CDCL SAT Solvers & SAT-Based Problem Solving

Joao Marques-Silva^{1,2} & Mikolas Janota²

¹University College Dublin, Ireland ²IST/INESC-ID, Lisbon, Portugal

SAT/SMT Summer School 2013 Aalto University, Espoo, Finland

The Success of SAT

- Well-known NP-complete decision problem
- In practice, SAT is a success story of Computer Science
 - Hundreds (even more?) of practical applications

[C71]

Part I CDCL SAT Solvers

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers

What Next in CDCL Solvers?

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers

What Next in CDCL Solvers?

Preliminaries

- Variables: *w*, *x*, *y*, *z*, *a*, *b*, *c*, . . .
- Literals: $w, \overline{x}, \overline{y}, a, \ldots$, but also $\neg w, \neg y, \ldots$
- Clauses: disjunction of literals or set of literals
- Formula: conjunction of clauses or set of clauses
- Model (satisfying assignment): partial/total mapping from variables to {0,1}
- Formula can be SAT/UNSAT

Preliminaries

- Variables: *w*, *x*, *y*, *z*, *a*, *b*, *c*, . . .
- Literals: $w, \overline{x}, \overline{y}, a, \ldots$, but also $\neg w, \neg y, \ldots$
- Clauses: disjunction of literals or set of literals
- Formula: conjunction of clauses or set of clauses
- Model (satisfying assignment): partial/total mapping from variables to {0,1}
- Formula can be SAT/UNSAT
- Example:

 $\mathcal{F} \triangleq (r) \land (\bar{r} \lor s) \land (\bar{w} \lor a) \land (\bar{x} \lor b) \land (\bar{y} \lor \bar{z} \lor c) \land (\bar{b} \lor \bar{c} \lor d)$

- Example models:
 - ▶ {*r*,*s*,*a*,*b*,*c*,*d*}
 - $\blacktriangleright \{r, s, \bar{x}, y, \bar{w}, z, \bar{a}, b, c, d\}$

Resolution

• Resolution rule:

[DP60,R65]

$$\begin{array}{c} (\alpha \lor x) & (\beta \lor \bar{x}) \\ \hline & (\alpha \lor \beta) \end{array}$$

- Complete proof system for propositional logic

Resolution

• Resolution rule:

[DP60,R65]

$$\frac{(\alpha \lor x)}{(\alpha \lor \beta)}$$

- Complete proof system for propositional logic

- Extensively used with (CDCL) SAT solvers

Resolution

• Resolution rule:

[DP60,R65]

$$\frac{(\alpha \lor x) \qquad (\beta \lor \bar{x})}{(\alpha \lor \beta)}$$

- Complete proof system for propositional logic

- Extensively used with (CDCL) SAT solvers

• Self-subsuming resolution (with $\alpha' \subseteq \alpha$):

[e.g. SP04,EB05]

$$\begin{array}{c} (\alpha \lor x) & (\alpha' \lor \overline{x}) \\ \hline (\alpha) & \\ \end{array}$$

- (α) subsumes ($\alpha \lor x$)

$$\mathcal{F} = (r) \land (\bar{r} \lor s) \land$$
$$(\bar{w} \lor a) \land (\bar{x} \lor \bar{a} \lor b)$$
$$(\bar{y} \lor \bar{z} \lor c) \land (\bar{b} \lor \bar{c} \lor d)$$

$$\mathcal{F} = (r) \land (\bar{r} \lor s) \land$$
$$(\bar{w} \lor a) \land (\bar{x} \lor \bar{a} \lor b)$$
$$(\bar{y} \lor \bar{z} \lor c) \land (\bar{b} \lor \bar{c} \lor d)$$

Decisions / Variable Branchings:
 w = 1, x = 1, y = 1, z = 1

$$\mathcal{F} = (r) \land (\bar{r} \lor s) \land$$
$$(\bar{w} \lor a) \land (\bar{x} \lor \bar{a} \lor b)$$
$$(\bar{y} \lor \bar{z} \lor c) \land (\bar{b} \lor \bar{c} \lor d)$$

Decisions / Variable Branchings:
 w = 1, x = 1, y = 1, z = 1

$$\mathcal{F} = (r) \land (\bar{r} \lor s) \land$$
$$(\bar{w} \lor a) \land (\bar{x} \lor \bar{a} \lor b)$$
$$(\bar{y} \lor \bar{z} \lor c) \land (\bar{b} \lor \bar{c} \lor d)$$

Decisions / Variable Branchings:
 w = 1, x = 1, y = 1, z = 1

- Additional definitions:
 - Antecedent (or reason) of an implied assignment
 - $(\overline{b} \lor \overline{c} \lor d)$ for d
 - Associate assignment with decision levels
 - \blacktriangleright w = 1 @ 1, x = 1 @ 2, y = 1 @ 3, z = 1 @ 4
 - ▶ r = 1 @ 0, d = 1 @ 4, ...

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers

What Next in CDCL Solvers?

• Optional: pure literal rule

 $\mathcal{F} = (x \lor y) \land (a \lor b) \land (\overline{a} \lor b) \land (a \lor \overline{b}) \land (\overline{a} \lor \overline{b})$

• Optional: pure literal rule

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers

What Next in CDCL Solvers?

What is a CDCL SAT Solver?

 Extend DPLL SAT solver with: 	[DP60,DLL62]
 Clause learning & non-chronological backtracking 	[MSS96,BS97,Z97]
Exploit UIPs	[MSS96,SSS12]
Minimize learned clauses	[SB09,VG09]
Opportunistically delete clauses	[MSS96,MSS99,GN02]
– Search restarts	[GSK98,BMS00,H07,B08]
 Lazy data structures 	
 Watched literals 	[MMZZM01]
- Conflict-guided branching	
Lightweight branching heuristics	[MMZZM01]
Phase saving	[PD07]

How Significant are CDCL SAT Solvers?

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers Clause Learning, UIPs & Minimization Search Restarts & Lazy Data Structures

What Next in CDCL Solvers?

$(\bar{a} \lor \bar{b})$ $(\bar{z} \lor b)$ $(\bar{x} \lor \bar{z} \lor a)$

ab -> false = !(ab) + false = !a + !b z -> b = !z + b xz -> a. =. !(xz) + a =. !x + !z + a

- Analyze conflict
 - Reasons: x and z
 - ► Decision variable & literals assigned at lower decision levels
 - Create **new** clause: $(\bar{x} \lor \bar{z})$
- Can relate clause learning with resolution

- Analyze conflict
 - Reasons: x and z
 - ► Decision variable & literals assigned at lower decision levels
 - Create **new** clause: $(\bar{x} \lor \bar{z})$
- Can relate clause learning with resolution

- Analyze conflict
 - Reasons: x and z
 - ► Decision variable & literals assigned at lower decision levels
 - Create **new** clause: $(\bar{x} \lor \bar{z})$
- Can relate clause learning with resolution

- Analyze conflict
 - Reasons: x and z
 - ► Decision variable & literals assigned at lower decision levels
 - Create **new** clause: $(\bar{x} \vee \bar{z})$
- Can relate clause learning with resolution
 - Learned clauses result from (selected) resolution operations

• Clause $(\bar{x} \lor \bar{z})$ is asserting at decision level 1

• Clause $(\bar{x} \lor \bar{z})$ is asserting at decision level 1

- Clause $(\bar{x} \lor \bar{z})$ is asserting at decision level 1
- Learned clauses are always asserting

[MSS96,MSS99]

- Backtracking differs from plain DPLL:
 - Always bactrack after a conflict

[MMZZM01]

• Learn clause $(\bar{w} \lor \bar{x} \lor \bar{y} \lor \bar{z})$

- Learn clause $(\bar{w} \lor \bar{x} \lor \bar{y} \lor \bar{z})$
- But *a* is an UIP

- Learn clause $(\overline{w} \lor \overline{x} \lor \overline{y} \lor \overline{z})$
- But *a* is an UIP
- Learn clause $(\bar{w} \lor \bar{x} \lor \bar{a})$

First UIP:

- Learn clause $(\bar{w} \lor \bar{y} \lor \bar{a})$

- First UIP:
 - Learn clause $(\bar{w} \lor \bar{y} \lor \bar{a})$
- But there can be more than 1 UIP

- First UIP:
 - Learn clause $(\bar{w} \lor \bar{y} \lor \bar{a})$
- But there can be more than 1 UIP
- Second UIP:
 - Learn clause $(\bar{x} \lor \bar{z} \lor a)$

- First UIP:
 - Learn clause $(\bar{w} \lor \bar{y} \lor \bar{a})$
- But there can be more than 1 UIP
- Second UIP:
 - Learn clause $(\bar{x} \lor \bar{z} \lor a)$
- In practice smaller clauses more effective
 - Compare with $(\bar{w} \lor \bar{x} \lor \bar{y} \lor \bar{z})$

- First UIP:
 - Learn clause $(\bar{w} \lor \bar{y} \lor \bar{a})$
- But there can be more than 1 UIP
- Second UIP:
 - Learn clause $(\bar{x} \lor \bar{z} \lor a)$
- In practice smaller clauses more effective
 - Compare with $(\bar{w} \lor \bar{x} \lor \bar{y} \lor \bar{z})$

• Multiple UIPs proposed in GRASP

[MSS96]

- First UIP learning proposed in Chaff

[MMZZM01]

• Not used in recent state of the art CDCL SAT solvers

- First UIP:
 - Learn clause $(\bar{w} \lor \bar{y} \lor \bar{a})$
- But there can be more than 1 UIP
- Second UIP:
 - Learn clause $(\bar{x} \lor \bar{z} \lor a)$
- In practice smaller clauses more effective
 - Compare with $(\bar{w} \lor \bar{x} \lor \bar{y} \lor \bar{z})$

• Multiple UIPs proposed in GRASP

[MSS96]

- First UIP learning proposed in Chaff

[MMZZM01]

- Not used in recent state of the art CDCL SAT solvers
- Recent results show it can be beneficial on current instances [SSS12]

• Learn clause $(\bar{x} \lor \bar{y} \lor \bar{z} \lor \bar{b})$

- Learn clause $(\overline{x} \lor \overline{y} \lor \overline{z} \lor \overline{b})$
- Apply self-subsuming resolution (i.e. local minimization) [SB09]

- Learn clause $(\overline{x} \lor \overline{y} \lor \overline{z} \lor \overline{b})$
- Apply self-subsuming resolution (i.e. local minimization)

- Learn clause $(\overline{x} \lor \overline{y} \lor \overline{z} \lor \overline{b})$
- Apply self-subsuming resolution (i.e. local minimization)
- Learn clause $(\bar{x} \lor \bar{y} \lor \bar{z})$

• Learn clause $(\bar{w} \lor \bar{x} \lor \bar{c})$

- Learn clause $(\bar{w} \lor \bar{x} \lor \bar{c})$
- Cannot apply self-subsuming resolution
 - Resolving with reason of c yields $(\bar{w} \lor \bar{x} \lor \bar{a} \lor \bar{b})$

- Learn clause $(\bar{w} \lor \bar{x} \lor \bar{c})$
- Cannot apply self-subsuming resolution
 - Resolving with reason of c yields $(\bar{w} \lor \bar{x} \lor \bar{a} \lor \bar{b})$
- Can apply recursive minimization

- Learn clause $(\overline{w} \lor \overline{x} \lor \overline{c})$
- Cannot apply self-subsuming resolution
 - Resolving with reason of c yields $(\bar{w} \lor \bar{x} \lor \bar{a} \lor \bar{b})$
- Can apply recursive minimization

• Marked nodes: literals in learned clause

[SB09]

- Learn clause $(\overline{w} \lor \overline{x} \lor \overline{c})$
- Cannot apply self-subsuming resolution
 - Resolving with reason of c yields $(\bar{w} \lor \bar{x} \lor \bar{a} \lor \bar{b})$
- Can apply recursive minimization

- Marked nodes: literals in learned clause
- Trace back from *c* until marked nodes or new nodes
 - Learn clause if only marked nodes visited

[SB09]

- Learn clause $(\overline{w} \lor \overline{x} \lor \overline{c})$
- Cannot apply self-subsuming resolution
 - Resolving with reason of c yields $(\bar{w} \lor \bar{x} \lor \bar{a} \lor \bar{b})$
- Can apply recursive minimization
- Learn clause $(\bar{w} \lor \bar{x})$

- Marked nodes: literals in learned clause
- Trace back from *c* until marked nodes or new nodes
 - Learn clause if only marked nodes visited

[SB09]

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers Clause Learning, UIPs & Minimization Search Restarts & Lazy Data Structures

What Next in CDCL Solvers?

• Heavy-tail behavior:

[GSK98]

- 10000 runs, branching randomization on industrial instance

• Use rapid randomized restarts (search restarts)

• Restart search after a number of conflicts

- Restart search after a number of conflicts
- Increase cutoff after each restart
 - Guarantees completeness
 - Different policies exist (see refs)

- Restart search after a number of conflicts
- Increase cutoff after each restart
 - Guarantees completeness
 - Different policies exist (see refs)
- Works for SAT & UNSAT instances. Why?

- Restart search after a number of conflicts
- Increase cutoff after each restart
 - Guarantees completeness
 - Different policies exist (see refs)
- Works for SAT & UNSAT instances. Why?
- Learned clauses effective after restart(s)

- Each literal / should access clauses containing /
 - Why?

- Each literal / should access clauses containing /
 - Why? Unit propagation

- Each literal / should access clauses containing / – Why? Unit propagation
- Clause with k literals results in k references, from literals to the clause

- Each literal / should access clauses containing / – Why? Unit propagation
- Clause with k literals results in k references, from literals to the clause
- Number of clause references **equals** number of literals, *L*

- Each literal / should access clauses containing / – Why? Unit propagation
- Clause with k literals results in k references, from literals to the clause
- Number of clause references **equals** number of literals, *L*
 - Clause learning can generate large clauses
 - Worst-case size: $\mathcal{O}(n)$

- Each literal / should access clauses containing / – Why? Unit propagation
- Clause with k literals results in k references, from literals to the clause
- Number of clause references **equals** number of literals, *L*
 - Clause learning can generate large clauses
 - Worst-case size: $\mathcal{O}(n)$
 - Worst-case number of literals: O(mn)

- Each literal / should access clauses containing / – Why? Unit propagation
- Clause with k literals results in k references, from literals to the clause
- Number of clause references **equals** number of literals, *L*
 - Clause learning can generate large clauses
 - Worst-case size: $\mathcal{O}(n)$
 - Worst-case number of literals: $\mathcal{O}(mn)$
 - In practice,

Unit propagation slow-down worse than linear as clauses are learned !
Data Structures Basics

- Each literal / should access clauses containing / – Why? Unit propagation
- Clause with k literals results in k references, from literals to the clause
- Number of clause references **equals** number of literals, *L*
 - Clause learning can generate large clauses
 - ▶ Worst-case size: $\mathcal{O}(n)$
 - Worst-case number of literals: $\mathcal{O}(m n)$
 - In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient representation:

Data Structures Basics

- Each literal / should access clauses containing / – Why? Unit propagation
- Clause with k literals results in k references, from literals to the clause
- Number of clause references **equals** number of literals, *L*
 - Clause learning can generate large clauses
 - Worst-case size: $\mathcal{O}(n)$
 - Worst-case number of literals: $\mathcal{O}(m n)$
 - In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient representation: Watched Literals

Data Structures Basics

- Each literal / should access clauses containing / – Why? Unit propagation
- Clause with k literals results in k references, from literals to the clause
- Number of clause references **equals** number of literals, *L*
 - Clause learning can generate large clauses
 - Worst-case size: $\mathcal{O}(n)$
 - Worst-case number of literals: $\mathcal{O}(m n)$
 - In practice,

Unit propagation slow-down worse than linear as clauses are learned !

- Clause learning to be effective requires a more efficient representation: Watched Literals
 - Watched literals are one example of lazy data structures
 - ► But there are others

[MMZZM01]

• Important states of a clause

literals0 = 4

literals1=0

[MMZZM01]

- Important states of a clause
- Associate **2** references with each clause

[MMZZM01]

- Important states of a clause
- Associate **2** references with each clause
- Deciding unit requires traversing all literals

[MMZZM01]

- Important states of a clause
- Associate **2** references with each clause
- Deciding unit requires traversing all literals
- References unchanged when backtracking

Additional Key Techniques

• Lightweight branching

[e.g. MMZZM01]

- Use conflict to bias variables to branch on, associate score with each variable
- Prefer recent bias by regularly decreasing variable scores

Additional Key Techniques

• Lightweight branching

[e.g. MMZZM01]

- Use conflict to bias variables to branch on, associate score with each variable
- Prefer recent bias by regularly decreasing variable scores
- Clause deletion policies
 - Not practical to keep all learned clauses
 - Delete less used clauses

[e.g. MSS96,GN02,ES03]

Additional Key Techniques

• Lightweight branching

[e.g. MMZZM01]

- Use conflict to bias variables to branch on, associate score with each variable
- Prefer recent bias by regularly decreasing variable scores

• Clause deletion policies

- Not practical to keep all learned clauses
- Delete less used clauses

[e.g. MSS96,GN02,ES03]

- Proven recent techniques:
 - Phase saving - Literal blocks distance

[PD07] [AS09]

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers

What Next in CDCL Solvers?

CDCL – A Glimpse of the Future

• Clause learning techniques

[e.g. ABHJS08,AS09]

- Clause learning is the key technique in CDCL SAT solvers
- Many recent papers propose improvements to the basic clause learning approach

• Preprocessing & inprocessing

- Many recent papers
- Essential in some applications

[e.g. JHB12,HJB11]

• Application-driven improvements

- Incremental SAT
 - Handling of assumptions due to MUS extractors

[LB13]

Part II

SAT-Based Problem Solving

- CNF encodings
 - Represent problem as instance of SAT
 - E.g. Eager SMT, Pseudo-Boolean constraints, etc.

- CNF encodings
 - Represent problem as instance of SAT
 - E.g. Eager SMT, Pseudo-Boolean constraints, etc.
- Embedding of SAT solvers
 - SAT solver used to implement domain specific algorithm
 - White-box integration
 - E.g. Lazy SMT, Pseudo-Boolean constraints/optimization, etc.

- CNF encodings
 - Represent problem as instance of SAT
 - E.g. Eager SMT, Pseudo-Boolean constraints, etc.
- Embedding of SAT solvers
 - SAT solver used to implement domain specific algorithm
 - White-box integration
 - E.g. Lazy SMT, Pseudo-Boolean constraints/optimization, etc.
- SAT solvers as oracles
 - Algorithm invokes SAT solver as an NP oracle
 - Black-box integration
 - E.g. MaxSAT, MUSes, (2)QBF, etc.

- CNF encodings
 - Represent problem as instance of SAT
 - E.g. Eager SMT, Pseudo-Boolean constraints, etc.
- Embedding of SAT solvers
 - SAT solver used to implement domain specific algorithm
 - White-box integration
 - E.g. Lazy SMT, Pseudo-Boolean constraints/optimization, etc.
- SAT solvers as oracles
 - Algorithm invokes SAT solver as an NP oracle
 - Black-box integration
 - E.g. MaxSAT, MUSes, (2)QBF, etc.
- Note:
 - CNF encodings most often used with either black-box or white-box approaches
 - SAT techniques adapted in many other domains: QBF, ASP, ILP, CSP, ...

SAT-Based Problem Solving

 Some apps associated with more than one concept: planning, BMC, lazy clause generation, etc.

Examples of SAT-Based Problem Solving I

- Function problems in FP^{NP}[log n]
 - Unweighted Maximum Satisfiability (MaxSAT)
 - Minimal Correction Subsets (MCSes)
 - Minimal models
 - ...
- Function problems in FP^{NP}
 - Weighted Maximum Satisfiability (MaxSAT)
 - Minimal Unsatisfiable Subformulas (MUSes)
 - Minimal Equivalent Subformulas (MESes)
 - Prime implicates
 - ...
- Enumeration problems
 - Models
 - MUSes
 - MCSes
 - MaxSAT

- ...

Examples of SAT-Based Problem Solving II

- Decision problems in Σ_2^P
 - 2QBF
- Function problems in $\mathsf{FP}^{\Sigma_2^P}$
 - (Weighted) Quantified MaxSAT (QMaxSAT)
 - Smallest MUS (SMUS) [IJMS13]

[IJMS13]

- ...
- Decision problems in PSPACE
 - QBF
 - ...
- ...

Outline

CNF Encodings

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?

Outline

CNF Encodings

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?

Encoding to CNF

- What to encode?
 - Boolean formulas
 - Tseitin's encoding
 - Plaisted&Greenbaum's encoding

...

- Cardinality constraints
- Pseudo-Boolean (PB) constraints
- Can also translate to SAT:
 - Constraint Satisfaction Problems (CSPs)
 - Answer Set Programming (ASP)
 - Model Finding

> ...

- Key issues:
 - Encoding size
 - Arc-consistency?

Outline

CNF Encodings

Boolean Formulas

Cardinality Constraints Pseudo-Boolean Constraints Encoding CSPs

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?

Representing Boolean Formulas / Circuits I

- Satisfiability problems can be defined on Boolean circuits/formulas
- Can represent circuits/formulas as CNF formulas
 - For each (simple) gate, CNF formula encodes the consistent assignments to the gate's inputs and output
 - Given z = OP(x, y), represent in CNF $z \leftrightarrow OP(x, y)$
 - CNF formula for the circuit is the conjunction of CNF formula for each gate

 $\mathcal{F}_c = (a \lor c) \land (b \lor c) \land (\overline{a} \lor \overline{b} \lor \overline{c})$

[T68,PG86]

 $\mathcal{F}_t = (\overline{r} \lor t) \land (\overline{s} \lor t) \land (r \lor s \lor \overline{t})$

Representing Boolean Formulas / Circuits II

$$\mathcal{F}_c = (a \lor c) \land (b \lor c) \land (\overline{a} \lor \overline{b} \lor \overline{c})$$

Representing Boolean Formulas / Circuits III

- CNF formula for the circuit is the conjunction of the CNF formula for each gate
 - Can specify objectives with additional clauses

$$\mathcal{F} = (a \lor x) \land (b \lor x) \land (\bar{a} \lor \bar{b} \lor \bar{x}) \land$$
$$(x \lor \bar{y}) \land (c \lor \bar{y}) \land (\bar{x} \lor \bar{c} \lor y) \land$$
$$(\bar{y} \lor z) \land (\bar{d} \lor z) \land (y \lor d \lor \bar{z}) \land (z)$$

Representing Boolean Formulas / Circuits III

- CNF formula for the circuit is the conjunction of the CNF formula for each gate
 - Can specify objectives with additional clauses

$$\mathcal{F} = (a \lor x) \land (b \lor x) \land (\bar{a} \lor \bar{b} \lor \bar{x}) \land$$
$$(x \lor \bar{y}) \land (c \lor \bar{y}) \land (\bar{x} \lor \bar{c} \lor y) \land$$
$$(\bar{y} \lor z) \land (\bar{d} \lor z) \land (y \lor d \lor \bar{z}) \land (z)$$

• Note: $z = d \lor (c \land (\neg(a \land b)))$

- No distinction between Boolean circuits and formulas

Outline

CNF Encodings

Boolean Formulas Cardinality Constraints Pseudo-Boolean Constraints Encoding CSPs

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?

Cardinality Constraints

• How to handle cardinality constraints, $\sum_{j=1}^{n} x_j \leq k$?

- How to handle AtMost1 constraints, $\sum_{i=1}^{n} x_i \leq 1$?
- General form: $\sum_{j=1}^{n} x_j \bowtie k$, with $\bowtie \in \{<, \leq, =, \geq, >\}$
- Solution #1:
 - Use PB solver
 - Difficult to keep up with advances in SAT technology
 - For SAT/UNSAT, best solvers already encode to CNF
 - ► E.g. Minisat+, but also QMaxSat, MSUnCore, (W)PM2

Cardinality Constraints

• How to handle cardinality constraints, $\sum_{j=1}^{n} x_j \leq k$?

- How to handle AtMost1 constraints, $\sum_{i=1}^{n} x_i \leq 1$?
- General form: $\sum_{j=1}^{n} x_j \bowtie k$, with $\bowtie \in \{<, \leq, =, \geq, >\}$
- Solution #1:
 - Use PB solver
 - Difficult to keep up with advances in SAT technology
 - For SAT/UNSAT, best solvers already encode to CNF
 - ► E.g. Minisat+, but also QMaxSat, MSUnCore, (W)PM2
- Solution #2:
 - Encode cardinality constraints to CNF
 - Use SAT solver

Equals1, AtLeast1 & AtMost1 Constraints

- $\sum_{j=1}^{n} x_j = 1$: encode with $(\sum_{j=1}^{n} x_j \le 1) \land (\sum_{j=1}^{n} x_j \ge 1)$
- $\sum_{j=1}^{n} x_j \ge 1$: encode with $(x_1 \lor x_2 \lor \ldots \lor x_n)$
- $\sum_{j=1}^{n} x_j \leq 1$ encode with:
 - Pairwise encoding
 - Clauses: $\mathcal{O}(n^2)$; No auxiliary variables
 - Sequential counter
 - ▶ Clauses: $\mathcal{O}(n)$; Auxiliary variables: $\mathcal{O}(n)$

[S05]

- Bitwise encoding

. . .

[P07,FP01]

▶ Clauses: $O(n \log n)$; Auxiliary variables: $O(\log n)$

• Encode $\sum_{j=1}^{n} x_j \leq 1$ with bitwise encoding:

• An example: $x_1 + x_2 + x_3 \le 1$

- Encode $\sum_{j=1}^{n} x_j \leq 1$ with bitwise encoding:
 - Auxiliary variables v_0, \ldots, v_{r-1} ; $r = \lceil \log n \rceil$ (with n > 1)
 - If $x_j = 1$, then $v_0 \dots v_{r-1} = b_0 \dots b_{r-1}$, the binary encoding of j-1 $x_j \rightarrow (v_0 = b_0) \land \dots \land (v_{r-1} = b_{r-1}) \Leftrightarrow (\bar{x}_j \lor (v_0 = b_0) \land \dots \land (v_{r-1} = b_{r-1}))$

• An example: $x_1 + x_2 + x_3 \le 1$

	j-1	$v_1 v_0$
<i>x</i> ₁	0	00
<i>x</i> ₂	1	01
<i>X</i> 3	2	10

- Encode $\sum_{j=1}^{n} x_j \leq 1$ with bitwise encoding:
 - Auxiliary variables v_0, \ldots, v_{r-1} ; $r = \lceil \log n \rceil$ (with n > 1)
 - If $x_j = 1$, then $v_0 \dots v_{r-1} = b_0 \dots b_{r-1}$, the binary encoding of j-1 $x_j \rightarrow (v_0 = b_0) \land \dots \land (v_{r-1} = b_{r-1}) \Leftrightarrow (\bar{x}_j \lor (v_0 = b_0) \land \dots \land (v_{r-1} = b_{r-1}))$
 - Clauses $(\bar{x}_j \lor (v_i \leftrightarrow b_i)) = (\bar{x}_j \lor l_i), i = 0, \dots, r-1$, where

►
$$l_i \equiv v_i$$
, if $b_i = 1$

▶
$$I_i \equiv \overline{v}_i$$
, otherwise

• An example: $x_1 + x_2 + x_3 \le 1$

	j-1	$v_1 v_0$
<i>x</i> ₁	0	00
<i>x</i> ₂	1	01
<i>X</i> 3	2	10

$(\bar{x}_1$	\lor	\overline{v}_1)	\wedge	$(\bar{x}_1$	\lor	\overline{v}_0)
$(\bar{x}_2$	\lor	$\overline{v}_1)$	\wedge	$(\bar{x}_2$	\lor	<i>v</i> ₀)
(\bar{x}_3)	\lor	$v_1)$	\wedge	(\bar{x}_3)	\lor	\overline{v}_0)

- Encode $\sum_{j=1}^{n} x_j \leq 1$ with bitwise encoding:
 - Auxiliary variables v_0, \ldots, v_{r-1} ; $r = \lceil \log n \rceil$ (with n > 1)
 - If $x_j = 1$, then $v_0 \dots v_{r-1} = b_0 \dots b_{r-1}$, the binary encoding of j-1 $x_j \rightarrow (v_0 = b_0) \land \dots \land (v_{r-1} = b_{r-1}) \Leftrightarrow (\bar{x}_j \lor (v_0 = b_0) \land \dots \land (v_{r-1} = b_{r-1}))$
 - Clauses $(\bar{x}_j \lor (v_i \leftrightarrow b_i)) = (\bar{x}_j \lor l_i), i = 0, \dots, r-1$, where
 - $l_i \equiv v_i$, if $b_i = 1$
 - ▶ $l_i \equiv \overline{v}_i$, otherwise
 - If $x_j = 1$, assignment to v_i variables must encode j 1
 - All other x variables must take value 0
 - If all $x_j = 0$, any assignment to v_i variables is consistent
 - $O(n \log n)$ clauses ; $O(\log n)$ auxiliary variables
- An example: $x_1 + x_2 + x_3 \le 1$

	j-1	$v_1 v_0$
x_1	0	00
<i>x</i> ₂	1	01
<i>X</i> 3	2	10

 $egin{aligned} & (ar{x}_1 ee ar{v}_1) \land (ar{x}_1 ee ar{v}_0) \ & (ar{x}_2 ee ar{v}_1) \land (ar{x}_2 ee ar{v}_0) \ & (ar{x}_3 ee ar{v}_1) \land (ar{x}_3 ee ar{v}_0) \end{aligned}$
General Cardinality Constraints

• General form: $\sum_{j=1}^{n} x_j \leq k$ (or $\sum_{j=1}^{n} x_j \geq k$)	
 Sequential counters 	[S05]
• Clauses/Variables: $\mathcal{O}(n k)$	
– BDDs	[ES06]
• Clauses/Variables: $\mathcal{O}(n k)$	
 Sorting networks 	[ES06]
• Clauses/Variables: $\mathcal{O}(n \log^2 n)$	
 Cardinality Networks: 	[ANORC09,ANORC11a]
• Clauses/Variables: $\mathcal{O}(n \log^2 k)$	
 Pairwise Cardinality Networks: 	[CZI10]

Outline

CNF Encodings

Boolean Formulas Cardinality Constraints Pseudo-Boolean Constraints Encoding CSPs

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?

Pseudo-Boolean Constraints

• General form: $\sum_{j=1}^{n} a_j x_j \le b$	
 Operational encoding 	[W98]
• Clauses/Variables: $\mathcal{O}(n)$	
Does not guarantee arc-consistency	
– BDDs	[ES06]
 Worst-case exponential number of clauses 	
 Polynomial watchdog encoding 	[BBR09]
• Let $\nu(n) = \log(n) \log(a_{max})$	
► Clauses: $O(n^3\nu(n))$; Aux variables: $O(n^2\nu(n))$	
 Improved polynomial watchdog encoding 	[ANORC11b]
• Clauses & aux variables: $\mathcal{O}(n^3 \log(a_{max}))$	

Encoding PB Constraints with BDDs I

- Encode $3x_1 + 3x_2 + x_3 \le 3$
- Construct BDD
 - E.g. analyze variables by decreasing coefficients
- Extract ITE-based circuit from BDD

Encoding PB Constraints with BDDs I

- Encode $3x_1 + 3x_2 + x_3 \le 3$
- Construct BDD
 - E.g. analyze variables by decreasing coefficients
- Extract ITE-based circuit from BDD

Encoding PB Constraints with BDDs II

- Encode $3x_1 + 3x_2 + x_3 \le 3$
- Extract ITE-based circuit from BDD
- Simplify and create final circuit:

• How about
$$\sum_{j=1}^{n} a_j x_j = k$$
 ?

- How about $\sum_{j=1}^{n} a_j x_j = k$?
 - Can use $\left(\sum_{j=1}^{n} a_j x_j \ge k\right) \land \left(\sum_{j=1}^{n} a_j x_j \le k\right)$, but...
 - $\sum_{j=1}^{n} a_j x_j = k$ is a subset-sum constraint (special case of a knapsack constraint)

- How about $\sum_{j=1}^{n} a_j x_j = k$?
 - Can use $\left(\sum_{j=1}^{n} a_j x_j \ge k\right) \land \left(\sum_{j=1}^{n} a_j x_j \le k\right)$, but...
 - $\sum_{j=1}^{n} a_j x_j = k$ is a subset-sum constraint

(special case of a knapsack constraint)

Cannot find all consequences in polynomial time

[S03,FS02,T03]

- How about $\sum_{j=1}^{n} a_j x_j = k$?
 - Can use $\left(\sum_{j=1}^{n} a_j x_j \ge k\right) \land \left(\sum_{j=1}^{n} a_j x_j \le k\right)$, but...
 - $\sum_{j=1}^{n} a_j x_j = k$ is a subset-sum constraint
 - (special case of a knapsack constraint)
 - Cannot find all consequences in polynomial time

[S03,FS02,T03]

• Example:

 $4x_1 + 3x_2 + 2x_3 = 5$

- How about $\sum_{j=1}^{n} a_j x_j = k$?
 - Can use $\left(\sum_{j=1}^{n} a_j x_j \ge k\right) \land \left(\sum_{j=1}^{n} a_j x_j \le k\right)$, but...
 - $\sum_{j=1}^{n} a_j x_j = k$ is a subset-sum constraint
 - (special case of a knapsack constraint)
 - Cannot find all consequences in polynomial time

[S03,FS02,T03]

• Example:

$$4x_1 + 3x_2 + 2x_3 = 5$$

- Replace by $(4x_1 + 3x_2 + 2x_3 \ge 5) \land (4x_1 + 3x_2 + 2x_3 \le 5)$

- How about $\sum_{j=1}^{n} a_j x_j = k$?
 - Can use $\left(\sum_{j=1}^{n} a_j x_j \ge k\right) \land \left(\sum_{j=1}^{n} a_j x_j \le k\right)$, but...
 - $\sum_{j=1}^{n} a_j x_j = k$ is a subset-sum constraint
 - (special case of a knapsack constraint)
 - Cannot find all consequences in polynomial time

[S03,FS02,T03]

• Example:

$$4x_1 + 3x_2 + 2x_3 = 5$$

- Replace by $(4x_1 + 3x_2 + 2x_3 \ge 5) \land (4x_1 + 3x_2 + 2x_3 \le 5)$
- Let $x_2 = 0$

- How about $\sum_{j=1}^{n} a_j x_j = k$?
 - Can use $\left(\sum_{j=1}^{n} a_j x_j \ge k\right) \land \left(\sum_{j=1}^{n} a_j x_j \le k\right)$, but...
 - $\sum_{j=1}^{n} a_j x_j = k$ is a subset-sum constraint
 - (special case of a knapsack constraint)
 - Cannot find all consequences in polynomial time

[S03,FS02,T03]

• Example:

$$4x_1 + 3x_2 + 2x_3 = 5$$

- Replace by $(4x_1 + 3x_2 + 2x_3 \ge 5) \land (4x_1 + 3x_2 + 2x_3 \le 5)$
- Let $x_2 = 0$
- Either constraint can still be satisfied, but not both

Outline

CNF Encodings

Boolean Formulas Cardinality Constraints Pseudo-Boolean Constraints Encoding CSPs

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?

CSP Constraints

• Many possible encodings:

 Direct encoding 	[dK89,GJ96,W00]
 Log encoding 	[W00]
 Support encoding 	[K90,G02]
 Log-Support encoding 	[G07]
 Order encoding for finite linear CSPs 	[TTKB09]

Direct Encoding for CSP w/ Binary Constraints

- Variable x_i with domain D_i , with $m_i = |D_i|$
- Represent values of x_i with Boolean variables $x_{i,1}, \ldots, x_{i,m_i}$
- Require $\sum_{k=1}^{m_i} x_{i,k} = 1$
 - Suffices to require $\sum_{k=1}^{m_i} x_{i,k} \ge 1$

- [W00]
- If the pair of assignments x_i = v_i ∧ x_j = v_j is not allowed, add binary clause (x̄_i, v_i ∨ x̄_j, v_j)

Outline

CNF Encodings

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?

Embedding SAT Solvers

- Modify SAT solver to interface problem-specific propagators (or theory solvers)
- Typical interface:
 - SAT solvers communicates assignments/constraints to propagators
 - Retrieve resulting assignments or explanations for inconsistency
- Well-known examples (many more):
 - Branch&bound PB optimization
 - Non-clausal SAT solvers
 - Lazy SMT solving (see later talks)
- Key problem:
 - Keeping up with improvements in SAT solvers

Pseudo-Boolean Constraints & Optimization

- Pseudo-Boolean Constraints:
 - Boolean variables: x_1, \ldots, x_n
 - Linear inequalities:

$$\sum_{j \in N} a_{ij} l_j \ge b_i, \quad l_j \in \{x_j, \bar{x}_j\}, x_j \in \{0, 1\}, a_{ij}, b_i \in \mathbb{N}_0^+$$

Pseudo-Boolean Constraints & Optimization

- Pseudo-Boolean Constraints:
 - Boolean variables: x_1, \ldots, x_n
 - Linear inequalities:

 $\sum_{j \in N} a_{ij} l_j \ge b_i, \quad l_j \in \{x_j, \bar{x}_j\}, x_j \in \{0, 1\}, a_{ij}, b_i \in \mathbb{N}_0^+$

• Pseudo-Boolean Optimization (PBO):

minimize subject to

$$egin{aligned} &\sum\limits_{j\in N} c_j \cdot x_j \ &\sum\limits_{j\in N} a_{ij} l_j \geq b_i, \ &l_j \in \{x_j, ar{x}_j\}, x_j \in \{0, 1\}, a_{ij}, b_i, c_j \in \mathbb{N}_0^+ \end{aligned}$$

Pseudo-Boolean Constraints & Optimization

- Pseudo-Boolean Constraints:
 - Boolean variables: x_1, \ldots, x_n
 - Linear inequalities:

 $\sum_{j \in N} a_{ij} l_j \ge b_i, \quad l_j \in \{x_j, \bar{x}_j\}, x_j \in \{0, 1\}, a_{ij}, b_i \in \mathbb{N}_0^+$

• Pseudo-Boolean Optimization (PBO):

 $\begin{array}{ll} \text{minimize} & \sum\limits_{j \in N} c_j \cdot x_j \\ \text{subject to} & \sum\limits_{j \in N} a_{ij} l_j \geq b_i, \\ & l_j \in \{x_j, \bar{x}_j\}, x_j \in \{0, 1\}, a_{ij}, b_i, c_j \in \mathbb{N}_0^+ \end{array}$

• Branch and bound (B&B) PBO algorithm:

[MMS00]

- Extend SAT solver
- Must develop propagator for PB constraints
- B&B search for computing optimum cost function value

• Trivial upper bound: all $x_j = 1$

Limitations with Embeddings

- B&B MaxSAT solving:
 - Cannot use unit propagation
 - Cannot learn clauses
- MUS extraction:
 - Decision of clauses to include in MUS based on unsatisfiable outcomes
 - No immediate gain from embedding SAT solvers

Outline

CNF Encodings

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?

• Incremental vs. non-incremental SAT

- Incremental vs. non-incremental SAT
 - Incremental SAT:
 - Replace each clause (C_i) with $(C_i \vee \overline{a}_i)$, where a_i is assumption variable
 - When calling SAT solver, each assumption can be assigned 1, 0, or be left unassigned

[ES03]

- Non-incremental SAT:

- Incremental vs. non-incremental SAT
 - Incremental SAT:
 - Replace each clause (C_i) with $(C_i \vee \overline{a}_i)$, where a_i is assumption variable
 - When calling SAT solver, each assumption can be assigned 1, 0, or be left unassigned
 - $a_i = 1$ to activate clause C_i
 - $a_i = 0$ to deactivate clause C_i
 - Non-incremental SAT:

- Incremental vs. non-incremental SAT
 - Incremental SAT:
 - Replace each clause (C_i) with $(C_i \vee \overline{a}_i)$, where a_i is assumption variable
 - When calling SAT solver, each assumption can be assigned 1, 0, or be left unassigned
 - $a_i = 1$ to activate clause C_i
 - $a_i = 0$ to deactivate clause C_i
 - Add clause (\bar{a}_i) to *delete* C_i
 - Non-incremental SAT:

- Incremental vs. non-incremental SAT
 - Incremental SAT:
 - Replace each clause (C_i) with $(C_i \vee \overline{a}_i)$, where a_i is assumption variable
 - When calling SAT solver, each assumption can be assigned 1, 0, or be left unassigned
 - $a_i = 1$ to activate clause C_i
 - $a_i = 0$ to deactivate clause C_i
 - Add clause (\bar{a}_i) to delete C_i
 - Note: incremental SAT enables clause reuse
 - Non-incremental SAT:

- Incremental vs. non-incremental SAT
 - Incremental SAT:
 - Replace each clause (C_i) with $(C_i \vee \overline{a}_i)$, where a_i is assumption variable
 - When calling SAT solver, each assumption can be assigned 1, 0, or be left unassigned
 - $a_i = 1$ to activate clause C_i
 - $a_i = 0$ to deactivate clause C_i
 - Add clause (\bar{a}_i) to delete C_i
 - Note: incremental SAT enables clause reuse
 - Non-incremental SAT:
 - Submit complete formula to SAT solver in each iteration
 - **Note**: difficult to instrument clause reuse

- Incremental vs. non-incremental SAT
 - Incremental SAT:
 - Replace each clause (C_i) with $(C_i \vee \overline{a}_i)$, where a_i is assumption variable
 - When calling SAT solver, each assumption can be assigned 1, 0, or be left unassigned
 - $a_i = 1$ to activate clause C_i
 - $a_i = 0$ to deactivate clause C_i
 - Add clause (\bar{a}_i) to delete C_i
 - Note: incremental SAT enables clause reuse
 - Non-incremental SAT:
 - Submit complete formula to SAT solver in each iteration
 - **Note**: difficult to instrument clause reuse
- What does the SAT oracle compute/return?
 - 1. Yes/No: $(st) \leftarrow SAT(\mathcal{F})$

- Incremental vs. non-incremental SAT
 - Incremental SAT:
 - Replace each clause (C_i) with $(C_i \vee \overline{a}_i)$, where a_i is assumption variable
 - When calling SAT solver, each assumption can be assigned 1, 0, or be left unassigned
 - $a_i = 1$ to activate clause C_i
 - $a_i = 0$ to deactivate clause C_i
 - Add clause (\bar{a}_i) to delete C_i
 - Note: incremental SAT enables clause reuse
 - Non-incremental SAT:
 - Submit complete formula to SAT solver in each iteration
 - **Note**: difficult to instrument clause reuse
- What does the SAT oracle compute/return?
 - 1. Yes/No: $(st) \leftarrow SAT(\mathcal{F})$
 - 2. Compute model: $(st, \mu) \leftarrow SAT(\mathcal{F})$

- Incremental vs. non-incremental SAT
 - Incremental SAT:
 - Replace each clause (C_i) with $(C_i \vee \overline{a}_i)$, where a_i is assumption variable
 - When calling SAT solver, each assumption can be assigned 1, 0, or be left unassigned
 - $a_i = 1$ to activate clause C_i
 - $a_i = 0$ to deactivate clause C_i
 - Add clause (\bar{a}_i) to delete C_i
 - Note: incremental SAT enables clause reuse
 - Non-incremental SAT:
 - Submit complete formula to SAT solver in each iteration
 - Note: difficult to instrument clause reuse
- What does the SAT oracle compute/return?
 - 1. Yes/No: $(st) \leftarrow SAT(\mathcal{F})$
 - 2. Compute model: $(st, \mu) \leftarrow SAT(\mathcal{F})$
 - 3. Compute unsatisfiable cores: $(st, \mu, U) \leftarrow SAT(\mathcal{F})$

- Incremental vs. non-incremental SAT
 - Incremental SAT:
 - Replace each clause (C_i) with $(C_i \vee \overline{a}_i)$, where a_i is assumption variable
 - When calling SAT solver, each assumption can be assigned 1, 0, or be left unassigned
 - $a_i = 1$ to activate clause C_i
 - $a_i = 0$ to deactivate clause C_i
 - Add clause (\bar{a}_i) to delete C_i
 - Note: incremental SAT enables clause reuse
 - Non-incremental SAT:
 - Submit complete formula to SAT solver in each iteration
 - Note: difficult to instrument clause reuse
- What does the SAT oracle compute/return?
 - 1. Yes/No: $(st) \leftarrow SAT(\mathcal{F})$
 - 2. Compute model: $(st, \mu) \leftarrow SAT(\mathcal{F})$
 - 3. Compute unsatisfiable cores: $(st, \mu, U) \leftarrow SAT(\mathcal{F})$
 - 4. Compute proof traces/resolution proof: $(st, \mu, \mathcal{T}) \leftarrow SAT(\mathcal{F})$

Outline

CNF Encodings

SAT Embeddings

SAT Oracles MUS Extraction MaxSAT 2QBF

What Next in SAT-Based Problem Solving?

Defining MUSes

$x_6 \lor x_2$	$\neg x_6 \lor x_2$	$\neg x_2 \lor x_1$	$\neg x_1$
$\neg x_6 \lor x_8$	$x_6 \vee \neg x_8$	$x_2 \lor x_4$	$\neg x_4 \lor x_5$
$x_7 \lor x_5$	$\neg x_7 \lor x_5$	$\neg x_5 \lor x_3$	¬ <i>X</i> 3

• Formula is unsatisfiable but not irreducible

Defining MUSes

- Formula is unsatisfiable but not irreducible
- Can remove clauses, and formula still unsatisfiable
| $x_6 \lor x_2$ | $\neg x_6 \lor x_2$ | $\neg x_2 \lor x_1$ | $\neg x_1$ |
|---------------------|---------------------|---------------------|---------------------|
| $\neg x_6 \lor x_8$ | $x_6 \vee \neg x_8$ | $x_2 \lor x_4$ | $\neg x_4 \lor x_5$ |
| $x_7 \lor x_5$ | $\neg x_7 \lor x_5$ | $\neg x_5 \lor x_3$ | ¬ <i>x</i> 3 |

- Formula is unsatisfiable but not irreducible
- Can remove clauses, and formula still unsatisfiable
- A Minimal Unsatisfiable Subformula (MUS) is an unsatisfiable and irreducible subformula

- Formula is unsatisfiable but not irreducible
- Can remove clauses, and formula still unsatisfiable
- A Minimal Unsatisfiable Subformula (MUS) is an unsatisfiable and irreducible subformula

- Formula is unsatisfiable but not irreducible
- Can remove clauses, and formula still unsatisfiable
- A Minimal Unsatisfiable Subformula (MUS) is an unsatisfiable and irreducible subformula

- Formula is unsatisfiable but not irreducible
- Can remove clauses, and formula still unsatisfiable
- A Minimal Unsatisfiable Subformula (MUS) is an unsatisfiable and irreducible subformula
- How to compute an MUS?

• Number of calls to SAT solver: $\mathcal{O}(|\mathcal{F}|)$

```
Input : Unsatisfiable CNF Formula \mathcal{F}
Output: MUS \mathcal{M}
begin
```

```
 \begin{array}{c|c} \mathcal{M} \leftarrow \mathcal{F} \\ \textbf{foreach } c \in \mathcal{M} \textbf{ do} \\ & & | \textbf{ if not } SAT(\mathcal{M} \setminus \{c\}) \textbf{ then} \\ & & | \mathcal{M} \leftarrow \mathcal{M} \setminus \{c\} \\ & \text{ return } \mathcal{M} \\ \end{array}
```

// MUS over-approximation

// Remove c from \mathcal{M} // Final \mathcal{M} is MUS

• Number of calls to SAT solver: $\mathcal{O}(|\mathcal{F}|)$

$$(\neg x_1 \lor x_2)$$
$$(\neg x_3 \lor x_2)$$
$$(x_1 \lor x_2)$$
$$(\neg x_3)$$
$$(\neg x_2)$$

UNSAT instance

$$(\neg x_1 \lor x_2)$$
$$(\neg x_3 \lor x_2)$$
$$(x_1 \lor x_2)$$
$$(\neg x_3)$$
$$(\neg x_2)$$

Hide clause $(\neg x_1 \lor x_2)$

$$(\neg x_3 \lor x_2)$$

 $(x_1 \lor x_2)$
 $(\neg x_3)$
 $(\neg x_2)$

SAT instance \rightarrow keep clause ($\neg x_1 \lor x_2$)

$$(\neg x_1 \lor x_2)$$
$$(\neg x_3 \lor x_2)$$
$$(x_1 \lor x_2)$$
$$(\neg x_3)$$
$$(\neg x_2)$$

Hide clause $(\neg x_3 \lor x_2)$

$$(\neg x_1 \lor x_2)$$
$$(x_1 \lor x_2)$$
$$(\neg x_3)$$
$$(\neg x_2)$$

UNSAT instance \rightarrow remove clause $(\neg x_3 \lor x_2)$

$$(\neg x_1 \lor x_2)$$
$$(x_1 \lor x_2)$$
$$(\neg x_3)$$
$$(\neg x_2)$$

Hide clause $(x_1 \lor x_2)$

$$(\neg x_1 \lor x_2)$$

 $(\neg x_3)$
 $(\neg x_2)$

SAT instance \rightarrow keep clause ($x_1 \lor x_2$)

$$(\neg x_1 \lor x_2)$$
$$(x_1 \lor x_2)$$
$$(\neg x_3)$$
$$(\neg x_2)$$

Hide clause $(\neg x_3)$

$$(\neg x_1 \lor x_2)$$

 $(x_1 \lor x_2)$
 $(\neg x_2)$

UNSAT instance \rightarrow remove clause $(\neg x_3)$

 $(\neg x_1 \lor x_2)$ $(x_1 \lor x_2)$ $(\neg x_2)$

Hide clause $(\neg x_2)$

 $(\neg x_1 \lor x_2)$ $(x_1 \lor x_2)$

SAT instance \rightarrow keep clause $(\neg x_2)$

$$\begin{bmatrix} \neg x_1 \lor x_2 \\ x_1 \lor x_2 \end{bmatrix}$$
$$\begin{bmatrix} \neg x_2 \\ \neg x_2 \end{bmatrix}$$

Computed MUS

More on MUS Extraction

Algorithm	# Oracle Calls	Reference
Insertion (Default)	$\mathcal{O}(m \times k)$	[SP88]
Deletion (Default)	$\mathcal{O}(m)$	[CD91,BDTW93]
QuickXplain	$\mathcal{O}(k imes (1 + \log rac{m}{k}))$	[J01,J04]
Dichotomic	$\mathcal{O}(k imes \log m)$	[HLSB06]
Insertion with Relaxation Variables	$\mathcal{O}(m)$	[MSL11]
Deletion with Model Rotation	$\mathcal{O}(m)$	[BLMS12,MSL11]
Progression	$\mathcal{O}(k imes \log(1 + rac{m}{k}))$	[MSJB13]

More on MUS Extraction

Algorithm	# Oracle Calls	Reference
Insertion (Default)	$\mathcal{O}(m imes k)$	[SP88]
Deletion (Default)	$\mathcal{O}(m)$	[CD91,BDTW93]
QuickXplain	$\mathcal{O}(k imes (1 + \log rac{m}{k}))$	[J01,J04]
Dichotomic	$\mathcal{O}(k imes \log m)$	[HLSB06]
Insertion with Relaxation Variables	$\mathcal{O}(m)$	[MSL11]
Deletion with Model Rotation	$\mathcal{O}(m)$	[BLMS12,MSL11]
Progression	$\mathcal{O}(k imes \log(1 + rac{m}{k}))$	[MSJB13]

- Additional Techniques:
 - Restrict formula to unsatisfiable subsets
 - Check redundancy condition
 - Model rotation, recursive model rotation, etc.

[BDTW93,HLSB06,DHN06,MSL11]

[vMW08,MSL11,BLMS12]

[MSL11,BMS11,BLMS12,W12]

Outline

CNF Encodings

SAT Embeddings

SAT Oracles MUS Extraction MaxSAT 2QBF

What Next in SAT-Based Problem Solving?

Defining Maximum Satisfiability

$x_6 \lor x_2$	$\neg x_6 \lor x_2$	$\neg x_2 \lor x_1$	$\neg x_1$
$\neg x_6 \lor x_8$	$x_6 \vee \neg x_8$	$x_2 \lor x_4$	$\neg x_4 \lor x_5$
$x_7 \lor x_5$	$\neg x_7 \lor x_5$	$\neg x_5 \lor x_3$	¬ <i>X</i> 3

• Given unsatisfiable formula, find largest subset of clauses that is satisfiable

Defining Maximum Satisfiability

- Given unsatisfiable formula, find largest subset of clauses that is satisfiable
- A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula

Defining Maximum Satisfiability

- Given unsatisfiable formula, find largest subset of clauses that is satisfiable
- A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula
- The MaxSAT solution is one of the smallest MCSes

- MaxSAT:
 - All clauses are soft
 - Maximize number of satisfied soft clauses
 - Minimize number of unsatisfied soft clauses

- MaxSAT:
 - All clauses are soft
 - Maximize number of satisfied soft clauses
 - Minimize number of unsatisfied soft clauses
- Partial MaxSAT:
 - Hard clauses must be satisfied
 - Minimize number of unsatisfied soft clauses

- MaxSAT:
 - All clauses are soft
 - Maximize number of satisfied soft clauses
 - Minimize number of unsatisfied soft clauses
- Partial MaxSAT:
 - Hard clauses must be satisfied
 - Minimize number of unsatisfied soft clauses
- Weighted MaxSAT
 - Weights associated with (soft) clauses
 - Minimize sum of weights of unsatisfied clauses

- MaxSAT:
 - All clauses are soft
 - Maximize number of satisfied soft clauses
 - Minimize number of unsatisfied soft clauses
- Partial MaxSAT:
 - Hard clauses must be satisfied
 - Minimize number of unsatisfied soft clauses
- Weighted MaxSAT
 - Weights associated with (soft) clauses
 - Minimize sum of weights of unsatisfied clauses
- Weighted Partial MaxSAT
 - Weights associated with soft clauses
 - Hard clauses must be satisfied
 - Minimize sum of weights of unsatisfied soft clauses

Definitions

- Cost of assignment:
 - Sum of weights of unsatisfied clauses
- Optimum solution (OPT):
 - Assignment with minimum cost
- Upper Bound (UB):
 - Assignment with cost not less than OPT
 - E.g. $\sum_{c_i \in \varphi} w_i + 1$; hard clauses may be inconsistent
- Lower Bound (LB):
 - No assignment with cost no larger than LB $\,$
 - E.g. -1; it may be possible to satisfy all soft clauses

Definitions

- Cost of assignment:
 - Sum of weights of unsatisfied clauses
- Optimum solution (OPT):
 - Assignment with minimum cost
- Upper Bound (UB):
 - Assignment with cost not less than OPT
 - E.g. $\sum_{c_i \in \varphi} w_i + 1$; hard clauses may be inconsistent
- Lower Bound (LB):
 - No assignment with cost no larger than LB $\,$
 - E.g. -1; it may be possible to satisfy all soft clauses

• Require $\sum w_i r_i \leq UB_0 - 1$

- Require $\sum w_i r_i \leq UB_0 1$
- While SAT, refine UB
 - New UB given by cost of unsatisfied clauses, i.e. $\sum w_i r_i$

- Require $\sum w_i r_i \leq UB_0 1$
- While SAT, refine UB
 - New UB given by cost of unsatisfied clauses, i.e. $\sum w_i r_i$

- Require $\sum w_i r_i \leq UB_0 1$
- While SAT, refine UB
 - New UB given by cost of unsatisfied clauses, i.e. $\sum w_i r_i$
- Repeat until constraint $\sum w_i r_i \leq UB_k 1$ becomes UNSAT
 - UB_k denotes the optimum value

- Require $\sum w_i r_i \leq UB_0 1$
- While SAT, refine UB
 - New UB given by cost of unsatisfied clauses, i.e. $\sum w_i r_i$
- Repeat until constraint $\sum w_i r_i \leq UB_k 1$ becomes UNSAT
 - UB_k denotes the optimum value
- Worst-case # of iterations **exponential** on instance size

- Require $\sum w_i r_i \leq UB_0 1$
- While SAT, refine UB
 - New UB given by cost of unsatisfied clauses, i.e. $\sum w_i r_i$
- Repeat until constraint $\sum w_i r_i \leq UB_k 1$ becomes UNSAT
 - UB_k denotes the optimum value
- Worst-case # of iterations **exponential** on instance size
- Example tools:
 - Minisat+: CNF encoding of constraints
 - SAT4J: native handling of constraints [LBP10]
 - QMaxSat: CNF encoding of constraints [KZFH12]

[ES06]

- ...

Example CNF formula

$x_6 \lor x_2$	$\neg x_6 \lor x_2$	$\neg x_2 \lor x_1$	$\neg x_1$
$\neg x_6 \lor x_8$	$x_6 \vee \neg x_8$	$x_2 \lor x_4$	$\neg x_4 \lor x_5$
$x_7 \lor x_5$	$\neg x_7 \lor x_5$	$\neg x_5 \lor x_3$	¬ <i>x</i> 3

Formula is UNSAT; OPT $\leq |\varphi| - 1$; Get unsat core

$x_6 \lor x_2$	$\neg x_6 \lor x_2$	$\neg x_2 \lor x_1 \lor r_1$	$\neg x_1 \lor r_2$
$\neg x_6 \lor x_8$	$x_6 \vee \neg x_8$	$x_2 \vee x_4 \vee r_3$	$\neg x_4 \lor x_5 \lor r_4$
$x_7 \lor x_5$	$\neg x_7 \lor x_5$	$\neg x_5 \lor x_3 \lor r_5$	<i>¬x</i> ₃ ∨ <i>r</i> ₆
$\sum_{i=1}^{6} r_i \leq 1$			

Add relaxation variables and AtMost1 constraint

Formula is (again) UNSAT; OPT $\leq |\varphi| - 2$; Get unsat core

$x_6 \lor x_2 \lor r_7$	$\neg x_6 \lor x_2 \lor r_8$	$\neg x_2 \lor x_1 \lor r_1 \lor r_9$	$\neg x_1 \lor r_2 \lor r_{10}$
$\neg x_6 \lor x_8$	$x_6 \vee \neg x_8$	$x_2 \vee x_4 \vee r_3$	$\neg x_4 \lor x_5 \lor r_4$
$x_7 \lor x_5 \lor r_{11}$	$\neg x_7 \lor x_5 \lor r_{12}$	$\neg x_5 \lor x_3 \lor r_5 \lor r_{13}$	$\neg x_3 \lor r_6 \lor r_{14}$
$\sum_{i=1}^{6} r_i \leq 1$	$\sum_{i=7}^{14} r_i \leq 1$		

Add new relaxation variables and AtMost1 constraint

$x_6 \lor x_2 \lor r_7$	$\neg x_6 \lor x_2 \lor r_8$	$\neg x_2 \lor x_1 \lor r_1 \lor r_9$	$\neg x_1 \lor r_2 \lor r_{10}$
$\neg x_6 \lor x_8$	$x_6 \vee \neg x_8$	$x_2 \lor x_4 \lor r_3$	$\neg x_4 \lor x_5 \lor r_4$
$x_7 \lor x_5 \lor r_{11}$	$\neg x_7 \lor x_5 \lor r_{12}$	$\neg x_5 \lor x_3 \lor r_5 \lor r_{13}$	¬ <i>x</i> ₃ ∨ <i>r</i> ₆ ∨ <i>r</i> ₁₄
$\sum_{i=1}^{6} r_i \leq 1$	$\sum_{i=7}^{14} r_i \leq 1$		

Instance is now SAT

MaxSAT solution is $|\varphi| - \mathcal{I} = 12 - 2 = 10$

Organization of Fu&Malik's Algorithm

- Clauses characterized as:
 - Soft: initial set of soft clauses
 - Hard: initially hard, or added during execution of algorithm
 - E.g. clauses from AtMost1 constraints
- While exist unsatisfiable cores
 - Add fresh set B of relaxation variables to soft clauses in core
 - Add new AtMost1 constraint

$$\sum_{b_i \in B} b_i \leq 1$$

▶ At most 1 relaxation variable from set *B* can take value 1

- (Partial) MaxSAT solution is $|\varphi| \mathcal{I}$
 - \mathcal{I} : number of iterations (\equiv number of computed unsat cores)

[FM06]

Organization of Fu&Malik's Algorithm

- Clauses characterized as:
 - Soft: initial set of soft clauses
 - Hard: initially hard, or added during execution of algorithm
 - E.g. clauses from AtMost1 constraints
- While exist unsatisfiable cores
 - Add fresh set B of relaxation variables to soft clauses in core
 - Add new AtMost1 constraint

$$\sum_{b_i \in B} b_i \leq 1$$

► At most 1 relaxation variable from set *B* can take value 1

• (Partial) MaxSAT solution is $|\varphi| - \mathcal{I}$

- \mathcal{I} : number of iterations (\equiv number of computed unsat cores)

• Can be adapted for weighted MaxSAT

[ABL09a,MMSP09]

[FM06]

Oracle-Based MaxSAT Solving I

•	Iterative:	[MHLPMS13]
	 Linear search SAT/UNSAT (refine UB) 	[e.g. LBP10]
	 Linear search UNSAT/SAT (refine LB) 	
	 Binary search 	[e.g. FM06]
	– Bit-based	
	 Mixed linear/binary search 	[e.g. KZFH12]
•	Core-Guided:	[MHLPMS13,ABL13]
	– FM/(W)MSU1.X/WPM1	[FM06,MSM08,MMSP09,ABL09a,ABGL12]
	– (W)MSU3	[MSP07]
	– (W)MSU4	[MSP08]
	– (W)PM2	[ABL09a,ABL09b,ABL10,ABGL13]
	 Core-guided binary search (w/ disjoint c 	cores) [HMMS11,MHMS12]
Bin-Core, Bin-Core-Dis, Bin-Core-Dis2		

• Iterative subsetting

[DB11,DB13a,DB13b]

Oracle MaxSAT Solving II

• A sample of recent algorithms:

Algorithm	# Oracle Calls	Reference
Linear search SU	Exponential	[e.g. LP10]
Binary search	Linear	[e.g. FM06]
WMSU1/WPM1	Exponential*	[FM06,MSM08,MMSP09,ABL09a,ABGL12]
WPM2	Exponential*	[ABL10,ABGL13]
Bin-Core-Dis	Linear	[HMMS11,MHMS12]
Iterative subsetting	Exponential	[DB11,DB13a,DB13b]

* Weighted case; depends on computed cores

- Example MaxSAT solvers:
 - MSUnCore; WPM1, WPM2; QMaxSAT; SAT4J; etc.

Outline

CNF Encodings

SAT Embeddings

SAT Oracles MUS Extraction MaxSAT 2QBF

What Next in SAT-Based Problem Solving?

[GMN09]

Given: $\exists X \forall Y. \phi$, where ϕ is a propositional formula **Question:** Is there an assignment τ to X such that $\forall Y. \phi[X/\tau]$?

[GMN09]

Given: $\exists X \forall Y. \phi$, where ϕ is a propositional formula **Question:** Is there an assignment τ to X such that $\forall Y. \phi[X/\tau]$?

Example

$$\exists x_1, x_2 \ \forall y_1, y_2. (x_1 \rightarrow y_1) \land (x_2 \rightarrow y_2)$$

solution: $x_1 = 0, x_2 = 0$

Motivation

- Σ_2^P complete
- interesting problems in this class, e.g. certain nonmonotonic reasoning, aspects of model checking, conformant planning
- separate track at QBF Eval

Expanding $\exists X \forall Y. \phi$ into SAT

$$\exists X \forall Y. \phi \longrightarrow \mathsf{SAT} \left(\bigwedge_{\mu \in \mathcal{B}^{|Y|}} \phi[Y/\mu] \right)$$

Expanding $\exists X \forall Y. \phi$ into SAT

$$\exists X \forall Y. \phi \longrightarrow \mathsf{SAT} \left(\bigwedge_{\mu \in \mathcal{B}^{|Y|}} \phi[Y/\mu] \right)$$

Example

$$\exists x_1, x_2 \forall y_1, y_2. (x_1 \leftrightarrow y_1) \land (x_2 \leftrightarrow y_2) \land (\bar{x}_1 \lor \bar{x}_2)$$

Expansion:

$$egin{aligned} &(x_1 \leftrightarrow 0) \wedge (x_2 \leftrightarrow 0) \wedge (ar{x}_1 ee ar{x}_2) \ &\wedge &(x_1 \leftrightarrow 0) \wedge (x_2 \leftrightarrow 1) \wedge (ar{x}_1 ee ar{x}_2) \ &\wedge &(x_1 \leftrightarrow 1) \wedge (x_2 \leftrightarrow 0) \wedge (ar{x}_1 ee ar{x}_2) \ &\wedge &(x_1 \leftrightarrow 1) \wedge (x_2 \leftrightarrow 1) \wedge (ar{x}_1 ee ar{x}_2) \end{aligned}$$

Expanding $\exists X \forall Y. \phi$ into SAT

$$\exists X \forall Y. \phi \longrightarrow \mathsf{SAT} \left(\bigwedge_{\mu \in \mathcal{B}^{|Y|}} \phi[Y/\mu] \right)$$

Example

$$\exists x_1, x_2 \forall y_1, y_2. (x_1 \leftrightarrow y_1) \land (x_2 \leftrightarrow y_2) \land (\bar{x}_1 \lor \bar{x}_2)$$

Expansion:

$$egin{aligned} & (x_1 \leftrightarrow 0) \land (x_2 \leftrightarrow 0) \land (ar{x}_1 \lor ar{x}_2) \ & \wedge & (x_1 \leftrightarrow 0) \land (x_2 \leftrightarrow 1) \land (ar{x}_1 \lor ar{x}_2) \ & \wedge & (x_1 \leftrightarrow 1) \land (x_2 \leftrightarrow 0) \land (ar{x}_1 \lor ar{x}_2) \ & \wedge & (x_1 \leftrightarrow 1) \land (x_2 \leftrightarrow 1) \land (ar{x}_1 \lor ar{x}_2) \end{aligned}$$

Abstraction of $\exists X \forall Y. \phi$

• Consider only some set of assignments $\omega \subseteq \mathcal{B}^{|Y|}$

$$\bigwedge_{\mu\in\omega}\phi[\mathbf{Y}/\mu]$$

Abstraction of $\exists X \forall Y. \phi$

• Consider only some set of assignments $\omega \subseteq \mathcal{B}^{|Y|}$

$$\bigwedge_{\mu\in\omega}\phi[\mathbf{Y}/\mu]$$

• If a solution to the problem is a solution to the abstraction

$$\bigwedge_{\mu \in \mathcal{B}^{|Y|}} \phi[Y/\mu] \quad \Rightarrow \quad \bigwedge_{\mu \in \omega} \phi[Y/\mu]$$

Abstraction of $\exists X \forall Y. \phi$

• Consider only some set of assignments $\omega \subseteq \mathcal{B}^{|Y|}$

$$\bigwedge_{\mu\in\omega}\phi[\mathbf{Y}/\mu]$$

• If a solution to the problem is a solution to the abstraction

$$\bigwedge_{\mu \in \mathcal{B}^{|Y|}} \phi[Y/\mu] \quad \Rightarrow \quad \bigwedge_{\mu \in \omega} \phi[Y/\mu]$$

• But not the other way around, a solution to an abstraction is not necessarily a solution to the original problem.

CEGAR Loop

```
input : \exists X \forall Y. \phi
output: (true, \tau) if there exists \tau s.t. \forall Y. \phi[X/\tau],
             (false, -) otherwise
\omega \leftarrow \emptyset:
while true do
    (\mathsf{outc}_1, \tau) \leftarrow \mathsf{SAT}(\bigwedge_{\mu \in \omega} \phi[Y/\mu]);
                                                                 // find a candidate
     if outc<sub>1</sub> = false then
         return (false,–);
                                                             // no candidate found
     end
     if "\tau is a solution";
                                                                    // solution check
     then
         return (true, \tau)
     else
          "Grow \omega";
                                                                           // refinement
     end
```

end

CEGAR Loop

```
input : \exists X \forall Y. \phi
output: (true, \tau) if there exists \tau s.t. \forall Y. \phi[X/\tau],
             (false, -) otherwise
\omega \leftarrow \emptyset:
while true do
    (\mathsf{outc}_1, \tau) \leftarrow \mathsf{SAT}(\bigwedge_{\mu \in \omega} \phi[Y/\mu]);
                                                                 // find a candidate
     if outc<sub>1</sub> = false then
         return (false,–);
                                                             // no candidate found
     end
     if "\tau is a solution";
                                                                    // solution check
     then
         return (true, \tau)
     else
          "Grow \omega";
                                                                           // refinement
     end
```

end

Testing for Solution

A value τ is a solution to $\exists X \forall Y. \phi$ iff

 $\forall Y. \phi[X/\tau] \text{ iff } \mathsf{UNSAT}(\neg \phi[X/\tau])$

A value τ is a solution to $\exists X \forall Y. \phi$ iff

 $\forall Y. \phi[X/\tau] \text{ iff } \text{UNSAT}(\neg \phi[X/\tau])$

If SAT($\neg \phi[X/\tau]$) by some μ , then μ is a counterexample to τ

A value τ is a solution to $\exists X \forall Y. \phi$ iff

$$\forall Y. \phi[X/\tau] \text{ iff } \mathsf{UNSAT}(\neg \phi[X/\tau])$$

If SAT($\neg \phi[X/\tau]$) by some μ , then μ is a counterexample to τ

Example

 $\exists x_1, x_2 \ \forall y_1, y_2. \ (x_1 \rightarrow y_1) \land (x_2 \rightarrow y_2)$

• candidate: $x_1 = 1, x_2 = 1$

• counterexamples:
$$y_1 = 0, y_2 = 0$$

 $y_1 = 0, y_2 = 1$
 $y_1 = 1, y_2 = 0$

Refinement

Refinement

Refinement

AReQS (Abstraction Refinement-based QBF Solver)

```
input : \exists X \forall Y. \phi
output: (true, \tau) if there exists \tau s.t. \forall Y. \phi[X/\tau],
             (false, -) otherwise
\omega \leftarrow \emptyset:
                                         // start with the empty expansion
while true do
    (\mathsf{outc}_1, \tau) \leftarrow \mathsf{SAT}(\bigwedge_{\mu \in \omega} \phi[Y/\mu]);
                                                         // find a candidate
    if outc<sub>1</sub> = false then
         return (false,–);
                                                             // no candidate found
    end
     (\mathsf{outc}_2,\mu) \leftarrow \mathsf{SAT}(\neg \phi[X/\tau]);
                                                        // find a counterexample
     if outc<sub>2</sub> = false then
         return (true, \tau);
                                                    // candidate is a solution
     end
    \omega \leftarrow \omega \cup \{\mu\};
                                                                                  // refine
end
```

AReQS — Conclusions

• ... is a CEGAR-based algorithm for 2QBF

[JMS11]
AReQS — Conclusions

• ... is a CEGAR-based algorithm for 2QBF

[JMS11]

• ... uses SAT solver as an oracle

AReQS — Conclusions

... is a CEGAR-based algorithm for 2QBF

[JMS11]

- ... uses SAT solver as an oracle
- ... gradually expands given 2QBF into a SAT formula

AReQS — Conclusions

- ... is a CEGAR-based algorithm for 2QBF [JMS11]
- ... uses SAT solver as an oracle
- ... gradually expands given 2QBF into a SAT formula
- Can be extended to arbitrary number of levels by recursion (RAReQS)

Outline

CNF Encodings

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?

SAT-Based Problem Solving – A Glimpse of the Future

- Remarkable (and increasing) number of applications of SAT
- Can use SAT for solving problems in different complexity classes
 FP^{NP}[log n], FP^{NP}, ...
 - E.g. tackling problems in the polynomial hierarchy
- Many new recent algorithms for concrete problems
 - MaxSAT
 - MUSes
 - MCSes
 - Enumeration problems
 - ...
- Better encodings?
- White-box vs. black-box approaches?
 - But use of oracles inevitable in many cases

Thank You

References – DPLL & CDCL SAT Solvers I

DP60	M. Davis, H. Putnam: A Computing Procedure for Quantification Theory. J. ACM 7(3): 201-215 (1960)
DLL62	M. Davis, G. Logemann, D. Loveland: A machine program for theorem- proving. Commun. ACM 5(7): 394-397 (1962)
MSS96	J. Marques-Silva, K. Sakallah: GRASP - a new search algorithm for satisfia- bility. ICCAD 1996: 220-227
BS97	R. Bayardo Jr., R. Schrag: Using CSP Look-Back Techniques to Solve Real- World SAT Instances. AAAI/IAAI 1997: 203-208
Z97	H. Zhang: SATO: An Efficient Propositional Prover. CADE 1997: 272-275
GSK98	C. Gomes, B. Selman, H. Kautz: Boosting Combinatorial Search Through Randomization. AAAI 1998: 431-437
MSS99	J. Marques-Silva, K. Sakallah: GRASP: A Search Algorithm for Propositional Satisfiability. IEEE Trans. Computers 48(5): 506-521 (1999)
BMS00	L. Baptista, J. Marques-Silva: Using Randomization and Learning to Solve Hard Real-World Instances of Satisfiability. CP 2000: 489-494
MMZZM01	M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik: Chaff: Engineering an Efficient SAT Solver. DAC 2001: 530-535

References – DPLL & CDCL SAT Solvers II

GN02	E. Goldberg, Y. Novikov: BerkMin: A Fast and Robust Sat-Solver. DATE 2002: 142-149
ES03	N. Een, Niklas Sorensson: An Extensible SAT-solver. SAT 2003: 502-518
PD07	K. Pipatsrisawat, A. Darwiche: A Lightweight Component Caching Scheme for Satisfiability Solvers. SAT 2007: 294-299
H07	J. Huang: The Effect of Restarts on the Efficiency of Clause Learning. IJCAI 2007: 2318-2323
ABHJS08	G. Audemard, L. Bordeaux, Y. Hamadi, S. Jabbour, L. Sais: A Generalized Framework for Conflict Analysis. SAT 2008: 21-27
B08	A. Biere: PicoSAT Essentials. JSAT 4(2-4): 75-97 (2008)
SB09	N. Sorensson, A. Biere: Minimizing Learned Clauses. SAT 2009: 237-243
VG09	A. Van Gelder: Improved Conflict-Clause Minimization Leads to Improved Propositional Proof Traces. SAT 2009: 141-146
AS09	G. Audemard, L. Simon: Predicting Learnt Clauses Quality in Modern SAT Solvers. IJCAI 2009: 399-404
SSS12	A. Sabharwal, H. Samulowitz, M. Sellmann: Learning Back-Clauses in SAT. SAT 2012: 498-499

References – CNF Encodings I

T68	G. Tseitin: On the complexity of derivation in propositional calculus. In: Slisenko, A.O. (ed.) Studies in Constructive Mathematics and Mathematical Logic, pp. 115-125 (1970)
B68	K. Batcher: Sorting Networks and Their Applications. AFIPS Spring Joint Computing Conference 1968: 307-314
PG86	David A. Plaisted, Steven Greenbaum: A Structure-Preserving Clause Form Translation. J. Symb. Comput. 2(3): 293-304 (1986)
dK89	Johan de Kleer: A Comparison of ATMS and CSP Techniques. IJCAI 1989: 290-296
GJ96	R. Genisson, P. Jegou: Davis and Putnam were Already Checking Forward. ECAI 1996: 180-184
W98	J. Warners: A Linear-Time Transformation of Linear Inequalities into Con- junctive Normal Form. Inf. Process. Lett. 68(2): 63-69 (1998)
W00	T. Walsh: SAT v CSP. CP 2000: 441-456

References – CNF Encodings II

FP01	A. Frisch, T. Peugniez: Solving Non-Boolean Satisfiability Problems with Stochastic Local Search. IJCAI 2001: 282-290
FS02	T. Fahle, M. Sellmann: Cost Based Filtering for the Constrained Knapsack Problem. Annals OR 115(1-4): 73-93 (2002)
S03	M. Sellmann: Approximated Consistency for Knapsack Constraints. CP 2003: 679-693
F03	M. Trick: A Dynamic Programming Approach for Consistency and Propaga- tion for Knapsack Constraints. Annals OR 118(1-4): 73-84 (2003)
S05	C. Sinz: Towards an Optimal CNF Encoding of Boolean Cardinality Con- straints. CP 2005: 827-831
ES06	N. Een, N. Sorensson: Translating Pseudo-Boolean Constraints into SAT. JSAT 2(1-4): 1-26 (2006)
G07	M. Gavanelli: The Log-Support Encoding of CSP into SAT. CP 2007: 815- 822
P07	S. Prestwich: Variable Dependency in Local Search: Prevention Is Better Than Cure. SAT 2007: 107-120

References – CNF Encodings III

R. Asin, R. Nieuwenhuis, A. Oliveras, E. RodrÄguez-Carbonell: Cardinality ANORC09 Networks and Their Applications. SAT 2009: 167-180 BBR09 O. Bailleux, Y. Boufkhad, O. Roussel: New Encodings of Pseudo-Boolean Constraints into CNF. SAT 2009: 181-194 **TTKB09** Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa, Mutsunori Banbara: Compiling finite linear CSP into SAT. Constraints 14(2): 254-272 (2009) M. Codish, M. Zazon-Ivry: Pairwise Cardinality Networks. LPAR (Dakar) **CZI10** 2010: 154-172 R. Asin, R. Nieuwenhuis, A. Oliveras, E. RodrÄguez-Carbonell: Cardinality ANORC11a Networks: a theoretical and empirical study. Constraints 16(2): 195-221 (2011)ANORC11b I. Abio, R. Nieuwenhuis, A. Oliveras, E. Rodriguez-Carbonell: BDDs for Pseudo-Boolean Constraints - Revisited, SAT 2011

References – Embedding SAT Solvers, Iterative MaxSAT & PBO

MMS06	V. Manquinho, J. Marques-Silva: On Using Cutting Planes in Pseudo- Boolean Optimization. JSAT 2(1-4): 209-219 (2006)
NOT06	R. Nieuwenhuis, A. Oliveras, C. Tinelli: Solving SAT and SAT Modulo The- ories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J. ACM 53(6): 937-977 (2006)
S07	R. Sebastiani: Lazy Satisability Modulo Theories. JSAT 3(3-4): 141-224 (2007)
BSST09	C. Barrett, R. Sebastiani, S. Seshia, C. Tinelli: Satisfiability Modulo Theories. Handbook of Satisfiability 2009: 825-885
LBP10	D. Le Berre, A. Parrain: The Sat4j library, release 2.2. JSAT 7(2-3): 59-6 (2010)
KZFH12	M. Koshimura, T. Zhang, H. Fujita, R. Hasegawa: QMaxSAT: A Partial Max-SAT Solver. JSAT $8(1/2)$: 95-100 (2012)

References – MUSes I

SP88	J. de Siqueira, JF. Puget: Explanation-Based Generalisation of Failures. ECAI 1988: 339-344
CD91	J. Chinneck, E. Dravnieks: Locating Minimal Infeasible Constraint Sets in Linear Programs. INFORMS Journal on Computing 3(2): 157-168 (1991)
BDTW93	R. R. Bakker, F. Dikker, F. Tempelman, P. M. Wognum: Diagnosing and Solving Over-Determined Constraint Satisfaction Problems. IJCAI 1993: 276-281
J01	U. Junker: QUICKXPLAIN: Conflict Detection for Arbitrary Constraint Propagation Algorithms, WMSPC IJCAI 2001
J04	U. Junker: QUICKXPLAIN: Preferred Explanations and Relaxations for Over- Constrained Problems. AAAI 2004: 167-172
HLSB06	F. Hemery, C. Lecoutre, L. Sais, F. Boussemart: Extracting MUCs from Constraint Networks. ECAI 2006: 113-117
CMP07	E. Gregoire, B. Mazure, C. Piette: Local-search Extraction of MUSes. Con- straints 12(3): 325-344 (2007)
vMW08	H. van Maaren, S. Wieringa: Finding Guaranteed MUSes Fast. SAT 2008: 291-304

References – MUSes II

DGHP09 C. Desrosiers, P. Galinier, A. Hertz, S. Paroz: Using heuristics to find minimal unsatisfiable subformulas in satisfiability problems. J. Comb. Optim. 18(2): 124-150 (2009) **MS10** J. Margues-Silva: Minimal Unsatisfiability: Models, Algorithms and Applications. ISMVL 2010: 9-14 MSL11 J. Margues-Silva, I. Lynce: On Improving MUS Extraction Algorithms. SAT 2011: 159-173 A. Belov, J. Marques-Silva: Accelerating MUS extraction with recursive BMS11 model rotation. FMCAD 2011: 37-40 BLMS12 A. Belov, I. Lynce, J. Margues-Silva: Towards Efficient MUS Extraction. AI Communications, 25(2): 97-116 (2012) A. Belov, J. Marques-Silva: MUSer2: An Efficient MUS Extractor, System BMS12 Description. Journal on Satisfiability, Boolean Modeling and Computation, 8: 123-128 (2012) W12 Siert Wieringa: Understanding, Improving and Parallelizing MUS Finding Using Model Rotation. CP 2012: 672-687 MSJB13 J. Margues-Silva, M. Janota, A. Belov: Minimal Sets over Monotone Predicates in Boolean Formulae. CAV 2013

References – Core-Guided MaxSAT I

FM06	Z. Fu, S. Malik: On Solving the Partial MAX-SAT Problem. SAT 2006: 252-265
MSP07	J. Marques-Silva, J. Planes: On Using Unsatisfiability for Solving Maximum Satisfiability CoRR abs/0712.1097: (2007)
MSP08	J. Marques-Silva, Jordi Planes: Algorithms for Maximum Satisfiability using Unsatisfiable Cores. DATE 2008: 408-413
MSM08	J. Marques-Silva, V. Manquinho: Towards More Effective Unsatisfiability- Based Maximum Satisfiability Algorithms. SAT 2008: 225-230
MMSP09	V. Manquinho, J. Marques Silva, J. Planes: Algorithms for Weighted Boolean Optimization. SAT 2009: 495-508
ABL09a	C. Ansotegui, M. Bonet, J. Levy: Solving (Weighted) Partial MaxSAT through Satisfiability Testing. SAT 2009: 427-440
ABL09b	C. Ansotegui, M. L. Bonet, J. Levy: On Solving MaxSAT Through SAT. CCIA 2009: 284-292
ABL10	C. Ansotegui, M. Bonet, J. Levy: A New Algorithm for Weighted Partial MaxSAT. AAAI 2010
HMMS11	F. Heras, A. Morgado, J. Marques-Silva: Core-Guided Binary Search Algo- rithms for Maximum Satisfiability. AAAI 2011.

References – Core-Guided MaxSAT

DB11	J. Davies, F. Bacchus: Solving MAXSAT by Solving a Sequence of Simpler SAT Instances. CP 2011: 225-239
MHMS12	A. Morgado, F. Heras, J. Marques-Silva: Improvements to Core-Guided Bi- nary Search for MaxSAT. SAT 2012.
ABGL12	C. Ansotegui, M. Bonet, J. Gabas, J. Levy: Improving SAT-Based Weighted MaxSAT Solvers. CP 2012: 86-101
DB13a	J. Davies, F. Bacchus: Exploiting the Power of MIP Solvers in MaxSAT. SAT 2013: 166-181
ABL13	C. Ansotegui, M. Bonet, J. Levy: SAT-based MaxSAT algorithms. Artif. Intell. 196: 77-105 (2013
ABGL13	C. Ansotegui, M. Bonet, J. Gabas and J. Levy: Improving WPM2 for (Weighted) Partial MaxSAT. CP 2013
DB13b	J. Davies and F. Bacchus: Postponing Optimization to Speed Up MaxSAT Solving. CP 2013
MHLPMS13	A. Morgado, F. Heras, M. Liffiton, J. Planes, J. Marques-Silva: Iterative and Core-Guided MaxSAT Solving: A Survey and Assessment. Constraints: An International Journal. In Press (2013)

GMN09	E. Giunchiglia, P. Marin, M. Narizzano: Reasoning with Quantified Boolean Formulas. Handbook of Satisfiability 2009: 761-780
JMS11	M. Janota, J. Marques-Silva: Abstraction-Based Algorithm for 2QBF. SAT 2011: 230-244
JKMSC12	M. Janota, W. Klieber, J. Marques-Silva, E. Clarke: Solving QBF with Coun- terexample Guided Refinement. SAT 2012: 114-128
KJMSC13	W. Klieber, M. Janota, J. Marques-Silva, E. Clarke: Solving QBF with Free Variables. CP 2013

References – Additional References

R65	J. Robinson: A Machine-Oriented Logic Based on the Resolution Principle. J. ACM 12(1): 23-41 (1965)
C71	S. Cook: The Complexity of Theorem-Proving Procedures. STOC 1971: 151-158
ZM03	L. Zhang, S. Malik: Validating SAT Solvers Using an Independent Resolution- Based Checker: Practical Implementations and Other Applications. DATE 2003: 10880-10885
SP04	S. Subbarayan, D. Pradhan: NiVER: Non-increasing Variable Elimination Resolution for Preprocessing SAT Instances. SAT 2004: 276-291
EB05	N. Een, A. Biere: Effective Preprocessing in SAT Through Variable and Clause Elimination. SAT 2005: 61-75
HJB11	M. Heule, M. Jarvisalo, A. Biere: Efficient CNF Simplification Based on Binary Implication Graphs. SAT 2011: 201-215
JHB12	M. Jarvisalo, M. Heule, A. Biere: Inprocessing Rules. IJCAR 2012: 355-370
IJMS13	A. Ignatiev, M. Janota, J. Marques-Silva: Quantified Maximum Satisfiability:- A Core-Guided Approach. SAT 2013: 250-266
LB13	JM. Lagniez, A. Biere: Factoring Out Assumptions to Speed Up MUS Extraction. SAT 2013: 276-292