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Why Model Compression?

m Recent deep learning models are becoming more
complex
0 LeNet-5: 1M parameters
0 VGG-16: 133M parameters

m Problems of complex deep models
0 Huge storage(memory, disk) requirement
o Computationally expensive
o Uses lots of energy
d

Hard to deploy models on small devices (e.g. smart
phones)
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= Model Compression

m Goal: make a lightweight model that is fast,
memory-efficient, and energy-efficient

0 Especially useful for edge device
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Outline

m (Part 1) Overview of Deep Learning

Q

Q

Just enough background to understand Part 2, to make this
tutorial self-contained

Materials mainly based on Deep Learning Book
(Goodfellow et al., 2016)

m (Part 2) Model Compression Techniques

Q

U O 0O O

Q

Pruning

Weight Sharing
Quantization

Low-rank Approximation
Sparse Regularization
Distillation

https://datalab.snu.ac.kr/~ukang/talks/19-BigComp19-tutorial/
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Deep Learning as a Machine Learning

m Machine Learning (ML)

0 Given x (predictor) and y (response), ML learns a function
f() from data, such that y = f(x)

o E.g., x=1image, y = category

o This learned function f() can be used to classify a new
example x’

m This is different from a typical programming where
you want to compute vy, given x and f()

m Deep learning provides good performances in
learning f() for many problems

o Learns non-linear functions
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“Deep Learning as a Machine Learning

A

Accuracy Deep Learning

Other machine
learning

v

Data Size
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e Learning Tasks

m Image classification

» “Taxi”

» Hello, dear

» International politics
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= Main Idea
m Most perception (input processing) in the
brain may use one learning algorithm

m Design learning methods that mimic the
brain




Neurons In the Brain




Neural Network

[LeCun et al.,

Nature 2015]
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¥ Convolutional Neural Net (CNN)
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C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5

6@28x28
32x32 S2: f. maps C5: layer )
6@14x14 0 ) FE: layer QUTPUT

Full coanection ‘ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection
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2 Representation Learning

m Typical machine learning

@ Extract » Classifier » Output
Features

X y

m Deep learning

Extract Extract Extract -
e Classifier
Features Features Features

y

U Kang
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= Human Level Object Recognition

m ImageNet

m Top-5 Error rates (1.2 million images, 1k categories)
2 Non-CNN based method (~2012): 26.2 %
o Alexnet (2012): 15.3 %
0 GoogleNet (2014): 6.66 % Human level:
o Resnet (2015): 3.57% 5.1% error
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m Deeplace

97% accuracy
~ Human-level

Calista_Flockhart_0002.jpg Frontalization:
Detection & Localization @152X152x3

true positive rate

32x11x11x3 32x3x3x32 16x9x9x32
@142x142 @71x71 @63x63
1.00
0.99 |
0.98 |
0.97 |
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095 I Human cropped (97.5%)
0.94 DeepFace-ensemble (97.35%)
093 —— DeepFace-single (97.00%)
' —— TL Joint Baysian (96.33%)
0.92 —— High-dimensional LBP (95.17%)
09 —— Tom-vs-Pete + Attribute (93.30%)
a —— combined Joint Baysian (92.42%)
0.90 I L I | i L i j

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
false positive rate

16x7x7x16
@25x25 @21x21

Human-Level Face Recognition

REPRESENTATION

F7:

16x5x5x16

[Taigman et al.
CVPR 2014]

SFC labels
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Computer Game

m Deepmind

ima...

U Kang
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Computer Game

N Deepmind [Nature 2015]

Convglution Convglution Fully cgnnected Fully cgnnected

w2 d
o
i -
o

DI: a

® 0 0 0 0 0 0 0 0T P 000000 e e
L L L I I N L B B I I I L B

o
OOO0O000 OCOoDDOOD  SOpoOOn  CDOoDOO OooDDoD
L L L N I B I L B L I L B

NG AAMAE g
11 : o Gl EL B
CLEELELERL L6

https://www.youtube.com/watch?v=V1eYniJORnk
U Kang
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https://www.youtube.com/watch?v=V1eYniJ0Rnk
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AlphaGo

Google DeepMind

[Silver et al., Mastering the game of Go with
deep neural networks and tree search, Nature 2016]
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Neural Artist

A"

[Gatys et al., Image Syle Transfer Using
Neural Networks,UC|:<VPR 2016]
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m English to Korean
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Deep learning is a branch of machine learning based on a set of %
algorithms that attempt to model high level abstractions in data.
Deep learning is a driving force of the recent advances in Al. In

this course, we study core techniques of deep learning to analyze
large amount of data. Topics include machine learning basics,

deep feedfrward networks, regularization, optimization,
convolutional networks, recurrent neural networks, etc.|
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dib hagseub-eun deiteoeseo nop-eun sujun-ui chusanghwaleul
modellinghalyeoneun illyeon-ui algolijeum-e gibanhan gigye hagseub-ui han bubun-
ibnida. gip-eun hagseub-eun Alui choegeun baljeon-ui wondonglyeog-ibnida. bon
gwamog-eseoneun dalyang-ui deiteoleul bunseoghagiwihan simhwa hagseub-ui
haegsim gisul-eul hagseubhanda. jujeneun gigye hagseub gibon, gip-eun pideu
powodeu neteuwokeu, jeang-gyuhwa, choejeoghwa, gilssam neteuwokeu,
banbogjeog in singyeong neteuwokeu deung-eul pohamhabnida.
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Deep FeedForwad Networks

m Deep feedforward networks are the key deep
learning models

o Also called feedforward neural networks or multi-layer
perceptrons (MLP)

0 Goal: approximate some function f*
m E.g., aclassifier y = f*(x) maps an input x to a category y

0 A feedforward network defines a mappingy =
f(x; 0) and learns the value of 6

U Kang 22
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Deep FeedForwad Networks

m Deep feedforward networks are the key deep
learning models

0 These models are called feedforward because

information flows through the function from x to f to
outputy

o These models are called networks because they are

typically represented by composing together many
different functions

m E.g, three functions f(I, f(&) £G3) connected in a chain to

form f(x) = fO B D ()

S PN
output second first input
layer layer layer layer
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Learning XOR

XOR function: an operation on two binary values

0 XOR outputs 1 only when exactly one of the two values is 1

0

0

I

U Kang
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il Learning XOR

m Our model providesy = f(x;0), and our learning algorithm
learns 8 such that f outputs the same value as the target XOR
function f*

o  Evaluation will be performed on four points: X={(0,0), (0,1), (1,0), (1,1)}
o MSE loss function: J(0) = %erx(f*(x) — f(x; 9))2

= First model: f(x;w,b) = xTw + b
0 Solving the normal equation, we obtainw =0and b =%
o Thatis, it outputs 0.5 everywhere
0 Linear models always fail for XOR!

U Kang 25
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— Feedforward Network for XOR

m Feedforward network with one hidden layer with two hidden
units

a The vector of hidden units are computed by h = f(l) (x; W, c)
o The output unit is computed by y = f @ (h; w, b)
o The complete model is f(x; W, c,w, b) = f@ (f(V(x))

oo
o¥oX
5O (

U Kang
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Feedforward Network for XOR

m Assume we use linear regression model for f(z)
0 lLe., f@(h) = hTw

= What function should £ compute?
a0 What if fU is linear?

e

U Kang

050,0
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= Feedforward Network for XOR

m We need a non-linear function to describe features

m Most neural networks do so using an affine transformation by
a fixed, nonlinear function called an activation function
0 h=gWTx+¢)
a g is typically chosen to be a function applied elementwise with
hi =gx"W.; +c;)

0 The default activation function is rectified linear unit or ReLU:
g(z) = max{0,z}

max{0, z}

g(z)

U Kang 28
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— Feedforward Network for XOR

m Feedforward network with RelLU
o f;W,c,w,b) = wl max{O,WTx+c} + b
m Solution to the XOR problem

_ 1] g 41T o — 11— 91T ; —
:.W_ll oe=10 -1"w=11-2"p=0
m From input to output

—1
,XW=I ],addingcal ]

o Applying ReLU — I ], multiplying by the weight vector w — l

_= -0 O
_ Ok O
N == O
N == O
N == O
_ OO

N k= O

0
0
0
1

O RrEk O
O ——

U Kang
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Solving XOR

Original @ space

Learned h space

1

| |
- 1 0
- Iy = 1
] ]
1 2
/?..1
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Gradient-Based Learning

m Neural networks are trained by using iterative,

gradient-based optimizers

0 The objective function is non-convex
0 These optimizers find a sufficiently low value, rather than

global minimum

I Convex

\ Non-convex /

m Two important components in gradient-based

learning
0 Cost functions
o Output units

31



Cost Functions N

m In most cases, our model defines p(y|x; 8) and we use
the principle of maximum likelihood

0 l.e., minimize cross-entropy between the training data and the
model’s prediction

0 J(8) =— X, Y~Pdata log Pmoder (V]x)
0 fpneqet(Vx) = N(y; f(x;8),1), then we recover the mean
squared error cost: J(6) = %Ex;yNﬁdatally — f(x;0)||?

0 The total cost function often is combined with a regularization
term

m E.g., weight decay parameter for linear regression

U Kang 32
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Softmax Units for Multinoulli Output,
Distributions

B
A X

N

m Useful to represent a categorical distribution (= a probability
distribution over a discrete variable with n possible values)

m The output vector y contains n probabilities
m Softmaxis a generalization of sigmoid for n possible values:

exp(z;) ,Wherez€ R"andi € Z"in [0,n — 1]
Zj eXp(Zj)

softmax(z); =

m Given features h, a layer of softmax output units produces a
vector y = softmax(WTh + b)

m The loss functionis J(8) = —log P(y|x) = —logsoftmax(z),
where z=WTh + b

U Kang 33



AT Hidden Units

m Rectified linear units (ReLU)
o g(z) = max{0,z}
o Advantage: simple and effective (no vanishing gradient problem)

o Disadvantage: cannot learn via gradient-based methods on examples for
which their activation is 0

m Generalizations of RelLU

0 Generalizations using non-zero slope a; when z; < 0: h; = max(0, z;) +
a;min(0, z;)
m  Absolute value rectification: use @; = —1 to obtain g(z)=|z|
m Leaky RelU: fixes a; to a small value like 0.01
m  PRelU (parametric ReLU) treats a; as a learnable parameter

U Kang 34



Hidden Units

m Logistic sigmoid and hyperbolic tangent

Q

Q

Q

Famous hidden units before the introduction of ReLU
Sigmoid function o(z)
Hyperbolic tangent function tanh(z) = 20(2z) — 1

0(2) g e ] tanh(z)

Problems: saturate to a high value when z is very positive, and to a low
value when z is very negative

m  Gradientis close to 0 when they saturate: only strongly sensitive to their input when z is
near O

U Kang 35
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Training

m Training a neural network model means to learn
parameters 0

m The goal is to find 8 that minimizes the loss function
J(O;x;y)
m 0% = argming J](0; x;y)

m How to learn such 87*?

0 Gradient Descent!

U Kang



Gradient Descent

m A simple way to minimize a function f():

Q

Q

Q

Q

Take a gradient V f

Start at some point x and evaluate Vf(x)

Make a step in the reverse direction of the gradient:
x < x—nVf(x). Thisis called gradient descent.

Repeat until converged
f

flx=Vf) < f(x)

|
|
|
|
U Kang/ X
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Backpropagation - Overview

m |In gradient descent, it is essential to compute gradient,

. ... 9]
or partial derivative — for each parameter w

ow

m Backpropagation is an algorithm to compute partial
I

derivatives P of cost function J with regard to

parameter w efficiently in neural networks
m The main idea is dynamic programming

2 Many computations share common computations

0 Store the common computations in memory, and read them
from memory when needed, without re-computing them from
scratch

U Kang 38
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Back-Propagation Example

m Back-propagation procedure (re-use blue-colored
computation)

0z 0z
Q Computeaand Py a

0z dy 0z dx 0z

U aw T oway T ow oz (y) (%)

0z ow 0z
a — ¢« ——
ov ov ow
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: Convolutional Networks
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m Scale up neural networks to process very large
images/video sequences

0 Sparse connections
o Parameter sharing

m Automatically generalize across spatial
translations of inputs

m Applicable to any input that is laid out on a grid
(1-D, 2-D, 3-D, ...)

U Kang 41



Key Idea

m Replace matrix multiplication in neural nets with
convolution

m Everything else stays the same (with minor changes)
2 Maximum likelihood
o Back-propagation
o Etc.

U Kang 42



2D Convolution

Input
Kernel

d

h

l

v Output
aw + bz bw + cx + cw + dx
ey + fz fv + gz gy + hz
ew + fx fw gr + qw hx
iy +  Jz 7Y kz ky lz
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Edge Detection by Convolution

Kernel
U Kang 45
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Efficiency of Convolution

m Input size: 320 by 280
m Kernel size: 2 by 1
m Output size: 319 by 280

Convolution Dense matrix Sparse matrix

319%280*320%280  2%319%280 =

Stored floats

~ 8e9 178,640

Float muls or 319*280*3 — - 1669 Samle :js
ik 267.960 y CORTOIOR

(267,960)
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Convolutional Network Components

Complex layer terminology Simple layer terminology

Next layer Next layer

!

Convolutional Layer

Pooling stage Pooling layer

] ]

Detector stage:

. ) Detector layer: Nonlinearity
Nonlinearity

i ; e.g., rectified linear
e.g., rectified linear

A A

Convolution stage:

Convolution layer:

Affine transform Affine transform
Input to layer Input to layers
U Kang
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Feature Map

C3: feature maps

C1: feature maps 128@30x30  S4: pooled maps
64@74x74 S2: pooled maps 128@15x15 256
64@37x37 _
: |
i (-
8x8 2x2 8x8

2x2

Kernel size: 128 *64 *8 * 8
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Major Architectures

Revolution of Depth 5.2
[ 152 layers ‘ '

A
\
\
22 layers ‘ 19 Iayers
\ 6.7

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

[Kaiming He]
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Alexnet

I 11x11 conv, 96, /4, pool/2 I

v
B 8 |ayers | 5x5 conv, 256, pool/2 |
. . : . . v
o 1stlayer: filters 224 x 224 x 3 input image with 96 kernels of size | 3x3 conv, 384 |
11 x 11 x 3 with a stride of 4 pixels (+max pooling) \ 4
. : . 3x3 , 384
o 2nd layer: filters the input with 256 kernels of 5 x 5 x 48 (+max I - CO3V |
pooling) | 3x3 conv, 256, pool/2 |
o 3rd layer: filters the input with 384 kernels of size 3 x 3 x 256 | = Ij% !
a .. v
fc, 4096
o 6,7, 8th layers: fully connected layers I C’* |
| fc, 1000 I
% 3| :
' 192 192 128 2048 2048 dense
27 ] ]
LY 13 13
3\ N
: 3| || s ES ,
= T3 H i 13 dense | |densel
o | ] ‘ 1000
192 192 128 Max ] |
Max 128 Max pooling 2048 2048
pooling pooling




A
L

<l

s

=R
4

d

i

X,

AlexNet, 8 layers
(ILSVRC 2012)

[ 11x11 conv, 56, /4, pooli2 |

5x5 conv, 256, poolf2 |

[ 3x3 conv, 384 |

[ 3x3 conv, 384 |

[ 33 conv, 256, pool/2 |

[ fe, 4096 |
¥
[ fc, 4096 |

[ fc, 1000 |

VGG, 19 layers

(ILSVRC 2014)

3x3 conv, 64

Jx3 conv, 64, pool/2

3x3 conv, 128

1

3x3 conv, 128, pool/2

-

3x3 conv, 256

-+

3x3 conv, 256

™

3x3 conv, 256

-

3x3 conv, 256, poolf2

-+

3x3 conv, 512

1

3x3 conv, 512

-

3x3 conv, 512

1

3x3 conv, 512, pool/2

-

3x3 conv, 512

-

3x3 conv, 512

-

3x3 conv, 512

-

3x3 conv, 512, pool/2

b
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A
o
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"
=
=
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Revolution of Depth

GoogleNet, 22 layers

(ILSVRC 2014)
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[Kaiming He]
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AlexNet, 8 layers §

VGG, 19 layers
(ILSVRC 2012)

ResNet, 152 layers
(ILSVRC 2014)

(ILSVRC 2015)

[Kaiming H
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SResNet

m  Shortcut connection

weight layer
F(x) reln .
weight layer identity

Residual learning: a building block.

Let H(x) be the desired underlying mapping.
ResNet lets the stacked nonlinear layers learn

F(x) = H(X)-x.

It seems to be easier to optimize the residual
mapping than to optimize the original mapping.

If an identity mapping were optimal, then it would be
easier to push the residual to zero than to fit an
identity mapping by a stack of nonlinear layers.

U Kang

VGG-19 34-layer plain 34-layer residual
image image image
s
size: 224
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RNN

m Recurrent neural network (RNN)

o A family of neural networks for processing sequential data

o Can scale to much longer sequences than other networks
do

o Can process sequences of variable (or infinite) length

U Kang 55



Unfolding Computation Graphs

m Consider a dynamical system driven by an
external signal x()

0 h(t) = f(h(t_l)’x(t); 8)

delay of a single
time step

@3!/ SrCrOyOrs
{ Rl-) = i pl) )
\ / \ /
—_ - f f

f~=7
f Unfold
recurrent graph unrolled graph
or circuit diagram U Kang



Recurrent Hidden Units

V \ % V
o .

Unfold
/7N w w W w /7 N\
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Equations for RNN

a® = b+ WhtD 4 yx®
h® = tanh(a™®)

0) =c+Vh®

O = softmax(0®)

(D
(2

The total loss is the sum of the losses (" —
(2

over all time steps:

o L({xW, ..., x®} {yD, ..,y®O})
=2t L)
= - Zt log pmodel(y(t) |{x(1): ey x(T)})
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one to one

one to many

Image
Captioning

Types of RNN

many to one many to many

Sentiment Machine
Classification Translation

U Kang

many to many

P 1 1
Pt
Video

Classification
on frame level

[Andrej Karpathy]
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target chars: "€’

1.0 0.5
2.2 0.3
output layer 30 1.0
4.1 1.2
0.3 1.0
hidden layer | -0.1 — 0.3
0.9 0.
1 0
: 0 1
t
input layer 0 0
0 0
input chars:  “h e

Character-Level Language Model

P ‘"
0.1 0.2

0.5 -1.5

1.9 -0.1
-1.1 2.2

T T W _hy

0.1 |w hh!-0-3
05— 0.9
-0.3 0.7

T TW_xh

0 0

0 0

1 1

0 0 [Andrej
“P q Karpathy]
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m Deep learning

2 A machine learning method motivated from the
processing of signals in brain

m Major architecture
0 Feedforward Neural Network (FNN)
a Convolutional Neural Network (CNN)
a0 Recurrent Neural Network (RNN)
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