Deep Learning

By Will Woliver-Jones

What is Deep Learning?

- Deep learning is a hierarchical system based on an assembly of artificial neural nets
 - Recently Deep learning has been applied to any implementation of an ANN
- Nets are used to represent more and more specific parts of the problem
- There are several types of structures
 - Deep Belief network
 - Deep Neural Net
 - Convolutional Neural networks

Artificial Neural Nets

- Based on biological systems
- Basically a graph problem
 - Nodes and edges with weights
 - But the weights are updated as the net learns "right" and "wrong"

Putting them together

- More layers can be used to find less linear solutions
 - By having more steps more abstraction can be reached
- More nodes can be added to increase the specificity of the result
 - A wider range of values can be measured

The net must be pre-trained before it can be used

- This involved several main methods:
 - Supervised
 - Unsupervised
 - Reinforcement

Unsupervised

- The net is provided raw, unlabeled data to use
- Deep Learning Nets learn best through back propagation
 - Wrong answers give the whole chain a decreased weight
 - This also means that the net cannot be randomly initialized
 - Random initialization prevents the effectives use of back propagation to correct for errors which causes the deep net to have a lower success rate than shallow networks
- Greedy layer-wise initialization works well
 - Each layer learns a more specific version of the layer above it

Unsupervised greedy layer-wise training procedure.

Supervised

• Program is provided data with labels to read and sort

- This provides the basis for what the net can identify
- Used for the output layer to fine tune results

Reinforcement

- Used when feed back can be given at intervals, rather than only at completion
- The computer preforms some action and observes the effect it has
 - This is used to help form a policy that minimizes some cost
- This is generally the most applicable form of training for games

How Does this apply to games?

Better AI- Not just for playing against

- Computer Vision
 - Handwriting interpretation
 - Facial Recognition
- Voice recognition
 - SIRI
- Gameplay also provides Reinforcement Training

Utility

- A well designed deep learning program can be used for a wide variety of similar tasks
 - One program can play Atari games
 - http://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
 - One program can determine what is in a photo
 - http://devblogs.nvidia.com/parallelforall/digits-deep-learning-gpu-training-system/

Things to Consider

- The algorithm shouldn't always pick the best strategy
 - Could be hiding a more optimal strategy
 - It can create repetitive game play
 - The player should get to win
 - Especially on easier difficulties

Things to Consider

Is a deep learning net the correct choice for the problem?

- Good at identifying things
 - Can overfit- describing noise rather than real relationships
- Good at turn based decision making
 - But might be able to be replaced with an algorithm
- High complexity

Additional Reading

Overview

- http://neuralnetworksanddeeplearning.com/
- Deep Learning
 - <u>http://research.microsoft.com/pubs/209355/DeepLearning-NowPublishing-Vol7-SIG-039.pdf</u>
 - <u>http://deeplearning.net/</u>
 - http://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
- Restricted Boltzmann Machines
 - http://image.diku.dk/igel/paper/AltRBM-proof.pdf
- Artificial Neural Nets
 - <u>http://ulcar.uml.edu/~iag/CS/Intro-to-ANN.html</u>