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Foreword

I have known and worked with Sachin Kafle for more than four years. Sachin is one of the
most well-known individuals among Nepal-based cyber and Python experts. In this book,
Learning Python by Building Games, Sachin takes you on a learning journey of core and
advanced Python programming paradigms with the help of hands-on examples. For more
than 15 years, Python has continued to evolve to meet the needs of developers around the
world. For the majority of this time, Sachin has been a key team member in initiating
projects by creating and reusing modular programs.

In his presentations and examples, Sachin shows you how easy it is to create a wide range
of applications/games using different Python libraries, such as Pygame, Pymunk, and
PyOpenGL. Sachin has also helped developers to create a game with a taste for AL

With Learning Python by Building Games, you'll learn the best practices for writing high-
quality, reliable, and maintainable code with Python, a general-purpose language. After
you have completed Sachin's book, you'll understand how to create and deploy your own
mobile/computer games and apps.

Beyond developing apps for desktops and smartphones, you'll learn how to use the Python
programming paradigm to accomplish architecture based on Al and simulation.

In Learning Python by Building Games, Sachin encapsulates the knowledge gained through
years as an academic specialist and Python developer, a Python cybersecurity analyst, and
a passionate advocate. Through his words, step-by-step instructions, screenshots, source
code snippets, examples, and links to additional sources of information, you will learn how
to continuously enhance your skills and apps.

Become a proficient Python developer and build stunning cross-platform apps with
Python.

Prof. Dr. Subarna Shakya

Chairman, Computer Engineering Subject committee, Ministry of Education, National
Curriculum Development Center (Nepal)
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Preface

In September of 2018, I was teaching some of my students about game programming and
automation using Python. Then, I realized that it was time to create a book that not only
offers information on the rich content of game programming using Python but also
shows how to make and deploy games that mimic real, world-famous games such as
Flappy Bird and Angry Birds. I wanted to equip you with all the essentials and primitives
of game programming to become a real-world Python game developer. This book is not
your usual and traditional Python theoretical book; our approach will be as practical as
possible. Each chapter will contain a single, yet powerful, real-world game example that
will not only be interesting but will also edify you with programming paradigms, which
will be your first step to becoming a proficient Python developer.

Python is one of the most widely used programming languages of 2018/19, according to a
survey conducted by Stack Overflow and TIOBE, and its rate of popularity growth is not
expected to decrease any time soon. If you observe what big tech companies use for
handling their businesses, you can see that they depend highly upon Python because of its
easy usage and rapid prototyping. Not only that, but you can also see that Python can be
used to develop a variety of applications ranging from data science to high-end web
applications, and as you proceed to learn the basics of Python, you will be ready to create
almost anything you want.

There are many reasons to learn Python, and a big one is the Python community. Many of
the world's greatest developers contribute incessantly to this Python community by adding
new libraries/modules and functionalities. These libraries prove to be extremely helpful if
you want to create something new and rapidly. As such, Python is focused on products
rather than being bogged down in the routines and complexities of low-level programming,
which makes it the most loved programming language of beginners.

In this book, we will start by introducing some important programming concepts, such as
variables, numbers, Boolean logic, conditionals, and looping. After building a solid
foundation of core programming concepts, we will hop into advanced sections such as data
structures and functions. The pace of learning will be increased with the difficulty of the
chapters. After finishing chapter 7, List Comprehension and Properties, we will be fully
equipped with all the basics to be applied while creating advanced things such as flappy
bird emulators, angry bird emulators, and Al players. In each chapter, there will be a game
testing and possible modification topic to compel you to think about how errors should be
handled and how programs should be refined.



Preface

Requirements for this book

To get a good grasp of each of the topics written about in this book, I encourage you to
follow along with the source code and examples. To write code properly, you will need to
install Python on your machine. I have used Python's latest version (as of September 2019),
version 3.7, but you can use any version newer than 3.5+. The thorough installation process
of Python is covered in the first chapter for your machine, based on the OS (Linux, macOS,
or Windows) you're using. You will also need an internet connection up and running to
download GitHub code and Python third-party libraries. We will be installing different
Python libraries, including PyGame, Pymunk, and PyOpenGL later in this book. For each of
them, the installation process will be covered in the chapter concerned. While using such
modules, our programs will tend to become lengthier, so we strongly encourage you to use
a good Python text editor. I will be using the PyCharm IDE to create complex games using
Python, and its installation is also covered in the first chapter. Apart from these software
requirements, there are no specific requirements for this book.

Who this book is for

This book is for anyone who wants to learn Python. You can be a beginner or someone who
has tried learning it previously, but a boring course or book set you off track, or someone
who wants to brush up on their skills. This book will help you gain core knowledge and
advance your skills in the most interesting way: by building games. It primarily focuses on
GUI programming using the Python modules PyGame, PyOpenGL, and Pymunk. No
programming skills are expected from learners as we will cover everything you need to
know about Python in this book. We will study the turtle module by building three mini-
games, and you will learn how to create your very own 2D games, even if you are a
complete beginner. If you ever wanted to explore game development with Python's
PyGame module, this book is for you.

What this book covers

Chapter 1, Getting to Know Python — Setting Up Python and the Editor, covers the background
of game development and the scope of Python in game development. We will set up
Python on our local machine and install the appropriate editor. We will also become
familiar with the project settings and the interface of the editor. We will see how to install
modules in PyCharm. We will execute our first Python program in this chapter.

[2]
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Chapter 2, Learning the Fundamentals of Python, takes us through the invigorating stuff of
the Python ecosystem, giving us knowledge about the basic concepts of programming such
as variables, numbers, and modules. This chapter will give us with knowledge of values,
types, and type-casting techniques. We will make a simple tic-tac-toe game using concepts
learned in this chapter. This will teach us how to track data in Python programs.

Chapter 3, Flow Control — Building a Decision Maker for Your Game, covers the concepts of
Boolean logic, conditionals, and looping. This chapter will be life-changing for any learning
developer. This chapter will provide mainly deal with how things can be automated with
logic. We will also see looping patterns and debugging. Some practical examples will be
covered in this section. We will refine our tic-tac-toe game by incorporating game logic and
flow controls.

Chapter 4, Data Structures and Functions, covers lists, dictionaries, sets, and tuples. This
chapter will help programmers to distinguish between, and choose among, different built-
in storage solutions based on different situations. We will learn how to create each of these
data structures and how to perform different operations, including adding, deleting, and
traversing. We will make use of advanced data structures such as trees and queues in our
tic-tac-toe game, which will make our game more rugged.

Chapter 5, Learning About Curses by Building a Snake Game, covers terminal-independent
screen-painting and keyboard-handling facilities for text-based terminals; such terminals
include VT100s, the Linux console, and the simulated terminals provided by various
programs. We will make a snake game using curses events and screen painting. We will
make simple snake game logic using curses properties.

Chapter 6, Object-Oriented Programming, deals with creating and using objects in your
project. We will learn how to wrap data using properties and restrict data access using
specifiers. We will also learn how to use the built-in methods of Python to execute
overloading. This chapter will mainly deal with the terminologies of object-oriented
programming (OOP), such as classes, encapsulation, inheritance, and polymorphism. We
will use the OOP paradigm to make our snake game made with curses more robust and
reusable.

Chapter 7, List Comprehension and Properties, targets making our code simpler and faster in
execution. This chapter will teach us how to work with conditions and logic to implement
more understandable single-line code. We will see list comprehension and properties in
action with our snake game.

Chapter 8, Turtle Class — Drawing on the Screen, deals with the turtle module of Python.
This chapter will give a detailed explanation of how to use Python's turtle to draw all over
the screen with simple forward/backward commands. We will learn how to make basic
objects with turtle and build some skeleton code with Python in this chapter.

[3]
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Chapter 9, Data Model Implementation, covers base class implementation. The base class
makes use of operator overloading using special built-in Python methods. We will make
use of vectors to specify the positions of objects and we will manipulate them with some
algebraic operations. Special functions suchas __add__ (), _mul__ (), _str__ (),
and __repr__ () will be used to overload operators.

Chapter 10, Upgrading the Snake Game with Turtle, shows us how to create our first 2D game
with a Python script. We will make use of the turt le module to create animations on the
screen. This will be a simple game, but we will learn how to use the methods of the turtle
module to move a pen and draw all over our canvas. We will modify our snake game,
made following simple OOP concepts, to one that contains simple animations made with
turtle. In addition to the snake game, we will also see how to make games such as Pong and
Flappy Bird with turtle.

Chapter 11, Outdoing Turtle — Snake Game Ul with PyGame, covers the installation of
PyGame on your machine, and we will also cover how to make the basic skeleton code of
our game containing display initialization, game loops, states, events, and colors. We will
modify our snake game, made with the turtle module, by using a sprite and a game
controller library named PyGame.

Chapter 12, Learning About Character Animation, Collision, and Movement, covers game
animation, game character movement (such as jumping and walking), random object
generation, game loops, collision and hit pipes, scrolling backgrounds, and scoreboards.

Chapter 13, Coding the Tetris Game with PyGame, deals with basic PyGame graphics, multi-
dimensional list processing, increasing game speed and difficulty, the menu for a game, the
creation of a game grid, and shapes and valid space determination.

Chapter 14, Getting to Know PyOpenGL, covers the installation of PyOpenGL on your
machine. We will see how to create an OpenGL window. We will make a simple rectangle
to begin with, and then look at PyOpenGL and see how the draw () method of PyOpenGL
works. We will also learn how to draw objects from vertices and edges, adding views for
object and clipping parameters.

Chapter 15, Getting to Know Pymunk by Building an Angry Birds Game, covers Pythonic 2D
physics simulation. We will create a space that contains the simulation and sets its gravity,
create a body with mass and moment, set the position of the body, create a box shape and
attach it to the body, and then add both the body and shape to the simulation. We will
create a complete Angry Birds game clone with Pymunk, dealing with sprite sheets and 2D
physics.

[4]
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Chapter 16, Learning Game Al — Building a Bot to Play, shows how to create game Al In this
game (snake), both the computer and you play as a snake, and the computer snake tries to
catch you. The opponent Al tries to determine and go to the destination point based on
your location on the board.

To get the most out of this book

To make the most of the information presented in this book, you are encouraged to follow
along with the examples. Prior knowledge of Python is not required, but experience of
mathematical concepts such as arithmetic and logical operations is essential for
understanding the code thoroughly. Python-based applications are not limited to any
particular OS, so all that is required is a decent code editor and a browser. Throughout the
book, we have used the PyCharm Community 2019.2 editor, which is an open source editor
and is free to download.

Download the example code files

You can download the example code files for this book from your account
at www.packt . com. If you purchased this book elsewhere, you can
visit www.packtpub. com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt .com.
Select the Support tab.
Click on Code Downloads

Enter the name of the book in the Search box and follow the onscreen
instructions.

LN e

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Learning-Python-by-building-games. In case
there's an update to the code, it will be updated on the existing GitHub repository.

[5]
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We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Code in Action

Visit the following link to check out videos of the code being run:

http://bit.ly/20E9mHV

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "The screenshot shows the edited python_ex_1.py file."

A block of code is set as follows:

n = int (input ("Enter any number"))
for i in range(1,100):
if 1 == n:
print (1)
break

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

def fun(b):
print ("message")
a=9+b

move_player (a)
fun (3)
Any command-line input or output is written as follows:
>>> cd Desktop

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"In the installer, make sure you check the Add Python to PATH box."

[6]
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Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

[7]



Getting to Know Python -
Setting Up Python and the
Editor

Python is notorious in the data and analytics industry, but it is still a hidden artifact in the
gaming industry. While making games using other gaming engines such as Unity and
Godot, we tend to combine our design logic with core programming principles. But in the
case of Python, it is mostly the analysis of problems and programming paradigms that
coalesce together. A program flow or structure is a sequence that is dovetailed with its
programming paradigms. A programming paradigm, as its name suggests, facilitates the
programmer to write a solution to a problem in the most economical and efficient way
possible. For instance, writing a program in two lines of code instead of ten lines is an
outcome of using a programming paradigm. The purpose of program flow analysis or
structural analysis is to uncover information about procedures that need to be invoked for
various design patterns.

In this chapter, we will learn about the following topics:

e Introducing programming with Python

Installing Python

The building blocks of Python
Installing the PyCharm IDE
Programming code without Hello World



Getting to Know Python - Setting Up Python and the Editor Chapter 1

Technical requirements

The following is a list of the minimum hardware requirements you'll need for this book:

¢ A working PC with a minimum of 4GB RAM
¢ An external mouse adapter (if you are using a laptop)

¢ A minimum of 5GB of hard disk space to download an external IDE and Python
packages

You will need the following software to get the most out of this book (we will download all
of them in this chapter):

e Various open source Python packages like pygame, pymunk and pyopenGL
¢ The Pycharm IDE (community version), which you can find at https://www.
jetbrains.com/pycharm/

¢ Various open source packages, such as pygame and pycharm

e The code for this chapter, which can be found in this book's GitHub
reposﬁory:https://github.com/PacktPublishing/Learninngythonfbyf
building-games/tree/master/Chapter01

Check out the following video to see the code in action:

http://bit.ly/202pVgA

Introducing programming with Python

The old adage of programming states the following:

"Coding is basically the computer language that’s used to develop apps, websites, and
software. Without it, we'd have none of the major technology we ve come to rely on such
as Facebook, our smartphones, the browser we choose to view our favorite blogs on, or even
the blogs themselves. It all runs on code.”

We couldn't agree more with this. Computer programming can be both a rewarding and
tedious activity. Sometimes, we might be in a situation where we can't find the tweaks of
the exception (unexpected behavior of the program) that we caught in the program and,
later, we find that the error was because of wrong modules or bad practices. Writing
programs is similar to writing essays; first, we have to learn about the patterns of an essay;
then, we analyze the topics and write them; and finally, we check the grammar.

[9]



Getting to Know Python - Setting Up Python and the Editor Chapter 1

Similar to the process of writing an essay, when writing code, we have to analyze the
patterns or grammar of the programming language, then we analyze the problems, and
then we write a program. Finally, we check its grammar, which we normally do with alpha
and beta testing.

This book will try to turn you into a person who can analyze a problem, build noble logic,
and come up with an idea that will solve that problem. We won't make this journey
monotonous; instead, we will learn about Python syntax by building games in each chapter.
By the end of this book, you will be thinking like a programmer—maybe not a professional
one, but at least you will have developed the skill to make your own programs using
Python.

There are two crucial things you'll learn about in this book:

e Firstly, you will learn about the vocabulary and grammar of Python. I don't mean
learning about Python theory or history. First, we have to learn about Python
syntax; then, we will see how we can create statements and expressions with that
syntax. This step includes collecting data and information and storing it in an
appropriate data structure.

e Then, you will learn about the procedures that come with the idea of calling the
appropriate methods. This process includes using the data that was collected in
the first step to get the intended output. This second step is not specific to any
programming language. This is going to teach us about various programming
prototypes rather than just Python.

Learning any other programming languages after learning about Python is a lot easier. The
only difference you will observe in other programming language is syntax complexities and
program debugging tools. In this book, we will try to learn about as many programming
paradigms as possible so that we can start a programming career.

Are you still unsure about Python?
Let's take a look at some of the products that have been made with Python:

¢ No list starts without mentioning Google. They use it in their web search system
and page rank algorithm.

¢ Disney uses Python for its creative processes.
e BitTorrent and DropBox are written in Python.
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e Mozilla Firefox uses it to explore content and is a major contributor to Python
packages.

e NASA uses it for scientific purposes.
The list goes on and on!

Let's take a look at how code procedures work in simple terms.

Explaining code procedures

To explain how code procedures work in simple terms, let's take the example of making an
omelet. You start by learning the basics from a recipe book. First, you gather some utensils
and make sure they are clean and dry. After that, you beat the eggs, salt, and pepper until
it's all blended. Then, you add butter to your non-stick pan, add your egg mixture, and
cook it or even tilt the pan to check whether every part of the omelet is cooked or not.

In terms of programming, first, we talk about collecting our tools, such as the utensils and
eggs, which relates to collecting data that will be manipulated by the instructions we write
in our programs. After that, we talk about cooking the eggs, which is your methods. We
normally manipulate data in methods to get output in a form that is meaningful to the user.
Here, the output is an omelet.

Giving instructions to a program is the job of a programmer. But let's distinguish between a
client and a programmer. If you are using a product where you give instructions to the
computer to perform tasks for you, then you are a client, but if you design instructions that
will complete tasks for a product you've created for everyone, this indicates that you are a
programmer. It is only a matter of for one or for everyone to determine whether a user is a
client or programmer.

Some of the instructions we will use in our Windows Command Prompt or Linux Terminal
will be for opening the directory of our machine. There are two ways of performing this
action. You can either do it using a GUI, or you can use the Terminal or command prompt.
If you type in the dir command in the respective field, you are now telling the computer to
display the directories in that location. The same thing can be done in any programming
language. In Python, we have modules to do this for us. We have to import that module
before we can use it. Python provides a lot of modules and libraries to perform such
operations. In a procedural programming language such as C, which allows low-level
interaction with memory, this makes it harder to code, but with Python, it is easier to use
the standard library, which makes the code shorter and readable. David Beazley, the author
of How to Think Like a Computer Scientist Learning Python, was once asked, why Python? He
simply replied, Python is simply a lot of fun and more productive.
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Conversing with Python

Python has been around for many years (nearly 29), and regardless of all of the upgrades it
has had to go through, it's still standing as the easiest language for beginners to learn. The
primary reason for this is that it can be correlated to the English vocabulary. Similar to how
we make statements with English words and vocabulary, we can write statements and
operations with Python syntax that commands can interpret, execute, and provide us with
a result. We can make a sentence such as go there as a command to reflect the position of
something with conditionals and flow controls. Learning the syntax of Python is pretty
easy; the actual task is to use all of the resources provided by Python to build brand new
logic to solve intricate problems. Just learning the basic syntax and writing a couple of
programs is never enough; you have to practice enough so that you can come up with
revolutionary ideas to solve real-world problems.

We have a lot of vocabulary in the English dictionary. Unlike the English dictionary,
Python only contains a few words in its container, which we normally call reserved words.
There are 33 of them in total. They are instructions that tell the Python interpreter to
perform specific operations. Modifying them isn't possible—they can only be used to
perform specific tasks. In addition, when we call a print statement and write some text in it,
it is expected that it prints out that message. If you want to make a program that takes
input from the user, calling the print statement is useless; the input statement has to be
called to achieve that. The following table shows our 33 reserved words:

False class finally is return
None continue for lambda try
True def from nonlocal while
and del global not with
as elif if or yield
assert else import pass

break except in raise

Each of the preceding words can be found in our English dictionary. In addition, if we
search for the word return in the dictionary, it simply gives us the verb meaning of
coming or going back to the original place. The same semantics are used in Python; when
you use the return statement with functions, then you are pulling out something from the
function. In the upcoming chapters, we will see all of these keywords in action.

Now that we have started to learn how to converse in Python by examining its keywords,
we will install Python. Gear yourself up and open your machine for some fun.
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Installing Python

In this section, we will look at installing Python on Windows and macOS.

For the Windows platform

Python doesn't come pre-installed on Windows. We have to download it manually from its
official website and then install it. Let's look at how to do this:

1. First of all, open your favorite browser and open the following URL: https://
www.Python.org/.

2. You will be directed to the page that's shown in the following screenshot. Once
you have been redirected to Python's official website, you will see three
sections: Download, Docs, and Jobs. Click on the Download section at the
bottom of the page:

Compound Data Types

Lists (known as arrays in other languages) are one of the
compound data types that Python understands. Lists can be
indexed, sliced and manipulated with other built-in

functions. More about lists in Python 3
["BANANA*, 'APPLE', 'LIME'] B —

[(e, 'Banana‘'), (1, ‘Apple'), (2, 'Lime")]

Python is a programming language that lets you work quickly

and integrate systems more effectively. »> Learn More

O Get Started & Download Docs & Jobs
Whether you're new to Python source code and installers Documentation for Python's Looking for work or have a Python
programming or an experienced are available for download for all standard library, along with tutorials related position that you're trying to
developer, it's easy to learn and use versions! and guides, are available online. hire for? Our relaunched
Python. community-run job board is the
Latest: Python 3.7.2 docs.python.org
place to go.

Start with our Beginner’s Guide

jobs.python.org

3. You will see a list of files, as shown in the following screenshot. Pick the file
that's appropriate for your platform. We're looking at the installation for
Windows in this section, so we will click on the Windows executable link. This is
highlighted in the following screenshot:
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.
Files

Version Operating System Description MD5 Sum File Size GPG
Gzipped source tarball Source release 02a75015f7cd845e27b85192bb0cadcb 22897802 SIG
XZ compressed source tarball Source release df6ec36011808205beda239c72f947cb 17042320 SIG
macOS 64-bit/32-bit installer Mac OS X for Mac OS X 10.6 and later  d8ff07973bc9c009de80c269fd7efcca 34405674 SIG
macOS 64-bit installer Mac OS X for 0S X 10.9 and later 0fc95e9f6d6b4881f3b499da338a9a80 27766090 SIG
Windows help file Windows 941b7d6279c0d4060a927a65dcab88c4 8092167 SIG
Windows x86-64 embeddable zip file Windows for AMD64/EM64T/x64 81568590bef56e5997e63b434664d58 7025085 SIG

Windows for AMD64/EM64T/x64 f258093f0b3953c886192dec9f52763 26140976 SIG
Windows x86-64 web-based installer Windows for AMD64/EM64T/x64 8de2335249d84feleeb61ec25858bd82 1362888 SIG
Windows x86 embeddable zip file Windows 26881045297dc1883ald61baffeecafd 6533256 SIG
Windows x86 executable installer Windows 38156b62c0cbcb03bfddeb86e66c3a0f 25365744 SIG
Windows x86 web-based installer Windows 1e6626514b7221008f8cd53f945f10 1324648 SIG

4. After clicking on that, you will get a file that needs to be downloaded. After
opening that downloaded file, you will get the installer, as follows:

& Python 3.7.2 (64-bit) Setup — X

Install Python 3.7.2 (64-bit)

Select Install Now to install Python with default settings, or choose
Customize to enable or disable features.

—> Install Now
C:\Users\admin\AppData\Local\Programs\Python\Python37

Includes IDLE, pip and documentation
Creates shortcuts and file associations

—> Customize installation
Choose location and features

pgthfon

Install launcher for all users (recommended)

or
windows I Add Python 3.7 to PATH Cancel
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5. In the installer, make sure you check the Add Python to PATH box. This will put
the Python library files in our environment variables so that we can execute our
Python programs. Afterward, you will get a message about its successful
installation:

[ Python 3.7.2 (64-bit) Setup - X
Setup was successful

Spedial thanks to Mark Hammond, without whose years of
freely shared Windows expertise, Python for Windows would
still be Python for DOS.

New to Python? Start with the online tutorial and
documentation.

See what's new in this release.

® Disable path length limit

Changes your machine configuration to allow programs, including Python, to
bypass the 260 character "MAX_PATH" limitation.

python

for

windows Close

6. Press the Windows key + R to open Run and type cmd in the Run tab to open
your Windows Command Prompt. Then, type Python in the command shell:

Microsoft Windows [Version 10.0.17763.316]
(c) 2018 Microsoft Corporation. All rights reserved.

C:\Users\admin>python

Python 3.7.2 (tags/v3.7.2:9a3ffc0492, Dec 23 2018, 23:09:28) [MSC v.1916 64 bit (AMD64)] on win32
Type "help", "copyright", “"credits" or "license" for more information.

>>>

If you get the Python version that's displayed in the preceding screenshot, then Python has
been successfully installed on your machine. Congratulations! Now, you can get your
hands dirty by writing your first program with Python.
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If you get an error saying Python is not recognized as an internal or external command,
you have to explicitly add Python to the path environment variable. Follow these steps to
do so:

1. Open the Control Panel, navigate to System and Security, and then go
to System to view the basic information about your system.

2. Open your Advanced system settings and then Environment Variables....

3. In the Variable section, search for Path. Select the Path variable and press
the Edit... tab.

4. Click New in the Edit Environment Variable tab.

5. Add this path so that it's pointing to your Python installation directory, that
is, C:\Users\admin\AppData\Local\Programs\Python\Python37\.

6. Click on the OK button to save these changes:

Edit environment variable

C:\Users\admin\AppData\Local\Programs\Python\Python37\Scri... New
%USERPROFILE%\AppData\Local\Microsoft\WindowsApps Edit
C:\Users\admin\AppData\Roaming\Composer\vendor\bin

C\xampp\php; Browse...

C:\Program Files\Java\jre1.8.0_201\lib;

Delete

Move Up

Move Down

Edit text...

SR

Cancel

| OK |

Now, we have successfully installed Python for Windows. If you are using a Mac, the next
section will help you to access Python too.
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For the Mac platform

Python comes pre-installed with Mac OS X. To check the version of Python you have
installed, you should open your command line and type Python --version.If you geta
version number of 3.5 or newer, you don't need to go through the installation process, but if
you have version 2.7, you should follow these instructions to download the latest available
version:
1. Open your browser and type in https://www.Python.org/downloads/. You will
be sent to the following page:

’ @ Python Software Foundation [US] = https://www.python.org/downloads/

Python

& python’ . I

About Downloads Documentation Community Success Stories News Events

Download the latest version for Mac OS X

Download Python 3.7.0

Looking for Python with a different 0S? Python for Windows,

Linux/UNIX, Mac OS X, Other
Want to help test development versions of Python? Pre-releases

Looking for Python 2.7? See below for specific releases

2. Click on the macOS 64-bit/32-bit installer. You will be provided with a . pkg file.
Download it. Then, navigate to that installed directory and click on that installer.
You will see the following tab. Press Continue to initiate the installer:
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® O & Install Python [*)

Welcome to the Python Installer

This package will install Python 3.7.0 for macOS 10.9 or later.
@ Introduction

Python for macOS consists of the Python programming language
interpreter, plus a set of programs to allow easy access to it for macOS
users including an integrated development environment IDLE.

NEW in 3.7.0: two installer variants (10.9+ 64-bit-only, 10.6+ 64-/32-bit),

built-in Tcl/Tk 8.6 support (no additional third-party downloads!),
OpenSSL 1.1.0, and more!

Continue

Whenever you download Python, a bundle of packages will be installed on your computer.
We can't use those packages directly, so we should call them individually for each
independent task. To write programs, we need an environment where we can call Python
so that it can complete tasks for us. In the next section, we will explore the user-friendly
environment provided by Python where we can write our own programs and run them to
view their output.

Now that you have installed Python version 3.7 on Mac OS X, you can open your Terminal
and check the version of Python you have with the python --version command. You
will see Python 2.7.10. The reason for this is that Mac OS X comes preinstalled with version
2.7+ of Python. To use the newer version of Python, you have to use the python3
command. Type the following command into your Terminal and observe the result:

python3 --version

Now, to make sure Python uses the interpreter with the newer version that you just
installed, you can use an aliasing technique that will replace the current working Python
version with Python3. To perform aliasing, you have to follow these steps:

1. Open your Terminal and type in the nano ~/.bash_profile command to open
a bash file using the nano editor.

2. Next, go to the end of the file (after import PATH) and type in the alias
python=python3 command. To save a nano file, press Ctrl + X and then Y to
save.
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Now, open your Terminal again and type in the same command that we used previously to
check the Python version we have. It will be updated to the newer version of Python. From
now on, in order to run any Python file from your Mac, you can use this Python command,
followed by the signature of the file or filename.

Introducing the Python Shell and IDLE

The Python Shell is similar to Command Prompt for Windows and the Terminal for Linux
and Mac OS X where you write commands that will be executed in the filesystem. The
results of these commands are printed instantly within the shell. You can also get direct
access to this shell using a Python command (> python) in any Terminal. The result will
contain an exception and an error due to the improper execution of the code, as follows:

>>> imput ("Enter something")
Traceback (most recent call last):
File "<pyshell#5>", line 1, in <module>
imput ()
NameError: name 'imput' is not defined

>>> 1 love Python
SyntaxError: invalid syntax

As you can see, we ran into an error and the Python IDE is explicitly telling us the name of
error we ran into, which in this case is NameError (a type of syntax error). SyntaxError
occurs due to an incorrect pattern of code. In the preceding code example, when you write
the I love Python syntax, this implies nothing to the Python interpreter. You should
write proper commands or define something properly if you want to rectify that problem.
Writing imput instead of input is also a syntax error.

Logic errors or semantic errors occur even if your program syntax is correct. However, this
doesn't solve your problem domain. They are dangerous as they are hard to track. The
program is perfectly correct but does not solve any problem that it's intended to.

When you download the Python package on your machine, a Python Integrated
Development Environment (IDE) called IDLE (Python's built-in IDE) is downloaded
automatically onto your machine. You can type IDLE into the search bar to navigate to this
environment. IDLE is a free open source program that provides two interfaces where you
can write code. We can write scripts and Terminal commands in IDLE.

Now that we are familiar with what not to do in the Python Shell, let's talk about the
particulars of the Python Shell—an environment where you can write your Python code.
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