More Solved Problems in Quantum Chemistry

Narayanan Kurur

February 5, 2014

- 1. Determine the radii for the nodal surfaces of the 3*s* orbital of the hydrogen atom. $\psi_{300} = \psi_{3s} = \frac{2}{81\sqrt{3\pi a_0^3}} \left(27 - 18\frac{r}{a_0} + 2\left(\frac{r}{a_0}\right)\right) \exp\left(-\frac{r}{a_0}\right)$ **Solution:** For a 3*s* orbital, the factor $\left(27 - 18\frac{r}{a_0} + 2\left(\frac{r}{a_0}\right)^2\right)$ vanishes at $r = \frac{18 \pm \sqrt{108}}{4}a_0$ which gives the radii of the nodal surfaces.
- 2. Confirm that $Y_{lm} = -\left(\frac{3}{8\pi}\right)\sin\theta\exp i\phi$ is an eigen function of the \hat{L}^2 and \hat{L}_z operators. **Solution:** From the form of the function we can identify that l = 1 and m = 1.

$$\hat{L^2} = -\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \sin\theta \frac{\partial}{\partial\theta} - \frac{1}{\sin^2\theta} \frac{\partial^2}{\partial\phi^2}$$

$$\hat{L}^{2}Y_{lm} = -\frac{3}{8\pi} \left(\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \sin\theta \cos\theta + \frac{1}{\sin^{2}\theta} \sin\theta \right) \exp i\phi$$
$$= -\frac{3}{8\pi} \sin\theta \exp \pm i\phi \left(\frac{\cos^{2}\theta - \sin^{2}\theta}{\sin^{2}\theta} + \frac{1}{\sin^{2}\theta} \right)$$
$$= 2\left(-\frac{3}{8\pi} \sin\theta \exp i\phi \right)$$

As expected, we find that $\hat{L}^2 Y_{lm} = l(l+1)Y_{lm} = 2Y_{lm}$ in this case. The \hat{L}_z operator is $-i\hbar \left(\frac{\partial}{\partial \phi}\right)$.

$$\hat{L}_{z}Y_{lm} = -i\hbar\left(\frac{\partial}{\partial\phi}\right)\left(-\frac{3}{8\pi}\sin\theta\exp{i\phi}\right) = 1\hbar\left(-\frac{3}{8\pi}\sin\theta\exp{i\phi}\right)$$

Once again, as expected, we find that $\hat{L}_z Y_{lm} = m\hbar Y_{lm}$.

3. Show that $\langle r_{2s} \rangle \neq \langle r_{2p_z} \rangle$. You are given that $R_{20} = \frac{1}{\sqrt{2}} \left(\frac{1}{a_0} \right)^{3/2} \left(1 - \frac{r}{2a_0} \right) e^{-\frac{r}{2a_0}}$ and $R_{21} = \frac{1}{2\sqrt{6}} \left(\frac{1}{a_0} \right)^{3/2} \frac{r}{a_0} e^{-\frac{r}{2a_0}}$.

Solution: From the expectation value postulate we know that $\langle Op \rangle = \int \psi^* \hat{O}p\psi d\tau$, which for this case is $\langle r \rangle = \int R^* r R r^2 dr$.

4. Consider a system whose state is given as $\psi = \frac{\sqrt{3}}{3}\phi_1 + \frac{2}{3}\phi_2 + \frac{\sqrt{2}}{3}\phi_3$, where ϕ_1 , ϕ_2 , and ϕ_3 are orthonormal. (a) Calculate the probability of finding the system in any of the states ϕ_1 , ϕ_2 , or ϕ_3 . (b) Consider an ensemble of 810 systems on which measurements are made. How many systems will be found in each one of the states ϕ_1 , ϕ_2 , or ϕ_3 ?

Solution: (a) We first verify whether the state ψ is normalized, which it is - 3/9 + 4/9 + 2/9 = 1. The probability of finding the system in any of the states ϕ_i is $|c_i|^2$. In this case it is 1/3, 4/9, and 2/9 respectively. (b) If a large number of measurements, (*N* say, are made, the number of systems being found in a state *i* is $p_i N$.

5. An electron is moving freely in a box which extends from 0 to *a*. The electron is in the ground state of the box. If the wall at *a* is suddenly moved to 4*a*, what is the probability of finding the electron in the (a) ground state and (b) first excited state of the new box?

Solution: The electron is initially in the state $\psi = \sqrt{\frac{2}{a}} \sin(\frac{\pi x}{a})$. The ground and first excited states of the new box are $\phi_1 = \sqrt{\frac{2}{4a}} \sin(\frac{\pi x}{4a})$ and $\phi_2 = \sqrt{\frac{2}{4a}} \sin(\frac{2\pi x}{4a})$. The probability of finding the electron in the state ϕ_i is given by $|\int_0^a \phi_i \psi \, dx|^2$.

6. An electron in hydrogen atom is in the energy eigenstate Nre^{-^r/_{2a0}} sinθe^{-iφ}. (a) Find N (b) If L² and L_z are measured, what will be the results? (c) And if L_x is measured? (d) What is the probability per unit radial interval (dr) of finding the electron at r = 2a₀?

Solution: (a) $N^2 = \frac{1}{\int_{r=0}^{\infty} \int_{\theta=0}^{\pi} \int_{\phi=0}^{2\pi} r^2 \mathrm{e}^{-\frac{r}{\theta_0}} \sin^2 \theta r^2 \mathrm{d}r \sin\theta \,\mathrm{d}\theta \,\mathrm{d}\phi}$ (b) The *l* and *m* values are, respectively.

tively, 1 and -1. If \hat{L}^2 is measured, one would get $l(l+1)\hbar^2 = 2\hbar^2$. Measurement of \hat{L}_z yields $m\hbar = 1\hbar$. (c) The state is not an eigenfunction of L_x (you can verify this by finding the operator form of \hat{L}_x . The expectation value of \hat{L}_x in this state is zero. (d) The desired probability is found by integrating ψ^2 over θ and ϕ and evaluating the resulting function of r at $r = 2a_0$.

7. If \hat{A} is the operator $i(x^2 + 1)\frac{d}{dx} + ix$, find the state $\psi(x)$ for which $\hat{A}\psi(x) = 0$. Normalize $\psi(x)$. Calculate the probability of being in the region $-1 \le x \le 1$ if the particle in the state $\psi(x)$.

Solution: The state $\psi(x)$ is the solution of the differential equation $\frac{d\psi}{dx} = -\frac{x}{x^2+1}$, which is $\frac{N}{\sqrt{x^2+1}}$. The function is normalized as always, $N^2 \int_{-\infty}^{\infty} \psi^* \psi \, dx = 1$ implying that $N = \frac{1}{\sqrt{\pi}}$. The probability of being found in the specified region is $\frac{1}{\pi} \int_{-1}^{1} \frac{1}{x^2+1} \, dx = 1/2$.