states of M and the number i. We have
M, s |=k ϕ. Let π be an infinite path. Suppose that a property of the form
AGψ, A(ϕRψ), EGψ,E(ϕRψ) such that ϕ does not hold in any state of π and ψ
must hold in all states of π, and therefore a prefix is not sufficient for showing the
truth of such a property. Since AG and EG can be considered as subcases of AR
and ER, we only consider A(ϕRψ) and E(ϕRψ). Assume the aforementioned
situation occurs and A(ϕRψ) holds in the bounded semantics. We want to show
that ϕRψ also holds on such a path π. For the first, the situation implies that ψ
is true on every state of every k-path of which the set of states is a subset of that
of π. For the second, the set of states of all these k-paths with the starting state
π0 covers the set of states of π. These two conditions guarantee that ψ is true on
every state of π and therefore ϕRψ holds on π. For the case of E(ϕRψ), since
π satisfies (ϕRψ) in the bounded semantics such that ψ holds on all states of
π, an infinite path in which all states satisfying ψ can be constructed, therefore
E(ϕRψ) holds.

Corollary 5. If M |=i ϕ for some i ≥ 0, then M |= ϕ.

Lemma 5. If M, s |= ϕ, then M, s |=k ϕ for some k ≥ 0.

By looking at the definitions, the bounded semantics is similar to the normal
semantics, except that the bounded semantics has a few additional constraints.
Let k be sufficiently large. Then the two conditions k ≥ 1 and rs(π) in the
bounded semantics hold without any problem. By simplifying the bounded se-
mantics based on this fact, the difference between the bounded semantics and
the normal semantics is that the paths in the bounded semantics are restricted
to k-paths, while the paths in the normal semantics are infinite paths. Therefore
if M, s |= ϕ holds, then M, s |=k ϕ holds for a sufficiently large k (large enough
to make rs(π) true for all k-paths). In particular, the number of reachable states
of M will be such a k.

Corollary 6. If M |= ϕ, then M |=k ϕ for some k ≥ 0.

Theorem 3 (Soundness and Completeness). M |= ϕ iff M |=k ϕ for some
k ≥ 0.
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This theorem is a combination of Corollary 5 and Corollary 6. It was estab-
lished in [45], and that restricted to ACTL formulas was established in [43].

Lemma 6. Expansion equivalent models are not distinguishable by (|=, CTL).

This follows from that expansion equivalent models are bisimulation equiv-
alent, and CTL does not distinguish such models. The proof is to be found in
Appendix A.2.

Corollary 7 (Uncloseness).
⋃n

k=0(|=k) 6= ⋃
k≥0(|=k) for all n ≥ 0.

This corollary follows from Theorem 1, since (|=k)k∈N is well-defined, sound
and complete with respect to |=, and (|=, CTL) does not distinguish models
that are expansion equivalent , according to Lemma 6, and there are unbounded
formulas in CTL (an example of unbounded formulas was given at the end of
Section 3.1).

3.3 Bounded Correctness Checking

The bounded semantics of CTL may be applied to the verification of finite state
systems.

Bounded Verification According to Proposition 1, we have a bounded verifica-
tion algorithm as follows.

Let ct0 be an over-approximation of ct(M, ϕ);
for (k = 0; k ≤ ct0; k++) { if (M |=k ϕ holds) break; }
report that M |= ϕ holds iff k ≤ ct0;

Bounded Correctness Checking Since CTL is a language closed under negation,
we may also develop a bounded correctness checking algorithm.

Proposition 4. Let ng be a function that maps an NNF formula to an NNF
formula equivalent to the negation of the formula. The standard semantics of
CTL is ng-consistent with a witness function wf defined by wf(〈S, T, I, L〉) =
{〈S, T, {s}, L〉 | s ∈ I}.

Then according to Proposition 3, we have a bounded correctness checking
approach, which can be refined to be as follows.

for (k = 0; 1; k++) { if (M |=k ϕ or ∃s ∈ I.(M, s |=k ¬ϕ)) break; }
report that M |= ϕ holds iff M |=k ϕ holds;

Note that ¬ϕ represents the NNF formula equivalent to ¬ϕ. The remaining
problem is then to have an appropriate algorithm for checking M |=k ϕ. This
may be done by transforming such a problem into a QBF validity checking
problem [8], and using QBF-reasoning [25, 19] to check the problem.
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3.4 QBF-based Bounded Correctness Checking

The components of the model M = 〈S, T, I, L〉 can be represented by Boolean
formulas as follows. Let |X| denote the size of the set X. Let m ≥ 0 such
that |S| ≤ 2m. Let x = {x1, ..., xn} be a set of propositional variables. Let
Φ(x) denote the set of propositional formulas over x. Let x′ = {z′ | z ∈ x}.
Let Φ(x, x′) denote the set of propositional formulas over the set of variables
x ∪ x′ = {x1, ..., xm, x′1, ..., x

′
m}. Let Σ = {0, 1}m and Σ2 = Σ ×Σ.

– Let σ = (a1, ..., am) ∈ Σ.
Let σ |= ϕ denote ϕa1,....,am

x1,...,xm
= 1 for ϕ ∈ Φ(x).

For brevity, we also use (ϕ)σ
x to denote ϕa1,....,am

x1,...,xm
when σ = (a1, ...., am).

– Let σ = (a1, ..., am, a′1, ..., a
′
m, ) ∈ Σ2.

Let σ |= ϕ denote ϕ
a1,....,am,a′1,....,a′m
x1,...,xm,x′1,...,x′m

= 1 for ϕ ∈ Φ(x, x′).
– Let [[ϕ]] denote {σ | σ |= ϕ}.

Let f : S → Φ(x) satisfy |[[f(s)]]| = 1, and s1 6= s2 → [[f(s1)]] 6= [[f(s2)]].
Let f(s, v) denote (f(s))v

x, i.e., (f(s))v1,....,vm
x1,...,xm

with v = {v1, ...., vm}.
Let f2 : S2 → Φ(x, x′) be defined by f2(s1, s2) = (f(s1) ∧ f(s2, x

′)).

The mapping f may be given explicitly by making an enumeration of S and
then assigning a formula to each s ∈ S, however for our purpose, it is sufficient
to know that f establishes an injective mapping from S to Σ via Φ(x) such
that every state of S is represented by a unique element of Σ. The mapping f2

depends on f and establishes an injective mapping from T ⊆ S2 to Σ2. Let ρT ,
ρI and ρp for each p ∈ AP be defined as follows.

ρI(x) =
∨

s∈I(f(s)).
ρT (x, x′) =

∨
(s1,s2)∈T (f2(s1, s2)).

ρp(x) =
∨
{s | p∈L(s)}(f(s)).

Then ρI represents the set of the initial states I. ρT represents the transition
relation T . ρp represents the set of states that satisfy p. Let g : S ∪ T → Σ ∪Σ2

be defined by

g(w) = σ such that
if w ∈ S, then [[f(w)]] = {σ}, and if w ∈ T , then [[f2(w)]] = {σ}.

Then g is an injective mapping from S and T to Σ and Σ2. Following from the
definition, we have the following.

s ∈ I iff g(s) |= ρI

(s1, s2) ∈ T iff g(s1, s2) |= ρT

p ∈ L(s) iff g(s) |= ρp



19

Symbolic Representation of k-Paths Let k ≥ 0. Let u0, ..., uk be a finite sequence
of state variables (each of the state variables is represented by a set of m propo-
sitional variables, i.e., a copy of x). The sequence u0, ..., uk (denoted by

→
u) is

intended to be used as a representation of a k-path of M . This is captured by
the following definition of Pk(

→
u).

Definition 21.

Pk(
→
u) :=

k−1∧

j=0

ρT (uj , uj+1)

Every assignment to the set of state variables {u0, ..., uk} satisfying Pk(
→
u) rep-

resents a valid k-path of M . Let rsk(
→
u) denote that the k-path represented by

→
u is a repeating state path. Formally, we have the following definition of rsk(

→
u).

Definition 22. Let ui be represented by {u1
i , ..., u

m
i } for i = 0, ..., k. Let ui = uj

denote u1
i ↔ u1

j ∧ · · · ∧ um
i ↔ um

j .

rsk(
→
u) :=

k−1∨
x=0

k∨
y=x+1

ux = uy.

Definition 23 (Transformation of CTL Formulas). Let k ≥ 0. Let v be
a state variable and ϕ be an CTL formula. The encoding [[ϕ, v]]k is defined as
follows.

[[p, v]]k = ρp(v)
[[¬p, v]]k = ¬ρp(v)
[[ϕ ∨ ψ, v]]k = [[ϕ, v]]k ∨ [[ψ, v]]k
[[ϕ ∧ ψ, v]]k = [[ϕ, v]]k ∧ [[ψ, v]]k
[[Aϕ, v]]k = ∀→u.(P (

→
u) ∧ v = u0 → [[ϕ,

→
u ]]k)

[[Eϕ, v]]k = ∃→u.(P (
→
u) ∧ v = u0 ∧ [[ϕ,

→
u ]]k)

[[Xϕ,
→
u ]]k = k ≥ 1 ∧ [[ϕ, u1]]k

[[Fψ,
→
u ]]k =

∨k
j=0[[ψ, uj ]]k

[[Gψ,
→
u ]]k =

∧k
j=0[[ψ, uj ]]k ∧ rsk(

→
u))

[[ϕUψ,
→
u ]]k =

∨k
j=0([[ψ, uj ]]k ∧

∧j−1
t=0 [[ϕ, ut]]k)

[[ϕRψ,
→
u ]]k =

∧k
j=0([[ψ, uj ]]k ∨

∨j−1
t=0 [[ϕ, ut]]k) ∧ (

∨k
t=0[[ϕ, ut]]k ∨ rsk(

→
u))

In the above encoding, each time ∀→u or ∃→u is encountered, a fresh set of
variables is used, such that it does not quantify over variables that already have
been given a meaning in the formula.

The following theorem follows from the transformation scheme.

Theorem 4. Let ϕ be a CTL formula. M, s |=k ϕ iff f(s, v) → [[ϕ, v]]k is valid.

The formula f(s, v) restricts the satisfying assignment of v to g(s), the rep-
resentation of s in Σ. f(s, v) → [[ϕ, v]]k is valid iff ([[ϕ, v]]k)g(s)

v is valid.
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Corollary 8. Let ϕ be a CTL formula. M |=k ϕ iff ∀v.(ρI(v) → [[ϕ, v]]k), and
∃s ∈ I.(M, s |= ¬ϕ) iff ∃v.(ρI(v) ∧ [[¬ϕ, v]]k).

The formula ρI(v) restricts the satisfying assignment of v to the represen-
tations of s ∈ I in Σ. ρI(v) → [[ϕ, v]]k is valid iff ([[ϕ, v]]k)σ

v is valid for all
σ |= ρI(v), and ρI(v) ∧ [[¬ϕ, v]]k is satisfiable iff ([[¬ϕ, v]]k)σ

v is satisfiable for
some σ |= ρI(v). Combining Corollary 8 and the bounded correctness checking
approach given at the beginning of this section, we have the following algorithm.

QBF-based Bounded Correctness Checking Algorithm Let ϕ be a CTL formula.
The corresponding QBF-based bounded correctness checking algorithm for M |=
ϕ is then as follows.

for (k = 0;1;k++) if (∀v.(ρI(v) → [[ϕ, v]]k) or ∃v.(ρI(v) ∧ [[¬ϕ, v]]k)) break;
report that M |= ϕ holds iff ∀v.(ρI(v) → [[ϕ, v]]k) holds;

3.5 An Illustrative Example of Bounded Correctness Checking

The example is a concurrent program representing a formulation of Peterson’s
mutual exclusion algorithm [27] as a first order transition system [32]. Let a, b
be variables of enumeration type which have respectively the domain {s0, ..., s3}
and {t0, ..., t3}. Let x, y, t be variables of Boolean type. The program consists of
two processes: A and B with the following specification:

Process A:
a = s0 −→ (y, t, a) := (1, 1, s1)
a = s1 ∧ (x = 0 ∨ t = 0) −→ (a) := (s2)
a = s2 −→ (y, a) := (0, s3)
a = s2 −→ (a) := (s2)
a = s3 −→ (y, t, a) := (1, 1, s1)
Process B:
b = t0 −→ (x, t, b) := (1, 0, t1)
b = t1 ∧ (y = 0 ∨ t = 1) −→ (b) := (t2)
b = t2 −→ (x, b) := (0, t3)
b = t2 −→ (b) := (t2)
b = t3 −→ (x, t, b) := (1, 0, t1)

Let the formula specifying the set of the initial states be a = s0∧b = t0∧x =
y = 0. The value of t is arbitrary at the initial state. The following explains the
meaning of some of the constants.

a = s1: process A waits for the critical region
a = s2: process A is in the critical region
a = s3: process A has left the critical region
b = t1: process B waits for the critical region
b = t2: process B is in the critical region
b = t3: process B has left the critical region



21

Let αi denote a = si and βi denote b = ti. We formulate a set of properties
for the program as follows.

T/F k
AF (α2 ∨ β2) T 3
AG(¬(α2 ∧ β2)) T 10
AG((α1) → AF (α2 ∨ β2)) T 10
AG((α1) → AF (α2)) F 2
AG((α1) → EF (α2)) T 10
A((¬α2)UA((α2)U(¬α2))) T 0
A((¬α2)U((α2) ∧A((α2)U(¬α2)))) F 2
A((¬α2)U((α2) ∧ E((α2)U(¬α2)))) F 3
E((¬α2)U((α2) ∧ E((α2)U(¬α2)))) T 2

Explanation The first 5 properties are the usual ones for mutual exclusion algo-
rithms, including safety property, liveness property, and non-starvation (which
does not necessarily hold for various formulations of mutual exclusion algo-
rithms). The rest are properties trying to establish whether the computation
tree has certain patterns involving (¬α2)-states and (α2)-states. The column in-
dicated by T/F shows whether the property holds in the program model. The
column indicated by k shows the value of the least k in the semantic relation |=k

for proving or falsifying each of the properties. The table shows that 6 of the 9
properties hold in the program model, and the other 3 properties do not hold.
The values of k for proving or falsifying the 9 properties range from 0 to 10.

Discussion This kind of approaches has advantages, comparing with the tra-
ditional symbolic model checking [26, 16], when it is possible to determine the
truth of a property (either verified or falsified) with a relatively small k (in the
extreme cases, k = 0 is sufficient for verifying or falsifying a property).

Complexity Issues The worst-case complexity of the QBF-based bounded cor-
rectness checking is the complexity of solving a PSPACE-complete problem with
the input size exponential in the number of nested temporal operators. This
complexity is much higher than that of symbolic model checking. The poten-
tial practical value of this approach is that it may achieve advantages when a
relatively small k is sufficient for determining the truth of a property, and there-
fore may be used as a complementary approach to symbolic model checking. The
existence of such advantageous situations has been shown by the above example.

4 Discussions and Related Works

This section provides a discussion on two of the existing bounded semantics that
are mentioned in Section 2, the bounded semantics of LTL [6] and that of CTL∗

[38]. A discussion on the difficulty of defining a sound and complete bounded
semantics for CTL∗ , and a general description of related works are provided.
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4.1 On a Bounded Semantics of LTL

The bounded semantics of LTL to be discussed is the one defined in [6]. LTL is
a logic introduced by Pnueli as a specification language for concurrent programs
[35, 36].

Syntax Let AP be a set of propositional symbols and p range over AP . The set
of LTL formulas Φ over AP is defined as follows:

Φ ::= p | ¬Φ | Φ ∧ Φ | Φ ∨ Φ |X Φ | F Φ |G Φ | Φ U Φ | Φ R Φ

Semantics The semantics of LTL is defined with respect to paths of Kripke
structured. Let M = 〈S, T, I, L〉 be a Kripke structure.

Definition 24. Let p be a propositional symbol, ϕ and ψ LTL formulas. Let
π = π0π1 · · · be an infinite path of M . The relation π |= ϕ is defined as follows.

π |= p iff p ∈ L(π0) .
π |= ¬ϕ iff π 6|= ϕ
π |= ϕ ∧ ψ iff π |= ϕ and π |= ψ
π |= ϕ ∨ ψ iff π |= ϕ or π |= ψ
π |= Xϕ iff π1 |= ϕ
π |= Fϕ iff ∃k ≥ 0.πk |= ϕ
π |= Gϕ iff ∀k ≥ 0.πk |= ϕ
π |= ϕUψ iff ∃k ≥ 0.∀j < k.(πk |= ψ ∧ πj |= ϕ)
π |= ϕRψ iff ∀j ≥ 0.(πj |= ψ)∨ ∃k ≥ 0.((πk |= ϕ) ∧ (∀j ≤ k.(πj |= ψ))

Definition 25. M, s |=E ϕ iff there is an infinite path π with π0 = s such that
π |= ϕ.

This semantic definition uses an existential interpretation for the satisfia-
bility, in order to make a correspondence with the bounded semantics defined
later.

Definition 26. M |=E ϕ iff M, s |=E ϕ for some s ∈ I.

Negation Normal Form An LTL formula is in negation normal form (NNF), if
¬ is applied only to proposition symbols. Let true denote p ∨ ¬p for a given
proposition symbol p. Every LTL formula can be transformed into an equivalent
LTL formula in NNF without the use of the temporal operators F, R by applying
the following equivalences.

¬¬ϕ = ϕ
¬(ϕ ∧ ψ) = (¬ϕ ∨ ¬ψ)
¬Xϕ = X¬ϕ
¬Fϕ = G¬ϕ
¬(ϕUψ) = ¬ϕR¬ψ
Fϕ = true Uϕ
ϕRψ = (ψU(ϕ ∧ ψ)) ∨Gψ
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Without loss of generality, in the bounded semantics, we only consider NNF
formulas constructed from propositions and negation of propositions with ∨, ∧,
X, G, and U . A formula not constructed this way is considered as an abbreviation
of the equivalent one constructed this way.

Example of Unbounded Formulas LTL contains unbounded formulas. Ap is an
unbounded formula, since for any k, there exists k-equivalent models that are
distinguishable by Fp, for instance, we may construct 〈S, T, I, L〉 and 〈S, T, I, L′〉
such that each has k+2 states with a single computation (s0...sk)(sk+1)ω, and in
the first model, L(si) = {p} for all i, while in the second model, L′ is defined by
L′(si) = {p} for i ≤ k and L′(sk+1) = {}, then the two models are k-equivalent
and distinguishable by Fp.

(k, l)-Loops A (k, l)-loop is a k-path π = π0 · · ·πk such that π′ = (π0 · · ·πk)(πl · · ·πk)ω

is an infinite path of M .

k-Loops A k-loop is a k-path such that it is a (k, l)-loop for some 0 ≤ l ≤ k. For
the idea of (k, l)-loops and k-loops, the reader is referred to [6].

Bounded Semantics The following definition of bounded semantics and the proof
of its soundness and completeness are according to [6].

Definition 27 (Bounded Semantics for a Loop). Let k ≥ 0 and π be a
k-loop. Then an LTL formula ϕ is true on π, written π |=k ϕ, iff π′ |= ϕ with
π′ = (π0 · · ·πk)(πl · · ·πk)ω for some 0 ≤ l ≤ k.

Definition 28 (Bounded Semantics without a Loop). Let k ≥ 0 and π be
a k-path which is not a k-loop. Then an LTL formula ϕ is true on π, written
π |=k ϕ, iff π |=0

k ϕ where:

π |=i
k p iff p ∈ L(πi)

π |=i
k ¬p iff π 6|=i

k p
π |=i

k ϕ ∧ ψ iff π |=i
k ϕ and π |=i

k ψ
π |=i

k ϕ ∨ ψ iff π |=i
k ϕ or π |=i

k ψ

π |=i
k Xϕ iff i < k and π |=i+1

k ϕ
π |=i

k Gϕ iff false.
π |=i

k ϕUψ iff ∃j ∈ {i, ..., k}. ∀n ∈ {i, ..., j − 1}.(π |=j
k ψ ∧ π |=n

k ϕ)

Note that π |=i
k Gϕ is false by definition if the k-path is not a k-loop. This

is explained by that a global property can only be witnessed by an infinite path
(or a path with a loop).

Definition 29. M, s |=k ϕ iff there is a k-path π with π0 = s such that π |= ϕ.

Definition 30. M |=k ϕ iff M, s |=k ϕ for some s ∈ I.

Proposition 5. The bounded semantics (|=k)k∈N is well-defined, sound and
complete with respect to the existential semantics |=E.

This is explained as follows.
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Well-definedness The family of semantic relations (|=k)k∈N is a well-defined
bounded semantics. This follows from that for each k, the relation |=k is only
able of utilizing partial information of a given model, when the model is large
enough. This is further explained as follows. Let ϕ be a formula. For all M ∈M,
then the variants of the (k+1)-expansion of M are not distinguishable by (|=k, ϕ),
since the first k + 1 levels of such variants are identical and loop-free, and |=k

cannot utilize the information beyond the first k + 1 levels.

Soundness M |=E ϕ if M |=k ϕ for some k ≥ 0. This follows from that π |=k ϕ
implies that π can be extended to an infinite path π′ such that π′ |= ϕ [6].

Completeness If M |=E ϕ, then M |=k ϕ for some k ≥ 0. This follows from that
if there is a computation π = π0π1 · · · of M such that π |= ϕ holds, then there is
a k-loop π′ starting π0 with k bounded by |S| · 2|ϕ| such that π′ |=k ϕ holds [6].

Uncloseness We have the following lemma.

Lemma 7. Expansion equivalent models are not distinguishable by (|=E , LTL).

This follows from that expansion equivalent models are bisimulation equiv-
alent (according to Lemma 8), which implies that they are trace equivalent [2],
and LTL does not distinguish trace equivalent models.

Corollary 9 (Uncloseness).
⋃n

k=0(|=k) 6= ⋃
k≥0(|=k) for all n ≥ 0.

This corollary follows from Theorem 1, since (|=k)k∈N is well-defined, sound
and complete with respect to |=, and (|=E , LTL) does not distinguish models
that are expansion equivalent , according to Lemma 7, and there are unbounded
formulas in LTL.

Bounded Model Checking That remains is to relate the bounded semantics to
the bounded model checking approach. Let L = {Aϕ,Eϕ | ϕ ∈ LTL}.

Definition 31. M |= Eϕ iff M |=E ϕ, and M |= Aϕ iff π |= ϕ for all every
computation π of M .

Then we have a well-defined, sound and complete bounded semantics for the
language L1 = {Eϕ | ϕ ∈ LTL} with respect to |=, and therefore a bounded
model checking approach for the target langauge L0 = {Aϕ | ϕ ∈ LTL} as
explained in Section 2.3.

4.2 On a Bounded Semantics of CTL*

The bounded semantics of CTL∗ to be discussed is the one defined in [38]. The
temporal logic CTL∗ was proposed in [18] as a unifying framework subsuming
both CTL and LTL. There are two types of formulas in CTL∗. One is state
formulas and the other is path formulas.
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Syntax Let AP be a set of propositional symbols. The set of CTL∗ formulas over
AP is defined as follows:

If p ∈ AP , then p is a state formula.
If ϕ0 and ϕ1 are state formulas,
then ¬ϕ0, ϕ0 ∧ ϕ1 and ϕ0 ∨ ϕ1 are state formulas.
If ψ is a path formula, then Eψ and Aψ are state formulas.
If ϕ is a state formula, then ϕ is a path formula.
If ψ0 and ψ1 are path formulas,
then ¬ψ0, ψ0 ∧ ψ1, ψ0 ∨ ψ1, Xψ0, Fψ0, Gψ0,
ψ0Uψ1 and ψ0Rψ1 are path formulas.

Semantics Let M = 〈S, T, I, L〉 be a Kripke structure. Let s be a state of M ,
and π an infinite path of M . The relation that ψ holds on π of M for a path
formula ψ is denoted by M, π |= ψ, and the relation that ϕ holds on s of M for
a state formula ϕ is denoted by M, s |= ϕ.

Definition 32. Let p denote a proposition symbol, ϕ0, ϕ1 denote state formulas,
and ψ0, ψ1 denote path formulas. The relation M, π |= ψ and M, s |= ϕ are
defined as follows.

M, s |= p iff p ∈ L(s)
M, s |= ¬ϕ0 iff M, s 6|= ϕ0

M, s |= ϕ0 ∧ ϕ1 iff M, s |= ϕ0 and M, s |= ϕ1

M, s |= ϕ0 ∨ ϕ1 iff M, s |= ϕ0 or M, s |= ϕ1

M, s |= Eψ0 iff ∃π(s).(M, π |= ψ0)
M, s |= Aψ0 iff ∀π(s).(M, π |= ψ0)
M, π |= ϕ iff M, π0 |= ϕ
M, π |= ¬ψ0 iff M, π 6|= ψ0

M, π |= ψ0 ∧ ψ1 iff M, π |= ψ0 and M, π |= ψ1

M, π |= ψ0 ∨ ψ1 iff M, π |= ψ0 or M, π |= ψ1

M, π |= Xψ0 iff M, π1 |= ψ0

M, π |= Fψ0 iff ∃k ≥ 0.M, πk |= ψ0

M, π |= Gψ0 iff ∀k ≥ 0.M, πk |= ψ0

M, π |= ψ0Uψ1 iff ∃k ≥ 0.∀j < k.(M, πk |= ψ1 ∧M, πj |= ψ0)
M, π |= ψ0Rψ1 iff
∀j ≥ 0.(M, πj |= ψ1)∨ ∃k ≥ 0.((M, πk |= ψ0) ∧ (∀j ≤ k.(M, πj |= ψ1))

A CTL∗ formula is in negation normal form (NNF), if ¬ is applied only to
proposition symbols. Every CTL∗ formula can be transformed into an equivalent
CTL∗ formula in NNF by applying the following equivalences.

¬¬ϕ = ϕ
¬(ϕ ∧ ψ) = (¬ϕ ∨ ¬ψ)
¬Xϕ = X¬ϕ
¬Fϕ = G¬ϕ
¬(ϕUψ) = ¬ϕR¬ψ
¬Eϕ = A¬ϕ
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Without loss of generality, in the bounded semantics, we only consider NNF
formulas. A formula not in NNF is considered as an abbreviation of the equivalent
one in NNF.

Refined k-Paths A refined k-path is a pair (ζ, l) where ζ is a k-path and l ≤ k,
which denotes the (k, l)-loop of ζ if (ζk, ζl) ∈ T , otherwise the k-path ζ. For the
idea of this notation, the reader is referred to [40].

Bounded Semantics Let M, [(ζ, l), n)] |= ψ denote the relation that the path
formula ψ holds along the the suffix of (ζ, l) starting at position n+1 (the state
at the first position is ζ0). Let M, s |=k ϕ denote that ϕ holds on s of M by the
semantic relation |=k. The following definition of these relations is according to
[38].

Definition 33. Let k > 0. Let p denote a proposition symbol, ϕ0, ϕ1 denote state
formulas, and ψ0, ψ1 denote path formulas. Let [i, j] denote the set {i, i+1, ..., j}
of numbers. Let loop(ζ) = {l | (ζk, ζl) ∈ T}. The relation M, s |=k ϕ and the
auxiliary relation M, [(ζ, l), n)] |=k ψ (for brevity, M is omitted in the following)
are defined as follows.

s |=k p iff p ∈ L(s)
s |=k ¬p iff p 6∈ L(s)
s |=k ϕ0 ∧ ϕ1 iff s |=k ϕ0 and s |=k ϕ1

s |=k ϕ0 ∨ ϕ1 iff s |=k ϕ0 or s |=k ϕ1

s |=k Eψ0 iff ∃ζ(s).∃l ≤ k.([(ζ, l), 0] |= ψ0)
s |=k Aψ0 iff ∀ζ(s).∀l ≤ k.([(ζ, l), 0] |= ψ0)
[(ζ, l), n] |= ψ iff ζn |=k ψ if ψ is a state formula
[(ζ, l), n] |= ψ0 ∧ ψ1 iff [(ζ, l), n] |= ψ0 and [(ζ, l), n] |= ψ1

[(ζ, l), n] |= ψ0 ∨ ψ1 iff [(ζ, l), n] |= ψ0 or [(ζ, l), n] |= ψ1

[(ζ, l), n] |= Xψ0 iff
((k < n) ∧ ([(ζ, l), n + 1] |= ψ0)) ∨ ((k = n) ∧ (l ∈ loop(ζ)) ∧ ([(ζ, l), l] |= ψ0))
[(ζ, l), n] |= Fψ0 iff
(∃j ∈ [n, k].([(ζ, l), j] |= ψ0)) ∨ ((l ∈ loop(ζ)) ∧ (∃j ∈ [l, n− 1].([(ζ, l), j] |= ψ0)))
[(ζ, l), n] |= Gψ0 iff
l ∈ loop(ζ) ∧∧k

j=min(n,l)([(ζ, l), j] |= ψ0)
[(ζ, l), n] |= ψ0Uψ1 iff
∃j ∈ [n, k].(([(ζ, l), j] |= ψ1) ∧ ∀i ∈ [n, j − 1].([(ζ, l), i] |= ψ0))∨
((l ∈ loop(ζ)) ∧ ∃j ∈ [l, n− 1].(([(ζ, l), j] |= ψ1)∧
∀i ∈ [n, k].([(ζ, l), i] |= ψ0) ∧ ∀i ∈ [l, j − 1].([(ζ, l), i] |= ψ0)))
[(ζ, l), n] |= ψ0Rψ1 iff
∃j ∈ [n, k].(([(ζ, l), j] |= ψ0) ∧ ∀i ∈ [n, j].([(ζ, l), j] |= ψ1)) ∨
((l ∈ loop(ζ)) ∧ (

∧k
j=min(n,l)([(ζ, l), j] |= ψ1)∨

∃j ∈ [l, n− 1].(([(ζ, l), j] |= ψ0)∧
∀i ∈ [n, k].([(ζ, l), i] |= ψ1) ∧ ∀i ∈ [l, j].([(ζ, l), i] |= ψ1))))

Definition 34. Let k > 0. M |=k ϕ iff M, s |=k ϕ for all s ∈ I.



27

On the Problem of Soundness

Proposition 6. The defined bounded semantics does not have the following
property: if M |=k ϕ for some k ≥ 1, then M |= ϕ.

Proof. Suppose that M is as shown in Fig. 2. Then we have M 6|= AGp, since
p 6∈ L(s2). On the other hand, we have M |=1 AGp. The latter is argued as
follows.

Fig. 2. Example Kripke Structure 2

– The only 1-paths starting from s0 are ζ = s0s0 and ζ ′ = s0s1.
– According to the bounded semantics, M, s0 |= AGp iff the following 4 con-

ditions hold

[(ζ, 0), 0] |= Gp
[(ζ, 1), 0] |= Gp
[(ζ ′, 0), 0] |= Gp
[(ζ ′, 1), 0] |= Gp

– We have loop(ζ) = loop(ζ ′) = {0, 1}. Then [(ζ, 0), 0] |= Gp holds, since all
states on ζ satisfy p and 0 ∈ loop(ζ). Similarly, the other three conditions
can be proved, according to the bounded semantics.

In the definition of the bounded semantics, k > 0 is assumed, and therefore
the relation |=0 is not defined, however, no matter how this relation is defined
and added to the family of the defined relations (|=k)k>0, as a consequence of the
above proposition, this bounded semantics does not have the property defined
in Definition 8, and it support the claim made in the discussion part at the end
of Section 2.2.

4.3 On Defining a Bounded Semantics for CTL∗

In this subsection, we discuss the possibility of defining a sound and complete
bounded semantics for CTL∗, and prove that there are no such possibility, if we
impose additional conditions on such a bounded semantics. This presentation is
a simplification of that presented in [45].
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Let M = 〈S, T, I, L〉 be a model. Let M[k] = 〈S, Pk, I, L〉 be the restricted
model of M where Pk is the set of all k-paths of M . For the idea of this restricted
model, the reader if referred to [33]. In the following, we assume that, if M[k] is
used as the context in a definition, then we can use the paths in Pk and cannot
use T in the definition.

Definition 35 (Compositionality w.r.t. Prop. Connectives). Let ζ denote
a k-path of M[k]. Let |=p

k be a relation defined for path formulas. The relation |=p
k

is compositional with respect to propositional connectives, if the following hold:

– M[k], ζ |=p
k ϕ ∨ ψ iff M[k], ζ |=p ϕ or M[k], ζ |=p

k ψ.
– M[k], ζ |=p

k ϕ ∧ ψ iff M[k], ζ |=p
k ϕ and M[k], ζ |=p

k ψ.

Definition 36 (Consistency w.r.t. Path Operators). Let ζ = ζ0 · · · ζk de-
note a k-path of M[k]. Let |=p

k be a relation defined for path formulas. The relation
|=p

k is consistent with respect to path operators, if the following hold:

– If M[k], ζ |=p
k Gp, then p ∈ L(ζn) for all n ∈ {0, ..., k}.

– If M[k], ζ |=p
k Fp, then p ∈ L(ζn) for some n ∈ {0, ..., k}.

Let (|=k)k∈N be a family of semantic relations defined for CTL∗ state for-
mulas over Kripke structures.

Proposition 7. Let |=p
k be a family of relations satisfying the compositionality

and consistency conditions. If |=k satisfies the following state-to-path transition
conditions, then (|=k)k∈N is not a sound and complete bounded semantics for
CTL∗ .

– 〈M, s〉 |=k Aϕ iff M[k], ζ |=p
k ϕ for every k-path ζ of M[k] starting at s.

– 〈M, s〉 |=k Eϕ iff M[k], ζ |=p
k ϕ for some k-path ζ of M[k] starting at s.

Proof by contradiction: Suppose that |=k is such a family of relations defining a
sound and complete bounded semantics. Let M = 〈M, s0〉 be the model shown
in Fig. 3. Let ϕ be A(Gp ∨ Fr).

Fig. 3. Model with two loops

– It is easy to check that M |= A(Gp ∨ Fr).
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– Then there is a k ≥ 0 such that M |=k A(Gp ∨ Fr), according to the
completeness of |=k.

– There are following three types of k-paths in M starting at s0.

(s0)k+1

(s0)ks1 for k ≥ 1
(s0)is1(s2)j for k ≥ 1 and i + j = k

According to the state-to-path transition conditions on the relation |=k, we
have M[k], ζ |=p

k (Gp ∨ Fr) for every such k-path ζ starting at s0.
– According to the compositionality and consistency conditions of |=p

k, we have
that (s0)ks1 does not satisfy Gp ∨ Fr for k ≥ 1, i.e.,

M[k], (s0)ks1 6|=p
k Gp ∨ Fr

– Then the only possibility for M[k], ζ |=p
k Gp ∨ Fr to hold for all k-path ζ

starting at s0 is the case when k = 0. Therefore we have

M[0], s0 |=p
0 Gp ∨ Fr

– Let M ′ be the modification of M such that a self-loop from s1 to s1 is added,
as shown in Fig. 4.

Fig. 4. Model with three loops

– Then the following holds:
M ′

[0], s0 |=p
0 Gp ∨ Fr, since M[0], s0 |=p

0 Gp ∨ Fr and M ′
[0]=M[0].

M ′ |=0 A(Gp ∨ Fr), according to the state-to-path transition conditions on
the relation |=k.
M ′ |= A(Gp ∨ Fr), according to the soundness of |=k.

– On the other hand, it is easy to check that M ′ 6|= A(Gp∨Fr). Therefore the
proposition is proved by contradiction.

Remarks The conditions imposed on the bounded semantics includes composi-
tionality, consistency and the state-to-path transition conditions. For defining
a sound and complete bounded semantics for CTL∗ , it is necessary to look for
relations that do not satisfy these conditions, and generally, that not definable
by relations that satisfy these conditions.
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4.4 Related Works

Bounded model checking of LTL properties was proposed in [6]. It is a technique
for overcoming the state explosion problem for quickly identifying unsatisfiabil-
ity of universally quantified properties. Along this line of research, there have
been works on bounded model checking of ACTL properties [33], ACTL∗ prop-
erties [40] and ∀µ-calculus [39]. Among these temporal logics, µ-calculus is most
expressive and subsumes all the other ones. For efficient bounded model check-
ing of ∀µ-calculus, a new approach was proposed [30] based on the proof system
proposed in [29].

Within this framework, for the verification of universally quantified proper-
ties, one looks for termination criteria, which may be considered as criteria for
determining whether an over-approximation of the completeness threshold has
been reached. Static termination criteria may be used for terminating a bounded
model checking process with a conclusion on the correctness of the universally
quantified property under bounded model checking [16]. Improvements of such
over-approximations are made by using dynamic termination criteria, for in-
stance, in the proposed approach for bounded model checking of ∀µ-calculus
properties [30], a dynamic termination criterium is used, such that it is able to
prove a ∀µ-calculus property by first transforming it into an ∃µ-calculus formula
(or equivalently an existential alternating parity tree automaton) and show that
the model does not satisfy this formula for all k ≤ m and that the termination
criterium is satisfied at the m-th round of the bounded model checking process.

On the other hand, bounded verification of LTL properties has been ad-
dressed in [41], and a corresponding bounded semantics was discussed in [44].
Similar idea was used in [42] for bounded verification of ACTL properties. How-
ever, these approaches are not complete for their respective target langauge LTL
and ACTL. In [43], the approach for bounded verification of ACTL properties
was improved and a bounded semantics for ACTL was developed, and it provides
a basis for a complete approach for the bounded verification of ACTL properties.

The above approaches are all aimed at either falsifying or verifying uni-
versally quantified properties. For verifying and falsifying formulas with mixed
path-quantifiers, we have to develop approaches that can deal with both path-
quantifiers. This has been achieved by the development of a bounded semantics
for CTL [45]. The paper [45] and the one on bounded semantics of ACTL [43]
form the basis of the presentation of the bounded semantics of CTL in this cur-
rent paper, and how to develop a well-defined, sound and complete bounded
semantics for a more expressive logics remains as a further research issue.

5 Concluding Remarks

Characteristics of bounded semantics has been presented for clarifying the con-
cept of bounded semantics. Then a bounded semantics for CTL has been pre-
sented, with an application of the bounded semantics to QBF-based bounded
correctness checking of finite state systems.
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Remarks The kind of bounded correctness checking approaches may be consid-
ered as complementary to the traditional symbolic model checking. A distin-
guished feature of the bounded semantics of CTL is that it covers the full set
of CTL which is closed under negation, and this semantics may be used to both
bounded verification and bounded model checking, while the earlier developed
bounded semantics for, for instance, existentially interpreted LTL and the ex-
istential fragment of CTL [6, 33], focus mainly on their potentials for bounded
model checking (falsification) of universally specified properties.

Experimental Tools An implementation of the QBF-based bounded correctness
checking approach is available in an experimental tool named verbs [46] for
verification of finite state systems.

Open Problems One of the interesting problems on bounded semantics is whether
there exists a well-defined, sound and complete bounded semantics for CTL* [18].
This is particularly interesting, because, there has been an attempt to develop
a bounded semantics for CTL* [38], however such an attempt has not been suc-
cessful with respect to the requirements of a well-defined, sound and complete
bounded semantics. On the other hand, it can be proved that such a bounded se-
mantics cannot be defined with additional restrictions on the bounded semantic
relations. A similar question may be raised for µ-calculus for which SAT-based
model checking approaches had been considered for a subset of µ-calculus for-
mulas [39, 30].

Acknowledgement The author would like to thank the anonymous referees
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A Proofs

This appendix provides a proof of Lemma 3 and a proof of Lemma 6.

A.1 Proof of Lemma 3

Recall that Mk denote the set of k-paths of M . For simplicity, we use Mk(s) to
denote the set of k-paths starting at s.

Lemma 3. If M, s |=k ϕ, then M, s |=k+1 ϕ.

Proof. This is trivial for ϕ being a proposition or the negation of that. Assume
the induction hypothesis, i.e., M, s′ |=k ϕ′ implies M, s′ |=k+1 ϕ′ for all state s′

and all proper subformulas ϕ′ of ϕ. We have the following cases.

Case 1. ϕ = ϕ0 ∨ ϕ1.

According to the induction hypothesis, we obtain
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M, s |=k ϕ
⇔ M, s |=k ϕ0 or M, s |=k ϕ1

⇒ M, s |=k+1 ϕ0 or M, s |=k+1 ϕ1

⇔ M, s |=k+1 ϕ

Case 2. ϕ = ϕ0 ∧ ϕ1.

The proof is similar to that of the previous case.

Case 3. ϕ = AXϕ0.

According to the induction hypothesis, for k ≥ 1, we obtain

M, s |=k ϕ
⇔ ∀ζ ∈ Mk(s), M, ζ1 |=k ϕ0

⇒ ∀ζ ∈ Mk(s), M, ζ1 |=k+1 ϕ0

⇔ ∀ζ ′ ∈ Mk+1(s), M, ζ ′1 |=k+1 ϕ0

⇔ M, s |=k+1 ϕ

For k = 0, M, s |=k ϕ is false by definition, therefore M, s |=k ϕ implies
M, s |=k+1 ϕ also holds in this case.

Case 4. ϕ = EXϕ0.

According to the induction hypothesis, we obtain

M, s |=k ϕ
⇔ k ≥ 1 ∧ ∃ζ ∈ Mk(s), M, ζ1 |=k ϕ0

⇒ k ≥ 1 ∧ ∃ζ ∈ Mk(s), M, ζ1 |=k+1 ϕ0

Assume M, s |=k ϕ. We need to prove M, s |=k+1 ϕ. Since we already have
k ≥ 1, we only need to prove that there is some ζ ′ ∈ Mk+1(s) such that

M, ζ ′1 |=k+1 ϕ0.

Let ζ ∈ Mk(s) be a path such that M, ζ1 |=k+1 ϕ0 holds. Then we construct
a path ζ ′ ∈ Mk+1(s) by appending a state to the path ζ (this is always possible,
since the transition relation of M is total). Then ζ1 = ζ ′1 (since k ≥ 1) and we
have ζ ′ ∈ Mk+1(s) and M, ζ ′1 |=k+1 ϕ0. Therefore M, s |=k+1 ϕ.

Case 5. ϕ = AFϕ1.

According to the induction hypothesis, we obtain

M, s |=k ϕ
⇔ ∀ζ ∈ Mk(s), there is some 0 ≤ n ≤ k such that M, ζn |=k ϕ1

⇒ ∀ζ ∈ Mk(s), there is some 0 ≤ n ≤ k such that M, ζn |=k+1 ϕ1

Assume M, s |=k ϕ. We need to prove M, s |=k+1 ϕ, i.e., for all ζ ′ ∈ Mk+1(s),

there is some 0 ≤ n ≤ k + 1 such that M, ζn |=k+1 ϕ1.
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Consider a path ζ ′ ∈ Mk+1(s). Let ζ ′′ = ζ ′0 · · · ζ ′k. Then since ζ ′′ ∈ Mk(s),
there is some 0 ≤ n ≤ k such that M, ζ ′n |=k+1 ϕ1. Therefore there is also some
0 ≤ n ≤ k + 1 such that M, ζ ′n |=k+1 ϕ1.

Case 6. ϕ = EFϕ1.

According to the induction hypothesis, we obtain

M, s |=k ϕ
⇔ ∃ζ ∈ Mk(s), there is some 0 ≤ n ≤ k such that M, ζn |=k ϕ1

⇒ ∃ζ ∈ Mk(s), there is some 0 ≤ n ≤ k such that M, ζn |=k+1 ϕ1

Assume M, s |=k ϕ. We need to prove M, s |=k+1 ϕ, i.e., there is some
ζ ′ ∈ Mk+1(s) such that

there is some 0 ≤ n ≤ k + 1 such that M, ζn |=k+1 ϕ1.

Let ζ ∈ Mk(s) be a path such that there is some 0 ≤ n ≤ k such that
M, ζn |=k+1 ϕ1. Then we construct a path ζ ′ ∈ Mk+1(s) by appending a state
to the path ζ. Then we have ζ ′ ∈ Mk+1(s) and M, ζ ′n |=k+1 ϕ1 for some 0 ≤ n ≤
k + 1. Therefore M, s |=k+1 ϕ.

Case 7. ϕ = AGϕ1.

According to the induction hypothesis, we obtain

M, s |=k ϕ
⇔ ∀ζ ∈ Mk(s), for all 0 ≤ j ≤ k, M, ζj |=k ϕ1 and rs(ζ)
⇒ ∀ζ ∈ Mk(s), for all 0 ≤ j ≤ k, M, ζj |=k+1 ϕ1 and rs(ζ)

Assume M, s |=k ϕ. We need to prove M, s |=k+1 ϕ, i.e., for all ζ ′ ∈ Mk+1(s),

for all 0 ≤ j ≤ k + 1, M, ζ ′j |=k+1 ϕ1 and rs(ζ ′).

Consider a path ζ ′ ∈ Mk+1(s). Let ζ ′′ = ζ ′0 · · · ζ ′k. Then since ζ ′′ ∈ Mk(s), for
all 0 ≤ j ≤ k, M, ζ ′j |=k+1 ϕ1 and rs(ζ ′′). Since ζ ′′ is a prefix of ζ ′, rs(ζ ′) follows
from rs(ζ ′′) and it is sufficient to prove that M, ζ ′k+1 |=k+1 ϕ1 holds (the only
case not covered by the induction hypothesis).

Since rs(ζ ′′) holds in this case, there are x < y ≤ k such that ζ ′x = ζ ′y.
Then ζ ′0 · · · ζ ′xζ ′y+1 · · · ζ ′k+1 is a prefix (not necessary a proper one) of some k-
path ζ ′′′ ∈ Mk(s) with ζ ′′′0 = ζ ′0 = s. Then for all 0 ≤ j ≤ k, M, ζ ′′′j |=k+1 ϕ1.
Since ζ ′k+1 is ζ ′′′j for some 0 ≤ j ≤ k, we obtain that M, ζ ′k+1 |=k+1 ϕ1 holds.

Case 8. ϕ = EGϕ1.

According to the induction hypothesis, we obtain

M, s |=k ϕ
⇔ ∃ζ ∈ Mk(s), for all 0 ≤ j ≤ k, M, ζj |=k ϕ1 and rs(ζ)
⇒ ∃ζ ∈ Mk(s), for all 0 ≤ j ≤ k, M, ζj |=k+1 ϕ1 and rs(ζ)



34

Assume M, s |=k ϕ. We need to prove M, s |=k+1 ϕ, i.e., there is some
ζ ′ ∈ Mk+1(s) such that

for all 0 ≤ j ≤ k + 1, M, ζ ′j |=k+1 ϕ1 and rs(ζ ′).

Let ζ ∈ Mk(s) be a path such that for all 0 ≤ j ≤ k, M, ζj |=k+1 ϕ1

and rs(ζ). Since rs(ζ), we have ζx = ζy for some 0 ≤ x < y ≤ k. Let ζ ′ ∈
Mk+1(s) be a (k +1)-path which is at the same time a prefix of the infinite path
ζ0 · · · (ζx · · · ζy−1)ω. Then we have that for all 0 ≤ j ≤ k + 1, M, ζ ′j |=k+1 ϕ1 and
rs(ζ ′). Therefore M, s |=k+1 ϕ.

Case 9. ϕ = A(ϕ0Uϕ1).

According to the induction hypothesis, we obtain

M, s |=k ϕ
⇔ ∀ζ ∈ Mk(s),

there is some 0 ≤ n ≤ k
such that M, ζn |=k ϕ1 and for all l < n, M, ζl |=k ϕ0

⇒ ∀ζ ∈ Mk(s),
there is some 0 ≤ n ≤ k
such that M, ζn |=k+1 ϕ1 and for all l < n, M, ζl |=k+1 ϕ0

Assume M, s |=k ϕ. We need to prove M, s |=k+1 ϕ, i.e., for all ζ ′ ∈ Mk+1(s),

there is some 0 ≤ n ≤ k + 1
such that M, ζ ′n |=k+1 ϕ1 and for all l < n, M, ζ ′l |=k+1 ϕ0.

Consider a path ζ ′ ∈ Mk+1(s). Let ζ ′′ = ζ ′0 · · · ζ ′k. Then since ζ ′′ ∈ Mk(s),
there is some 0 ≤ n ≤ k such that M, ζ ′n |=k+1 ϕ1 and for all l < n, M, ζ ′l |=k+1

ϕ0. Therefore there is also some 0 ≤ n ≤ k + 1 such that M, ζ ′n |=k+1 ϕ1 and for
all l < n, M, ζ ′l |=k+1 ϕ0. Therefore M, s |=k+1 ϕ.

Case 10. ϕ = E(ϕ0Uϕ1).

According to the induction hypothesis, we obtain

M, s |=k ϕ
⇔ ∃ζ ∈ Mk(s),

there is some 0 ≤ n ≤ k
such that M, ζn |=k ϕ1 and for all l < n, M, ζl |=k ϕ0

⇒ ∃ζ ∈ Mk(s),
there is some 0 ≤ n ≤ k
such that M, ζn |=k+1 ϕ1 and for all l < n, M, ζl |=k+1 ϕ0

Assume M, s |=k ϕ. We need to prove M, s |=k+1 ϕ, i.e., there is some
ζ ′ ∈ Mk+1(s) such that

there is some 0 ≤ n ≤ k + 1
such that M, ζ ′n |=k+1 ϕ1 and for all l < n, M, ζ ′l |=k+1 ϕ0.
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Let ζ ∈ Mk(s) be a path such that there is some 0 ≤ n ≤ k such that
M, ζn |=k+1 ϕ1 and for all l < n, M, ζl |=k+1 ϕ0. Then we construct a path
ζ ′ ∈ Mk+1(s) by appending a state to the path ζ. Then we have ζ ′ ∈ Mk+1(s)
and there is some 0 ≤ n ≤ k + 1 such that M, ζ ′n |=k+1 ϕ1 and for all l < n,
M, ζ ′l |=k+1 ϕ0. Therefore M, s |=k+1 ϕ.

Case 11. ϕ = A(ϕ0Rϕ1).

According to the induction hypothesis, we obtain

M, s |=k ϕ
⇔ ∀ζ ∈ Mk(s),

for all 0 ≤ i ≤ k, (M, ζi |=k ϕ1 ∨ ∃j < i.(M, ζj |=k ϕ0))), and
there is some 0 ≤ j < k such that M, ζj |=k ϕ0 or rs(ζ)

⇒ ∀ζ ∈ Mk(s),
for all 0 ≤ i ≤ k, (M, ζi |=k+1 ϕ1 ∨ ∃j < i.(M, ζj |=k+1 ϕ0)), and
there is some 0 ≤ j < k such that M, ζj |=k+1 ϕ0 or rs(ζ)

Assume M, s |=k ϕ. We need to prove M, s |=k+1 ϕ, i.e., for all ζ ′ ∈ Mk+1(s),

(a): for all 0 ≤ i ≤ k + 1, (M, ζ ′i |=k+1 ϕ1 ∨ ∃j < i.(M, ζ ′j |=k+1 ϕ0)), and
(b): there is some 0 ≤ j < k + 1 such that M, ζ ′j |=k+1 ϕ0 or rs(ζ ′).

Consider a path ζ ′ ∈ Mk+1(s). Let ζ ′′ = ζ ′0 · · · ζ ′k. Then since ζ ′′ ∈ Mk(s),
the following hold:

(a’): for all 0 ≤ i ≤ k, (M, ζ ′i |=k+1 ϕ1 ∨ ∃j < i.(M, ζ ′j |=k+1 ϕ0)), and
(b’): there is some 0 ≤ j < k such that M, ζ ′j |=k+1 ϕ0 or rs(ζ ′′).

We consider two cases of (b′):

– Suppose that M, ζ ′j |=k+1 ϕ0 holds for some 0 ≤ j < k.
Then we also have M, ζ ′j |=k+1 ϕ0 for some j < k +1. The correctness of (a)
and (b) follows from this and (a′).

– Suppose that M, ζ ′j |=k+1 ϕ0 does not hold for all 0 ≤ j < k.
Then following from (a′) and (b′),
we have that for all 0 ≤ i ≤ k, (M, ζ ′i |=k+1 ϕ1) and rs(ζ ′′).
Since ζ ′′ is a prefix of ζ ′, rs(ζ ′) follows from rs(ζ ′′), and then the correctness
of (a) and (b) is implied by M, ζ ′k+1 |=k+1 ϕ1, which is to be proved as
follows.
Since rs(ζ ′′) holds in this case, there are x < y ≤ k such that ζ ′x = ζ ′y. Then
ζ ′0 · · · ζ ′xζ ′y+1 · · · ζ ′k+1 is a valid path.
This path is a prefix (not necessary a proper one) of some k-path ζ ′′′ ∈ Mk(s)
with ζ ′′′0 = ζ ′0 = s, which has the property that M, ζ ′′′l |=k+1 ϕ0 does not
hold for all states in ζ ′′′ up to (may not include) the state ζ ′k+1.
For this k-path ζ ′′′, we have the following (by the induction hypothesis):
for all 0 ≤ i ≤ k, (M, ζ ′′′i |=k+1 ϕ1 ∨ ∃j < i.(M, ζ ′′′j |=k+1 ϕ0)).
Let l be the position index such that ζ ′′′l = ζ ′k+1.
Then we have M, ζ ′′′l |=k+1 ϕ1 ∨ ∃j < l.(M, ζ ′′′j |=k+1 ϕ0).
Since M, ζ ′′′l |=k+1 ϕ0 does not hold for all states in ζ ′′′ up to the state
ζ ′k+1 = ζ ′′′l , we have M, ζ ′′′l |=k+1 ϕ1, i.e., M, ζ ′k+1 |=k+1 ϕ1.
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Case 12. ϕ = E(ϕ0Rϕ1).

According to the induction hypothesis, we obtain

M, s |=k ϕ
⇔ ∃ζ ∈ Mk(s),

for all 0 ≤ i ≤ k, (M, ζi |=k ϕ1 ∨ ∃j < i.(M, ζj |=k ϕ0))), and
there is some 0 ≤ j < k such that M, ζj |=k ϕ0 or rs(ζ)

⇒ ∃ζ ∈ Mk(s),
for all 0 ≤ i ≤ k, (M, ζi |=k+1 ϕ1 ∨ ∃j < i.(M, ζj |=k+1 ϕ0)), and
there is some 0 ≤ j < k such that M, ζj |=k+1 ϕ0 or rs(ζ)

Assume M, s |=k ϕ. We need to prove M, s |=k+1 ϕ, i.e., there is some
ζ ′ ∈ Mk+1(s) such that

(a): for all 0 ≤ i ≤ k + 1, (M, ζ ′i |=k+1 ϕ1 ∨ ∃j < i.(M, ζ ′j |=k+1 ϕ0)), and
(b): there is some 0 ≤ j < k + 1 such that M, ζ ′j |=k+1 ϕ0 or rs(ζ ′).

Let ζ ∈ Mk(s) be a path such that the following hold:

(a’): for all 0 ≤ i ≤ k, (M, ζi |=k+1 ϕ1 ∨ ∃j < i.(M, ζj |=k+1 ϕ0)), and
(b’): there is some 0 ≤ j < k such that M, ζj |=k+1 ϕ0 or rs(ζ).

We consider two cases of (b′):

– Suppose that M, ζj |=k+1 ϕ0 holds for some 0 ≤ j < k.
Then we construct a path ζ ′ ∈ Mk+1(s) by appending a state to the path ζ.
Then we also have M, ζ ′j |=k+1 ϕ0 for some j < k +1. The correctness of (a)
and (b) follows from this and (a′).

– Suppose that M, ζj |=k+1 ϕ0 does not hold for all 0 ≤ j < k.
Then following from (a′) and (b′),
we have that for all 0 ≤ i ≤ k, (M, ζi |=k+1 ϕ1) and rs(ζ).
Since rs(ζ) holds in this case, there are x < y ≤ k such that ζx = ζy.
Let ζ ′ ∈ Mk+1(s) be a (k +1)-path which is at the same time a prefix of the
infinite path ζ0 · · · (ζx · · · ζy−1)ω.
Then we have that for all 0 ≤ i ≤ k + 1, (M, ζ ′i |=k+1 ϕ1) and rs(ζ ′).
Therefore we have ζ ′ ∈ Mk+1(s) that satisfies (a) and (b).
Therefore M, s |=k+1 ϕ.
This concludes the proof of Lemma 3. ut

A.2 Proof of Lemma 6

Firstly, we recall the concept of bisimulation equivalence [4, 31, 16].

Definition 37. Let M1 = 〈S1, T1, I1, L1〉 and M2 = 〈S2, T2, I2, L2〉 be two mod-
els with the same set of atomic propositions AP . A relation B ⊆ S1 × S2 is a
bisimulation relation between M1 and M2, if the following hold:

– for every (s1, s2) ∈ R, L1(s1) = L2(s2).
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– for every (s1, s2) ∈ R, if (s1, s
′
1) ∈ T1, there is an s′2 such that (s2, s

′
2) ∈ T2

and (s′1, s
′
2) ∈ R, and if (s2, s

′
2) ∈ T2, there is an s′1 such that (s1, s

′
1) ∈ T1

and (s′1, s
′
2) ∈ R.

M1 and M2 are bisimulation equivalent, if there is a bisimulation relation B
between M1 and M2 such that the following two conditions for the correspondence
of initial states is satisfied:

– for every s1 ∈ I1, there is an s2 ∈ I2 such that (s1, s2) ∈ B,
– for every s2 ∈ I2, there is an s1 ∈ I1 such that (s1, s2) ∈ B.

Secondly, we prove a relation between expansion equivalent models and bisim-
ulation equivalent models.

Lemma 8. Expansion equivalent models are bisimulation equivalent.

Proof. Let M1 = 〈S1, T1, I1, L1〉 and M2 = 〈S2, T2, I2, L2〉 be two expansion
equivalent models.

– Let Mm
1 = 〈Sm

1 , Tm
1 , Im

1 , Lm
1 〉 be the m-model of M1.

Let Mm
2 = 〈Sm

2 , Tm
2 , Im

2 , Lm
2 〉 be the m-model of M2.

Let the ω-model of M be the natural extension of an m-model to an infi-
nite loop-free directed diagram, such that the first m-levels of the directed
diagram is the same as that of the m-model for all m ≥ 1.
Let Mω

1 = 〈Sω
1 , Tω

1 , Iω
1 , Lω

1 〉 be the ω-model of M1.
Let Mω

2 = 〈Sω
2 , Tω

2 , Iω
2 , Lω

2 〉 be the ω-model of M2.
Since Mm

1 and Mm
2 are structurally equivalent for all m ≥ 0, it follows that

Mω
1 and Mω

2 are structurally equivalent.
– Then there is a one-to-one map fω : Sω

1 → Sω
2 preserving the properties

defined in Definition 11 with Sω
1 ⊆ S1 ×N and Sω

2 ⊆ S2 ×N.
Let B = {(s1, s2) | ∃j.(fω(s1, j) = (s2, j))}.

– That B is a bisimulation relation between M1 and M2 is checked as follows.
Suppose that B(s1, s2) holds.
Then ∃j.(fω(s1, j) = (s2, j)).
We have L(s1) = L((s1, j)) = L((s2, j)) = L(s2), according to the construc-
tion of the ω-model and the construction of fω.
Suppose that (s1, s

′
1) ∈ T1 holds.

Then ((s1, j), (s′1, j+1)) ∈ Tω
1 , according to the construction of the ω-model.

Then (f(s1, j), f(s′1, j + 1)) ∈ Tω
2 , according to the construction of fω.

Let f(s′1, j + 1) = (s′2, j + 1).
According to the construction of B, we have B(s′1, s

′
2).

On the other hand, since (f(s1, j), f(s′1, j+1)) ∈ Tω
2 , we have ((s2, j), (s′2, j+

1)) ∈ Tω
2 , and according to the construction of the ω-model, we have (s2, s

′
2) ∈

Tω
2 .

Therefore B is a bisimulation relation.
– In addition, according to the construction of fω, for any initial state s1 ∈ I1,

there is some s2 ∈ I such that fω(s1, 0) = fω(s2, 0) and therefore B(s1, s2).
Similarly, for any initial state s2 ∈ I1, there is some s1 ∈ I such that
fω(s1, 0) = fω(s2, 0) and B(s1, s2).
Therefore M1 and M2 are bisimulation equivalent.

Finally, Lemma 6 is proved as follows.
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Lemma 6. Expansion equivalent models are not distinguishable by (|=, CTL).

Proof. Since CTL does not distinguish bisimulation equivalent models [16], this
lemma follows from that expansion equivalent models are also bisimulation
equivalent (Lemma 8). ut
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