
U Kang 1

Lightweight Deep Learning
with Model Compression

(Part 1)

U Kang
Dept. of Computer Science and Eng.

Seoul National University

U Kang 2

Why Model Compression?

 Recent deep learning models are becoming more
complex
 LeNet-5: 1M parameters

 VGG-16: 133M parameters

 Problems of complex deep models
 Huge storage(memory, disk) requirement

 Computationally expensive

 Uses lots of energy

 Hard to deploy models on small devices (e.g. smart
phones)

U Kang 3

Model Compression

 Goal: make a lightweight model that is fast,
memory-efficient, and energy-efficient

 Especially useful for edge device

U Kang 4

Outline

 (Part 1) Overview of Deep Learning
 Just enough background to understand Part 2, to make this

tutorial self-contained

 Materials mainly based on Deep Learning Book
(Goodfellow et al., 2016)

 (Part 2) Model Compression Techniques
 Pruning

 Weight Sharing

 Quantization

 Low-rank Approximation

 Sparse Regularization

 Distillation

https://datalab.snu.ac.kr/~ukang/talks/19-BigComp19-tutorial/

U Kang 5

Outline

What is Deep Learning?

Feedforward Neural Network

Convolutional Neural Network

Recurrent Neural Network

Conclusion

U Kang 6

Deep Learning as a Machine Learning

 Machine Learning (ML)

 Given x (predictor) and y (response), ML learns a function
f() from data, such that y = f(x)

 E.g., x = image, y = category

 This learned function f() can be used to classify a new
example x’

 This is different from a typical programming where
you want to compute y, given x and f()

 Deep learning provides good performances in
learning f() for many problems

 Learns non-linear functions

U Kang 7

Deep Learning as a Machine Learning

Data Size

Accuracy Deep Learning

Other machine

learning

U Kang 8

Learning Tasks

 Image classification

 Speech recognition

 Text classification

 …

“Taxi”

Hello, dear

International politics

U Kang 9

Main Idea

 Most perception (input processing) in the
brain may use one learning algorithm

 Design learning methods that mimic the
brain

U Kang 10

Neurons In the Brain

U Kang 11

Neural Network

[LeCun et al.,

Nature 2015]

U Kang 12

Convolutional Neural Net (CNN)

U Kang 13

Representation Learning

 Typical machine learning

 Deep learning

Input Output
Extract

Features

x y

Input Output

x y

Extract

Features

Extract

Features

Extract

Features

Classifier

… Classifier

U Kang 14

Human Level Object Recognition

 ImageNet
 ~ 15M labeled images, ~ 22K categories

 Top-5 Error rates (1.2 million images, 1k categories)
 Non-CNN based method (~2012): 26.2 %

 Alexnet (2012): 15.3 %

 GoogLeNet (2014): 6.66 %

 Resnet (2015): 3.57%
Human level:

5.1% error

U Kang 15

Human-Level Face Recognition

 DeepFace

97% accuracy

~ Human-level

[Taigman et al.

CVPR 2014]

U Kang 16

Computer Game

 Deepmind

U Kang 17

Computer Game

 Deepmind [Nature 2015]

https://www.youtube.com/watch?v=V1eYniJ0Rnk

https://www.youtube.com/watch?v=V1eYniJ0Rnk

U Kang 18

AlphaGo

[Silver et al., Mastering the game of Go with

deep neural networks and tree search, Nature 2016]

U Kang 19

Neural Artist

[Gatys et al., Image Style Transfer Using

Neural Networks, CVPR 2016]

U Kang 20

Machine Translation

 English to Korean

U Kang 21

Outline

What is Deep Learning?

Feedforward Neural Network

Convolutional Neural Network

Recurrent Neural Network

Conclusion

U Kang 22

Deep FeedForwad Networks

 Deep feedforward networks are the key deep
learning models

 Also called feedforward neural networks or multi-layer
perceptrons (MLP)

 Goal: approximate some function f*

 E.g., a classifier y = f*(x) maps an input x to a category y

 A feedforward network defines a mapping 𝑦 =
𝑓(𝑥; 𝜃) and learns the value of 𝜃

U Kang 23

Deep FeedForwad Networks

 Deep feedforward networks are the key deep
learning models

 These models are called feedforward because
information flows through the function from x to f to
output y

 These models are called networks because they are
typically represented by composing together many
different functions

 E.g., three functions 𝑓(1), 𝑓(2), 𝑓(3) connected in a chain to

form 𝑓 𝑥 = 𝑓 3 (𝑓 2 (𝑓 1 (𝑥)))

output

layer
first

layer

second

layer

input

layer

U Kang 24

Learning XOR

 XOR function: an operation on two binary values
 XOR outputs 1 only when exactly one of the two values is 1

U Kang 25

Learning XOR

 Our model provides 𝑦 = 𝑓(𝑥; 𝜃), and our learning algorithm
learns 𝜃 such that 𝑓 outputs the same value as the target XOR
function 𝑓*
 Evaluation will be performed on four points: X={(0,0), (0,1), (1,0), (1,1)}

 MSE loss function: 𝐽 𝜃 =
1

4
σ𝑥∈𝑋(𝑓

∗ 𝑥 − 𝑓 𝑥;𝜃)2

 First model: 𝑓 𝑥;𝑤, 𝑏 = 𝑥𝑇𝑤 + 𝑏
 Solving the normal equation, we obtain w = 0 and b = ½

 That is, it outputs 0.5 everywhere

 Linear models always fail for XOR!

U Kang 26

Feedforward Network for XOR

 Feedforward network with one hidden layer with two hidden
units

 The vector of hidden units are computed by 𝒉 = 𝑓(1) 𝒙;𝑾, 𝒄

 The output unit is computed by 𝑦 = 𝑓(2) 𝒉;𝒘, 𝒃

 The complete model is 𝑓 𝒙;𝑾, 𝒄,𝒘, 𝒃 = 𝑓 2 (𝑓 1 𝒙)

U Kang 27

Feedforward Network for XOR

 Assume we use linear regression model for 𝑓(2)

 I.e., 𝑓 2 𝒉 = 𝒉𝑻𝒘

 What function should 𝑓(1) compute?

 What if 𝑓(1) is linear?

U Kang 28

Feedforward Network for XOR

 We need a non-linear function to describe features

 Most neural networks do so using an affine transformation by
a fixed, nonlinear function called an activation function
 𝒉 = 𝑔(𝑾𝑇𝒙 + 𝒄)

 𝑔 is typically chosen to be a function applied elementwise with
ℎ𝑖 = 𝑔(𝒙𝑇𝑾:,𝑖 + 𝑐𝑖)

 The default activation function is rectified linear unit or ReLU:
g(z) = max{0,z}

U Kang 29

Feedforward Network for XOR

 Feedforward network with ReLU

 𝑓 𝒙;𝑾, 𝒄,𝒘, 𝒃 = 𝒘𝑇max 0,𝑾𝑇𝒙 + 𝒄 + 𝑏

 Solution to the XOR problem

 𝑊 =
1 1
1 1

, 𝑐 = [0 − 1]𝑇 , 𝑤 = [1 − 2]𝑇 , 𝑏 = 0

 From input to output

 𝑿 =

0
0

0
1

1
1

0
1

, 𝑿𝑾 =

0
1

0
1

1
2

1
2

, adding 𝒄 →

0
1

−1
0

1
2

0
1

 Applying ReLU →

0
1

0
0

1
2

0
1

, multiplying by the weight vector 𝒘 →

0
1
1
0

U Kang 30

Solving XOR

U Kang 31

Gradient-Based Learning

 Neural networks are trained by using iterative,
gradient-based optimizers
 The objective function is non-convex

 These optimizers find a sufficiently low value, rather than
global minimum

 Two important components in gradient-based
learning
 Cost functions

 Output units

U Kang 32

Cost Functions

 In most cases, our model defines 𝑝(𝑦|𝑥; 𝜃) and we use
the principle of maximum likelihood

 I.e., minimize cross-entropy between the training data and the
model’s prediction

 𝐽 𝜃 = − 𝐸𝑥,𝑦~ ො𝑝𝑑𝑎𝑡𝑎 log 𝑝𝑚𝑜𝑑𝑒𝑙 𝑦|𝑥

 If 𝑝𝑚𝑜𝑑𝑒𝑙 𝑦|𝑥 = 𝑁(𝑦; 𝑓 𝑥; 𝜃 , 𝐼), then we recover the mean

squared error cost: 𝐽 𝜃 =
1

2
𝐸𝑥,𝑦~ ො𝑝𝑑𝑎𝑡𝑎| 𝑦 − 𝑓 𝑥; 𝜃 |2

 The total cost function often is combined with a regularization
term
 E.g., weight decay parameter for linear regression

U Kang 33

Softmax Units for Multinoulli Output
Distributions

 Useful to represent a categorical distribution (= a probability

distribution over a discrete variable with n possible values)

 The output vector 𝒚 contains n probabilities

 Softmax is a generalization of sigmoid for n possible values:

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒛 𝑖 =
exp(𝑧𝑖)

σ𝑗 exp(𝑧𝑗)
, where 𝒛 ∈ 𝑅𝑛 and 𝑖 ∈ 𝑍𝑛 𝑖𝑛 [0, 𝑛 − 1]

 Given features 𝒉, a layer of softmax output units produces a
vector ෝ𝒚 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑾𝑇𝒉 + 𝑏)

 The loss function is 𝐽 𝜃 = − log 𝑃 𝑦 𝑥 = − log 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒛 𝑦

where 𝑧 = 𝑾𝑇𝒉 + 𝑏

U Kang 34

Hidden Units

 Rectified linear units (ReLU)
 g(z) = max{0,z}

 Advantage: simple and effective (no vanishing gradient problem)

 Disadvantage: cannot learn via gradient-based methods on examples for
which their activation is 0

 Generalizations of ReLU
 Generalizations using non-zero slope 𝛼𝑖 when 𝑧𝑖 < 0: ℎ𝑖 = max 0, 𝑧𝑖 +

𝛼𝑖min(0, 𝑧𝑖)
 Absolute value rectification: use 𝛼𝑖 = −1 to obtain g(z)=|z|

 Leaky ReLU: fixes 𝛼𝑖 to a small value like 0.01

 PReLU (parametric ReLU) treats 𝛼𝑖 as a learnable parameter

U Kang 35

Hidden Units

 Logistic sigmoid and hyperbolic tangent
 Famous hidden units before the introduction of ReLU

 Sigmoid function 𝜎(𝑧)

 Hyperbolic tangent function tanh 𝑧 = 2𝜎 2𝑧 − 1

 Problems: saturate to a high value when z is very positive, and to a low
value when z is very negative
 Gradient is close to 0 when they saturate: only strongly sensitive to their input when z is

near 0

𝜎(𝑧) 𝑡𝑎𝑛ℎ(𝑧)

U Kang 36

Training

 Training a neural network model means to learn
parameters 𝜃

 The goal is to find 𝜃 that minimizes the loss function
𝐽 𝜃; 𝑥; 𝑦

 𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃 𝐽 𝜃; 𝑥; 𝑦

 How to learn such 𝜃∗?

 Gradient Descent!

U Kang 37

Gradient Descent

 A simple way to minimize a function 𝒇():

 Take a gradient 𝜵𝒇

 Start at some point 𝑥 and evaluate 𝜵𝒇(𝒙)

 Make a step in the reverse direction of the gradient:
𝒙 ← 𝒙 − 𝜼𝜵𝒇(𝒙). This is called gradient descent.

 Repeat until converged

𝑓

𝑥

𝑓 𝑥 − 𝛻𝑓 𝑥 < 𝑓(𝑥)

U Kang 38

Backpropagation - Overview

 In gradient descent, it is essential to compute gradient,

or partial derivative
𝜕𝐽

𝜕𝑤
for each parameter w

 Backpropagation is an algorithm to compute partial

derivatives
𝜕𝐽

𝜕𝑤
of cost function J with regard to

parameter w efficiently in neural networks

 The main idea is dynamic programming

 Many computations share common computations

 Store the common computations in memory, and read them
from memory when needed, without re-computing them from
scratch

U Kang 39

Back-Propagation Example

 Back-propagation procedure (re-use blue-colored
computation)

 Compute
𝜕𝑧

𝜕𝑦
and

𝜕𝑧

𝜕𝑥



𝜕𝑧

𝜕𝑤
←

𝜕𝑦

𝜕𝑤

𝜕𝑧

𝜕𝑦
+

𝜕𝑥

𝜕𝑤

𝜕𝑧

𝜕𝑥



𝜕𝑧

𝜕𝑣
←

𝜕𝑤

𝜕𝑣

𝜕𝑧

𝜕𝑤

v

w

y x

z

U Kang 40

Outline

What is Deep Learning?

Feedforward Neural Network

Convolutional Neural Network

Recurrent Neural Network

Conclusion

U Kang 41

Convolutional Networks

 Scale up neural networks to process very large
images/video sequences

 Sparse connections

 Parameter sharing

 Automatically generalize across spatial
translations of inputs

 Applicable to any input that is laid out on a grid
(1-D, 2-D, 3-D, …)

U Kang 42

Key Idea

 Replace matrix multiplication in neural nets with
convolution

 Everything else stays the same (with minor changes)

 Maximum likelihood

 Back-propagation

 Etc.

U Kang 43

2D Convolution

U Kang 44

Sparse Connectivity

U Kang 45

Edge Detection by Convolution

U Kang 46

Efficiency of Convolution

 Input size: 320 by 280

 Kernel size: 2 by 1

 Output size: 319 by 280

U Kang 47

Convolutional Network Components

U Kang 48

Feature Map

Kernel size: 128 * 64 * 8 * 8

U Kang 49

Major Architectures

[Kaiming He]

U Kang 50

Alexnet

 8 layers
 1st layer: filters 224 x 224 x 3 input image with 96 kernels of size

11 x 11 x 3 with a stride of 4 pixels (+max pooling)

 2nd layer: filters the input with 256 kernels of 5 x 5 x 48 (+max
pooling)

 3rd layer: filters the input with 384 kernels of size 3 x 3 x 256

 …

 6, 7, 8th layers: fully connected layers

U Kang 51

Revolution of Depth

[Kaiming He]

U Kang 52

Revolution of Depth

[Kaiming He]

U Kang 53

 Shortcut connection

ResNet

Let H(x) be the desired underlying mapping.

ResNet lets the stacked nonlinear layers learn

F(x) = H(x)-x.

It seems to be easier to optimize the residual

mapping than to optimize the original mapping.

If an identity mapping were optimal, then it would be

easier to push the residual to zero than to fit an

identity mapping by a stack of nonlinear layers.

U Kang 54

Outline

What is Deep Learning?

Feedforward Neural Network

Convolutional Neural Network

Recurrent Neural Network

Conclusion

U Kang 55

RNN

 Recurrent neural network (RNN)

 A family of neural networks for processing sequential data

 Can scale to much longer sequences than other networks
do

 Can process sequences of variable (or infinite) length

U Kang 56

Unfolding Computation Graphs

 Consider a dynamical system driven by an

external signal 𝑥(𝑡)

 ℎ(𝑡) = 𝑓(ℎ 𝑡−1 , 𝑥(𝑡); 𝜃)

delay of a single

time step

recurrent graph

or circuit diagram

unrolled graph

U Kang 57

Recurrent Hidden Units

U Kang 58

Equations for RNN

 𝒂(𝑡) = 𝒃 +𝑾𝒉(𝑡−1) + 𝑼𝒙(𝑡)

 𝒉(𝑡) = tanh(𝒂 𝑡)

 𝒐(𝑡) = 𝒄 + 𝑽𝒉(𝑡)

 ෝ𝒚(𝑡) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒐 𝑡)

 The total loss is the sum of the losses
over all time steps:

 𝐿 𝒙(1), … , 𝒙(𝜏) , 𝒚(1), … , 𝒚(𝜏)

= σ𝑡 𝐿
(𝑡)

= −σ𝑡 log 𝑝𝑚𝑜𝑑𝑒𝑙(𝒚
𝑡 | 𝒙 1 , … , 𝒙 𝜏)

U Kang 59

Types of RNN

Image

Captioning

Sentiment

Classification

Machine

Translation

Video

Classification

on frame level

[Andrej Karpathy]

U Kang 60

Character-Level Language Model

[Andrej

Karpathy]

U Kang 61

Outline

What is Deep Learning?

Feedforward Neural Network

Convolutional Neural Network

Recurrent Neural Network

Conclusion

U Kang 62

Conclusion

 Deep learning

 A machine learning method motivated from the
processing of signals in brain

 Major architecture

 Feedforward Neural Network (FNN)

 Convolutional Neural Network (CNN)

 Recurrent Neural Network (RNN)

U Kang 63

Thank You!

