Probability Requirements				Notation
- The probability of event E must be between 0 and 1 , inclusive. - The sum of the probabilities of all outcomes in a sample must equal to 1 or 100%.				$0 \leq P(E) \leq 1$
Complimentary Events 3.1				
$P\left(E^{\prime}\right)=1-P(E)$		$P($ At least one of " A ") $=1-P($ None of " A ")		
Multiplication Rule-AND 3.2				
$P(A$ and $B)=P(A) \cdot P(B)$		(A and B are independent)		
$P(A$ and $B)=P(A) \cdot P(B \mid A)$		(A and B are dependent)		
Additional Rule - OR 3.3				
$P(A$ or $B)=P(A)+P(B)$		(A and B are mutually exclusive)		
$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$		(A and B are NOT mutually exclusive)		
Classical Approach	Empirical/Statistical	Conditional Probability		Independence Rule
$P(E)=\frac{\# \text { of outcomes in even } E}{\text { Total sample size }}$	$\begin{gathered} P(E)=\frac{\text { Frequency of Event } E}{\text { Total frequency }} \\ =\frac{\boldsymbol{f}}{\boldsymbol{n}} \end{gathered}$		$P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}$	$P(A \mid B)=P(A)$ OR When $P(B \mid A)=P(B)$
Counting Techniques 3.4				
Permutation (Order Matters):		Combination (Order Does Not Matter):		
$\begin{aligned} { }_{n} P_{r} & =\frac{n!}{(n-r)!} \\ & =\operatorname{PERMUT}(n, r) \end{aligned}$		$\begin{aligned} { }_{n} C_{r} & =\frac{n!}{(n-r)!r!} \\ & =\operatorname{COMBIN}(\mathrm{n}, \mathrm{r}) \end{aligned}$		
Distinct Items (Multiplication Principle of Counting):		Permutation (Distinguishable):		
$_^{\times} \times{ }^{\times} \times{ }^{\times} \times \ldots$ Multiply all the possible outcomes		$\frac{n!}{n_{1}!n_{2}!\ldots n_{k}!}$ Where: $\boldsymbol{n}=n_{1}+n_{2}+n_{3}+\ldots . .+n_{k}$ nutations of n objects where n_{1} are one type, n_{2} are another type and so on		
NOTATION				
$\boldsymbol{n}=$ Sample Size/Total \# of Items $\boldsymbol{r}=$ \# of objects chosen $\boldsymbol{k}=1,2,3 \ldots$ items	$\begin{aligned} & { }_{n} \boldsymbol{P}_{\boldsymbol{r}}=\text { Permutation } \\ & { }_{n} \boldsymbol{C}_{\boldsymbol{r}}=\text { Combination } \\ & !=\text { Factorial } \end{aligned}$		$\begin{aligned} & \boldsymbol{P}(\boldsymbol{x})=\text { Probability of } \\ & \boldsymbol{P}(\boldsymbol{A} \mid \boldsymbol{B})=\text { Probability of } A \text { given } B \\ & \boldsymbol{P}(\boldsymbol{B} \mid \boldsymbol{A})=\text { Probability of } B \text { given } A \end{aligned}$	

