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O . Reula 4
1 Introduction
General Relativity ( GR ) is a peculiar physical theory . GR is about geometries , and not fields , in
a given space — time .  That is , the theory ’ s solutions are not metric tensors — or possible other
matter tensors — but rather the equivalence class of these tensors under arbitrary smooth relabeling
of points in space — t ime .  This peculiarity makes the t ask of analyzing the dynamics of the
theory difficult .  One is used to evolving tensor fields , in fact tensor components , in a given
coordinate system ; while here the extra freedom of the theory makes these components non — unique
. The values of some of these components can be given arbitrarily .  Only certain relations between
them are invariant — and so have a physical meaning .  In particular , some components can be
made arbitrarily large and rough , while the geometry is , for instance , flat . Thus , it is often hard
to see , from j ust comparing tensor components , whether two solutions , that is two geometries
, are close to each other during evolution .  To overcome this problem , several proposals have
been made to fix the evolution in a unique way and at the same t ime obtain well behaved solutions
. In general , these proposals provide for equation systems equivalent , in a sense to be discussed
at length later , to Einstein ’ s equations which are hyperbolic , that is, whose evolution is
continuous as a function of the initial data .  This property is vital for many applications , ranging
from Newtonian approximations to numerical simulations . The aim of this work is to review these
proposals , paying special attention to the applications where they have proven fruitful .
1.1 Background and History
Hyperbolicity is a ,  basically algebraic , condition on the coefficients of a sys - tem of partial
differential equations which grants that the Cauchy problem for the systems satisfying them is well
posed ; that is , if appropriate data for that system , in an appropriate hypersurface , are given ,
then a unique solution can be found in a neighborhood of that hypersurface , and that solution
depends continuously , with respect to an appropriate norm , on the values of initial data given
Hyperbolicity naturally captures what one would expects to hold for most fundamental physical
systems , since , besides the unique and continuous dependence on the initial data , it implies finite
propagation velocities . In § 2 a rather complete description of some hyperbolicity conditions ,
for there are several variants of them , is given , along with references to modern literature on the
topic . Here , and basically in order to provide a more definite idea of the sort of conditions involved
, we introduce one of these notions of hyperbolicity , that of a symmetric hyperbolic system . This
is the case which most often appears in physical problems :
Definition 1 Let be a first order system of evolution equations ,

uy = A%(u)Dgu + B(u)u,

where w = u(x,t) indicates a “wector ” function  of dimension s in Rn+ 1w its
time  derivative , Aa(u), a sxs matriz valu ed vector, and B(u) a s$Xs
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5 Hyperbolic Methods for Einstein * s Equations
matriz valued vector , whose components depend smoothly on wu, and D, a partial derivative
operator on. Rn.  The system is called symmetric hyperbolic at a solu tion wug if there exists
a neighborhood of wg and a smooth , positive definite , symmetric matric H(u) on it such that :

H(u)A%(u) — A% (u)H (u) = 0.

This condition ensures that the Cauchy problem is well posed , namely that there exists a time
interval [0,7) and a constant C'(T") such that if initial data for u is given at ¢ = 0, u(x,0) = f(z),
with f(z) close enough to ug(x,0) in a cert ain norm , then for the same norm we have :

HuCt) IS CH O

A simple example of a symmetric hyperbolic system is the wave equation , see Example I 2 . 2
Well posedness of the Cauchy problem for Einstein equations was established

in the early fifties by Choquet - Bruhat , [ 1 3], when the theory of evolutionary par - tial differential
equations matured and general proofs for quasi - linear hyperbolic systems became available . With
further refinement of the general theory , it was possible in the early seventies to improve on the
result by lowering the minimal differentiability required in the proof , thus allowing more general
initial data
sets , [42],secalso[18]and [16,27,28]. These works used the harmonic gauge
introduced by Lanczos in the twenties . For a discussion on the harmonic gauge see § 3. 1

In the seventies , with a new tool ( the Weighted Sobolev Spaces ) it became possible to enlarge
the development region to contain asymptotically boosted sli ces relative to the initial slice , if the
initial data were in a specific Weighted
Sobolev space , [2 4, 17]. This result had two interesting by - products :

e a ) It established that the evolution equations preserved the asymptotic decay of the initial

data . That is , if they initially were in some weighted space ( for some specific weight factor )
then , in any other time sli ce given in the development asserted by the theorem — including boosted
ones — — , the induced data on it was also in the same weighted space .

e b ) It established a relation between the size of the initial data in any bounded region
and a lower bound for the time of existence of the solution , see [ 3 7 ] for a simple description .

Even more , it was possible to use as the function spaces for the initial data the same weighed
spaces in which the constraint equations were solved , thus , for the first time obtaining a global (
in space ) control on Einstein ’ s equations .

All the power of the techniques used in the above mentioned body of work was not enough to
get a result which most people suspected would hold : the ex - istence of complete , asymptotically
flat space - times for generic , although small , initial data .  An idea which made a breakthrough
on this problem was to reg - ularize Einstein ’ s equations in terms of a conformally rescaled metric
on the
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O . Reula 6
corresponding conformally compactified space - time .  Future and Null infinity are then at a finite
distance , so standard , lo cal in time , existence theorems can

be used . Pursuing these ideas , Friedrich , [30, 2 9], was able to craft the full , and therefore
non - linear , Einstein equations for the conformal fields into a regular symmetric hyperbolic system
, and so to create a formidable tool to study these problems .  Earlier results using regularized
equations for the conformal metric

included the lo cal linear stability of null infinity', [38].

The variables used range from frames to Weyl tensor frame components . The regularization
of the full equations is complicated and requires appending to the original Einstein equations the
Bianchi identities as a new and independent set of variables .  For the first time , the harmonic
gauge was not us ed .  This was also the first time a symmetric system was obtained which was
not the mere and standard translation of quasi — linear second order wave equations into a first order
system . This tool made it possible to show that , given any smooth and small enough initial
data on a hypersurface reaching future null infinity at some cross section , a future development
existed along which null infinity , to the future of such a hypersurface and up to future infinity ,
was included . A limitation of this technique is that initial data are not regular enough at space -
like infinity to make the estimates work there , and so a complete , asymptotically flat space - time
cannot be obtained , nor even a piece of null infinity starting from generic , although small , initial
data on a space - like hypersurface ; nevertheless
see[2 5.

A different path was followed by Christodoulou and Klainerman , [ 2 3 ] . They also made use of
the detailed structure of Einstein equations , but in physical space - time , to show global existence

The special structure of Einstein equa - t ions allows the use of other energy estimates beyond
the traditional one .  The
estimates are boosted energies ,[48, 49, 47],and are crucial to est ablishing this global
result .  Christodoulou and Klainerman did not use a conformal com - pactification of space - time

They were able to obtain complete asymptotically flat space - times , i . e . asymptotically
including space - like regions , out of rather generic initial data in a Cauchy surface reaching that
infinity . Christodoulou and Klainerman found that at null infinity the differential structure does

not seems to be ¢ °° That is , they claimed there are smooth initial data sets whose development

is not smooth at null infinity and that only finite differentiability remains . Christodoulou and
Klainerman also did not use a harmonic gauge con - dition .  Rather , their strategy was to use
the equations for tensorial quantities built out of higher order derivatives of the metric . After
obtaining estimates for these tensorial quantities , estimates for the metric and it s first derivatives
were obtained from elliptic theory , and the maximal sli cing condition .

As expected , both methods used detailed properties of the Einstein equa - t ions to assert global
existence of small data solutions . It is believed that both

11, this work , the linearized Einstein equations in terms of the conformal metric in a

neighborhood of J were regularized and made hyperbolic . Thus local existence results applied
to these equations showed that perturbations with smooth initial data at a hypersurface
reaching J stayed bounded during evolution , and so the asymptotic structure was preserved
to the future of that hypersurface .
Living Reviews in Relativity ( 1998 - 3 )
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7 Hyperbolic Methods for Einstein * s Equations
methods use the same properties , but with different techniques . That is , the property that
allows the conformal Einstein equations to be regular should be the same property that allows
boosted energies to be estimated .  In fact both make estimates in terms of the Bel - Robinson
tensor . However , to my knowledge , this has not yet been fully explored .
1.2 Main Subject and Plan of the Review
In the nineties , researchers have realized that other or more general forms of gauge conditions are
needed to address some pressing problems , in particular , the numerical studies of regions of high
curvature — like black hole formation . One should also mention the study of slow solutions , that is
, solutions which weakly depend on the value of the velocity of light — in particular those which have
a well behaved Newtonian limit . For the first problem , the issue has been whether the coordinate
system chosen , that is , whether the gauge condition , stays well behaved during evolution and does
not cause unphysical singularities , singularities which , for the numerical problem , are as bad as
real ones . For the second problem , the issue has been whether the gauge is well behaved and does
not prevent uniform continuity of slow solutions as the speed of light goes to infinity .

In both cases it is clear that one can choose bad gauges which would make the problem intractable
and which nevertheless are genuine smooth coordinate conditions in the whole region of interest .

The rest of this review describes the efforts triggered by the need to deal with the above mentioned
problems . An attempt to compare these efforts in all respects appears to be a hopeless task . The
variables they use are different . Thus we shall concentrate on revealing the points these theories
hold in common and discuss the key properties of each .  These properties can vary a lot from one
system to another .  The properties can be seen as virtues or defects of the system according to
the uses to which people put them .  For instance , a gauge condition can be incorporated into the
systems as :

e i) asolution to a hyperbolic equation , and so be incorporated as a part of the hyperbolic
system ;

e i) a solution to an elliptic equation , given a mixed hyperbolic - elliptic

system;

e il ) asolution to a parabolic equation , given a mixed hyperbolic - parabolic

systeimn;

e v ) orit can be given as a fixed function in space - time , chosen by a rule
of thumb by looking at the initial data .

Each one of these possibilities can be implemented in a mathematically rig -
orous manner in most of the general schema proposed .  And probably each of them would be of
relevance in some specific implementation . The point , in other words , is that it is very difficult to
go beyond a superficial or general description
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O . Reula 8
of the methods before some particular , extended , and fruitful use legitimizes the j ob .
In §2 T give a short summary of hyperbolic theory , describing the case which is completely

understood , namely the constant coefficient case , and mention what of it can be extended to
the case of interest here ;, namely quasi - linear systems .  For physicists , this discussion should
be a complement to Geroch ’ s

lecture notes on symmetric hyperbolic systems [36]. This discussion follows

very closely chapter IT of [ 50 ], see also chapter IV of [39].
In §3 1 first describe the general problem of adapting the theory of hyperbolic
systems to general relativity and the gauge issue . A companion to this section is ,
besides Geroch ’ s lectures , the paper of Friedrich in Hyperbolic Reductions [3 2] .
In particular we discuss the standard approach , that is , the harmonic gauge .

In § 41 present the more recent approaches , and divide them into four classes , according to
the type of variables used .

In § 51 compare the different implementations that have been made of the approaches intro-
duced in the previous sections , and discuss the impact these approaches have had on the problems
where they have been applied .

In § 6 I consider the role the constraint equations play in these new systems . In the harmonic
gauge , constraint equations become evolution equations .  The consistency of the gauge is all that
is needed to ensure equivalence between Einstein ’ s equations and the harmonic system .  In the
new systems , one is not incorporating the constraints , and so one should make sure that , if the
constraint equations are satisfied initially , they are satisfied during evolution . I claim that , in the
initial value formulation , this follows from uniqueness of solutions to the equations and from the
fact that the modified evolution vector fields proposed are tangent to the constraint sub - manifold .
I also mention the difficulties that appear when considering an initial - boundary value problem .
Living Reviews in Relativity ( 1998 - 3 )
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9 . Hyperbolic Methods for Einstein ’ s Equations
2 The Theory of Linear Constant Coefficients

Evolution Equations and  Generalizations to Quasi

— linear  Systems

In this section , I summarize the main results of the theory of first order evolu -

tionary partial differential equation systems . I do this by first developing the
theory of linear constant coefficients evolution equation systems in fn_that is ,

equations of the type :

uy = P(D)u,

where u = u(z, t) indicates a “ vector ” valued function of dimension s in R" "1, u; its time derivative
,P(D), a s x s matrix whose components smoothly depend on :

D, = 89:”1%)!'./“7;#. For most of the results , no particular form for the dependence

of P on D is needed , as long as it is continuous . But for simplicity one can
think of P as given by :

P(D):= > A"D,.
|v|<m

We shall fo cus on the Cauchy ( or initial value ) Problem for the above system ,
namely under what conditions it is true that given the value of u at t = 0, f(z),
say , there exists a unique solution , u(t, z), to the above system with «(0, z) :=
f(z). Later we shall mention a related problem which is important on most numerical schemes
used in relativity , namely the initial - boundary value problem , where one also prescribes some
data on time - like boundaries .

What follows is a short account of chapter IT of [ 5 0 ] , see also chapter IV
of [39]. After this, I indicate what aspects of the theory generalize to quasi — linear systems ,
and under which further assumptions this is so . I also give some indications of the relation of this
theory to the st ability issues of numerical simu - lations . This section can be skipped by those not
interested in the mathematical theory itself or those who already know it .
2.1 Existence and Uniqueness of Smooth Solutions
Let My be the space of functions of the form :

f(@) := (215 2integraldisplay — minuse™ * ¢p(w)dw, ¢(w) € CG°(R™).

oo
Since the integral exists at each point , it can be differentiated inside the integral sign where it
gives another compactly supported integrand , thus these functions are smooth (C°°($n)). What ’
s more , since the Paley — Wiener theorem holds , they are analytic .
To this space also belongs the function ,

u(x,t) := (215, 2integraldisplay — minusXe™ el (W) dw,  P(w)

Living Reviews in Relativity ( 1998 - 3 )
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O . Reula 10
This function is smooth not only along space directions , but also along time
directions . In fact , it is straightforward to check that the function satisfies the
evolution equation above for the initial condition f(z). Thus we see that initial
data in My always produces solutions which at each constant time slice are in
M. In fact , defining a Mj solutions as :
Definition 2 A function u(x,t) is a My solu tion if :
i Ju(-,t) € Mg for all t>0;
it ) its Fourier transform , 4(w,t), is conlinuous,  and vanishes for |w| > k
where k is s ome constant independent of t;
it )u is a classical s o lution ; that is w,  exists and wu satisfies the equation at

eachpoint(z,t).

a direct application of the uniqueness of the Fourier representation for smooth functions shows :
Lemma 1 Given a constant coefficients linear e volution equation , for each ini - tial data in
My there exists a unique My s o lution and it is given by the above formula .

Thus we see that there are plenty of smooth solutions , whatever the sys -
temis. But it was realized by Hadamard, [40], that there were not enough solutions , since
the space My is not closed .  Furthermore , in general there are no topologies on the space of initial
data , and of solutions for which solutions depend continuously on initial data . Lack of continuity
of solutions with re - spect to their initial data would not only imply lack of predictability from
the physical standpoint , for all data are subject to measurement errors , but also lack of realistic
possibilities of numerically computing solutions , due to trunca - t ion errors .  Thus it is important
to characterize the set of equations for which continuity holds . There are several possibilities for the
choice of the topologies for the spaces of initial data and of solutions . Here we restrict consideration
to those which have been more prolific with respect to results and generalizations to non — linear ,
non — constant coefficient equations systems .

Definition 3 A system of partial differential equations is called well posed if
the re exists a norm (usually a Sobolev norm ) and two constants ,k,«, such that
for al | initial data in My and al | positive times ,

[l ult, ) 1< ke [ FC) ] -

Remarks :

e It is possible to define weaker conditions for well posedness in which the norm for the initial
data is different ( weaker ) than the norm for the so - lution .  This is unsatisfactory for equations
in which there is no preferred time direction . Besides , in general it produces results which are not
robust under lower order term ( in differentiation ) perturbations of the equations , and so do not
generalize to variable coeflicients or non — linear equations .

Living Reviews in Relativity ( 1998 - 3 )
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11 Hyperbolic Methods for Einstein ’ s Equations
e Defining continuity through norms is a limitation and rules out certain more general types of
hyperbolicity conditions , in particular those due to

Leray and Ohya , [54,5 5], see more below .
e Well posedness and linearity imply that we can extend by continuity the set of solutions to all
those which are generated by initial data on the completion generated by My on the given norm .
Theorem 1 A system is L?>  well posed if and only if the re exists constants k and o such
that for al | positive times ,

| eP(iw)t ‘S ke®t W c §Rn7

where the above norm is the usual operator norm on matrices .

If a system is well posed for the L? norm , [ recall that the L? norm of a
function is the square root of the integral of its square | , then it is well posed
for any other Sobolev norm , ( as follows from the above theorem ), since the constants are

independent of w. The above theorem reduces the problem of well posedness to an algebraic one
which we further refine in the following theorem :
Theorem 2  Kreiss [5 1] ] The following conditions are equivalent :
i) The system is L? well posed .
i) There exist constants k, and «, and a positive definite Hermitian form

H(w)suchthat :

ET' T < Hw) <kl and H(w)P(iw) + P*(iw)H(w) < 20H (w) Yw e R

This result is central to the theory .  The proof that ii ) implies i ) is simple and follows directly
from the inequality :

dt? (i, H(w)at) = (i H(w)P(iw) + P*(iw)H (w)i) < 2a(i H (w)i),

that is , from the construction of an  energy norm .  We see that for any well posed problems
this special energy norm can be constructed , so one can always attempt to approach the problem
by trying to find , usually with the help of the

physics behind the problem , the correct energy norm .  Condition ii ) is usually

referred to as the semiboundedness of the operator P(D) with respect to the

norm H( induced on functions in Rn by Fourier Transform ) .

2.2 First Order Systems

We shall now restrict consideration to systems which have at most one space derivative , i . e .
systems of the form ,

uy = A*Dyu+ Bu (1)

Living Reviews in Relativity ( 1998 - 3 )
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O . Reula 12

Using the above theorem , it is easy to see that if a system P(D) is well
posed , then so is the system P(D) + B, where B is any constant matrix .  For the particular case
at hand , this means that we can further restrict attention , without loss of generality , to the the
principal part of the operator , namely

Py (D) :== A*Dgu,

where A% is a s X s matrix valued vector in ™.  In this case we can improve on the above condition
by showing that well posedness implies no growth of the solution , that is that we can choose a = 0
above .

Theorem 3 A first o rder system is well posed if and only if the re ezist | a
constant k, and a positive definite Hermitian form H(w) such that :

E' T < Hw) <kl and H(w)A%w, — A%wH(w) =0 VYw, with |w,|=1.

If A” satisfies the above condition for some H (w), then we say that P(D) is strongly hyperbolic ,
which ; as we see , is equivalent for first order equation systems to well posedness .  If the operator
H does not depend on w,, a case that appears in most physical problems , then we say the system
is symmetric hyperbolic . Indeed , if H does not depend on w,, then there is a base in which it
just becomes the identity matrix .  ( One can diagonalize it and re — scale the
base . )  Then the above condition in the new base j ust means that A%, — with the upper matrix
index lowered — is symmetric for any w,, and so each compo - nent of Aa is symmetric . Even in
the general ( strongly hyperbolic ) case , one
can find a base (w, dependent ) in which P(iw) can be diagonalized , basically
because it is symmetric with respect to the (w, dependent ) scalar product in -
duced by H(w). In this diagonal version , it is easy to see that the well posedness requires all
eigenvalues of iA%w, to be purely imaginary . Thus we see that an equivalent characterization for
well posedness of first order systems is that their principal part (1. e. 4Aa,, ) has purely imaginary
eigenvalues , and that it can be diagonalized by an invertible ,w,— dependent , transformation .
The classical example of a symmetric hyperbolic system is the wave equation .

For simplicity we consider the wave equation in 141 dimensions . Choosing Cartesian coordinates
we have ,

ot — ¢xw =0,
and so defining the “ vector ” u = (¢, ¢t, ¢,) we have the following first order
system :
0 0 O 010
Uy = 0 0 1 |u,+]0 0 0 |u
01 0 0 0 O

There are several other notions of hyperbolicity that appear in the lit erature :
e A first order system is called weakly hyperbolic if the eigenvalues of the principal part are
purely imaginary .  This condition , clearly weaker than strong hyperbolicity , is not enough to
assert well posedness in the sense I have defined here , and so I do not discuss it further .
Living Reviews in Relativity ( 1998 - 3 )
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13 Hyperbolic Methods for Einstein * s Equations
e A first order system is called strictly hyperbolic if all eigenvalues of the principal part are

purely imaginary and distinct .  If the eigenvalues are
distinct , then the eigenspaces invariant under the action of P (iw) are one dimensional and the
system can be diagonalized .  Thus this class is con - tained in the strongly hyperbolic one . Due to

the degeneracies of systems induced by symmetries in more than one dimension , physical problems
are seldom strictly hyperbolic . Sometimes this definition is used to mean that the eigenvectors
belonging to the different invariant spaces generated by the symmetries , which must be also invariant
under iA%w,, have distinct eigenvalues . With suitable conditions on the symmetries , this implies
the full diagonalization of the principal part , and so equivalence with strong hyperbolicity .
e There is a slightly different notion of hyperbolicity due to Leray see [ 5 4 ]
and [ 5 5] . There a system is called strictly hyperbolic , or j ust hyperbolic , if it satisfies
certain conditions which amount to having the Cauchy problem well posed in the sense we have used
A system is called non — strictly hyperbolic if it satisfies conditions implying well posedness of
the Cauchy Problem , but where the continuity notion is not given by a norm , but rather through
Gevrey classes of functions . In particular these spaces are subspaces of smooth , C°>° functions , and
so the data must be also smooth . I doubt very much can be done with them in terms of studying
the stability of numerical methods , so we shall not concentrate on them .
2.3 Generalization to Variable Coefficient and Non - 1 inear
Systems
We shall consider in what follows a first order system of the form :

uy = A%z, t,u)Vou + B(z, t,u)u,

where the vector valued matrix Aa,  and the matrix B, are assumed to be smooth® functions
of all its arguments .

Systems of this type are called quasi - linear because the derivative appears linearly .  This
property allows one to use most of the machinery for constant coefficient equations to prove well
posedness , thus the lo cal existence is well understood , via linearization techniques .  There are
few global results , and in general they depend on more refined knowledge of the equation systems
for which they apply .

The behavior of solutions to quasi — linear equations is not yet fully under - stood . Most of the
solutions develop singularities in a finite time for most initial data , even if they are in My. This
is the case for convective systems , or more
generally for genuinely non - linear systems , see [4 6, 5 7], for the definition and main results
, a class which includes systems like perfect fluids and relativistic

2Actually, for the machinery of proving well posedness , finite differentiability to some higher
order is needed .
Living Reviews in Relativity ( 1998 - 3 )
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O . Reula 14
dissipative fluids — for they contain as part of the system the perfect fluid equa -

t ions . This is also the case for general relativity , where singularity theorems ( see

[41, 60]) tell us about the development of singularities , although of a different type .  Thus
the concept of well posedness has to be modified to account for the fact that solutions only last for a
finite time and this time depends on the initial data .  Basically , the most we can pretend to show
in the above general - ity is the same type of well posedness one requires from an ordinary system of
equations . Which is quite a lot ! The non - linear aspect of the equations implies also that it is not
possible to generalize their solutions to be distributions . The minimum differentiability needed to

make sense of an equation depends on the particular equation .  Furthermore , there are cases ( e
. g. convection ) in which , for some function spaces of low differentiability , the equation makes
3

sense and some solutions exist , but they are not unique

Definition 4  Let ug(t,z), t € [0,Tp), To < +oo be a smooth s o lution of a
quast — lin ear evo lution system . We shall say the system is well posed at the solu tion wuyg
with respect to a norm || || if given any & > 0 the re exists € >0

such that for any smooth initial data f(x) such that || f — fO||< e, with fO(x) :=

uo(0,z) th ere exists a smooth s o lutio n u(t,z) defined in a s trip 0 <t < T, with

| u(ta) _UO(tv‘) |< 57' T_TO ‘< J.

In order not to worry about the possibility that the smoothness of the solu - t ions be too stringent
a requirement , one can smooth out the equation using a
one parameter family of mollifiers , and require that the relation §(e) be inde - pendent of that
parameter family .

To obtain results about well posedness , we j ust have to slightly modify the concepts of hyper-
bolicity already discussed in the constant coefficient case . Since in the constant coefficient case the

matrices did not depend on the points of space - time , nor on the solution itself , we had only
two cases . In one case , the norm H did not depend on w,, and so in some base the matrix A®
was symmetric . In the other case , the norm H did depend on w,, and we had a

general strongly hyperbolic system . In the latter case , it can be seen that H(w) is piece — wise
continuous and so integrable , which is , in that case , all that is needed to proceed with the proof

In the general case with which we are now dealing , H would in general depend not only on wy,
but also on the point of
space - time and on the solution , H = H(w,,t, 2, u).

This difference has caused terminology to be not uniform in the lit erature , so I have taken
advantage of this and establish terms in the way I consider best suited for the topic .

Certain authors call some systems symmetric hyperbolic and others sym - metrizable . They call
symmetric hyperbolic only those systems where the sym - metrizer does not depend on the unknown
variables nor on the space - time vari -
ables ( or at most depends only on the base space variables H := H (t, z)); they call the other systems
symmetrizable .  This is a rather arbitrary distinction ,

3Extra conditions have to be imposed , like entropy growth across shocks , to obtain unique -
ness .
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15 Hyperbolic Methods for Einstein ’ s Equations

since the methods of proof used are valid for both with no essential difference . Thus , if H does not
depend on w, but depends smoothly on all other variables , H := H (¢, z,u), then we shall still say
the system is symmetric hyperbolic

In this case the non - singular transformation which symmetrizes A%(¢,z,u) is smooth in all its
variables .

The existence and smoothness proof is based , as in the constant coefficient case , on energy norm
estimates , but now supplemented by Sobolev inequalities . Since the norm is built out of H and it
does not depend on w,, no passage to Fourier space is needed .

If H does also depend on w,, and is smooth on all variables , H := H (¢, z, u,w,), we shall say the
system is strongly hyperbolic . The existence and smoothness proof now requires the construction
of a pseudo - differential norm out of H, and so pseudo - differential calculus is needed , which implies
that H has to be smooth in all its entries , in particular in w,.

We shall not discuss weak hyperbolic systems , for they are generically un - stable under perturbations
, nor shall we discuss strictly hyperbolic systems , i . e . systems with strictly different eigenvalues
of Aa,,,, for they seldom appear in physical processes in more than one dimension .

With this concept of well posedness we have the following theorem [ See for
instance [58 ] pg. 123]:
Theorem 4 Let r >n2+ 1, then a s trongly hyperbolic system is well posed with
respect to th e Sobolev norm || ||, .  The s o lution is in C([0,T), H"), the time of
existence depends only on || f ||, .

Remarks :

e In the generic case the value of r cannot be reduced from the above value , but of course it can
for certain special types of systems . In general rela -
tivity , a slight improvement , (r > n2), is obtained from the fact that the
matrix Aa only depends on a subset of variables ( the metric ) .
e The time of existence is the same for all r. That is , when a solution loses differentiability , it
loses all of it at the same time . This is reflected in the

: lf‘c 58] I aazygmundsolutionexistsuntil ToandthereAppendixA |Iu (¢, ythen

fOHOWlngbounded,result( space,See in [ 58*,]); |C1ig

where

the solution can be extended further .  Again in general relativity a slight
improvement can be obtained , see [42],and [18].
2.4 Hyperbolicity and Numerical S imulations
Knowing that the field equations for GR can be cast in a symmetric hyperbolic form , we can now
ask how this fact can be of help for numerical calculations ,
( besides the extremely important fact that the problem would be well posed
and so tractable ! ) . There are at least two reasons why one should use vari - ables in which
the system is hyperbolic when performing numerical simulations . The first reason is that having a
strongly hyperbolic system allows for standard
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O . Reula 16
constructions of numerical codes which are stable .  If the system is symmet - ric , hyperbolic
codes with better properties can be constructed .  In particular , schema for symmetric hyperbolic
systems can be constructed with numerical dissipation of lower order than what is needed for generic
strongly hyperbolic
ones ( see chapter VI of [3 9] ) . In variables where the system becomes diagonal , one can also use
methods which take advantage of that structure .

The second reason for using a hyperbolic formulation for numerical analysis is that well posedness
of the system gives bounds on the growth of the solution and its derivatives , as long as the solution

is smooth =~ This property , when used in conjuction with st able algorithms , implies that one

can bound the errors made on the simulation . That is , one knows not only that the error
goes to zero as some power of the step size , but also the proportionality factor of that power law
In simulating phenomena whose observation would require hundreds of millions of dollars , a t
ight control of the accuracy reached should be required . Nevertheless it should be noted that raw
hyperbolicity estimates alone usually give exponential bounds with very large growth coefficients ,
and that they are not of much value for numerical work .
Many of the systems we shall analyze can be cast as flux conservative equa - t ions with sources
This is a direct consequence of the facts that the principal part of the equations depends only on
the metric variable , and that the equation for the time derivative of it does not contain derivatives
of any of the dynamical variables . This property is important when using codes with variable grid
spac - ing , even more if one considers that there are many standard codes for fluids — which are
truly flux conserving — with adaptive grid schema .
It has to be said that flux conservation is important when dealing with systems that develop
shock waves , that is in convective or more precisely in
genuinely non — linear systems ( for a definition of this term and many of the
results , see [4 6, 5 7] ). One should be cautious about any expectation of improve - ment by
using flux conservative properties in general relativity , since here the shocks would probably not
develop — in particular the systems are not genuinely non - linear . Rather , when singularities appear

, they would be much worse than mere discontinuities of some of the dynamical fields o Due to

bad gauge choices , discontinuities resembling shocks have been observed in numerical simulations ,
see [ 5] . Perhaps , instead of trying to devise an algorithm which allows one to go through these
discontinuities , one should concentrate on finding better gauges , where it could even happen that
the system cannot be put in flux conserving form . Thus, it is not clear whether flux conservative

forms are relevant for vacuum general relativity

444 is , sufficiently smooth for the Sobolev energy , with minimum differentiability possible
to close the bounds , to exist .
50ne could of course put a discontinuity on the derivatives of the metric on initial data .
The discontinuity would propagate along the characteristics . In general this is not considered
a shock , for it is not generated by the dynamics and does not propagate along a different char -
acteristic than the neighboring continuous regions . These are called contact discontinuities .

Orfmatter sources are included , like fluids , then one might need to consider flux conservative
schema for the whole system of equations . But probably it would be much better to use
relativistic dissipative fluids — whose global existence for small data has been proven recently
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17 Hyperbolic Methods for Einstein * s Equations
Going Further

For the reader wishing to delve further into this precious theory of hyper - bolic systems , while
keeping a physicist ’ s approach , I recommend [ 3 6 | . For those wishing to see more of the machinery
at work , I recommend the book of Kreiss and Lorentz [50]. Finally, for those who really want
to get the latest on the technical aspects and the modern approach to the problem , I recommend
Tay - lor "s book , [58]. Considerations about numerical analysis and algorithms can
be found in [3 9] . In particular , that book contains general stable algorithms for strongly and
symmetric hyperbolic systems and numerical error bounds in terms of analytic bounds of the exact
solutions applicable to non — linear systems .
[ 5 2] — to dispense of shocks altogether when considering weak data .

Living Reviews in Relativity ( 1998 - 3 )
http: //www. 1iv ingreviews . org
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3 The Problem of Hyperbolicity in General Rel -
ativity

What follows are descriptions of the problem of hyperbolicity in general rela - t ivity and of the main
approaches that have been proposed to deal with the problem .

In studying Einstein ’ s field equations we are faced with a problem (see [2 3,
36, 32]): While the theory of partial differential equations has developed as a theory for
tensor components in a given coordinate system , or at best for tensor fields in a given metric space
, Einstein ’ s equations acquire their full meaning — and the characteristics which distinguish them
from all other physical theories — when they are viewed as equations for geometries , that is , for
equivalent classes of metric tensors . The object of the theory is not a metric tensor , but
the whole equivalence class to which it belongs — all other metrics related to the first one by a
smooth diffeomorphism .  This fact is contained in the equations , for they are invariant under
those diffeomorphisms .  To clarify the concept , and see the problem , let us assume we have a
solution to Einstein equations in a given region of a manifold .  Take a space — like hypersurface
across it , Yo, and a small ~ “ lens shaped ”  region which can be foliated by smooth space - like
surfaces ¥; starting at ¥g. If Einstein ’ s equations were hyperbolic for the metric tensor ,
then uniqueness of the solution ( the metric tensor ) in the lens shaped region would follow from
the standard theory once proper initial data at Xy is given . But we know that if we apply a
diffeomorphism to the original metric tensor solution , which is different from the identity only in
a region inside the lens shaped one but which does not intersect the initial ¥q slice , the resulting
metric would also satisfy Einstein ’ s equations , thus contradicting uniqueness , and so the possibility
that the system be hyperbolic .

Since , as shown in § 2, hyperbolicity is equivalent to the existence of norms which are bounded
under evolution , we see that for Einstein ’ s equations there cannot be such norms on the space
of metric tensors .  Norms are not only important for well posedness , but also for other related
issues which often ap - pear in general relativity , in particular when one tries to see whether some
approximation schema is indeed an approximation . Examples of this appear in very unrelated cases
, for instance , in numerical algorithms and post - Newtonian approximations . Thus , a method is
needed to find relevant norms on metric ten - sors , that is , to break the diffeomorphism invariance .
The norms thus obtained are not natural , and so by themselves do not imply any physical closeness
of metrics in numerical values .  They have to be considered in their topologically equivalent class
. Physically relevant notions of closeness can still be obtained by building , out of the metric tensor
and it s derivatives , diffeomorphism invariant quantities and making the comparisons with then .

Can we avoid this detour into tensors and make a theory of diffeomorphism invariant objects ?
It is not clear whether this can be done .  Some attempts in this direction have been made by
trying to build norms which have some partial diffeomorphism invariance .  Here the norms are
made out of scalars built out
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19 Hyperbolic Methods for Einstein * s Equations
of curvature tensor components of the metric , in particular see [ 2 3, 32]. But
I think a fully geometrical theory needs other types of mathematics than the theory of partial
differential equations , a theory which might be emerging from parallel questions in quantum gravity

3.1 The Standard Approach , or the 4-D Covariant
Ap - proach
The standard approach to overcome this problem has been to “ fix the gauge ” , that is , by
imposing some extra condition on the metric coordinate components which would select one and
only one representative from each equivalent class of Einstein ’ s geometries .  With a clever choice
of gauge fixing , commonly the so - called harmonic gauge , Einstein ’ s equations can be “ reduced
” to a hyperbolic system by removing from them the parts which the gauge condition would make
vanish . This reduced system is equivalent to the full Einstein equations if one can prove that
, possibly after imposing further initial data set constraints , the solutions of the reduced system
satisfy the gauge conditions previously imposed to the system . Alternatively , one can think of this
method as fixing some com - ponents of the tensor obtained by taking the difference between two
connections , the one associated with the metric tensor at which we are looking and the one
associated with some other arbitrary background metric [26, 41].

A convenient way to describe this scheme is by introducing a background
metric , f]f’b thus the gauge is not a coordinate condition , but rather a condition which links the
physical metric with the background one .  In this approach ,

see [41], the basic variable is a densitized symmetric tensor , ® = gdg?, where g is
the metric determinant with respect to the background one, 7 and
6gab - gab _ gab

In these variables Einstein ’ s equations become ,

2192(1@ @dq)a,b _ gg(aﬁ\Ilb) i 21g:b6 e (2)
+(terms in  V.0g% and 6g%) (3)
~ab

=8mgT*" — g%, (4)

where V. is the covariant derivative associated with §**G“? its Einstein tensor

and¥?® := V,® = V,radical Big — ggg°°.
In that gauge , Einstein ’ s equations are “ reduced ” to a hyperbolic system by removing from
them all terms containing W%, for this quantity is assumed to vanish in this gauge . By doing this
one gets a set of coupled wave equations , one for each metric component . Thus by prescribing at
an initial ( space - like ) hyper -
surface values for ®* and of its normal derivatives one gets unique solutions to the reduced system
. When are such solutions solutions to Einstein ’ s equations 7
T1t€abed is the Levi - Civita tensor corresponding to the physical metric ,gab and Egped the
one corresponding to background metric ,g?b then Egped = \/géabcd.
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That is , under what conditions does ¥ vanish everywhere ? It turns out that
the Bianchi identity grants that when ®° satisfies the reduced equations , then ¥® satisfies a linear
homogeneous second order hyperbolic equation .  Standard

uniqueness results for such systems implies that if initially ®° is chosen so that ¥® and its normal
derivative vanish at the initial surface , then they vanish everywhere on the domain of dependence
of that surface .  Thus the question is now posed on the initial data , that is , on whether it is
possible to choose

appropriate initial data for the reduced system , (®%°, Cbib in such a way that

(we, \I/“) vanish initially . It turns out , using that the reduced equations are satisfied at the
initial surface , that one can indeed express ¥ and its normal

derivative at the initial surface , in terms of ®?* and its derivatives ( both normal

and tangential to the initial surface ) .  Thus one finds there are plenty of initial data sets for
which solutions to the reduced system coincide with solutions to the full Einstein system . Are they
all possible solutions to Einstein ’ s equations , or are we loosing some of them by imposing this
scheme ?  The answer to the first part of the question is affirmative ( subject so some asymptotic
and smoothness

conditions ) , for one can prove that given “any”  solution to the Einstein equa - t ions , there
exists a diffeomorphism which makes it satisfy the above harmonic gauge condition .

It is important to realize that it is not necessary to set ¥ to zero to render the Einstein equations
hyperbolic ; it j ust suffices to set it equal to some given vector field on the manifold , or any given
vector function of the space - time points and on the metric , but not its derivatives .  So there
are actually many ways to hyperbolize Einsteins ’ s equations via the above scheme . We shall call
all of them harmonic gauge conditions , and reserve the name full harmonic condition to

the one where ¥ i 0.

An important advantage of this method is that some gauge conditions , like the full harmonic
gauge , are four - dimensional covariant — although a background metric is fixed — a condition which
can be very useful for some considerations .

One drawback of this method , at least in the simplest version of the harmonic gauge , i . e .
the full harmonic gauge , was recognized early , [ 1 4 ] . The drawback is the fact that this gauge
condition can be imposed only locally , and generically breaks down in a finite evolution time . A
related problem has been discussed
recently in [ 5 ] in the context of the hyperbolizations of the ADM variables with the harmonic gauge
along the temporal direction . The above disadvantage can be considered j ust a manifestation of
another : the lack of ductility of the method , that is the fact that one has been able do very
little besides imposing the full harmonic gauge condition , and that for each new harmonic gauge
condition one would like to use , a whole study of the properties of the reduced equations would
have to be undertaken . Although there are many other gauge conditions besides the harmonic one
, the issue of the possibility of their global validity , or the search for other properties of potential
use , do not seem to have been considered . For a detailed discussion of this topic ,see [31,3 2],
and also [41].

One can summarize the situation by noticing that in this setting one needs to prescribe a four
vector as a harmonic gauge condition . Since the theory keeps its four dimensional covariance , then
it is hard to choose any other vector but
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21 Hyperbolic Methods for Einstein * s Equations
zero , that is the full harmonic gauge . Since recently there have been no advances in this area , I
do not elaborate on it .

3.2 The Modification of the Field Equations Outside the Con-
straint Sub - manifold , or the 3+1 Decomposition Point of
View

Another approach to deal with the diffeomorphism freedom of Einstein ’ s equa - tions is by first
removing the diffeomorphism invariance .  This is done by pre - scribing the time foliation along
evolution , that is , by prescribing a lapse - shift pair along evolution .  This removes the diffeo-
morphism invariance up to three - dimensional diffeomorphisms at the initial surface . Sometimes
four dimensional covariance is also broken by splitting Einstein ’ s equations , and possibly other
supplementary equations , with respect to that foliation , and then recombining the split pieces in a
suitable way .  The resulting equations are equivalent to the original ones — for it is j ust a linear
combination of them — so they have the same solutions . Notice that here we are doing more than
just a 3+ 1 decomposi - tion , since in general one is recombining space - space components of the
Einstein tensor with time - time , and time - space components in a non - covariant way , and taking
as equations this combination , or even transforming the equations to first order in derivatives of
the variables by defining new variables and equations and modifying them .

After this procedure is done , one obtains a system which is symmetric hy - perbolic for most
choices of given lapse - shift functions , once they are suitably re - scaled .  Subsequent arguments
go very much on adding equations for the lapse - shift vector in order to make the whole system
well posed , and presum - ably useful for some application . It is instructive to think of these
modifications of the evolution equations from the point of view of the initial value formula - tion .
There one st arts by solving the constraint equations , the time - time and time - space components
of the Einstein tensor , at the initial surface .  With the initial data thus obtained , one finds
the solution to the evolution equations which are taken to be the space - space components of the
Einstein tensor . Since
that evolution preserves the constraints , ( The vector field generating the flow in
phase — space is tangent to the constraint sub - manifold . ) , one can forget about
the constraint equations and think of the evolution equations as providing an evolution for the whole
phase — space . In this sense , the modification one is mak - ing affects the evolution vector outside
the constraint sub - manifold , leaving the vector intact at it . Uniqueness of solutions , which follows
from the well posed - ness of the system , then implies that the solutions stay on the sub - manifold

)

Nevertheless , and we shall return to this point , as shown in [ 3 3 ] , there is no guarantee that the
sub - manifold of constraint solutions is stable with respect to the evolution vector field as extended
on the whole phase — space .  This is an important point for numerical simulations .
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4 Recent Approaches to the Problem

4.1 The ADM representation

In the ADM formulation of Einstein ’ s equations , the fields involved are detached from the under

- laying space - time and brought into an abstract three dimensional manifold product a segment of

the real line . To obtain the relation between these abstract fields and the metric tensor defining a

solution of Einstein ’ s equations ,

we start by pretending we have such a solution , that is a space - time (M, gab). In this space - time

we look at a Cauchy surface ,Y, that is , an everywhere space - like hypersurface such that any

in - extendible time - like piece - wise smooth curve pierces it once and only once , and a t ime flow

, that is , a smooth time - like vector field ,¢t*. From the definition of the Cauchy surface ,t* is

never t angent to it and every point of M falls in an integral curve of t*. Thus , in assuming the

existence of ¥y we are restricting attention to manifolds of the type S x R. To make this structure

more apparent we define a function ¢ by setting to zero the parameter defining the integral curves

of t* at Xg, that is , the value of t at p € M is defined as the value of the parameter the integral

curve of t* takes at p if defined in such a way that at Xy is takes the value 0 .  'We shall call the

surfaces of constant ¢t by ¥;. Thus t*V,t = 1, notice that nevertheless , in general , they are not

space - like . When they are space - like , we shall call ¢ a t ime function . In this case we also

say we have a spac® PPhen | jke foliat ion of space - time

(M, g®*). We shall assume that this is the case , but one must take into account

that when we are solving for a space - time we do not know for how long this would continue to hold
Using this structure we can split tensor into “ space ” and “ time ” parts with respect to the

surfaces >;.  If n® is the normal to them ,

that is ,n® := —g“b\/ngVctthvbt then ho := ¢g* — n%n? is the induced metric on

each ;.  We also define the lapse shift pair , (N, N?%), as the “ time - like 7 and “ space -

like 7 parts of t* with respect to 3, that is ,t* := Nn*+ N

Given the foliation , and the triad (h%, N, N®) we can reconstruct the metric
as g% = ho® — N=2(t* — N%)(t* — N®).  Given another foliation , (3o, %), but the same triad , we
get another metric tensor , the relation between both is a diffeomorphism which leaves invariant g
and is generated by the integral curves
of t* —t'*.  Alternatively we can choose another pair (N, N®) and so construct another metric
tensor , the relation between both metric thus obtained is also a diffeomorphism .  Since one is
interested in geometries , that is in metric tensors up to diffeomorphisms , both metric obtained are
equivalent , but one needs to
pick up an specific one in order to write down , ( and solve ) , Einstein ’ s equations . Using the
above splitting vacuum Einstein ’ s equations become two evolu - t ion equations :

9

hay = 2Nh7YV2(Py, — 2tMerP) 4 2D Ny,
pab —  _ Nhl/Z(Rab(h) - 21R(h)h“b)h1/2(D“DbN o h“bDCDcN)
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+ 21Nh’1/2h‘“’(Pch“d . 21P2) . 2Nh—1/2(PacPcb . 21PP‘“’)
+ D (N°P®) —2p@D N,

where the dot means a Lie derivative with respect to t%, P® := \/h(K“b — Kh) and K is the
extrinsic curvature of ¥; with respect to the four - geometry , that is , K% := h?V n’. D, is
the covariant derivative associated with A% on each ¥;, and R® its Ricci tensor .

And two constraint equations :

hR(h) — PP, + 2'F* = 0,
D,P® = 0.

Note that there are two  “ dynamical ”  variables , hqp, and P?, while the lapse —
shift pair (N, N%), although necessary to determine the evolution , is undeter - mined by the equations
Note also that they do not enter into the constraint equations , for as said above a change on
the lapse — shift pair leave the fields at initial surface unchanged .
It is important step back now and see that these equations can be thought as  “ living ” in
a structure completely detached from space — time .  To see this , identify all points laying in the
same integral curve of t*, thus the equivalence class is a three dimensional manifold S, homeomorphic
to any ;. On it , for
each ¢ we can induce space - contravariant tensors , such as hqp(t), Pap(t), No(£),
and scalars , as N(t). As long as the surfaces are space — like , the induced met - ric is negative
definite and we can invert it , thus we can perform all kinds of contractions and write the above
equations as dynamical equations on the pa - rameter ¢ on fields on the same manifold ,S.  This
is of course the setting in which one sets most of the schemes to solve the equations , and it is hard
to keep control , even awareness , that the surfaces defining the foliation can become null or nearly
so . Einstein ’ s equations “ feel ” that effect since they are causal , and this is abruptly fed back
via the development of singularities on the solutions .  They do not have any thing to do with real
singularities of space — t ime , but rather with foliations becoming null .
The first application of this idea to Einstein ’ s equations appears to have
been [ 1 9] . There a hyperbolic system consisting of wave equations for the time
derivative of the variable hh®® is obtained when the shift is taken to vanish and
the lapse is chosen so as to impose the time component of the harmonic gauge . The shift is set to
zero , but, as stated in the paper , this is an unnecessary condition .  Thus , it is clear
that one gains in flexibility compared with the standard method above . This seems to correspond
with the fact that in one of the equations forming the system , the time derivative of the evolution
equation for the momentum , the momentum constraint has been suitably added , thus
modifying the evolution flow outside the constraint sub - manifold .  As stated in the paper , they
could not use the other constraint , the Hamiltonian one , to modify that equation .
Living Reviews in Relativity ( 1998 - 3 )
http: //www. 13ivingreviews . org



O . Reula 24 The condition for that system to be ( symmetric ) hyperbolic is that the term
below should not have second derivatives of P,

(h*A = D*D")(N—Nzp),

where h® is the induced three metric on a hypersurface , D, is the covariant derivative at that
hypersurface compatible with hqp, A := h®D, Dy, N is the lapse function , and P := ha, P, with
P the momentum field conjugated to

hap-
The simplest condition to guarantee this is :

N = N2P,

which in view of the definition of P®, which implies h=hN P, has as a solution ,

N = (2)1/27

backgroundmetrice“b. This. the

. 1ab . time
wherehisthedeterminantof 15 metrich prec1selythe

with toaconstant ing .
I‘espeCtharmonicconditionforthe time

component of ¥? in notation introduced in the paper ’ s introduction . That is ,
Wbny, = 0, where ny it the normal to the foliation .  If the determinant of e, is not taken to be
constant in time , then one gets ,

N é
N _N2P:e7

and so the system remains hyperbolic . Thus , we see that , up to the deter - minant of
the metric , the lapse can be prescribed freely .  This freedom is very important because it gives
ductility to the approach , since this function can be specified according to the needs of applications
. We shall call this a generalized harmonic time gauge

Although in the introduction of [ 1 9 ] there is a remark dedicated to numerical

relativists about the possible importance of having a stable system , the paper did not spark interest
until recently , when applications required these results to proceed . In recent years , a number
of papers have appeared which further
elaborate on this system , [2, 4, 1]. In particular I would like to mention [ 4 ], where the
authors look at the system in detail , writing it as a first order system , and introduce all variables
which are needed for that .  In these recent papers , the generalized harmonic time gauge has been
included , as well as arbitrarily prescribed shift vectors . If one attempts attempts to write down
the system as a first order one , that is , to give new names to the derivatives of the basic fields until
bringing the system to the form of equation 1 , the resulting system is rather big , it has fifty four
variables , without counting the lapse - shift pair . We shall see that there are first order hyperbolic
systems with half that number of variables .
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25 Hyperbolic Methods for Einstein * s Equations
Two similar results are of interest :  In [ 9 ] a system is introduced with basi -
cally the same properties , but of lower order , that is , only first derivatives of the basic variables
are taken as new independent variables in making the sys - tem first order . In this paper , it is
realized that the same trick of modifying the evolution equations using the constraints can be done
by modifying , instead of the second time derivative of the momentum , the extra equation which
appears
when making the ADM equations a first order system , that is the equation which fixes the
time evolution of the space derivatives of the metric , or alter - natively the time evolution of the
Christoffel symbols . When this equation is suitably modified by adding a term proportional to
the momentum constraint , and when the harmonic gauge in the generalized sense used above is
imposed ,
a symmetric hyperbolic system results . In [ 1 1] the generalized harmonic time gauge is
included , as well as arbitrarily prescribed shift vectors .  For the latest
on this approach see , [ 1 0] . I shall comment more on this in next section , § 4 .

In [ 3 4] a similar system is presented . In this case , the fo cus is on establish - ing some
rigorous results in the Newtonian limit . So a conformal rescaling of the metric is employed using
the lapse function as conformal factor .  The im - mediate consequence of this transformation is
to eliminate from the evolution
equation for P? the term with second space derivatives of the lapse function , precisely the term
giving rise to one of the terms in equation 4. 1. The end consequence is that the conformal
metric is flatter to higher order . With this re — scaling , and using the same type of modification
of the evolution equation for the space derivatives of the metric that the above two approaches use ,
a symmetric hyperbolic system is found , for arbitrary shift and lapse . 8  This freedom of the
lapse and shift was used to cancel several divergent terms of the energy integrals in the Newtonian
limit by imposing an elliptic gauge condition on the shift , which also determined uniquely the lapse
. This resulted in a mixed
symmetric hyperbolic endash — e llipt ic system of equations . In [ 3 5] an attempt is made
to explore what other possibilities there are of making symmetric hyperbolic systems for general
relativity with arbitrarily prescribed lapse — shift pairs . A set of parametrized changes of field
variables and of linear combinations of equa - tions are made , and it is shown that there exists
at least a one parameter family of symmetric hyperbolic systems .  In these systems generalized
harmonic time gauge is replaced by :

N:=(™"?% §>o0.

e

So , the dependence of the lapse on the determinant of the metric can be modi - fied , but never
suppressed . Since the changes in the parameter imply changes in the dynamical variables , while the
factor proportional to the momentum added to the evolution equation for the connection is unique
, and so fixed , it is not clear whether this can be of help for improving numerical algorithms . We
shall see this type of dependence arise in one of the developments of one of the above mentioned
approaches .
8Note that the lapse used in this work already had the generalized harmonic t ime gauge
built into it .
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In [ 3 2] a similar system , in the sense of using variables from the 3 + 1 de - composition ,
is obtained by imposing also the same generalized harmonic time gauge . This system , as is the
original system of [ 1 9 ] | is of higher order because it includes the electric and magnetic parts of
the Weyl tensor in the 3+ 1 de - composition .  As such , it contains more variables ( fifty ) than
the two discussed
above ( thirty ) .
4.2 The F —r.m. Representation
Another way of dealing with Einstein equations is through the frame represen - t ation .  There
, instead of using the metric tensor as the basic building block of the theory , a set of frame
fields isused . At first this representation seems to be even less economical than the metric tensor
representation of geometries , since, on top of the diffeomorphism freedom , one has the freedom
to choose the frame vector fields .  In short , one has sixteen variables instead of ten .  But the
antisymmetry of the connection coefficients compared with the symmetry of the Christoffel symbols
levels considerably the difference , ending , after adding the second fundamental form and others ,
with twenty - eight variables , instead of the thirty of the conventional system . But this count is
not entirely correct . As mentioned above , in order to close the system of equations one has to add
the evolution equations for the electric and magnetic part of the Weyl tensor , thus ending with a
total of thirty four variables .  Actually one can close the system with the twenty four variables at
the expense of making the equations
into second order wave equations , ( See for instance [5 9] . ) , so effectively adding more variables
when re endash — e xpressing it as a first order system .

The more important application of the frame representation has been the conformal system
obtained by Friedrich , [30,29], (see§ 1), wherein a fixed gauge he got a symmetric
hyperbolic system which allowed him to study global solutions .  Later , using similar techniques
and spinors , he found a symmetric hyperbolic system with the remarkable property that lapse and
shift appear in an undifferentiated form , allowing for greater freedom in relating them to the
geometry without hampering hyperbolicity [31]. In[3 2] he introduces new symmetric systems
for frame components where one can arbitrarily prescribe the gauge functions , which in this case
does not only include the equivalent to the lapse — shift pair , but also a three by three matrix fixing
the rotation of the frame .  In this case , these gauge functions enter up to first derivatives .  This
compares very favorably with the ADM representation schema where the lapse - shift entered up to
second order derivatives .  Friedrich also finds a symmetric hyperbolic system with the generalized
harmonic t ime condition .  Contrary to the systems in the ADM formalism , where the issue
is rather trivial , these systems do not seem to allow for a writing in flux conservative form . We
do not consider that a serious drawback . The structure of Einstein ’ s equations is very different
than those of fluids , where the unavoidable presence of shocks makes it important to write them
that way . Indeed the reason fluids have shocks can be attributed to their genuinely non - linear
character , [4 6], a property not shared
by Einstein ’ s theory .  ( More about this in the next section , § 4. )
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27 Hyperbolic Methods for Einstein * s Equations
4.3 Ashtekar > s Representation

The example of the one dimensional wave equation 2. 2 can be slightly im - proved by the

following construction : We define atwo dimensional vector
u = (uhu?) = (¢, Pt — agy). We then have t1 = axl +u?, while , 2 =
—ar? + (1 — a?) Py Thus we have a diagonal — and so symmetric hyperbolic —

system if « = +1, namely ,

wy = [oz O}u+[0 1}11
0 —a | ”® 0 0 ’

The two possible values « can take correspond to the two characteristic directions the wave
equation defines .  This trick can not be extended two more dimensions , basically because the
space derivative of ¢ is a vector , and so can not be properly mixed with it s time derivative . But
in other dimensions one can implement similar schema if the fields are not scalars but appropriate

tensors .
Einstein ’ s equations in Ashtekar > s’ variables [ 7 , 8 ] is one beautiful example of this , since they

have the remarkable property of naturally constituting a first order evolution system .  Because
of this reason it is also a compact system with twenty - seven unknowns , even before imposing the
reality condition on the connection variable .  Recently it has been proven [ 4 5] that such a

system is symmetric hyperbolic if suitable combinations of the constraint equations are added to
their evolution equations , thus effectively changing the flow outside the constraint sub - manifold
of phase — space .

In Ashtekar ’ s representation the basic variables are a densitized SU(2) sol -
dering form , 54 and a SU(2) connection AZ, which are tangent to a space -
like foliation of space time determined by given “ lapse ” shift pair N = N, / det o,

N,
The symmetric hyperbolic evolution equation system is :
£i6" — i= /2D, (N [56i+y/2" [, 50 + 2D, (NL*b]) + N*C + [A,N, &)

LiAp = Dy(AN®) + NOFit/2" (5% Fya] + 0% /20 + 0" N5,y

b

necti Onwhch(Di)s BisA;‘;f SUg)ca, derivative,_ déamwhosetheconstmintdifferencewithrespectequations’ to a
flat con -
~ L ~a~b
C(c,4) = tr(c"op,, (5)
~ ~b
Ca(6,4) = tr(oy,, (6)
C(6,A) = D" (7)
Note that here there is an extra vectorial constraint , a SU(2) valued scalar , which corresponds to
the fact that the system has extra degrees of freedom , the SU(2) rotations .  The extra constraint
is j ust a strange way of asserting the symmetry of the second fundamental form , and is of the type
of substitutions we made above to improve on the wave equation system . The constraints on

themselves satisfy a symmetric hyperbolic system of equations .
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Note that the principal part of the system is block diagonal and the eigenvectors — eigenvalues
are very simple combinations of & with the elements of an orthogonal
basis {w®, m® m*}, where w® is the wave vector .
In this new system , the “ lapse 7 - shift pair can be chosen arbitrarily .  But in fact the
lapse 7 that appears here is a scalar density which has already incorporated the square root of
h on it . So the freedom is actually the same as
in the ADM representation . As in the frame representation , the lapse — shift pair appears only
with derivatives up to first order . In this case it is relatively easy to see the freedom in making up
evolution equations for the lapse endash — s hift pair . As said above , the system is symmetric for
Ashtekar ’ s variables , since the lapse — shift pair enters as terms with up to first derivatives , one can
take those terms from the non — principal part of the system and promote them into the principal
part of a bigger system which incorporates the lapse endash — s hift as extra variables . Thus , these
terms constitute an off — diagonal block of the bigger principal part matrix . Imposing symmetry to
the bigger matrix fixes the opposite off — diagonal part of the matrix .  The only freedom left is
on the lapse — shift block — diagonal part , which can be chosen to be any symmetric matrix we
like .  The non — principal part of the equation system on the lapse endash — s hift sector can also
be chosen arbitrarily . Of course , in contrast with the ADM representation results , one can also
choose a gauge condition via elliptic equations on the lapse — shift pair .  In this case , the elliptic
system can be of first order in the lapse — shift or related variables . For instance , one could use
Witten ’ s equation to evolve them .
As we have seen , the generalized harmonic time gauge seems to appear nat - urally in most attempts

“

to get well posed evolution systems .  Thus it seems to be really a key ingredient , perhaps with
some physical content .  One could ar -
gue in that direction from the circumstances in which it appears in [ 3 4 ] , namely effectively

improving the estimates of the behavior of solutions admitting a New - tonian limit that is in a way
related to the longitudinal modes of the theory . This longitudinal modes are part of the evolution
, although they are not expected to

behave in a hyperbolic manner .  See also the comments around equation ( 9 ) in

[10].
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29 Hyperbolic Methods for Einstein * s Equations
5 Beyond the Prescribed Gauge

In this section we will look at several attempts to , once a hyperbolic system has been obtained for
the evolution variables , extend it into a bigger well posed system where the lapse endash — s hift

pair , or more generally the gauge variables of a particular system , can be determined by some
prescription which in general depends on the dynamical variables .  The bigger system does not
need to be hyperbolic , it only needs to be well posed , and so for instance it can be mixed elliptic
— hyperbolic .

51 T —rial and Error Method
One alternative would be to start with some arbitrary prescription for the gauge variables , evolve
the solution for a while , stop , look for troublesome regions , and modify the gauge prescription
there . One would do that only a finite number of times and choose smooth prescriptions and smooth
transitions between them , so no problem of well posedness or numerical stability would be created
by that procedure . With some experience , and luck , this procedure could work .

Perhaps the mayor drawback of this approach is the fact that the strict har - monic gauge , the
most conspicuous choice , does not behave well under evolution .
This has been known for a long time [ 1 4], and more recently new indications
have been found in [ 5] .  These findings are of course not valid for the gener - alized harmonic
time gauge because one can trivially t ake any solution , draw a well behaved foliation on it , and
identify the generalized gauge that works for that solution .  Some attempts have been made in
order to get loose from the generalized harmonic time condition , presumably with the intention of
later
imposing equations on the free variables , otherwise independent fields . In [ 3 | a non - strictly
hyperbolic system is found by taking yet another time derivative of the evolution equation for the
momentum variable .  In that way , they are able to prescribe in a completely free way the lapse
— shift pair .  In doing this ,
they obtain a non - strictly hyperbolic system , in the sense of Leray - Ohya , [55 ],
which I presume in the language of first order systems means that it is a weakly hyperbolic ,
but with certain other properties which imply that the system is well posed in Gevrey classes

of functions 9 The resulting system , once brought to first order , has a rather big number of

variables . It is not clear that one can stablish numerical stability and convergence for these types
of systems , for at least in the continuum estimates an infinite number of derivatives are involved .
In [ 3 2], as said in the previous section , a system in the frame representation
is made where the corresponding gauge variables can also be given arbitrarily . The importance of
this freedom is that in this case one can prescribe directly the lapse . This is in contrast to the case
of the generalized harmonic time condition , in which one prescribes the lapse up to the square root
of the metric and so finds out what the lapse really was only after solving the problem .
9 Basically one is able to bound norms on the solution by different norms on the initial
data , with the last one involving more derivatives , but with smaller and smaller derivatives
as the order of the derivatives in the norms increases .
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5.2 Hyperbolic Extensions
One would also like to have recipes which could be used automatically during evolution , that is
, algebraic or differential equations , which would not only fix uniquely the evolution of the gauge
variables , but which would also result in a well posed evolutionary problem .

One approach has been taken in [11, 12],and[10 ] where the equation 4.1
has been modified to ( in the notation of [19] ) :

N = NZf(N)P,

With this new evolution equation for the lapse function , they analyze the princi - pal part of the
equations and see that if f > 0 then it has imaginary eigenvalues and a complete set of eigenvectors
. Thus , up to the smoothness requirement on the eigenvalues with respect to the wave vector , the
system seems to be at least strongly hyperbolic and so well posed .  This prescription enlarges
the system a bit ; as one also has to correctly include in it the corresponding equations for the first
space derivatives of the lapse function , which become now a dynamical variable .

Although the system is well posed in the sense of the theory of partial differ - ential equations ,
it has some instabilities from the point of view of the ordinary
differential equations . A quick look at the toy model in [ 5 ] shows that if we t ake
constant initial data for ( in that paper ’ s notation )a = a, g = ¢0, and Ky,
and null data for A, and D, then the resulting system is j ust a coupled set of
ordinary equations . One can see that g = gO(K/Kp)?, and so

Gk = (%)%0%:(1 - f).

nevertheless

If f = 1, the harmonic time gauge in this notation , nothing happens at first sight Seeiime

afinite*
happens;;1 fand<0?§§‘m >initia10thenwehavedata is asingularitytaken so that ag %y
is negative . Thus we see that this gauge prescription can generate singularities which do not have
much to do with the propagation modes , and so with the physics of the problem . In [5 ] and
[ 6 ] numerical simulations have been carried out to study this problem .  Needless to say , these
instabilities would initially manifest themselves in numerical calculations via the forming of large
gradients on the various fields coupled to the above fields , and the time at which they appear
depends on the size of the trace of the momentum variable . In[6] a proposal to deal with
this problem is made which consists of smoothing out the lapse via a parabolic term . In view of the
fact that this problem already arises for constant data , it is doubtful that such a prescription can
cure it .

Note that the above prescription for the evolution of the lapse for f = f0 > 0 is identical
to the one considered in  [3 5], namely equation 8. It is most probably the case then
that the same sort of instability would be present there , although the equations considered there
are different , due to the inclusion
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31 Hyperbolic Methods for Einstein * s Equations
of terms proportional to the scalar constraint in order to render the system symmetric hyperbolic .

In [ 5 ] there is also a study of another type of singularity which is not ruled out with the choice
of the harmonic gauge , f = 1. This singularity seems to be of a different nature , and is probably
related to the instability of the harmonic gauge already mentioned . It clearly has to do with the
non — linearities of the theory .

It should be mentioned that there are a wide variety of possibilities for mak - ing bigger hyperbolic
systems out of those which are hyperbolic for a prescribed lapse - shift pair , or for the generalized
harmonic gauge variant . In that respect , perhaps the systems which are more amenable to a
methodological and direct study are the ones in the frame or in Ashtekar ’ s representations , for
there , as discussed in the previous section for the Ashtekar ’ s representation systems , § 4. 3,
the possibilities to enlarge the system and keep it symmetric hyperbolic are quite clear and limited .
5.3 Elliptic Extensions
These are other types of approaches which take more into account the longi - tudinal modes of the
theory , namely those which are related to the energy or matter content of the space t ime , and those
which do not propagate as waves . The nature of these modes implies that these approaches seem
to need a global knowledge of the solution , which in practice appears by imposing either elliptic
or parabolic equations , the latter as a way to drive the solution close to satisfy - ing an elliptic
equation for larger times . Systems of that sort have already been used in applications: In[23],
a hyperbolic system with lapse given by an ellip - tic equation is used in the proof of global existence
of small data.  The elliptic equation is used to impose the maximal slice condition during evolution
, that is P = 0. In that work , the first order system is for the electric and magnetic parts of the
Weyl tensor , while the metric , connection , and extrinsic curvature tensor are obtained by solving
elliptic equations on each slice . For their aims , obtain - ing a priori estimates , this suffices . For
numerical simulations of evolution , it is better to solve , as much as possible , evolution equations
, and not elliptic ones . Thus for this aim , equations — hopefully hyperbolic or at least parabolic —
should be added to evolve the above mentioned ( lower order in derivatives ) variables .

This has improved recently in [ 2 2], and [ 3 ] with a slight generalization to [ 2 3]
in admitting arbitrarily prescribed P’ s .  In particular , in [ 2 2 | a complete proof of well
posedness of mixed symmetric hyperbolic — elliptic systems is given . Such a proof must be implicit
somewhere in [ 2 3], and a general argument has been

given in [ 3 4] .  Surprisingly , such a result , which has a rather simple argument based on the
standard elliptic and hyperbolic estimates , has not before had the clean proof it deserves .  This
gauge has been used to show existence of near Newtonian solutions by [ 56 ] .

In [ 3 4] a different elliptic condition is imposed in order to study near New -
tonian solutions .  An elliptic system is considered for both lapse and shift . It is similar , but
not equal , to the above gauge , for in this work a much stronger
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condition is required on the order of approach of relativistic solutions to the Newtonian limit .  This
implies globally controlling not only the lapse , but also the shift .

The last two works mentioned hint at some interplay between the problems of finding well be-
having gauges for near Newtonian solutions and for long term evolution .  The argument has been
that , since in this gauge the principal part of the equations is well behaved near the — singular —
Newtonian limit , and since the rest of the terms of the hyperbolic system go to zero on that limit ,
one expects for the time the solution exists to go to infinity as one approaches the Newtonian limit
. Thus the gauge should be well behaved until then . I cite [ 4 3 ]
for recent work on this and [ 4 4 ] for a well behaved system in asymptotically null sli ces amenable
to study slow solutions near null infinity .

In the frame and in Ashtekar ’ s representations one could even consider first order elliptic  (
spinorial )  equations to fix the gauge variables .  In the frame representation one can even fix
gauge variables via an algebraic condition .
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6 The Role ofthe Constraints
In this section , I analyze the role the constraint equations play in these new formulations . T will
st art by analyzing how the equations were handled in the original proof of well posedness . Then
I discuss what has been said recently and what has to be done in the future , both for theoretical
considerations and for numerical work . In particular , I discuss the role of the constraints in
the initial — boundary value problem , a problem which has still to be fully solved , but which
nevertheless is applied in most of the numerical simulations .
6.1 The Constraints in the Harmonic Gauge
In the harmonic gauge , the role of the constraint equations as such is hidden . This is because
the constraint equations become evolution equations due to the gauge choice . Indeed , in the full
harmonic gauge all components of the Einstein tensor become a big second order hyperbolic equation
for the metric compo - nents .  The need for the constraints to be satisfied at the initial surface
enters
the picture because it implies that the first time derivative of the gauge condition must vanish
there in order to guarantee that the constraints vanish everywhere . Thus the question about the
preservation of the constraint equations does not appear here . At most one can say it has been
traded for the question of the gauge consistency .
6.2 The Constraints in the New  Systems: Theoretical
Considerations
In the new hyperbolic systems , where covariance is lost , one solves only for the evolution equations

Thus , the question of whether the constraint equations hold during evolution if they hold at
the initial surface arises again . If the prob - lem is about the evolution of the whole space — time
, or about evolution on the domain of dependence of some space — like surface , then there is a
good argument showing that the constraint equations would be satisfied as a consequence of the
uniqueness of the system under consideration :

Assume initial data is given at some space — like hypersurface which satisfies the constraints there

We use the new evolution system and get a solution in
the domain of dependence of the system , ( which , if gauges propagate at speeds
greater than light , might be smaller than the domain given by the metric ) . But
using the harmonic gauge I know that there is a solution to the Einstein equation on a maximally
extended domain of dependence . If one can diffeomorphically transform metric corresponding
to that solution into one satisfying the gauge used for the evolution with the new system , then ,
since it satisfies all the equa - tions , including the constraints , it follows that it will also satisfy
the equations of the new system .  Uniqueness of solutions of the new system implies it must be
the one found initially and so it also satisfies the constraints . Thus we see that no particular
consideration for the constraint equations is needed .
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6. 3 The Constraints in the New Systems : Numerical Con -
siderations

For numerical simulations , the role of the constraint equations is delicate : Since there are always
numerical errors , although the vector field defined by Einstein ’ s equations in any of the above
approaches is tangent to the constraint sub - manifold , we can only expect to be in the neighborhood
of that sub - manifold . So , since one is effectively modifying the evolution equations outside the
sub - manifold , that the vector field is tangent to it is not enough .  For if that sub - manifold
were unstable , it could very well be that a spurious numerical solutions could st art growing during
evolution and takes us completely away from it . This problem has been noticed by several people
and has been considered in detail

in [ 3 3] . There it is shown that , while in some evolution systems , the constraints

themselves obey hyperbolic evolution equations , in others that is not the case so are presumably
unstable .

It is not clear to me that the condition that the constraint system be well posed is the one needed
for considering a system free of this problem .  First because well posedness as such is not enough
to guarantee the possibility of a numerical scheme : The system could be well posed but st ill depart
exponentially from the constraint sub - manifold , thus making impossible any reliable calcula - t
ion .  So the non — principal part of the system must also be considered , and probably suitably
modified in the neighborhood of the constraint sub - manifold . Second , since one is never solving ,
or simulating , the constraint evolution equa - t ions , that is , they play no role in the scheme , why
should one consider them at all 7 I think the emphasis should be put on guaranteeing a numerical
scheme without spurious solutions ; because , as argued above , uniqueness should imply that the
constraints are satisfied . Thus , what seems to be needed is a connection between well posedness , or
rather no exponential departure from the constraint sub - manifold , and lack of spurious solutions
on the numerical schema .

6.4 The Constraints in the Initial — Boundary Value Prob - lem

A completely different situation arises if one is considering an initial — boundary

value problem for Einstein ’ s equations .  Although this problem has not been solved in it s full
generality for Einstein ’ s equations , it is clear that in order for the constraints to be satisfied during
evolution , some of the boundary values have to be chosen in a special way . It is here that the type
of equations the constraints satisfy is most important . In particular , if they also form a hyperbolic
system , then a study of it s principal part at the boundary would tell which conditions are needed
to guarantee uniqueness of the solutions , in particular the trivial solution , and so which are the
boundary conditions we must force upon the evolution system for the dynamical fields . Since most
numerical simulations are in fact initial — boundary value problems , the problem of well posedness
and the problem of the propagation of the constraints are central .
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