R4 c.) BT N G

0wk

= w B 22

] :.:m —

v ks B20

L =%
= 1.8

=

A
o

li2s e 1

Il

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS
STANDARD REFERENCE MATERIAL 1010a
{tANSI antt 1SO TEST CHART No 2

F

National Library
of Canada

i

du Canada
Canadian Theses Service

Ottawa. Canada
K1A ON4

CANADIAN THESES

NOTICE

The quality of this microfiche 1s heavily dependent upon the
quality of the onginal thesis submitted for microfilming. Every
efort has been made to ensure the highest quality of reproduc-
tion possible.

If pages are missing, contact the university which granted the
degree

Some pages may have indistinct print especially if the onginal
pages were typed with a poor typewniter ribbon or1f the univer-
sity sent us an inferior photocopy '

Previously copyrighted matenals (journal articles, published
tests, etc.) are not filmed

Reproduction in full or 1n part of this film is gbverned by the
Canadian Copynght Act, RSC 1970, ¢ C-30

)

THIS DISSERTATION .
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

NL-339(r 86/06)

Bibliotheque nationale

Services des théses canadiennes

THESES CANADIENNES

AVIS
La quahté de cette microfiche dépend grandement de la qualité

de la thése soumise au microfiimage Nous avons tout fail pour
assurer unesqualité supeneure de reproduction

S'11 manque des pages. veulllez communiquer avec 'univer-
sité qui a conféré le grade

La qualité d'impression de certaines pages peut laisser 3
désirer, surtout si les pages onginales on! é1é dactylographiées
a 'aide d'un ruban usé ou si Funiversité nous a fant parvenir .
une photocopie de qualité inférieure ‘o

Les documents qui font déja 'objel d'un drost d'auteur (articles
de revue, examens publiés. etc) ne sont pas microfilmés

La reproduction, méme paruelle,' de ce microtim esi soumise
a la Lot canadienne sur te droit d'auteur, SRC 1970, ¢ C-30

- LA THESE A ETE
MICROFILMEE TELLE QUE
NOUS L'AVONS REGUE

Canadi

THE 'HARMONY OPERATING SYSTEM
DESCRIBED BY PETRI NETS

by

YAO LI, B.ENG. (EE)

A thesis submitted to the
Faculty of Graduate Studies and Research
in partial fulfillment of the requirements

for the degree of
Master of Engineering

Faculty of Engineering
Department of Systems and Computer Engineering
Carleton University

[N

Ottawa, Ontario

@ . August 19886

Permission has

peén granted

to the National Library of

Canada
thesis

to microfilm
and ' to lenda or

this
sell

copies of the film.

The author (copyright owner)

has

nelther
extensive

reserved
publication

other
rights, and
the thesis nor
extracts from it

may be printed or otherwise

reproduced
written

without his/her
permission,

15BN

L'autorisation 3 2t& accor:de

a la Bipblioth&jue nationale
du Canada de microfilmer
cette th@se et de préter wu

de vendre des exemplailres du

film.

L'auteur (titulaire du daroit
d'auteur) se réserve les
autres droits de publication;

ni. la th&se n1 de longs
extralts de -celle-c1 na
doivent @&tre imprim&s oau

autrement reprodults sans son
autorisation ®@crite.

0-315-33431-2

3;.Tbe undersigned hereb)_f&recommends to the Faculty of Graduate Studies and

Research acceptance of the thesis,.

N .
A -

"*The Harmony Operating System Described by Petri Nets"’

submitted by YAO LI, BENG.(EE), in partial fulfillment of the requirements

" for the degree of Master of Engineering.

*r

Vo e

!
Thesis Supervisor

v
Chairman, - '
Department of Systems and
Computer Engineering
Department of Systems and Computer Engineering
Faculty of Engineering

Carleton University

Septembef 1986

Abstract

This thesis addresses the modeling of the Harmony operating system by
"Petri nets. With the preliminary descriptions of the a_.lgorithms used in Har-
monyy the Petri nets models are built up for system initialization, interrupt
h@dling, message passing, task creation and destruction, error handling, and
common aspects of server implementaﬁon by placing modeling emphasis on
synchronization and ésmcurrency A new concept called double numbered
token mtroduced to Petri nets is. apph,sd to message passmg Together with the
descriptions of algorithms, the Petri nets models alleviate the unsatisfied
situation—lack of documentation for Harmony. Some impro?ements to the
source code are suggested during modeling. The deadlock detection and

prevention in message passing are intensively studied as well.

)
\
7
. . -
s 3. L)
o . i‘»{. ¥,
LA ¢ e,
) . C Y
LA 3'”.-
L4 L] A d
o Pey
. -
i .
. L]

Ackilowl edgements

~

My sincere thanks go to members of the ARTT Project: Prof. F. Had-
ziomerovic my supervisor, Prof. C.M. Woodside the direcwx: of the ARTT
Project, Mr. K. Rowe the ARTT Pr;ject manager and Mr. V."Wan my col-
league, for their suppoft, guidance and discussions. |

I would like to express many thanks to P;'of. D.D. Fal_coner.for his help.

The financial support from the ARTT Project ts gratefully appreciated.
&

I dedicpte this thesis to my parents.
e

\ | | ’ -

! . 3

iv

< ’l\ ‘N
Table of Contents ‘
PART I INTRODUCTION ..ccciiiiiiciees Lo 1
Chapter 1 General Introductioncccveeveeireneereinreeerenne. e, o
’i.l Motivationceveee. RIS ST PR 2
1.2 Summary of Contents heeeeetiersanesesesanssarasans S 3
1.3 My Qriginal Co'ntrigutions SO ‘4
Cha:)t.er 2 Inproduct’non to P&tri_NetsB - 6
, . -)

2.1 Petri Nets as a Modeling Tool™ivccoonerniniinii 6
2.2 Petri Nets as a Performance Analysis Tool ..coveoriunrenreriennes 7

Chapter 3 Introduction to Harmony ...ceeevvevicvcciirennennnnn. yeeenmesvrersioasarane 11 -
3.1 Outline of Harmony .. 11
4 3.2 Ha.rinony | (] ¢] RO RROPPPRRP lé
///.PART II MODELING OF HARMONY rereeeereeaes pererereaeaes 16
. Chapter 4 System Initialization PR freereeeeeeateeeearteeans T 17
4.1 Inproduétion to Algorithm s '17

4.2 Petri Nets Models «uurerrosrreerrrrenn e aneeeeeeeesenreenennes 20
Chapter) 5 Interrupt Handling R TR Verreeeeeneens 25
\/\ 5.1 Direct Interrupt Modeccicerenneee e tereeereraeteaeteetrareeaaaaaeaans 26
5.2 Transparent Interrupt Mode rreeereeee——eeaeraans e 32
- Cbaptex: B8 Message Passiné rreseeeretesenreenreesseesiarreennaees 36
6.1 Description of the Algorithms —....occcovirniinniinnnnnn Ceveeeenes 36

v

b vi
6.2 High Lew.'e.l Petri Net.s_‘l\‘/lodels .. 43
E 6.3 Low Level Petri Neﬁ Models Cereenennnes 49
6.3.1 _Reply(rply, id) .ceeone. et eegereeesaeneseesennes R 51
, 6.3.2 _Try_receive(rgst, id) .cvercrierimriieeiieneeeeeeer e, " 51
6.3.3‘ _Receive(rgst, id) .cvvvrvimimrieiiiiiiiniiirncc e, 55
6.3.4 _Send(rgst, rply, id) coeicieiinriinncnneene " 58
6.3.5 Gt;neral Models i e, 60
6.3.6 The Double Colored Token PN Modelscocuuruens 60
6.4 Deadlock and if.s lt;’reventiown .. 66
* . Chaptey 7 Task Creation and Destr;xction teregesreaseereanarennnsonrnns - 72
' 7.1 IntrodUction .iiiicccerccceceireeccceeee e eeenee e nneseenes ,. 72
; 7.2 High Level Petri NetsJModels wererans e 78
7.2.1 Task Creat.;on S P 79
7.2.2 Task Destructionccocoevieiierenvinrnnns vrsensssese rrereeeneneeas 81
.7.3 Low~Le\:el Pet,r:i Nets Modéls ._ 86
7.3.1 Task Creationcevceievriiiiiiimrinniicciniecinte e 86 -
732 Task Destruction * ... 92
Chapter t8 Error Handling et re et et e e e reerraeraeas 99
~. [
8.1 Description of Algorithm deereensientenestrans eeremaanes ereeeene 09
8.2 Petri Nets Mo.del herretteessessasearereasttereererestanetaittensettnerrrsernnrennnn " 101
Chapter 9 Kernel Supported Server Implementationccceeeueeveveennene.. ‘106‘
9.1 Decomposition Descriptioncccovevvnnnneen. Nereereieeenienieeeanenes 106
9.1.1 ' Implementing Servers ‘r\ eeecnns 106

0

t
9.2
. 9.3
.“'re
PART 1l
Chapter 10
- 10.1
102

N vii
-7

9.1.2 Implementing Connectionseees e 108
9.1.3 Streau')'I/O" S e SR 108
9.1.4 Monitoring Conﬁe'ctions —— 109
9.1.5 System T;sk fetteettetteeietettaanaaeerrnta e rreeat e sernannntrearanes 109
9.1.6 Server Tasksccccevierivrecnnne. e 116
Algoriphm and De’pe-ndency Des,c.riptions NSRRI
9.2.1 Server Creation, Initialization and' Regiétfati;ﬁ\ 111
9.2.2 Moniw;i.ng'(foﬁneétions ﬂ Q JilS_
9.2.3 Open a Connection :. 117
9.2.4 ‘U‘sing Qo.n‘nections (Stream i/O) 119
925 CloSe ‘2 CONNECHON +ervreeereeereeereresseseeeeeereseesesnesesseen 119
9.2.6 General Dependency D escription v erseeserens 121
Detailed Petri Nets Modelscovenvvieeeimcmncrnneennnns ereerrienneenen 121
9.3.1 Server Crefition, Initialization and Registration 121
'\“\9.3.1.1 " One Initialization Recordcccoc.lvvivicueennne 121
'9.3.1.2 Several Init;iali'zation Records ..unrineennnen. 128

'9.3.2 Open and Cl'c;se'a' Connectionliommiiiiiiciiienenenns 135
’9.3‘.2.1 "Open a Connection eereveeseesean. 135
9.3.2.2 Close a Conr;ection = 138
DISCUSSIONSottietieiiienriecercieeneesssneeseessseeneesans SR 141
Conclusion and Future Workoooceeeeeennn e es 142
ConcluSioncveveeeeieeiierceeieireneevennennees \ ¥ 142

P -) -
Future’“ A% Z6Y o ‘N Creeensrensasesssossnsensnseanssnsnsnnsnns 144

Bibliography
Appendix A

Appendix B
Appendix C

Appendix D

‘ viii
\
\
... 147
Index of Harmony Fundtions Usedccccecviirincimmeriinenniinnens 150
Modified ‘‘case UNQ_RECEIVER" in _Td_service
P ItIVE +evervverererereeresssemssmesssassssesssssssssssassssssnssasssassesessnees 155
C Code of Deadlock Prevention Mechanism in
Message Passing ..cooeceviveiieiiineniinniecciennnne. e ee e 157
Index of Depicted Data Structures and Organizations 168
A ——- ’-
5

PART 1

INTRODUCTION

Chapter 1 General Introduction

A model of a computer operating system is preferable when measure-
ment and'evaluatioxi is needed. The Harmony operating system described by
Petri nets is such a model that shows the parallelism and synchronization of
operations. In this chapter, we present the motivation of whole research
work, give a brief summary of work being done, and identify the original con-

tribution being made.

1.1 Motivation v

Modeling is an approach to study a system. It allows us to concentrate on
the important features of the system under study. A model actually is a

representation of the system with empi]asis on the interested features.

Petri net is an eﬂﬁ'ect,i\‘fé tool for modeling, analysis of model’s properties,
and performance analysis. It is simple to understand, powerful in modeling
synchronized and concurrent phenomena, easy to do some nets analysis, and

performance evaluation.

Harmony is a regql time operating system of reasonable complexity, and is
difficult to comprehend. We hope that modeling by Petri nets will help in
understanding of Harmony: revealing concepts involved, suggesting improve-

ments and enabling performance evaluation.

So far, two attempts have been made to model operating systems by Petri
nets. Noe [14] modeled the CDC 6400 in 1971.@}ecause he used an ad hoc

Petri nets, generality is consequently lost. Best [1] modeled the SOLO in

/

2\

e

1976, but his work is not available. Wan {22] modeled Harmony using Finite
State Machine technique. His work is very helpful in understanding of Har-
mony, though it neither covers whole kernel, nor goes dewn to very low

v
level.

1.2 Summary of Contents

The entire Harmony, excluding v?rious servers’ implementations, s
modeled by Petri nets (PN). The modeling includes system initialization, *
interrupt handling, message passing, task creation and destruction, error han-
dling, and common aspects of server implementation. For easier understand-
ing, a description of the algorithm, together with data structures and calling
graphs are usually given in front of the PN model. If the topic under study is
-rather complex, the PN model is given in high and low leyels. High lével.
"model provides an overall view, whereas low level model provides necessary

details.

-

There is either direct or conceptual correspondence between two levéls.
Direct correspondence means that 3tra.nsit'lon in a high levgl model can be
expanded to a subnet in the low /level [14]. Conceptual correspbndence
means that, unlike the above, the correspondence can only be found concep-

tually.

During modeling, the emphasis was given to synchronization ‘and con-
currency. Sequential operations and uninterested subroutines are merged into
transitions as much as possible. The above consideration has an impact on
how deep the model should go down. Then, it is up to a researcher to include

level of details.

PN models can be used for performance evaluations. One way of doing it
is to submit PN models as an input to the GSPNA (generalized stochastic

Petri nets:‘;adtoﬁlatié),;;‘ftware package [9], which maps PN into Markov

- chains and then ca.]cul:;teus steady state probabilities. Since the GSPNA does

3

‘not accept inhibitor arcs, used for zero testing of places in our models. their

- equivalents need to be developed.

1.3 My Original Contributions

I have made contributions to both PNs and Harmony. As to PNs, the
pseudo ordinary Petri nets are applied to the modeling of a complex operating
system. The pseudo ordinary Petri nets here means that when doing perfor-
mance analysis the inhibitor arc can be replaced by a properly defined random
switch, and the colored net can be changed to the ordinary net without losing
the correctness. Compared to Noe's work [14], the PNs used here allow sys-

temm modeling in more details.
LN

To correctly model the general case of multiple tasks communicating with
each other in message passing, a concept called double numbered token is

suggested, that requires the modifications of the firing rules.

It is explicitly pointed out in last chapter that the GSPN can include inhi-

bitor arcs, because the inhibitor ares are reducible.

As the contributions to Harmony, the PN model is an abstraction of syn-
chronization and concurrency inherent in the source code, and is an interpre-

tation of the code implementation. So it serves as a Harmony documenta-

tion,, \

’

Also some .questions are raised and improvements are sugge‘ for the

code implementation. Deadlock in message passing is studied and the

¢
mechanism of prev~ent'|ng it is suggested with the code implementation in C

language.

£

Chapter 2 Introduction to Petri Nets

The original idea of Petri nets was developed by C.A. Petri in his Ph.D.
dissertation in 1966 [17]. Since then the Petri nets were extensively studied
mainly as a modeling tool. In 1981, Peterson gave a cleaf and detailed sum-
mary of ‘Petri nets in—the-milestone work [16].- From 1976, researchers

- directed their efforts in t.u‘rning PNs to a performance a.nalysis: tool. In this
chapter, we briefly introduce the two aspects of Petri nets: as a modeling tool

and as a performance analysis tool.

2.1 Petri Nets as a Modeling Tool

Petri nets are a tool for the study of the systems. A Petri net comprises
four parts: a ft of places P, a set of transitions T, a set of directed arcs A,
" .and an initial/ mjarking MO

| -

: PN= (P, T, A, M%)
P={p,p, - p}
. T={,t,. ...t}
AC{PXxXT} u {T xXP}

0 . 0 0 0 '
M=:{m1,m2,...,mn} \

A place (drawn in a circle) is an input to a transition ¥ an arc exists from
the place o the transition. A place is an output from a transition if an arc
exists from the transition to the place. A marking is an assignment of tokens

»

to the places of a Petri net. A transition is enabled when all of its input places -

-~

contain at least one tokeun. A transition may fire if it is enabled (classical
definition). A transition takes zero lime to fire by removing one token from
each its input place and putting one token" in each output place. Multiple
tokens are absorbed from multiple input arcs and produced for multiple out-
put arcs. Each ﬁriné of a transition produces a new marking. A place is k-
bound or k-safe if the nurnb'érl of tokens in that place cannot exceed an
in‘t,eger k. The reachability set is defined as the set of all ma.rki‘ngs that can
be reached from the initial marking M® by means of a sequence of transition

firings.

Petri nets have been found a great deal of use in modeling various sys-
tems, such as computer software/hardware, queuing networks, physical s:;'s-
t&:mé, social syst«emé, etc. Petri nets are especially suitable for modeling the
syvstems with synchronization and concurrency; concurrency is modeled in a

natural and convenient way.

After Petri nets model has been built up, one‘ca.n analyze it so hopefully
gain some profound understanding of the original system, thus possibly
improve the system. SevVeral techniques have been developed for the analysis
of the Petri nets. Two major ones are usipg reachability tree and matrix equa-
tions. They provide the solutions for some of\ following questioné: safeness,
boundedness, conservation, live}less, reachability, coverability, and firing
sequences. Of course, the solution is preferably implemented gx:‘combuter.c

The details of this part can be found in Peterson's book [16].

| 2.2 Petri Nets as a Performance Analysis Tool

" In last decade, researchers have done a lot of work on turning PN w a

performance analysis tool. Time, as a critical parameter, is introduced to PN

-

' - 0
" T " #&
* &7 . ‘ ."I‘v
- -
¢ [4]

DS - N R4
¢’

’bb

¢ a

& o

via a variety of ways. The resulted PN may be called Timed Petri Nets
(TPN). 3 ‘ "
Time can be either assigned to the place {2] or to the transitfen. ¥or the
second case, time itself may be either fixed or random. For fixed time, there
can be one type of time, such as either a fixed firing rate {7] or a fixed length..
of firing time [18], [24]; or two types of “times, for instance, either a
“minimum and a maximum execution time [11}, or an enabling timeéénd a

firing time [19]. When random time is assigned tg/{x&xsitions, PN comes to

SPN [13] and GSPN [10]-of interest.

* The SPN (stochastic Petri nets) proposed by Molloy (13) is defined by
) -

assigning an exponentially distributed firing rate to each transition iii a PN for

continuous time systems or a geometrically distributed firing rate for diserete

time systems. A formal definition of a SPN is the following:
SPN = (P T, A, M° R)

where R = {rl, SN rm'} is the set of firing rates associated with transitions.

2’

Molloy has shown that the SPN is isomorphic to homogeneous Markov
process due to the memoryless property of the exponential distribution of
firing times [12]. SPN markings correspond to MC.states. In particulat, k-

bounded Petri nets are isomorphic to finite Markov processes.

SPN is a bridge ,betweé;i PN models and MC models. It allows analysts to
méde] the (computer) systems easily with powerful PN, and translate it into
MC-‘model by using a procedure Ito automatically generate the reachability set
of the underlying Petri net, that is, the steady states of MC, then solve it to

get performance measures.

" @ "
Al -

o

~>

€

- 4
L)

A disadvantage of SPN comes from indistinguishably assigning a nonzero

time to each transition. That could lead to the state (reachable markings)

" explosion as system size and complexity increase, because all markings are

tangible states (enabling the timed transitions only) in which the process
spends nonzero time and must be counted for solving MC, whereas in GSPN
the process spends zero time in vapishing states (enabling at least one
immediate transition) and those states are not taken account for solving MC.
Moreover, often for practical modeling purpose, it is not desirable to assign a
random time to each trapsition at all times. So Marson ,generalized SPN to '
GSPN [10].

'i‘here are two classes of transitions: timed and immediate transitions in

GSPN. Timed transitions fire after a random, exponentially distributed ena-

‘bling time. Immediate transitions fire once they are enabled. Immediate tran-

sition can be considered as an extreme case of timed transition when the ena-

bling time goes to zero. GSPN is still equivalent to the MC.

Several transitions may be enabled at the same time. If they are all timed

transitions, then each fires with probability

Pr(t) = =

Z"k

by
where N is the number of timed traositions in this group. If there is one
immediate transition among several enabled timed‘ transitions, then it fires
always. If all enabled transitions are immediate ones, then, a probability distri-
bution (sw'lt.c‘hing distribution) is needed to select the firing transition. The

switching Adistribut,ion may be marking dependent. If the probability associ-

aated with an enabled immediate transition is zero, the transition cannot fire.

-

The inhibitor arcs, used for zero testing of a place, increase modeling
power [16], and simplify graphical representation. In fact, the inhibitor arc
and the random switch (a set of enabled immediate transitioh and the associ-
ated probability distribution) are mutually reducible. We can also replace the
inhibitor arc with two classes of transitiogs. Examples are giVeﬁ in Chapter

~

10.

T W T ¢

L&

Chapter 3 Introduction to Harmony
: .

Harmony is a multitasking, multiprocessing operating system .for rgal-‘
time control [3]. It is mairly \;ritt;en in C programming language with small
amount of assembler for the ease of porting. In the follJowing sections, we
outline Harmony with its main features, and introduce its kernel. References
for this chapter come from [3], (4], [5], [6], [15], [20] and [22]. Detailed
descriptions of the Harn‘ldn-y algorithms are moved to PART II.

3.1 Outline of Harmony

~

Harmony is ported to a tightly coupled multiprocessor system. Among its
realizations, one is ¢h MC68010 available here. It makes four assum_ptions

about hardware.

— Linear addressing within the system for all processors: this means that a
unique address is assigned to each memory location hence they are

addressable by any processor in the system.
L

— Direct interrupt capability:~each prgcessor supports multiple interrupt lev-

els. :

— Transparent interrupt capability: a processor can interrupt any other pro-

cessors and itself.

— A test-and-set operation: it provides mutual exclusion for globally accessi-

ble data structure.

Harmony is designed for real-time control. Therefore, p'rograms interact

11

o

12

with the real world ‘t,hrough I/O devices, and time is considered as a critical
resource 3, p3] and [6, p5]. % in Harmony, the timeslicing and round-robin
scheduli;lé policies, as used in conventional operating systems, are replaced by
the . priority scheduling. Each processor supports such a'scheduling system.
Each task has a fixed priority level throughout its life time. A FIFO ready
queue exists for each priority level. The 'ﬁrst task on the highest priority
nonempty queue is executing on the processor, a.n_d_continues to execute until

blocked or preempted by a higher priority task.

Multipracessing, as another feature, means that a multiprocessor systém

is used in Harmony; the number of processors can be increased easily without

modifying the appl}cation software, like 'éysgem tasks, servers, etc. Multipro-
cessing is supported by the inter-processor interrupt which provides intertask

o

communication. ’ 4 -

Multitasking is also a Harmony feature. Tasks are tied to the specific pro-
cessor. Tasks can be dynamically ®reated and destroyed. Once a task created,
it competes for using resources independeﬂtly in the same way its creator
does. Communication and synchronization bét;ween tasks is realized through
the message passing. Message passing in Harmony-is implemented by four
primitives: _Send(), _Receive(), _Try_receive() and _Reply(). . “

The next worth-mentioned fe%ture is that Harmon'y is an open sﬁst,em.
That implies that Harmony can run-on many different processors and pe;'i-]
pherals. Servers, in Harmony, are referred to as man“agegls of‘ both logical and
physical resources. Open further implies that these servers can be easil;r

K

added, deleted or modified in terms of requiremex;ts,

13

3.2 Harmony Kernel

Harmohy consists of a kernel and a collection of tasks, and it can be split

v .

into three layers:

1. Outer (application) layer: both system tasks and user tasks reside in this

layer. Four system tasks are:
_Directory() : provides task id from its symbolic name.

_Gosstp() : provides a general reporting and logging mechanism for other

tasks.)

_Local_task_manager() : responsible for task creati®n and destruction.

&

_Idle_task() : a dummy task to absorb pro‘cessor time when all other tasks .
are blocked.

The first two tasks reside on processor O only, whereas the othey two

reside on all processors.

2. Middle (intxerfa.cé) layer: Harmony primitives reside in this layer. It can

be viewed as an interface between application layer and the lowest layer.

In beru{s of their functions, these primitives can be respectively grouped

| into memory management, task creation and destruction, message pass-

ing, interrupt,.error ha.ﬁdling, using connection, stream 1/O, and imple-
menting servers. r

3. Inner layer (scheduler): provideé task scheduling and-synchronization ser-

vice. F‘unétions in this layer are mostly written in assembler to increase

the' execution speed. We list them below:

\

_Block() : removes the caller from its ready queue which is owned by the

14

caller's processor, and dispatches the next ready task. Returns when the

blocked task becomes ready.

_Signal_processor(id) : notifies the processor of task requiring service.
The id of the task specified by the parameter is written in the mailbox of
the processor which executes that task and an interrupt is generated to

that processor.

_Block_signal_processor(id) : removes the caller from its ready queue.
The "id of the caller (not specxﬁed by the parameter) is written in the
mailbox of the processor that executes the task specified by the parame-
ter. An interrupt is generat,e\d bo that processor. Then the next ready task

is dispatched.

_Disable() : disables all interrupts by changing the current précessor prior-

ity to interrupt level 6.

_Enable() : enables interrupts by changing the current processor priority

to the active task—the caller’s priority. .

_1dle_loop() : code for _ldle_task. It stops'the processo;' and waits for the

next interrupt.

_IP_int() : the second level inter-processor interrupt handler. Fetches id

of a task requiring service and calls _Td_service() to serve the request.

_Setup() : initialization code executed by all processors but processor 0

before executing Harmony program.

_Setup0() : initialization code executed by processor 0 before executing

~

15

Harmony program.

In the above classification, the kernel is made up of the middle and inner

e

layers. And the kerﬁel is distributed on each processor, each with its own set
of data structures. Since the lengthy part of Harmony is the variety of servers,
it is not easy to locate them jn our layer scheme. We shall put server tasks in
the out,er‘la.yer, the second level interrupt handlers writtep in assembler in the

inner layer, and put the other functions in the middle layer.

PART 1II

- MODELING OF HARMONY

Chapter 4 System Initialization

: System initialization naturally comes first. The initialization consists of
establishing each processor’s C environment: building and initializing its Har-
mony and having the first task dispatched [3]. In this chapter, we first
describe the initialization work by illustrating the calling graph and a key data
structure called multiprocessor gates. Secondly, we detail the initialization

procedure by using a Petri net model.

4.1 Introduction to Algorithm

Initialization is mainly done in either routine, _SetupO for processor O, or
_Setup for any other processor. They both establish t,her: C environment, call

)
Har%ony kernel to build and initialize Harmony then dispatch a task.

Establishing the C envimnﬁent for a processor involves setting up an
- idle task and the exception vector table, as well as clearing its mailbox slot.
Next, a call to routine _I_harmony initializes its Harmony operating system.
Calling graph is given in Figure 4.1, where rectangle denotes a
function/routine, rhombus a task, arrow a function/routine call and dashed
arrow creating a task. The depth of study is only down to the function of
each routine/task involved. There is not much synchronization within each
routine, but the understanding of manipulation ?f some data structures is

required. Called routines and created tasks are listed below:

_I_extern() : performs initialization of global variables.

17

<
R

J_extern

_I_store_
pool

d
template

J.ready.

queue

1idle_
task

=

- -

* ““No this part,
" if K is default,
i.e., not the

case of _Setup0()

Figure 4.1. Calling Graph of System Initialization

: Zﬁ)u:ctor’/ /-Goisip / /_miin / :

18

.

AN
‘)

19

_I_store_pool() : initializes storage pools.
_I_templates() : initializes the task tem plates.

_I_ready_queues() : initializes all ready queues which are at different levels of

priorities.
_I_ltm() : creates the local task manager.
_I_idle_task() : creates the idle task.

_Local_task_manager() : is the root function, which is the code that the task
will execute when it's dispatched, for the local task ﬁmnager task. It looks
after the task creation and destruction by waiting for messages and then per-

forming the requests.

_I_directory() : creates the directory task for task template 2.

"

_I_gossip() : creates the gossip task for task template 3.
_I_user_program() : cfeat,es the first user task for task template 1.

_Directory() : is the root function for the directory task. which executes on
processor 0 only.--It provides information for opening connections between
server and client. A client submits the symbolic name of a server to _Direc-

tory(), and _Directory provides the server task’s id for the client.

_Gossip() : is the root function for the gossip task which executes on proces-

sor 0. It reports any errors occurred to the user.

_masn() : is the root function for the first user task. It does whatever the user

wants it to do.

f

Note that onl}; in the case of _SetupO, the _,Loca.l_task_ma.néger creates
three tasks: _Directory, _Gossip artdl _rﬁain. They reside on processor 0.
Finally, each processor other than p.cessor 0 dispatches an idle task,

while processor 0 dispatches the first user task.

A data structure called _MP_gate, multiprocessor gate, is desig@ed to
implement the synchronization. The number of gates is equal to the number”
of processors minus one y(except processor 0). Each gate is used to control
and indicate the progress of the initiali-zation of its ;orrespo_nding p:rocessor.
“The snapshots of the, _MP_gate a.ré given in Figure '4.2, together with explana-

tions. -
. .

f1.2 i’,etri Nets Model

Some synchroﬁization is‘ required during the system initialization. This is | !
modeled by the PN in Figure 4.3 and correspondiﬁg Table 4. Initially, t.here(is
~one .Loken in each Pl-i’ whic:h represents‘a.n- a\;ailable;processor. All tpgether
there are N + 1 processors, where N = MAX_PRF)C (maximum processor -
nuxhber). There are no tokens in any other places. Places Ps. represent the

multiprocessor ga.tes The pumber of tokens in them denotes their gate

values. For example, Thre€ tokens present denote value 3.

Initially, PB- are reset to Os. Immediate transitions t, are enabled and fire.

2.’ © 5.0 "3

P]_) with the delay modeled by enabling timed transitions ty. - After back to

Processors other than processor O enter their busywait loops (t,, P_, t. and

Pl_, for a specific processor, if its gate is still closed, ie., ti-n is disabled, it fires
t, again.
Initially, timed transition tl,’which includes subroutine calls, is enabled

for prc;ce'ssor 0. At t, processor 0 executes some codes to accept download of

o - .

MP gate " . Explanations

. Processors busywait for gates
open to start their
initislizations.

{
“ Multiprocessor gates are closed.
0]

21

" 'Who sets gate value

" By process'dr‘K',

,'whereK.f@ \ | /

~

By processbr 0

(%)

By processor K,
where K # 0

By proceséor K,
where K # 0

--\j
\" MP gate
« r %] . Multiprocessfar gates are open.
‘ 3 : — Processor Q has built and
: _ initialized “its Harmony environment.
o Other processors are allowed
MAX_PROC[__1 to start their initializations.
MP _gate °
1= -
: itializations of processors,
3 . whose gate bytes marked 2,
: ¢ are in progress.
- MAX_PROC[__1 -
MP gate '
1 ’ '
2 __%_ ’ Processors, whose gate bytes
3 . marked 3, have completed
oo their mitiahizations.: . :
MAX_PROC[2 |

}

-

. Figure 4.2. Snapshots of Multiprocessor Gates

’Ps f
3—1

" P

. ta-n%‘

N = MAX_PROC

neo(O—
SIS

b
P71

22

C)
X:
VER
N

Pr_n

Figure 4.3 Synchronization During System Initialization

: : ~

Table 4 System Initialization

23

Transition Meaning

t sets up C environment,- builds and initializes its Harmony
kernel, Jopens gates (ex'ecut,ed on processor 0)

L. enter the busywait loop for other processors

ty. delay"m the busywait loop

t,. mark initializations in progress, set up their C environments

te build and initialize other processors’ Ha{mony kernels, mark
initializations completed in _MP_gate, dispatch idle tasks]

t informs processor 0 of all other processors having completed
their initializations, lets processor 0 go

t processor O enters the wait loop

ty causes delay in wait loop for processor 0

ty dispatches the first user task

Place Meaning
L " hold idle processors —
2 processor 0 waitshrin-the. wait‘loop for other processors

to complete their iqitial';zatiOns

P3 processor 0 is executing the first user task

P4 transit place in the wait loop for processor 0 .

PS_ transit places in busywait loops for other processors :

Ps_ .m ultiprocessor gates

P7_ initialization of processor k is in progress

Pe. processors are executing their idle tasks

P9 for a control token to relegse processor 0

4,

24

<
executable codes. The end of downloading causes it to activate _SetupO,

which initializes its kernel, and opens, the gates (puts one token each to Ps_i).

After gates open, t4-1 fires, which changes the gate value to 2 (takes one

token from Pe-i’ returns two to it), indicating its initialization is in progress.
Then e, fires, executes _Setup on/for i-th processor. Upon completion, one
more token is added to Ps-i' The number of tokens is raised to 3, indicating
the completion of the initialization of that processor. The processor itself

enters P8-i’ where it executes the dispatched idle task.

b, P4, te and P2 make the wait loop, where the processor O waits for the
completion of all other processors’ initializations. The waiting time is imple-
mented by setting a counter to a big value, then decrementing it by one till 0.

t won't be enabled until t does. However, t_ is only enabled after all other

6
processors have completed their initializations. Finally, t fires, dispatches the

first user task for processor 0. The system énters the normal processing state.

Note that if we drop the PN implementation for two wait loops, the
correct execution sequence can be still assured. It is the matter of how accu-

rate we want the model to be.

o

N\

_Chapter 5 Interrupt Handling

Seven levels of interrupt priorities are. provided in MC68010 which is one
of hardware realizations of Harmony. Below are their assignme‘nts in Har-
mony:-

level 1 interrupt priority (Harmony priority 3) .

level 2 interrupt priority (Harmony priority 2)

level 3 interrupt priority (Harmon;' priority 1)

level 4 interrupt priorit-yh(Harmonyf priority 0)

level 5 int,errupt,lpri(ority (interprocessor communication)
tevel 6 interrupt priority (used restrictively)

jevel 7 ir;terrupt p_riorit); (not maskable)

Level 7 is the highegt priority. Level 6 is used in primitives _Disable()
and partly in _IP_int() only. Level 5 is assigned to primitive _IP_int(). Inter-
rupts are inhibited for all priorities less than or equal to the current processor

priority contained in the status register.’

There are two interrupt modes used in Harmony: direct and transparent
[23]. They both require that the précessor enters the exception processing

state, and the second level handlers are both written in assembler.

25

5.1 Direct Interrupt Mode

In this mode the interrupt comes directly from the hardware dev‘x-ce phy-
sically connected to the processor. Itis used when a task wants to do some
1/0. That task sends a reéue;t to the server. The server/notifier task initiates
an 1/0 command to the device, and blocks itself while waiting for an interrupt

i which signals the completion of the command from the device.

The calling graph is shown in Figure 5.1. The function descriptions for

each elememt are as following:

_Await_tnterrupt(interrupt_m®wply_msg) : after issuing an I/O command, tke
controlling task calls this primitive, blocks the%e while waiting for an interrupt.
" Besides being an id of interrupt, the interrupt_id is also the byte offset into
the vector -Int_table and _Dev_data_table. The rply_msg js'a pointer to the
volatile data which are from peripheral devices and must be ca_ptured when

the interrupt is first detected.

_Disable() : written in assembler, changes the current processor priority to

interrupt level 6, thus disables all interrupts.

_Enable() : in assembler, changes the current processor priority to the active

task—caller’s priority.

_élock() : in assembler, removes the, caller from itss ready queue and

dispatches the next ready task. Returns when the blocked task becomes ready

again.

The first level :'ritcrrupt handler : hardware mechanism, receives hardwaré inter-

rupt, saves the registers on the stack of the interrupted task, invokes a proper

~

Ve

27

Server or
Notifier.

1

interrupt L

b

Dev._
data_table|]

0 :
1
2

Int_table(].

-

: Disable Block Enable

™

unblock

il

et o

Second level
interrupt
handler

! First level !
(T >+ hardware
| InterTupt Y echanism
1 handler

Interrupt from peripheral devices

Figure 31 Calling Graph of Direct Interrupt Mode *

Await_ -

28

second level inter:rupt handler.

The second level snterrupt handler : written in assembler and server dependent.

Its functions include saving stack pointer, etc., as will be deta.il;:d in Table 5.1

-
-

later. It must be initialized by the vector

struct INT_PAIR _Interrupt_list[} =
of all interrupt handlers required for a processor in user’s Harmony program.
_Int_table[] : a data structure at which a pointer to the task descriptor of the

waiting task is stored.

_Dev_data_tablef] : a data structure, used to store a pointer to any data shared

between the second level interrupt handler and the wa.itingﬂt,ask.

Now let’s look at the algorithm of handling direct interrupt (also 1"efer to
the PN model! in Figure 5.2 and Table 5.1). After issuing an I/O command, a
task, usually a server/notifier, calls _Await_interrupt(). There, its td ‘(tas‘k
descriptor, a pointer to a data structure) is written into _Int_table, a pointer to
volatile data is set, etc. Then it calls _Block() to biock itself while waiting for

an interrupt, and dispatches the next ready task.

On the other hand, upon finighing the I/O service, the peripheral device
sends an interrupt to the processor it is connected to. If the interrupt priority
level is higher than the current processor priority, the running task is inter-
rupted. The processor enters the exception processing state. The invoked first

level handler activates a proper second level handler. The processor starts

- LY

normal processing.

The second level handler, such as _Ptm_int, _Serv_ptmint, usually saves
N ’:) '
the stack pointer of the interrupted task (does not remove it from the ready

queue), identifies the interrupt source and finds a waiting task from _Int_table

29

Figure 5.2 Direct Interrupt Mode

e
- " Activated by the first
. te level in pt handler
interrupt . . P N P ' P,
4
- P, P
3} 21 tig
Py
te P, Py

]

\ *
Table 5.1 Direct Intertupt Mode “ 7
Trans. Meaning i]
t calls _Disable(), writes active task td to _int_t.a.ble,
sets up some fields in id '
t, calls _Block o
t, restores stapk and registers, activates waiting task oo .
t, sets active task state to READY, calls _Enable()
t saves registers of 'interrupted task, ‘
activates second If:_vel interrupt handler .
te saves stack ptr, identifies intérrubt source, clears interi&uf)t While“
records volatile data, gets the table entry T
and tests if there is one waiting task in it
t, clears table entry, passes volatile data,
links the waiting task into the ready qdeue .
te increments _Spurcount, records cause, reactivates interrupted task
Place) Meaning’
Pl hoids _Await_jnterfupt' :
P2 the caller of _Await_interrupt is ready to block itself
Ps . the caller is blocked
’ P4 the waiting task is unblocked
P5 holds first level interrupt handler ‘
.P6 holds second level interrupt handler
P7 the secona level handler issready to test if there is a waiting task
P8 the second level handler is ready to unblock the wa.itiné task
P holds interrupted task which is running

31

~

Table 5.2 Transparent Interrupt Mode

Transition " Meaning
t saves st.atus register, identifies destination processor
t, disables interrupt, executes test-and-set .
to find if mailbox slot is em pty
t, provides interrupt window, reenters the busywait loop -
t, writes id into mailbox, interrupts destination processor
) restores status register, returns
t 'disables interrupt, saves registers and stack ptr, fetches
"id from my mailbox slot and puts it on a FIFO queue,
turns off interrupt from interrupter, clears mailbox,
advances queue index, needs to wrap queue index?
. dummy transition
t. wraps prc lucer index
te is buffer full?
ts . restores registers, resumes execution
o replaces active task td by fake_td, gets new stack
14, enables writing _IP_int, calls _Td_service(), disables
writing _IP_int, advances queue index, need wrap it?
t, ~ wraps consumer index
tl;3 g dummy transition
t,14 is FIF'O queue empty?
e fetches id from queue t
e dispatches next ready task with the hlghest priority
Place Meaning
Pl holds Slgna.l__processor or _Block sngna.l_processor*
P, the busywait loop entrance
P; 7 _fork place for testing of the mmlbox
P4 " holds _IP_int s
P5 T fork place for testing of the buﬁ'er
Ps | producer index of the queue has been properly a.dvanced
P7 fork place for.testinig of the buffer
P8 . holds the interrupted task which is running
Pg the loop entrance for calling _Td_service()
Plo - ‘Tork place for testing of the buffer
P“ ’ consumer index of the queue has been properly advanced
Pl,, fork place for testing of the FIFO queue

* Minor changes are needed in this table for _Block_signal_processor

~

r

32

.

and activates it. If no waiting task has been found, it records such a spurious

interrupt [3, p17] and reactivates the interrupted task.

5.2 Transparent Interrupt Mode

This intern%ode is used for intertask communication. Tasks may run
on different processors, or on a single processor. The interrupt handler
(_IP_int) runs at interrupth priority level 5 which is above all other Harmon}.'
priorities. Therefore it is masked off from other interrupts and is transparent

-

to the interrupt originator. -~

The calling graph is depicted in Figure 5.3, where the following elements

are involved:

3

’

_Swnal_processdr(id) : called to notify processor of task requiring service.

-

_Block_signal_processor(wd) : removes active task from its ready queue, sends

an interrupt to destination processor, dispatches the next ready task.

_IP_mt{) : a second level interprocessor interrupt handler. Fetches id of a task

Tequiring service.and calls _Td_service() to serve the re"quest.

a

r

\,Z"d_scrvicc(-id‘_candidatc) : processes a td requiring service in message passing

and task creation/destruction. .

-/}\lailbo:r : a data structure with each slot assigned to one processor, where the

-]
id of the task requiring service is put. There is only one mailbox in the sys-

tem.
_Comdev : similar to the above, it is used to.store interrupt signal.

_In_swd_g :is a FIFO queue (a circulaf buffer) for each processor. It holds id’'s

Interrupt from
tasks requiring service

ead

clear

A

Interrupt
. destination
prosessor .
Reply T Mailbox
Signal_ write
/processox
xad et :
manager :
Interrupt _ -
destination _Comdev
prosessor
-Send)
ite
set

_Receive

pocn

)

|

First level
| interrupt
1

)

, hardware

1 itivoke

{

JIP_int |

- Td.

]

service

rea

writ

/N

handler |§nechanism
-— .‘T. -)

In_id_q

Add
ready

,1_Convert
to td

%

Figure 5.3 Calling Graph of Transparent Interrupt Mode

>

34 .

fetched ‘from the mailbox.

Referring the PN mode] to Figure 5.4 and Table 5.2, no;w let’s discuss
how this interrupt mode works. When a task requires some services done on
a task descriptor, such as changing task state, manipulating its queues, etc., it
resorts to.this interrupt mode. Actually such requests only arise from me's-
sage passing, as well as task creation and destruction. So primitives _Send(),
_Receive(), _Repl'y() and root function _Loca.l_t.as.l.c_manager(_) make up the
interface entity to the td service ' providing system. They call either
_Signal_processor() or _Block;signal_pr6cessor() to inform the destination

processor &f their requests.

Because one mailbox slot can only hold one task id at a tim_e and more
than one processor may compete for accessing the slot at the‘ same time, some
kind of arbitration is necessary in gaining access to a slot of the mailbox. The

pre-busywait (check before put) is employed in Harmony.

Tasks poll the mailbox by executing the test-and-set imstruction at t, in

Figure 5.4. This guarantees that only one task can access a single mailbox

T

slot. Before testing, all interrupts are .disabled. 'If the mailbox is not empty,

that is, the previous task has not acquired td service yet, the polling task will

change the current processor priority to level 4, thus provides an interrupt

window for. the interrupt handler _,Iliint to fetch and clear the mailbox.

Withont this, ‘the polling task will hog the mailbox, the mail will never be
taken by _IP_;'lnt. It is a deadlock.

After writing the id into the mallbox, _Signal_processor sends an inter-
rupt to the destination processor through using _Comdev table. The properly

invoked handler _IP_int runs at processor priority level 6. It fetches the id

»
14

35 .

L]

-

¢

from t;he mailbox then clears it at - The fetched id 'is then puyt on a F.IFO
queué'(a circular buffer). At tg the queue is examined to see if iTis full. If the
buffer is full, the handler ft_atches”one‘ item, and calls _Td_service() by specify-
ing this id as passed .u argument. Then the handler checks the FIFO queue

'E,gain until has all tasks served.

Note that before calling _’f‘d__service() att ., the handler changes the pro-
cessor priority to level 4, that enables plfltting the new id to the FIFO queue in
the following way. Supposé at this moment the processor detects an interrupt
from _Signal_processor, it will preempt the current executing _IP_int 4t level
;1 By activating a new ihst,antia.tié'ﬁ of _IP_int to fetch id from the mailbox and

put it on the FIFO queue at level 6.

After served all requests, _IP_int dispatches the next ready task at e

Chapter 6 Message Passing
Harmony is a multitasking operating system. Sometimes, the tasks need
to communicate and synchronize with each other. This is referred to as-the

m#ssage passing.

In this chapter, we ﬁ};t examine the glgoriphmé used. Then to/g@t a quick
impression, we present two simple models at the high level. Afterwards we get
down to the low level models with emphasis on a pair of communicatigg
tasks. To model the com‘municati!ons between multiple tasks, the double

colored token is introduced to our final model. The case of multiple com-

mﬁnicating tasks and deadlock are finally examinmed. A useful reference is [8].

6.1 Descriptions of the Algorithms R

Message passing in Harmony is implemented by four primitives:
id = _Send(igst, rply, id);

id = _Receive(rgst, id };

t

id = _Try_receive(rgst, id);

co o id=cReply(rplyid)y -

The semantics of these functions are as following [3, p9] : to send a més-

~ sage to another task, a task first sets up that message in space pointed to by

the rqst argument, then sets up space pointed to by the rply argument into :

which the replied message will be saved, and finally calls the _Send primitive

36

37

‘ " with the id of the desired correspondent task specified in the id argument. To
receive a message, a task first sets up (s;;a.ce pointed to by the rgst argument
into which the contents of the sender’'s rqst message can be copied, and then
calls one of receiving primitives with the id argument specified either as the id
of a particular correspbndent task or O, the latter representing receiving a mes-
sage from any task. After finishing processing the sender's request, the receiv-
ing task sets up the message to be ;eplied in space pointed to by the rply argu-
ment, a.;d then calls the _Reply primitive with the id argument specified as

the sender.

The calling graphs for each primitive are depicted in Figure 6.1 through
6.4. In Figure 6.1 and 6.2, the function _Signal_processor activates _IP_int
more than once. The functions involved but having not been introduced so

far are listed as follows :~ . .

_Add_ready(td) : puts the calling task on its ready queue.

_Convert_to_td(id) : converts a given id into a task descriptor (td).

_Copy_msg(from, to)} : copies ‘‘from’’ string to ‘‘to’’ string.

_Recetve(rgst_msg, id) : called when a task is ready to receive messages. The
task may specify whether it wants to recéive messages from a specified task or

any tasks.
7 _fEEély(h rply_msg, id) : replies a message to the task with the id.

_Send(rqst_msg. rply_msg, id)* sends a message to thge task with the id

“specified in the call.

Figure 6.1 _Send()

Sender task
_Disable [_Send — _Enable
_Block_signal_|,
processor
]
|
|
‘
IP_in —— ———
_IP_int - . 7{
I
¢ |
|
[
1
1 .
 Convert_to_td [_Td service [-—>dnal
processor
_Add_ready

" Disabie

_Enable

| Convert_to_td

39

Recsiver Task
_Receive |——| Copy msg
_Block_signal_ Block
processor
!
|
i
|
4
{;int J P .
|
|
|
i
I
1
i
1
1
_Td_service |——» —SionalL
| processor

I

. _Add_ready

Figure 6.2 _Receive()

_Disable

e}

‘Receiver task -

40

” _Disable

_Enable

¥ -
. _Convert_
| Try_receive — to_td
_Enable _Cbpy_msg
» ’
Figure 6.3 _Try_receive() .
ry x‘ bl
\\
Replyer (receiver) task
i
Convert
__Ffepiy > to_td
:Signal__
processor 7 _Copy_msg
4
_IP_int
_Td_service
_Add_ready

Figure 6.4 _Reply()

41

_Td_service(«d_candidate) : processes a td requiring service.
\ .

_Try_recetve(rqst_msg, ud) : receives a message from the sender task specified

by the id without Ei‘o.cking itself.

Each task-is associated with a data structure called task descriptor (td).
Among tl}e fields, some are frgquent,ly‘ usegﬂi in message passing. The field
STATE is for keeping record of the state of a task. The ﬁelci CORRESPON-
DENT is for saving the id of a correspondent task. The REQUEST_MSG is a
p;intcr to a charac_ter_ type array for a sender into which the message to be
sent is- saved. The REPLY_MSG is a pointe.r'bo character type array for a

sender into which the replied message from the receiver is saved.

Among queues maintained by a task through its td, the send_q, receive_q
(recv_q) and reply_q are ‘used for message passing, as depicted in Figure 6.5
where Lhe recv_q is empty. The send_q belongs to a recei\'rer task and is used
for senders. S% does the reply_q. The td;s of those se’n;'ler tasks who are
blocked in sending a message to this receiver task are Fllgg)ed in this quel;e.
. The recv_q belongs to a sender task and is used for receivers. In the primi-
tive _ﬁecéive() from the specific, the td of the receiver is put on the recv_g at
the sender when a message from a specific sender is expected to be received
~and upon the receiver's state advances to the ACK_Q_RECEWEF‘{'Y In
Receive() from the any, the td of the receiver is never placed on the recv'q.
The td of the sender is put on the reply_q at the receiver before message
copying starts.

There is a rule for manipulating these queues. That is, a queue can only
be manipulated on its owner task’s processor, because tasks are tied to their

specific processors. In other words, to put the td on one of the above three

a

42 :

(P1) 101d1I0SBG YSE | € YDNOILY} paulEjureyy Senant) UOHEJUNWWO) eaiyl §'9 eanbi4

_ o —
_ - | |
T e ag——Aud s !

DEN QL [¢—DEN al S —
al wnis QL lons _%10|>1_&I|

| RO A
: * O AOIH UL
| mb A
. " “ " aGN3S 1L
| . L . O NS (H
A3Hd QL-—{ A35d QL @E\\“
43N QL [¢—DEN Al fe———FDan al _ ,
aL Pns gL nis aL nys _ .
- .

ad ongs

| P}

43

queues, the queuing operation has to be done on .Phe processor where: the
owner of that queue resides. To ensure this l.'ule, the transparent interrupt
mode is; extensively used to pass such td service requests around. The funec-
tion _Td_service is a place w:here the actual queuing,operations take place.

As to the blocking behavior of these primitives, the _Send() and
_Receive() are blocking primitives, the other two are nonblock\lg ones. This

aspect of the semantics can be efficiently expressed by the h@ level Petri nets

models in the next section.

6.2 High Level Petri Nets Models

A Petri Net model for message passing in the high level is depicted in
Figure 6.6 and Table 6.1. This model gives us a flavor of how task communi-

cation algorithm works. . °

Case 1. (sender activated first):
:a) Receiver not activated:
The sender is available by a pken in place Pl Firing t,
represents that the sender calls primitive _Send(). Then one token

is put into P2, i.e., the sender blocks itself until unblocl&ed by return-

° e t
ing of _Reply(}). Meanfime, a control token moves into plO'

b) Receiver activated later:

—
Pd

The receiver has the choice of calling either _Receive() or

»

_Try_receive(). . .
If ._Rece'we() is called, O;IIY t, is enabled ald fires. Then it
might -call _Reply(), ..., t, fires, _Replny() returns. The receiver

returns to the original place P)a’ and t_sends a token to P, so that '
‘ . :

rs

44

|OPOW [[BI8AO OjdwiS vV 9'9 8unbdi4

[N

45

Table 6.1 A Simple Overall Model

Transition Meaning

t calls _Send()

t, sender is unblocked, _Sefd returns

t calls _Reply()

t, _Reply sends a token to unblock the sender,
meantime it returns

t blocked receiver is released by activation of _Send(),
_Receive returns

ty _Receive() returns

t. _Try_receive returns

Lé receiver blocks itself due to sender not available

t _Receive proceeds due to sender available

L, _Try_receive succeeds due to sender available

t _Try_receive fails due to sender not available

t, calls _Receive()

ts calls _Try_receive ~

- Place - Meaning

P1 initial place for a sender

P2 sender is blocked

P3 holds a control token which lS going to unblock sender

P4 _Reply in activation

: P5 te m porary place for receiver after it has received a message

and before it calls _Reply

PG receiver is blocked

r. receiver is in progress at the non- blockmg branch

P'8 _Try_receive is in progress

P9 not used

PlO holds a control token which xndlcates activation of sender

I:’11 _Receive was called

Pl,, _Try_receive was called

Plg initial place for a receiver

46

"the sender is released.

S

If _Try;recgive() is called, the same story will happen.
Case 2 (receiver activated first):

a) Sender not activated:

& If the receiver calls _Receive(), Ly is ensubled, ty Dot. The

receiver blocks itself at place P, until _Send() is called and L is
enabled. ter P and t. may be considered redundant. They are q,shere ’_
because first we want to make P as a blocking place expl&l.y
Secondly, this branch is a symmetry of the failure branch in

_Try_receive(). When doing performance analysis, g,this branch ch .

be removed. | : ’ , f‘
If the receiver chooses _Try_receiv‘;;()", since t“‘ is enabled |

among the pairs: t ., t , _Try_r’&cei\"te() fails ipam‘é’diat,e!y. '

o an,

b) Sender activated later: i , . .

For upper route Reéeive(), the recenve,r blocked at P ‘will be ’
released when _Send() is called. Then the receiver mxght “call
_Reply() to unblock the sender

-

For the next route _Try_receive(), the receiver fails before

_Send() is called. - ij

»

To simulate the situation an active task faces more closely, a revised

natural model can be obtained as depicted in Figure 6.7 and Table 6.2. A task

.

at Pl has four choices. The comparison is tabulated below.

47

L

R Yr&,,ﬂ.

|SPON ([BI8AD [BiMeN.Y 2’9 8nbig

e

(o S 94} vid 1
\
m.:' vd ()Aday
V vid .
I o 2id g1
. 6d
()onoo0as Aij
04l :
8d
6}
oid _
/d
- m>_&m B
id (Jonsdey
od o 1
- C
Q‘ —
cd _ ()puas

o0
id

48,

~ Table 8.2 A Natural Overall Model

Transition Meanin&
to—t, have the same meaning as in Table 6.2 if not default
! : _Try_receive returns a O due to failing ’
the _Reply fails as the caller had not ever received a message
15
.-before calling _Reply()
L _Reply succeeds because a message had been received before
t- _Reply returns
Place Meaning
P initial place for communicating tasks
P, — P8 have the same meaning as in Table 6.2 if not default
Pa _Try_receive is in progress at the failing branch
PIO —_ }:’1:3 have the same meaning as in Table 6.2 if not default
P“ . holds a control token which indicates a message has been
successfully received by the receiver
P15 _Reply is in progress at normal branch
Table 6.4 The First Low Level PN Model
(To be continued on page 53)
Place Meaning
P. —P places for recejver's states
Pm — P16 ’) places for sender’s states
P”, Pla' 04 are irregularly defined as the caller's correspondent’s
correspondent is the caller by a token in it
without concerning how the token moving in
P g —Py,,andP, | drawn in small circle are places for
b control tokens, tasks do not enter them

*

49

Table 6.3 The Comparison Between Two Models

Models
Calling Sequence
; Sim ple Natural
S, Bc,Rp Y Y
S, Rp,Re N .. Y
Re,S, Rep X Y
Re,Rp,S N Y
Rp.S, Re N Y
Rp,Re¢,S N Y

Where, for instance, the row ‘‘Re, Fip, S, N; Y."' means that/ the calling
sequence,is _Receive() or _Try_receive(), _Reply() and _Send(); the simple
model fails to represent this sequence, however the natu;'al model can. - |

In next section, we introduce four d{atailed models in‘the order from sim-

ple to complex. The natural firing sequence identical 1o the flow of control in

primitives is tracked to explain models.

-

L %
6.3 Low Level Petri Nets Models , /J

In following figures, the stat,es-of tasks are borrowed from their
definitions in Harmony source code e;(cept ACTIVE. No more L:;sk,states are
defined. Sma.ll circles are used for control tokens énly. The colored net is
used as well Some places (states) belong to receivers, other:s to senders.
Receivers or senders flow along their own ares. Control tokens behaye in the

same way.

The dashed place, like place P18 in Figure 6.8, is defined irregularly as

‘‘my correspondent is trying to communicate with me'’ by a control token in_

50

IBAT3091

I3puas

-
»

()Atdsy

13

8°9

2Inb13

(. , 51

: ol
it without concerning how the token moves in. Transition t, is defined as

““OR-AND ” transition which is actually an abstraction of a functional subnet. .

8.3.1 _Reply(rply_msg, id) ¢
Referring the Petri net model to Flgure 6.8 and Table 6. 4 upon a call w

this functlon, the sender is supposed to have sent a message to tbe rec&iur—

and stays at the state REPLY_BLOCKED.

Case 1 (normal case): ‘ L

There is one token ‘in P,, P, and P . each for initial states. When the)
“receiver calls iRepnly(), the sender's (replyee’s) .state_ equals
“REPLY_BLOCKED", and it is blocked for me due to 2 sall 10
_Block_si‘gna.l_processor() earlier. t '1s 'enabled, and ﬁres,v_rel‘noving the
sender from the reply_g at the receiver. The receiver-now is‘\‘copyiné mess_age‘.
Bot,h t and t are e{nabled. If the sender is still alivfe, t ﬁres, t follows,
adds the sender to the ready_q, unblocks Lhe sender If copymg fa.ﬂs, ﬁres1
the receiver backs to the READY state, then to the ACTIVE and returns 0t
indicate that _Reply() has failed.-

- -~

Case 2 (abnormal): - g

-

Initie.l]y, t, is enab®d instead of t,. [t fires, returns O arid backs to the
ACTIVE. _Reply() fails immediate!yﬁ. , . .o

N

. 6.3.2 _Try_receive(rgst_msg, id) ‘ " -
The model is given in Figure 6.9 and Table 6.4. Thig is an unblocking

primitive.

52

(Vwiwomuﬂwuaﬂ 6°9 9anbtg

93
Kydwe b pues _.Aw axou K13/ 9SH XdO
1308V
7)) -
Ljdwe 3jou
b puss X% 9d
213
11e3 I 2
) Kdoo V ve
€22
113
aDIo01d * Xavad
X1d3d g0
lm _ lm
vZd -oong Adoo
11d Gqd bd
3
2l
Kue 09
aN00TE ™ oone-ods o3
anas , ! !)
=S \ / [1e3 ods oo
"\
L1d
b1d . - i zd
o

o

b

—~

53

Table 6.4 The First Low Level PN Model
(Continued from page 48)

| Irans. Me

t '1ry receive fails because the sender is dead or the caller’s
send_q is empty or other reason as illustrated

t, _Reply fails because the replyee is dead or

- other reasons as illustrated '

t, calls _Receive specific, blocks the caller, signals
correspondent’s processor, dispatches the next ready task

t, unblocked caller of _Receive specific fails
because its correspondent is dead

te calls _,Rep}y, removes the sender from reply_q at the,receive

t _Try_receive any fails due to empty send_q at the receive

L dispatches a ready task

t adds the receiver onto recv_q at sender as the sender alive

8 . : .

ty _Reply fails because copying fails)

to dvances receiver’s state as the sender is dead

t“ Loples sender’'s message to receiver successfully

ty copymg message fails

t calls _Rcceive any, blocks itself as its send_q -mpty,
dxspatches a ready task

ty copies recelve_r s replymg message to the sender successfully

Us advances recei 's state

Lo unblocks recewer)by a.ddlng it to the ready_q as sender is dead

t17 caller of _Receive specific is unblocked and enters
COPY_MSG state as the sender is alive

ble caller of _Receive any blocks itself dispatches another rea.dy
task as its send_q is empty

t removes receiver from recv_q at sender when receiver is alive

19

too the sender dies

to adds sender to reply_q at receiver, unblocks receiver by
adding it to the ready_q when sender is alive

t, ., removes sender from send_gq at receiver

== when sender. is alive and on send_q

Uya OR-AND transition, when _Receive any or _Try_receive any
called, removes sender from send_q at receiver, adds it to
réply_q at receiver when _Try_receive specific called and the
caller is sender’s correspondent, advances sender’s state only

Ly blocked receiver is unblocked by a sender becoming available

tog OR-AND transition, adds sender to send

- at receiver as receiver is alive

t unblocks sender by/adding it to its ready queue

26 .

t. dispatched .

t;é sets up message pointers, blocks sender itself, signals

correspondent’s processor, dispatches the next ready task
advances sender's state due to dead receiver
calls _Send

unblocked sender gets redispatched to return

54

Case 1 (try receiving specific):

~

Initially, there is one token in PQ. If the sender is not available, the \
receiver will fail immediately, return 0. If either P“ or P”, is e;npty or both
empty. t fires. _Try_receive() fails. If tao is enabied, the receiver enters
COPYING_MSG state, while the sender to P | REPLY_BLOCKED state. In

this primitive, P is the destination place for a sender. The sender will

11
proceed further in _Reply() primitive. Notice that no queuing operét’nons
were taken during b firing. It may be assumed that the receiver will call
_Reply() after _Try_receive() retflrns, because a task which calls
_Try_receive() is very likely a hasty user. But it seems to be safer if the queu-
ing operations ‘‘remove the sender from the send_g at the recei\;er" and
“‘put the sender on the reply_q at the receiver’ are inserted during the state
transition. This is because the receiver may call some other functions before
calling _Reply(). Moreover, in _Reply() prifnitive, ‘““remove the sender from
the reply_q at the receiver’ is always present when the receiver moves into

COPYING_MSG state. The receiver expects the sender in its reply_q when it

calls _Reply(). .

Now tlo is disabled, t“ fires. Copying message succeeds. The receiver

r4

returns to state READY, then ACTIVE. .

Case§ (try receiving any):

4 fires, the receiver enters qu. If the send_q empty, i.e., P 4 €MPLY, the

L3 1

x"eceiver backs to P, _Try_receive() fails. If the send_g not empty, tyg fires,
one sender is removed from the send_gq, then added to the reply_q. The
receiver enters state COPYING_MSG. Now both bt and-t.l,, are enabled. If

g \
the sender is killed, copying fails, the receiver's state becomes

7\

95

ABORT_COPY_MSG. Then it checks the send_q to see if any more senders

there, until gets one.

6.3.3 _Receive(rgst_msg, id)

This is a blocking primi.t,ive.' Refer the model to Figure 6.10 and Table

6.4. ! | | o *}

Case 1 (receive any): \) ‘ .
If the caller's send_q not empty; tya fires, removes the sender from thé

send_q to the reply_q. The sénder‘cha:nges_ to statelREPL}'_BLQCI{ED. wh:l!e-
the caller enters P5 COPY:ING_M\S’G. ’Nc‘)yw both t, and t, are’ enabled. If
the sender: is killed, 6’12 \ﬁres: t'he’t,oken moves into P6 ABORT_COP\'_MSG.
If the send_q not e-n:rpty. the caller will try the next sender by firing t,,+ repeat
the cycle. If the send q empty, t fires, t,h.e caller e‘m,e.rs state

18
RCV_BLOCKED, blocks itself, dispatches another task at the ready_q.

Later on, the blocked receiver at l:'9 may be unblocked by the coming of
"a sender. L, fires, the receiver back to state ACTIVE eventually. It checks the

send_q to decide how to continue execution.

Case 2 (receive specific):
t, fires, blocks the caller, interrupts correspondent’s processor. The caller
enters state Q_RECEIVER. '

"a) Fast route, the sender was killed:

o fires, a token moves into Ps‘ Since the sender is dead. only
e fires. It unblocks the receiver, adds it to the ready_q. After back

to P, ACTIVE, t4 is enabled. It fires, returns 0. _Receive() fails.

56

(aataayg o1°9 aan3yy

f-.nm \\\ N
- o H.
. 2
/o8 2
3 2ans Ty, -
=
H jjque =
ﬁj
153 peap S .__:
¢ AAIID! . " 1) e
15 DNNTMOY S ou Adviad
", a.\.w
7 i
e
a.«\
vl
o1y /,::g ry
/.\ .»s
~.
N T Mﬁ.: S
9 "
) . ! st "
.\ M
¥t

b) Sender exists:

te fires. The receiver is put on the reply_q at the sender. Later
the token flows into P7 RCV_ SPECIFIC_BLOCKED. Now if L, is
disabled, so is ng, the receiver will stay in P7 for arbitrarily long.
Otherwis(.e tyo fires, the sender enters Plo UNQ_RECEIVER. Then if
the receiver alive, b fires. The receiver comes to state

ACK_UNQ_RECEIVER. At this time, if the sender dies, Lo fires,
and te fires. It unblocks the receiver. Finally ty fires, the receiver
returns. If the sender alive, t,, fires. The unblocked receiver will
continue execdution by ﬁf'mg t- [ts state changes o
éOPYING_MSG. Since b is disabled now, only-tll fires. _Receive()

succeeds. .

Notice that if the receiver in P7 "RCV_SPECIFIC_BLOCI{ED dies, -'m the
“source code the receiver’s state is still set to ACK_UNQ_RECEIVER and
proceeds. Th'erefore. the fishy things. arise. It"s felt that, at this moment,
something should be done on the sender, because it's al;-eady unqueued from
the send_gq. ana at an ,.‘unfavorable state UNQ_RECEIVER -insbga(‘:i of:
SEND_BLOCKED. My idea for coﬁrectign is that the sende'r unblocks itself,
and returns O to indicate the failure of _Send(). Reason one, the particular
corresbondent of the blocked"sender was dead and there makes no sense w
try to send a message to nobody. Reason two, when we look at the _Send()
primitive in the coming Section 6.3.4, it’s learned that when the sen’der finds
its corresponde"ntr—re;ce‘iver not exiéting in the system, it will unBlock itself
imme:liat,el'y and return 0. So the newly designed code is given in A ppendix

B, which works for the _Send() primitive, as well.

58

6.3.4 _Send(rgst_msg, rply_msg, id)

This is a blocking primitive. The model is depict:éd in Figure 6.11 and

Table 6.4.

A sender activates itself by firing tao’ then sets up\poigters, ‘blocks itself,

<

interrupts the receiver’'s pracessor, dispatches another task. Receiving inter-
rupt, the receiver's processor calls _Td_service() from _IP_int(). The sender
-3

enters PM SEND _BEOCKED.

Case 1 (receiver dead):

Lo fires. The sender enters state REPLYING, then unblocks itself.

Case 2 (reéeiver exists but may neither try to get a message from this sender,

nor at RCV_SPECIFIC_BLOCKED):

tos fires. The sender is queued on the send_q at-the receiver. If the

receiver is not at state RCV_BLOCKED, t,, can not fire. The sender stays in

PH for arbitrarily long. If the receiver is at RCV_BLdCKED, Cog fires. It

unblocks‘\the receiver, which will in turn check whether the sender is dead
later. If the sender dead, tls ﬁresu. The receiver enters state RCV_BLOCKED

again.. The rest would be the same as the described in above subsection.

Case 3 (receiver exis_ts at state RCV_SPECIFIC_BLOCKED and is trying to

communicate with me):)
!
i

t_ fires, the sender enters Plo' Then only ng fires. The receiver is

22
removed from the recv_q if it's alive and moves to state

ACK_UNQ_RECEIVER. Now if the sender dies, Le\o

receiver is unblocked. Later t, fires, the receiver returns 0. If the sender

then tlﬁ fires. The

alive, L, fires. The sender goes to the REPLY_BLOCKED state\a.nd'unblocks

- g

(T ais™ 119 winsr |

TERIR1

ONTALOD

— LX]

NS == 1

aD1>0 ™
2141035
Ay

td

4

o 60

the receiver. The unblocked receiver fires t- later on, disables t__, copies the

12’
message, returns to READY, then ACTIVE successfully. ‘ ‘1‘

-

h
’

-$ 6.3.5 General Models

Putting above four models together, we get Figure 6.12 and Table 6.4.
Basically there is nothing new. So we will not go through it.
An interesting question here is that what kind of relation exists between

these two levels of PN models, for example, between Figure 6.1 and Figure

612, As we know, the high level model is from the blocking behavior,

-

whereas the low level from the Harmony source code. Hence, it's difficult to
find the direct cqrrespondence. The conceptual cqrrespondence does exist.

For instance, the sender loop (P L P, and t) in Figure 6.1 roughly

1’ 2
corresponds to all sender’s states (Plﬁ. Pw, Pio’ Pll. Pu' Pls, and Plg) and

associated transitions (t, , t .t ,t € ot ot .t .t ot .t

A Al A . t
30" 28" 25' <227 19’ 20 21° 237 24’ 29’ 26’ L27 and 31)

in Figure 6.11. The clear one-to-one or onezto-a-group corresponding does
not exist between these models. However. it's believed that after carefully

study., more precise relation can be specified if needed.

To simplify our model and reflect the situation a task faces while it's at
ACTIVE state. we merge two pairs of places for states READY, ACTIVE.
Moreover, to represent communications between‘multiple tasks in general, we

introduce a newgconcept—double colored or numbered token to our model.
. -
6.3.8 Double Colored Token PN Models

A double colored {numbered) tokefl is drawn like * CD . It can
* N .
represent two tasks by using different colors for-or by putting numbers within

two half cir:cless. We choose numbers. The left half circle contains ME—the

. Sl s FPSERTS:
LFANEN ..«_._.; 1epuay N 4 4 :UE v}
o —— & .
R - t, <
Apdato b7

\ AUt 202 $

s
ONLOD

o Alqun

e
puap g 10 ods 59a

n:

62

caller's id, which can not be zero. If the c‘a.ller dies, the token disappears.
The right half holds my CORRESPONDENT's id, which can be empty in the
case of not calling any one of four primitives yet, or O in the case of receiving

anv. Firing rules are revised as following:
a) A transition with one input place fires as usual;

L) A transition with two input places is enabled when a task and its dual
(like the image in the mirror) appear in two places. A task and its dual

are like:

DD - @@ neo

The different cases are shown in Figure 6.13, where ty t, are enabled, t,

and Lq are not. Notice that ares are also colored.

Now we can examine multiple talks, starting from a easy case—one task
tries to receive messages from several correspondents. Figure 6.14 is based

on Figure 6.9. From now on the dashed control places are no longer needed.

Task 5 wants to receive a message from task 6, and all messages are
available at its send_q. Initially task 5 is in P4, tasks 6, 7, 8, 9 and 11 in P13'
First, task 5 sets its CORRESPONDENT to 6, then enters P2, calls
_Tr)';receive(). L, is enabled, t, not. So by fires, moves the sender to PlO

and Plﬁ. The caller goes to Ps‘ Then to is enabled but t ..

Secondly. task 5 sets CORRESP'ONDENT to zero, gnters P2 then P19'
Tasks 8, 9 are its duals. It removes one, say, task 8 from the head %f the
send_q (this detail is not represented in our model). b ﬁres‘, the caller lows
to P5. enables both”tlo, t“,. If LIT fires, the caller moves into P19 again. It will

removﬁt,ask 9 and proceed further. If task 5, at this moment, wants to receive

§

63

A €l :
318

suonisues)] pajgesiq pue pejqeus €19 ainbi4

paiqesia , .

64

()aato001 A1g F1°9 98anbtg

S13
& £3dwe b puss _% xau £213/ 9SW Xd0
_ aﬁwz
.mwnn:m. jou . 4
b puess £23 ‘ 8d
LT3
N . .] 17e3
g [Adoo Y 3 0z3
9z3
- 013
fecitie syt ’
X1d
l%E _
91d -oong Adoo
‘ Gd
L3
4%
Aue 08
*oong-ods 03
TDIOOTE ANFS=S @ Tye3 "ods oa1

13

bd

§ ' - 65

.

-

more mességes from lts send_q, because two tasks 7, 11 left in P , are not its
N B

1mages z@ﬁﬁx& q empty), it fails.

’

4

Two thmgs are worth ’(o point out. First, tokens can be accamulated in
]

’

Pw, but it rarely causes trouble. Secondly, when a caller in P,, intends o

receive any, it is smart enough not to fire t,, but t, . Modeling all. details i

r

possible. Th'e penalty is increased graphical complexity.

The aflvantages of the double colored tokens are summarized below.

First, it removes the dashed places, that sclves the problem of~how w iuput
P

l&ns into them, and changes the OR-AND transitions to the brdinary ones.

All of these simplifies the graphical representations. Secondly, it provides an
effective and unique means to check whether a task is its correspondent’s
correspondeht for. task. communications in general (multiple tasks communi-

cate with each other). For example, in Figure 6.9, if there aresfive tokens in

P“' SEND_BLOCKED, then how do we decide the number of tokens in the

dashed place P”. Becaiussbhat number depends on the number of matchings

between the senders and recei%rs. It can be from zero through five. If we set

‘it to five, then what will happen when a receiver out of the matchings (this

receiver is not the correspondent task for any senders) comes up. It is only
partially correct if the next five receivers fall into the matchings, because by
firing tyy the sender removed from P“ may not be the exact partner of the.

receiver removed from P2. -

Nevertheless, when we look at the ‘‘receive any’’, if a receiver is in P25’

the five tokens in f’“ enable tos and it is going to fire. However, probably
none of these five tasks might be on the send_q of the rece;%r in P._, thus

t23 should be disabled.

25°

' .
In previous studPes, the real life (many tasks communicate with each

other) was simplified. Take Figure 6.9 for example. In the case of '‘receive

specific’’, how and when a token is put into. P” was not concerned about. In
L
the case of ‘‘receive any’’, the send_q was assumed as the caller’'s (receiver’s)

send_q; which implies that all senders possibly in PH are only blocked for the

-

caller instead of for other receivers. R

~)
Now we present the final overall PN model in Figure 6.15 and Table 6.5.

-

All kinds of multitask communications can prgceed in this model. Compared

with Figure 6.12, the two 'paira c’>f READY and ACTIVE places are merged.

The dashed places are removed, hence the omitted mechanism of inputing
tokens to them in previous models is no longer our concern. Subsequently,

the OR-AND transitions are reduced to the ordinary transitions.

Some dominating communication rules are inherent in the model:

i i)
a) " A task can call _Replv() or _Try_receive() as many times and

v

to/from many tasks as it likes;

b)' A task can call _Send() only once before being replied', if its .

.

correspondent has been alive;

¢) A task can call _Receive() to get messages from different tasks as

many times as it likes, if each time it receives message successfully.
ki

6.4 Deadlock and its Prevention'

Because _Send and _Receive can block, there are some probabilities of

‘deadlock. We discuss it in more details.

Case 1 (sender r’ing):

.

<
k=]
=
R
()

1%

*d
prop

Vlm DILO T
TaNTS

:‘.&

A Ng _
sa1d du 08

W@,

NEEMRNLY

td

QM0
A 13dS
“ AU

‘J

13031

«:

]
-

1 fique
o,

aulﬂr]r;d\Jn

9 f%_.z S

Table 6.5 The Second Low Level PN Model

Equivalent * || Transition | Equivalent

Transition

Y Y bs b

L t t t

2 X, {16 {17
3 {30 {17 {12
g ¢ (18 {19
5 {8 {19 {13
6 4 (21 {20
7 7 22 21
t t t t

8 5 24 18
t t t t

9 10 27 24
t. t t t
{10 N3 £29 {28
{1 (14 {30 £29
{12 {15 {31 {26
{13 {16 32 31

14 9

Place Equivalent Place Equivalent

P P " p P

1 1 11 9
}P)‘Q }1:3)2’ PIB IP;,12 gl3

3 3 13 14
P P%, P P P

4 4 12 14 15
P P P P

5 5 15 19
P P P . P
PS P7 P16 P20

7 8 17 P21
P P P

8 6 PIS P22
'gs II;IO p20 p23

10 11 21 25

* The meanings are equivalent to the ones in Table 6.4

Transitiop Meaning

to | calls _Receive any or _Try_receive

boa tries to get the next sender’in the send_q
due to failure of copying
in _Receive any or _Try_receive any

2 similar to tyy) :

t26 sgmglar to t23

t28 | similar to t25

Place Meaning
P for receiver task tem porarily

19

68

69

Task A sends a message to B, B sends a message to C, C sends to ..., ...
back to A. Each expects its blocked downstream neighbor to release it. But
no one can do it. Any task off the ring is not the correspondent of any task in

the ring, thus can’t help.
For simplicity, we only consider two tasks, say, tasks 6, 7.

In Figure 6.15, task 6 sets its CORRESPONDENT to 7, calls _Send().
enters P12 SENDING, then P13 SEND_BLOCKED. At this moment, e Lo
are enabled. But tao won’t fire, because task 6 ‘‘knows’’ task 7 alive. After tyg
fires, task 6 will stay :m SEND_BLOCKED wait'mg for its receiver to unblock
it. Task 7 repeét.s the above procedure again, blocks itseif in SEND _BLOCK.
Each task expects the other to unblock itself, but no one can rﬂove. A-third

] . .
task can't help them either, because it's not their correspondent. Deadlock

occufs. .

In general, the number of blocked tasks can vary from two to a finite

large number. | .

To detect and prevent the deadlock, we can use the following general

mechanism :
Track on the chain of the blocked tasks until the end. Then if the last
task is blocked for the caller, that is, the task chain will become a task

ring, abort the caller's attem pt.

So the cure for the sender ring is as following.

3
Solution in pseudo code (inserted in the beginning of _Send() primitive) :

while(the correspondent is at state SEND_BLOCKED)
{

get correspondent’s correspondent;

70

if(newly obtained correspondent is the caller) /*sender ring exists */
abort _Send();
} *

Case 2 (receiver ring):’

1

Task A tries to receive a message from B, B from C, C from A again. All
are blocked at the state RCV_SPECIFIC_BLOCKED. In general, the humber

of blocked tasks runs from two.

Solution in pseudo code (inserted immediately after _Receive() specific) :
while(the correspondent is at state RCV_SPECIFIC_BLOCKED)
{
get correspondent’s correspondent;
if(newly obtained correspondent is caller) /* receiver ring exists */
abort _Receive():
}
Case 3 (mixed ring):
a) Task A sends te B, B receives from C, C sends to D, D receives from A.
A and C are blocked at state SEND_BLOCKED, while B and D at
RCV_SPECIFIC. BLOCKED.

b) Task A sends a message to task B. B receives it. Instead of calling
_Reply(), task B sends » message back to A. Then A blocks in
REPLY_BLOCKED, B in SEND_BLOCKED.

In general, the length of task ring could be arbit.rar'lly_ long. A blocked
task can be in one of the three task states : SEND_BLOCKED,
ﬁEPL)’_BLOCKED and RCV_SPECIFIC_BLOCKED.

v

Solution in pseudo code (properly inserted } :

while(the correspondent is at one of three above-mentioned states)

{

get correspondent’s correspohdent.;
if(newly obtained correspondent is the caller) /* task ring exists ¢/
{
if(including caller, more than two tasks on ring)
abort primitive;
elsemif(correspondent at REPLY_BLOCKED ||
correspondent at SEND _BLOCKED (caller is a sender) ||
corres. at RCV_SPECIFIC_BLOCKE;D (caller is receiver))

abort primitive;

Without testing, the revised _Send() and _Receive() primitives are
given in Appendix C. The added‘lines are in boldface. No part of the original
code is modified or dropped, though it is n‘ecessary to simplify the primitives
and make them consistent with the ‘;-)rogramming style when addiﬁg~ the

deadlock prevention algorithm.

o~

The algorithm also can be implemented as a function, in order to hide

details from _Send() and _Receive() primitives (see Appendix C).

ask Creation and Desu'uction

Task creation and destruction play an important role in Harmony. In this
chapter, we present the Petri nets models in both high and low levels. As a
review, a brief introduction to the algorithm is given. Then two high level PN

models provide us-a profile of the algorithm. Finally, the detailed PN models,

which precisely summarize and interpret the algorithm, are elaborated.

7.1 Introduction

A program in Harmony is made up of oue or several tasks. Tasks are
executed in parallel, They communicape and synchronize with each other.
Harmony supports multif)l& tasks on each processor by maintaining a separate
pr{orlt,} scheduling system for that processor. Each task is tied to the processor
on \}hxch it executes, and is added to that ready queue system, as depicted in
Figure 7.1 where the contents of the field ENABLE_SR from 0x2100 through
0x2500 are correspond.jng‘ to processor inberru'pt levels 1 through 5, by a call
to _Add_ready() from ihe only processor which is the owner of those queues.
Level 4 is the highesi pridrity for' Harmony tasks. Level 5 is usec‘for
_Td_service(). Level 8 is used in _IP_int{) partly and'in Disable(). The lev-
els of ready queues can only go up to 5. ' A task can be created on ;ny proces-
sor which might be different from the processor on which the created task is

' allowed to execute. This adds flexibility for task creation. Similarly, a task can

be destroyed on any processor.

Two functions: the _Creat.eﬁ()A and _Local_task_manager(™n Harmony are

72

0x2500

0x2400

0x2300

0x2200

0x2100

READY Q

TL READY_ TDM

HD_READY_TEﬁ;

— NEXT_Q

ENABLE_SR

READY Q

HD READY_TD

.0 PRE\

TL_READY_TD

— NEXT_Q

ENABLE_SR

READY Q

HD READY TD
_ _T!

TD

D NEXT }

TL_READY_TD
- -
— NEXT_Q

ENABLE_SR

READY Q
D_READY_'TD

TL_READY_ TD
|- NEXT_Q

ENABLE SR

READY_Q

ES—

D_READY_TD

T

Eaal
S

D NEXT

e TD PREV

§—————tde TD PREV

«@—————+te TD PRE\

T~~~ Tp PRE\

ENABLE_SR

_Idle_q

D_READY_TD

TL_READY_TD

NEXT_Q

0x2000

ENABLE_SR

TD

D NEXT |

_Idle_td
TD NEX

e TD PREY

TD
D NEXT

. TD
D NEXT

TD

D NEXT

————++ TD PRENV

Figure 7.1 Separate Priority Scheduling System

-»

L

descriptor pointed to by ‘*td'’. d

74

. s

mainly dedicated to task creation, whereas estroy(), _Suicide(), _Infanti-

cide() and _Local_task_manager() to task destruction. As a special case, there

)

responsible for the creation of tasks: user, directory and gossip respectively.

are three primitives: _I_user_program(), _I_direc and _I_gossip()

The calling graphs of task creation and task destruction are depicted in
Figures 7.2 and 7.3. The wide arrow denotes that the communicating primi-
tives are called and the arrow points to the receiver. During task creation and

destruction. some functions will be called but not all of them interest us.

" Only those requiring maximum synchronizations with other functions are

expanded to details ic our model. However, for the convenience of rea,dmg,

we list functions having not appeared before.

L3

~Abort{ s) : sends an aQ(})rt,ion message to _Gossip() to indicate a fatal error

occurred. ' s

_Close(uch) : a connection no longer needed can_be closed by a call to this

Q

function. The memor) space for the){cb user connection b!ock) is freed.

_Create{ task_mder) : creates a task. The task to be created is specified by

task index which represents a unique task in the task templates.

o

_Destro'y(id) : the task with task ‘‘id"’ is stopped, all its memory resources

are returned,. the id is made invalid, all its descenc}a.nts are killed.

_Free_first_block({ td) : frees a block of memory own;d by a task with task

-

_Free_td{ td) : frees memory a.liqcaﬁon the td points to.

\

)/ 3_\

Called by application tasks

3

_Create

: , _l_stack_
_Dlsablg L\ _Get_td and td

RNV

_Enable e+ Getvec L _Disable

\
/ =

_Enable

_Abort r/—b _Sizeof

T

Block

signal_ Free_first_|

_Freevec |e4—— _Free_td

processor _block
B
. v
_IP_int [€--———
X , SN
P
‘ I
] 41 .
Convert _Td_ | _Signal_
to_td service processor
g -

| Add_ready . .

. Figure 7.2 Task Creation

.

W

-

o

‘ Callefi L)y tasks l

_Suicide

Conveyt
to_td

|_Block_signal
_processor

= ————-

- —— o — S — —— —

_Convert.

»{ Destroy

76

>

U

_Local_task
manager

|

Signal
processor

4

-+ _IP_int

!

,. to_td

g

_Sizeof

“Td servicet

1

_Add_ready

.
!

 J

_Intanticide

_Close

(expandabile)
#ﬂb

S

_ld_Ltm

_Disable

_Enable

N
/ Local task

: To next page

_ld_Ltm

Figure 7.3 Task Destruction (to Eﬁontmued)

o

Continued from last page

‘

_infanticide

- Close

| Convert_to_td

77

d _Invalidate_td

processor

_Convert’_to_td

-

Figure 7.3 Task Destruétion

sandll NG

. _Free_
first_block
_Local_task_ _Disable
manager '
_Enable
/4
_Block_signal_ : _3‘9“2'__ Free_td
sor -
\ A
_____ » _IPint
-— _Td__servfce
_Add_ready

78

¢

_Freevec(block) : removes the block from the memory resource list for the

L]
¢
]

task.
_Get_td() : gets an empty task descriptor from system, along with a unique
task id. Does some initializations. Returns a pointer td to newly acquired task

L J
descriptor.

_Getvee(size) : allocates size bytes coalescing on allocation.
_Id_Ltm({ ud) : returns to the calling task its local task manager id.

_Infanticide(destroyer) : destroys offsprings and closes any connections. that

the offsprings might have.

_I_stack_and_td(u{, stack, stack_start, requestor, root, prionty, wsk_index} : ini-
tializes a stack and td for a t,aslf by properly setting the fields in these two data
structures. Fields like TD_NEXT, TD_PREV, ID, CORRESPONDENT,
REQUEST_MSG, REPLY_MSG, LEFT_BROTHER and RIGHT_BROTHER

are not filled in by this function.

<
_Invalidate_td(victsm) : invalidates victim's id instead of victim's td by turning

off seven bits from the 25th through the 31st. It seems to be more precise if

-

call this function _Invalidate_id(victim).

_Sweof(block) : returns the size of a dynamically allocated block.

\

_Suicide() : the calling task destroys itself. .

7.2 High Level Petri Nets Models 'L ’e

Similar tc top-down design, we stary from high level model in order to
-é v ‘
\

79
have a quick understanding. Because our focus is ,on task creation and des-

truction now, some less relevant primitives, like _Send(), _Receive() and

_Reply() ..., will receive minimum attention. Tt

7.2.1 Task Creation

® Each -task needs a corresponding task template, which is a data structure
specifying the essential]at:zramet.ers of the task {3, p6]. This template can be
_found in a vecter of task template declared f(each processor in user's pro-
gr?.m. A task$'~t',emplate is unique in system by assigning a unique integer o
one of its fields—GLOBAL_INDEX, and coatains other essential parameters
like gt,he root function, size of its stack, priority and local task manager which

creates and destroys instances of this task.

The data organization for manipulating task templates is depic;;d in Fig-
ure“7'.4. The pcinter t table is made up of absolute a,d_dresses. which provides
a matc'higg betv;'een the linear addresses and all indices of task templates in
system (in Harmony language, the task index, template index and global

index are referred to the same thing). The pointer *t table contains the
addn[esses of all task templates in syst,eui, provides a matching between abso-
Iu‘ve address and the address of a task femplabe which requires several memory
locatious. The ¥*Tft.able provides the memory space for all data strucﬁrs -
struct TASK_TEMPLATE where a single slot represents multiple memory
locations. Templates,’in a _Template_list[| declared for one processor are 'm‘

continuous locations from that processor's storage pool.

Next, a task needs a task descriptor, which is a data structure used ‘r an
instantiation of a task (template) with a unique id over all task instantiations

and stuffed by the system. So multiple instantiations of the task with different

\,
'~

80

sajeidwsa] yse] Bupeindiuepy sop uonezivebio ejeq 42 eanbiy

10Ss8900.d

J8YJOUE 10} A . — T |

[hsi ereidwa) ~ _ BN 4
~ o
; o S B
: _ | J1eaul
_ .
. — » -
— .\ -— _ ,
- ¢ aput)s
Josssooud - Xopul %Sel
8uo0 O} A ‘ k

[hsi erejdwa) ™

l.

} . «cc '

[~ 90¥0 1 XOpelejdwa) ysey pug

YLLQ _ XQ aje|dwa) ssejl

| 3

ke 3LVIdW3L ¥SVL onus
® . «

81

id can be produced from one task template. Typical fields in a task td are like:
state, correspondent, stack, position in a queue, meésage pointers, its template
index, maintained family queue structure, etc.. All these will be properly ini-

tialized during task creation.

Finally a newly created task will be put on an appropriate ready queue o

)
-

wait for dispatch.

Figure 7.5 and Table 7.1 make up our high level model for task creation.
A caller starts by calling _Creab_e() from Pl, chooses a task template, then
sends a request message to the local task ma.nage;', blocks itself in P,_,. Upon
receiving such a request, the local task manager serves it in cooperation with -
the priﬁlitive __Td_serv.ice(). hey allocate a td, a stack and other memory
resources, then initialize tHem, add son to creator's oﬂ'sbring stfucture
(queues), finally 2dd both to the rea.c!z queue. Eventually t fires. It puts the
new baby in P;O' rele;lses the creator/father in P,. The local task manager .

goes back to P4, reenters the infinite loop.

7.2.2 Task Destruction

A task can be destroyed by a call to _Destroy() from any other task. It

can also commit suicide by calling _Suicide().

Destruction means that the task is stopped, its id made invalid, and all its
resources returned to system. Moreover, all its descendants are destroyed. A

high level view is depicted in Figure 7.6 and Table 7.2.

_Destroy() starts from Pl‘. The reqqggt. goes to _Local_task_manager()
(Ps)’ while the destroyer blocks in PZ' Then the local task manager and
Td_service() serve destruction request, stop the victim, cut off its connection

Ll

with other tasks, till send the victim to _Infanticide() (P t,).

[8A87 ybiH ui uonealn se) Gz ainbi4

8d 9oINBS P

¢l
ajeal)
Zd Id

.m~ od €l

Jabeueus yse) [eoo]”

.

Table 7.1 Task Creation in High Level

Transition

Meaning

t, calls _Create(), request msg received by
local task manager (ltm), Itm enters case CREATE loop
t, _Create() unblocks and returns
t, serves request, activates _Td_service()
t, has _Td_service
t5 serves request
t creates new baby, unblock creator,
Itm backs to infinite loop
Place Meaning
) creator ready
9 ‘creator blocks
3 “ltm in progress within case CREATE
and ready to require td service
P‘1 infinite loop entrance for Itm
Ps. Itm waits for completion of td service
Pc _Td_service activated
P7 for returned _Td_service, starting place for it, too
PS completes td service
Pg‘ ltm is ready to exit loop
Plo holds new baby
p for repli=d ﬁessag; to unblock the creator

—
—

83

w

:o-.SEJ.S..._«.uo%.

1w o

9

s

"
dHAL unlv.—.l

'

Table 7.2 Task Destruction in High Level

Transition Mezning
t, sends message to local task manager (itm),
Itm enters case DESTROY loop®*

t, _Destroy() returns

ty serves request, activates sd'd _service()

t has _Td_service

4

L, serves request

t; triggers victim, Itm backs to infinite loop

t activates’_Infanticide() .

ty kills descendants .

ty activates _L.ocal_task_m a.nager’g.)

o Itm serves request, activates _Td_service()

L has service

ts Itm serves request
| ta releases destroyer, It backs to infinite loop
by wipes victim out of system

Place Meaning

Pl destroyer or suicide is ready

P, destroyer blocks

Pg Itm is in progress and ready to request td service
P _Td_service activatec
’P; infinite loop entrance for ltm

P6 Itm waits for complefion of required td service
P7 completes td service

PS for returned _Td_service, st.a.rt.ing place for it, too
P9 Itm is ready to destroy victim’s off spring

Plo “for a token to trigge: actxvax;lon of victim

P11 holds victim

Pla _Infanticide() activited

Plg ready to kill victim itselfl

P14 holds victim which is dying

P Itm entered case SUICIDE loop

pls Itm waits for com pletion of required td service
Plg all destroying works have been done ‘]
Pl8 _Td_service activated

.Plg completes td service

P,l,o for returned _7'd_service, st.artmg place for it, oo
P;__ infinite loop er.trance for Itm

P, for a control token to remove victim

P for replied riessage to unblock destroyer

85

86

.
In _Infanticide(), all victim's offsprings are killed, a suicide request is
made to its local task manager by ty Activated local task manager puts the
vietim in F’H to let it wait for the completion of its destruction, and as usual
cooperates with _Td_service() to serve the request. They remove the victim
from its brother queue, release tasks on its message passing queues, free td
and memory resou.rces. Finally, tla fires. It releases the destroyer blocked in /
PQ, drains the victim out of P“.t,hrough P22 and t,“. The local task manager

-

backs to the infinite loop (P2l) to serve next request. '

Notice that when _Suicide() is called from P, it resorts to (calls) _Des-
troy(). The destroyer is now the victim. Having had all services, the local
task manager st.'il'l replies to (by t13) the null victim blocked in P2 of Des-
_troy(). Singce thye victim has gone, _Reply() simply fails. This is represented
by the failgre branch P2, t, and P2 again iq Figure 6.8. No problem for suicide

algorithm.

7.3 Low Level Petri Nets Models

The low level models provide us a close look at.the algorithm.

7.3.1 Task Creation

The model is given in. Figure 7.7 and Table 7.3."The newly named places
are ACTIVE, ° INFINITE_LOOP_ENTRANCE and CASE_LOOP_
ENTRANCE. The partly dotted arc ‘‘— . =" kaieans that some tri‘via.ls are
omitted. For simplicity, we only highlight the improtant aspect.; of the PN

model.

-

Initially a token—the creator is in Pl, the local task manager represented

by a token could be eithey in P5 or P_, _Td_service() is available by a token in

7’

]

3
o \ A~ .S

{Yoeuay s worl FRTCCTIRE Al BRI

-l

.- owy

«©

~ 0 B W
= wlil g2
s %

-z

-
I

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS
STANDARD REFERENCE MATERIAL 10102
(ANS) and ISO TEST CHART No 2!

"4

Table 7.3 Task Creation in Low Level

Transition

Meaning

1
o+t Y
G o WD

~1 o

-

s
o o

gl = ol < S - d

returns O

returns O

calls _Create(), checks if the task_index is valid
checks if the pointer to TASK_TEMPLATE is non null
local task manager (Itm) unblocks creator

and reenters the infinite loop

passes CREA TION request message to itm,

gets requestor

ltin activates, sets up response msg pointer

calls _Recelve() any

gets pointer to TASK_TEMPLATE,

gets a td and checks if it is good

sets up response msg, calls _Reply(g i

sets up Msponse msg, replies to and unblock requestor
sets up response msg, frees td, replies to requestor
gets and adjusts stacksize, allocates memory space
checks if the allocation succeeded

continues execution, frees stack and td
continues execution

initializes stack and td,

sets ltm’s CORRI&JSPONDEI\)IT to new baby's id
Itm redispatched (unblocked ' -

adds Itm to ready queue RN
adds son to ready queue

Itm enters case FIRST_READY loop tn _Td_servic
advances ltm’s state

blocks Itm, interrupts creator’s processor

gets creator’s and its son'’s tds,

checks if the father is alive

sets Itm's CORRESPONDENT to0 0

attaches son to creator’s offspting structure
advances ltm's state, ’
signals Itm’s processor to request service

sets up request msg,

_Sendf) to Itm specified in TASK_TEMPLA’IE .

[

Place

Meamng

holds the creator—the caller of Create()
REPLY_BLOCKED state for the creator

fork place for result of checking task _index
fork place for result of checking task tcgiplat,e
holds Itm—the caller of _Local_task_manager()

88

(To be continued)

Table 7.3 Task éreation in Low Level

Place Meaning

P6 Itm ready to reenter the infinite loop entrance
P, infinite l;>op entrance for ltm

P8 ready to receive a task creation request !
Pg cas; loop entrance for tm

Plo Itm ready to reply creator '

P” fork place for result of checking memory allocation
Pw fork place for result o‘ﬁ\c\hecking td I

P, holds unblocked (redis;é.tched) local task manager
P“ READY state for new baby o

P15 ATTACH_OFFSPRING state for Itm

RIG holds new baby-

F‘17 READY state for ltm

P18 ready to add son‘ or Itm to their ready queues
P, | FIRST_READY state forlum

Pao ltm waits for td service re:quireci

P,_,l for a token to activate _Td-service“

P,_,,_, for a token to signal Itm’s processor:

P23 fork place'for result of checking the creator

P24 Join place)

Py holds caller of _Td_service()

F;Qé for a token to ndvance‘lpm’s state

P

(3]
-2

SEND_BLOCKED state for task creator

89

AN
S——_

\\f\ 90

. —
st. The creator speciﬁés a template igldex, ‘ca.lls _Q(eate(),\then checks the
index. puts the result in 'P3 by'ﬁring t3. If a valid task index was chosen, t,
| fires instead of t,. We can agsign two branching probabilities to each bwra.n(“h
to simulate token forking. Later the creator sends a request message to the
local task manager which is specified in the task template chosen before and is
not necessarily the one of creator, then blbcks in P4. If the unborn baby'sy
local task managér has been activated, and is waiting in Pé (now it's’
RCV_BLOCKED). then the message will be imxp‘ediai,ely passed to the local
task manager by firing t6. Otherwise the creator stays in P4 SEND _BLOCKED.
Upon receiving CREATE request, the local task manager will enter case
CREATE loop (Pg), then get a td (tg) and a stack (.tla). After initializing them
(t,;)» a new baby is put in P

16’ while the local task manager enters P~15

ATTACH_OFFSPRING. - ' -

Then the local task manager requests _Td_service, blocks itself in P20' In
_Td_service(). the son is added to father's (creator’s) offspring structure (ty)- |

TLe local task manager's state is advanced to PIQ’FIRST_READY. Then if the
son is dead (may be killed by another task]), the local task maﬁager goes to
P17 READY. Otherwise the son is first added to son’s ready queue by:tlg, the

local task manager follows second from ng.

Now the local task manager may unblock (t”) and continle execution
from the old context where it was blocked. It checks the baby’s status. If the
baby died, it frees stack and td (t“). Finally it replies to the creator (L“),

unblocks it (t.), and reenters the infinite loop P,.

The conceptual correspondence between two level PN models are given

in Table 7.4.

91

Table 7.4 Correspondence Between Two Level PN Models of Task Creation

“

Part High Level Low Level
(Table 7.1) |~ (Table 7.3)
creator 'Pl, t P2, t, Pl’ by Ps, tys b P4, t L27, P27, L P2, ts
2 similar to t
t, 3 similar to t .
P2 similar to F‘2
Jtm P, t, P, t, » by Poy t’g’ » Y Pgs g Prov bio b Pii
Ps’ bg» PQ’ ts_ t12’ be Pls’ 22’ P21’ P20’ P19’ by Plg’
txg’ t18’ Pl?’ tn’ P13’ L15’ tu’ P10’ t11' Ps’ '“5
’new.baby ter Plo te? Pls’ tgr P“
~Td_service |'P,, t;, P, Posr thar Pagr by tys Pogr tygr Pogr Pog
t, Ps’ te

92

7.3.2 Task Destruction

The PN model is given in F;_ig\we 7.8 and Table 7.5. A destroyer starts
from Pg ACTIVE by specifying a victim as parameter in_Destroy(). Then it
sends a DESTROY request to victim's local task manager by t, In the same
way as before, the local task manager receives the meésage by t, and enters

case DESTROY loop by t.. It checks the victim's td by to. If OK, proceeds

. and checks the victim's state by by Three possible outcomes are: first, the

victim in READY ‘waiting for dispatch, tn fires, removes the victim from
ready q.u;ue. éec'ond, the victim in AWAIT_INT waiting for an interrupt to
signal the coulpletion of I/O sgrvic? from a device manager, Yo fires, removes
the victim's td in interrupt table. Third, the.victim in one of blocking states
like SEND_BLOCKED, REPLY_BLOCKED, ..., and most probably blocking
in one of message passing primitives, t, fires, the local task_manager enters
P, RETRIEViNG. Then it blocks, sends an interrupt to the victim's proces-
sor w0 request RETRIEVING service (tlz). In _Td_service(), if the victim is
blocked. removes it from any quelj:fz (“1"‘3" If the victim's correspondent is
copying Imessage, .abort.s copy mességé'*(tm). Then by fires. It sets the local
task manager,i‘tao ACK_RETRIEVE (P22), and unblocks it (t). So far the

viclimn is stopped. Next, we will kill it as well as its offspring.

The local task manager will.nct reenter the infinite loop P9 until proceeds
to oo There, it sets the victim’s state to P21 INFANTICIDE by t21’ then sig-
nals the victim’s prgcessor by L%_,‘,and the victim joins the ready queue by te
with the entry address of _Infanticid;().

'L‘,t:xé'h,&isé,aLciig'd victim ssarts from P12 ACTIVE, activates _Infanticide().

It closes its“donnection resources by tzg' t,hen_checksv whether it has sons by

' t, - If any, it calls _Destroy() to kill it by t,, and checks the next and kills it

—/

03

Ul uononsa(] YUY, 8L N3y

TTaplenuejul [2ae] MO

o

_ (Jlonsaq™

.:

°d
uos |1y

2y {dAlloYv

N:

Table 7.5 Task Degtruction in Low Level (To be codtinued)

Trapsitign s Meaning
L unblocks destroyer
t, sets up request msg, calls Send(g .
t sets up response msg, replies to destroyer
¢ passes message to local task manager, gets requestor
o sets yp response message pointer
£ gets victim's td and checks if it's alive
t¢ checks victim's state
t! calls _Receive() any . ‘
> vets Itm’s CORRESPONDENT to victim's id .
t¥ removes victim’s record in interrupt table
110 removes victim from ready queue
tli dispatches the next ready task
12 local task manager blocks, interrupts victim's processor
13 get victim's td, check if it's blocked in one of 3 blocking states
ti; removes victim from a queue, gets its correspondent—receiver,
if receiver is copying message from victim
e adds vietim to ready queue
t, advances local task manager's state
boo aborts copy . message
ta) advances victim's state
v sets victim's state to RETRIEVED its CORRESPONDENT to 0,
signals local task manager’s processor
t unblocks local task manager, adds it to ready queue
23 redispatched
24
b continués execution
bog changes victim to ltm’s priority, assigns victim’s STACKBASE,
- signals vietim’s processor)
t has CONN_RESOURCES ?
27 . ‘
tog closes them
tag . returns from-_Destroy()
b any son exists ? ‘ ‘)
128 sets up request message, ca.lls _Send()
toa passes message to local task manager, gets requestor
2% advances vigtim’s state
tas drains victim out of system -
toe gets vittim's td, removes victim from ltm’s queue,
sets local task hanager’s CORRESPONDENT to victim’s id
. local task ma.nager blocks, interrupts victim’s processot
3; gets victim'sgd, removes v1ct1m from brother queue,
s:gnals local task manager’s processor .
t39 adds local task manager to ready queue ’ 5
beo redispatched .
t invalidate victim's id,see if its send,recv and reply queues empty
43
tes release them, check. if victim uses any stack and memory resource |
tes checks if victim uses any st.ack and memory resource
t4‘6 frecs them
ta releases victim's td, sets up response msg, replles to destroyer
t calls _Destrov() to 1; ill son

-
«

Table 7.5 Task Destruction in Low Level

Place Meaning
P1 for rep]y message to release destroyer
P, holds destroyer—caller of _Destroy()
P3 REPLY_BLOCKED state for destroyer
: P~1 . SEND_BLOCKED state for destroyer
P5 | holds victim's Itm-—caller of _Local task_Manager()
1 Py fork place for result of checking victim’s td
P, case loop entrance in _Local_task_manager()
-P8 Itm ready to receive a message
Pg , .infinite loop entrance for Itm
Plo fork place for result of checking victim's state
P RETRIEVING state tm. v
P, | holds victim—ecaller of anticide()
P13 for a control token.to activ] Td_servme()
P14 - fork place for result of checking v:ctun s state
sz READY state for victimv
P16 Itm’ waits for completion of td service required
P17 for a control-token to advance ltm’s state
l:’18 holds caller of Td_servxce(%
P19 fork place for checking result
P, holds the victim 4
P,',1 INFANTICIDE state for Itm
P ACK_RETRIEVE state for Itm
ng for a control token to unblock Itm
Py Join place in _Td_service() :
Poe for a token to advance victim's. state
5 for a token to add victim to its ready_q LT
P23~ | READY state for ltm
P28 holds unblocked (redispatched) local task manager . | .
P29 Join place for Itm -
P30 for’k place for checkintg victim's memory resource -
P31 Join place for victim
P32 fork place for checking victim's sons
P33 SEND _BLOCKED state for victim
P34 REPLY_BLOCKED state for victim
Poe D YING state for victim
P36 for a token to advance ltin’s state :
P37 -| DETACH_OFFSPRING state for Itm
Pig | forsa token to activate _Td _service
P:&g waiting place for Itm
P40 required td service has been completed
Pu ACK_DETACH_OFFSPRING state for Itm
P 0 READY state for ltm
p? holds unblocked (redlspa,tched) local task manager
pid fork place for checking victim’s communication queues
P:: transit place for ltm
Pié join place for Itm -
F'47 ~for a token to remove victim
P18 for a token to advance Itm’s state
P | for a token to advapce victim's state

06

N
again, until kills all its sons one by one provided that no grandchildren exist.
Notice that this is a self-recursive call. If a tree-like off spring structure exists, -
it will starts from the bottom—the youngest generaﬁon, kills them one by
o;le, t,he.n the next old generation, ..., until the second genera.tion_:_ Having
killed all its descendants (or no descendants at all), the victim ﬁeeds tor l;il‘l

itself. It sends a SUICIDE request to its local task manager by t,32, later on,

blocks in PM REPLY_BLOCKED.

Upon receiving such a request, the local task manager fanters case SUI-
CIDE loop by t,, moves thé victim 1o P, DYING, which indicates that the
victim is dying gradually, and removes the victim from its reply(queue,
because ‘the victim is dyir_ig, no ne’ed to- reply/unblock it‘lau;r. In the mean--
time, the local task manager enters P,, DETACH_OFFSPRING. Having
acquired _Td_service, the victim is removed froﬁm its brother queue‘by tas'
The redispatched local task manager %\'t checks the victim's send_q, recv;q
and reply_q by by If inding any tasks there, it releasgs‘them and sets the
CORRESPONDENT fields in those tasks’ td's to O to indics'zte the victim
dying (t“). Then it checks the victim’s_ stack and other. memory resources,’
frees them by L Next by fires. It replies to and ,releas-es the d;estroyer
blocked in P, REPLY_BLOCKED of _Destroy(), drains the victim in P35
DYING out of system by b The local task manager returns to the infinite

loop entrance P9 to gerve the next request.

To commit suicide, a task calls _Suicide(), which in turn calls _Destroy()

with suicide's id as the victim.

The correspondence between two level PN models are given in Table 7.6.

98

Table 7.6 Correspondence between No Level PN Models of Task Destruction

loop

V4

Part. High Level Low Level
(Table 7.2) (Table 7.5)
destroyer P P2, t, P2, Ly P4, t, P3, t
ca§e P t P3, | PS’ ts, Pg’ t8. P8’ t4, P7, t, Pﬁ, t3, Pl'
DESTROY Peote, Poote |t b, Pttt Prvt o P, Pe
of Itm t . P22, t,23, P27, t P28’ 5 P b
inst;antiation of g’ t,3, ~P18’ t PH, "18’
_Td_service in P4, t,q, txs’ PlQ’ big? t20,
case DES_ P, t, Pyt by Py Py
TROY loop
vietim PII’ ,t'r' P12’ P20’ I)25’ P26’ P21' tls’ Pls’ le'
IRSTIRS P o tri Pagr tagr Y Pypr by P
, Pu' ¢ t49’ t3'2’ Pss’ t3.3' P34’ t3-1‘ pss‘ t35
case ‘ le, tyr Pls’ P ;”t , P o L P8’ tos P7 Lag P49. P37, Ly
—
SUICI.DE f L10’ P16’ tml’ P39’ Pss’ 38’ 40’ P-u’ tu' P42' \t42’ P43’
loop of ltm P17’ tl3 t‘43’ P44‘ b t’qs' P45‘ tqe’ Ln’ P48’ tqa' 47
instantiation of on,. to P18’ 28"
_Td_service in P18’ b P48, P40"
case SUICIDE gt by by By

Chapter 8 FError Handling

Similar to the interrupt handling, the processor will enter the exception

processing state. But second level handlers are written in C language.

v et

;

o

8.1 Description of the Algorithm

Error handling in Harmony is relatively simple compared to the other
parts. The whole purpose is to provide a general reporting and logging

mechaffism to users. Figure 8.1 describes the algorithm employed.

During initialization of processor 0, a call to _I_gossip() f'rom
_Local_task_manager creates _Gossip task ﬁ!‘h-q-éports any errors occurred
to the user. Before?_Gossip serve‘s any requests, it opens two con_gfctions\
with terminal server by calls to _Open(), then chooses one of them as the

1 4
input stream and the other as the output stream by two calls to _Selectinput()

and _Selectoutput() respectively.

Stream 1/0O functions: _Putstr(), _Puthex() and _Put() are used to put
errom messages in output stream. Finally _Flush forces the contents of the

output stream out and sends it to the server.

Y
_Gossip receives error handling requests from the interfate functions.

_Abort() is called from a system function whenever a fatal error occurs in it. .
The abortion message 1s sent to _Gossip, then to the user.. In the meantime,
_Debug() is activated. The user is able to take proper action, including to shut

down the syst,é;m.
N

N

99

S

-Open

Select_
input

Select.
output

Debug

-‘/ .
_Abort

I

Log.
gossip

!

‘Called by application tasks

L

J_gossip

Break
point

_Local_task_manager

_Putstr

Puthex

— e s e e o -

| Spurious

I

Second level error handlers

Activated by first level handlers

Figure 8.1 Calling Graph of Error Handling

N

. 101

_Debug executes the debugger that provides means of handling errors to

user. _Log_gossip is the only'int,egface function which does not invoke the

'

_Debug subsequently.

“0
. «

“The' M(C6800Q, processor works in one of three processing states: normal,

L

exception; or halted. When some unusua! conditions occur and are detected.

such as‘address err:or, zero divide, privilege violation, ..., as indicated by
<

names of interface functions in Table 8, the processor enters the exception

processing The current execution is suspended; the context is saved:

and a secon{l lefel error handler is activated which sends a request to _Gossip

,

to display theéfegror message then has _Debug invoked. Having received such

a message, say, zero divide, the system user can do something with the help
of running _Debug(). After the error has been handled, the previous
suspended execution is resumed. The processor returns to the normal pro-

<
cessing state.

~ Harmony kernel also provides three other error handling functions:

s e -

_Stackoverflow() : determines if the stack for a task is already overflowed;

_Set_task_error_code(error_code) : sets the task error flag in the task descrip-

tor with the value passed in;

_Task_error_code()r: returns the current task's error ccde.

These three functions reference the task descriptor in the way showed in

Figure 8.2.

>

8.2 éetri Nets Model

\'{he simple: algorithm brings us a simple PN nrodel as drawn in Figure 8.3

»

~
¢
struct TD -
i i read
) +*STACKLIMIT
. p
TASK_ERROR_CODH ’
e write . read
."
-Set.task. . -Task- Stackoverflow
error.code error_code 8

!

.

San

Called by operating system routines

-

Figure 8.2 Referencing Task Descriptor in Error Handling

102

————— .

. 103

: Plu tl‘.'
‘. tll 3o
3 t9
(; . P,
t,cz 3 i ts ts-15
INFINITE
LOOP P,
ENTRANC)
14
P Y

4= B 7

Figure 8.3 Error Handling

Tablg 8 Error Handling

104

Transition Meaning
t invoked, initialized stream pointer
t, gets rqst msg size, _Receive() any
t; passes message
t4 - is output stream closed?
t5 dummy transition
by opens and selects connections
t puts requestor id in output stream, checks rgst msg type
bg.yr e Yo s puts error msg in output stream
ty outputs the contents of stream,.

is rqst msg type LOG_GOSSIP?

Lo calls _Debug()
t dummy transition
t _Reply() a null msg to requestor
12 . oy .
b3 prepares error handling rgst msg, _Send() it t6 _Gossip
b releases requestor, _Gossip backs to infinite service loop
beyr oo t15-15 error handlers activated
te1 = tieys .| €TTOT handlers return

"_Place Meaning
Pl holds _Gossip ;
P, the infinite loop entrance
P:; ready to receive a message

' P(1 a message received

Ps fork place for testing of output stream status
P6 output stream has been checked
P7 the entrance of switch loop
Ps the exit of the switch loop
Pg fork place for testing of rqst msg type
P10 ready to reply .
P11 ready to unblock the requestor
Pla the second level error handlers activated
Plg * SEND _BLOCKED state for handlers
PH » | REPLY_BLOCKED state for handlers
Pl ready to return It
ng 193 holds _Breakpoint, _Abort and _Log_gossip
P16-4,g’6 holds _Buserr, _Addrerr and _Illinstr
Pw'_'s’g holds _Zerodiv, _Chkinstr and _Trapvinstr
1)16-16 A holds _Privvltn, _Trace and _ER!O‘IO
Pm:m'“’lg holds _Em1111, _Nointvec and _Spurious

<

5
,;

¥

») .
. = Wy, 5
Ql ¢

and Table 8. _Gossip task starts from Pl' When it proceeds to P7, there are

fifteen output transitions in front of it.

It chooscs one according to the message type of error handling request,
and usually writes the error message into the output buffer. tg tests the
rcquest message type. Except LOG_GOSSIP, all other fourteen requests will

lead w activation of _Debug().

through P

The places P . hold fifteen error handlers. The last

1 16-15

twelve handlers are second level handlers and activated by the first level error
handlers which are hardware implementations. They will stay there before

their activations (tls) and after their returns (t'16)' b
) . , <

Chapter 9

Kernel Supported Server Implementation

In Ha_rmony, a server is referred to as a resource manager responsible for
providing services for ciient tasks. Server implement.atiqn is a lengthy part in
an operating system. Some common aspects of it are supported by the kernel.’
In Harmony the kernel is responsible for server creatfon. initialization and
registration, as well as the handling of some common requests cooperating
with the servers, such as open and close a colnnection. The kernel also pro-

vides the means of using and monitoring connections.

In this chapter, we give a clear description of the aspects of server imple-
mentation which are supported by the Harmony kernel. Section 9.1 provides
fﬂll_ctional descriptions for each entity and their elements. Section 9.2 is dedi-
cated to the explandtions of the algorithms and the dependency among the
entities. In Section 9.3, the detailed Petri nets mlodel_s \are presented to

describe algorithms precisely.

9.1 Decomposition Description

The software related to this chapter is decomposed into the entities, as

depicted in Figure 9.1. N

9.1.1 Implementing Servers

<
Two functions are responsible for server creation, initialization and regis-

kY

tration. ®

106

107

Implementing Servers :

Server _Report_for_
create service

Implementing Connections :

_Open _Close K

Stream 1/0-(Using Connections) :

| Selectinput |_Selectoutputf — — — — _Printf

Monitoring Connections :

Alloc_conn_ “Free_ . _Lookup_-
ction_table connection " connection
System Task:

/ Directory /
Server Tasks :

2T [T [T

Figure 9.1 Software Classification

108

-

_Server_create(ufslc_indcz{ ins¢_list) : called by a user to create a server task
needed in his program. The task_index and inijgﬁsi are prépared by the user

for the server to be created.

_Report_fursseruvice(name, msg_type) : called by a server task to regisi,er its

names and id with _Directory task.
9.1.2 Implementing Conn’(lactions

o

Two' functions in this entity are called by a client who wants to do [/O

with an.I/O server. A connection, which is in fact a shared buffer between a

cljent and a server, is the means for doing such I/O.

_Open{ name, mode, user_id) : a connection can be opemed by a call to this

function with the name of the server and the mode to use this connection

»~

specified in argument list.

_Close(uchb) : a connection no longer need<d can be closed by a call to this

function. The memory space for the ucb (user connection block) is freed.

9.1.3 Stream 1/O

A stream is an infinite sequence of bytes, a connection/buffer between a

-~

‘e R . .y . .
client and a server. This entity provides the means for user in correctly using

¥

suc\h a streain.

_Selectinput(ucb) : called by a client to select one of the opened streams for

input.)

-

. : J
_Selectoutput{ uch) : called by a client to select one of the opened streams for

output.

109

_Flush() : called by a client to output the contents of buffer to the server, no

matter whet®er the output buffer is full or nat.

Descriptions of other functions in this entity can be found in the Har-

.mony user manual, hence we do not list them here.

9.1.4 Monitoring Connections

A scerver uses functions below to keep track of those connections it has

opened with clients.

_Alloc_connection_table(mil_num_entres, scb_size -) : the connection table is
used to hold the records of opeéned.connections. A server calls this routine to

allocate a connection table.

_Gel_gonnection(table, client, new_connection) : a server galls it to allocate an

entry in a connection table.
: L

_Lookvp_connectiom(table, client, connection) : called by a server to look up-an

entry from the connection table. It verifies the client and the connection.

_Grow_connection_table(table ') : grows a connection table by the

CON_GROW_AMOUNT speciﬁéd in the ‘‘table’’. It s called by

_Get_connection when ‘necessary, never by a server. *

_Free_connectron(table, connection) : called by a server to free a connection in

a connection table.

9.1.5 System Task

3

Only one system task is in this entity.-

_Directory() : it is the root function for the directory task, which provides

, | 110

server task's id when server’s symbolic name is submitted by a client.

~
£

9.1.8 Server Tasks

Most éervers aré either 1/O servers or have I/O features, such as the
clock server. A server is defined either by S)//stem designer or user based on \
the peripheral it controls and service it provides. Cohseque'nt,l_y, their strue-
tures vary greatly from a few lines of task, such as _Explicit_Schédulgr, to a
hierarchical task and routine family, such as _Clock_server. The d_etailééi
classification and discussion are bevond the sco_pé Qf this chz;pter since Ll;ey
are device/model dependent. We only list two system deﬁne‘d servers as they

" ¢
are needed shortly to clarify our study.-

*

-

_Ato_server() : is the root function of the amalog I/O server. This server pro-
vides both A to D and D to A, which are really the detsails we are not

interested in here.

This server does not have any work /agent tasks, nor interface routines,
but is a simple ‘‘bachelor’’. As we will see later, it requires only one initiali-

zation record.

_Tty_server() : is the root function for terminal server, and the administrator
for _Tty model. It has a _Tti handler and a _Tto handler. All initialization
works are moved to _I_tty_server(tty_state), which creates the _Tti and _Two
tasks and 'mitializes them as well as the tty_state record.
" 9.2 Algorithm and Dependency Descriptions

In Harmony, servers can be defined either by sys't,em designer or system
use‘r. It is user's résponsibility‘to create whatever servers he needs in his pro-

gram. Upon creating a server, the kernel will look after server initialization

111

and registration with _Directory task. Then a client task can request service by
opening a connection with this server to do 1/O. After having service
acquired, the client may close the connection. A client can request service

through interface to the server, as well.

9.2.1 Server Creation, Initialization and Registration

To create a server, an initialized task template is added onto the
_Template_list| | at the user’s program. The user also needs to prepare a list
of initialization records for the server. They will be replied to the server one

at a time. The size and format of the initialization records are server depen-

dent, but the struct INIT_REC must be at the start of each record.

Suéh a list of records are depicted in Figure 9.2. The list head poinber'is
set in _-Server_creat,e(). MSG_SIZE is the size of whole record. MSG._TYPE‘
is prepared for a se‘rver to distinguish the various types of initialization
records. IR_NEXT field is for the address of tlile next initialization record.
The record with server’s primary name is put at the start of the list'. 'For the;
_Tty_server there are two re;cords, 'while for the _Aio_server only one record. -

If no initialization ig needed for a server, the list is empty.

The server creation, tnitialization and registration are depicted in Iﬁgur'e

9.3.

From the user task’s root function main(), the function _Server_cre‘at,e()
is called with the specified, parameters task_index and init_list which were
prepare$ by the user. _Server_create calls _Create() to generate the server
task. The created server then sends an initialization request to _Server_create
which in turn repiies one initialization record at the head of the init_list to

that server. The server checks the type of the replied initialization record. In

initializgtion
record.

E nit_rec MSG_SIZE __SliE
INIT_REC MSG i TYPE
v
RNEXT] _ _ [RNEXT
server | | | —

dependent I I l

| 1 |

4

Figure 9.2 A List of Initialization Records for a Server

_Create je——— _Server_ 4—7/ _User / :
create ‘
\\ - / /K\
\
/ _Server A—D Repor't_for_ -——7 _Directory /
service . -

- Figure 9.3 Server Creation, Initialization and Régistration

113

| general, there can be three cases to deal with.
" First, a null record is found, i.e., the server does not need initialization.

, Second, only one record is on the init_list, such as for _Alio_server. The

server next calls _Report_fo‘r_service() to do REPORT_FOR_SERVICE, that

actually sends the server name to _Directory task.

_Directory maintains two server name lists: the server_list and the
secondary_list. The server_list is for all kinds of servers' names, whereas the
secondary_list is only temporarily for server's secondary names. Their struc-
tures are shown in Figure 9.4. Both lists are made up of SERVER_ENTRYsSs.
Later on a client will provide a serv‘er name to find the server id. The

“‘list_ptr'' only points to one of lists at any time.

After received the server's name for _Aio_server, _Directory checks its
validity, allocates a SERVER_ENTRY, writes the name and id into the entry,
“and adds that entry to the head of the server_list. Then _Directory replies a
registration OK message to the server in _Report_for_service(), where the
server in turn replies a REPORT_COMPLETED message to its father in

_Server_create(). Then the server enters the infinite loop to provide service

for clierts, whereas its father exits _Server_create() and proceeds further.

Third, there are more than one records on the init_list, such as the two
for _Ttv_server. Dr. Gentleman's algorithm requires that any secondary
names must be reported to _Directory prior to the REPORT_FOR_SERVICE#'
request, although the first received record contains server's primary name.J
The server merely takes down such information, probably does something

else next, then it checks whether there are more initialization records on the

'

>

SERVER_ENTRY

K 114

server JNEXT_SERVER —[NEXT SERVER > —»|NEXT SERVER |-
list SERVER_D SERVER D | — — [SERVER D
B ISERVER _NAME SERVER | [SERVER NAME
S
NEXT_ | »/NEXT_SERVER}» —»NEXT
secondary ,
list SERVER_D SERVER D | — — SERV%R_ID
- SERVER | NAME ISERVER |
Figure 9.4 Server List Manipulated by _Directory .
A
CON_TABLE
[CON_MAX_CONNECTIONS | CONNECTION\CON TAB | |
| GROW_AMOUNT CLUENT D | > ENTRY | |
| SZE_DATA BLK | DATA_BLK >
N_FREE_ENTRY | OONNECTION |
ICON_ENTRIES ICON_CLIENT_ID .
ICON_DATA_BLK — »
‘ I ‘l
!., | !
”

Figure 9.5 Connection Table Manipulated by a Server

115

}
init_list. If so it sends an initialization request to _Server_create() again, gets
the next record. Then it calls _Report_for_service() to register the secondary

naine with _Directory.

Upon receiving such a name, _Directory puts it on the head of the
secondary_list and replies a registration OK to the server. The server checks
the init_list again. If there are more records, it will get one and report it in the

same way above, until the init_list empty. s

Finally the server exits the initialization loop and calls
_Report_for_scrvice() again but this time the passed-in argument msg_typé is

REPORT_FOR_SERVICE instead of REPORT_SECONDARY_NAME.

Having received the server's primary name, _Directory moves all other

name;‘on the secondary_list one by one starting from tﬁe list head to Lhe:
server_liét in reversed order. Then _Directory addﬁ the 'server’s primary
name w the head of the server_list. This is the original sequence of the
records on the init_list. _Directory replies an OK meséa.ge to the server as

usual. The follov&ing would be the same as that we discusseci in the second

case above.

System designer warns that a deadlock can occur if the protocol of ‘‘any
a‘condary names must be _.reported prior to the REPORT_FOR_SERVICE
request, and only one REPORT_FOR_SERVICE may be done during a server

task's lifetime’’ is violated,

The first violation’ causes trouble in the following way. Assume that the .
REPORT_FOR_SERVICE is done prior to “one of REPORT.
SECONDARY_NAMEs. The server ca.lls'__Report_for_service(-) and gets an

| OK message from _Di;'ectory. Then it sets up a REPORT_“COMPLETED B

118

o
3

message, sends it to its creator waiting in _Server_create(). The creator
misunderstands that dnitialization has been done and exits _Server_create().
On the other hand, having got the primary name, the server checks the
init_list. Since more secondary names exist, it can not exit étsl initialization
loop. So it calls _Send() to send another initializatioq request to its creator.
Unflortunately, its father has left _Server_create(), and won't be able w reply

such a tequest. The server is deadlocked in _Send() primitive within server's

initialization loop. -
As to the second violation, a server does REPORT_FOR_SERVICE more

than once i its lifetime. The first one releases its - father from

_Server_create{). When doing the second, the server calls _Send() from

_Repoit_for_service() to send a REPORT_COMPLETED message to its™

father presumptively blocked in _Server_create(). In fact its father was
released earlier already by this careless son. The son—server receives the pun-

ishment, it deadlocks in _Report_for_serviqe().

Note that these two deadlocks are different in nature from the ones, like
the sender ring iu message passing. They are caused by violation of the proto-

col. All these can be verified latkr in the Petri nets models.

9.2.2 Monitoring Connections

In the server initialization stage, the routine _Alloc_connection;table(-)
may be called to allocate a connection table. Such a table is drawn in Figure
9.5. The number of table entries and size of CON_DATA_BLK are speciﬁ:ﬂ
in the argument list of _Alloc_connection_table. " The initialized

CON_CONNECTION fields and their indices are as fol]owing :

' : 117

CON_CONNECTION: 1 2 3 .. CON_MAX_CONNECTIONS;
index: 0 1 2 .. CON_MAX_CONNECTIONS -'1.

_Get_connection() may be called by a server from its case
OPEN_REQUEST loop, suc}'ﬁs _Tty_server. This ;out,ine allocates an entry
from the head of the free entry list, referring to Figure 9.6, where the relation

index = CON_CONNECTION - 1

is no longer Leld in general. CON_CONNECTION “field serves as a linking
arca. - CON_CLIENT_ID field is filled with the cliént id passed in. If the free
entry list ‘ is empty,. this routine will autbmatica}ly) ca.!l
_G1'@w_c:onncction__;,able(5 to- grows a connection table by tile

CON_GROW_AMOUNT specified in the table. !

_Lookup_connectioa{) may be called by a server from its case
CLOSE_REQUEST loop for example by _Tty_server. This routine verifies the
client and the connection, returns the server’s connection data block which is

" a pointer to char and holds the server’s data for cofinection.

A connection entry no longer needed can be freed by a call to
_Free_connection() by a server’frqm' possibly its case CLOSE_REQUEST
loop. The CON_DATA_BLK is freed and the entry is reinitialized and added

o the head of the free entry list (see Figure 9.6).

9.2.3 Open a Connection

t

To do 1/0 work, a client first needs to open a connection with the server
who is the administrator of the 1/O device. Two -typical calling diagrams are

drawn in Figure 9.7 and Figure 8.
A client calls _Open() with the server’'s name and the mode to use the

| o)/ ,

118

CON_TAB ENTRY CON_TAB_ENTRY
—-index|OON_OONNECT —Fmdexm\l CONNECTION-

ICON_CLIENT_ID o |_CLIENT_ID 1=
FREE . OON__DATA_BLK __DAT A BLK

<

Figure 9.6 The List of Free CON_TAB_ENTRYs

a2 5

i T

/_Client /Z-H _Open _?_fDirectory /EiServer /

o

" Figure 9.7 Open a Connection .

/._Client /L___p _Open ?/ Dlrectory/
Get
connection _Server

Figure 9.8 Open\' a Connection

4

119

connection paiameters specified. Then an open request is prepared and sent to
_Directory task. ‘ _Directory checks the name submitted through the
ser\"er_list,. If no such a name is i'ou_nd, 1t wi.llﬂrefuse the client’s open request
by replying a NO_SERVER_FOUND message to the requestor in _Open().
Otherwise it will pass the open reqﬁest by calling _Senc-i() to the server.
Having re’cpived this request, the server usually agrees with it, readily
replics an OK approval to the requestor, without any checking or resorting to
any other routine$ like the case in _FD_Format_server. _Aio is such a simple

server. The corresponding calling graph is Figure 9.7.

Figure 9.8 is the case for _Tty_server. In server’s case OPEN_REQUEST

loop, the server calls _Get_connection() where it writes down the client’s id

and the connection number for this opened stream. ThHe rest would be roughly

[

the same as explained above.

9.2.4 Using Connections (Stream I1/0)

A group of fMunctions are providec:i. The explanations and the examples
can be found in the Harmony user manual [3]. They were summarized iiJ: the
previous section of this chapter as well. Moreover, because'they do -not
involve complicated data structures and synchronizations with other functions,

su wetskip them here.

9.2.6 Close a Connection

To save the memory space, after I/O service done, a client should close
the connection™ Two typical calling graphs are shown in Figure 9.9 and Figure

9.10.

A simple case depjcted in Figure 9.9 is for. _Aio_server. Upon receiving a

-/_Cdient /

/

-

_~Client -

»1 _Close

Figure 9.9 Close a Connection

=gy

/L» _Close

Lookup
connection

T

—————;/ _Server /

l

Free
connection

Figure 9.10 Close a Connection

)

121

<
close request, the _Aio_server just approves it, replies an OK to the client in

_Close(), as no recard for this connection to be closed has been kept.

A more complicated case, such as for _Tty_server, is depicted in Figure
9.10. Because _Tty_server keeps records of opened connections, so when it
receives a close request from a client task, it calls _Lookup_connection() to

verify such a request, then frees the connection entry in its connection table

by a call to _Free_connection(). The rest is quite straightforward.

-

9.2.6 General Dependency Description

Such-a description is well expressed in Figure 9.11. It shows the relation-
ship among the entities involved and described earlier. Not all routines used.

but the ones of interest, appear in this diagram for simplicity.

9.3 Detailed Petri Nets Models

The modeling assumptions and notations are the same with those used in

6

previous chapters. We present a concise explanation.

_ \
9.3.1 Server Creation, Initialization snd Registration

The study can be broken down to subsections accoi‘ding to the number of

initialization records the server required.

9.3.1.1 One Initialization Record

To create a server, the user task-first prepares a task template for that
server and a list of initialization records which are replied to the server one at
a time. As a simple case, there is only one record on the initialization list for

_Aio_server, as shown in Figure 9.12 and Table 9.1.

A user begins with calling _Server_create() from P . The server creation

~

- : suonoun4 pue_swsel buoure Aouspusde@ 16 ainbid

[suonoauuon
Buuoyuopwy

_ aoIMasS —
ajessn ! — boaomh_o\

10} uoday |
e JETVETS :
., O/1 wealg

0} 8depau|

*

4 ajealn
| TIOMBS

L

ey~ k

124

Table 9 1 Server Initialization and Registration with One Initialization Record

(To be continued)

Trans. ; Meaning
t calls _Create() to create server, is creation successful?
t, sets task error code, returns O
- gets its id and pointers to rgst msg and to a list of init records
t? _Receive() from new server -
t; passes msg to father
t 1s init_list em pty?
t, sets up reply msg, _Reply() to server
te displays abortion msg to user
t is-rgst msg type REPORT_COMPLETED? -
to returns serv'eg"s id :
t“ transit transition)
t12 sets task error code, kills server, returns O)
L removes server out of system
ty gets dispatchpd_, sets up init rgst msg, _Send() to its father
L ~Reply() an init record to server, points to next record on init_list
te releases server)
t17 is a c_orrect 1.n.lt record replied?
tls transit transition
e displays abortion msg to user
too takes down replied msg, does REPORT_FOR SERVICE
t°1 sets up rqst msg and reply msg pointen, _Send() to local _Directory
t . passes msg w _Directory task
t - releases requestor, _Directory reenters infinite loop
23 . .
by is replied result OK?)
tos sets task error code, is msg_type REPORT_FOR_SERVICE?
L; 6 is msg_type REPORT_FOR_SERVICE?
t,- gets rgst msg size .
t;s transit transition
t;g sets msg type to REPORT UNSUCCESSFU
tao sets msg type to REPORT_COMPLETED
t returns.1
31
t3° returns 0
tag - gets reply msg size, _Send() to father—caller of Server _create()
by server enters infinite service loop .
t serves clients
35 Dol
L36 initialization .
t37 gets rgst msg size .
tag list_ptr points to server_list, moves any other names
for this server from secondary_list to server_list
tag list_ptr points to secondary_list
to is reported name valid?
b allocates memory for a SERVER_ENTRY, is allocation successful?
Lo writes reported msg to SERVER_ENTRY, adds it to entry list
‘ pointed to by list_ptr, set up reply msg, _Reply() to requestor
43 sets reply msg, _Reply() to requestor -
t“ sets up reply msg, _Reply() to requestor
t displays abortion msg to user

F S
o

Table 9.1 Server Initialization and Registration
with One Initialization Record
(Continued-from last page)

Place Meaning
P, holds caller of _Server_create()
P, fork place for creating the server
3 do loop entrance in _Server_create()
P4 RCV_SPECIFIC_BLOCKED state for the creator
P case loop entrance in _Server_create()
P6 fork place for testing the init_list
P7 creator is going to release the server
P8 join place for the creator
Pg fork place for testing of completion of server creation
PlO not used
Pu holds _Aio_server
Pl,, SEND _BLOCKED state for _Aio_server
Pl:; REPLY_BLOCKED state for _Aio_server
P14 for a control token to remove, the server out of system
P15 creator has replied an init record to _Aio_server
P16 fork place for testing correctness of the replied init record
Pl7 join place for the creator after testing f
Ps holds server, caller of _Report_for_service()
P19 for a control token to direct the server
P,,O infinite service providing loop entrance for the server
P SEND_BLOCKED state for the server
P.. REPLY_BLOCKED state for the server
P;g server has been replied to by _Directory
P°4 fork place for testing replied result
P;5 transit place for testing replied message type
P,‘;G server is ready to return
P'2'7 fork place for setting message type
P28 holds-the OK token
F’,,Q Join place for setting message type
P;O holds _Directory task
Pl infinite loqp entrance in _Directory()
P3,, going to receive a message from the server
ng case loop entrance in _Directory()
P34 the list_ptr has pointed to a proper server name list
P35 fork place for checking validity of reported name
Pss fork place for checking result of allpcating memory
P ready to'unblock the server

125

S 126

actually is done by a call to _Create() represented by t,- If the server creation

fails, t, fires and _Server_create() returns with O.

If the server creation succeeds, t, fires that sets up a pointer to the initial-
ization list. In the meantime, the user enters the do loop and may bjock in
receiving an initialization request from the newly created server, while the

server is added to the ready queue and gets dispatched sometimes later.

From P“, _Alo_server sets up the initialization request message and calls
_Send() to send the message to its father—the caller of _Server_create() by
firing ty Having received.the initialization request, the user enters one of
case loops through b If the message type received is not expected, L fires,
an abortion meésage indicating a fatal error is displaved to the user. The
father reenters the do "loop gradually and blocks at P4 RC\’_
SPECIFIC_BLOCKED which leads to a deadlock because the “sender now
b]ock-s at P13 REPLY_BLOCKED'.

Back to ‘P,s,‘\ideally the father should enter INI'EIALIZE_SER\'ER case
loop, fire t and check whether there are any initi'flliz;tgiogvreifords left on the
init_list. If something went wrong, for instance, the user hadhnot prepared the
appropriate number, of initializatidn records, te fires that displays an abortion
message to the user. Deadlock occurs later. If the initialization records were
well _prepa.:"éd. ts fires, o'he ini,tializa.tion record .is replied to the server. The
father returns to Ps.-checks whether the type of request messag; from the

server is REPORT_COMPLETED. If not, it will reenter the do loop P, w

. receive the next request from the server.

After firing tls’ the server proceeds until fires L20 which is the boundary
»

of server initialization and registration with _Directory task.
a A

\ , o 127

' ¥

s

<ol
»

By firing tyo? the server enters P18 and prepares(to do REPORT_
FOR_SERVICE if there is no secondarly name for this server on the init_list.

Meanwhile a control token is put into P19 which enables t, and disables t34 SO
that the server is guaranteed to report for service first. -
The server's name and msg_type reported thereafter are ‘packed in the

request message and the latter is sent to _Directory task (t .t

21 22)'

Next to
P33. L fires, because there is only one name for _Aio_server, the list_ptr .
points to the server_list. Then memory space is aJlocategi_foriSERVER_

ENTRY at t . The message from the received initralization record is written

to SERVER_ENTRY, the latter is added onto the sérver_list. Then _Direc- .. ~

tory replies to'the requestor, '_Aio_s;erver, all by Lo ‘tes fires. _Directory task
releases the server, reenters the infinite loop fro_rﬁ P:n'

The released server checks the‘ replied result at g If registration suc-
ceeded, an OK token is generated at by and added to ng. Then both tf:s and

%6 check if the server wants to do REPORT_FOR_SERVICE.

« In the case of '_Aio_server, the registered msg_type is REPOR’i’_
FOR_SERVICE. After P,,, t _ fires, _Aio_server comes to P,.. Thenltgg and
vt'ao set the request message type to REPORT_UNSUCCESSFUL_ and
REPORT_COMPLETED respectively based on the knowledge P28 has.

Afterwards the request message is sent to the blocked creatar of the
server, that is, the caller of _Server_create(). The server goes into P, I
registration fhils, msg_type being REPOR’{‘:UNSUCCESSFUI;,. to fires which
kills the ill-born server. The father returns to Pl with 0. tia ﬁres.next." wipes
out the server. If another way around, msg_type bf:ing

REPORT_COMPLETED, te fires. The father moves to Ps’ checks msg_type

at t,. Then to fires instead of by _Server_create returns to Pl successfully.

As another effect of firing ter the caller of _Report_for_service() comes to
..) L

P”B‘ At this time, tm is enabled only, becausg setting request message type to

REPORT_COMPLETED at t30 earlier was the consequence of firing Log and

LQ" .

Returned to P18 with successful initialization and registration.

~Aio_server enters P, through only enabled ty,r FPao is an infinite loop

'20
entrance: The loop structure .s server dependent. That is the place where the

server actually provide services for clients.

9.3.1.2 Several Initialization Records Lo -

“nh

L4

For some servers, the initialization records may be more than one. Take
_Tty_server (terminal se&ver) for example, there are two records on the
init_list. The server’s primary name is at the first, follows by the secondary

name. We explain‘tl-]e é]gorithm .through Figure 9.13 and ‘Tabk: 9.2.

- Similar to last mode!, the created _Tt:/_server gta.rts from‘ Plo' At Lo it
.v,'ca]ls _I'_.tty_serve'r(‘) that‘ is an agen‘t ;,ask respansible for server in'itialization
-a".nd'x:egistration wit’h _Directory ‘task. Then ta ﬁrés. _I_tty_server enters Pl:s
infinite lc\>op, sends an initialization request to its father. At ts the first record
containing the primary name on the init_list is replied to _I_tty_server. Then
tls fires, which creates tti, tto worker tasks, takes down @he primary name. t]g
‘checks whethef the init_list is empty now. In our case, it is not. te fires next,
... The second initialization record is replied to _I_tty_server. Then t, fires,

“which calls _Report_for_service() to do REPORT_SECONDARY_NAME. To

have more details, let's get back to Figure 9.12, and find P33.

»

129

MENTU] 194105 §1 6 9tnei]

AINDOUI
DIAID%dS
“ADY

-«

: - ‘ 130

Table 9.2 Server Initialization and Registration
with Several Initialization Records

ol

Trans . Meaning]
b calls _Create() to create server, is creation successful?
t, . sets task error code, returns O .
- gets its id and pointers to rqst msg and to a list of init recordu.
T, _Receive() from new server
t, passes msg to father
t; is"init_list empty?
t- displays abortion msg to user
té ‘ dlsplays :abortion msg to user
ty isTqgst msg -tvp’e REPORT_COMPLETED?
to returns serv_e{' s id -
P t“ transit transition ‘ :
¢ _Tty_server dispatched, calls _I_tty_server()
t13 transit transition
129 prepares init rqst msg, sets up. replv msg ptr, _Send() to its father
tis' _Reply() an init record to server, pomts to next record on init_list
te creates tti, tto dasks, takes down server’s prinary name
t . calls _Report_for_service() to do REPORT_SECOND ARY_NAME
t has all init records been received?
18 R L ey .
t!g _trgqsxt transition .
tho initiaMges tty_state, . ' : ’
calls _Report_for_service() to do REPORT_FOR_SERVICE
ty) server enters'infinite service loop
to serves cliehts
22 .
| Place Meaning
P holds caller of _Server_create()
P, fork place for creating the server p—
3 do loop entrance within _Server_create '
P4 RCV_SPECIFIC_BLOCKED state for the creator . -
. P5 case loop entrance in _Server_create,
here it’s INITIALIZE_SERVER
P fork place for tdsting the init_list
| P, Join place for the creator
Pé fork place for testing the recelved message tvpe
Py " not used : .
Plo holds._Tty_server’ <
Pl1 for control token
Pl,, | holds _I_tty_server
Pl(; infinite loop entrance for initialization
P“ SEND _BLOCKED state for _I_t erver
F’l5 REPLY_BLOCKED state for _l¢#tty_server
P16 case loop entrance in _]_tty_server()
Pl? Join place for _I_tty_server
P g fork place for checking completion of initialization
Pi‘g infinite loop entrance in _I_tty_server()
for providing services to _clients

[¥

. 131

tag fires, because of the msg_type being REPORT_
SECONDARY_NAME. Shortly after, the secondary name is written into a
SERVER_ENTRY that is added to ,L_he secondary_list at. Lo The returned

_Report_for_service goes back to P18 ACTIVE through tygr bygr b

, t
24" 26’ 28 an.d t31

in Figure 9.12, proceeds to P17 in Figure 9.13. If more secondary names need
 be replied, tgin Figure 9.13 fires again. The cycle repeats until all initiali-
zation records are replied to the server. At that moment, the primary name

was takeno down, but neither written ipto a SERVER_ENTRY, nor added to

the server_list yet, whereas all secondary names are on the secondary_list.

From }:‘18 in Figure 9.13, 120 fires next which calls _Report_for_éervice()
to do REPORT_FOR_SERVICE. Back to P,y in Figure 0.12, t__ fires next,
which—moves all other names (if any) from the secqndary;_llst to the
Server_list. Later on, the primary ‘name is writen: into ‘an allocated
SERVER_ENTRY, the entrv is gdded to the head of the server_list at tya in
Figure 9:12. “

A moment later(still in Fijgure 9.12), successfully regist,er"ed server sends
a REPORT_COMPLETED r-nessage to creator—the ca.llerz of _Serve;r_creat,e()

to unblock it through ter L. th' t; and tl while the server enters the infinite

09

service loop P, and t,s; gradually. In Figure 9.13, ty, fires suBsequently.

20

_Tty_server enters the.infinite service loop Plé and t .

’ Now for _Ttyv_server, both it;s primary and secondary names are on the
se‘rver_list. All its SERVER_ENTRYSs are removed from the secondarv_list.
Actually this is true in general_.

It is a designing consideration,to move all. names of a server to the

server_list, because later'on when a client wants to open a connection with

. 132.

this server, it will check only the server_list. ' .

»

We can only see the names on the secondary_list temporarily. After all
servers' registrations have.been done, the secondary_list should be empty.

. A
Therefore a doubt is raised whether the secondary_list is a necessity.

In Gentleman's algorithm, servers’ names are sent to _Directory task one
at a time. Several servers may simultaneously do their registrations with the
only one _Directory available in Harmony. Which name c;ﬁ be received by
_Directory depends on the result of server’s competitions, namely, in random.
The snapshots are provided in Figure 9.14. Two init_lists for two servers are
prepared and linked by tw6 users as depicted in F‘iéure 0.14(a). At such a
moment, all secondary names have been received by _Directory and added to
the secondary_list as shown in Figure 9.14(b). The order of names is
reversed. The names themselves are interleaved. Upon receiving a primary
name from the either init_list, _Directory moves all its secondary names (two
here) from the secondary_list to the server_list in a continuous operation thus
the names on the server_list are not interleaved. Finally all names from two
init_lists are or the server_list in the same order originally linked by the users

. (Figure 9.14(¢)). The secondary_list is empty. .

We can drop the secondary_list, and put all names for a‘server directly
onto the server_list in theborder linked by the use; but not necessarily in con-
secutive (may be interleaved with other servers’ names as depicted in Figure
9.15), thus dramatically simplify the code implementation. It does not add any

difficulties to a client when it is searching a server's name through the

server_list in _Directory.

133

‘ 4

fiopang Aq poxur] 1si Aiepuodes eyl (q) v1'6 ainbi4

-

INWN S INWN S INWN S INWN S _
DEN [¢—— DN j¢&—— DN f&——— AN j¢e—1d 15|
2 € -
g AHING H3AS3S
g PuB Y SI8AIBS 10} SISI uonezieniu] (e) v1'6 enbl
T _ _ _ T I
oy _ - _ | _
INWNA| [IWNS| [d| ks T INWNS| [N S| - [SWeNd] [+ st
DN DAN j¢— DAN je—nuf Y~ DAN [DN [¢—{ DAN & jui
9] q e € e -}
1008)
oweu Arewud : JWYN d uonezieijius

~

auweu Emvcoomm D 3JWVYN' S

A

134

foang Aq paulelule 1si Jomes 8yl GiL'6 ainbid

-

_ 3 [1 — [T] [1
_ _ _ r _ |

aweu Arepuooas @ JNVYN S
awreu Arewud : JNVN d

i

T INWNS| [SWwWS| |[SWWNS| [BWNd| [SWWNS] [SWWNd _
‘ DEN [DEN [¢— DAN ¢ DAN [DAN je— DAEN je——nd as)|
K q € B .N 1 .
| o
Koana~ Aq pexur] isi Jemes ayy (o) 1’6 aunbig
| I ! | | |
_ _ _ _ _ _
T INWNS| [SWWNS| [SWWNd| [SWWNS| |SWN S| [SWWN d _
DAN fe— DAN le— DAN ¢ DAN j¢—{ DAN J&— DN je—{1d isy
€ A | .0 . q e
| _ _ AHINT HIAH3S

‘ ' 135
) J

9.3.2 Open and Close a Connection

Most servers are I/O oriented. Therefore, they must be able to handle

the open and close requests.

9.3.2,1 Open a Connection

The PN model is depicted in Figure 9.16 and Table 9.3. A client task calls

_Open() from P . Att it gets the“lg:ngth of¥server’s name, etc., then sends

PR

e

- e 2 ‘3.! T . .
an open request to _Directory b tg.aﬁf'd L, Having received the open request,
« 4

_Director)'; checks the server's name against the server_list at t-

If no such a name was found, te fires, so does - _Directory goes back
o P“ INFINITE_LOOP_ENTRANCE, whereas the Flient blocked in P4 is
released. Later on, 17 fires that returps an error message. The open attempt

fails.

Back to P14’ if the server's name was found, t’ls fires, which relays the

open request. t = passes 'this messége to the server. Here we still use

v

_Alo_server for simplicity.

After having received the open request, _Aio_server. replies an OK mes-
sage to _Directory by Gy In general, a server can check the rest part of the
received server's name to decide whether accept or reject a client's open‘

request.

Released _Directory replies the server's decision to the client through t22
and tg- b also frees the meinory space for the open request because it is o
longer needed. t fires next, which allocates memory space for a ucb. Then
t8 may fire, that initializes the ucb, allocates memory for stream.l.O buffer.
Yo cht?cks the mode of using the conmnection specified by the client. If the

mode is for the input (read), it sets BUFF_INDEX to BUFFER_SIZE: for the

136

ToN53UUOy © Uad(y gl 6 odnoi]

137

Table 9.3 Open a Connection

| Trans. _Meaning
t finds length of server's name, allocates memory for open rgst,
! checks if allocation is successful
t sets task error code, returns O
tg«. sels up open rqst msg and reply msg ptr, _Send() rqst to _Directory
t passes msg to _Directory
¢! unblocked by _Directory, frees memory for open rgst,
5 checks if reply result is OK or not (NO_SERVER_FOUND)
t allocates memory for ucb, is allocation successful?
t® sets task error code, returns O
t: init ucb,allocates memory for stream.l.O buffer,allocation OK?
t sets task error code, returns O
¢ check if mode of using connection is read & write (R/W) or write
t10 Jfrees ucb, sets task error code, returns O
tH! *sets BUFF_INDEX to BUFFER_SIZE
tH4 sets BUFF_INDEX to 0
67 sets BUFF_VALID _LENGTH to 0, adds ucb to head of
. CONN_RESOURCES list, returns aﬁdress of ucb
| initialization
i; gets rqst msg sive, _Receive() any
I enters case OPEN_REQUES loop, checks server name against
server_list, server found?
L sets up reply msg ptr,sends open rqst prepared by client to server .
te sets up reply msg, _Rep]y() it to client
boo -passes msg to server
to, server enters case OPEN_REQUEST loop, sets up open.reply msg,
- _chlyg it to _Directory
ty, _Reply() to client
t23 initialization ‘
t gets rgst msg size, Receive() any
Place Meaning
P Lolds client, caller of _Open()
P2 fork place for checking memory allocation
P3 SEND _BLOCKED state for client task
P 4 EPLY_BLOCKED state for client task
P5 fork place for checking replied result
PG fork place for checking of allocating a ucb .
P fork place for checking of allocating a buffe?
P; fork place for checking mode of using connection
Pg Join place
Pm Lolds _Directory task
Pl ‘f infinite loop entrance within Dlrecwry()
Pl,, ready to receive an open request from a client
P case loop entrance in _Directory(
P“ fork place for checking if found the server
P15 SEND _BLOCKED state for _Directory
Pw REPLY_BLOCKED state for _Directory
P ready to reply to the client
Plé ready to unblock the client
P1 9 holds _Aio_server
Poo infinite loop entrance in _Aio_server()
I;,,l ready to receive a message from _Directory()

case loop entrance in _Aio_server()
H R ’;)

138

output, it sets BUFF_INDEX to O in order to write data to the output buffer.

Finally, a pointer to the opened ucb is returned by t1’4'

9.3.2.2 Close a2 Connection

Refer the PN model to Figure 9.17 and.Table 9.4. Closing a connection is

simple. There is nothing to do .with _Directory:
?

t, checks through the caller’s connection resource list to find the uch to
be closed. t, removes the ucb from the above list and sends a close requ.est
to the server. The ser;/er usually .approves such a request immediately. It
replies an OK message t¢ the client by t. Finally ty frees the buﬁ'er‘ and uci).

that is, closes the connection. -

R R R R R R T S U E—

139

_ - UoNSSUUGH ¥ 9501y “L16 oanal]

<

_Table 9.4 Close a Connection

140

Trans. I\;iea.ning]

t checks throug.h caller’s connection resource list to find the ucb
to be closed, has the ucb been found?

t, sets task error code

t, removes ucb from connection resource list, sets up a close rqst
msg, sets up reply msg ptr, _Send() close rqst to ucb server

t, passes msg to server

e sets up reply msg, _Reply() to client

t is replied result OK?

ty sets task error code

ty free!s buffer and ucb)

Yo initia_.lization ,

t, _Receive() any -

Place " Meaning

P holds client, éaller of _Close()

P2 fork place for checking the ucb to be clos‘ed

F’3 SEND _BLOCKED state for a client

P, REPLY_BLOCKED state for a client

P5 | the client has been replied to .

P6 fork place for checKing the replied rﬁessage

P7 - join place for‘_thé .client . ¢

Psv holds _Aio_ser:vfer ~ 2

Py infinjle loop entrance in _Aio_server()

Pm rcady to receive a request from the client !/

P, ready to enter case CLOSE_REQUEST loop in _Aio_server

PART III

DISCUSSIONS

Chapter 10 Conqlusidh and Future \%rk

10.1 Conclusion

In this thesis, the Harmony operating svstem. excluding various servers,
has been modeled by Petri nets. The Harmony source code Release-1 is
chosen as the most accurate material which describes Harmony. It is felt that
the best modeling approach is one where the model is based on the algorit;}ans
and mechanisms(described in detailed system documentation. such as the u;ior

manual, then have\the model confirmed by the source code. In this way, the

accuracy is largely guaraiitee high and low levels. Unfortunately, the
system documentation is far from sufficient. In most cases, details have to be

obtained directly from the Harmony source code.

In terms of the complexity of the modeling objects, it was easy to build
PN. models for Chapters 4, 5 and 8 in this thesis. In the system initialization,
the PN model using multiple arcs is highlighted by simulating the multiproces-
sor gates and their values. For the interrupt and error handling, t.h;- necessity
of PN models may not be impressive. We put them here only for the sake of

completeness.

Harmony parts given in Chapters 6, 7 and 9 are so complex that makes
PN worthwhile to be used to show its strong modeling power.. The message
passing is a typical activity which highly involves synchronization and con-
currency. The PN model has closely described the algorithm wused. The

revised PN and discussion on deadlock prevention gave some new ideas.

——

142

143

For the task creation and destruction, two levels, the high and low, PN
models were elaborated. The correspondence between them were tabulated.

These hierarchical models provide a top-down view of the topic.

N

As to the server implementation, one of the most lengthy chapters, more
attention was given to the description of the algorithms, i.e., the ideas behind
the source code by means of data structures, calling graphs, decom position

&diagrams. Finally the PN models were refined to precisely describe the

mechanisms with the focus on complex ones. ’ .

-

Because ‘the goal is only to model the Harmony by PN, aé&f pax:t of ng-
. C)
mony that involves little oF no synchronization and concurren@consequent}y

drew the least or no attention. For this reason, the modeling has covered all

9 s
k]

major parts of Harmony, but not all of them. For example, the mémory -

v

management is conceptually important in understanding Harmony. Buf du;‘e to

the sequential feature of its code execution, we ruled it out from modeling & -

.,

objects. A
- » . T e j.‘"»-\ . '
As the prerequisite for building PN models, the algorithms have_been
studied by showing data structures/organizations, calling graphs, decom posi-
1 . o
tion diagrams, and listing functional introductions to program modules.. _
Among them, the depicted data structures and ofganizétibns iriay be most
interesting. It might be a pity not to have drawn all important data structures,

because documenting Harmony is not the central task of this thesis.

Having the algorithms in our minds, we further expressed them by PN. .
Here the PN models first serve as a concise and precise description of the
algorithms. Sometimes a simple PN model is clearer than a page of explana-

tions. Secondly, it is the summation and abstraction of the source program

-

144

~
with emphasis on synchronization and parallelism. Thirdly, the Petri nets

thems’e]'ﬁ'es provide means of analysis.

10.2 Future Work

4

PN models h‘av'e been built ¢pwith my great effort. The next question is

how to make fu‘ll use of them.

First, PN models can be easily used for performance analysis. There are
variety of ainalysis techniques available for PN. Among them, the GSPN {gen-
eral'ized stochastic Petri nets) suggested by Marsan [10] is mos'tly close to the
PN used in this thesis. And a s'oftwa.re package called GSPNA [9] available

here makes solving PN practical.

One obstacle of using GSPNA séemingly comes from the inhibitor arcs

‘extensively used in my models. However, this is not a real obstacle. Actually,

the GSPN with inhibitor arce can be made isomorphic to GSPN without inhi-

bitor ares, because the-inhibitor arcs are reducible. t

' There are two methods to reduce an inhibitor arc in a PN. Firsi, assign

marking dependent probabilitiés to transitions competing for firing, that is,

' introduce a random switch (all immediate transitions enabled by a marking

together with the associated probability distribution is called a random switch.

The associated probability distriBution is called a switching distribution). We

I

explain this method by a example shown in Figure 10.1.

In Figure 10.1(a), the firing of immediate transition t,ort, is controlled

by the availability of a token in P

;+ We can reduce the inhibitor arc by '

defining a switching distribution:

145

UONISUBJ] awt) 8y} buidnposul AQ 21y JoNqiyu| ue Jo uononpay 20t 8inbi4

(q)

LOUMS WOPUEY B bUuidNpoju) AQ 21y JONQIYu| ue jJo uolonpay |0l ainbi4

(q) : “(e)

le

] cd’

3146

where m, = 0, 1 and is the number of tokens in Pl. In Figure 10.1(b), the

mechanism of keeping Lh% number of tokens in P1 to zero or one is omitted.

The second method makes use of one feature of GSPN—if transitions
competing for firing comprise timed transitions and one immediate transiion.
then only the immediate transition fires. Thus (a) can be reduced o (b) in

Figure 10.2. Obviously, method 1 is more flexible than method 2.

T(heesecond way of L;’sing PN moée]s is the PN analvsis. 'I‘wo\‘ majpor
ai;alysis techniques involve the ::aachability tree and the matrix equations. By
using these two techniques, the solution mechanisms can be provided for the
problems like safeness, boundedness, conservation, and coverability. Details

are available.in Peterson’s book [16]. Conclusions drawn from such kind of

analysis can be used to refine the PN models or improve the Harmony source.

_— . ,
Another application of the PN model is as a tool for the generation of

optimal code. To determine the minimal precedence constraints between
statements, by using PN model, the individual'statements of the program are
examined, the artificial sequencing constraints are dropped. Full details are in

Shapiro's work [21].

2]

[3]

[4]

5]

8]

B1 bliogl'aphy

Best, E., ““The SOLO Operating System Described by Petri Nets’’,

ASM/8, Computing Laboratory, University of Newcastle upon Tyne,

Newcastle upon Tyne, England, August 1976.

Coolahan, JE. and N. Roussopoulos, ‘‘Timing Requirements for Time-
Driven Systems Using Augmented Petri Nets’’, IEEE Trans. on Software
Eng., Vol. SE-9, No.5, Sept. 1983, pp.603-616.

Gentleman, W.M.., ““Using the Harmony Operating System’’, National

-”

Research Council Canada, No. 24685, May 1985.

Gentleman, W.M., ““Harmony Source -Code, Release-0.5'', National

Research Council of Canada, 1984.

.Gentleman, W.M., ‘‘Harmony- Source Code, “}E{elease—l”, National

i

1

Research Council of Canada, 1985.

James, T., K. Rowe, etc., ‘‘Experience Porting thé Harmony Operating

‘System'’, ARTT 85-6, -Dept. of Systems aﬁd Computer Eng., Carleton

University. \ -
Lester, B.P., "‘Analysis of Firing Rates in Petri Nets Using Linear Alge-

bra'', Proc. of the 1985 International Conference on Parallel Processing,

Aug.20-23, 1985, pp.217-224.

Li, Y., “*‘Message Passing in the Harmony Operating System Modeled by
Modified Finite State Machine’’, Technical Report (informal), Dept. of

Systems and Computer Eng,, Carleton University, April 18, 1986.

147

148

[9] Marsau, M.A., G. Balbo, G. Ciardo and G. Conte, ‘A Software Tool for
the Automatic Analysis of Generalized Stochastic Petri Net Models”,
Proc. of the Intermational Conference on Modelling Techniques and Tools Jor

Performance Analysis, Paris, France, May 16-18, 1984, pp.155-170.

[10] Marsan, M.A., G. Conte and G. Balbo, '*A Class of Generalized Stochas-
tic Petri Netsv for the Performance Evaluation of Multiprocessor Sys-
tewms’’, ACM Trans. on Computer Systems, Vol.2, No.2, May 19084,
pp.93-122.

[11} Merlin, P.M., ‘A Methodology for the Design and Implementation of
Communication Protocols™, IEEE Trans. on Communications, June 19786,

pp.G14-621.

[12] Molioy, M.K,, *‘On the Integration of Delay and Throughput Measures in
Distributed Processing Models’’, Ph.D. Dissertation, University of éa,li-

fornia, Los Angeles, 1981. |

[13] Molloy, M.K., ‘Performance Analysis Using Stochastic Petri Nets'’,

IEEE Trans. on Computers, Yol. C-31,.No.9, Sept. 1982, pp.913-917.

[14] Noe, J.D.,."*A Petri Net Model of the CDC 8400", ACM Workshop on
System Performance Evaluation, April 1971, pp.362-378.

[15] Omar, 1., K. Rowe and ¥ James, '"An Approach For the Evaluation of
» . . . '
J?eal-’ﬁme Operating System™’, ARTT 85-10, Dept..of Systems and Com-

puter Eng., Catleton University.

t

[16) Peterson, JL., “Petri Net Theory and_the Modeling of Systems'',
. N

Prentice-Hall, Inc., Englewood Cliffs, N.J.3 198\1.

[17] Petri, G.A., '‘Communicatior with Automata’’, Ph.D. Dissertation,

Technical Report RAP‘C-TR-65-37‘Z, Rome Air Development Center,

”

149

Rome, NY, 1966.
(18] Ramamoorthy, C.V. and G.S. Ho, ‘‘Performance Evaluation of Asyn-
chronous Concurrent Systems Using Petri Nets’', JEEE Trans. on Software

‘Eng., Vol. SE-6, No.5, Sept. 1980, pp.440-449.

[19] Razouk, R.R. and C.V. Phelps, '‘Performance Analysis Using Timed
Petri Nets'', Proc. of the 4th Intemational Workshop on Protocol

Specification. Venfication and Testing, June 1984, pp.126-128.

[20] Sartzetakis, S., P.K. Rowe, etc., ‘‘A Real-Time Multiprocessor Perfor-
mance Monitoring Tool'’, Report ARTT 85-9, Dept. of Syst,e;ns and

. Computer Eng., Carleton University.
[21] Shapiro, R. and H. Saint, ‘‘A New Approach to Optimization of Sequenc-

ing Decisions’’, Annual Review tn Automatic Programming, Vol.6, Part 5,

1970, pp.257-288.

{22] Wan, V.C.F., ‘A State Machire Description of the Harmony Operating
System''. Technical Report (informal), Dept. of Systems and Comput;er

k}}ng., Carleton University, Dec.13, 1985.

[23] Wilson, J., ‘‘Harmony's Real-Time Clock Server”, ARTT 86-6, Dept. of

Systems and Computer Eng., Carleton University.

[24] Zuberek, WM., ‘‘Timed Petri Nets and Preliminary Performance Evalua-

tion'’', 7th Annual Sympossum on Computer Architecture, 1980, pp.80-96.

. _Breakpont(s’)" : §8.1, 104

Appendix A

Index of Harmony Functions Used

_Abor(s) : §7.1, 74; §8.1, 99

_Add_ready(td) : §6.1, 37

_Addrerr() : §8.1, 104

_Aw_server() : §9.1.6, 110

_Alloc_connection_taple(init_num_entnes, data_blk_size) : §9.1.4, 109
_Awazt_mterrupt(imterrupt_id, rply_msg) : §5.1, 26

_Block() : §3.2, 13; §5.1, 26

_Block_signal_processor(id) : §3.2, 14; §5.2, 32

_Buserr() : §8.1, 104

_Chkmstr() : §8.1, l(y

_Close(ucb) : §7.1, 74; §9.1.2, 108
_CTo;wcrt_to_td/ td) : §6.1, 37
_Copy_msg(from, to) : §6.1, 37

150 .

s

_Crealef task_indez) : §7.1, 74
_Debug() : §8.1, 99

_Destroyf d) : §7.1, 74
_Directory() : §3.2, 13: §4.1, 19: §9.1.5.l109
_Disable() - §3.2. 14; §5.1, 26

_Em1010() : §8.1, 104

_Emi1111() : §8.1, 104

_Enable() : §3.2, 14; §5.1, 26
_FD_Format_server() :§9.2.3, 119

_Flush() : §8.1, 100; §9.1.3, 109
__Frcc_cohncction{'table, connection) : §9.1.4, 109
_Free_first_block(td) : §7.1, 74

_Free_td(td) : §7.1, 74

_Freevec(block) : §7.1, 78

_Get_connection(table, client, new_connection) : §9.1.4, 109
_Get_td() : §7.1. 78

_Getvec(suze) : §7.1, *78

_Gossip() : §3.2, 13; §4.1, 19

<

151

152 -

_Gr:)w_tonnectzon_table(t’abl?} : §9.1.4, 109 .
_I_directory() : §4.1, 19
_Idle_loop() : §3.2, 14,
_ldle_task() : §3.2,‘.13 ‘ B *'} .
_Id_Lem(wl) L §7.1, 78 ' ‘
_I_qtelr‘n(} : §4.1, 17' .
J_gossip() : §4.1, 18

£ “
_I_harmony() : §4.1, 17
_I_idle_task() : §4.1, 19
_Illinstr() : §8.1, 104 | .
I ltm() :84.1, 14 . ‘~
_Infanticfd“e(destroyer) : §7.1,. 78 ~
_Inva’lidate_td(victim) : §7.1, 78 . L~
_IP_int() : §3.2, 14; §5.2, 32
_I_ready_queues() : §4,1, 19

_I_stack_and_td{ td, stack, stack_start, requestor, root, prionty, task_mder) :

§7.1, 78

_I_store_pool() : §4.i, 19

o 153

_I_templates() :.§4.1, 19
, _I_tty_server() : §9.3.1.2, 128
_]_dscr_program(} : 84.1, 19
_Local_task_manager() : §3.2, 13; §4.1, 19
_Log_gossip(s) : §8.1, 101
_Lookup_connection[table. client, connection) : §9.1.4, 109
'_main/) 1 84.1, 19
_Nomntvec() : §8.1, 104 .
_Open{ name, mode, user_id') : §9.1.2, 108
_@gvvltn(} : §8.1, 104 '
_Put(byte) : §8.1, 99
_Putstr/.s} : §8.1, 99
_Puthexr{ n) :§8.1, 99
\
_Recewe(rgst_msg, id) : §6.1, 37"
_Reply(rply_msg, +d) : §6.1, 37
_Report_for_service(name, msg_type) : §9.1.1, 108

_Selectinput{ ucb) : §9.1.3, 108

_Selectoutput{ uch) : §9.1.3, 108

154

_Send(rqst_msg, rply_msg, «d) : §6.1, 37
_Server_create(task_tndez, mit_lst) 0 §9.1.1, 108
_Set_task_error_code(error_code) §8.\1. 101
_Setup(}‘ : §3.2. 14; §4.1, 17

_Sf;tupO(j : §3.2, 14; §4.1, 17
_Swnal_processor(«d) : §3.2, 14: §5.2, 32
_Sizeof{ block).: §7.1, 78

_Spurwus() : §8.'1, 104

_Stackoverflow() : §8.1, 101

_Suscide() : §7.1, 78

_Task_efr.or_code(‘) : §8.1, 101

._Td__s‘ervice(id_candidate) : §5.2, 32; §6.1, 41
_Tracef) : §8.1, 104

_Trapuinstr() : §8.1, 104 :
_Try_recetve(rqut_msg, id) : §6.1, 41

_Tty_server() : §9.1.6, 110

_Zerodw() : §8.1, 104

Appendix B

Modified *‘case UNQ_RECEIVER”
in _Td_service(id_candidate)

Gentleman’s version :

case UI:\‘Q_RECEIVER: - * candidate is sender x/
{
receiver = _Convert_to_td(candidate ~CORRESPONDENT);
if(receiver) ‘
{
/* remove from recv_q */
p = receiver—TD _NEXT;
qQ= receiver—»TD_PREV;*
p—TD_PREV = q;
q—TD_NEXT = p;
y
“receiver—STATE = ACK_UNQ_RECEIVER;
._Signal_processor(receiver—ID);

bre ak;

155

156

My version :

case UNQ_RECEIVER: /* candidate is sender */
{
receiver = _Convert_to_td(candidate—~CORRESPONDENT)
if(receiver)
{
/* remove from recv_q */
p = receiver—TD _NEXT;
q = receiver—TD_PREV;
p—TD_PREV = q;
q—TD_NEXT = p; ’ _ .
.receiver—+STATE = ACK_UNQ_RECEIVER;
Signal_processor(receiver—ID);

break;
}
candidate —CORRESPONDENT = 0;
candidate -=STATE = READY;
_Add_ready(candidate);
break; | |

\.
)

Appendlx C

C Code of Deadlock Prevention
in Message Passing

AR R RN R R R R KRR AR R KRR KRR KRR AR KRR AR R R Rk kR R Rk Rk kKR KRR R kKRR Rk kR Rk ok kKK

1. Insert deadlock preventiof algorithm directly to _Send(), _Receive()

Y -

#*#t*tt***t#*tw******#****#*****#tt*****#*t*****ttt*tt***t*******t************

Sep 18 15:11 1985 /usr2/barmony/harmony/relea-1/src/kernel/send.c

- #include ‘“‘sys.h"”’

#include '‘kernel. i’

#include *m68010/kernel.h’" -

@
[+ .
E $Log: send.c,v §

* Revision 1.1 85/08/07 15:40:25 harmony
+ Initial revision ;

-* Dendlocek pre\'entfbn added. Yao Li Avpril 21, 1986

e

*®
<y

i
~

L3

R 4
unit_32 _.Senil\(rqst_msg, rply_msg, id)

« 158

cha.t: *rqst_msg, *rply_msg;
unit_32 id;
{
extern struct TD *_Active;
extern struct TD =_Convert_to_td();

struct TD s*receiver, *partner;

/* Set up td for receiver */

_Disable();
PRINT(** Send.\n"");

/* deadlock prevention %/

partner = receiver = _Convert_to_td{ id);

while(partner—STATE == SEND_BLOCKED ||
partner——>$TATE == RCV_SPECIFIC_BLOCKED | |
parbner—v.éTATE == REPLY_BLOCKED)
{ .
partner = _Convett_to_td(partner—CORRESPONDENT);
if(partner == _Active) /* task ring exists */
{
if(receiver—CORRESPONDENT !=_Active—ID ||
(receiver— CORRESPONDENT === _Active—ID &&
(receiver—~STATE —= SEND_BLOCKED ||
receiver—STATE == REPLY_BLOCKED)))
{
—Enable();

159

return(0);

_Active—CORRESPONDENT = id;
_Active—STATE = SENDING;
_Active—»REQUST_MSC = rqst_msg;
_Active—REPLY_MSG = rply_msg;

_Block_signal_processor(id);

_Enable():
return(_Active—+CORRESPONDENT);

“be
/% Copyright National Research Council of Canada, 1983 */

#i*****(*#*****t*t*t*t*#t*t******t#******t*t****#t************#t***************t

Sep 18 15:11 1985 /usr2/harmony/harmony/relea-1/src/kernel/receive.c

#include ‘‘sys.h”’
#include ‘‘kernel.h"’
#include ‘‘n68010/kernel.h””

/l
* $Log: rcceive.c,v $.
"+ *Revision 1.1 85/08/07 15:40:17 harmony |

* Initial revision

B
RN

160

*

* Deadlock prevention added. Yao Li- April 21, 1986

=/

unit_32 _Receive(rgst_msg, id)
char *rqst_msg;
unit_32 id;
q B {
extern struct TD *_Active;
extern struct TD *_Convert_to_td();

struct TD *sendér, *partner, *p;

if(id) /* receive specific x/

{
_Disable():

> L
. . .
PRINT(" Recet,\:?peciﬁc.\n");
o/

/* deadlock prevention =/

partner = sender = _Convert_to_td(id);

while(partner—STATE == RCV_SPECIFIC_BLOCKED ||
partnér—STATE == SEND_BLOCKED ||
er—STATE —= REPLY_BLOCKED)
¢
partner = _Convert,__to_td(partner—CORRESPONDENT);

if(partner == _Active) /* task ring exists */
{

- : . | 161
“ .
if(sender—+CORRESPONDENT != _Active—ID ||
(sender—CORRESPONDENT = = _Active—ID &% .
(sender—STATE == RCV_SPECIFIG_BLOCKED ||
sender—STATE == REPLY_BLOCKED)))
{ ’ :
_Enable();
return(0);

P o

_Active—=CORRESPONDENT = id;
_Aclive—=STATE = Q_RECEIVER;

_Block_signal_processor(id);

sender = _Convert_to_td(_Active—+CORRESPONDENT);
if('sender) >
{
_Enpable();

return(0);

}

-

t**i**ii**********t*tt*****#*#****&**t*l****#*************************#****i‘

2. Implement deadlock prevention as a function

Aakkok sk ok R KR K R R O kR ok o Nk ks kool R ok ok o ok sk K R ok sk ok ko ok o koo ok sk ok ok ok koK %
..

Sep 18 15:11 1985 /usr2/ha.rm6ny/harmony/r¢lea-l/src/kernel/send.c

"

AN

3
#include ‘‘sys.h’’
#iaclude f‘k;:ruei.h”

#include “m@éOlO/kernel.h”

/*
* $Log: send.c,v $

» Revision 1.1 85/08/07 15:40:25 harmony

* [nitial revision

.
* Deadlock prevention added. Yao Li April 21, 1986

, 3 . ~
*

x/
/

: uﬁit_32 _Send(rqst_msg, rply_msg, id)

char *rgst_msg, *rply_msg; .
unit_32 id; ' i
{ -
char =caller; \
extern struct TD *_Active;

extern struct TD »_Convert_to_td();

. /* Set up td for receiver */

_Disable();
PRINT(** Send.\n"");

/* deadlock prevention */

wcaller ="'8";

162

if(__Deadlock_prevéntion(caller,id) ==0)
{ !
_Enable();
return{ 0);

)

_Active—~CORRESPONDENT = id;
_Active—STATE = SENDING;

_A cLive——»REQUEST_I\gSG’ = rqst_msg;
_Active—REPLY_MSG = rply_ngsg;

r
*. - 4

_Block_signal_processor(id);

A

_Enable():
return(_Active—CORRESPONDENT);
i 3

/* Copyright National Research Council of Canada, 1983 */

****#******titt*t**##*****t***tf*#**#**t**t*tttt*t***ttttt**t*#*****************
-

Sep 18 15:11 1985 /usr2/harmopy/h'érmony/relea-1/src/kerne]/receive.c

#include ‘‘sys.h”’
#include ‘‘kernel.h”
#include ‘‘m68010/kernel.h"”

/*

* $Log: receive.c,v $

3

* Revision 1.1 85/08/07 15:40:17 harmony

k]

164

» Initial revision

EN

* Deadlock prevention added. Yao Li April 21, 1986

*
=/
.

“unit_32 _Receive(rgst_msg, id)

char *rqst_msg;

unit_32 id; j

char *caller
extern struct TD *_Active;
cxtern struct TD *_Convert_to_td();

struct TD #*sender, *p; -

if(.id) /*xrcceive specific */

{
_Disable();

PRINT(** Receive Specific.\n"");

/* deadlock prevention */
scaller ="1I’;

if(_Deadlock_prevention(caller, id) ==0)
{ .
_Enable();
return(0);

185

_Active—=CORRESPONDENT = id;
_Active—STATE = Q_RECEIVER;

_Block_signal_processor(id);

sender = _Convert_to_td(_Active+=CORRESPONDENT);
if('sender)
{
_Enable();

return{ 0);

}

<

ok ook de koo ok ok ok 0k ok ok ok ko ks ok i o kol sl e oK ok ok ok koo ok ok e ste sk ofe sk ok ok s ok ok ok ik sk ok ok ok ko ok ok ok ook ok ok ok ok ok ok ok k ko

Sep 18 15:11 1985 ,/usr2/harmony/l;armony/releall/src/kernel/deadlockprev.c

#include ‘‘sys.h”’

#include *‘kernel.h”) /
#include ''m68010/kernel.h”

/x
« $Log: deadlockprevention.c,v $

* Revision 1.1 85/08/07 15:40:25 harmony
* Initial revision
*

* Called from _Send() and _Receive().

. 166

* If a potential task ring exists, returns O.
* Yao L1 Avpril 21, 1986

*

:t/ ‘ .

unit_32 _Deadlock_prevention(caller, id)
char =*caller;
unit_32 id;
{
exfern siruct TD *_Active;
extern struct TD *_Convert_to_td();

struct TD *first_partner, *partner;
_Disable();
PRINT('* Deadlock_prevention.\n"'};

first_partner = _Convert_to_td(id);

partuer = first_partner;

while(partner—=STATE == SEND_BLOCKED ||
. =~
partner—STATE == REPLY_BLOCKED ||
partner—STATE == RCV_SPECIFIC_BLOCKED)

{ .
partner = LConvert_to_t.d(partner—CORRESPONDENT);
if(partner—ID == _Active—ID) /* task ring exists */
{
if(first_partner—~CORRESPONDENT != _Active—ID). /* big ring */
{

167

" _Enable();
return(O); N
) |
else if(*caller == 'S’ && /* small ring, caller is a sender */

(frst_partner—STATE == SEND __BLOCKED ||
first_partner—STATE == REPLY_BLOCKED))
« -

_Enable();

L]

return{ 0°);
}
else if(*caller == 'R’ && /* small ring, caller is a receiver */
(tirst_partner—STATE == RCV_SPECIFIC_BL OCKED ||
first_partner—STATE == REPLY_BLOCKED))
{
_Enable();

return(0);

| - C
Yoo ‘

/* no danger =/
_Enable();

return(id);

k

/* Copyright National Research Council of Canada, 1983 */

Appendix D

Index of Depicted Data Structures
and Organizations

S

A list of free CON_TAB_ENTR Ys (connection table entry) : Figure 9.6, 118
) o

_Comdev (common devkj] : Pigure 5.3t 33

CON_TA\B\LE' (connection tabfc) manspulated by a server : Figure 9.5, 114

Data organizalson for manipulatiﬁg task templates : Figure 7.4, 80

_Dev_data_lable[| (device data table) : Figure 5.1, 27

In_id_q (in;crrupt :d queue) : Figure 5.3, 33

inst_list (a list o[mitfblizats'on records for a server) : Figure 9.2, 112

_Int_table/] (interrupt table) :Eguré 5.1, 27

" The lml:;zgc of mitiulization records at different stages : Figure 9.14, 133-134‘

_Mailboz : Figure 5.3, 33

_MP_gate (mwultiprocessor gates) : Figure 4.2, 21

Separate prionty scheduling system (ready gqueues for a processor) : Figure 7.1, 73

168

169

Threc communicalion queues maintatned through a task descriptor (td) : Figure

6.5, 42

Two-lsts of SERVER_ENTR Ys manipulated by _Directory : Figure 9.4, 114

