
CDCL SAT Solvers & SAT-Based Problem Solving

Joao Marques-Silva1,2 & Mikolas Janota2

1University College Dublin, Ireland

2IST/INESC-ID, Lisbon, Portugal

SAT/SMT Summer School 2013

Aalto University, Espoo, Finland

The Success of SAT

• Well-known NP-complete decision problem [C71]

• In practice, SAT is a success story of Computer Science
– Hundreds (even more?) of practical applications

Part I

CDCL SAT Solvers

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers

What Next in CDCL Solvers?

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers

What Next in CDCL Solvers?

Preliminaries

• Variables: w , x , y , z , a, b, c , . . .

• Literals: w , x̄ , ȳ , a, . . . , but also ¬w ,¬y , . . .

• Clauses: disjunction of literals or set of literals

• Formula: conjunction of clauses or set of clauses

• Model (satisfying assignment): partial/total mapping from
variables to {0, 1}

• Formula can be SAT/UNSAT

• Example:

F , (r) ^ (r̄ _ s) ^ (w̄ _ a) ^ (x̄ _ b) ^ (ȳ _ z̄ _ c) ^ (b̄ _ c̄ _ d)

– Example models:
I {r , s, a, b, c, d}
I {r , s, x̄ , y , w̄ , z , ā, b, c, d}

Preliminaries

• Variables: w , x , y , z , a, b, c , . . .

• Literals: w , x̄ , ȳ , a, . . . , but also ¬w ,¬y , . . .

• Clauses: disjunction of literals or set of literals

• Formula: conjunction of clauses or set of clauses

• Model (satisfying assignment): partial/total mapping from
variables to {0, 1}

• Formula can be SAT/UNSAT

• Example:

F , (r) ^ (r̄ _ s) ^ (w̄ _ a) ^ (x̄ _ b) ^ (ȳ _ z̄ _ c) ^ (b̄ _ c̄ _ d)

– Example models:
I {r , s, a, b, c, d}
I {r , s, x̄ , y , w̄ , z , ā, b, c, d}

Resolution

• Resolution rule: [DP60,R65]

(↵ _ x) (� _ x̄)
(↵ _ �)

– Complete proof system for propositional logic

– Extensively used with (CDCL) SAT solvers

• Self-subsuming resolution (with ↵0
✓ ↵): [e.g. SP04,EB05]

(↵ _ x) (↵0
_ x̄)

(↵)
– (↵) subsumes (↵ _ x)

Resolution

• Resolution rule: [DP60,R65]

(↵ _ x) (� _ x̄)
(↵ _ �)

– Complete proof system for propositional logic

(x _ a) (x̄ _ a) (ȳ _ ā) (y _ ā)

(a) (ā)

?

– Extensively used with (CDCL) SAT solvers

• Self-subsuming resolution (with ↵0
✓ ↵): [e.g. SP04,EB05]

(↵ _ x) (↵0
_ x̄)

(↵)
– (↵) subsumes (↵ _ x)

Resolution

• Resolution rule: [DP60,R65]

(↵ _ x) (� _ x̄)
(↵ _ �)

– Complete proof system for propositional logic

(x _ a) (x̄ _ a) (ȳ _ ā) (y _ ā)

(a) (ā)

?

– Extensively used with (CDCL) SAT solvers

• Self-subsuming resolution (with ↵0
✓ ↵): [e.g. SP04,EB05]

(↵ _ x) (↵0
_ x̄)

(↵)
– (↵) subsumes (↵ _ x)

Unit Propagation

F = (r) ^ (r̄ _ s)^

(w̄ _ a) ^ (x̄ _ ā _ b)

(ȳ _ z̄ _ c) ^ (b̄ _ c̄ _ d)

• Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

• Additional definitions:
– Antecedent (or reason) of an implied assignment

I (b̄ _ c̄ _ d) for d

– Associate assignment with decision levels
I w = 1@1, x = 1@2, y = 1@3, z = 1@4
I r = 1@0, d = 1@4, ...

Unit Propagation

F = (r) ^ (r̄ _ s)^

(w̄ _ a) ^ (x̄ _ ā _ b)

(ȳ _ z̄ _ c) ^ (b̄ _ c̄ _ d)

• Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

• Additional definitions:
– Antecedent (or reason) of an implied assignment

I (b̄ _ c̄ _ d) for d

– Associate assignment with decision levels
I w = 1@1, x = 1@2, y = 1@3, z = 1@4
I r = 1@0, d = 1@4, ...

Unit Propagation

F = (r) ^ (r̄ _ s)^

(w̄ _ a) ^ (x̄ _ ā _ b)

(ȳ _ z̄ _ c) ^ (b̄ _ c̄ _ d)

• Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

Level Dec. Unit Prop.

0

1

2

3

4

;

w

x

y

z

a

b

c d

r s

• Additional definitions:
– Antecedent (or reason) of an implied assignment

I (b̄ _ c̄ _ d) for d

– Associate assignment with decision levels
I w = 1@1, x = 1@2, y = 1@3, z = 1@4
I r = 1@0, d = 1@4, ...

Unit Propagation

F = (r) ^ (r̄ _ s)^

(w̄ _ a) ^ (x̄ _ ā _ b)

(ȳ _ z̄ _ c) ^ (b̄ _ c̄ _ d)

• Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

Level Dec. Unit Prop.

0

1

2

3

4

;

w

x

y

z

a

b

c d

r s

• Additional definitions:
– Antecedent (or reason) of an implied assignment

I (b̄ _ c̄ _ d) for d

– Associate assignment with decision levels
I w = 1@1, x = 1@2, y = 1@3, z = 1@4
I r = 1@0, d = 1@4, ...

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers

What Next in CDCL Solvers?

The DPLL Algorithm

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule

The DPLL Algorithm

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule

F = (x_y)^(a_b)^(ā_b)^(a_b̄)^(ā_b̄)

The DPLL Algorithm

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule

F = (x_y)^(a_b)^(ā_b)^(a_b̄)^(ā_b̄)

Level Dec. Unit Prop.

0

1

2

3

;

x

y

a b ?

a ā

y

a ā

ȳ

x

a ā

x̄

The DPLL Algorithm

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule

F = (x_y)^(a_b)^(ā_b)^(a_b̄)^(ā_b̄)

Level Dec. Unit Prop.

0

1

2

3

;

x

y

ā b̄ ?

a ā

y

a ā

ȳ

x

a ā

x̄

The DPLL Algorithm

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule

F = (x_y)^(a_b)^(ā_b)^(a_b̄)^(ā_b̄)

Level Dec. Unit Prop.

0

1

2

3

;

x

ȳ

a b ?

a ā

y

a ā

ȳ

x

a ā

x̄

The DPLL Algorithm

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule

F = (x_y)^(a_b)^(ā_b)^(a_b̄)^(ā_b̄)

Level Dec. Unit Prop.

0

1

2

3

;

x

ȳ

ā b̄ ?

a ā

y

a ā

ȳ

x

a ā

x̄

The DPLL Algorithm

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule

F = (x_y)^(a_b)^(ā_b)^(a_b̄)^(ā_b̄)

Level Dec. Unit Prop.

0

1

2

;

x̄

a

y

b ?

a ā

y

a ā

ȳ

x

a ā

x̄

The DPLL Algorithm

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule

F = (x_y)^(a_b)^(ā_b)^(a_b̄)^(ā_b̄)

Level Dec. Unit Prop.

0

1

2

;

x̄

ā

y

b̄ ?

a ā

y

a ā

ȳ

x

a ā

x̄

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers

What Next in CDCL Solvers?

What is a CDCL SAT Solver?

• Extend DPLL SAT solver with: [DP60,DLL62]

– Clause learning & non-chronological backtracking [MSS96,BS97,Z97]

I Exploit UIPs [MSS96,SSS12]

I Minimize learned clauses [SB09,VG09]

I Opportunistically delete clauses [MSS96,MSS99,GN02]

– Search restarts [GSK98,BMS00,H07,B08]

– Lazy data structures
I Watched literals [MMZZM01]

– Conflict-guided branching
I Lightweight branching heuristics [MMZZM01]

I Phase saving [PD07]

– ...

How Significant are CDCL SAT Solvers?

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140 160 180 200

C
PU

 T
im

e
(in

 se
co

nd
s)

Number of problems solved

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

Limmat (2002)
Zchaff (2002)
Berkmin (2002)
Forklift (2003)
Siege (2003)
Zchaff (2004)
SatELite (2005)
Minisat 2 (2006)
Picosat (2007)
Rsat (2007)
Minisat 2.1 (2008)
Precosat (2009)
Glucose (2009)
Clasp (2009)
Cryptominisat (2010)
Lingeling (2010)
Minisat 2.2 (2010)
Glucose 2 (2011)
Glueminisat (2011)
Contrasat (2011)
Lingeling 587f (2011)

GRASP

DPLL

? ?

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers
Clause Learning, UIPs & Minimization
Search Restarts & Lazy Data Structures

What Next in CDCL Solvers?

Clause Learning

Level Dec. Unit Prop.

0

1

2

3

;

xx

y

zz a

b

?

• Analyze conflict

– Reasons: x and z
I Decision variable & literals assigned at lower decision levels

– Create new clause: (x̄ _ z̄)

• Can relate clause learning with resolution

– Learned clauses result from (selected) resolution operations

Clause Learning

Level Dec. Unit Prop.

0

1

2

3

;

xx

y

zz a

b

?

(ā _ b̄) (z̄ _ b) (x̄ _ z̄ _ a)

(ā _ z̄)

(x̄ _ z̄)

• Analyze conflict
– Reasons: x and z

I Decision variable & literals assigned at lower decision levels

– Create new clause: (x̄ _ z̄)

• Can relate clause learning with resolution

– Learned clauses result from (selected) resolution operations

ab -> false = !(ab) + false = !a + !b

z -> b = !z + b

xz -> a. =. !(xz) + a =. !x + !z + a

Clause Learning

Level Dec. Unit Prop.

0

1

2

3

;

xx

y

zz a

b

?

(ā _ b̄) (z̄ _ b) (x̄ _ z̄ _ a)

(ā _ z̄)

(x̄ _ z̄)

• Analyze conflict
– Reasons: x and z

I Decision variable & literals assigned at lower decision levels

– Create new clause: (x̄ _ z̄)

• Can relate clause learning with resolution

– Learned clauses result from (selected) resolution operations

Clause Learning

Level Dec. Unit Prop.

0

1

2

3

;

xx

y

zz a

b

?

(ā _ b̄) (z̄ _ b) (x̄ _ z̄ _ a)

(ā _ z̄)

(x̄ _ z̄)

• Analyze conflict
– Reasons: x and z

I Decision variable & literals assigned at lower decision levels

– Create new clause: (x̄ _ z̄)

• Can relate clause learning with resolution

– Learned clauses result from (selected) resolution operations

Clause Learning

Level Dec. Unit Prop.

0

1

2

3

;

xx

y

zz a

b

?

(ā _ b̄) (z̄ _ b) (x̄ _ z̄ _ a)

(ā _ z̄)

(x̄ _ z̄)

• Analyze conflict
– Reasons: x and z

I Decision variable & literals assigned at lower decision levels

– Create new clause: (x̄ _ z̄)

• Can relate clause learning with resolution
– Learned clauses result from (selected) resolution operations

Clause Learning – After Bracktracking

Level Dec. Unit Prop.

0

1

2

3

;

x

y

zz aa

bb

??

z

• Clause (x̄ _ z̄) is asserting at decision level 1

• Learned clauses are always asserting [MSS96,MSS99]

• Backtracking di↵ers from plain DPLL:
– Always bactrack after a conflict [MMZZM01]

Clause Learning – After Bracktracking

Level Dec. Unit Prop.

0

1

2

3

;

x

y

zz aa

bb

??

z

• Clause (x̄ _ z̄) is asserting at decision level 1

• Learned clauses are always asserting [MSS96,MSS99]

• Backtracking di↵ers from plain DPLL:
– Always bactrack after a conflict [MMZZM01]

Clause Learning – After Bracktracking

Level Dec. Unit Prop.

0

1

2

3

;

x

y

zz aa

bb

??

z

Level Dec. Unit Prop.

0

1

;

x z̄

• Clause (x̄ _ z̄) is asserting at decision level 1

• Learned clauses are always asserting [MSS96,MSS99]

• Backtracking di↵ers from plain DPLL:
– Always bactrack after a conflict [MMZZM01]

Clause Learning – After Bracktracking

Level Dec. Unit Prop.

0

1

2

3

;

x

y

zz aa

bb

??

z

Level Dec. Unit Prop.

0

1

;

x z̄

• Clause (x̄ _ z̄) is asserting at decision level 1

• Learned clauses are always asserting [MSS96,MSS99]

• Backtracking di↵ers from plain DPLL:
– Always bactrack after a conflict [MMZZM01]

Unique Implication Points (UIPs)

Level Dec. Unit Prop.

0

1

2

3

4

;

www

xxx

yyy

zzz aaa

b ?

c

Unique Implication Points (UIPs)

Level Dec. Unit Prop.

0

1

2

3

4

;

www

xxx

yyy

zzz aaa

b ?

c

(b̄ _ c̄) (w̄ _ c) (x̄ _ ā _ b) (ȳ _ z̄ _ a)

(w̄ _ b̄)

(w̄ _ x̄ _ ȳ _ z̄)

(w̄ _ x̄ _ ā)(w̄ _ x̄ _ ā)

• Learn clause (w̄ _ x̄ _ ȳ _ z̄)

• But a is an UIP

Unique Implication Points (UIPs)

Level Dec. Unit Prop.

0

1

2

3

4

;

www

xxx

yyy

zzz aaa

b ?

c

(b̄ _ c̄) (w̄ _ c) (x̄ _ ā _ b) (ȳ _ z̄ _ a)

(w̄ _ b̄)

(w̄ _ x̄ _ ȳ _ z̄)

(w̄ _ x̄ _ ā)(w̄ _ x̄ _ ā)

• Learn clause (w̄ _ x̄ _ ȳ _ z̄)

• But a is an UIP

Unique Implication Points (UIPs)

Level Dec. Unit Prop.

0

1

2

3

4

;

www

xxx

yyy

zzz aaa

b ?

c

(b̄ _ c̄) (w̄ _ c) (x̄ _ ā _ b) (ȳ _ z̄ _ a)

(w̄ _ b̄)

(w̄ _ x̄ _ ȳ _ z̄)

(w̄ _ x̄ _ ā)(w̄ _ x̄ _ ā)

• Learn clause (w̄ _ x̄ _ ȳ _ z̄)

• But a is an UIP

• Learn clause (w̄ _ x̄ _ ā)

Multiple UIPs

Level Dec. Unit Prop.

0

1

2

3

4

;

www

xx

yyy

zzz r

s

aaa

b ?

c

• First UIP:
– Learn clause (w̄ _ ȳ _ ā)

• But there can be more than 1
UIP

• Second UIP:
– Learn clause (x̄ _ z̄ _ a)

• In practice smaller clauses more
e↵ective

– Compare with (w̄ _ x̄ _ ȳ _ z̄)

• Multiple UIPs proposed in GRASP [MSS96]

– First UIP learning proposed in Cha↵ [MMZZM01]

• Not used in recent state of the art CDCL SAT solvers

• Recent results show it can be beneficial on current instances [SSS12]

Multiple UIPs

Level Dec. Unit Prop.

0

1

2

3

4

;

www

xx

yyy

zzz r

s

aaa

b ?

c

• First UIP:
– Learn clause (w̄ _ ȳ _ ā)

• But there can be more than 1
UIP

• Second UIP:
– Learn clause (x̄ _ z̄ _ a)

• In practice smaller clauses more
e↵ective

– Compare with (w̄ _ x̄ _ ȳ _ z̄)

• Multiple UIPs proposed in GRASP [MSS96]

– First UIP learning proposed in Cha↵ [MMZZM01]

• Not used in recent state of the art CDCL SAT solvers

• Recent results show it can be beneficial on current instances [SSS12]

Multiple UIPs

Level Dec. Unit Prop.

0

1

2

3

4

;

www

xx

yyy

zzz r

s

aaa

b ?

c

• First UIP:
– Learn clause (w̄ _ ȳ _ ā)

• But there can be more than 1
UIP

• Second UIP:
– Learn clause (x̄ _ z̄ _ a)

• In practice smaller clauses more
e↵ective

– Compare with (w̄ _ x̄ _ ȳ _ z̄)

• Multiple UIPs proposed in GRASP [MSS96]

– First UIP learning proposed in Cha↵ [MMZZM01]

• Not used in recent state of the art CDCL SAT solvers

• Recent results show it can be beneficial on current instances [SSS12]

Multiple UIPs

Level Dec. Unit Prop.

0

1

2

3

4

;

www

xx

yyy

zzz r

s

aaa

b ?

c

• First UIP:
– Learn clause (w̄ _ ȳ _ ā)

• But there can be more than 1
UIP

• Second UIP:
– Learn clause (x̄ _ z̄ _ a)

• In practice smaller clauses more
e↵ective

– Compare with (w̄ _ x̄ _ ȳ _ z̄)

• Multiple UIPs proposed in GRASP [MSS96]

– First UIP learning proposed in Cha↵ [MMZZM01]

• Not used in recent state of the art CDCL SAT solvers

• Recent results show it can be beneficial on current instances [SSS12]

Multiple UIPs

Level Dec. Unit Prop.

0

1

2

3

4

;

www

xx

yyy

zzz r

s

aaa

b ?

c

• First UIP:
– Learn clause (w̄ _ ȳ _ ā)

• But there can be more than 1
UIP

• Second UIP:
– Learn clause (x̄ _ z̄ _ a)

• In practice smaller clauses more
e↵ective

– Compare with (w̄ _ x̄ _ ȳ _ z̄)

• Multiple UIPs proposed in GRASP [MSS96]

– First UIP learning proposed in Cha↵ [MMZZM01]

• Not used in recent state of the art CDCL SAT solvers

• Recent results show it can be beneficial on current instances [SSS12]

Multiple UIPs

Level Dec. Unit Prop.

0

1

2

3

4

;

www

xx

yyy

zzz r

s

aaa

b ?

c

• First UIP:
– Learn clause (w̄ _ ȳ _ ā)

• But there can be more than 1
UIP

• Second UIP:
– Learn clause (x̄ _ z̄ _ a)

• In practice smaller clauses more
e↵ective

– Compare with (w̄ _ x̄ _ ȳ _ z̄)

• Multiple UIPs proposed in GRASP [MSS96]

– First UIP learning proposed in Cha↵ [MMZZM01]

• Not used in recent state of the art CDCL SAT solvers

• Recent results show it can be beneficial on current instances [SSS12]

Multiple UIPs

Level Dec. Unit Prop.

0

1

2

3

4

;

www

xx

yyy

zzz r

s

aaa

b ?

c

• First UIP:
– Learn clause (w̄ _ ȳ _ ā)

• But there can be more than 1
UIP

• Second UIP:
– Learn clause (x̄ _ z̄ _ a)

• In practice smaller clauses more
e↵ective

– Compare with (w̄ _ x̄ _ ȳ _ z̄)

• Multiple UIPs proposed in GRASP [MSS96]

– First UIP learning proposed in Cha↵ [MMZZM01]

• Not used in recent state of the art CDCL SAT solvers

• Recent results show it can be beneficial on current instances [SSS12]

Clause Minimization I

Level Dec. Unit Prop.

0

1

2

3

;

xxx

yyy

zzz c

bbb

a

?

Clause Minimization I

Level Dec. Unit Prop.

0

1

2

3

;

xxx

yyy

zzz c

bbb

a

?

(ā _ c̄) (z̄ _ b̄ _ c) (x̄ _ ȳ _ z̄ _ a)

(z̄ _ b̄ _ ā)

(x̄ _ ȳ _ z̄ _ b̄)

• Learn clause (x̄ _ ȳ _ z̄ _ b̄)

• Apply self-subsuming resolution (i.e. local minimization) [SB09]

Clause Minimization I

Level Dec. Unit Prop.

0

1

2

3

;

xxx

yyy

zzz c

bbb

a

?

(ā _ c̄) (z̄ _ b̄ _ c) (x̄ _ ȳ _ z̄ _ a)

(z̄ _ b̄ _ ā)

(x̄ _ ȳ _ z̄ _ b̄)

(x̄ _ b)

• Learn clause (x̄ _ ȳ _ z̄ _ b̄)

• Apply self-subsuming resolution (i.e. local minimization) [SB09]

Clause Minimization I

Level Dec. Unit Prop.

0

1

2

3

;

xxx

yyy

zzz c

bbb

a

?

(ā _ c̄) (z̄ _ b̄ _ c) (x̄ _ ȳ _ z̄ _ a)

(z̄ _ b̄ _ ā)

(x̄ _ ȳ _ z̄ _ b̄)

(x̄ _ b)

(x̄ _ ȳ _ z̄)

• Learn clause (x̄ _ ȳ _ z̄ _ b̄)

• Apply self-subsuming resolution (i.e. local minimization)

• Learn clause (x̄ _ ȳ _ z̄)

Clause Minimization I

Level Dec. Unit Prop.

0

1

2

3

;

xxx

yyy

zzz c

bbb

a

?

(ā _ c̄) (z̄ _ b̄ _ c) (x̄ _ ȳ _ z̄ _ a)

(z̄ _ b̄ _ ā)

(x̄ _ ȳ _ z̄ _ b̄)

(x̄ _ b)

(x̄ _ ȳ _ z̄)

• Learn clause (x̄ _ ȳ _ z̄ _ b̄)

• Apply self-subsuming resolution (i.e. local minimization)

• Learn clause (x̄ _ ȳ _ z̄)

Clause Minimization II

Level Dec. Unit Prop.

0

1

2

;

ww a

b

ccc

xx e

d ?

•

• Cannot apply self-subsuming
resolution

– Resolving with reason of c yields
(w̄ _ x̄ _ ā _ b̄)

• Can apply recursive minimization

• Learn clause (w̄ _ x̄)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new nodes
– Learn clause if only marked nodes visited

Clause Minimization II

Level Dec. Unit Prop.

0

1

2

;

ww a

b

ccc

xx e

d ?

• Learn clause (w̄ _ x̄ _ c̄)

• Cannot apply self-subsuming
resolution

– Resolving with reason of c yields
(w̄ _ x̄ _ ā _ b̄)

• Can apply recursive minimization

• Learn clause (w̄ _ x̄)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new nodes
– Learn clause if only marked nodes visited

Clause Minimization II

Level Dec. Unit Prop.

0

1

2

;

ww a

b

ccc

xx e

d ?

• Learn clause (w̄ _ x̄ _ c̄)
• Cannot apply self-subsuming
resolution

– Resolving with reason of c yields
(w̄ _ x̄ _ ā _ b̄)

• Can apply recursive minimization

• Learn clause (w̄ _ x̄)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new nodes
– Learn clause if only marked nodes visited

Clause Minimization II

Level Dec. Unit Prop.

0

1

2

;

ww a

b

ccc

xx e

d ?

• Learn clause (w̄ _ x̄ _ c̄)
• Cannot apply self-subsuming
resolution

– Resolving with reason of c yields
(w̄ _ x̄ _ ā _ b̄)

• Can apply recursive minimization

• Learn clause (w̄ _ x̄)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new nodes
– Learn clause if only marked nodes visited

Clause Minimization II

Level Dec. Unit Prop.

0

1

2

;

ww a

b

ccc

xx e

d ?

• Learn clause (w̄ _ x̄ _ c̄)
• Cannot apply self-subsuming
resolution

– Resolving with reason of c yields
(w̄ _ x̄ _ ā _ b̄)

• Can apply recursive minimization

• Learn clause (w̄ _ x̄)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new nodes
– Learn clause if only marked nodes visited

Clause Minimization II

Level Dec. Unit Prop.

0

1

2

;

ww a

b

ccc

xx e

d ?

• Learn clause (w̄ _ x̄ _ c̄)
• Cannot apply self-subsuming
resolution

– Resolving with reason of c yields
(w̄ _ x̄ _ ā _ b̄)

• Can apply recursive minimization

• Learn clause (w̄ _ x̄)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new nodes
– Learn clause if only marked nodes visited

Clause Minimization II

Level Dec. Unit Prop.

0

1

2

;

ww a

b

ccc

xx e

d ?

• Learn clause (w̄ _ x̄ _ c̄)
• Cannot apply self-subsuming
resolution

– Resolving with reason of c yields
(w̄ _ x̄ _ ā _ b̄)

• Can apply recursive minimization

• Learn clause (w̄ _ x̄)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new nodes
– Learn clause if only marked nodes visited

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers
Clause Learning, UIPs & Minimization
Search Restarts & Lazy Data Structures

What Next in CDCL Solvers?

Search Restarts I

• Heavy-tail behavior: [GSK98]

– 10000 runs, branching randomization on industrial instance

• Use rapid randomized restarts (search restarts)

Search Restarts II

• Restart search after a number
of conflicts

• Increase cuto↵ after each
restart

– Guarantees completeness
– Di↵erent policies exist (see

refs)

• Works for SAT & UNSAT
instances. Why?

• Learned clauses e↵ective after
restart(s)

solutioncutoffcutoff

Search Restarts II

• Restart search after a number
of conflicts

• Increase cuto↵ after each
restart

– Guarantees completeness
– Di↵erent policies exist (see

refs)

• Works for SAT & UNSAT
instances. Why?

• Learned clauses e↵ective after
restart(s)

solutioncutoffcutoff

Search Restarts II

• Restart search after a number
of conflicts

• Increase cuto↵ after each
restart

– Guarantees completeness
– Di↵erent policies exist (see

refs)

• Works for SAT & UNSAT
instances. Why?

• Learned clauses e↵ective after
restart(s)

solutioncutoffcutoff

Search Restarts II

• Restart search after a number
of conflicts

• Increase cuto↵ after each
restart

– Guarantees completeness
– Di↵erent policies exist (see

refs)

• Works for SAT & UNSAT
instances. Why?

• Learned clauses e↵ective after
restart(s)

Data Structures Basics

• Each literal l should access clauses containing l
– Why?

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L

– Clause learning can generate large clauses
I Worst-case size: O(n)

– Worst-case number of literals: O(mn)
– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be e↵ective requires a more e�cient
representation:

– Watched literals are one example of lazy data structures
I But there are others

Data Structures Basics

• Each literal l should access clauses containing l
– Why? Unit propagation

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L

– Clause learning can generate large clauses
I Worst-case size: O(n)

– Worst-case number of literals: O(mn)
– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be e↵ective requires a more e�cient
representation:

– Watched literals are one example of lazy data structures
I But there are others

Data Structures Basics

• Each literal l should access clauses containing l
– Why? Unit propagation

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L

– Clause learning can generate large clauses
I Worst-case size: O(n)

– Worst-case number of literals: O(mn)
– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be e↵ective requires a more e�cient
representation:

– Watched literals are one example of lazy data structures
I But there are others

Data Structures Basics

• Each literal l should access clauses containing l
– Why? Unit propagation

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L

– Clause learning can generate large clauses
I Worst-case size: O(n)

– Worst-case number of literals: O(mn)
– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be e↵ective requires a more e�cient
representation:

– Watched literals are one example of lazy data structures
I But there are others

Data Structures Basics

• Each literal l should access clauses containing l
– Why? Unit propagation

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L
– Clause learning can generate large clauses

I Worst-case size: O(n)

– Worst-case number of literals: O(mn)
– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be e↵ective requires a more e�cient
representation:

– Watched literals are one example of lazy data structures
I But there are others

Data Structures Basics

• Each literal l should access clauses containing l
– Why? Unit propagation

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L
– Clause learning can generate large clauses

I Worst-case size: O(n)

– Worst-case number of literals: O(mn)

– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be e↵ective requires a more e�cient
representation:

– Watched literals are one example of lazy data structures
I But there are others

Data Structures Basics

• Each literal l should access clauses containing l
– Why? Unit propagation

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L
– Clause learning can generate large clauses

I Worst-case size: O(n)

– Worst-case number of literals: O(mn)
– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be e↵ective requires a more e�cient
representation:

– Watched literals are one example of lazy data structures
I But there are others

Data Structures Basics

• Each literal l should access clauses containing l
– Why? Unit propagation

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L
– Clause learning can generate large clauses

I Worst-case size: O(n)

– Worst-case number of literals: O(mn)
– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be e↵ective requires a more e�cient
representation:

– Watched literals are one example of lazy data structures
I But there are others

Data Structures Basics

• Each literal l should access clauses containing l
– Why? Unit propagation

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L
– Clause learning can generate large clauses

I Worst-case size: O(n)

– Worst-case number of literals: O(mn)
– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be e↵ective requires a more e�cient
representation: Watched Literals

– Watched literals are one example of lazy data structures
I But there are others

Data Structures Basics

• Each literal l should access clauses containing l
– Why? Unit propagation

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L
– Clause learning can generate large clauses

I Worst-case size: O(n)

– Worst-case number of literals: O(mn)
– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be e↵ective requires a more e�cient
representation: Watched Literals

– Watched literals are one example of lazy data structures
I But there are others

Watched Literals

[MMZZM01]

• Important states of a clause

• Associate 2 references with
each clause

• Deciding unit requires
traversing all literals

• References unchanged when
backtracking

Watched Literals

[MMZZM01]

• Important states of a clause

• Associate 2 references with
each clause

• Deciding unit requires
traversing all literals

• References unchanged when
backtracking

Watched Literals

[MMZZM01]

• Important states of a clause

• Associate 2 references with
each clause

• Deciding unit requires
traversing all literals

• References unchanged when
backtracking

Watched Literals

[MMZZM01]

• Important states of a clause

• Associate 2 references with
each clause

• Deciding unit requires
traversing all literals

• References unchanged when
backtracking

Additional Key Techniques

• Lightweight branching [e.g. MMZZM01]

– Use conflict to bias variables to branch on, associate score with
each variable

– Prefer recent bias by regularly decreasing variable scores

• Clause deletion policies
– Not practical to keep all learned clauses
– Delete less used clauses [e.g. MSS96,GN02,ES03]

• Proven recent techniques:
– Phase saving [PD07]

– Literal blocks distance [AS09]

Additional Key Techniques

• Lightweight branching [e.g. MMZZM01]

– Use conflict to bias variables to branch on, associate score with
each variable

– Prefer recent bias by regularly decreasing variable scores

• Clause deletion policies
– Not practical to keep all learned clauses
– Delete less used clauses [e.g. MSS96,GN02,ES03]

• Proven recent techniques:
– Phase saving [PD07]

– Literal blocks distance [AS09]

Additional Key Techniques

• Lightweight branching [e.g. MMZZM01]

– Use conflict to bias variables to branch on, associate score with
each variable

– Prefer recent bias by regularly decreasing variable scores

• Clause deletion policies
– Not practical to keep all learned clauses
– Delete less used clauses [e.g. MSS96,GN02,ES03]

• Proven recent techniques:
– Phase saving [PD07]

– Literal blocks distance [AS09]

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers

What Next in CDCL Solvers?

CDCL – A Glimpse of the Future

• Clause learning techniques [e.g. ABHJS08,AS09]

– Clause learning is the key technique in CDCL SAT solvers
– Many recent papers propose improvements to the basic clause

learning approach

• Preprocessing & inprocessing
– Many recent papers [e.g. JHB12,HJB11]

– Essential in some applications

• Application-driven improvements
– Incremental SAT

I Handling of assumptions due to MUS extractors [LB13]

Part II

SAT-Based Problem Solving

How to Solve Problems with SAT?

• CNF encodings
– Represent problem as instance of SAT
– E.g. Eager SMT, Pseudo-Boolean constraints, etc.

• Embedding of SAT solvers
– SAT solver used to implement domain specific algorithm
– White-box integration
– E.g. Lazy SMT, Pseudo-Boolean constraints/optimization, etc.

• SAT solvers as oracles
– Algorithm invokes SAT solver as an NP oracle
– Black-box integration
– E.g. MaxSAT, MUSes, (2)QBF, etc.

• Note:
– CNF encodings most often used with either black-box or white-box

approaches
– SAT techniques adapted in many other domains: QBF, ASP, ILP,

CSP, ...

How to Solve Problems with SAT?

• CNF encodings
– Represent problem as instance of SAT
– E.g. Eager SMT, Pseudo-Boolean constraints, etc.

• Embedding of SAT solvers
– SAT solver used to implement domain specific algorithm
– White-box integration
– E.g. Lazy SMT, Pseudo-Boolean constraints/optimization, etc.

• SAT solvers as oracles
– Algorithm invokes SAT solver as an NP oracle
– Black-box integration
– E.g. MaxSAT, MUSes, (2)QBF, etc.

• Note:
– CNF encodings most often used with either black-box or white-box

approaches
– SAT techniques adapted in many other domains: QBF, ASP, ILP,

CSP, ...

How to Solve Problems with SAT?

• CNF encodings
– Represent problem as instance of SAT
– E.g. Eager SMT, Pseudo-Boolean constraints, etc.

• Embedding of SAT solvers
– SAT solver used to implement domain specific algorithm
– White-box integration
– E.g. Lazy SMT, Pseudo-Boolean constraints/optimization, etc.

• SAT solvers as oracles
– Algorithm invokes SAT solver as an NP oracle
– Black-box integration
– E.g. MaxSAT, MUSes, (2)QBF, etc.

• Note:
– CNF encodings most often used with either black-box or white-box

approaches
– SAT techniques adapted in many other domains: QBF, ASP, ILP,

CSP, ...

How to Solve Problems with SAT?

• CNF encodings
– Represent problem as instance of SAT
– E.g. Eager SMT, Pseudo-Boolean constraints, etc.

• Embedding of SAT solvers
– SAT solver used to implement domain specific algorithm
– White-box integration
– E.g. Lazy SMT, Pseudo-Boolean constraints/optimization, etc.

• SAT solvers as oracles
– Algorithm invokes SAT solver as an NP oracle
– Black-box integration
– E.g. MaxSAT, MUSes, (2)QBF, etc.

• Note:
– CNF encodings most often used with either black-box or white-box

approaches
– SAT techniques adapted in many other domains: QBF, ASP, ILP,

CSP, ...

SAT-Based Problem Solving

Problem Solving
with SAT

Embeddings

Pseudo-
Boolean

Branch&-
Bound

Enumeration

OPT SAT

Lazy SMT

Lazy
Cl. Gen.

Oracles

MaxSAT

MUS

MCS

Min. Mod-
els

Backbones

Enumeration

CEGAR
SMT

CEGAR
QBF

MC: ic3

Encodings

ATPG

Eager SMT

Planning

BMC

• Some apps associated with more than one concept: planning,
BMC, lazy clause generation, etc.

Examples of SAT-Based Problem Solving I

• Function problems in FPNP[log n]
– Unweighted Maximum Satisfiability (MaxSAT)
– Minimal Correction Subsets (MCSes)
– Minimal models
– ...

• Function problems in FPNP

– Weighted Maximum Satisfiability (MaxSAT)
– Minimal Unsatisfiable Subformulas (MUSes)
– Minimal Equivalent Subformulas (MESes)
– Prime implicates
– ...

• Enumeration problems
– Models
– MUSes
– MCSes
– MaxSAT
– ...

Examples of SAT-Based Problem Solving II

• Decision problems in ⌃P
2

– 2QBF
– ...

• Function problems in FP⌃P
2

– (Weighted) Quantified MaxSAT (QMaxSAT) [IJMS13]

– Smallest MUS (SMUS) [IJMS13]

– ...

• Decision problems in PSPACE
– QBF
– ...

• ...

Outline

CNF Encodings

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?

Outline

CNF Encodings

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?

Encoding to CNF

• What to encode?
– Boolean formulas

I Tseitin’s encoding
I Plaisted&Greenbaum’s encoding
I ...

– Cardinality constraints
– Pseudo-Boolean (PB) constraints
– Can also translate to SAT:

I Constraint Satisfaction Problems (CSPs)
I Answer Set Programming (ASP)
I Model Finding
I ...

• Key issues:
– Encoding size
– Arc-consistency?

Outline

CNF Encodings
Boolean Formulas
Cardinality Constraints
Pseudo-Boolean Constraints
Encoding CSPs

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?

Representing Boolean Formulas / Circuits I

• Satisfiability problems can be defined on Boolean circuits/formulas
• Can represent circuits/formulas as CNF formulas [T68,PG86]

– For each (simple) gate, CNF formula encodes the consistent
assignments to the gate’s inputs and output

I Given z = OP(x , y), represent in CNF z $ OP(x , y)

– CNF formula for the circuit is the conjunction of CNF formula for
each gate

Fc = (a _ c) ^ (b _ c) ^ (ā _ b̄ _ c̄)

Ft = (r̄ _ t) ^ (s̄ _ t) ^ (r _ s _ t̄)

NAND

OR

a
b c

r
s t

Representing Boolean Formulas / Circuits II

NAND
a
b c

a b c Fc(a,b,c)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Fc = (a _ c) ^ (b _ c) ^ (ā _ b̄ _ c̄)

Representing Boolean Formulas / Circuits III

• CNF formula for the circuit is the conjunction of the CNF formula
for each gate

– Can specify objectives with additional clauses

NAND
AND

OR

a
b c

d

x y
z = 1?

F = (a _ x) ^ (b _ x) ^ (ā _ b̄ _ x̄) ^

(x _ ȳ) ^ (c _ ȳ) ^ (x̄ _ c̄ _ y) ^

(ȳ _ z) ^ (d̄ _ z) ^ (y _ d _ z̄) ^ (z)

• Note: z = d _ (c ^ (¬(a ^ b)))
– No distinction between Boolean circuits and formulas

Representing Boolean Formulas / Circuits III

• CNF formula for the circuit is the conjunction of the CNF formula
for each gate

– Can specify objectives with additional clauses

NAND
AND

OR

a
b c

d

x y
z = 1?

F = (a _ x) ^ (b _ x) ^ (ā _ b̄ _ x̄) ^

(x _ ȳ) ^ (c _ ȳ) ^ (x̄ _ c̄ _ y) ^

(ȳ _ z) ^ (d̄ _ z) ^ (y _ d _ z̄) ^ (z)

• Note: z = d _ (c ^ (¬(a ^ b)))
– No distinction between Boolean circuits and formulas

Outline

CNF Encodings
Boolean Formulas
Cardinality Constraints
Pseudo-Boolean Constraints
Encoding CSPs

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?

Cardinality Constraints

• How to handle cardinality constraints,
Pn

j=1 xj k ?

– How to handle AtMost1 constraints,
Pn

j=1 xj 1 ?

– General form:
Pn

j=1 xj ./ k , with ./ 2 {<,,=,�, >}

• Solution #1:
– Use PB solver
– Di�cult to keep up with advances in SAT technology
– For SAT/UNSAT, best solvers already encode to CNF

I E.g. Minisat+, but also QMaxSat, MSUnCore, (W)PM2

• Solution #2:
– Encode cardinality constraints to CNF
– Use SAT solver

Cardinality Constraints

• How to handle cardinality constraints,
Pn

j=1 xj k ?

– How to handle AtMost1 constraints,
Pn

j=1 xj 1 ?

– General form:
Pn

j=1 xj ./ k , with ./ 2 {<,,=,�, >}

• Solution #1:
– Use PB solver
– Di�cult to keep up with advances in SAT technology
– For SAT/UNSAT, best solvers already encode to CNF

I E.g. Minisat+, but also QMaxSat, MSUnCore, (W)PM2

• Solution #2:
– Encode cardinality constraints to CNF
– Use SAT solver

Equals1, AtLeast1 & AtMost1 Constraints

•
Pn

j=1 xj = 1: encode with (
Pn

j=1 xj 1) ^ (
Pn

j=1 xj � 1)

•
Pn

j=1 xj � 1: encode with (x1 _ x2 _ . . . _ xn)

•
Pn

j=1 xj 1 encode with:

– Pairwise encoding
I Clauses: O(n2) ; No auxiliary variables

– Sequential counter [S05]

I Clauses: O(n) ; Auxiliary variables: O(n)

– Bitwise encoding [P07,FP01]

I Clauses: O(n log n) ; Auxiliary variables: O(log n)

– ...

Bitwise Encoding

• Encode
Pn

j=1 xj 1 with bitwise encoding:

– Auxiliary variables v0, . . . , vr�1 ; r = dlog ne (with n > 1)

– If xj = 1, then v0 . . . vr�1 = b0 . . . br�1, the binary encoding of j � 1

xj ! (v0 = b0)^. . .^(vr�1 = br�1) , (x̄j_(v0 = b0)^. . .^(vr�1 = br�1))

– Clauses (x̄j _ (vi $ bi)) = (x̄j _ li), i = 0, . . . , r � 1, where
I li ⌘ vi , if bi = 1
I li ⌘ v̄i , otherwise

– If xj = 1, assignment to vi variables must encode j � 1
I All other x variables must take value 0

– If all xj = 0, any assignment to vi variables is consistent

– O(n log n) clauses ; O(log n) auxiliary variables

• An example: x1 + x2 + x3 1

Bitwise Encoding

• Encode
Pn

j=1 xj 1 with bitwise encoding:

– Auxiliary variables v0, . . . , vr�1 ; r = dlog ne (with n > 1)

– If xj = 1, then v0 . . . vr�1 = b0 . . . br�1, the binary encoding of j � 1

xj ! (v0 = b0)^. . .^(vr�1 = br�1) , (x̄j_(v0 = b0)^. . .^(vr�1 = br�1))

– Clauses (x̄j _ (vi $ bi)) = (x̄j _ li), i = 0, . . . , r � 1, where
I li ⌘ vi , if bi = 1
I li ⌘ v̄i , otherwise

– If xj = 1, assignment to vi variables must encode j � 1
I All other x variables must take value 0

– If all xj = 0, any assignment to vi variables is consistent

– O(n log n) clauses ; O(log n) auxiliary variables

• An example: x1 + x2 + x3 1

j � 1 v1v0
x1 0 00
x2 1 01
x3 2 10

Bitwise Encoding

• Encode
Pn

j=1 xj 1 with bitwise encoding:

– Auxiliary variables v0, . . . , vr�1 ; r = dlog ne (with n > 1)

– If xj = 1, then v0 . . . vr�1 = b0 . . . br�1, the binary encoding of j � 1

xj ! (v0 = b0)^. . .^(vr�1 = br�1) , (x̄j_(v0 = b0)^. . .^(vr�1 = br�1))

– Clauses (x̄j _ (vi $ bi)) = (x̄j _ li), i = 0, . . . , r � 1, where
I li ⌘ vi , if bi = 1
I li ⌘ v̄i , otherwise

– If xj = 1, assignment to vi variables must encode j � 1
I All other x variables must take value 0

– If all xj = 0, any assignment to vi variables is consistent

– O(n log n) clauses ; O(log n) auxiliary variables

• An example: x1 + x2 + x3 1

j � 1 v1v0
x1 0 00
x2 1 01
x3 2 10

(x̄1 _ v̄1) ^ (x̄1 _ v̄0)
(x̄2 _ v̄1) ^ (x̄2 _ v0)
(x̄3 _ v1) ^ (x̄3 _ v̄0)

Bitwise Encoding

• Encode
Pn

j=1 xj 1 with bitwise encoding:

– Auxiliary variables v0, . . . , vr�1 ; r = dlog ne (with n > 1)

– If xj = 1, then v0 . . . vr�1 = b0 . . . br�1, the binary encoding of j � 1

xj ! (v0 = b0)^. . .^(vr�1 = br�1) , (x̄j_(v0 = b0)^. . .^(vr�1 = br�1))

– Clauses (x̄j _ (vi $ bi)) = (x̄j _ li), i = 0, . . . , r � 1, where
I li ⌘ vi , if bi = 1
I li ⌘ v̄i , otherwise

– If xj = 1, assignment to vi variables must encode j � 1
I All other x variables must take value 0

– If all xj = 0, any assignment to vi variables is consistent

– O(n log n) clauses ; O(log n) auxiliary variables

• An example: x1 + x2 + x3 1

j � 1 v1v0
x1 0 00
x2 1 01
x3 2 10

(x̄1 _ v̄1) ^ (x̄1 _ v̄0)
(x̄2 _ v̄1) ^ (x̄2 _ v0)
(x̄3 _ v1) ^ (x̄3 _ v̄0)

General Cardinality Constraints

• General form:
Pn

j=1 xj k (or
Pn

j=1 xj � k)

– Sequential counters [S05]

I Clauses/Variables: O(n k)

– BDDs [ES06]

I Clauses/Variables: O(n k)

– Sorting networks [ES06]

I Clauses/Variables: O(n log2 n)

– Cardinality Networks: [ANORC09,ANORC11a]

I Clauses/Variables: O(n log2 k)

– Pairwise Cardinality Networks: [CZI10]

– ...

Outline

CNF Encodings
Boolean Formulas
Cardinality Constraints
Pseudo-Boolean Constraints
Encoding CSPs

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?

Pseudo-Boolean Constraints

• General form:
Pn

j=1 aj xj b

– Operational encoding [W98]

I Clauses/Variables: O(n)
I Does not guarantee arc-consistency

– BDDs [ES06]

I Worst-case exponential number of clauses

– Polynomial watchdog encoding [BBR09]

I Let ⌫(n) = log(n) log(amax)
I Clauses: O(n3⌫(n)) ; Aux variables: O(n2⌫(n))

– Improved polynomial watchdog encoding [ANORC11b]

I Clauses & aux variables: O(n3 log(amax))

– ...

Encoding PB Constraints with BDDs I

• Encode 3x1 + 3x2 + x3 3
• Construct BDD

– E.g. analyze variables by decreasing coe�cients

• Extract ITE-based circuit from BDD

x1

x2

0 x3

0 1

x2

x3

0 1

1

1 0

1 0

1 0

1 0

1 0

Encoding PB Constraints with BDDs I

• Encode 3x1 + 3x2 + x3 3
• Construct BDD

– E.g. analyze variables by decreasing coe�cients

• Extract ITE-based circuit from BDD

x1

x2

0 x3

0 1

x2

x3

0 1

1

1 0

1 0

1 0

1 0

1 0

ITE
0 1

s

ba

z

ITE
0 1

s

ba

z

ITE
1 0

s

ba

z

ITE
0 1

s

ba

z

ITE
0 1

s

ba

z

01 1 0

0 1

1

x1

x2

x3

x2

x3

Encoding PB Constraints with BDDs II

• Encode 3x1 + 3x2 + x3 3

• Extract ITE-based circuit from BDD

• Simplify and create final circuit:

ITE
1 0

s

ba

z

NO
R

1

NA
ND

x1

x2 x3 x2x3

More on PB Constraints

• How about
Pn

j=1 aj xj = k ?

– Can use (
Pn

j=1 aj xj � k) ^ (
Pn

j=1 aj xj k), but...

I
Pn

j=1 aj xj = k is a subset-sum constraint

(special case of a knapsack constraint)
I Cannot find all consequences in polynomial time [S03,FS02,T03]

• Example:

4x1 + 3x2 + 2x3 = 5

– Replace by (4x1 + 3x2 + 2x3 � 5) ^ (4x1 + 3x2 + 2x3 5)
– Let x2 = 0
– Either constraint can still be satisfied, but not both

More on PB Constraints

• How about
Pn

j=1 aj xj = k ?

– Can use (
Pn

j=1 aj xj � k) ^ (
Pn

j=1 aj xj k), but...

I
Pn

j=1 aj xj = k is a subset-sum constraint

(special case of a knapsack constraint)

I Cannot find all consequences in polynomial time [S03,FS02,T03]

• Example:

4x1 + 3x2 + 2x3 = 5

– Replace by (4x1 + 3x2 + 2x3 � 5) ^ (4x1 + 3x2 + 2x3 5)
– Let x2 = 0
– Either constraint can still be satisfied, but not both

More on PB Constraints

• How about
Pn

j=1 aj xj = k ?

– Can use (
Pn

j=1 aj xj � k) ^ (
Pn

j=1 aj xj k), but...

I
Pn

j=1 aj xj = k is a subset-sum constraint

(special case of a knapsack constraint)
I Cannot find all consequences in polynomial time [S03,FS02,T03]

• Example:

4x1 + 3x2 + 2x3 = 5

– Replace by (4x1 + 3x2 + 2x3 � 5) ^ (4x1 + 3x2 + 2x3 5)
– Let x2 = 0
– Either constraint can still be satisfied, but not both

More on PB Constraints

• How about
Pn

j=1 aj xj = k ?

– Can use (
Pn

j=1 aj xj � k) ^ (
Pn

j=1 aj xj k), but...

I
Pn

j=1 aj xj = k is a subset-sum constraint

(special case of a knapsack constraint)
I Cannot find all consequences in polynomial time [S03,FS02,T03]

• Example:

4x1 + 3x2 + 2x3 = 5

– Replace by (4x1 + 3x2 + 2x3 � 5) ^ (4x1 + 3x2 + 2x3 5)
– Let x2 = 0
– Either constraint can still be satisfied, but not both

More on PB Constraints

• How about
Pn

j=1 aj xj = k ?

– Can use (
Pn

j=1 aj xj � k) ^ (
Pn

j=1 aj xj k), but...

I
Pn

j=1 aj xj = k is a subset-sum constraint

(special case of a knapsack constraint)
I Cannot find all consequences in polynomial time [S03,FS02,T03]

• Example:

4x1 + 3x2 + 2x3 = 5

– Replace by (4x1 + 3x2 + 2x3 � 5) ^ (4x1 + 3x2 + 2x3 5)

– Let x2 = 0
– Either constraint can still be satisfied, but not both

More on PB Constraints

• How about
Pn

j=1 aj xj = k ?

– Can use (
Pn

j=1 aj xj � k) ^ (
Pn

j=1 aj xj k), but...

I
Pn

j=1 aj xj = k is a subset-sum constraint

(special case of a knapsack constraint)
I Cannot find all consequences in polynomial time [S03,FS02,T03]

• Example:

4x1 + 3x2 + 2x3 = 5

– Replace by (4x1 + 3x2 + 2x3 � 5) ^ (4x1 + 3x2 + 2x3 5)
– Let x2 = 0

– Either constraint can still be satisfied, but not both

More on PB Constraints

• How about
Pn

j=1 aj xj = k ?

– Can use (
Pn

j=1 aj xj � k) ^ (
Pn

j=1 aj xj k), but...

I
Pn

j=1 aj xj = k is a subset-sum constraint

(special case of a knapsack constraint)
I Cannot find all consequences in polynomial time [S03,FS02,T03]

• Example:

4x1 + 3x2 + 2x3 = 5

– Replace by (4x1 + 3x2 + 2x3 � 5) ^ (4x1 + 3x2 + 2x3 5)
– Let x2 = 0
– Either constraint can still be satisfied, but not both

Outline

CNF Encodings
Boolean Formulas
Cardinality Constraints
Pseudo-Boolean Constraints
Encoding CSPs

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?

CSP Constraints

• Many possible encodings:

– Direct encoding [dK89,GJ96,W00]

– Log encoding [W00]

– Support encoding [K90,G02]

– Log-Support encoding [G07]

– Order encoding for finite linear CSPs [TTKB09]

Direct Encoding for CSP w/ Binary Constraints

• Variable xi with domain Di , with mi = |Di |

• Represent values of xi with Boolean variables xi ,1, . . . , xi ,mi

• Require
Pmi

k=1 xi ,k = 1
– Su�ces to require

Pmi

k=1 xi,k � 1 [W00]

• If the pair of assignments xi = vi ^ xj = vj is not allowed, add
binary clause (x̄i ,vi _ x̄j ,vj)

Outline

CNF Encodings

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?

Embedding SAT Solvers

SAT Solver

BacktrackingPropagation

Branching

Constraint Propagators
/ Theory Solvers

Assignments +
Constraints

Assignments +
Explanations

• Modify SAT solver to interface
problem-specific propagators (or
theory solvers)

• Typical interface:
– SAT solvers communicates

assignments/constraints to
propagators

– Retrieve resulting assignments or
explanations for inconsistency

• Well-known examples (many more):
– Branch&bound PB optimization
– Non-clausal SAT solvers
– Lazy SMT solving (see later talks)

• Key problem:
– Keeping up with improvements in

SAT solvers

Pseudo-Boolean Constraints & Optimization

• Pseudo-Boolean Constraints:
– Boolean variables: x1, . . . , xn
– Linear inequalities:

X

j2N

aij lj � bi , lj 2 {xj , x̄j}, xj 2 {0, 1}, aij , bi 2 N+
0

• Pseudo-Boolean Optimization (PBO):

minimize
P
j2N

cj · xj

subject to
P
j2N

aij lj � bi ,

lj 2 {xj , x̄j}, xj 2 {0, 1}, aij , bi , cj 2 N+
0

• Branch and bound (B&B) PBO algorithm: [MMS00]

– Extend SAT solver
– Must develop propagator for PB constraints
– B&B search for computing optimum cost function value

I Trivial upper bound: all xj = 1

Pseudo-Boolean Constraints & Optimization

• Pseudo-Boolean Constraints:
– Boolean variables: x1, . . . , xn
– Linear inequalities:

X

j2N

aij lj � bi , lj 2 {xj , x̄j}, xj 2 {0, 1}, aij , bi 2 N+
0

• Pseudo-Boolean Optimization (PBO):

minimize
P
j2N

cj · xj

subject to
P
j2N

aij lj � bi ,

lj 2 {xj , x̄j}, xj 2 {0, 1}, aij , bi , cj 2 N+
0

• Branch and bound (B&B) PBO algorithm: [MMS00]

– Extend SAT solver
– Must develop propagator for PB constraints
– B&B search for computing optimum cost function value

I Trivial upper bound: all xj = 1

Pseudo-Boolean Constraints & Optimization

• Pseudo-Boolean Constraints:
– Boolean variables: x1, . . . , xn
– Linear inequalities:

X

j2N

aij lj � bi , lj 2 {xj , x̄j}, xj 2 {0, 1}, aij , bi 2 N+
0

• Pseudo-Boolean Optimization (PBO):

minimize
P
j2N

cj · xj

subject to
P
j2N

aij lj � bi ,

lj 2 {xj , x̄j}, xj 2 {0, 1}, aij , bi , cj 2 N+
0

• Branch and bound (B&B) PBO algorithm: [MMS00]

– Extend SAT solver
– Must develop propagator for PB constraints
– B&B search for computing optimum cost function value

I Trivial upper bound: all xj = 1

Limitations with Embeddings

• B&B MaxSAT solving:
– Cannot use unit propagation
– Cannot learn clauses

• MUS extraction:
– Decision of clauses to include in MUS based on unsatisfiable

outcomes
– No immediate gain from embedding SAT solvers

Outline

CNF Encodings

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?

Practical Aspects of Using SAT Oracles

• Incremental vs. non-incremental SAT [ES03]

– Incremental SAT:
I Replace each clause (Ci) with (Ci _ āi), where ai is assumption

variable
I When calling SAT solver, each assumption can be assigned 1, 0, or

be left unassigned

I ai = 1 to activate clause Ci

I ai = 0 to deactivate clause Ci

I Add clause (āi) to delete Ci

I Note: incremental SAT enables clause reuse

– Non-incremental SAT:

I Submit complete formula to SAT solver in each iteration
I Note: di�cult to instrument clause reuse

• What does the SAT oracle compute/return?
1. Yes/No: (st) SAT(F)

2. Compute model: (st, µ) SAT(F)
3. Compute unsatisfiable cores: (st, µ,U) SAT(F)
4. Compute proof traces/resolution proof: (st, µ, T) SAT(F)

Practical Aspects of Using SAT Oracles

• Incremental vs. non-incremental SAT [ES03]

– Incremental SAT:
I Replace each clause (Ci) with (Ci _ āi), where ai is assumption

variable
I When calling SAT solver, each assumption can be assigned 1, 0, or

be left unassigned

I ai = 1 to activate clause Ci

I ai = 0 to deactivate clause Ci

I Add clause (āi) to delete Ci

I Note: incremental SAT enables clause reuse

– Non-incremental SAT:

I Submit complete formula to SAT solver in each iteration
I Note: di�cult to instrument clause reuse

• What does the SAT oracle compute/return?
1. Yes/No: (st) SAT(F)

2. Compute model: (st, µ) SAT(F)
3. Compute unsatisfiable cores: (st, µ,U) SAT(F)
4. Compute proof traces/resolution proof: (st, µ, T) SAT(F)

Practical Aspects of Using SAT Oracles

• Incremental vs. non-incremental SAT [ES03]

– Incremental SAT:
I Replace each clause (Ci) with (Ci _ āi), where ai is assumption

variable
I When calling SAT solver, each assumption can be assigned 1, 0, or

be left unassigned
I ai = 1 to activate clause Ci

I ai = 0 to deactivate clause Ci

I Add clause (āi) to delete Ci

I Note: incremental SAT enables clause reuse

– Non-incremental SAT:

I Submit complete formula to SAT solver in each iteration
I Note: di�cult to instrument clause reuse

• What does the SAT oracle compute/return?
1. Yes/No: (st) SAT(F)

2. Compute model: (st, µ) SAT(F)
3. Compute unsatisfiable cores: (st, µ,U) SAT(F)
4. Compute proof traces/resolution proof: (st, µ, T) SAT(F)

Practical Aspects of Using SAT Oracles

• Incremental vs. non-incremental SAT [ES03]

– Incremental SAT:
I Replace each clause (Ci) with (Ci _ āi), where ai is assumption

variable
I When calling SAT solver, each assumption can be assigned 1, 0, or

be left unassigned
I ai = 1 to activate clause Ci

I ai = 0 to deactivate clause Ci

I Add clause (āi) to delete Ci

I Note: incremental SAT enables clause reuse

– Non-incremental SAT:

I Submit complete formula to SAT solver in each iteration
I Note: di�cult to instrument clause reuse

• What does the SAT oracle compute/return?
1. Yes/No: (st) SAT(F)

2. Compute model: (st, µ) SAT(F)
3. Compute unsatisfiable cores: (st, µ,U) SAT(F)
4. Compute proof traces/resolution proof: (st, µ, T) SAT(F)

Practical Aspects of Using SAT Oracles

• Incremental vs. non-incremental SAT [ES03]

– Incremental SAT:
I Replace each clause (Ci) with (Ci _ āi), where ai is assumption

variable
I When calling SAT solver, each assumption can be assigned 1, 0, or

be left unassigned
I ai = 1 to activate clause Ci

I ai = 0 to deactivate clause Ci

I Add clause (āi) to delete Ci

I Note: incremental SAT enables clause reuse

– Non-incremental SAT:

I Submit complete formula to SAT solver in each iteration
I Note: di�cult to instrument clause reuse

• What does the SAT oracle compute/return?
1. Yes/No: (st) SAT(F)

2. Compute model: (st, µ) SAT(F)
3. Compute unsatisfiable cores: (st, µ,U) SAT(F)
4. Compute proof traces/resolution proof: (st, µ, T) SAT(F)

Practical Aspects of Using SAT Oracles

• Incremental vs. non-incremental SAT [ES03]

– Incremental SAT:
I Replace each clause (Ci) with (Ci _ āi), where ai is assumption

variable
I When calling SAT solver, each assumption can be assigned 1, 0, or

be left unassigned
I ai = 1 to activate clause Ci

I ai = 0 to deactivate clause Ci

I Add clause (āi) to delete Ci

I Note: incremental SAT enables clause reuse

– Non-incremental SAT:
I Submit complete formula to SAT solver in each iteration
I Note: di�cult to instrument clause reuse

• What does the SAT oracle compute/return?
1. Yes/No: (st) SAT(F)

2. Compute model: (st, µ) SAT(F)
3. Compute unsatisfiable cores: (st, µ,U) SAT(F)
4. Compute proof traces/resolution proof: (st, µ, T) SAT(F)

Practical Aspects of Using SAT Oracles

• Incremental vs. non-incremental SAT [ES03]

– Incremental SAT:
I Replace each clause (Ci) with (Ci _ āi), where ai is assumption

variable
I When calling SAT solver, each assumption can be assigned 1, 0, or

be left unassigned
I ai = 1 to activate clause Ci

I ai = 0 to deactivate clause Ci

I Add clause (āi) to delete Ci

I Note: incremental SAT enables clause reuse

– Non-incremental SAT:
I Submit complete formula to SAT solver in each iteration
I Note: di�cult to instrument clause reuse

• What does the SAT oracle compute/return?
1. Yes/No: (st) SAT(F)

2. Compute model: (st, µ) SAT(F)
3. Compute unsatisfiable cores: (st, µ,U) SAT(F)
4. Compute proof traces/resolution proof: (st, µ, T) SAT(F)

Practical Aspects of Using SAT Oracles

• Incremental vs. non-incremental SAT [ES03]

– Incremental SAT:
I Replace each clause (Ci) with (Ci _ āi), where ai is assumption

variable
I When calling SAT solver, each assumption can be assigned 1, 0, or

be left unassigned
I ai = 1 to activate clause Ci

I ai = 0 to deactivate clause Ci

I Add clause (āi) to delete Ci

I Note: incremental SAT enables clause reuse

– Non-incremental SAT:
I Submit complete formula to SAT solver in each iteration
I Note: di�cult to instrument clause reuse

• What does the SAT oracle compute/return?
1. Yes/No: (st) SAT(F)
2. Compute model: (st, µ) SAT(F)

3. Compute unsatisfiable cores: (st, µ,U) SAT(F)
4. Compute proof traces/resolution proof: (st, µ, T) SAT(F)

Practical Aspects of Using SAT Oracles

• Incremental vs. non-incremental SAT [ES03]

– Incremental SAT:
I Replace each clause (Ci) with (Ci _ āi), where ai is assumption

variable
I When calling SAT solver, each assumption can be assigned 1, 0, or

be left unassigned
I ai = 1 to activate clause Ci

I ai = 0 to deactivate clause Ci

I Add clause (āi) to delete Ci

I Note: incremental SAT enables clause reuse

– Non-incremental SAT:
I Submit complete formula to SAT solver in each iteration
I Note: di�cult to instrument clause reuse

• What does the SAT oracle compute/return?
1. Yes/No: (st) SAT(F)
2. Compute model: (st, µ) SAT(F)
3. Compute unsatisfiable cores: (st, µ,U) SAT(F)

4. Compute proof traces/resolution proof: (st, µ, T) SAT(F)

Practical Aspects of Using SAT Oracles

• Incremental vs. non-incremental SAT [ES03]

– Incremental SAT:
I Replace each clause (Ci) with (Ci _ āi), where ai is assumption

variable
I When calling SAT solver, each assumption can be assigned 1, 0, or

be left unassigned
I ai = 1 to activate clause Ci

I ai = 0 to deactivate clause Ci

I Add clause (āi) to delete Ci

I Note: incremental SAT enables clause reuse

– Non-incremental SAT:
I Submit complete formula to SAT solver in each iteration
I Note: di�cult to instrument clause reuse

• What does the SAT oracle compute/return?
1. Yes/No: (st) SAT(F)
2. Compute model: (st, µ) SAT(F)
3. Compute unsatisfiable cores: (st, µ,U) SAT(F)
4. Compute proof traces/resolution proof: (st, µ, T) SAT(F)

Outline

CNF Encodings

SAT Embeddings

SAT Oracles
MUS Extraction
MaxSAT
2QBF

What Next in SAT-Based Problem Solving?

Defining MUSes

x6 _ x2 ¬x6 _ x2 ¬x2 _ x1 ¬x1

¬x6 _ x8 x6 _ ¬x8 x2 _ x4 ¬x4 _ x5

x7 _ x5 ¬x7 _ x5 ¬x5 _ x3 ¬x3

• Formula is unsatisfiable but not irreducible

• Can remove clauses, and formula still unsatisfiable

• A Minimal Unsatisfiable Subformula (MUS) is an unsatisfiable and
irreducible subformula

• How to compute an MUS?

Defining MUSes

x6 _ x2 ¬x6 _ x2 ¬x2 _ x1 ¬x1

¬x6 _ x8 x6 _ ¬x8 x2 _ x4 ¬x4 _ x5

x7 _ x5 ¬x7 _ x5 ¬x5 _ x3 ¬x3

• Formula is unsatisfiable but not irreducible

• Can remove clauses, and formula still unsatisfiable

• A Minimal Unsatisfiable Subformula (MUS) is an unsatisfiable and
irreducible subformula

• How to compute an MUS?

Defining MUSes

x6 _ x2 ¬x6 _ x2 ¬x2 _ x1 ¬x1

¬x6 _ x8 x6 _ ¬x8 x2 _ x4 ¬x4 _ x5

x7 _ x5 ¬x7 _ x5 ¬x5 _ x3 ¬x3

• Formula is unsatisfiable but not irreducible

• Can remove clauses, and formula still unsatisfiable

• A Minimal Unsatisfiable Subformula (MUS) is an unsatisfiable and
irreducible subformula

• How to compute an MUS?

Defining MUSes

x6 _ x2 ¬x6 _ x2 ¬x2 _ x1 ¬x1

¬x6 _ x8 x6 _ ¬x8 x2 _ x4 ¬x4 _ x5

x7 _ x5 ¬x7 _ x5 ¬x5 _ x3 ¬x3

• Formula is unsatisfiable but not irreducible

• Can remove clauses, and formula still unsatisfiable

• A Minimal Unsatisfiable Subformula (MUS) is an unsatisfiable and
irreducible subformula

• How to compute an MUS?

Defining MUSes

x6 _ x2 ¬x6 _ x2 ¬x2 _ x1 ¬x1

¬x6 _ x8 x6 _ ¬x8 x2 _ x4 ¬x4 _ x5

x7 _ x5 ¬x7 _ x5 ¬x5 _ x3 ¬x3

• Formula is unsatisfiable but not irreducible

• Can remove clauses, and formula still unsatisfiable

• A Minimal Unsatisfiable Subformula (MUS) is an unsatisfiable and
irreducible subformula

• How to compute an MUS?

Defining MUSes

x6 _ x2 ¬x6 _ x2 ¬x2 _ x1 ¬x1

¬x6 _ x8 x6 _ ¬x8 x2 _ x4 ¬x4 _ x5

x7 _ x5 ¬x7 _ x5 ¬x5 _ x3 ¬x3

• Formula is unsatisfiable but not irreducible

• Can remove clauses, and formula still unsatisfiable

• A Minimal Unsatisfiable Subformula (MUS) is an unsatisfiable and
irreducible subformula

• How to compute an MUS?

Deletion-Based MUS Extraction

Input : Unsatisfiable CNF Formula F

Output: MUS M

begin

M F // MUS over-approximation

foreach c 2M do

if not SAT(M\ {c}) then
M M\ {c} // If UNSAT(M\ {c}), then c 62M

return M // Final M is MUS

end

• Number of calls to SAT solver: O(|F|)

Deletion-Based MUS Extraction

Input : Unsatisfiable CNF Formula F

Output: MUS M

begin

M F // MUS over-approximation

foreach c 2M do

if not SAT(M\ {c}) then
M M\ {c} // Remove c from M

return M // Final M is MUS

end

• Number of calls to SAT solver: O(|F|)

An Example

(¬x1 _ x2)
(¬x3 _ x2)
(x1 _ x2)
(¬x3)
(¬x2)

UNSAT instance

An Example

(¬x1 _ x2)
(¬x3 _ x2)
(x1 _ x2)
(¬x3)
(¬x2)

Hide clause (¬x1 _ x2)

An Example

(¬x1 _ x2)
(¬x3 _ x2)
(x1 _ x2)
(¬x3)
(¬x2)

SAT instance ! keep clause (¬x1 _ x2)

An Example

(¬x1 _ x2)
(¬x3 _ x2)
(x1 _ x2)
(¬x3)
(¬x2)

Hide clause (¬x3 _ x2)

An Example

(¬x1 _ x2)
(¬x3 _ x2)
(x1 _ x2)
(¬x3)
(¬x2)

UNSAT instance ! remove clause (¬x3 _ x2)

An Example

(¬x1 _ x2)
(¬x3 _ x2)
(x1 _ x2)
(¬x3)
(¬x2)

Hide clause (x1 _ x2)

An Example

(¬x1 _ x2)
(¬x3 _ x2)
(x1 _ x2)
(¬x3)
(¬x2)

SAT instance ! keep clause (x1 _ x2)

An Example

(¬x1 _ x2)
(¬x3 _ x2)
(x1 _ x2)
(¬x3)
(¬x2)

Hide clause (¬x3)

An Example

(¬x1 _ x2)
(¬x3 _ x2)
(x1 _ x2)
(¬x3)
(¬x2)

UNSAT instance ! remove clause (¬x3)

An Example

(¬x1 _ x2)
(¬x3 _ x2)
(x1 _ x2)
(¬x3)
(¬x2)

Hide clause (¬x2)

An Example

(¬x1 _ x2)
(¬x3 _ x2)
(x1 _ x2)
(¬x3)
(¬x2)

SAT instance ! keep clause (¬x2)

An Example

(¬x1 _ x2)
(x1 _ x2)
(¬x2)

Computed MUS

More on MUS Extraction

Algorithm # Oracle Calls Reference

Insertion (Default) O(m ⇥ k) [SP88]

Deletion (Default) O(m) [CD91,BDTW93]

QuickXplain O(k ⇥ (1 + log m
k)) [J01,J04]

Dichotomic O(k ⇥ logm) [HLSB06]

Insertion with Relaxation Variables O(m) [MSL11]

Deletion with Model Rotation O(m) [BLMS12,MSL11]

Progression O(k ⇥ log(1 + m
k)) [MSJB13]

• Additional Techniques:
– Restrict formula to unsatisfiable subsets [BDTW93,HLSB06,DHN06,MSL11]

– Check redundancy condition [vMW08,MSL11,BLMS12]

– Model rotation, recursive model rotation, etc. [MSL11,BMS11,BLMS12,W12]

More on MUS Extraction

Algorithm # Oracle Calls Reference

Insertion (Default) O(m ⇥ k) [SP88]

Deletion (Default) O(m) [CD91,BDTW93]

QuickXplain O(k ⇥ (1 + log m
k)) [J01,J04]

Dichotomic O(k ⇥ logm) [HLSB06]

Insertion with Relaxation Variables O(m) [MSL11]

Deletion with Model Rotation O(m) [BLMS12,MSL11]

Progression O(k ⇥ log(1 + m
k)) [MSJB13]

• Additional Techniques:
– Restrict formula to unsatisfiable subsets [BDTW93,HLSB06,DHN06,MSL11]

– Check redundancy condition [vMW08,MSL11,BLMS12]

– Model rotation, recursive model rotation, etc. [MSL11,BMS11,BLMS12,W12]

Outline

CNF Encodings

SAT Embeddings

SAT Oracles
MUS Extraction
MaxSAT
2QBF

What Next in SAT-Based Problem Solving?

Defining Maximum Satisfiability

x6 _ x2 ¬x6 _ x2 ¬x2 _ x1 ¬x1

¬x6 _ x8 x6 _ ¬x8 x2 _ x4 ¬x4 _ x5

x7 _ x5 ¬x7 _ x5 ¬x5 _ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

• The MaxSAT solution is one of the smallest MCSes

Defining Maximum Satisfiability

x6 _ x2 ¬x6 _ x2 ¬x2 _ x1 ¬x1

¬x6 _ x8 x6 _ ¬x8 x2 _ x4 ¬x4 _ x5

x7 _ x5 ¬x7 _ x5 ¬x5 _ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

• The MaxSAT solution is one of the smallest MCSes

Defining Maximum Satisfiability

x6 _ x2 ¬x6 _ x2 ¬x2 _ x1 ¬x1

¬x6 _ x8 x6 _ ¬x8 x2 _ x4 ¬x4 _ x5

x7 _ x5 ¬x7 _ x5 ¬x5 _ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

• The MaxSAT solution is one of the smallest MCSes

MaxSAT Problem(s)

• MaxSAT:
– All clauses are soft
– Maximize number of satisfied soft clauses
– Minimize number of unsatisfied soft clauses

• Partial MaxSAT:
– Hard clauses must be satisfied
– Minimize number of unsatisfied soft clauses

• Weighted MaxSAT
– Weights associated with (soft) clauses
– Minimize sum of weights of unsatisfied clauses

• Weighted Partial MaxSAT
– Weights associated with soft clauses
– Hard clauses must be satisfied
– Minimize sum of weights of unsatisfied soft clauses

MaxSAT Problem(s)

• MaxSAT:
– All clauses are soft
– Maximize number of satisfied soft clauses
– Minimize number of unsatisfied soft clauses

• Partial MaxSAT:
– Hard clauses must be satisfied
– Minimize number of unsatisfied soft clauses

• Weighted MaxSAT
– Weights associated with (soft) clauses
– Minimize sum of weights of unsatisfied clauses

• Weighted Partial MaxSAT
– Weights associated with soft clauses
– Hard clauses must be satisfied
– Minimize sum of weights of unsatisfied soft clauses

MaxSAT Problem(s)

• MaxSAT:
– All clauses are soft
– Maximize number of satisfied soft clauses
– Minimize number of unsatisfied soft clauses

• Partial MaxSAT:
– Hard clauses must be satisfied
– Minimize number of unsatisfied soft clauses

• Weighted MaxSAT
– Weights associated with (soft) clauses
– Minimize sum of weights of unsatisfied clauses

• Weighted Partial MaxSAT
– Weights associated with soft clauses
– Hard clauses must be satisfied
– Minimize sum of weights of unsatisfied soft clauses

MaxSAT Problem(s)

• MaxSAT:
– All clauses are soft
– Maximize number of satisfied soft clauses
– Minimize number of unsatisfied soft clauses

• Partial MaxSAT:
– Hard clauses must be satisfied
– Minimize number of unsatisfied soft clauses

• Weighted MaxSAT
– Weights associated with (soft) clauses
– Minimize sum of weights of unsatisfied clauses

• Weighted Partial MaxSAT
– Weights associated with soft clauses
– Hard clauses must be satisfied
– Minimize sum of weights of unsatisfied soft clauses

Definitions

• Cost of assignment:
– Sum of weights of unsatisfied clauses

• Optimum solution (OPT):
– Assignment with minimum cost

• Upper Bound (UB):
– Assignment with cost not less than OPT
– E.g.

P
ci2' wi + 1; hard clauses may be inconsistent

• Lower Bound (LB):
– No assignment with cost no larger than LB
– E.g. �1; it may be possible to satisfy all soft clauses

Definitions

• Cost of assignment:
– Sum of weights of unsatisfied clauses

• Optimum solution (OPT):
– Assignment with minimum cost

• Upper Bound (UB):
– Assignment with cost not less than OPT
– E.g.

P
ci2' wi + 1; hard clauses may be inconsistent

• Lower Bound (LB):
– No assignment with cost no larger than LB
– E.g. �1; it may be possible to satisfy all soft clauses

LB

OPT

UB

Iterative SAT Solving – Refine UB

LB

OPT

UB0

• Require
P

wi ri UB0 � 1

• While SAT, refine UB
– New UB given by cost of unsatisfied clauses, i.e.

P
wi ri

• Repeat until constraint
P

wi ri UBk � 1 becomes UNSAT
– UBk denotes the optimum value

• Worst-case # of iterations exponential on instance size

• Example tools:
– Minisat+: CNF encoding of constraints [ES06]

– SAT4J: native handling of constraints [LBP10]

– QMaxSat: CNF encoding of constraints [KZFH12]

– ...

Iterative SAT Solving – Refine UB

LB

OPT

UB0UB1

• Require
P

wi ri UB0 � 1
• While SAT, refine UB

– New UB given by cost of unsatisfied clauses, i.e.
P

wi ri

• Repeat until constraint
P

wi ri UBk � 1 becomes UNSAT
– UBk denotes the optimum value

• Worst-case # of iterations exponential on instance size

• Example tools:
– Minisat+: CNF encoding of constraints [ES06]

– SAT4J: native handling of constraints [LBP10]

– QMaxSat: CNF encoding of constraints [KZFH12]

– ...

Iterative SAT Solving – Refine UB

LB

OPT

UB0UB2

• Require
P

wi ri UB0 � 1
• While SAT, refine UB

– New UB given by cost of unsatisfied clauses, i.e.
P

wi ri

• Repeat until constraint
P

wi ri UBk � 1 becomes UNSAT
– UBk denotes the optimum value

• Worst-case # of iterations exponential on instance size

• Example tools:
– Minisat+: CNF encoding of constraints [ES06]

– SAT4J: native handling of constraints [LBP10]

– QMaxSat: CNF encoding of constraints [KZFH12]

– ...

Iterative SAT Solving – Refine UB

LB

OPT

UB0UBk

• Require
P

wi ri UB0 � 1
• While SAT, refine UB

– New UB given by cost of unsatisfied clauses, i.e.
P

wi ri
• Repeat until constraint

P
wi ri UBk � 1 becomes UNSAT

– UBk denotes the optimum value

• Worst-case # of iterations exponential on instance size

• Example tools:
– Minisat+: CNF encoding of constraints [ES06]

– SAT4J: native handling of constraints [LBP10]

– QMaxSat: CNF encoding of constraints [KZFH12]

– ...

Iterative SAT Solving – Refine UB

LB

OPT

UB0UBk

• Require
P

wi ri UB0 � 1
• While SAT, refine UB

– New UB given by cost of unsatisfied clauses, i.e.
P

wi ri
• Repeat until constraint

P
wi ri UBk � 1 becomes UNSAT

– UBk denotes the optimum value

• Worst-case # of iterations exponential on instance size

• Example tools:
– Minisat+: CNF encoding of constraints [ES06]

– SAT4J: native handling of constraints [LBP10]

– QMaxSat: CNF encoding of constraints [KZFH12]

– ...

Iterative SAT Solving – Refine UB

LB

OPT

UB0UBk

• Require
P

wi ri UB0 � 1
• While SAT, refine UB

– New UB given by cost of unsatisfied clauses, i.e.
P

wi ri
• Repeat until constraint

P
wi ri UBk � 1 becomes UNSAT

– UBk denotes the optimum value

• Worst-case # of iterations exponential on instance size

• Example tools:
– Minisat+: CNF encoding of constraints [ES06]

– SAT4J: native handling of constraints [LBP10]

– QMaxSat: CNF encoding of constraints [KZFH12]

– ...

Fu&Malik’s Core-Guided Approach

x6 _ x2 ¬x6 _ x2 ¬x2 _ x1 ¬x1

¬x6 _ x8 x6 _ ¬x8 x2 _ x4 ¬x4 _ x5

x7 _ x5 ¬x7 _ x5 ¬x5 _ x3 ¬x3

Example CNF formula

Fu&Malik’s Core-Guided Approach

x6 _ x2 ¬x6 _ x2 ¬x2 _ x1 ¬x1

¬x6 _ x8 x6 _ ¬x8 x2 _ x4 ¬x4 _ x5

x7 _ x5 ¬x7 _ x5 ¬x5 _ x3 ¬x3

Formula is UNSAT; OPT |'|� 1; Get unsat core

Fu&Malik’s Core-Guided Approach

x6 _ x2 ¬x6 _ x2 ¬x2 _ x1_r1 ¬x1_r2

¬x6 _ x8 x6 _ ¬x8 x2 _ x4_r3 ¬x4 _ x5_r4

x7 _ x5 ¬x7 _ x5 ¬x5 _ x3_r5 ¬x3_r6

P6
i=1 ri 1

Add relaxation variables and AtMost1 constraint

Fu&Malik’s Core-Guided Approach

x6 _ x2 ¬x6 _ x2 ¬x2 _ x1_r1 ¬x1_r2

¬x6 _ x8 x6 _ ¬x8 x2 _ x4_r3 ¬x4 _ x5_r4

x7 _ x5 ¬x7 _ x5 ¬x5 _ x3_r5 ¬x3_r6

P6
i=1 ri 1

Formula is (again) UNSAT; OPT |'|� 2; Get unsat core

Fu&Malik’s Core-Guided Approach

x6 _ x2_r7 ¬x6 _ x2_r8 ¬x2 _ x1_r1_r9 ¬x1_r2_r10

¬x6 _ x8 x6 _ ¬x8 x2 _ x4_r3 ¬x4 _ x5_r4

x7 _ x5_r11 ¬x7 _ x5_r12 ¬x5 _ x3_r5_r13 ¬x3_r6_r14

P6
i=1 ri 1

P14
i=7 ri 1

Add new relaxation variables and AtMost1 constraint

Fu&Malik’s Core-Guided Approach

x6 _ x2_r7 ¬x6 _ x2_r8 ¬x2 _ x1_r1_r9 ¬x1_r2_r10

¬x6 _ x8 x6 _ ¬x8 x2 _ x4_r3 ¬x4 _ x5_r4

x7 _ x5_r11 ¬x7 _ x5_r12 ¬x5 _ x3_r5_r13 ¬x3_r6_r14

P6
i=1 ri 1

P14
i=7 ri 1

Instance is now SAT

Fu&Malik’s Core-Guided Approach

x6 _ x2_r7 ¬x6 _ x2_r8 ¬x2 _ x1_r1_r9 ¬x1_r2_r10

¬x6 _ x8 x6 _ ¬x8 x2 _ x4_r3 ¬x4 _ x5_r4

x7 _ x5_r11 ¬x7 _ x5_r12 ¬x5 _ x3_r5_r13 ¬x3_r6_r14

P6
i=1 ri 1

P14
i=7 ri 1

MaxSAT solution is |'|� I = 12� 2 = 10

Organization of Fu&Malik’s Algorithm

• Clauses characterized as:
– Soft: initial set of soft clauses
– Hard: initially hard, or added during execution of algorithm

I E.g. clauses from AtMost1 constraints

• While exist unsatisfiable cores [FM06]

– Add fresh set B of relaxation variables to soft clauses in core
– Add new AtMost1 constraint

X

bi2B

bi 1

I At most 1 relaxation variable from set B can take value 1

• (Partial) MaxSAT solution is |'|� I

– I: number of iterations (⌘ number of computed unsat cores)

• Can be adapted for weighted MaxSAT [ABL09a,MMSP09]

Organization of Fu&Malik’s Algorithm

• Clauses characterized as:
– Soft: initial set of soft clauses
– Hard: initially hard, or added during execution of algorithm

I E.g. clauses from AtMost1 constraints

• While exist unsatisfiable cores [FM06]

– Add fresh set B of relaxation variables to soft clauses in core
– Add new AtMost1 constraint

X

bi2B

bi 1

I At most 1 relaxation variable from set B can take value 1

• (Partial) MaxSAT solution is |'|� I

– I: number of iterations (⌘ number of computed unsat cores)

• Can be adapted for weighted MaxSAT [ABL09a,MMSP09]

Oracle-Based MaxSAT Solving I

• Iterative: [MHLPMS13]

– Linear search SAT/UNSAT (refine UB) [e.g. LBP10]

– Linear search UNSAT/SAT (refine LB)
– Binary search [e.g. FM06]

– Bit-based
– Mixed linear/binary search [e.g. KZFH12]

• Core-Guided: [MHLPMS13,ABL13]

– FM/(W)MSU1.X/WPM1 [FM06,MSM08,MMSP09,ABL09a,ABGL12]

– (W)MSU3 [MSP07]

– (W)MSU4 [MSP08]

– (W)PM2 [ABL09a,ABL09b,ABL10,ABGL13]

– Core-guided binary search (w/ disjoint cores) [HMMS11,MHMS12]

I Bin-Core, Bin-Core-Dis, Bin-Core-Dis2

• Iterative subsetting [DB11,DB13a,DB13b]

Oracle MaxSAT Solving II

• A sample of recent algorithms:

Algorithm # Oracle Calls Reference
Linear search SU Exponential [e.g. LP10]

Binary search Linear [e.g. FM06]

WMSU1/WPM1 Exponential* [FM06,MSM08,MMSP09,ABL09a,ABGL12]

WPM2 Exponential* [ABL10,ABGL13]

Bin-Core-Dis Linear [HMMS11,MHMS12]

Iterative subsetting Exponential [DB11,DB13a,DB13b]

* Weighted case; depends on computed cores

• Example MaxSAT solvers:
– MSUnCore; WPM1, WPM2; QMaxSAT; SAT4J; etc.

Outline

CNF Encodings

SAT Embeddings

SAT Oracles
MUS Extraction
MaxSAT
2QBF

What Next in SAT-Based Problem Solving?

Problem Statement

[GMN09]

Given: 9X8Y .�, where � is a propositional formula

Question: Is there an assignment ⌧ to X such that 8Y .�[X/⌧]?

Example

9x1, x2 8y1, y2. (x1 ! y1) ^ (x2 ! y2)

solution: x1 = 0, x2 = 0

Problem Statement

[GMN09]

Given: 9X8Y .�, where � is a propositional formula

Question: Is there an assignment ⌧ to X such that 8Y .�[X/⌧]?

Example

9x1, x2 8y1, y2. (x1 ! y1) ^ (x2 ! y2)

solution: x1 = 0, x2 = 0

Motivation

• ⌃P
2 complete

• interesting problems in this class, e.g. certain nonmonotonic
reasoning, aspects of model checking, conformant planning

• separate track at QBF Eval

Looking at Assignments

Y

X

⇠

µ

Looking at Assignments

Y

X

⇠

µ

1

Looking at Assignments

Y

X

⇠

µ

11 0 . . .
. . .

0 . . .
. . .

1

Looking at Assignments

Y

X

⇠

µ

11 0 . . .
. . .

0 . . .
. . .

1

⌧ 1 1 . . . 1 1 . . . 1

Looking at Assignments

Y

X

⇠

µ

�[Y /µ]

11 0 . . .
. . .

0 . . .
. . .

1

⌧ 1 1 . . . 1 1 . . . 1

Expanding 9X8Y .� into SAT

9X8Y . � �! SAT

0

@
^

µ2B|Y |

�[Y /µ]

1

A

Example

9x1, x28y1, y2. (x1 $ y1) ^ (x2 $ y2) ^ (x̄1 _ x̄2)

Expansion:
(x1 $ 0) ^ (x2 $ 0) ^ (x̄1 _ x̄2)

^ (x1 $ 0) ^ (x2 $ 1) ^ (x̄1 _ x̄2)
^ (x1 $ 1) ^ (x2 $ 0) ^ (x̄1 _ x̄2)
^

Expanding 9X8Y .� into SAT

9X8Y . � �! SAT

0

@
^

µ2B|Y |

�[Y /µ]

1

A

Example

9x1, x28y1, y2. (x1 $ y1) ^ (x2 $ y2) ^ (x̄1 _ x̄2)

Expansion:
(x1 $ 0) ^ (x2 $ 0) ^ (x̄1 _ x̄2)

^ (x1 $ 0) ^ (x2 $ 1) ^ (x̄1 _ x̄2)
^ (x1 $ 1) ^ (x2 $ 0) ^ (x̄1 _ x̄2)
^ (x1 $ 1) ^ (x2 $ 1) ^ (x̄1 _ x̄2)

Expanding 9X8Y .� into SAT

9X8Y . � �! SAT

0

@
^

µ2B|Y |

�[Y /µ]

1

A

Example

9x1, x28y1, y2. (x1 $ y1) ^ (x2 $ y2) ^ (x̄1 _ x̄2)

Expansion:
(x1 $ 0) ^ (x2 $ 0) ^ (x̄1 _ x̄2)

^ (x1 $ 0) ^ (x2 $ 1) ^ (x̄1 _ x̄2)
^ (x1 $ 1) ^ (x2 $ 0) ^ (x̄1 _ x̄2)
^ (x1 $ 1) ^ (x2 $ 1) ^ (x̄1 _ x̄2)

Abstraction of 9X8Y .�

• Consider only some set of assignments ! ✓ B
|Y |

^

µ2!
�[Y /µ]

• If a solution to the problem is a solution to the abstraction

^

µ2B|Y |

�[Y /µ])
^

µ2!
�[Y /µ]

• But not the other way around, a solution to an abstraction is not
necessarily a solution to the original problem.

Abstraction of 9X8Y .�

• Consider only some set of assignments ! ✓ B
|Y |

^

µ2!
�[Y /µ]

• If a solution to the problem is a solution to the abstraction

^

µ2B|Y |

�[Y /µ])
^

µ2!
�[Y /µ]

• But not the other way around, a solution to an abstraction is not
necessarily a solution to the original problem.

Abstraction of 9X8Y .�

• Consider only some set of assignments ! ✓ B
|Y |

^

µ2!
�[Y /µ]

• If a solution to the problem is a solution to the abstraction

^

µ2B|Y |

�[Y /µ])
^

µ2!
�[Y /µ]

• But not the other way around, a solution to an abstraction is not
necessarily a solution to the original problem.

CEGAR Loop

input : 9X8Y .�
output: (true, ⌧) if there exists ⌧ s.t. 8Y .�[X/⌧],

(false, –) otherwise

! ;;
while true do

(outc1, ⌧) SAT(
V

µ2! �[Y /µ]); // find a candidate

if outc1 = false then

return (false,–); // no candidate found

end

if “ ⌧ is a solution ”; // solution check

then

return (true, ⌧)
else

“Grow ! ”; // refinement

end

end

CEGAR Loop

input : 9X8Y .�
output: (true, ⌧) if there exists ⌧ s.t. 8Y .�[X/⌧],

(false, –) otherwise

! ;;
while true do

(outc1, ⌧) SAT(
V

µ2! �[Y /µ]); // find a candidate

if outc1 = false then

return (false,–); // no candidate found

end

if “ ⌧ is a solution ”; // solution check

then

return (true, ⌧)
else

“Grow ! ”; // refinement

end

end

Testing for Solution

A value ⌧ is a solution to 9X8Y .� i↵

8Y .�[X/⌧] i↵ UNSAT(¬�[X/⌧])

If SAT(¬�[X/⌧]) by some µ, then µ is a counterexample to ⌧

Example
9x1, x2 8y1, y2. (x1 ! y1) ^ (x2 ! y2)

• candidate: x1 = 1, x2 = 1

• counterexamples: y1 = 0, y2 = 0
y1 = 0, y2 = 1
y1 = 1, y2 = 0

Testing for Solution

A value ⌧ is a solution to 9X8Y .� i↵

8Y .�[X/⌧] i↵ UNSAT(¬�[X/⌧])

If SAT(¬�[X/⌧]) by some µ, then µ is a counterexample to ⌧

Example
9x1, x2 8y1, y2. (x1 ! y1) ^ (x2 ! y2)

• candidate: x1 = 1, x2 = 1

• counterexamples: y1 = 0, y2 = 0
y1 = 0, y2 = 1
y1 = 1, y2 = 0

Testing for Solution

A value ⌧ is a solution to 9X8Y .� i↵

8Y .�[X/⌧] i↵ UNSAT(¬�[X/⌧])

If SAT(¬�[X/⌧]) by some µ, then µ is a counterexample to ⌧

Example
9x1, x2 8y1, y2. (x1 ! y1) ^ (x2 ! y2)

• candidate: x1 = 1, x2 = 1

• counterexamples: y1 = 0, y2 = 0
y1 = 0, y2 = 1
y1 = 1, y2 = 0

Refinement

Y

X

⌧

µ

1 1 1

⌧1 1 1 1 0

⌧2 1 1 1 0

0.

!

Refinement

Y

X

⌧⌧

µ

1 1 1

⌧1 1 1 1 0

⌧2 1 1 1 0

0.

!
!0

Refinement

Y

X

⌧⌧

µ

1 1 1

⌧1⌧1 1 1 1 00

⌧2⌧2 1 1 1 00

0.

!
!0

AReQS (Abstraction Refinement-based QBF Solver)

input : 9X8Y .�
output: (true, ⌧) if there exists ⌧ s.t. 8Y .�[X/⌧],

(false, –) otherwise

! ;; // start with the empty expansion

while true do

(outc1, ⌧) SAT(
V

µ2! �[Y /µ]); // find a candidate

if outc1 = false then

return (false,–); // no candidate found

end

(outc2, µ) SAT (¬�[X/⌧]); // find a counterexample

if outc2 = false then

return (true, ⌧) ; // candidate is a solution

end

! ! [{µ} ; // refine

end

AReQS — Conclusions

• ... is a CEGAR-based algorithm for 2QBF [JMS11]

• ... uses SAT solver as an oracle

• ... gradually expands given 2QBF into a SAT formula

• Can be extended to arbitrary number of levels by recursion
(RAReQS) [JKMSC12]

AReQS — Conclusions

• ... is a CEGAR-based algorithm for 2QBF [JMS11]

• ... uses SAT solver as an oracle

• ... gradually expands given 2QBF into a SAT formula

• Can be extended to arbitrary number of levels by recursion
(RAReQS) [JKMSC12]

AReQS — Conclusions

• ... is a CEGAR-based algorithm for 2QBF [JMS11]

• ... uses SAT solver as an oracle

• ... gradually expands given 2QBF into a SAT formula

• Can be extended to arbitrary number of levels by recursion
(RAReQS) [JKMSC12]

AReQS — Conclusions

• ... is a CEGAR-based algorithm for 2QBF [JMS11]

• ... uses SAT solver as an oracle

• ... gradually expands given 2QBF into a SAT formula

• Can be extended to arbitrary number of levels by recursion
(RAReQS) [JKMSC12]

Outline

CNF Encodings

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?

SAT-Based Problem Solving – A Glimpse of the Future

• Remarkable (and increasing) number of applications of SAT

• Can use SAT for solving problems in di↵erent complexity classes
– FPNP[log n], FPNP, ...
– E.g. tackling problems in the polynomial hierarchy

• Many new recent algorithms for concrete problems
– MaxSAT
– MUSes
– MCSes
– Enumeration problems
– ...

• Better encodings?

• White-box vs. black-box approaches?
– But use of oracles inevitable in many cases

Thank You

References – DPLL & CDCL SAT Solvers I

DP60 M. Davis, H. Putnam: A Computing Procedure for Quantification Theory. J.
ACM 7(3): 201-215 (1960)

DLL62 M. Davis, G. Logemann, D. Loveland: A machine program for theorem-
proving. Commun. ACM 5(7): 394-397 (1962)

MSS96 J. Marques-Silva, K. Sakallah: GRASP - a new search algorithm for satisfia-
bility. ICCAD 1996: 220-227

BS97 R. Bayardo Jr., R. Schrag: Using CSP Look-Back Techniques to Solve Real-
World SAT Instances. AAAI/IAAI 1997: 203-208

Z97 H. Zhang: SATO: An E�cient Propositional Prover. CADE 1997: 272-275

GSK98 C. Gomes, B. Selman, H. Kautz: Boosting Combinatorial Search Through
Randomization. AAAI 1998: 431-437

MSS99 J. Marques-Silva, K. Sakallah: GRASP: A Search Algorithm for Propositional
Satisfiability. IEEE Trans. Computers 48(5): 506-521 (1999)

BMS00 L. Baptista, J. Marques-Silva: Using Randomization and Learning to Solve
Hard Real-World Instances of Satisfiability. CP 2000: 489-494

MMZZM01 M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik: Cha↵: Engineering
an E�cient SAT Solver. DAC 2001: 530-535

References – DPLL & CDCL SAT Solvers II

GN02 E. Goldberg, Y. Novikov: BerkMin: A Fast and Robust Sat-Solver. DATE
2002: 142-149

ES03 N. Een, Niklas Sorensson: An Extensible SAT-solver. SAT 2003: 502-518

PD07 K. Pipatsrisawat, A. Darwiche: A Lightweight Component Caching Scheme
for Satisfiability Solvers. SAT 2007: 294-299

H07 J. Huang: The E↵ect of Restarts on the E�ciency of Clause Learning. IJCAI
2007: 2318-2323

ABHJS08 G. Audemard, L. Bordeaux, Y. Hamadi, S. Jabbour, L. Sais: A Generalized
Framework for Conflict Analysis. SAT 2008: 21-27

B08 A. Biere: PicoSAT Essentials. JSAT 4(2-4): 75-97 (2008)

SB09 N. Sorensson, A. Biere: Minimizing Learned Clauses. SAT 2009: 237-243

VG09 A. Van Gelder: Improved Conflict-Clause Minimization Leads to Improved
Propositional Proof Traces. SAT 2009: 141-146

AS09 G. Audemard, L. Simon: Predicting Learnt Clauses Quality in Modern SAT
Solvers. IJCAI 2009: 399-404

SSS12 A. Sabharwal, H. Samulowitz, M. Sellmann: Learning Back-Clauses in SAT.
SAT 2012: 498-499

References – CNF Encodings I

T68 G. Tseitin: On the complexity of derivation in propositional calculus. In:
Slisenko, A.O. (ed.) Studies in Constructive Mathematics and Mathematical
Logic, pp. 115-125 (1970)

B68 K. Batcher: Sorting Networks and Their Applications. AFIPS Spring Joint
Computing Conference 1968: 307-314

PG86 David A. Plaisted, Steven Greenbaum: A Structure-Preserving Clause Form
Translation. J. Symb. Comput. 2(3): 293-304 (1986)

dK89 Johan de Kleer: A Comparison of ATMS and CSP Techniques. IJCAI 1989:
290-296

GJ96 R. Genisson, P. Jegou: Davis and Putnam were Already Checking Forward.
ECAI 1996: 180-184

W98 J. Warners: A Linear-Time Transformation of Linear Inequalities into Con-
junctive Normal Form. Inf. Process. Lett. 68(2): 63-69 (1998)

W00 T. Walsh: SAT v CSP. CP 2000: 441-456

References – CNF Encodings II

FP01 A. Frisch, T. Peugniez: Solving Non-Boolean Satisfiability Problems with
Stochastic Local Search. IJCAI 2001: 282-290

FS02 T. Fahle, M. Sellmann: Cost Based Filtering for the Constrained Knapsack
Problem. Annals OR 115(1-4): 73-93 (2002)

S03 M. Sellmann: Approximated Consistency for Knapsack Constraints. CP 2003:
679-693

F03 M. Trick: A Dynamic Programming Approach for Consistency and Propaga-
tion for Knapsack Constraints. Annals OR 118(1-4): 73-84 (2003)

S05 C. Sinz: Towards an Optimal CNF Encoding of Boolean Cardinality Con-
straints. CP 2005: 827-831

ES06 N. Een, N. Sorensson: Translating Pseudo-Boolean Constraints into SAT.
JSAT 2(1-4): 1-26 (2006)

G07 M. Gavanelli: The Log-Support Encoding of CSP into SAT. CP 2007: 815-
822

P07 S. Prestwich: Variable Dependency in Local Search: Prevention Is Better
Than Cure. SAT 2007: 107-120

References – CNF Encodings III

ANORC09 R. Asin, R. Nieuwenhuis, A. Oliveras, E. RodrÃguez-Carbonell: Cardinality
Networks and Their Applications. SAT 2009: 167-180

BBR09 O. Bailleux, Y. Boufkhad, O. Roussel: New Encodings of Pseudo-Boolean
Constraints into CNF. SAT 2009: 181-194

TTKB09 Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa, Mutsunori Banbara: Com-
piling finite linear CSP into SAT. Constraints 14(2): 254-272 (2009)

CZI10 M. Codish, M. Zazon-Ivry: Pairwise Cardinality Networks. LPAR (Dakar)
2010: 154-172

ANORC11a R. Asin, R. Nieuwenhuis, A. Oliveras, E. RodrÃguez-Carbonell: Cardinality
Networks: a theoretical and empirical study. Constraints 16(2): 195-221
(2011)

ANORC11b I. Abio, R. Nieuwenhuis, A. Oliveras, E. Rodriguez-Carbonell: BDDs for
Pseudo-Boolean Constraints - Revisited. SAT 2011

References – Embedding SAT Solvers, Iterative MaxSAT &
PBO

MMS06 V. Manquinho, J. Marques-Silva: On Using Cutting Planes in Pseudo-
Boolean Optimization. JSAT 2(1-4): 209-219 (2006)

NOT06 R. Nieuwenhuis, A. Oliveras, C. Tinelli: Solving SAT and SAT Modulo The-
ories: From an abstract Davis–Putnam–Logemann–Loveland procedure to
DPLL(T). J. ACM 53(6): 937-977 (2006)

S07 R. Sebastiani: Lazy Satisability Modulo Theories. JSAT 3(3-4): 141-224
(2007)

BSST09 C. Barrett, R. Sebastiani, S. Seshia, C. Tinelli: Satisfiability Modulo Theories.
Handbook of Satisfiability 2009: 825-885

LBP10 D. Le Berre, A. Parrain: The Sat4j library, release 2.2. JSAT 7(2-3): 59-6
(2010)

KZFH12 M. Koshimura, T. Zhang, H. Fujita, R. Hasegawa: QMaxSAT: A Partial
Max-SAT Solver. JSAT 8(1/2): 95-100 (2012)

References – MUSes I

SP88 J. de Siqueira, J.-F. Puget: Explanation-Based Generalisation of Failures.
ECAI 1988: 339-344

CD91 J. Chinneck, E. Dravnieks: Locating Minimal Infeasible Constraint Sets in
Linear Programs. INFORMS Journal on Computing 3(2): 157-168 (1991)

BDTW93 R. R. Bakker, F. Dikker, F. Tempelman, P. M. Wognum: Diagnosing and
Solving Over-Determined Constraint Satisfaction Problems. IJCAI 1993:
276-281

J01 U. Junker: QUICKXPLAIN: Conflict Detection for Arbitrary Constraint Prop-
agation Algorithms, WMSPC IJCAI 2001

J04 U. Junker: QUICKXPLAIN: Preferred Explanations and Relaxations for Over-
Constrained Problems. AAAI 2004: 167-172

HLSB06 F. Hemery, C. Lecoutre, L. Sais, F. Boussemart: Extracting MUCs from
Constraint Networks. ECAI 2006: 113-117

CMP07 E. Gregoire, B. Mazure, C. Piette: Local-search Extraction of MUSes. Con-
straints 12(3): 325-344 (2007)

vMW08 H. van Maaren, S. Wieringa: Finding Guaranteed MUSes Fast. SAT 2008:
291-304

References – MUSes II

DGHP09 C. Desrosiers, P. Galinier, A. Hertz, S. Paroz: Using heuristics to find minimal
unsatisfiable subformulas in satisfiability problems. J. Comb. Optim. 18(2):
124-150 (2009)

MS10 J. Marques-Silva: Minimal Unsatisfiability: Models, Algorithms and Applica-
tions. ISMVL 2010: 9-14

MSL11 J. Marques-Silva, I. Lynce: On Improving MUS Extraction Algorithms. SAT
2011: 159-173

BMS11 A. Belov, J. Marques-Silva: Accelerating MUS extraction with recursive
model rotation. FMCAD 2011: 37-40

BLMS12 A. Belov, I. Lynce, J. Marques-Silva: Towards E�cient MUS Extraction. AI
Communications, 25(2): 97-116 (2012)

BMS12 A. Belov, J. Marques-Silva: MUSer2: An E�cient MUS Extractor, System
Description. Journal on Satisfiability, Boolean Modeling and Computation,
8: 123-128 (2012)

W12 Siert Wieringa: Understanding, Improving and Parallelizing MUS Finding
Using Model Rotation. CP 2012: 672-687

MSJB13 J. Marques-Silva, M. Janota, A. Belov: Minimal Sets over Monotone Predi-
cates in Boolean Formulae. CAV 2013

References – Core-Guided MaxSAT I

FM06 Z. Fu, S. Malik: On Solving the Partial MAX-SAT Problem. SAT 2006:
252-265

MSP07 J. Marques-Silva, J. Planes: On Using Unsatisfiability for Solving Maximum
Satisfiability CoRR abs/0712.1097: (2007)

MSP08 J. Marques-Silva, Jordi Planes: Algorithms for Maximum Satisfiability using
Unsatisfiable Cores. DATE 2008: 408-413

MSM08 J. Marques-Silva, V. Manquinho: Towards More E↵ective Unsatisfiability-
Based Maximum Satisfiability Algorithms. SAT 2008: 225-230

MMSP09 V. Manquinho, J. Marques Silva, J. Planes: Algorithms for Weighted Boolean
Optimization. SAT 2009: 495-508

ABL09a C. Ansotegui, M. Bonet, J. Levy: Solving (Weighted) Partial MaxSAT
through Satisfiability Testing. SAT 2009: 427-440

ABL09b C. Ansotegui, M. L. Bonet, J. Levy: On Solving MaxSAT Through SAT.
CCIA 2009: 284-292

ABL10 C. Ansotegui, M. Bonet, J. Levy: A New Algorithm for Weighted Partial
MaxSAT. AAAI 2010

HMMS11 F. Heras, A. Morgado, J. Marques-Silva: Core-Guided Binary Search Algo-
rithms for Maximum Satisfiability. AAAI 2011.

References – Core-Guided MaxSAT

DB11 J. Davies, F. Bacchus: Solving MAXSAT by Solving a Sequence of Simpler
SAT Instances. CP 2011: 225-239

MHMS12 A. Morgado, F. Heras, J. Marques-Silva: Improvements to Core-Guided Bi-
nary Search for MaxSAT. SAT 2012.

ABGL12 C. Ansotegui, M. Bonet, J. Gabas, J. Levy: Improving SAT-Based Weighted
MaxSAT Solvers. CP 2012: 86-101

DB13a J. Davies, F. Bacchus: Exploiting the Power of MIP Solvers in MaxSAT. SAT
2013: 166-181

ABL13 C. Ansotegui, M. Bonet, J. Levy: SAT-based MaxSAT algorithms. Artif.
Intell. 196: 77-105 (2013

ABGL13 C. Ansotegui, M. Bonet, J. Gabas and J. Levy: Improving WPM2 for
(Weighted) Partial MaxSAT. CP 2013

DB13b J. Davies and F. Bacchus: Postponing Optimization to Speed Up MaxSAT
Solving. CP 2013

MHLPMS13 A. Morgado, F. Heras, M. Li�ton, J. Planes, J. Marques-Silva: Iterative and
Core-Guided MaxSAT Solving: A Survey and Assessment. Constraints: An
International Journal. In Press (2013)

References – 2QBF & QBF

GMN09 E. Giunchiglia, P. Marin, M. Narizzano: Reasoning with Quantified Boolean
Formulas. Handbook of Satisfiability 2009: 761-780

JMS11 M. Janota, J. Marques-Silva: Abstraction-Based Algorithm for 2QBF. SAT
2011: 230-244

JKMSC12 M. Janota, W. Klieber, J. Marques-Silva, E. Clarke: Solving QBF with Coun-
terexample Guided Refinement. SAT 2012: 114-128

KJMSC13 W. Klieber, M. Janota, J. Marques-Silva, E. Clarke: Solving QBF with Free
Variables. CP 2013

References – Additional References

R65 J. Robinson: A Machine-Oriented Logic Based on the Resolution Principle.
J. ACM 12(1): 23-41 (1965)

C71 S. Cook: The Complexity of Theorem-Proving Procedures. STOC 1971:
151-158

ZM03 L. Zhang, S. Malik: Validating SAT Solvers Using an Independent Resolution-
Based Checker: Practical Implementations and Other Applications. DATE
2003: 10880-10885

SP04 S. Subbarayan, D. Pradhan: NiVER: Non-increasing Variable Elimination
Resolution for Preprocessing SAT Instances. SAT 2004: 276-291

EB05 N. Een, A. Biere: E↵ective Preprocessing in SAT Through Variable and Clause
Elimination. SAT 2005: 61-75

HJB11 M. Heule, M. Jarvisalo, A. Biere: E�cient CNF Simplification Based on
Binary Implication Graphs. SAT 2011: 201-215

JHB12 M. Jarvisalo, M. Heule, A. Biere: Inprocessing Rules. IJCAR 2012: 355-370

IJMS13 A. Ignatiev, M. Janota, J. Marques-Silva: Quantified Maximum Satisfiability:
- A Core-Guided Approach. SAT 2013: 250-266

LB13 J.-M. Lagniez, A. Biere: Factoring Out Assumptions to Speed Up MUS
Extraction. SAT 2013: 276-292

