

Chapter 3: Probability

	Probability Requireme	ents			Notation	
The probability of event E must be between 0 and 1, inclusive.						
• The sum of the probabilities of all outcomes in a sample must equal to 1 or 100%.					$0 \le P(E) \le 1$	
Complimentary Events 3.1						
P(E') = 1 - P(E)			P(At least one of "A") = 1 - P(None of "A")			
Multiplication Rule-AND 3.2						
$P(A \text{ and } B) = P(A) \cdot P(B)$		(A and B are independent)				
$P(A \text{ and } B) = P(A) \cdot P(B A)$		(A and B are dependent)				
Additional Rule - OR 3.3						
P(A or B) = P(A) + P(B)		(A and B are mutually exclusive)				
P(A or B) = P(A) + P(B) - P(A and B)			(A and B are NOT mutually exclusive)			
Classical Approach	Empirical/Statis	tical	Conditional	Probability	Independence Rule	
$P(E) = \frac{\text{# of outcomes in even } E}{\text{Total sample size}}$	$P(E) = \frac{Frequency\ of}{Total\ freq}$ $= \frac{f}{n}$	$P(E) = \frac{Frequency \ of \ Event \ E}{Total \ frequency}$ $= \frac{f}{n}$		$\frac{P(A \text{ and } B)}{P(B)}$	P(A B) = P(A) OR When $P(B A) = P(B)$	
Counting Techniques 3.4						
Permutation (Order Matters):		Combination (Order Does Not Matter):				
$_{n}P_{r}=rac{n!}{(n-r)!}$ =PERMUT(n,r)		$_{n}C_{r}=rac{n!}{(n-r)!r!}$ =COMBIN(n,r)				
Distinct Items (Multiplication Principle of Counting):		Permutation (<i>Distinguishable</i>):				
×××		$\frac{n!}{n_1! n_2! n_k!}$				
Multiply all the possible outcomes		Where: $\mathbf{n} = n_1 + n_2 + n_3 + \dots + n_k$ Permutations of n objects where n_1 are one type, n_2 are another type and so on				
NOTATION						
<pre>n = Sample Size/Total # of Items</pre>	$_{n}P_{r}$ = Permut	$_{n}P_{r}$ = Permutation		P(x) = Probability of		
r = # of objects chosen	$_{n}C_{r}$ = Combin	ation	on $P(A B) = Pr$		obability of A given B	
k = 1, 2, 3 items	! = Factorial	! = Factorial		P(B A) = Pr	obability of B given A	