More Solved Problems in Quantum Chemistry

Narayanan Kurur

February 5, 2014

1. Determine the radii for the nodal surfaces of the $3 s$ orbital of the hydrogen atom. $\psi_{300}=\psi_{3 s}=\frac{2}{81 \sqrt{3 \pi a_{0}^{3}}}\left(27-18 \frac{r}{a_{0}}+2\left(\frac{r}{a_{0}}\right)\right) \exp \left(-\frac{r}{a_{0}}\right)$
Solution: For a $3 s$ orbital, the factor $\left(27-18 \frac{r}{a_{0}}+2\left(\frac{r}{a_{0}}\right)^{2}\right)$ vanishes at $r=\frac{18 \pm \sqrt{108}}{4} a_{0}$ which gives the radii of the nodal surfaces.
2. Confirm that $Y_{l m}=-\left(\frac{3}{8 \pi}\right) \sin \theta \exp i \phi$ is an eigen function of the $\hat{L^{2}}$ and $\hat{L_{z}}$ operators.

Solution: From the form of the function we can identify that $l=1$ and $m=1$.

$$
\begin{aligned}
& \hat{L^{2}}=-\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}-\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \\
& \hat{L^{2}} Y_{l m}=-\frac{3}{8 \pi}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \cos \theta+\frac{1}{\sin ^{2} \theta} \sin \theta\right) \exp i \phi \\
&=-\frac{3}{8 \pi} \sin \theta \exp \pm i \phi\left(\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\sin ^{2} \theta}+\frac{1}{\sin ^{2} \theta}\right) \\
&= 2\left(-\frac{3}{8 \pi} \sin \theta \exp i \phi\right)
\end{aligned}
$$

As expected, we find that $\hat{L^{2}} \Upsilon_{l m}=l(l+1) \Upsilon_{l m}=2 \Upsilon_{l m}$ in this case. The $\hat{L_{z}}$ operator is $-i \hbar\left(\frac{\partial}{\partial \phi}\right)$.

$$
\hat{L_{z}} Y_{l m}=-i \hbar\left(\frac{\partial}{\partial \phi}\right)\left(-\frac{3}{8 \pi} \sin \theta \exp i \phi\right)=1 \hbar\left(-\frac{3}{8 \pi} \sin \theta \exp i \phi\right)
$$

Once again, as expected, we find that $\hat{L_{z}} Y_{l m}=m \hbar Y_{l m}$.
3. Show that $\left\langle r_{2 s}\right\rangle \neq\left\langle r_{2 p_{z}}\right\rangle$. You are given that $R_{20}=\frac{1}{\sqrt{2}}\left(\frac{1}{a_{0}}\right)^{3 / 2}\left(1-\frac{r}{2 a_{0}}\right) \mathrm{e}^{-\frac{r}{2 a_{0}}}$ and $R_{21}=$ $\frac{1}{2 \sqrt{6}}\left(\frac{1}{a_{0}}\right)^{3 / 2} \frac{r}{a_{0}} \mathrm{e}^{-\frac{r}{2 a_{0}}}$.
Solution: From the expectation value postulate we know that $\langle O p\rangle=\int \psi^{*} \hat{O p} \psi d \tau$, which for this case is $\langle r\rangle=\int R^{*} r R r^{2} \mathrm{~d} r$.
4. Consider a system whose state is given as $\psi=\frac{\sqrt{3}}{3} \phi_{1}+\frac{2}{3} \phi_{2}+\frac{\sqrt{2}}{3} \phi_{3}$, where ϕ_{1}, ϕ_{2}, and ϕ_{3} are orthonormal. (a) Calculate the probability of finding the system in any of the states ϕ_{1}, ϕ_{2}, or ϕ_{3}. (b) Consider an ensemble of 810 systems on which measurements are made. How many systems will be found in each one of the states ϕ_{1}, ϕ_{2}, or ϕ_{3} ?
Solution: (a) We first verify whether the state ψ is normalized, which it is $-3 / 9+4 / 9+$ $2 / 9=1$. The probability of finding the system in any of the states ϕ_{i} is $\left|c_{i}\right|^{2}$. In this case it is $1 / 3,4 / 9$, and $2 / 9$ respectively. (b) If a large number of measurements, (N say, are made, the number of systems being found in a state i is $p_{i} N$.
5. An electron is moving freely in a box which extends from 0 to a. The electron is in the ground state of the box. If the wall at a is suddenly moved to $4 a$, what is the probability of finding the electron in the (a) ground state and (b) first excited state of the new box?
Solution: The electron is initially in the state $\psi=\sqrt{\frac{2}{a}} \sin \left(\frac{\pi x}{a}\right)$. The ground and first excited states of the new box are $\phi_{1}=\sqrt{\frac{2}{4 a}} \sin \left(\frac{\pi x}{4 a}\right)$ and $\phi_{2}=\sqrt{\frac{2}{4 a}} \sin \left(\frac{2 \pi x}{4 a}\right)$. The probability of finding the electron in the state ϕ_{i} is given by $\left|\int_{0}^{a} \phi_{i} \psi \mathrm{~d} x\right|^{2}$.
6. An electron in hydrogen atom is in the energy eigenstate $N r \mathrm{e}^{-\frac{r}{2 a_{0}}} \sin \theta \mathrm{e}^{-i \phi}$. (a) Find N (b) If $\hat{L^{2}}$ and $\hat{L_{z}}$ are measured, what will be the results? (c) And if $\hat{L_{x}}$ is measured? (d) What is the probability per unit radial interval ($\mathrm{d} r$) of finding the electron at $r=2 a_{0}$?
Solution: (a) $N^{2}=\frac{1}{\int_{r=0}^{\infty} \int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi} r^{2} \mathrm{e}^{-\frac{1}{T_{0}}} \sin ^{2} \theta r^{2} \mathrm{~d} r \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi}$ (b) The l and m values are, respectively, 1 and -1 . If $\hat{L^{2}}$ is measured, one would get $l(l+1) \hbar^{2}=2 \hbar^{2}$. Measurement of $\hat{L_{z}}$ yields $m \hbar=1 \hbar$. (c) The state is not an eigenfunction of L_{x} (you can verify this by finding the operator form of $\hat{L_{x}}$. The expectation value of $\hat{L_{x}}$ in this state is zero. (d) The desired probability is found by integrating ψ^{2} over θ and ϕ and evaluating the resulting function of r at $r=2 a_{0}$.
7. If \hat{A} is the operator $i\left(x^{2}+1\right) \frac{\mathrm{d}}{\mathrm{d} x}+i x$, find the state $\psi(x)$ for which $\hat{A} \psi(x)=0$. Normalize $\psi(x)$. Calculate the probability of being in the region $-1 \leq x \leq 1$ if the particle in the state $\psi(x)$.
Solution: The state $\psi(x)$ is the solution of the differential equation $\frac{\mathrm{d} \psi}{\mathrm{d} x}=-\frac{x}{x^{2}+1}$, which is $\frac{N}{\sqrt{x^{2}+1}}$. The function is normalized as always, $N^{2} \int_{-\infty}^{\infty} \psi^{*} \psi \mathrm{~d} x=1$ implying that $N=\frac{1}{\sqrt{\pi}}$. The probability of being found in the specified region is $\frac{1}{\pi} \int_{-1}^{1} \frac{1}{x^{2}+1} \mathrm{~d} x=1 / 2$.

