Learning Python
by Building Games

A beginner's guide to Python programming and game development

Learning Python by Building
Games

A beginner's guide to Python programming and game
development

Sachin Kafle

BIRMINGHAM - MUMBAI

Learning Python by Building Games

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Amarabha Banerjee
Acquisition Editor: Kajal Bhagure

Content Development Editor: Aamir Ahmed
Senior Editor: Hayden Edwards

Technical Editor: Jinesh Topiwala

Copy Editor: Safis Editing

Project Coordinator: Manthan Patel
Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Production Designer: Alishon Mendonsa

First published: October 2019
Production reference: 1111019
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78980-298-6

www.packt.com

Dedicated to mom and dad, for all your love and support.
And, to Sonu and Susaan, for the wonderful memories of growing up.

— Sachin Kafle

Packt

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt . com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

Foreword

I have known and worked with Sachin Kafle for more than four years. Sachin is one of the
most well-known individuals among Nepal-based cyber and Python experts. In this book,
Learning Python by Building Games, Sachin takes you on a learning journey of core and
advanced Python programming paradigms with the help of hands-on examples. For more
than 15 years, Python has continued to evolve to meet the needs of developers around the
world. For the majority of this time, Sachin has been a key team member in initiating
projects by creating and reusing modular programs.

In his presentations and examples, Sachin shows you how easy it is to create a wide range
of applications/games using different Python libraries, such as Pygame, Pymunk, and
PyOpenGL. Sachin has also helped developers to create a game with a taste for AL

With Learning Python by Building Games, you'll learn the best practices for writing high-
quality, reliable, and maintainable code with Python, a general-purpose language. After
you have completed Sachin's book, you'll understand how to create and deploy your own
mobile/computer games and apps.

Beyond developing apps for desktops and smartphones, you'll learn how to use the Python
programming paradigm to accomplish architecture based on Al and simulation.

In Learning Python by Building Games, Sachin encapsulates the knowledge gained through
years as an academic specialist and Python developer, a Python cybersecurity analyst, and
a passionate advocate. Through his words, step-by-step instructions, screenshots, source
code snippets, examples, and links to additional sources of information, you will learn how
to continuously enhance your skills and apps.

Become a proficient Python developer and build stunning cross-platform apps with
Python.

Prof. Dr. Subarna Shakya

Chairman, Computer Engineering Subject committee, Ministry of Education, National
Curriculum Development Center (Nepal)

Contributors

About the author

Sachin Kafle is a computer engineer from Tribhuvan University, Nepal, and a
programming instructor currently living in Kathmandu. He is the founder of Bitfourstack
Technologies, a software company that provides services including automation for real-
time problems in businesses. One of his courses, named Python Game Development, is the
best seller on many e-learning websites. His interests lie in software development and
integration practices in the areas of computation and quantitative fields of trade. He has
been utilizing his expertise in Python, C, Java, and C# by teaching since 2012. He has been a
source of motivation to younger people, and even his peers, regardless of their educational
background, who are embarking on their journey in programming.

I would like to acknowledge the amazing staff and editorial team at Packt Publishing:
without their talent and dedication, this book would not be such a valuable asset. In
particular, I would like to thank Aamir Ahmed and Mohammed Yusuf Imaratwale for
having faith in this book from the beginning. Adapting Aamir’s many insightful
comments and suggestions really uplifted the quality of this book, and I am grateful for all
the time and effort he put into this book.

I'd also like to thank the technical reviewer, Jose Angel Munoz, and the technical editor,
Jinesh Topiwala, for their thorough attention to the programming aspect of this book. Their
detailed labels and understanding of target audiences, along with their invaluable
comments, greatly improved the clarity of this book.

Finally, a special thanks to all of my students for their support and zeal for having this
book published. Your voracity toward learning game development using Python is what
inspired me to write this book.

About the reviewer

Jose Angel Munoz is a system engineer and architect with multiple years of IT
infrastructure and infrastructure-as-code development experience. He is an expert in a
variety of technologies, has collaborated with different open source projects, including
Ansible, Microsoft, Inspec by Chef, Pimoroni, and XLDeploy, and has published different
articles in Linux specialised magazines. For Packt, he has reviewed two PowerShell-related
books. You can find him on GitHub (@imjoseangel).

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

Table of Contents

Preface 1
Chapter 1: Getting to Know Python - Setting Up Python and the Editor s
Technical requirements 9
Introducing programming with Python 9
Explaining code procedures 11
Conversing with Python 12
Installing Python 13
For the Windows platform 13
For the Mac platform 17
Introducing the Python Shell and IDLE 19
Particulars of the Python Shell 20
Building blocks of Python 21
Installing the PyCharm IDE 23
Programming code without Hello World 25
Summary 26
Chapter 2: Learning the Fundamentals of Python 27
Technical requirements 28
Handling values and data 28
Variables and keywords 31
Rules for naming variables 33
Operators and operands 35
Order of operations 36
Modulus operator 37
Using the math module 37
Writing comments in code 42
Requesting user input 45
Typecasting or type conversion 47
String operations 48
String formatting 53
Building your first game - tic-tac-toe 54
Brainstorming and information gathering 54
Choosing proper code editor 55
Programming model or modelling 56
User interaction — user input and manipulation 58
Possible errors and warnings 60
Game testing and possible modifications 61

Summary 63

Table of Contents

Chapter 3: Flow Control - Building a Decision Maker For Your Game 64
Technical requirements 65
Understanding Boolean logic and logical operators 65

Comparison operators 66
Logical operators 67
Conditionals 70
Iteration 73
Th for loop 74
While loop 76
Loop pattern 77
The break and continue statements 80
Handling exceptions using try and except 81
Making a game controller for our tic-tac-toe game 83
Brainstorming and information gathering 84
Modifying the model 84
Handling the exceptions of the game 86
Toggling the player's turn 87
Making a player the winner 90
Summary 93

Chapter 4: Data Structures and Functions 95
Technical requirements 96
Why do we need data structures? 96
The four structural pillars of Python - lists, dictionaries, sets, and
tuples 98
Lists 98

Accessing list elements 100
List operations and methods 103
Slicing the list 106
String and list objects 107
Dictionaries 109
Looping through dictionaries 11
Dictionary methods 112
Tuples 113
Tuples and dictionaries 115
Sets 116
Set methods 117
Functions 119
Default arguments 123
Packing and unpacking arguments 124
Packing and unpacking keyword arguments 126
Anonymous function 127
Recursive functions 128
Built-in functions 130
Adding intelligence into our game 130

[ii]

Table of Contents

Brainstorming and information gathering

Implementation of models for intelligence

Controlling program flow with main function
Game testing and possible modifications
Summary

Chapter 5: Learning About Curses by Building a Snake Game
Technical requirements
Understanding curses
Starting the curses application
New screen and window objects
User input with curses
Making a snake game with curses
Brainstorming and information gathering
Inception
Handling user key events
Game logic — updating the head position of the snake
Game logic — when the snakes eats the food
Game testing and modification
Summary

Chapter 6: Object-Oriented Programming

Technical requirements

Overview of OOP

Python classes

Encapsulation

Inheritance

Polymorphism

Snake game implementation
Brainstorming and information gathering
Declaring constants and initializing the screen
Creating the snake class
Handling user events
Handling collisions elp of decorator property.
Adding the food class

Game testing and possible modification

Summary

Chapter 7: List Comprehension and Properties
Technical requirements
Overview of code complexities
For loop versus list comprehension
List comprehension pattern
Map function
Decorators

131
134
140
144
146

147
148
148
149
151
155
158
158
160
161
162
164
165
168

169
170
170
172
175
177
181
183
183
184
186
189
193
193
195
197

198
199
199
203
203
206
207

[iii]

Table of Contents

Python property
Refining the snake game with LC and property
Summary

Chapter 8: Turtle Class - Drawing on the Screen
Technical requirements
Understanding the turtle module
Introduction to turtle commands
Exploring turtle events
Drawing shapes with turtle
Summary

Chapter 9: Data Model Implementation
Technical requirements
Understanding operator overloading

Using data models in custom classes
Dealing with two-dimensional vectors

Exploring vectors
Modeling for vectored motion

Vector addition

Vector subtraction

Vector multiplication and division

Vector negation and equality
Summary

Chapter 10: Upgrading the Snake Game with Turtle
Technical requirements
Exploring computer pixels
Understanding simple animation using the Turtle module
Upgrading the snake game using Turtle
Exploring the Pong game
Understanding the flappy bird game
Game testing and possible modifications
Summary

Chapter 11: Outdo Turtle - Snake Game Ul with Pygame
Technical requirements
Understanding pygame
Pygame objects
Subsurfaces
Blitting your objects
Drawing with the pygame draw module
Initializing the display and handling events
Handling user events
Mouse control

21
214
215

216
217
217
219
223
228
231

233
234
234
236
239
240
242
243
244
245
246
247

248
249
249
253
262
267
271
277
281

282
283
283
289
290
291
293
295
298
303

[iv]

Table of Contents

Object rendering 306
Initializing the display 308
Working with colors 308
Making game objects 309
Using the frame rate concept 311
Handling directional movements 312
Adding food to the game 315
Adding snake sprites 319

Adding a menu to the game 321

Converting into executables 324
Using py2exe 324

Game testing and possible modifications 325

Summary 326

Chapter 12: Learning About Character Animation, Collision, and
Movement 327

Technical requirements 328

Understanding game animation 328
Animating sprites 332
Animation logic 336

Scrolling background and character animation 338

Understanding random object generation 345

Detecting collision 351

Scoring and end screen 355

Game testing 356

Summary 357

Chapter 13: Coding the Tetris Game with Pygame 359

Technical requirements 360

Understanding Tetris essentials 360
Creating the shapes format 363

Creating a grid and random shapes 366

Setting up the window and game loop 368
Understanding rotations 371

Converting the shape format 374

Modifying the game loop 377

Clearing the rows 381

Game testing 386

Summary 388

Chapter 14: Getting to Know PyOpenGL 390

Technical requirements 391

Understanding PyOpenGL 391
Installing PyOpenGL 392

Making objects with PyOpenGL 395

[v]

Table of Contents

Understanding PyOpenGL methods 398
Understanding color properties 401
Brainstorming grids 403
Understanding the GLU library 404
Summary 407
Chapter 15: Getting to Know Pymunk by Building an Angry Birds
Game 409
Technical requirements 410
Understanding pymunk 411
Exploring pymunk's built-in classes 414
Exploring the pymunk Body class 415
Exploring the pymunk Shape class 416
Creating a character controller 418
Creating the Polygon class 421
Exploring Pythonic physics simulation 427
Implementing the sling action 431
Addressing collisions 436
Creating levels 439
Handling user events 442
Possible modifications 449
Summary 452
Chapter 16: Learning Game Al - Building a Bot to Play 453
Technical requirements 454
Understanding Al 454
Implementing states 455
Starting snake Al 457
Adding a computer player 462
Adding intelligence to a computer player 464
Building the game and frog entities 466
Building the surface renderer and handler 467
Game testing and possible modifications 471
Summary 473
Appendix A: Other Books You May Enjoy 474
Leave a review - let other readers know what you think 476

Index 477

[vi]

Preface

In September of 2018, I was teaching some of my students about game programming and
automation using Python. Then, I realized that it was time to create a book that not only
offers information on the rich content of game programming using Python but also
shows how to make and deploy games that mimic real, world-famous games such as
Flappy Bird and Angry Birds. I wanted to equip you with all the essentials and primitives
of game programming to become a real-world Python game developer. This book is not
your usual and traditional Python theoretical book; our approach will be as practical as
possible. Each chapter will contain a single, yet powerful, real-world game example that
will not only be interesting but will also edify you with programming paradigms, which
will be your first step to becoming a proficient Python developer.

Python is one of the most widely used programming languages of 2018/19, according to a
survey conducted by Stack Overflow and TIOBE, and its rate of popularity growth is not
expected to decrease any time soon. If you observe what big tech companies use for
handling their businesses, you can see that they depend highly upon Python because of its
easy usage and rapid prototyping. Not only that, but you can also see that Python can be
used to develop a variety of applications ranging from data science to high-end web
applications, and as you proceed to learn the basics of Python, you will be ready to create
almost anything you want.

There are many reasons to learn Python, and a big one is the Python community. Many of
the world's greatest developers contribute incessantly to this Python community by adding
new libraries/modules and functionalities. These libraries prove to be extremely helpful if
you want to create something new and rapidly. As such, Python is focused on products
rather than being bogged down in the routines and complexities of low-level programming,
which makes it the most loved programming language of beginners.

In this book, we will start by introducing some important programming concepts, such as
variables, numbers, Boolean logic, conditionals, and looping. After building a solid
foundation of core programming concepts, we will hop into advanced sections such as data
structures and functions. The pace of learning will be increased with the difficulty of the
chapters. After finishing chapter 7, List Comprehension and Properties, we will be fully
equipped with all the basics to be applied while creating advanced things such as flappy
bird emulators, angry bird emulators, and Al players. In each chapter, there will be a game
testing and possible modification topic to compel you to think about how errors should be
handled and how programs should be refined.

Preface

Requirements for this book

To get a good grasp of each of the topics written about in this book, I encourage you to
follow along with the source code and examples. To write code properly, you will need to
install Python on your machine. I have used Python's latest version (as of September 2019),
version 3.7, but you can use any version newer than 3.5+. The thorough installation process
of Python is covered in the first chapter for your machine, based on the OS (Linux, macOS,
or Windows) you're using. You will also need an internet connection up and running to
download GitHub code and Python third-party libraries. We will be installing different
Python libraries, including PyGame, Pymunk, and PyOpenGL later in this book. For each of
them, the installation process will be covered in the chapter concerned. While using such
modules, our programs will tend to become lengthier, so we strongly encourage you to use
a good Python text editor. I will be using the PyCharm IDE to create complex games using
Python, and its installation is also covered in the first chapter. Apart from these software
requirements, there are no specific requirements for this book.

Who this book is for

This book is for anyone who wants to learn Python. You can be a beginner or someone who
has tried learning it previously, but a boring course or book set you off track, or someone
who wants to brush up on their skills. This book will help you gain core knowledge and
advance your skills in the most interesting way: by building games. It primarily focuses on
GUI programming using the Python modules PyGame, PyOpenGL, and Pymunk. No
programming skills are expected from learners as we will cover everything you need to
know about Python in this book. We will study the turtle module by building three mini-
games, and you will learn how to create your very own 2D games, even if you are a
complete beginner. If you ever wanted to explore game development with Python's
PyGame module, this book is for you.

What this book covers

Chapter 1, Getting to Know Python — Setting Up Python and the Editor, covers the background
of game development and the scope of Python in game development. We will set up
Python on our local machine and install the appropriate editor. We will also become
familiar with the project settings and the interface of the editor. We will see how to install
modules in PyCharm. We will execute our first Python program in this chapter.

[2]

Preface

Chapter 2, Learning the Fundamentals of Python, takes us through the invigorating stuff of
the Python ecosystem, giving us knowledge about the basic concepts of programming such
as variables, numbers, and modules. This chapter will give us with knowledge of values,
types, and type-casting techniques. We will make a simple tic-tac-toe game using concepts
learned in this chapter. This will teach us how to track data in Python programs.

Chapter 3, Flow Control — Building a Decision Maker for Your Game, covers the concepts of
Boolean logic, conditionals, and looping. This chapter will be life-changing for any learning
developer. This chapter will provide mainly deal with how things can be automated with
logic. We will also see looping patterns and debugging. Some practical examples will be
covered in this section. We will refine our tic-tac-toe game by incorporating game logic and
flow controls.

Chapter 4, Data Structures and Functions, covers lists, dictionaries, sets, and tuples. This
chapter will help programmers to distinguish between, and choose among, different built-
in storage solutions based on different situations. We will learn how to create each of these
data structures and how to perform different operations, including adding, deleting, and
traversing. We will make use of advanced data structures such as trees and queues in our
tic-tac-toe game, which will make our game more rugged.

Chapter 5, Learning About Curses by Building a Snake Game, covers terminal-independent
screen-painting and keyboard-handling facilities for text-based terminals; such terminals
include VT100s, the Linux console, and the simulated terminals provided by various
programs. We will make a snake game using curses events and screen painting. We will
make simple snake game logic using curses properties.

Chapter 6, Object-Oriented Programming, deals with creating and using objects in your
project. We will learn how to wrap data using properties and restrict data access using
specifiers. We will also learn how to use the built-in methods of Python to execute
overloading. This chapter will mainly deal with the terminologies of object-oriented
programming (OOP), such as classes, encapsulation, inheritance, and polymorphism. We
will use the OOP paradigm to make our snake game made with curses more robust and
reusable.

Chapter 7, List Comprehension and Properties, targets making our code simpler and faster in
execution. This chapter will teach us how to work with conditions and logic to implement
more understandable single-line code. We will see list comprehension and properties in
action with our snake game.

Chapter 8, Turtle Class — Drawing on the Screen, deals with the turtle module of Python.
This chapter will give a detailed explanation of how to use Python's turtle to draw all over
the screen with simple forward/backward commands. We will learn how to make basic
objects with turtle and build some skeleton code with Python in this chapter.

[3]

Preface

Chapter 9, Data Model Implementation, covers base class implementation. The base class
makes use of operator overloading using special built-in Python methods. We will make
use of vectors to specify the positions of objects and we will manipulate them with some
algebraic operations. Special functions suchas __add__ (), _mul__ (), _str__ (),
and __repr__ () will be used to overload operators.

Chapter 10, Upgrading the Snake Game with Turtle, shows us how to create our first 2D game
with a Python script. We will make use of the turt le module to create animations on the
screen. This will be a simple game, but we will learn how to use the methods of the turtle
module to move a pen and draw all over our canvas. We will modify our snake game,
made following simple OOP concepts, to one that contains simple animations made with
turtle. In addition to the snake game, we will also see how to make games such as Pong and
Flappy Bird with turtle.

Chapter 11, Outdoing Turtle — Snake Game Ul with PyGame, covers the installation of
PyGame on your machine, and we will also cover how to make the basic skeleton code of
our game containing display initialization, game loops, states, events, and colors. We will
modify our snake game, made with the turtle module, by using a sprite and a game
controller library named PyGame.

Chapter 12, Learning About Character Animation, Collision, and Movement, covers game
animation, game character movement (such as jumping and walking), random object
generation, game loops, collision and hit pipes, scrolling backgrounds, and scoreboards.

Chapter 13, Coding the Tetris Game with PyGame, deals with basic PyGame graphics, multi-
dimensional list processing, increasing game speed and difficulty, the menu for a game, the
creation of a game grid, and shapes and valid space determination.

Chapter 14, Getting to Know PyOpenGL, covers the installation of PyOpenGL on your
machine. We will see how to create an OpenGL window. We will make a simple rectangle
to begin with, and then look at PyOpenGL and see how the draw () method of PyOpenGL
works. We will also learn how to draw objects from vertices and edges, adding views for
object and clipping parameters.

Chapter 15, Getting to Know Pymunk by Building an Angry Birds Game, covers Pythonic 2D
physics simulation. We will create a space that contains the simulation and sets its gravity,
create a body with mass and moment, set the position of the body, create a box shape and
attach it to the body, and then add both the body and shape to the simulation. We will
create a complete Angry Birds game clone with Pymunk, dealing with sprite sheets and 2D
physics.

[4]

Preface

Chapter 16, Learning Game Al — Building a Bot to Play, shows how to create game Al In this
game (snake), both the computer and you play as a snake, and the computer snake tries to
catch you. The opponent Al tries to determine and go to the destination point based on
your location on the board.

To get the most out of this book

To make the most of the information presented in this book, you are encouraged to follow
along with the examples. Prior knowledge of Python is not required, but experience of
mathematical concepts such as arithmetic and logical operations is essential for
understanding the code thoroughly. Python-based applications are not limited to any
particular OS, so all that is required is a decent code editor and a browser. Throughout the
book, we have used the PyCharm Community 2019.2 editor, which is an open source editor
and is free to download.

Download the example code files

You can download the example code files for this book from your account
at www.packt . com. If you purchased this book elsewhere, you can
visit www.packtpub. com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt .com.
Select the Support tab.
Click on Code Downloads

Enter the name of the book in the Search box and follow the onscreen
instructions.

LN e

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Learning-Python-by-building-games. In case
there's an update to the code, it will be updated on the existing GitHub repository.

[5]

Preface

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Code in Action

Visit the following link to check out videos of the code being run:

http://bit.ly/20E9mHV

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "The screenshot shows the edited python_ex_1.py file."

A block of code is set as follows:

n = int (input ("Enter any number"))
for i in range(1,100):
if 1 == n:
print (1)
break

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

def fun(b):
print ("message")
a=9+b

move_player (a)
fun (3)
Any command-line input or output is written as follows:
>>> cd Desktop

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"In the installer, make sure you check the Add Python to PATH box."

[6]

Preface

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

[7]

Getting to Know Python -
Setting Up Python and the
Editor

Python is notorious in the data and analytics industry, but it is still a hidden artifact in the
gaming industry. While making games using other gaming engines such as Unity and
Godot, we tend to combine our design logic with core programming principles. But in the
case of Python, it is mostly the analysis of problems and programming paradigms that
coalesce together. A program flow or structure is a sequence that is dovetailed with its
programming paradigms. A programming paradigm, as its name suggests, facilitates the
programmer to write a solution to a problem in the most economical and efficient way
possible. For instance, writing a program in two lines of code instead of ten lines is an
outcome of using a programming paradigm. The purpose of program flow analysis or
structural analysis is to uncover information about procedures that need to be invoked for
various design patterns.

In this chapter, we will learn about the following topics:

e Introducing programming with Python

Installing Python

The building blocks of Python
Installing the PyCharm IDE
Programming code without Hello World

Getting to Know Python - Setting Up Python and the Editor Chapter 1

Technical requirements

The following is a list of the minimum hardware requirements you'll need for this book:

¢ A working PC with a minimum of 4GB RAM
¢ An external mouse adapter (if you are using a laptop)

¢ A minimum of 5GB of hard disk space to download an external IDE and Python
packages

You will need the following software to get the most out of this book (we will download all
of them in this chapter):

e Various open source Python packages like pygame, pymunk and pyopenGL
¢ The Pycharm IDE (community version), which you can find at https://www.
jetbrains.com/pycharm/

¢ Various open source packages, such as pygame and pycharm

e The code for this chapter, which can be found in this book's GitHub
reposﬁory:https://github.com/PacktPublishing/Learninngythonfbyf
building-games/tree/master/Chapter01

Check out the following video to see the code in action:

http://bit.ly/202pVgA

Introducing programming with Python

The old adage of programming states the following:

"Coding is basically the computer language that’s used to develop apps, websites, and
software. Without it, we'd have none of the major technology we ve come to rely on such
as Facebook, our smartphones, the browser we choose to view our favorite blogs on, or even
the blogs themselves. It all runs on code.”

We couldn't agree more with this. Computer programming can be both a rewarding and
tedious activity. Sometimes, we might be in a situation where we can't find the tweaks of
the exception (unexpected behavior of the program) that we caught in the program and,
later, we find that the error was because of wrong modules or bad practices. Writing
programs is similar to writing essays; first, we have to learn about the patterns of an essay;
then, we analyze the topics and write them; and finally, we check the grammar.

[9]

Getting to Know Python - Setting Up Python and the Editor Chapter 1

Similar to the process of writing an essay, when writing code, we have to analyze the
patterns or grammar of the programming language, then we analyze the problems, and
then we write a program. Finally, we check its grammar, which we normally do with alpha
and beta testing.

This book will try to turn you into a person who can analyze a problem, build noble logic,
and come up with an idea that will solve that problem. We won't make this journey
monotonous; instead, we will learn about Python syntax by building games in each chapter.
By the end of this book, you will be thinking like a programmer—maybe not a professional
one, but at least you will have developed the skill to make your own programs using
Python.

There are two crucial things you'll learn about in this book:

e Firstly, you will learn about the vocabulary and grammar of Python. I don't mean
learning about Python theory or history. First, we have to learn about Python
syntax; then, we will see how we can create statements and expressions with that
syntax. This step includes collecting data and information and storing it in an
appropriate data structure.

e Then, you will learn about the procedures that come with the idea of calling the
appropriate methods. This process includes using the data that was collected in
the first step to get the intended output. This second step is not specific to any
programming language. This is going to teach us about various programming
prototypes rather than just Python.

Learning any other programming languages after learning about Python is a lot easier. The
only difference you will observe in other programming language is syntax complexities and
program debugging tools. In this book, we will try to learn about as many programming
paradigms as possible so that we can start a programming career.

Are you still unsure about Python?
Let's take a look at some of the products that have been made with Python:

¢ No list starts without mentioning Google. They use it in their web search system
and page rank algorithm.

¢ Disney uses Python for its creative processes.
e BitTorrent and DropBox are written in Python.

[10]

Getting to Know Python - Setting Up Python and the Editor Chapter 1

e Mozilla Firefox uses it to explore content and is a major contributor to Python
packages.

e NASA uses it for scientific purposes.
The list goes on and on!

Let's take a look at how code procedures work in simple terms.

Explaining code procedures

To explain how code procedures work in simple terms, let's take the example of making an
omelet. You start by learning the basics from a recipe book. First, you gather some utensils
and make sure they are clean and dry. After that, you beat the eggs, salt, and pepper until
it's all blended. Then, you add butter to your non-stick pan, add your egg mixture, and
cook it or even tilt the pan to check whether every part of the omelet is cooked or not.

In terms of programming, first, we talk about collecting our tools, such as the utensils and
eggs, which relates to collecting data that will be manipulated by the instructions we write
in our programs. After that, we talk about cooking the eggs, which is your methods. We
normally manipulate data in methods to get output in a form that is meaningful to the user.
Here, the output is an omelet.

Giving instructions to a program is the job of a programmer. But let's distinguish between a
client and a programmer. If you are using a product where you give instructions to the
computer to perform tasks for you, then you are a client, but if you design instructions that
will complete tasks for a product you've created for everyone, this indicates that you are a
programmer. It is only a matter of for one or for everyone to determine whether a user is a
client or programmer.

Some of the instructions we will use in our Windows Command Prompt or Linux Terminal
will be for opening the directory of our machine. There are two ways of performing this
action. You can either do it using a GUI, or you can use the Terminal or command prompt.
If you type in the dir command in the respective field, you are now telling the computer to
display the directories in that location. The same thing can be done in any programming
language. In Python, we have modules to do this for us. We have to import that module
before we can use it. Python provides a lot of modules and libraries to perform such
operations. In a procedural programming language such as C, which allows low-level
interaction with memory, this makes it harder to code, but with Python, it is easier to use
the standard library, which makes the code shorter and readable. David Beazley, the author
of How to Think Like a Computer Scientist Learning Python, was once asked, why Python? He
simply replied, Python is simply a lot of fun and more productive.

[11]

Getting to Know Python - Setting Up Python and the Editor Chapter 1

Conversing with Python

Python has been around for many years (nearly 29), and regardless of all of the upgrades it
has had to go through, it's still standing as the easiest language for beginners to learn. The
primary reason for this is that it can be correlated to the English vocabulary. Similar to how
we make statements with English words and vocabulary, we can write statements and
operations with Python syntax that commands can interpret, execute, and provide us with
a result. We can make a sentence such as go there as a command to reflect the position of
something with conditionals and flow controls. Learning the syntax of Python is pretty
easy; the actual task is to use all of the resources provided by Python to build brand new
logic to solve intricate problems. Just learning the basic syntax and writing a couple of
programs is never enough; you have to practice enough so that you can come up with
revolutionary ideas to solve real-world problems.

We have a lot of vocabulary in the English dictionary. Unlike the English dictionary,
Python only contains a few words in its container, which we normally call reserved words.
There are 33 of them in total. They are instructions that tell the Python interpreter to
perform specific operations. Modifying them isn't possible—they can only be used to
perform specific tasks. In addition, when we call a print statement and write some text in it,
it is expected that it prints out that message. If you want to make a program that takes
input from the user, calling the print statement is useless; the input statement has to be
called to achieve that. The following table shows our 33 reserved words:

False class finally is return
None continue for lambda try
True def from nonlocal while
and del global not with
as elif if or yield
assert else import pass

break except in raise

Each of the preceding words can be found in our English dictionary. In addition, if we
search for the word return in the dictionary, it simply gives us the verb meaning of
coming or going back to the original place. The same semantics are used in Python; when
you use the return statement with functions, then you are pulling out something from the
function. In the upcoming chapters, we will see all of these keywords in action.

Now that we have started to learn how to converse in Python by examining its keywords,
we will install Python. Gear yourself up and open your machine for some fun.

[12]

Getting to Know Python - Setting Up Python and the Editor Chapter 1

Installing Python

In this section, we will look at installing Python on Windows and macOS.

For the Windows platform

Python doesn't come pre-installed on Windows. We have to download it manually from its
official website and then install it. Let's look at how to do this:

1. First of all, open your favorite browser and open the following URL: https://
www.Python.org/.

2. You will be directed to the page that's shown in the following screenshot. Once
you have been redirected to Python's official website, you will see three
sections: Download, Docs, and Jobs. Click on the Download section at the
bottom of the page:

Compound Data Types

Lists (known as arrays in other languages) are one of the
compound data types that Python understands. Lists can be
indexed, sliced and manipulated with other built-in

functions. More about lists in Python 3
["BANANA*, 'APPLE', 'LIME'] B —

[(e, 'Banana‘'), (1, ‘Apple'), (2, 'Lime")]

Python is a programming language that lets you work quickly

and integrate systems more effectively. »> Learn More

O Get Started & Download Docs & Jobs
Whether you're new to Python source code and installers Documentation for Python's Looking for work or have a Python
programming or an experienced are available for download for all standard library, along with tutorials related position that you're trying to
developer, it's easy to learn and use versions! and guides, are available online. hire for? Our relaunched
Python. community-run job board is the
Latest: Python 3.7.2 docs.python.org
place to go.

Start with our Beginner’s Guide

jobs.python.org

3. You will see a list of files, as shown in the following screenshot. Pick the file
that's appropriate for your platform. We're looking at the installation for
Windows in this section, so we will click on the Windows executable link. This is
highlighted in the following screenshot:

[13]

Getting to Know Python - Setting Up Python and the Editor Chapter 1

.
Files

Version Operating System Description MD5 Sum File Size GPG
Gzipped source tarball Source release 02a75015f7cd845e27b85192bb0cadcb 22897802 SIG
XZ compressed source tarball Source release df6ec36011808205beda239c72f947cb 17042320 SIG
macOS 64-bit/32-bit installer Mac OS X for Mac OS X 10.6 and later d8ff07973bc9c009de80c269fd7efcca 34405674 SIG
macOS 64-bit installer Mac OS X for 0S X 10.9 and later 0fc95e9f6d6b4881f3b499da338a9a80 27766090 SIG
Windows help file Windows 941b7d6279c0d4060a927a65dcab88c4 8092167 SIG
Windows x86-64 embeddable zip file Windows for AMD64/EM64T/x64 81568590bef56e5997e63b434664d58 7025085 SIG

Windows for AMD64/EM64T/x64 f258093f0b3953c886192dec9f52763 26140976 SIG
Windows x86-64 web-based installer Windows for AMD64/EM64T/x64 8de2335249d84feleeb61ec25858bd82 1362888 SIG
Windows x86 embeddable zip file Windows 26881045297dc1883ald61baffeecafd 6533256 SIG
Windows x86 executable installer Windows 38156b62c0cbcb03bfddeb86e66c3a0f 25365744 SIG
Windows x86 web-based installer Windows 1e6626514b7221008f8cd53f945f10 1324648 SIG

4. After clicking on that, you will get a file that needs to be downloaded. After
opening that downloaded file, you will get the installer, as follows:

& Python 3.7.2 (64-bit) Setup — X

Install Python 3.7.2 (64-bit)

Select Install Now to install Python with default settings, or choose
Customize to enable or disable features.

—> Install Now
C:\Users\admin\AppData\Local\Programs\Python\Python37

Includes IDLE, pip and documentation
Creates shortcuts and file associations

—> Customize installation
Choose location and features

pgthfon

Install launcher for all users (recommended)

or
windows I Add Python 3.7 to PATH Cancel

[14]

Getting to Know Python - Setting Up Python and the Editor Chapter 1

5. In the installer, make sure you check the Add Python to PATH box. This will put
the Python library files in our environment variables so that we can execute our
Python programs. Afterward, you will get a message about its successful
installation:

[Python 3.7.2 (64-bit) Setup - X
Setup was successful

Spedial thanks to Mark Hammond, without whose years of
freely shared Windows expertise, Python for Windows would
still be Python for DOS.

New to Python? Start with the online tutorial and
documentation.

See what's new in this release.

® Disable path length limit

Changes your machine configuration to allow programs, including Python, to
bypass the 260 character "MAX_PATH" limitation.

python

for

windows Close

6. Press the Windows key + R to open Run and type cmd in the Run tab to open
your Windows Command Prompt. Then, type Python in the command shell:

Microsoft Windows [Version 10.0.17763.316]
(c) 2018 Microsoft Corporation. All rights reserved.

C:\Users\admin>python

Python 3.7.2 (tags/v3.7.2:9a3ffc0492, Dec 23 2018, 23:09:28) [MSC v.1916 64 bit (AMD64)] on win32
Type "help", "copyright", “"credits" or "license" for more information.

>>>

If you get the Python version that's displayed in the preceding screenshot, then Python has
been successfully installed on your machine. Congratulations! Now, you can get your
hands dirty by writing your first program with Python.

[15]

Getting to Know Python - Setting Up Python and the Editor Chapter 1

If you get an error saying Python is not recognized as an internal or external command,
you have to explicitly add Python to the path environment variable. Follow these steps to
do so:

1. Open the Control Panel, navigate to System and Security, and then go
to System to view the basic information about your system.

2. Open your Advanced system settings and then Environment Variables....

3. In the Variable section, search for Path. Select the Path variable and press
the Edit... tab.

4. Click New in the Edit Environment Variable tab.

5. Add this path so that it's pointing to your Python installation directory, that
is, C:\Users\admin\AppData\Local\Programs\Python\Python37\.

6. Click on the OK button to save these changes:

Edit environment variable

C:\Users\admin\AppData\Local\Programs\Python\Python37\Scri... New
%USERPROFILE%\AppData\Local\Microsoft\WindowsApps Edit
C:\Users\admin\AppData\Roaming\Composer\vendor\bin

C\xampp\php; Browse...

C:\Program Files\Java\jre1.8.0_201\lib;

Delete

Move Up

Move Down

Edit text...

SR

Cancel

| OK |

Now, we have successfully installed Python for Windows. If you are using a Mac, the next
section will help you to access Python too.

[16]

Getting to Know Python - Setting Up Python and the Editor Chapter 1

For the Mac platform

Python comes pre-installed with Mac OS X. To check the version of Python you have
installed, you should open your command line and type Python --version.If you geta
version number of 3.5 or newer, you don't need to go through the installation process, but if
you have version 2.7, you should follow these instructions to download the latest available
version:
1. Open your browser and type in https://www.Python.org/downloads/. You will
be sent to the following page:

’ @ Python Software Foundation [US] = https://www.python.org/downloads/

Python

& python’ . I

About Downloads Documentation Community Success Stories News Events

Download the latest version for Mac OS X

Download Python 3.7.0

Looking for Python with a different 0S? Python for Windows,

Linux/UNIX, Mac OS X, Other
Want to help test development versions of Python? Pre-releases

Looking for Python 2.7? See below for specific releases

2. Click on the macOS 64-bit/32-bit installer. You will be provided with a . pkg file.
Download it. Then, navigate to that installed directory and click on that installer.
You will see the following tab. Press Continue to initiate the installer:

[17]

Getting to Know Python - Setting Up Python and the Editor Chapter 1

® O & Install Python [*)

Welcome to the Python Installer

This package will install Python 3.7.0 for macOS 10.9 or later.
@ Introduction

Python for macOS consists of the Python programming language
interpreter, plus a set of programs to allow easy access to it for macOS
users including an integrated development environment IDLE.

NEW in 3.7.0: two installer variants (10.9+ 64-bit-only, 10.6+ 64-/32-bit),

built-in Tcl/Tk 8.6 support (no additional third-party downloads!),
OpenSSL 1.1.0, and more!

Continue

Whenever you download Python, a bundle of packages will be installed on your computer.
We can't use those packages directly, so we should call them individually for each
independent task. To write programs, we need an environment where we can call Python
so that it can complete tasks for us. In the next section, we will explore the user-friendly
environment provided by Python where we can write our own programs and run them to
view their output.

Now that you have installed Python version 3.7 on Mac OS X, you can open your Terminal
and check the version of Python you have with the python --version command. You
will see Python 2.7.10. The reason for this is that Mac OS X comes preinstalled with version
2.7+ of Python. To use the newer version of Python, you have to use the python3
command. Type the following command into your Terminal and observe the result:

python3 --version

Now, to make sure Python uses the interpreter with the newer version that you just
installed, you can use an aliasing technique that will replace the current working Python
version with Python3. To perform aliasing, you have to follow these steps:

1. Open your Terminal and type in the nano ~/.bash_profile command to open
a bash file using the nano editor.

2. Next, go to the end of the file (after import PATH) and type in the alias
python=python3 command. To save a nano file, press Ctrl + X and then Y to
save.

[18]

Getting to Know Python - Setting Up Python and the Editor Chapter 1

Now, open your Terminal again and type in the same command that we used previously to
check the Python version we have. It will be updated to the newer version of Python. From
now on, in order to run any Python file from your Mac, you can use this Python command,
followed by the signature of the file or filename.

Introducing the Python Shell and IDLE

The Python Shell is similar to Command Prompt for Windows and the Terminal for Linux
and Mac OS X where you write commands that will be executed in the filesystem. The
results of these commands are printed instantly within the shell. You can also get direct
access to this shell using a Python command (> python) in any Terminal. The result will
contain an exception and an error due to the improper execution of the code, as follows:

>>> imput ("Enter something")
Traceback (most recent call last):
File "<pyshell#5>", line 1, in <module>
imput ()
NameError: name 'imput' is not defined

>>> 1 love Python
SyntaxError: invalid syntax

As you can see, we ran into an error and the Python IDE is explicitly telling us the name of
error we ran into, which in this case is NameError (a type of syntax error). SyntaxError
occurs due to an incorrect pattern of code. In the preceding code example, when you write
the I love Python syntax, this implies nothing to the Python interpreter. You should
write proper commands or define something properly if you want to rectify that problem.
Writing imput instead of input is also a syntax error.

Logic errors or semantic errors occur even if your program syntax is correct. However, this
doesn't solve your problem domain. They are dangerous as they are hard to track. The
program is perfectly correct but does not solve any problem that it's intended to.

When you download the Python package on your machine, a Python Integrated
Development Environment (IDE) called IDLE (Python's built-in IDE) is downloaded
automatically onto your machine. You can type IDLE into the search bar to navigate to this
environment. IDLE is a free open source program that provides two interfaces where you
can write code. We can write scripts and Terminal commands in IDLE.

Now that we are familiar with what not to do in the Python Shell, let's talk about the
particulars of the Python Shell—an environment where you can write your Python code.

[19]

