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Abstract

Deep neural networks can generate images that
are astonishingly realistic, so much so that it is
often hard for humans to distinguish them from
actual photos. These achievements have been
largely made possible by Generative Adversar-
ial Networks (GANs). While deep fake images
have been thoroughly investigated in the image
domain—a classical approach from the area of
image forensics—an analysis in the frequency
domain has been missing so far. In this paper,
we address this shortcoming and our results re-
veal that in frequency space, GAN-generated im-
ages exhibit severe artifacts that can be easily
identified. We perform a comprehensive analysis,
showing that these artifacts are consistent across
different neural network architectures, data sets,
and resolutions. In a further investigation, we
demonstrate that these artifacts are caused by up-
sampling operations found in all current GAN
architectures, indicating a structural and funda-
mental problem in the way images are generated
via GANs. Based on this analysis, we demon-
strate how the frequency representation can be
used to identify deep fake images in an automated
way, surpassing state-of-the-art methods.

1. Introduction
GANs produce sample outputs—images, audio signals, or
complete video sequences—that are astonishingly effec-
tive at fooling humans into believing their veracity (Fried
et al., 2019; Karras et al., 2019; Kumar et al., 2019; Song
et al., 2020). The difficulty of distinguishing these so-called
deep fakes from real media is for example demonstrated at
whichfaceisreal.com (West & Bergstrom, 2019), a website
on which a user can see two different images: one from

1Ruhr-University Bochum, Horst Görtz Institute for IT-
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the Flicker-Faces-HQ data set and one generated by Style-
GAN (Karras et al., 2019). The task is to decide which of
these two images is real. Even though humans generally do
better than random guessing, players’ performance report-
edly peaked at around 75% accuracy (Simonite, 2019).

At a time where fake news have become a practical problem
and Internet information campaigns might have influenced
democratic processes (Thompson & Lapowsky, 2017), de-
veloping automated detection methods is a crucial task. A
worrying reminder is the example of Gabon’s president Ali
Bongo: In late 2018, the president fell ill, not appearing in
public for months. As the public grew weary, the govern-
ment released a video of the president, only to be immedi-
ately labeled as a deep fake. Albeit never to be confirmed as
such, one week later the military launched an unsuccessful
coup, citing the video as part of the motivation (Hao, 2019).

Previous research on detecting GAN-generated images has
either utilized large, complex convolutional networks di-
rectly trained in the image domain (Mo et al., 2018; Yu
et al., 2019a; Tariq et al., 2019) or used hand-crafted fea-
tures from the frequency domain (Marra et al., 2019; Valle
et al., 2018). In contrast, we provide in this paper a compre-
hensive analysis of the frequency spectrum across multiple
different GAN architectures and data sets. The surprising
finding is that all GAN architectures exhibit severe artifacts
in the frequency domain. Speculating that these artifacts
stem from upsampling operations, we experiment with dif-
ferent upsampling techniques and identify patterns which
are consistent with our earlier observations.

Based on these insights, we demonstrate that the frequency
domain can be utilized for (i) efficiently separating real from
fake images, as well as, (ii) identifying by which specific
GAN a sample was generated. In the first case, we demon-
strate that the artifacts are so severe that a linear separation
of the data is possible in the frequency space. In the second
case, we demonstrate that we can achieve higher accuracy,
while simultaneously utilizing significantly less complex
models, than state-of-the-art approaches (Yu et al., 2019a)
(using roughly 1.9% of their parameters). Additionally, we
demonstrate that classifiers trained in the frequency domain
are more robust against common image perturbations (e.g.,
blurring or cropping). The code to reproduce our experi-
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ments and plots as well as all pre-trained models are avail-
able online at github.com/RUB-SysSec/GANDCTAnalysis.

In summary, our key contributions are as follows:

• We perform a comprehensive frequency-domain anal-
ysis of images generated by various popular GANs,
revealing severe artifacts common across different neu-
ral network architectures, data sets, and resolutions.

• We show in several experiments that these artifacts
arise from upsampling operations employed in all
current GAN architectures, hinting towards a struc-
tural problem on how generative neural networks that
map from a low-dimensional latent space to a higher-
dimensional input space are constructed.

• We demonstrate the effectiveness of employing fre-
quency representations for detecting GAN-generated
deep fake images by an empirical comparison against
state-of-the-art approaches. More specifically, we show
that frequency-representation-based classifiers yield
higher accuracy, while simultaneously needing signifi-
cantly fewer parameters. Additionally, these classifiers
are more robust to common image perturbations.

2. Related Work
In the following, we present an overview of related work
and discuss the connections to our approach.

Generative Adversarial Networks GANs (Goodfellow
et al., 2014) have essentially established a new sub-field of
modern machine learning research. As generative models,
they aim at estimating the probability density distribution
underlying the training data. Instead of employing stan-
dard approaches like likelihood maximization for training,
they are based on the idea of defining a game between two
competing models (usually neural networks): a generator
and a classifier (also called discriminator). The generator is
tasked with producing samples that look like training data,
while the discriminator attempts to distinguish real from
fake (i. e., generated) samples. These tasks can be translated
into a min-max problem: a joint objective which is mini-
mized w.r.t. the parameters of the generator and maximized
w.r.t. the parameters of the discriminator.

Image Synthesis While there exists a huge variety of
models for image generation (e.g. see van den Oord et al.,
2017; Razavi et al., 2019), we will focus on images gen-
erated by GANs. The earliest breakthrough in generating
images with GANs was the switch to Convolutional Neural
Network (CNN) (Radford et al., 2016). While this might
seem trivial today, it allowed GANs to outperform sim-
ilar image synthesis methods at the time. In follow-up
work, GAN research yielded a steady stream of innovations,

which pushed the state-of-the-art further: training with la-
beled data (Mirza & Osindero, 2014; Salimans et al., 2016),
utilizing the Wasserstein distance (Arjovsky et al., 2017;
Gulrajani et al., 2017; Petzka et al., 2018), spectral normal-
ization (Miyato et al., 2018), progressive growing (Karras
et al., 2018) or style mixing (Karras et al., 2019), and em-
ploying very large models (Brock et al., 2019), just to name
a few examples.

Image Forensics Traditional image forensics uses the nat-
ural statistics of images to detect tampered media (Fridrich,
2009; Lyu, 2013). A promising approach is steganaly-
sis (Lukáš et al., 2006; Fridrich, 2009; Bestagini et al.,
2013), where high-frequency residuals are used to detect
manipulations. These traditional methods have recently
been expanded by CNN-based methods (Bayar & Stamm,
2016; Bappy et al., 2017; Cozzolino et al., 2017; Zhou et al.,
2018), which learn a more complex feature representation,
improving the state-of-the-art for tampered media detection.

Prior work has utilized these findings for identifying GAN-
generated images: Marra et al. (2018) provide a compari-
son of different steganalysis and CNN-based methods, sev-
eral approaches use CNNs in the image domain (Mo et al.,
2018; Yu et al., 2019a; Tariq et al., 2019), others use statis-
tics in the image domain (McCloskey & Albright, 2018;
Nataraj et al., 2019). Another group of systems employs
handcrafted features from the frequency domain, namely,
steganalysis-based features (Marra et al., 2019) and spec-
tral centroids (Valle et al., 2018). In contrast, our method
explores the entire frequency spectrum and we link our
detection capabilities to fundamental shortcomings in the
construction of modern generative neural networks.

Concurrently and independently to our research, both Wang
et al. (2020) and Durall et al. (2020) made similar observa-
tions: Wang et al. demonstrate that a deep fake classifier
trained with careful data augmentation on the images of only
one specific CNN generator is able to generalize to unseen
architectures, data sets, and training methods. They suggest
that their findings hint at systematic flaws in today’s CNN-
generated images, preventing them from achieving realistic
image synthesis. Durall et al. show that current CNN-based
generative models fail to reproduce spectral distributions.
They utilize the discrete Fourier Transform to analyze gen-
erated images and propose a spectral regularization term to
tackle these issues.

3. Frequency Artifacts
While early GAN-generated images were easily distinguish-
able from real images, newer generations fool even human
observers (Simonite, 2019). To facilitate the development
of automated methods for recognizing fake images, we take

https://github.com/RUB-SysSec/GANDCTAnalysis
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Figure 1: A side-by-side comparison of real and generated faces in image and frequency domain. The left side shows an example
and the mean DCT spectrum of the FFHQ data set. The right side shows an example and the mean DCT spectrum of a data set sampled
from StyleGAN trained on FFHQ. We plot the mean by averaging over 10,000 images.

inspiration from traditional image forensics (Lyu, 2013) and
examine GAN-generated images in the frequency domain.

3.1. Preliminaries

We transform images into the frequency domain using the
discrete cosine transform (DCT). The DCT expresses, much
like the discrete Fourier transform (DFT), a finite sequence
of data points as a sum of cosine functions oscillating at
different frequencies. The DCT is commonly used in image
processing due to its excellent energy compaction properties
and its separability, which allows for efficient implementa-
tions. Together with a circular convolution-multiplication
relationship (Wen-Hsiung Chen et al., 1977), it enables fast
filtering. We use the type-II 2D-DCT, which is, for example,
also used in JPEG compression (Fridrich, 2009).

More formally, let an input image be given by the matrix1

I ∈ RN1×N2 , where the entries (specifying the pixel values)
are denoted by Ix,y , and its DCT-transformed representation
by the matrix D ∈ RN1×N2 . The 2D-DCT is given by a
function D : RN1×N2 → RN1×N2 that maps an image
I = {Ix,y} to its frequency representation D = {Dkx,ky},
with

Dkx,ky = w(kx)w(ky)
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2N for k > 0.

When we plot the DCT spectrum, we depict the DCT coeffi-
cients as a heatmap. Intuitively, the magnitude of each coef-
ficient is a measure of how much the corresponding spatial
frequency contributed to the overall image. The horizon-
tal direction corresponds to frequencies in the x direction,
while the vertical direction corresponds to frequencies in
the y direction. In practice, we compute the 2D-DCT as a

1For simplicity, we omit the color channels and treat images as
matrices, not as tensors.

product of two 1D-DCTs, i.e., for images we first compute
a DCT along the columns and then a DCT along the rows.
This results in the top left corner of the heatmap correspond-
ing to low frequencies (kx and ky close to zero), while the
right bottom corner corresponds to high frequencies (kx and
ky close to N1− 1 and N2− 1, respectively). Due to the en-
ergy compaction property of the DCT, the coefficients drop
very quickly in magnitude when moving to high frequencies,
thus, we log-scale the coefficients before plotting. All plots
are computed for gray-scale images, produced using stan-
dard gray-scale transformations (i.e., a weighted average
over the color channels). We also computed statistics for
each color channel separately, which are consistent with
the findings for gray-scale images. These can be found in
the supplementary material, where we also provide plots of
the absolute difference between the spectra of real and fake
images.

3.2. Investigating Generated Images in the Frequency
Domain

We start with examining our introductory example, i.e., im-
ages from the website whichfaceisreal.com. The images are
either from the Flickr-Faces-HQ (FFHQ) data set or from
a set generated by StyleGAN (Karras et al., 2019). In Fig-
ure 1, we visualize the frequency statistics of the data set
by plotting the means of the corresponding spectra over the
sets. As a reference, we include a sample from each data set.
In the image domain, both samples look similar, however, in
the frequency domain, one can easily spot multiple clearly
visible artifacts for the generated images.

The spectrum of the FFHQ images represents a regular
spectrum of DCT coefficients. Multiple studies (e.g. see
Burton & Moorhead, 1987; Tolhurst et al., 1992; Field,
1987; 1999) have observed that the average power spectra
of natural images tend to follow a 1

fα curve, where f is
the frequency along a given axis and α ≈ 2 (see Figure 2
(a) from Torralba & Oliva, 2003). The low frequencies (in
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Figure 2: The spectra of images generated by different neural networks trained on the Stanford dog data set. The left-most
heatmap depicts the mean spectrum of the Stanford dog data set. The rest depicts the mean spectra of images generated by different GANs.
We plot the mean of the DCT spectra by averaging over 10,000 images.

the upper left corner of the heatmap) contribute the most
to the image, and the contribution is gradually decreasing
as we approach the higher frequencies (lower right corner).
Intuitively, if a group of neighboring pixels contains similar
values, i.e., they form an isochromatic area in the image,
one can approximate those with a sum of low frequency
functions. However, if there is a sudden change in the
values, e.g., corresponding to an edge in the images, one
has to use higher frequency functions to achieve a good
approximation. Therefore, since most pixels in images are
correlated to each other, i.e., colors mostly change gradually,
large parts of the image can be approximated well by using
low-frequency functions.

The images generate by StyleGAN, however, exhibit arti-
facts throughout the spectrum. In comparison to the spec-
tra of natural images, StyleGAN-generated images contain
strong high frequencies components (visible as high values
in the lower right corner), as well as generally higher mag-
nitudes throughout the spectrum. Especially notably is the
grid-like pattern scattered throughout, also clearly notice-
able in the top right (highest frequencies in x direction) and
lower left corner (highest frequencies in y direction).

To analyze if this pattern in the spectral domain is a common
occurrence for different GAN types and implementations,
or simply a fault specific to the StyleGAN instance we
studied, we selected four different architectures, namely
BigGAN (Brock et al., 2019), ProGAN (Karras et al., 2018),
StyleGAN (Karras et al., 2019), and SN-DCGAN (Miyato
et al., 2018). Note that all of them were under the top-
ten entries in the recent Kaggle competition on generating
images of dogs (Kaggle, 2019). In this competition, the
participants were required to upload 10,000 samples from
their respective GAN instance. For each architecture, we
downloaded and analyzed the corresponding samples and
the training data (Khosla et al., 2011).

We show the mean of the spectra of the samples of each
GAN and the training data in Figure 2. As discussed, statis-
tics of natural images have been found to follow particular

regularities. Like natural images, the DCT coefficients of
the GAN-generated images decrease rapidly towards high
frequencies. However, the spectral images often show a
grid-like pattern. StyleGAN seems to better approximate
spectra of natural images than the other GANs, but still
contains high coefficients along the upper and left side of
their spectra. These findings indicate a structural problem
of the way GANs generate images that we explore further.

3.3. Upsampling

We hypothesize that the artifacts found for GAN-generated
images in the frequency domain stem from their employed
upsampling operations. We make this more concrete in the
following: The generator of a GAN forms a mapping from a
low-dimensional latent space to the higher-dimensional data
space. In practice, the dimensionality of the latent space is
much lower than the dimensionality of the data space, e.g.,
the generator of the StyleGAN-instance which generated the
images presented in Figure 1 defines a mappingG : R100 →
R1024×1024. In typical GAN architectures, the latent vector
gets successively upsampled until it reaches the final output
dimension.

Previous work has already linked upsampling operations
to causing grid-like patterns in the image domain (Odena
et al., 2016). Recognizing this, the architecture of
both the generator-network and the discriminator-network
shifted from using strided transposed convolution (e.g.,
employed in DCGAN (Radford et al., 2016), Cramer-
GAN (Bellemare et al., 2017), CycleGAN (Zhu et al.,
2017), MMDGAN (Bińkowski et al., 2018), and SN-
DCGAN (Miyato et al., 2018)) to using traditional upsam-
pling methods—like nearest neighbor or bilinear upsam-
pling (Gonzalez & Woods, 1992)—followed by a convolu-
tional layer (e.g., employed in ProGAN (Karras et al., 2018),
BigGAN (Brock et al., 2019), and StyleGAN (Karras et al.,
2019)). While these changes addressed the problem in the
image domain, our results show that the artifacts are still
detectable in the frequency domain.
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Figure 3: The frequency spectrum resulting from different upsampling techniques. We plot the mean of the DCT spectrum. We
estimate E[D(I)] by averaging over 10,000 images sampled from the corresponding network or the training data.

Moreover, both upsampling and downsampling operations
have recently been linked to compromising shift invariance
in neural networks, i.e., they cause classifier predictions to
vary dramatically due to a simple one-pixel shift in the input
image (Azulay & Weiss, 2018). Recently, Zhang (2019)
proposed to use low-pass filtering after convolution and
pooling layers to mitigate some of these effects.

We investigate how different upsampling strategies affect
the DCT spectrum. Typically, we want to double the dimen-
sionality of an image. When doing so, we have to fill in the
blanks. However, this is known to cause artifacts. Thus, a
range of different techniques have been invented throughout
the past years to minimize these detrimental effects (Gon-
zalez & Woods, 1992). In our analysis, we investigate the
effect of three different upsampling techniques:

• Nearest Neighbor: The missing pixels in the upsam-
pled image are approximated by copying the near-
est pixel (nearest-neighbor upsampling; for a visual
representation see the work of Odena et al., 2016).

• Bilinear: Similar to nearest neighbor, but after copying
the pixel values, the upsampled image is convolved
with an anti-aliasing kernel (the filter [1, 2, 1] )2. This
strategy is employed in the original StyleGAN.

• Binomial: We follow Zhang (2019) and test the
Binomial-5 kernel (i. e., the application of the filter
[1, 4, 6, 4, 1] ) as a replacement for the bilinear kernel.

We trained three different versions of StyleGAN on the
LSUN bedrooms (Yu et al., 2015) dataset: in one, we kept
the standard bilinear upsampling strategy, and in two, we
replaced it by nearest-neighbor upsampling and binomial
upsampling, respectively. We train at a resolution of 256×
256, using the standard model and settings provided in the
StyleGAN repository (Karras et al., 2019).

2Note that for brevity, we list the 1D-variant of the anti-aliasing
kernel; in practice, we generate the 2D-variant as the outer product:
mmT , where m is the corresponding kernel.

The results are shown in Figure 3. As expected, with more
elaborated upsampling techniques and with a larger size of
the employed kernel, the spectral images become smoother
and the artifacts less severe. These findings are in line with
our hypothesis that the artifacts are caused by upsampling
operations.

4. Frequency-Based Deep-Fake Recognition
In the following, we describe our experiments to demon-
strate the effectiveness of investigating the frequency do-
main for differentiating GAN-generated images. In a first
experiment, we show that DCT-transformed images are fully
linearly separable, while classification on raw pixels re-
quires non-linear models. Further, we verify that our model
utilizes the artifacts discovered in Section 3.2. Then, we
recreate the experiments by Yu et al. (2019a) and show how
we can utilize the frequency domain to match generated
images to their underlying architecture, demonstrating that
we can achieve higher accuracy while utilizing fewer pa-
rameters in our models. Finally, we investigate how our
classifier behaves when confronted with common image per-
turbations.

All experiments in this chapter were performed on a server
running Ubuntu 18.04, with 192 GB RAM, an Intel Xeon
Gold 6230, and four Nvidia Quadro RTX 5000.

4.1. Detecting Fake Images

First, we want to demonstrate that using frequency informa-
tion allows to efficiently separate real from fake images. We
consider our introductory example, i. e., aim at distinguish-
ing real images from the FFHQ data set and fake images
generated by StyleGAN. As discussed in Section 3, in the
frequency domain, the images show severe artifacts. These
artifacts makes it easy to use a simple linear classifier. To
demonstrate this, we perform a ridge regression on real
and generated images, after applying a DCT. For compari-
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Table 1: Ridge regression performed on FFHQ data set. We
report the accuracy on the test set. We also report the gain in
accuracy when training in the frequency domain instead of using
raw pixels. Best score is highlighted in bold.

Method Accuracy Gain

Ridge-Regression-Pixel 75.78 %
Ridge-Regression-DCT 100.00 % + 24.22 %

son, we also perform ridge regression on the original data
representation.

Experiment Setup We sample 16,000 images from both
the training data and the generator of the StyleGAN, re-
spectively. We split each set into 10,000 training, 1,000
validation and 5,000 test images, resulting in a training set
of 20,000, a validation set of 2,000, and a test set of 10,000
samples. For training a model on samples in the image
domain, we normalize the pixel values to the range [−1, 1].
In the frequency domain, we first convert the images using
DCT, then log-scale the coefficients and, finally, normalize
them by removing the mean and scaling to unit variance. We
optimize the linear regression models using the Adam opti-
mizer (Kingma & Ba, 2015) with an initial learning rate of
0.001, minimizing the binary cross-entropy with l2 regular-
ization. We select the regularization factor λ via grid search
from λ ∈ {10−1, 10−2, 10−3, 10−4} on the validation data,
picking the one with the best score.

Results The results of our experiments are listed in Ta-
ble 1, where we report the classification accuracy on the test
set. As depicted in Figure 1, StyleGAN generates convinc-
ing face images, which are able to fool humans. However,
they seem to exhibit consistent patterns, since even the sim-
ple linear classifier reaches a non-trivial accuracy in the
image domain. In the frequency domain, however, we can
perfectly separate the data set, with a classification accuracy
of 100% on the test set.

4.2. Different Upsampling Techniques

We want to investigate if more elaborate upsampling tech-
niques can thwart the detection. To this end, we examine
the different StyleGAN instances described in Section 3.3
(i.e., those who utilize nearest neighbour/bilinear/binomial
upsampling). Again, we train a ridge-regression on both the
raw pixel values as well as DCT coefficients. The exper-
iment setup is the same as in the experiment described in
Section 4.1

Results In Table 2, we report the classification accuracy
of the test set. As one would intuitively suspect, heavier
anti-aliasing reduces the accuracy of the classifier. Inter-
estingly, this also seems to remove the consistent patterns

exploited in the image domain. Note that these samples are
generated at a much lower resolution (256× 256) than the
ones examined in Section 4.1 (1024 × 1024). Thus, they
require less upsampling operations and exhibit less artifacts,
making a full linear separation impossible. However, we
can still reach 100% test accuracy on the different data sets
when we utilize a non-linear method like the CNN used in
Section 4.3.

The small accuracy drop for the images generated by Style-
GAN using binomial upsampling in comparison to the one
using bilinear upsampling is surprising. When we examine
the corresponding mean spectrum (Figure 3), it contains
less artifacts obvious to humans. To verify that the classi-
fier indeed utilizes the upsampling artifacts for its decision,
we perform an additional experiment: we train a logistic
regression classifier with l1 penalty (LASSO) on the data
sets. We then extract the corresponding weight vector and
map it back to the corresponding frequencies. Since the l1
penalty forces weights to zero which play a minor role in
the classification, the remaining weights show that the high
coefficients correspond to the frequencies which impact the
decision the most. The results are depicted in Figure 4 and
reveal that the binomial classifier still utilizes a grid-like
structure to separate these images. Additionally, we present
the absolute difference of the mean spectra with respect to
the training data in the supplementary material.

4.3. Source Identification

The experiments described in this section are based on Yu
et al. (2019a)’s approach, and investigate how precisely a
generated image’s underlying architecture can be classified:
Yu et. al. trained four different GANs (ProGAN (Karras
et al., 2018), SN-DCGAN (Miyato et al., 2018), Cramer-
GAN (Bellemare et al., 2017), and MMDGAN (Bińkowski
et al., 2018)) on the CelebA (Liu et al., 2015) and LSUN bed-
rooms dataset (Yu et al., 2015) and generated images from
all models. Then, based on these images, a classifier was
trained that assigned an image to the corresponding subset
class it belongs to, i.e., either being real, or being generated
by ProGAN, SN-DCGAN, CramerGAN, or MMDGAN.

Experimental Setup The experiments are conducted on
images of resolution 128 × 128. We converted both data
sets (i. e., celebA and LSUN bedrooms) specified by Yu
et al. (2019b). For each data set, we utilize their pre-trained
models to sample 150,000 images from each GAN, and
take another 150,000 real images randomly sampled from
the underlying training data set. We then partition these
samples into 100,000 training, 20,000 validation and 30,000
test images, resulting in a combined set of 500,000 training,
100,000 validation and 150,000 test images. We analyze the
performance of different classifiers trained both on the im-
ages in their original representation (i. e., raw pixels) and af-
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Table 2: Ridge regression performed on data samples generated by StyleGAN for different upsampling techniques. More elaborate
upsampling techniques seem to remove artifacts in the image domain.

Method Nearest Neighbor Gain Bilinear Gain Binomial Gain

Ridge-Regression-Pixel 74.77 % 62.13 % 52.64 %
Ridge-Regression-DCT 98.24 % + 23.47 % 85.96 % + 23.83 % 84.20 % + 31.56 %

Nearest Neighbor Bilinear Binomial

Figure 4: A heatmap of which frequencies are used for classification. We extracted the weight vector of the regression classifier
trained on the different upsampling techniques. Then, we mapped it back to the corresponding frequencies. We plot the absolute value of
the individual weights and clip their maximum value to 0.04 for better visibility.

ter applying DCT: K-nearest-neighbor, Eigenfaces (Sirovich
& Kirby, 1987)), a CNN-based classifier developed by Yu
et al. (2019a), and a steganalysis method based on photo-
response non-uniformity (PRNU) patterns by Marra et al.
(2019). These patterns also build on frequency information
and utilizes high-pass filtered images to extract residuals
information common to specific generators.

Moreover, we trained a shallow CNN3, with only four con-
volution layers, to demonstrate that frequency information
can significantly reduce the needed computation resources.
Details on the architecture can be found in the supplemen-
tary material. Yu et. al. used a very large CNN with roughly
9 million parameters. In contrast, our CNN only utilizes
around 170,000 parameters (∼ 1.9 %). During training, we
utilize the validation set for hyperparameter tuning and em-
ploy early stopping We trained on log-scaled and normalized
DCT coefficients. For raw pixel, we scaled the values to the
range [−1, 1 ], except for the PRNU-based method, which
operates directly on image data.

For training our CNN, we use the Adam optimizer with an
initial learning rate of 0.001 and a batch size of 1024, mini-
mizing the cross-entropy loss of the model. For Yu et. al.’s

3Using a CNN enabled a direct comparison to the performance
of an analogous model on the raw-pixel input, where a CNN is
the model of choice. In preliminary experiments, we also tried
utilizing simple feed forwad NNs, however, only a CNN was able
to fully separate the data.

CNN, we used the parameters specified in their reposi-
tory (Yu et al., 2019b). We train their network for 8,000
mini-batch steps. During first tests, we discovered their
network usually converges at around 4,000 steps. Hence,
we doubled the number of steps for the final evaluation and
picked the best performing instance (measured on the vali-
dation set). We also trained a variant of their classifier on
DCT-transformed images. This version usually converges
around step 300, however, we are conservative and train for
1,000 steps.

For the PRNU classifier, we utilize the implementation
of Bondi & Bonettini (2019). We perform a grid search
for the wavelet decomposition level l ∈ {1, 2, 3, 4} and the
estimated noise power σ ∈ {0.05, . . . , 1} with step size
0.05. For the Eigenfaces-based classifier, we use Principal
Component Analysis (PCA) to reduce the dimensionality
to a variance threshold v and train a linear Support Vector
Machine (SVM) on the transformed training data. We select
the variance threshold v ∈ {0.25, 0.5, 0.95}, the SVMs reg-
ularization parameter C ∈ {0.0001, 0.001, 0.01, 0.1}, and
the number of considered neighbors k ∈ {1, 2κ + 1} with
κ ∈ {1, . . . , 10}, for the kNN classifier, via grid search over
the validation set.

As the PRNU fingerprint algorithm does not require a large
amount of training data (Marra et al., 2019) and scaling more
traditional methods to such large data sets is notoriously
hard (i. e., kNN and Eigenfaces), we use a subset of 100,000
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Table 3: The results of the source identification. We report the
test set accuracy, the gain in the frequency domain and highlight
the best score in bold.

Method LSUN Gain CelebA Gain

kNN 39.96 % 29.22 %
kNN-DCT 81.56 % + 41.60 % 71.58 % + 42.36 %

Eigenfaces 47.07 % 57.58 %
Eigenfaces-DCT 94.31 % + 47.24 % 88.39 % + 30.81 %

PRNU Marra et al. 64.28 % 80.09 %

CNN Yu et al. 98.33 % 99.70 %
CNN Yu et al.-DCT 99.61 % + 1.28 % 99.91 % + 0.21 %

CNN-Pixel 98.95 % 97.80 %
CNN-DCT 99.64 % + 0.69 % 99.07 % + 1.27 %

Table 4: The results of using only 20 % of the original data..
We report the accuracy on the test set and the accuracy loss com-
pared to the corresponding network trained on the full data set.

Method LSUN Loss CelebA Loss

CNN Yu et al. 92.30 % -6.03 % 98.57 % -1.13 %
CNN Yu et al.-DCT 99.39 % -0.22 % 99.58 % -0.33 %

CNN-Pixel 85.82 % -13.13 % 96.33 % -1.47 %
CNN-DCT 99.14 % -0.50 % 98.47 % -0.60 %

training samples and report the accuracy on 25,000 test
samples.

Results The results of our experiments are presented in
Table 3. We report the accuracy computed over the test set.
For each method, we additionally report the gain in accuracy
when trained on DCT coefficients.

The use of the frequency domain significantly improves the
performance of all tested classifiers, which is in line with our
findings from the previous sections. The simpler techniques
improve the most, with kNN gaining a performance boost
of roughly 42 % and Eigenfaces improving by 47.24 % and
30.81 %, respectively. Our shallow CNN already achieves
high accuracy when it is trained on raw pixels (CNN-Pixel),
but it still gains a performance boost (+0.69 % and 1.27 %,
respectively). The CNN employed by Yu et al. (2019a)
mirrors the result of our classifier. Additionally, it seems to
be important to utilize the entire frequency spectrum, since
the PRNU-based classifier by Marra et al. (2019) achieves
much lower accuracy.

The performance gains of classifiers trained on the frequency
domain are difficult to examine by solely looking at the accu-
racy. Thus, we consider the error rates instead: Examining
our shallow CNN, we decrease the error rate from 1.05%
and 2.20% (without the use of the frequency domain) to
0.36% and 0.93%, which corresponds to a reduction by
66% and 50%, respectively. These results are mirrored for
the CNN by Yu et al., where the rates drop from 1.76% and

Figure 5: Validation accuracy for the CCN-classifier by Yu
et al.. We report the validation accuracy during training for the
first 1,000 gradient steps, while dropping off in the pixel domain.

Figure 6: Validation accuracy for our CNN-classifier. We re-
port the validation accuracy during training for the first 20 epochs.

0.3% to 0.39% and 0.09%, i.e., a reduction by 75% and
66%.

4.4. Training in the Frequency Domain

During our experiments we noticed two additional benefits
when performing classification in the frequency domain.
First, the models trained in the frequency domain require
significantly less training data to achieve a high accuracy.
Second, training in the frequency domain is substantially
easier.

We retrained the network by Yu et al. and our classifier with
only 20 % of the original data and reevaluate them. The
results are presented in Table 4. In the frequency domain,
both classifiers retain a high accuracy. However, both drop
significantly when trained on raw pixels. Note that the
bigger classifier is able to compensate better for the lack of
training data.

We have plotted the validation accuracy during training for
both the CNN classifier by Yu et al., as well as for our own
in Figure 5 and Figure 6, respectively. For both classifiers
and both datasets (CelebA and LSUN), the DCT variant of
the classifiers converges significantly faster.
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Table 5: Results of common image perturbations on LSUN bedrooms. We report the accuracy on the test set. Best score is highlighted
in bold. The column CD refers to the performance of the corresponding classifier trained on clean data and evaluated on perturbed test
data. In the column PD, we depict the performance when trained on training data which is also perturbed.

Blur Cropped Compression Noise Combined
CD PD CD PD CD PD CD PD CD PD

CNN-Pixel 60.56 % 88.23 % 74.49 % 97.82 % 68.66 % 78.67 % 59.51 % 78.18 % 65.98 % 83.54 %
CNN-DCT 61.42 % 93.61 % 83.52 % 98.83 % 71.86 % 94.83 % 48.99 % 89.56 % 67.76 % 92.17 %

CD: Clean Data; PD: Perturbed Data

4.5. Resistance Against Common Image Perturbations

We want to examine if the artifacts persist through post-
processing operations when the images get uploaded to
websites like Facebook or Twitter. Thus, we evaluate the
resistance of our classifier against common image pertur-
bations, namely: blurring, cropping, compression, adding
random noise, and a combination of all of them.

Experimental Setup When creating the perturbed data
with one kind of perturbation, for each data set we iter-
ate through all images and apply the perturbation with a
probability of 50 %. This creates new data sets with about
half the images perturbed, these again get divided into
train/validation/tests sets, accuracy is reported for the test
set. For generating a data set with a combination of differ-
ent perturbations, we cycle through the different corruptions
in the order: blurring, cropping, compression, noise; and
apply these with a probability of 50 %. The corruptions are
described in the following:

• Blurring applies Gaussian filtering with a kernel size
randomly sampled from (3, 5, 7, 9).

• Cropping randomly crops the image along both axes.
The percentage to crop is sampled from U(5, 20). The
cropped image is upsampled to its original resolution.

• Compression applies JPEG compression, the remain-
ing quality factor is sampled from U(10, 75).

• Noise adds i.i.d. Gaussian Noise to the image. The vari-
ance of the Gaussian distribution is randomly sampled
from U(5.0, 20.0).

We additionally evaluate how well we can defend against
common image perturbations by augmenting the training
data with perturbed data, i.e., we train a network with a train-
ing set that has also been altered by image perturbations.

Results The results are presented in Table 5. Overall, our
results show that the DCT variants of the classifiers are more
robust w.r.t. all perturbations except of noise.

While the robustness to perturbations is increased, it is still
possible to attack the classifier with adversarial examples.
In fact, subsequent work has demonstrated that it is possible

to evade our classifier with specifically crafted perturba-
tions (Carlini & Farid, 2020).

5. Discussion and Conclusion
In this paper, we have provided a comprehensive analysis
on the frequency spectrum exhibited by images generated
from different GAN architectures. Our main finding is that
all spectra contain artifacts common across architectures,
data sets, and resolutions. Speculating that these artifacts
stem from upsampling operations, we experimented with
different upsampling techniques which confirm our hypoth-
esis. We than demonstrated that the frequency spectrum can
be used to efficiently and accurately separate real from deep
fake images. We have found that the frequency domain both
helps in enhancing simple (linear) models, as well as, more
complex CNN-based methods, while simultaneously yield-
ing better resistance against image perturbations. Compared
to hand-crafted, frequency-based methods, we discovered
that the entire frequency spectrum can be utilized to achieve
much higher performance. We argue that our method will
remain usable in the future because it relies on a fundamen-
tal property of today’s GANs, i.e., the mapping from low
dimensional latent space to a higher dimensional data space.

One suitable approach to mitigate this problem could be to
remove upsampling methods entirely. However, this implies
two problems. First, this would remove the advantages of
having a compact latent space altogether. Second, an in-
stance of StyleGAN used to generate the pictures depicted
in Figure 1 already needs 26.2M (Karras et al., 2019) pa-
rameters. Removing the low-dimensional layers and only
training at full resolution seems infeasible, at least for the
foreseeable future.

Another approach could be to train GANs to generate consis-
tent image spectra. We experimented with both introducing
a second DCT-based discriminator, as well as, regularizing
the generator’s loss function with a DCT-based penalty. Un-
fortunately, neither approach led to better results. Either the
penalty or the second discriminator were weighted too weak
and had no effect, or the DCT-based methods dominated
and led to training collapse. We leave the exploration of
these methods as an interesting question for future work.
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Supplementary Material
In this supplementary material, we present all plots in full size, additional statistics, as well as details on our classifier
architecture. Note we depict statistics split into color channels only for the Kaggle dataset, since they are consistent with the
ones computed over gray-scale images.

A. FFHQ
We plot the mean of the DCT spectrum of the Flicker-Faces-HQ (FFHQ) data set and an instance of StyleGAN. We estimate
E[D(I)] by averaging over 10,000 images. Additionally, we plot the absolute difference between the two spectra, notice the
additional artifacts scattered throughout the spectrum which are not on the grid.

FFHQ StyleGAN

Figure 7: The frequency spectrum for real and generated faces (grayscale)
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Figure 8: The absolute difference between the spectra (grayscale)
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Here we also present a plot of a LASSO-regression trained on the FFHQ data set. In context with Figure 1, this makes sense,
since compared to the real spectrum, the generated images diverge most in the higher frequencies (real images contain very
little energy here). Note that the high frequencies can also be attributed to upsampling operations Durall et al. (2020).
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Figure 9: A heatmap of which frequencies the LASSO-regression uses. We extracted the weight vector of the regression classifier and
mapped it back to the corresponding frequencies. We plot the absolute value of the individual weights and clip their maximum value to
0.05 for better visibility. Note the general focus towards higher frequencies, as well as the top right and lower left corner.
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B. Kaggle
We plot the mean of the DCT spectrum of the Standford dog data set and images generated by different instances of GANs
(BigGAN, ProGAN, StyleGAN, SN-DCGAN) trained upon it. We estimate E[D(I)] by averaging over 10,000 images.

Stanford dogs (red) Stanford dogs (green) Stanford dogs (blue)

BigGAN (red) BigGAN (green) BigGAN (blue)

ProGAN (red) ProGAN (green) ProGAN (blue)

StyleGAN (red) StyleGAN (green) StyleGAN (blue)

SN-DCGAN (red) SN-DCGAN (green) SN-DCGAN (blue)

Figure 10: The frequency spectrum of sample sets generated by different types of GANs trained on the Stanford dog data set
(split into color channel)
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C. Upsampling
The frequency spectrum resulting from different upsampling techniques. We plot the mean of the DCT spectrum. We
estimate E[D(I)] by averaging over 10,000 images sampled from the corresponding network or the training data. We
additionally plot the absolute difference to the mean spectrum of the training images. Note that, while there is less of a grid,
the binomial upsampling still leaves artifacts scattered throughout the spectrum.
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Figure 11: The frequency spectrum resulting from different upsampling techniques, as well as the absolute difference (grayscale)
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D. Network Architecture
For training our CNN we use the Adam optimizer, with an initial learning rate of 0.001, β1 = 0.9, β2 = 0.999 and ε = 1−7,
which are the standard parameters for a TensorFlow implementation. We did some experiments with different settings, but
none seem to influence the training substantially, so we kept the standard configuration. We train with a batch size of 1024.
Again, we experimented with lower batch sizes, which did not influence the training. Thus, we simply picked the largest
batch size our GPUs allowed for.

Input (128x128x3)

Conv 3x3 (128x128x3)

Conv 3x3 (128x128x8)

Average-Pool 2x2 (64x64x8)

Conv 3x3 (64x64x16)

Average-Pool 2x2 (32x32x16)

Conv 3x3 (32x32x32)

Dense (5)

Table 6: The network architecture for our simply CNN. We report the size of each layer in (brackets).


