
IX. MRA AND CONSTRUCTION OF WAVELETS (PART TWO)

In this chapter and next, we will discuss the problem of obtaining orthonormal

wavelets from a general Multiresolution Analysis. For the definition of a Mul-

tiresolution Analysis, we refer the reader to Chapter 7, definition 1(or Chapter 5,

definition 2). One of the important fact about Multiresolution Analysis {Vn}n∈Z is

that there is a function ϕ ∈ V0 such that {ϕ(x− l)|l ∈ Z} is a complete orthonormal

system for V0. The function ϕ is called a scaling function for the Multiresolution

Analysis {Vn}n∈Z. Other facts we will be using in these two chapters are that for

each n ∈ Z, Vn ⊂ Vn+1 and that for any f ∈ L2(R), f(x) ∈ Vn ⇐⇒ f(2x) ∈ Vn+1.

As before, for each n ∈ Z, we let Wn = Vn+1 	 Vn,the orthogonal complement

of Vn in Vn+1. Equivalently, Vn+1 = Vn ⊕Wn. As we have seen in last chapter, if

there is a function ψ ∈ W0 such that {ψ(x − l)|l ∈ Z} is a completeorthonormal

system in Wn, then ψ is a orthonormal wavelet in L2(R). We will show that for any

Multiresolution Analysissuch, such function ψ always exists, and it can be explicitly

expressed in terms of scaling function and it associated low pass filter.

In this chapter, we will develop certain important facts about functions whose

integral translates form an orthonormal system in L2(R), and introduce the con-

cept of Low pass filter, preparing for the construction of wavelets in next chapter.

In these two chapters, we will always identify any function f defined on [−π, π]

satisfying ∫ π

−π

|f(x)|2dx <∞

with its 2π-periodic extension on (−∞,∞). We still call the collection of these

functions as L2(−π, π). According to Chapter 1, for any f ∈ L2(−π, π), we

have f(x) =
∑

n∈Z f̂(n)eint where the convergence is in the norm L2(−π, π) and

f̂(n) = 〈f, eint〉L2(−π,π) with
∑

n∈Z |f̂(n)|2 < ∞. In other words, {f̂(n)}n∈Z ∈
l2(Z). Conversely, for any {cn}n∈Z ∈ l2(Z), there is a g ∈ L2(−π, π) such that

g(x) =
∑

n∈Z cne
int where the convergence is in the norm L2(−π, π), namely, for

any ε > 0, there is a natural number N , such that for any integer n > N , we have

||g(t)−
∑
|l|≤n

cle
ilt||L2(−π,π) < ε.
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First let us study such function g(x) ∈ L2(R) that {g(x − l)|l ∈ Z} is an or-

thonormal system. To this end, we need some properties of Fourier transform on

L2(R). Note that the properties in the following lemma are true for f ∈ L1(R).

The extension of these properties to the case when f ∈ L2(R) is left for the reader.

Lemma 1. a)For any f ∈ L2(R), if g(x) = f(x− l) for some fixed real number l,

then ĝ(ξ) = e−ilξ f̂(ξ).

b)For any f ∈ L2(R), if h(x) = λf(λx) for some fixed real number λ > 0 , then

ĥ(ξ) = f̂( ξ
λ ).

We also need following two lemmas. We list them below without proving. The

first one below is a special type of Fubini’s Theorem. The range of the integration

is intentionally keep vague. It could be any interval or R itself. The second one

below is some important fact about Fourier series for functions in L1(−π, π) which

we do not have time to get into in this course.

Lemma 2. If
∑

k∈Z
∫
|fk|dx < ∞ (or

∫ ∑
k∈Z |fk|dx < ∞), then

∑
k∈Z

∫
fkdx =∫ ∑

k∈Z fkdx.

Lamma 3. Let f(x) be a 2π-periodic function with
∫ π

−π
|f(x)|dx < ∞. If f(x)

satisfies
∫ π

−π
f(x)eintdx = δn,0, then f(x) ≡ 1.

The following theorem is a key step in our discussion. The method used in its

proof is also significant.

Theorem 1. If g ∈ L2(R), than the following two statements are equivalent:

(a){g(x− l)|l ∈ Z} is a orthonormal system in L2(R).

(b)
∑

k∈Z |ĝ(ξ + 2kπ)|2 = 1 holds for any ξ ∈ R.

Proof. First note that the statement (a) is equivalent to the statement that 〈g(x−
k), g(x − l)〉 = δk,l for any k, l ∈ Z, which in turn is equivalent to the statement

that 〈g(x), g(x− l)〉 = δl,0 for any l ∈ Z.

We first prove the implication ”(a)⇒(b)”. Assuming that statement (a) is true.

Then

1 = 〈g, g〉 =
1

2π
〈ĝ, ĝ〉 =

1
2π

∫ ∞

−∞
|ĝ(ξ)|2dξ =

1
2π

∑
k∈Z

∫ 2kπ+π

2kπ−π

|ĝ(ξ)|2dξ

where we have used Parseval’s Identity and rewrite the resulting integral as a series

of integrals. Next we apply the change of variable to each integral above, we note
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that the resulting series of integrals satisfies the condition of Fubini’s Theorem

(Lemma 2), so we apply Lemma 2 to conclude the sequence of computation:

1 =
1

2π

∑
k∈Z

∫ π

−π

|ĝ(µ+ 2kπ)|2dµ =
1

2π

∫ π

−π

(
∑
k∈Z

|ĝ(µ+ 2kπ)|2)dµ.

If we denote G(µ) =
∑

k∈Z |ĝ(µ + 2kπ)|2, then clearly G(µ) is a 2π-periodic

function satisfying

1
2π

∫ π

−π

|G(µ)|dµ =
1

2π

∫ π

−π

G(µ)dµ = 1.

In view of Lemma 3, to show that G(µ) ≡ 1, we only need to check that for any

l ∈ Z \ {0}, 1
2π

∫ π

−π
G(µ)eilµdµ = 0. Indeed, since {g(x− l)|l ∈ Z} is a orthonormal

system,

0 = 〈g(x), g(x− l)〉 =
1

2π
〈ĝ(x), ̂g(x− l)〉 =

1
2π

∫ ∞

−∞
ĝ(ξ)ĝ(ξ)e−ilξdξ

=
1

2π

∑
k∈Z

∫ 2kπ+π

2kπ−π

|ĝ(ξ)|2eilξdξ =
1

2π

∑
k∈Z

∫ π

−π

|ĝ(µ+ 2kπ)|2eilξdµ.

where we use Parseval’s Identity first. We also use Lemma 1 to find Fourier trans-

form of function f(x − l). The resulting integral then is written as a series of

integrals and change of variables to each integral is performed, note that the condi-

tion of Fubini’s Theorem (Lemma 2) is also satisfied, so finally by applying Lemma

2, we have

0 =
1

2π

∫ π

−π

(
∑
k∈Z

|ĝ(µ+ 2kπ)|2)eilξdµ =
1

2π

∫ π

−π

G(µ)eilµdµ,

according to Lemma 3, then G(µ) =
∑

k∈Z |ĝ(µ+ 2kπ)|2 ≡ 1 so we are done.

Now we prove the implication ”(b)⇒(a)”. Assuming that statement (b) is true.

Namely G(µ) =
∑

k∈Z |ĝ(µ+ 2kπ)|2 ≡ 1. Then for any l ∈ Z,

1
2π

∫ π

−π

G(µ)eiµldµ = δl,0.

Note that again Fubini’s Theorem applies, so all the computations done in the

proof of ”(a)⇒(b)” can be reverted to get 〈g(x), g(x − l)〉 = δl,0 for any l ∈ Z,

which means that {g(x− l)|l ∈ Z} is a orthonormal system in L2(R). �

The function g ∈  L2(R) described in Theorem 1 also has the following important

property:
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Theorem 2. Let g ∈ L2(R) be such a function that for any ξ ∈ R,
∑

k∈Z |ĝ(ξ +

2kπ)|2 = 1. Let h(ξ) =
∑

l∈Z cle
ilξ ∈ L2(−π, π). Then h(ξ)ĝ(ξ) ∈ L2(R) and

h(ξ)ĝ(ξ) =
∑
l∈Z

clĝ(ξ)eilξ.

Remark From Chapter 1, we know that whenever h(ξ) =
∑

l∈Z cle
ilξ ∈ L2(−π, π),

then we always have {cl}l∈Z ∈ l2(Z). On the other hand, whenever {cl}l∈Z ∈ l2(Z),

the function defined by h(ξ) =
∑

l∈Z cle
ilξ is always in L2(−π, π).

Proof. First we prove that h(ξ)ĝ(ξ) ∈ L2(R) by showing that
∫∞
−∞ |h(ξ)|2|ĝ(ξ)|2dξ <

∞. Note that the above integral can be written as a series of integrals and be subject

to change of variables the same way as in the proof of last Theorem, so∫ ∞

−∞
|h(ξ)|2|ĝ(ξ)|2dξ =

∑
k∈Z

∫ 2kπ+π

2kπ−π

|h(ξ)|2|ĝ(ξ)|2dξ =
∑
k∈Z

∫ π

−π

|h(µ)|2|ĝ(µ+2kπ)|2dµ

Note that∫ π

−π

|h(µ)|2(
∑
k∈Z

|ĝ(µ+ 2kπ)|2)dµ =
∫ π

−π

|h(µ)|2dµ = 2π||h||2L2(−π,π) <∞

So the condition for Fubini’s Theorem (Lemma 2) is satisfied, the last integral of

first line of equalities and the first integral of second line of equalities are identical,

hence ∫ ∞

−∞
|h(ξ)|2|ĝ(ξ)|2dξ =

∫ π

−π

|h(µ)|2(
∑
k∈Z

|ĝ(µ+ 2kπ)|2)dµ <∞.

Next we prove h(ξ)ĝ(ξ) =
∑

l∈Z clĝ(ξ)eilξ. Consider the following

||h(ξ)ĝ(ξ)−
∑

|l|≤N,l∈Z

clĝ(ξ)eilξ||22 = ||ĝ(ξ)
(
h(ξ)−

∑
|l|≤N,l∈Z

cle
ilξ

)
||22.

Through similar computation we can show that it is equal to

2π||h(ξ)−
∑

|l|≤N,l∈Z

cle
ilξ||22.

Detailed computation and proof using ε−N language is left to the reader. �

For the introduction of low pass filter and constructions in the next Chapter, we

also need a Lemma to allow us freely switch back and forth between time-domain

and frequency-domain. Specifically, we need
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Lemma 4. If {φn}n∈Z is a orthonormal system in L2(R). Then for any f ∈ L2(R),

the following are equivalent:

(a) f(x) =
∑

n∈Z cnφn(x) where the convergence is in the norm of L2(R).

(b)f̂(ξ) =
∑

n∈Z cnφ̂n(ξ) where the convergence is in the norm of L2(R).

Remark According to Chapter 1, when f(x) =
∑

n∈Z cnφn(x) (where the

convergence is in the norm of L2(R)), then cn = 〈f, φn〉 for any n ∈ Z and

{cn}n∈Z ∈ l2(Z). On the other hand , for any {cn}n∈Z ∈ l2(Z),
∑

n∈Z cnφn(x)

converges (in the norm of L2(R)) to some function in L2(R).

Proof. From Parseval’s Identity, we have, for each N ∈ N,

||f̂(ξ)−
∑
|n|≤N

cnφ̂n(ξ)||22 = ||f(x)−
∑
|n|≤N

cnφn(x)||22.

The rest of ε−N details are left for the reader. �

Now we are ready to introduce the concept of Low Pass Filter. Given an

arbitrary multiresolution Analysis {Vn}n∈Z, according to its definition, we know

that there is a scaling function φ(x) in V0 such that {φ(x− l)|l ∈ Z} is a complete

orthonormal system for V0. Moreover, by definition,

1
2
φ(
x

2
) ∈ V−1 ⊂ V0.

Hence by Lemma 4 of Chapter 1, there exists {al}l∈Z ∈ l2(Z) (in fact, al =

〈 1
2φ(x

2 ), φ(x + l)〉L2(R) for each l ∈ Z, but we do not need the specifics at the

moment) such that

1
2
φ(
x

2
) =

∑
l∈Z

alφ(x+ l)

where the convergence is in the norm of L2(R). Hence by Lemma 4 and Lemma 1,

we have that

φ̂(2ξ) =
∑
l∈Z

alφ̂(ξ)eilξ

where the convergence is in the norm of L2(R). Note that since {al}l∈Z ∈ l2(Z),

so
∑

l∈Z ale
ilξ converges in the norm of L2(−π, π) and is a function in L2(−π, π).

We denote m0(ξ) =
∑

l∈Z ale
ilξ and call it the Low Pass Filter induced by the

multiresolution with φ as scaling function. Finally, by Theorem 2, we have
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φ̂(2ξ) = (
∑
l∈Z

ale
ilξ)φ̂(ξ).

Using the special notation for low pass filter, we can write the above as

φ̂(2ξ) = φ̂(ξ)m0(ξ).

We quickly state an important property of the L2(−π, π) function m0.

Theorem 3. If m0 is a low pass filter induced by the multiresolution analysis with

φ as scaling function. Then

|m0(ξ)|2 + |m0(ξ + π)|2 ≡ 1.

Proof. Since φ(x) is the scaling function, so {φ(x − l)|l ∈ Z} is an orthonormal

system in L2(R), according to Theorem 1, we have∑
k∈Z

|ĝ(ξ + 2kπ)|2 ≡ 1

so certainly ∑
k∈Z

|ĝ(2ξ + 2kπ)|2 ≡ 1.

Since φ̂(2ξ) = φ̂(ξ)m0(ξ) for each ξ ∈ R, we have∑
k∈Z

|ĝ(ξ + kπ)|2|m0(ξ + kπ)|2 ≡ 1.

So

1 ≡
∑

k=2l∈Z
|ĝ(ξ + kπ)|2|m0(ξ + kπ)|2 +

∑
k=2l+1∈Z

|ĝ(ξ + kπ)|2|m0(ξ + kπ)|2

=
∑
l∈Z

|ĝ(ξ + 2lπ)|2|m0(ξ + 2lπ)|2 +
∑
l∈Z

|ĝ(ξ + (2l + 1)π)|2|m0(ξ + (2l + 1)π)|2.

Note that m0 is a 2π-periodic function, so

|m0(ξ + 2lπ)|2 = |m0(ξ)|2,

|m0(ξ + (2l + 1)π)|2 = |m0(ξ + π)|2

for any l ∈ Z. Thus, by using Theorem 1 one more time, we obtain

1 ≡ |m0(ξ)|2 + |m0(ξ + π)|2.

�


