CDCL SAT Solvers \& SAT-Based Problem Solving

Joao Marques-Silva ${ }^{1,2}$ \& Mikolas Janota ${ }^{2}$

${ }^{1}$ University College Dublin, Ireland
${ }^{2}$ IST/INESC-ID, Lisbon, Portugal

SAT/SMT Summer School 2013
Aalto University, Espoo, Finland

The Success of SAT

- Well-known NP-complete decision problem
- In practice, SAT is a success story of Computer Science - Hundreds (even more?) of practical applications

Part I

CDCL SAT Solvers

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers

What Next in CDCL Solvers?

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers

What Next in CDCL Solvers?

Preliminaries

- Variables: $w, x, y, z, a, b, c, \ldots$
- Literals: $w, \bar{x}, \bar{y}, a, \ldots$, but also $\neg w, \neg y, \ldots$
- Clauses: disjunction of literals or set of literals
- Formula: conjunction of clauses or set of clauses
- Model (satisfying assignment): partial/total mapping from variables to $\{0,1\}$
- Formula can be SAT/UNSAT

Preliminaries

- Variables: $w, x, y, z, a, b, c, \ldots$
- Literals: $w, \bar{x}, \bar{y}, a, \ldots$, but also $\neg w, \neg y, \ldots$
- Clauses: disjunction of literals or set of literals
- Formula: conjunction of clauses or set of clauses
- Model (satisfying assignment): partial/total mapping from variables to $\{0,1\}$
- Formula can be SAT/UNSAT
- Example:

$$
\mathcal{F} \triangleq(r) \wedge(\bar{r} \vee s) \wedge(\bar{w} \vee a) \wedge(\bar{x} \vee b) \wedge(\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
$$

- Example models:
- $\{r, s, a, b, c, d\}$
- $\{r, s, \bar{x}, y, \bar{w}, z, \bar{a}, b, c, d\}$

Resolution

- Resolution rule:

$$
\frac{(\alpha \vee x) \quad(\beta \vee \bar{x})}{(\alpha \vee \beta)}
$$

- Complete proof system for propositional logic

Resolution

- Resolution rule:

$$
\frac{(\alpha \vee x) \quad(\beta \vee \bar{x})}{(\alpha \vee \beta)}
$$

- Complete proof system for propositional logic

- Extensively used with (CDCL) SAT solvers

Resolution

- Resolution rule:

$$
\frac{(\alpha \vee x) \quad(\beta \vee \bar{x})}{(\alpha \vee \beta)}
$$

- Complete proof system for propositional logic

- Extensively used with (CDCL) SAT solvers
- Self-subsuming resolution (with $\alpha^{\prime} \subseteq \alpha$):

$$
\frac{(\alpha \vee x) \quad\left(\alpha^{\prime} \vee \bar{x}\right)}{(\alpha)}
$$

- (α) subsumes $(\alpha \vee x)$

Unit Propagation

$$
\begin{aligned}
\mathcal{F}= & (r) \wedge(\bar{r} \vee s) \wedge \\
& (\bar{w} \vee a) \wedge(\bar{x} \vee \bar{a} \vee b) \\
& (\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
\end{aligned}
$$

Unit Propagation

$$
\begin{aligned}
\mathcal{F}= & (r) \wedge(\bar{r} \vee s) \wedge \\
& (\bar{w} \vee a) \wedge(\bar{x} \vee \bar{a} \vee b) \\
& (\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
\end{aligned}
$$

- Decisions / Variable Branchings:

$$
w=1, x=1, y=1, z=1
$$

Unit Propagation

$$
\begin{aligned}
\mathcal{F}= & (r) \wedge(\bar{r} \vee s) \wedge \\
& (\bar{w} \vee a) \wedge(\bar{x} \vee \bar{a} \vee b) \\
& (\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
\end{aligned}
$$

- Decisions / Variable Branchings:

$$
\begin{equation*}
w=1, x=1, y=1, z=1 \tag{4}
\end{equation*}
$$

Level Dec. Unit Prop.

$$
\emptyset
$$

$$
r \longrightarrow s
$$

$$
1
$$

$$
2
$$

$$
3
$$

Unit Propagation

$$
\begin{aligned}
\mathcal{F}= & (r) \wedge(\bar{r} \vee s) \wedge \\
& (\bar{w} \vee a) \wedge(\bar{x} \vee \bar{a} \vee b) \\
& (\bar{y} \vee \bar{z} \vee c) \wedge(\bar{b} \vee \bar{c} \vee d)
\end{aligned}
$$

- Decisions / Variable Branchings:
$w=1, x=1, y=1, z=1$
- Additional definitions:
- Antecedent (or reason) of an implied assignment
- $(\bar{b} \vee \bar{c} \vee d)$ for d
- Associate assignment with decision levels
- $w=1 @ 1, x=1$ @ $2, y=1 @ 3, z=1 @ 4$
- $r=1 @ 0, d=1 @ 4, \ldots$

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers

What Next in CDCL Solvers?

The DPLL Algorithm

- Optional: pure literal rule

The DPLL Algorithm

- Optional: pure literal rule

The DPLL Algorithm

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers

What Next in CDCL Solvers?

What is a CDCL SAT Solver?

- Extend DPLL SAT solver with:
- Clause learning \& non-chronological backtracking
- Exploit UIPs
[MSS96,SSS12]
- Minimize learned clauses
[SB09,VG09]
- Opportunistically delete clauses
- Search restarts
- Lazy data structures
- Watched literals
[MMZZM01]
- Conflict-guided branching
- Lightweight branching heuristics
[MMZZM01]
- Phase saving

How Significant are CDCL SAT Solvers?

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers
Clause Learning, UIPs \& Minimization Search Restarts \& Lazy Data Structures

What Next in CDCL Solvers?

Clause Learning

Level Dec. Unit Prop.
$0 \emptyset$
1

2

Clause Learning

Level Dec. Unit Prop.

- Analyze conflict
- Reasons: x and z
- Decision variable \& literals assigned at lower decision levels
- Create new clause: $(\bar{x} \vee \bar{z})$
- Can relate clause learning with resolution

Clause Learning

Level Dec. Unit Prop.

- Analyze conflict
- Reasons: x and z
- Decision variable \& literals assigned at lower decision levels
- Create new clause: $(\bar{x} \vee \bar{z})$
- Can relate clause learning with resolution

Clause Learning

Level Dec. Unit Prop.

- Analyze conflict
- Reasons: x and z
- Decision variable \& literals assigned at lower decision levels
- Create new clause: $(\bar{x} \vee \bar{z})$
- Can relate clause learning with resolution

Clause Learning

Level Dec. Unit Prop.

- Analyze conflict
- Reasons: x and z
- Decision variable \& literals assigned at lower decision levels
- Create new clause: $(\bar{x} \vee \bar{z})$
- Can relate clause learning with resolution
- Learned clauses result from (selected) resolution operations

Clause Learning - After Bracktracking

Clause Learning - After Bracktracking

- Clause $(\bar{x} \vee \bar{z})$ is asserting at decision level 1

Clause Learning - After Bracktracking

- Clause $(\bar{x} \vee \bar{z})$ is asserting at decision level 1

Clause Learning - After Bracktracking

Level	Dec.	Unit Prop.	Level	Dec.	Unit Prop.
0	\emptyset		0	\emptyset	
1	x		1	$x \longrightarrow \bar{z}$	
2	y				
3	z				

- Clause $(\bar{x} \vee \bar{z})$ is asserting at decision level 1
- Learned clauses are always asserting
- Backtracking differs from plain DPLL:
- Always bactrack after a conflict

Unique Implication Points (UIPs)

Level Dec. Unit Prop.

Unique Implication Points (UIPs)

- Learn clause $(\bar{w} \vee \bar{x} \vee \bar{y} \vee \bar{z})$

Unique Implication Points (UIPs)

- Learn clause ($\bar{w} \vee \bar{x} \vee \bar{y} \vee \bar{z}$)
- But a is an UIP

Unique Implication Points (UIPs)

- Learn clause $(\bar{w} \vee \bar{x} \vee \bar{y} \vee \bar{z})$
- But a is an UIP
- Learn clause $(\bar{w} \vee \bar{x} \vee \bar{a})$

Multiple UIPs

Level Dec. Unit Prop.

Multiple UIPs

Multiple UIPs

- First UIP:
- Learn clause ($\bar{w} \vee \bar{y} \vee \bar{a}$)
- But there can be more than 1 UIP

Multiple UIPs

- First UIP:
- Learn clause $(\bar{w} \vee \bar{y} \vee \bar{a})$
- But there can be more than 1 UIP
- Second UIP:
- Learn clause $(\bar{x} \vee \bar{z} \vee a)$

Multiple UIPs

- First UIP:
- Learn clause $(\bar{w} \vee \bar{y} \vee \bar{a})$
- But there can be more than 1 UIP
- Second UIP:
- Learn clause $(\bar{x} \vee \bar{z} \vee a)$
- In practice smaller clauses more effective
- Compare with $(\bar{w} \vee \bar{x} \vee \bar{y} \vee \bar{z})$

Multiple UIPs

- First UIP:
- Learn clause $(\bar{w} \vee \bar{y} \vee \bar{a})$
- But there can be more than 1 UIP
- Second UIP:
- Learn clause ($\bar{x} \vee \bar{z} \vee a$)
- In practice smaller clauses more effective
- Compare with ($\bar{w} \vee \bar{x} \vee \bar{y} \vee \bar{z}$)
- Multiple UIPs proposed in GRASP
- First UIP learning proposed in Chaff
- Not used in recent state of the art CDCL SAT solvers

Multiple UIPs

- First UIP:
- Learn clause $(\bar{w} \vee \bar{y} \vee \bar{a})$
- But there can be more than 1 UIP
- Second UIP:
- Learn clause ($\bar{x} \vee \bar{z} \vee a$)
- In practice smaller clauses more effective
- Compare with ($\bar{w} \vee \bar{x} \vee \bar{y} \vee \bar{z}$)
- Not used in recent state of the art CDCL SAT solvers
- Recent results show it can be beneficial on current instances

Clause Minimization I

Clause Minimization I

- Learn clause $(\bar{x} \vee \bar{y} \vee \bar{z} \vee \bar{b})$

Clause Minimization I

- Learn clause ($\bar{x} \vee \bar{y} \vee \bar{z} \vee \bar{b})$
- Apply self-subsuming resolution (i.e. local minimization)

Clause Minimization I

- Learn clause $(\bar{x} \vee \bar{y} \vee \bar{z} \vee \bar{b})$
- Apply self-subsuming resolution (i.e. local minimization)

Clause Minimization I

- Learn clause $(\bar{x} \vee \bar{y} \vee \bar{z} \vee \bar{b})$
- Apply self-subsuming resolution (i.e. local minimization)
- Learn clause $(\bar{x} \vee \bar{y} \vee \bar{z})$

Clause Minimization II

Clause Minimization II

Clause Minimization II

- Learn clause ($\bar{w} \vee \bar{x} \vee \bar{c}$)
- Cannot apply self-subsuming resolution
- Resolving with reason of c yields $(\bar{w} \vee \bar{x} \vee \bar{a} \vee \bar{b})$

Clause Minimization II

- Learn clause ($\bar{w} \vee \bar{x} \vee \bar{c}$)
- Cannot apply self-subsuming resolution
- Resolving with reason of c yields $(\bar{w} \vee \bar{x} \vee \bar{a} \vee \bar{b})$
- Can apply recursive minimization

Clause Minimization II

- Learn clause ($\bar{W} \vee \bar{x} \vee \bar{c})$
- Cannot apply self-subsuming resolution
- Resolving with reason of c yields $(\bar{w} \vee \bar{x} \vee \bar{a} \vee \bar{b})$
- Can apply recursive minimization
- Marked nodes: literals in learned clause

Clause Minimization II

- Learn clause $(\bar{W} \vee \bar{x} \vee \bar{c})$
- Cannot apply self-subsuming resolution
- Resolving with reason of c yields $(\bar{w} \vee \bar{x} \vee \bar{a} \vee \bar{b})$
- Can apply recursive minimization
- Marked nodes: literals in learned clause
- Trace back from c until marked nodes or new nodes
- Learn clause if only marked nodes visited

Clause Minimization II

- Learn clause $(\bar{W} \vee \bar{x} \vee \bar{c})$
- Cannot apply self-subsuming resolution
- Resolving with reason of c yields $(\bar{w} \vee \bar{x} \vee \bar{a} \vee \bar{b})$
- Can apply recursive minimization
- Learn clause $(\bar{w} \vee \bar{x})$
- Marked nodes: literals in learned clause
- Trace back from c until marked nodes or new nodes
- Learn clause if only marked nodes visited

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers
Clause Learning, UIPs \& Minimization
Search Restarts \& Lazy Data Structures

What Next in CDCL Solvers?

Search Restarts I

- Heavy-tail behavior:

- 10000 runs, branching randomization on industrial instance
- Use rapid randomized restarts (search restarts)

Search Restarts II

- Restart search after a number of conflicts

Search Restarts II

- Restart search after a number of conflicts
- Increase cutoff after each restart
- Guarantees completeness
- Different policies exist (see refs)

Search Restarts II

- Restart search after a number of conflicts
- Increase cutoff after each restart
- Guarantees completeness
- Different policies exist (see refs)
- Works for SAT \& UNSAT
 instances. Why?

Search Restarts II

- Restart search after a number of conflicts
- Increase cutoff after each restart
- Guarantees completeness
- Different policies exist (see refs)
- Works for SAT \& UNSAT
 instances. Why?
- Learned clauses effective after restart(s)

Data Structures Basics

- Each literal / should access clauses containing /
- Why?

Data Structures Basics

- Each literal / should access clauses containing /
- Why? Unit propagation

Data Structures Basics

- Each literal / should access clauses containing /
- Why? Unit propagation
- Clause with k literals results in k references, from literals to the clause

Data Structures Basics

- Each literal / should access clauses containing /
- Why? Unit propagation
- Clause with k literals results in k references, from literals to the clause
- Number of clause references equals number of literals, L

Data Structures Basics

- Each literal / should access clauses containing /
- Why? Unit propagation
- Clause with k literals results in k references, from literals to the clause
- Number of clause references equals number of literals, L
- Clause learning can generate large clauses
- Worst-case size: $\mathcal{O}(n)$

Data Structures Basics

- Each literal / should access clauses containing /
- Why? Unit propagation
- Clause with k literals results in k references, from literals to the clause
- Number of clause references equals number of literals, L
- Clause learning can generate large clauses
- Worst-case size: $\mathcal{O}(n)$
- Worst-case number of literals: $\mathcal{O}(m n)$

Data Structures Basics

- Each literal / should access clauses containing /
- Why? Unit propagation
- Clause with k literals results in k references, from literals to the clause
- Number of clause references equals number of literals, L
- Clause learning can generate large clauses
- Worst-case size: $\mathcal{O}(n)$
- Worst-case number of literals: $\mathcal{O}(m n)$
- In practice,

Unit propagation slow-down worse than linear as clauses are learned !

Data Structures Basics

- Each literal / should access clauses containing /
- Why? Unit propagation
- Clause with k literals results in k references, from literals to the clause
- Number of clause references equals number of literals, L
- Clause learning can generate large clauses
- Worst-case size: $\mathcal{O}(n)$
- Worst-case number of literals: $\mathcal{O}(m n)$
- In practice,

Unit propagation slow-down worse than linear as clauses are learned !

- Clause learning to be effective requires a more efficient representation:

Data Structures Basics

- Each literal / should access clauses containing /
- Why? Unit propagation
- Clause with k literals results in k references, from literals to the clause
- Number of clause references equals number of literals, L
- Clause learning can generate large clauses
- Worst-case size: $\mathcal{O}(n)$
- Worst-case number of literals: $\mathcal{O}(m n)$
- In practice,

Unit propagation slow-down worse than linear as clauses are learned !

- Clause learning to be effective requires a more efficient representation: Watched Literals

Data Structures Basics

- Each literal / should access clauses containing /
- Why? Unit propagation
- Clause with k literals results in k references, from literals to the clause
- Number of clause references equals number of literals, L
- Clause learning can generate large clauses
- Worst-case size: $\mathcal{O}(n)$
- Worst-case number of literals: $\mathcal{O}(m n)$
- In practice,

Unit propagation slow-down worse than linear as clauses are learned !

- Clause learning to be effective requires a more efficient representation: Watched Literals
- Watched literals are one example of lazy data structures
- But there are others

Watched Literals

- Important states of a clause

literals0 $=4$
literals $1=1$
size $=5$

literals $0=5$
literals1=0
size $=5$

unsatisfied

Watched Literals

- Important states of a clause
- Associate 2 references with each clause

unresolved

unresolved

unit
satisfied

after backtracking to level 4

Watched Literals

- Important states of a clause
- Associate 2 references with each clause
- Deciding unit requires traversing all literals

unresolved

unit
satisfied

after backtracking to level 4

Watched Literals

- Important states of a clause
- Associate 2 references with each clause
- Deciding unit requires traversing all literals
- References unchanged when backtracking

unresolved

unresolved

unit

satisfied

after backtracking to level 4

Additional Key Techniques

- Lightweight branching
- Use conflict to bias variables to branch on, associate score with each variable
- Prefer recent bias by regularly decreasing variable scores

Additional Key Techniques

- Lightweight branching
- Use conflict to bias variables to branch on, associate score with each variable
- Prefer recent bias by regularly decreasing variable scores
- Clause deletion policies
- Not practical to keep all learned clauses
- Delete less used clauses

Additional Key Techniques

- Lightweight branching
- Use conflict to bias variables to branch on, associate score with each variable
- Prefer recent bias by regularly decreasing variable scores
- Clause deletion policies
- Not practical to keep all learned clauses
- Delete less used clauses
- Proven recent techniques:
- Phase saving
- Literal blocks distance

Outline

Basic Definitions

DPLL Solvers

CDCL Solvers

What Next in CDCL Solvers?

CDCL - A Glimpse of the Future

- Clause learning techniques
- Clause learning is the key technique in CDCL SAT solvers
- Many recent papers propose improvements to the basic clause learning approach
- Preprocessing \& inprocessing
- Many recent papers
- Essential in some applications
- Application-driven improvements
- Incremental SAT
- Handling of assumptions due to MUS extractors

Part II

SAT-Based Problem Solving

How to Solve Problems with SAT?

- CNF encodings
- Represent problem as instance of SAT
- E.g. Eager SMT, Pseudo-Boolean constraints, etc.

How to Solve Problems with SAT?

- CNF encodings
- Represent problem as instance of SAT
- E.g. Eager SMT, Pseudo-Boolean constraints, etc.
- Embedding of SAT solvers
- SAT solver used to implement domain specific algorithm
- White-box integration
- E.g. Lazy SMT, Pseudo-Boolean constraints/optimization, etc.

How to Solve Problems with SAT?

- CNF encodings
- Represent problem as instance of SAT
- E.g. Eager SMT, Pseudo-Boolean constraints, etc.
- Embedding of SAT solvers
- SAT solver used to implement domain specific algorithm
- White-box integration
- E.g. Lazy SMT, Pseudo-Boolean constraints/optimization, etc.
- SAT solvers as oracles
- Algorithm invokes SAT solver as an NP oracle
- Black-box integration
- E.g. MaxSAT, MUSes, (2)QBF, etc.

How to Solve Problems with SAT?

- CNF encodings
- Represent problem as instance of SAT
- E.g. Eager SMT, Pseudo-Boolean constraints, etc.
- Embedding of SAT solvers
- SAT solver used to implement domain specific algorithm
- White-box integration
- E.g. Lazy SMT, Pseudo-Boolean constraints/optimization, etc.
- SAT solvers as oracles
- Algorithm invokes SAT solver as an NP oracle
- Black-box integration
- E.g. MaxSAT, MUSes, (2)QBF, etc.
- Note:
- CNF encodings most often used with either black-box or white-box approaches
- SAT techniques adapted in many other domains: QBF, ASP, ILP, CSP, ...

SAT-Based Problem Solving

- Some apps associated with more than one concept: planning, BMC, lazy clause generation, etc.

Examples of SAT-Based Problem Solving I

- Function problems in $\mathrm{FP}^{N P}[\log n]$
- Unweighted Maximum Satisfiability (MaxSAT)
- Minimal Correction Subsets (MCSes)
- Minimal models
- Function problems in FP ${ }^{N P}$
- Weighted Maximum Satisfiability (MaxSAT)
- Minimal Unsatisfiable Subformulas (MUSes)
- Minimal Equivalent Subformulas (MESes)
- Prime implicates
- ...
- Enumeration problems
- Models
- MUSes
- MCSes
- MaxSAT
- ...

Examples of SAT-Based Problem Solving II

- Decision problems in Σ_{2}^{P}
- 2QBF
- ...
- Function problems in $\mathrm{FP}^{\Sigma_{2}^{P}}$
- (Weighted) Quantified MaxSAT (QMaxSAT)
- Smallest MUS (SMUS)
- Decision problems in PSPACE
- QBF
- ...

Outline

CNF Encodings

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?

Outline

CNF Encodings

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?

Encoding to CNF

- What to encode?
- Boolean formulas
- Tseitin's encoding
- Plaisted\&Greenbaum's encoding
- ...
- Cardinality constraints
- Pseudo-Boolean (PB) constraints
- Can also translate to SAT:
- Constraint Satisfaction Problems (CSPs)
- Answer Set Programming (ASP)
- Model Finding
- ...
- Key issues:
- Encoding size
- Arc-consistency?

Outline

CNF Encodings

Boolean Formulas

Cardinality Constraints
Pseudo-Boolean Constraints
Encoding CSPs

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?

Representing Boolean Formulas / Circuits I

- Satisfiability problems can be defined on Boolean circuits/formulas
- Can represent circuits/formulas as CNF formulas
[T68,PG86]
- For each (simple) gate, CNF formula encodes the consistent assignments to the gate's inputs and output
- Given $z=\mathrm{OP}(x, y)$, represent in CNF $z \leftrightarrow \mathrm{OP}(x, y)$
- CNF formula for the circuit is the conjunction of CNF formula for each gate

$$
\mathcal{F}_{c}=(a \vee c) \wedge(b \vee c) \wedge(\bar{a} \vee \bar{b} \vee \bar{c})
$$

$$
\mathcal{F}_{t}=(\bar{r} \vee t) \wedge(\bar{s} \vee t) \wedge(r \vee s \vee \bar{t})
$$

Representing Boolean Formulas / Circuits II

a	b	c	$\mathcal{F}_{c}(\mathrm{a}, \mathrm{b}, \mathrm{c})$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

$$
\mathcal{F}_{c}=(a \vee c) \wedge(b \vee c) \wedge(\bar{a} \vee \bar{b} \vee \bar{c})
$$

Representing Boolean Formulas / Circuits III

- CNF formula for the circuit is the conjunction of the CNF formula for each gate
- Can specify objectives with additional clauses

Representing Boolean Formulas / Circuits III

- CNF formula for the circuit is the conjunction of the CNF formula for each gate
- Can specify objectives with additional clauses

- Note: $z=d \vee(c \wedge(\neg(a \wedge b)))$
- No distinction between Boolean circuits and formulas

Outline

CNF Encodings

Boolean Formulas

Cardinality Constraints
Pseudo-Boolean Constraints
Encoding CSPs

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?

Cardinality Constraints

- How to handle cardinality constraints, $\sum_{j=1}^{n} x_{j} \leq k$?
- How to handle AtMost1 constraints, $\sum_{j=1}^{n} x_{j} \leq 1$?
- General form: $\sum_{j=1}^{n} x_{j} \bowtie k$, with $\bowtie \in\{<, \leq,=, \geq,>\}$
- Solution \#1:
- Use PB solver
- Difficult to keep up with advances in SAT technology
- For SAT/UNSAT, best solvers already encode to CNF
- E.g. Minisat+, but also QMaxSat, MSUnCore, (W)PM2

Cardinality Constraints

- How to handle cardinality constraints, $\sum_{j=1}^{n} x_{j} \leq k$?
- How to handle AtMost1 constraints, $\sum_{j=1}^{n} x_{j} \leq 1$?
- General form: $\sum_{j=1}^{n} x_{j} \bowtie k$, with $\bowtie \in\{<, \leq,=, \geq,>\}$
- Solution \#1:
- Use PB solver
- Difficult to keep up with advances in SAT technology
- For SAT/UNSAT, best solvers already encode to CNF
- E.g. Minisat+, but also QMaxSat, MSUnCore, (W)PM2
- Solution \#2:
- Encode cardinality constraints to CNF
- Use SAT solver

Equals1, AtLeast1 \& AtMost1 Constraints

- $\sum_{j=1}^{n} x_{j}=1$: encode with $\left(\sum_{j=1}^{n} x_{j} \leq 1\right) \wedge\left(\sum_{j=1}^{n} x_{j} \geq 1\right)$
- $\sum_{j=1}^{n} x_{j} \geq 1$: encode with $\left(x_{1} \vee x_{2} \vee \ldots \vee x_{n}\right)$
- $\sum_{j=1}^{n} x_{j} \leq 1$ encode with:
- Pairwise encoding
- Clauses: $\mathcal{O}\left(n^{2}\right)$; No auxiliary variables
- Sequential counter
- Clauses: $\mathcal{O}(n)$; Auxiliary variables: $\mathcal{O}(n)$
- Bitwise encoding
- Clauses: $\mathcal{O}(n \log n)$; Auxiliary variables: $\mathcal{O}(\log n)$
- ...

Bitwise Encoding

- Encode $\sum_{j=1}^{n} x_{j} \leq 1$ with bitwise encoding:
- An example: $x_{1}+x_{2}+x_{3} \leq 1$

Bitwise Encoding

- Encode $\sum_{j=1}^{n} x_{j} \leq 1$ with bitwise encoding:
- Auxiliary variables $v_{0}, \ldots, v_{r-1} ; r=\lceil\log n\rceil$ (with $n>1$)
- If $x_{j}=1$, then $v_{0} \ldots v_{r-1}=b_{0} \ldots b_{r-1}$, the binary encoding of $j-1$ $x_{j} \rightarrow\left(v_{0}=b_{0}\right) \wedge \ldots \wedge\left(v_{r-1}=b_{r-1}\right) \Leftrightarrow\left(\bar{x}_{j} \vee\left(v_{0}=b_{0}\right) \wedge \ldots \wedge\left(v_{r-1}=b_{r-1}\right)\right)$
- An example: $x_{1}+x_{2}+x_{3} \leq 1$

	$j-1$	$v_{1} v_{0}$
x_{1}	0	00
x_{2}	1	01
x_{3}	2	10

Bitwise Encoding

- Encode $\sum_{j=1}^{n} x_{j} \leq 1$ with bitwise encoding:
- Auxiliary variables $v_{0}, \ldots, v_{r-1} \quad ; \quad r=\lceil\log n\rceil$ (with $n>1$)
- If $x_{j}=1$, then $v_{0} \ldots v_{r-1}=b_{0} \ldots b_{r-1}$, the binary encoding of $j-1$ $x_{j} \rightarrow\left(v_{0}=b_{0}\right) \wedge \ldots \wedge\left(v_{r-1}=b_{r-1}\right) \Leftrightarrow\left(\bar{x}_{j} \vee\left(v_{0}=b_{0}\right) \wedge \ldots \wedge\left(v_{r-1}=b_{r-1}\right)\right)$
- Clauses $\left(\bar{x}_{j} \vee\left(v_{i} \leftrightarrow b_{i}\right)\right)=\left(\bar{x}_{j} \vee l_{i}\right), i=0, \ldots, r-1$, where
- $l_{i} \equiv v_{i}$, if $b_{i}=1$
- $l_{i} \equiv \bar{v}_{i}$, otherwise
- An example: $x_{1}+x_{2}+x_{3} \leq 1$

	$j-1$	$v_{1} v_{0}$
x_{1}	0	00
x_{2}	1	01
x_{3}	2	10

$$
\begin{aligned}
& \left(\bar{x}_{1} \vee \bar{v}_{1}\right) \wedge\left(\bar{x}_{1} \vee \bar{v}_{0}\right) \\
& \left(\bar{x}_{2} \vee \bar{v}_{1}\right) \wedge\left(\bar{x}_{2} \vee v_{0}\right) \\
& \left(\bar{x}_{3} \vee v_{1}\right) \wedge\left(\bar{x}_{3} \vee \bar{v}_{0}\right)
\end{aligned}
$$

Bitwise Encoding

- Encode $\sum_{j=1}^{n} x_{j} \leq 1$ with bitwise encoding:
- Auxiliary variables $v_{0}, \ldots, v_{r-1} ; r=\lceil\log n\rceil$ (with $n>1$)
- If $x_{j}=1$, then $v_{0} \ldots v_{r-1}=b_{0} \ldots b_{r-1}$, the binary encoding of $j-1$ $x_{j} \rightarrow\left(v_{0}=b_{0}\right) \wedge \ldots \wedge\left(v_{r-1}=b_{r-1}\right) \Leftrightarrow\left(\bar{x}_{j} \vee\left(v_{0}=b_{0}\right) \wedge \ldots \wedge\left(v_{r-1}=b_{r-1}\right)\right)$
- Clauses $\left(\bar{x}_{j} \vee\left(v_{i} \leftrightarrow b_{i}\right)\right)=\left(\bar{x}_{j} \vee l_{i}\right), i=0, \ldots, r-1$, where
- $l_{i} \equiv v_{i}$, if $b_{i}=1$
- $l_{i} \equiv \bar{v}_{i}$, otherwise
- If $x_{j}=1$, assignment to v_{i} variables must encode $j-1$
- All other x variables must take value 0
- If all $x_{j}=0$, any assignment to v_{i} variables is consistent
- $\mathcal{O}(n \log n)$ clauses ; $\mathcal{O}(\log n)$ auxiliary variables
- An example: $x_{1}+x_{2}+x_{3} \leq 1$

	$j-1$	$v_{1} v_{0}$
x_{1}	0	00
x_{2}	1	01
x_{3}	2	10

$$
\begin{aligned}
& \left(\bar{x}_{1} \vee \bar{v}_{1}\right) \wedge\left(\bar{x}_{1} \vee \bar{v}_{0}\right) \\
& \left(\bar{x}_{2} \vee \bar{v}_{1}\right) \wedge\left(\bar{x}_{2} \vee v_{0}\right) \\
& \left(\bar{x}_{3} \vee v_{1}\right) \wedge\left(\bar{x}_{3} \vee \bar{v}_{0}\right)
\end{aligned}
$$

General Cardinality Constraints

- General form: $\sum_{j=1}^{n} x_{j} \leq k$ (or $\sum_{j=1}^{n} x_{j} \geq k$)
- Sequential counters
- Clauses/Variables: $\mathcal{O}(n k)$
- BDDs
- Clauses/Variables: $\mathcal{O}(n k)$
- Sorting networks
- Clauses/Variables: $\mathcal{O}\left(n \log ^{2} n\right)$
- Cardinality Networks:
- Clauses/Variables: $\mathcal{O}\left(n \log ^{2} k\right)$
- Pairwise Cardinality Networks:

Outline

CNF Encodings
Boolean Formulas
Cardinality Constraints
Pseudo-Boolean Constraints
Encoding CSPs

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?

Pseudo-Boolean Constraints

- General form: $\sum_{j=1}^{n} a_{j} x_{j} \leq b$
- Operational encoding
- Clauses/Variables: $\mathcal{O}(n)$
- Does not guarantee arc-consistency
- BDDs
- Worst-case exponential number of clauses
- Polynomial watchdog encoding
- Let $\nu(n)=\log (n) \log \left(a_{\text {max }}\right)$
- Clauses: $\mathcal{O}\left(n^{3} \nu(n)\right)$; Aux variables: $\mathcal{O}\left(n^{2} \nu(n)\right)$
- Improved polynomial watchdog encoding
- Clauses \& aux variables: $\mathcal{O}\left(n^{3} \log \left(a_{\max }\right)\right)$

Encoding PB Constraints with BDDs I

- Encode $3 x_{1}+3 x_{2}+x_{3} \leq 3$
- Construct BDD
- E.g. analyze variables by decreasing coefficients
- Extract ITE-based circuit from BDD

Encoding PB Constraints with BDDs I

- Encode $3 x_{1}+3 x_{2}+x_{3} \leq 3$
- Construct BDD
- E.g. analyze variables by decreasing coefficients
- Extract ITE-based circuit from BDD

Encoding PB Constraints with BDDs II

- Encode $3 x_{1}+3 x_{2}+x_{3} \leq 3$
- Extract ITE-based circuit from BDD
- Simplify and create final circuit:

More on PB Constraints

- How about $\sum_{j=1}^{n} a_{j} x_{j}=k$?

More on PB Constraints

- How about $\sum_{j=1}^{n} a_{j} x_{j}=k$?
- Can use $\left(\sum_{j=1}^{n} a_{j} x_{j} \geq k\right) \wedge\left(\sum_{j=1}^{n} a_{j} x_{j} \leq k\right)$, but...
- $\sum_{j=1}^{n} a_{j} x_{j}=k$ is a subset-sum constraint (special case of a knapsack constraint)

More on PB Constraints

- How about $\sum_{j=1}^{n} a_{j} x_{j}=k$?
- Can use $\left(\sum_{j=1}^{n} a_{j} x_{j} \geq k\right) \wedge\left(\sum_{j=1}^{n} a_{j} x_{j} \leq k\right)$, but...
- $\sum_{j=1}^{n} a_{j} x_{j}=k$ is a subset-sum constraint
(special case of a knapsack constraint)
- Cannot find all consequences in polynomial time

More on PB Constraints

- How about $\sum_{j=1}^{n} a_{j} x_{j}=k$?
- Can use $\left(\sum_{j=1}^{n} a_{j} x_{j} \geq k\right) \wedge\left(\sum_{j=1}^{n} a_{j} x_{j} \leq k\right)$, but...
- $\sum_{j=1}^{n} a_{j} x_{j}=k$ is a subset-sum constraint (special case of a knapsack constraint)
- Cannot find all consequences in polynomial time
- Example:

$$
4 x_{1}+3 x_{2}+2 x_{3}=5
$$

More on PB Constraints

- How about $\sum_{j=1}^{n} a_{j} x_{j}=k$?
- Can use $\left(\sum_{j=1}^{n} a_{j} x_{j} \geq k\right) \wedge\left(\sum_{j=1}^{n} a_{j} x_{j} \leq k\right)$, but...
- $\sum_{j=1}^{n} a_{j} x_{j}=k$ is a subset-sum constraint (special case of a knapsack constraint)
- Cannot find all consequences in polynomial time
- Example:

$$
4 x_{1}+3 x_{2}+2 x_{3}=5
$$

- Replace by $\left(4 x_{1}+3 x_{2}+2 x_{3} \geq 5\right) \wedge\left(4 x_{1}+3 x_{2}+2 x_{3} \leq 5\right)$

More on PB Constraints

- How about $\sum_{j=1}^{n} a_{j} x_{j}=k$?
- Can use $\left(\sum_{j=1}^{n} a_{j} x_{j} \geq k\right) \wedge\left(\sum_{j=1}^{n} a_{j} x_{j} \leq k\right)$, but...
- $\sum_{j=1}^{n} a_{j} x_{j}=k$ is a subset-sum constraint (special case of a knapsack constraint)
- Cannot find all consequences in polynomial time
- Example:

$$
4 x_{1}+3 x_{2}+2 x_{3}=5
$$

- Replace by $\left(4 x_{1}+3 x_{2}+2 x_{3} \geq 5\right) \wedge\left(4 x_{1}+3 x_{2}+2 x_{3} \leq 5\right)$
- Let $x_{2}=0$

More on PB Constraints

- How about $\sum_{j=1}^{n} a_{j} x_{j}=k$?
- Can use $\left(\sum_{j=1}^{n} a_{j} x_{j} \geq k\right) \wedge\left(\sum_{j=1}^{n} a_{j} x_{j} \leq k\right)$, but...
- $\sum_{j=1}^{n} a_{j} x_{j}=k$ is a subset-sum constraint (special case of a knapsack constraint)
- Cannot find all consequences in polynomial time
- Example:

$$
4 x_{1}+3 x_{2}+2 x_{3}=5
$$

- Replace by $\left(4 x_{1}+3 x_{2}+2 x_{3} \geq 5\right) \wedge\left(4 x_{1}+3 x_{2}+2 x_{3} \leq 5\right)$
- Let $x_{2}=0$
- Either constraint can still be satisfied, but not both

Outline

CNF Encodings

Boolean Formulas

Cardinality Constraints
Pseudo-Boolean Constraints
Encoding CSPs

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?

CSP Constraints

- Many possible encodings:
- Direct encoding
- Log encoding
- Support encoding
- Log-Support encoding
- Order encoding for finite linear CSPs

Direct Encoding for CSP w/ Binary Constraints

- Variable x_{i} with domain D_{i}, with $m_{i}=\left|D_{i}\right|$
- Represent values of x_{i} with Boolean variables $x_{i, 1}, \ldots, x_{i, m_{i}}$
- Require $\sum_{k=1}^{m_{i}} x_{i, k}=1$
- Suffices to require $\sum_{k=1}^{m_{i}} x_{i, k} \geq 1$
- If the pair of assignments $x_{i}=v_{i} \wedge x_{j}=v_{j}$ is not allowed, add binary clause $\left(\bar{x}_{i, v_{i}} \vee \bar{x}_{j, v_{j}}\right)$

Outline

CNF Encodings

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?

Embedding SAT Solvers

- Modify SAT solver to interface problem-specific propagators (or theory solvers)
- Typical interface:
- SAT solvers communicates assignments/constraints to propagators
- Retrieve resulting assignments or explanations for inconsistency
- Well-known examples (many more):
- Branch\&bound PB optimization
- Non-clausal SAT solvers
- Lazy SMT solving (see later talks)
- Key problem:
- Keeping up with improvements in SAT solvers

Pseudo-Boolean Constraints \& Optimization

- Pseudo-Boolean Constraints:
- Boolean variables: x_{1}, \ldots, x_{n}
- Linear inequalities:

$$
\sum_{j \in N} a_{i j} j_{j} \geq b_{i}, \quad l_{j} \in\left\{x_{j}, \bar{x}_{j}\right\}, x_{j} \in\{0,1\}, a_{i j}, b_{i} \in \mathbb{N}_{0}^{+}
$$

Pseudo-Boolean Constraints \& Optimization

- Pseudo-Boolean Constraints:
- Boolean variables: x_{1}, \ldots, x_{n}
- Linear inequalities:

$$
\sum_{j \in N} a_{i j} l_{j} \geq b_{i}, \quad l_{j} \in\left\{x_{j}, \bar{x}_{j}\right\}, x_{j} \in\{0,1\}, a_{i j}, b_{i} \in \mathbb{N}_{0}^{+}
$$

- Pseudo-Boolean Optimization (PBO):

$$
\begin{aligned}
\operatorname{minimize} & \sum_{j \in N} c_{j} \cdot x_{j} \\
\text { subject to } & \sum_{j \in N} a_{i j} I_{j} \geq b_{i}, \\
& I_{j} \in\left\{x_{j}, \bar{x}_{j}\right\}, x_{j} \in\{0,1\}, a_{i j}, b_{i}, c_{j} \in \mathbb{N}_{0}^{+}
\end{aligned}
$$

Pseudo-Boolean Constraints \& Optimization

- Pseudo-Boolean Constraints:
- Boolean variables: x_{1}, \ldots, x_{n}
- Linear inequalities:

$$
\sum_{j \in N} a_{i j} j_{j} \geq b_{i}, \quad l_{j} \in\left\{x_{j}, \bar{x}_{j}\right\}, x_{j} \in\{0,1\}, a_{i j}, b_{i} \in \mathbb{N}_{0}^{+}
$$

- Pseudo-Boolean Optimization (PBO):

```
minimize \(\sum_{j \in N} c_{j} \cdot x_{j}\)
subject to \(\quad \sum_{j \in N} a_{i j} l_{j} \geq b_{i}\),
\(I_{j} \in\left\{x_{j}, \bar{x}_{j}\right\}, x_{j} \in\{0,1\}, a_{i j}, b_{i}, c_{j} \in \mathbb{N}_{0}^{+}\)
```

- Branch and bound (B\&B) PBO algorithm:
- Extend SAT solver
- Must develop propagator for PB constraints
- B\&B search for computing optimum cost function value
- Trivial upper bound: all $x_{j}=1$

Limitations with Embeddings

- B\&B MaxSAT solving:
- Cannot use unit propagation
- Cannot learn clauses
- MUS extraction:
- Decision of clauses to include in MUS based on unsatisfiable outcomes
- No immediate gain from embedding SAT solvers

Outline

CNF Encodings

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?

Practical Aspects of Using SAT Oracles

- Incremental vs. non-incremental SAT

Practical Aspects of Using SAT Oracles

- Incremental vs. non-incremental SAT
- Incremental SAT:
- Replace each clause $\left(C_{i}\right)$ with $\left(C_{i} \vee \bar{a}_{i}\right)$, where a_{i} is assumption variable
- When calling SAT solver, each assumption can be assigned 1, 0 , or be left unassigned
- Non-incremental SAT:

Practical Aspects of Using SAT Oracles

- Incremental vs. non-incremental SAT
- Incremental SAT:
- Replace each clause $\left(C_{i}\right)$ with $\left(C_{i} \vee \bar{a}_{i}\right)$, where a_{i} is assumption variable
- When calling SAT solver, each assumption can be assigned 1, 0 , or be left unassigned
- $a_{i}=1$ to activate clause C_{i}
- $a_{i}=0$ to deactivate clause C_{i}
- Non-incremental SAT:

Practical Aspects of Using SAT Oracles

- Incremental vs. non-incremental SAT
- Incremental SAT:
- Replace each clause $\left(C_{i}\right)$ with $\left(C_{i} \vee \bar{a}_{i}\right)$, where a_{i} is assumption variable
- When calling SAT solver, each assumption can be assigned 1, 0 , or be left unassigned
- $a_{i}=1$ to activate clause C_{i}
- $a_{i}=0$ to deactivate clause C_{i}
- Add clause (\bar{a}_{i}) to delete C_{i}
- Non-incremental SAT:

Practical Aspects of Using SAT Oracles

- Incremental vs. non-incremental SAT
- Incremental SAT:
- Replace each clause $\left(C_{i}\right)$ with $\left(C_{i} \vee \bar{a}_{i}\right)$, where a_{i} is assumption variable
- When calling SAT solver, each assumption can be assigned 1, 0 , or be left unassigned
- $a_{i}=1$ to activate clause C_{i}
- $a_{i}=0$ to deactivate clause C_{i}
- Add clause (\bar{a}_{i}) to delete C_{i}
- Note: incremental SAT enables clause reuse
- Non-incremental SAT:

Practical Aspects of Using SAT Oracles

- Incremental vs. non-incremental SAT
- Incremental SAT:
- Replace each clause $\left(C_{i}\right)$ with $\left(C_{i} \vee \bar{a}_{i}\right)$, where a_{i} is assumption variable
- When calling SAT solver, each assumption can be assigned 1, 0 , or be left unassigned
- $a_{i}=1$ to activate clause C_{i}
- $a_{i}=0$ to deactivate clause C_{i}
- Add clause (\bar{a}_{i}) to delete C_{i}
- Note: incremental SAT enables clause reuse
- Non-incremental SAT:
- Submit complete formula to SAT solver in each iteration
- Note: difficult to instrument clause reuse

Practical Aspects of Using SAT Oracles

- Incremental vs. non-incremental SAT
- Incremental SAT:
- Replace each clause $\left(C_{i}\right)$ with $\left(C_{i} \vee \bar{a}_{i}\right)$, where a_{i} is assumption variable
- When calling SAT solver, each assumption can be assigned 1, 0 , or be left unassigned
- $a_{i}=1$ to activate clause C_{i}
- $a_{i}=0$ to deactivate clause C_{i}
- Add clause (\bar{a}_{i}) to delete C_{i}
- Note: incremental SAT enables clause reuse
- Non-incremental SAT:
- Submit complete formula to SAT solver in each iteration
- Note: difficult to instrument clause reuse
- What does the SAT oracle compute/return?

1. Yes/No: $(s t) \leftarrow \operatorname{SAT}(\mathcal{F})$

Practical Aspects of Using SAT Oracles

- Incremental vs. non-incremental SAT
- Incremental SAT:
- Replace each clause $\left(C_{i}\right)$ with $\left(C_{i} \vee \bar{a}_{i}\right)$, where a_{i} is assumption variable
- When calling SAT solver, each assumption can be assigned 1, 0 , or be left unassigned
- $a_{i}=1$ to activate clause C_{i}
- $a_{i}=0$ to deactivate clause C_{i}
- Add clause (\bar{a}_{i}) to delete C_{i}
- Note: incremental SAT enables clause reuse
- Non-incremental SAT:
- Submit complete formula to SAT solver in each iteration
- Note: difficult to instrument clause reuse
- What does the SAT oracle compute/return?

1. Yes/No: $(s t) \leftarrow \operatorname{SAT}(\mathcal{F})$
2. Compute model: $(s t, \mu) \leftarrow \operatorname{SAT}(\mathcal{F})$

Practical Aspects of Using SAT Oracles

- Incremental vs. non-incremental SAT
- Incremental SAT:
- Replace each clause $\left(C_{i}\right)$ with $\left(C_{i} \vee \bar{a}_{i}\right)$, where a_{i} is assumption variable
- When calling SAT solver, each assumption can be assigned 1, 0 , or be left unassigned
- $a_{i}=1$ to activate clause C_{i}
- $a_{i}=0$ to deactivate clause C_{i}
- Add clause (\bar{a}_{i}) to delete C_{i}
- Note: incremental SAT enables clause reuse
- Non-incremental SAT:
- Submit complete formula to SAT solver in each iteration
- Note: difficult to instrument clause reuse
- What does the SAT oracle compute/return?

1. Yes/No: $(s t) \leftarrow \operatorname{SAT}(\mathcal{F})$
2. Compute model: $(s t, \mu) \leftarrow \operatorname{SAT}(\mathcal{F})$
3. Compute unsatisfiable cores: $(s t, \mu, \mathcal{U}) \leftarrow \operatorname{SAT}(\mathcal{F})$

Practical Aspects of Using SAT Oracles

- Incremental vs. non-incremental SAT
- Incremental SAT:
- Replace each clause $\left(C_{i}\right)$ with $\left(C_{i} \vee \bar{a}_{i}\right)$, where a_{i} is assumption variable
- When calling SAT solver, each assumption can be assigned 1, 0 , or be left unassigned
- $a_{i}=1$ to activate clause C_{i}
- $a_{i}=0$ to deactivate clause C_{i}
- Add clause (\bar{a}_{i}) to delete C_{i}
- Note: incremental SAT enables clause reuse
- Non-incremental SAT:
- Submit complete formula to SAT solver in each iteration
- Note: difficult to instrument clause reuse
- What does the SAT oracle compute/return?

1. Yes/No: $(s t) \leftarrow \operatorname{SAT}(\mathcal{F})$
2. Compute model: $(s t, \mu) \leftarrow \operatorname{SAT}(\mathcal{F})$
3. Compute unsatisfiable cores: $(s t, \mu, \mathcal{U}) \leftarrow \operatorname{SAT}(\mathcal{F})$
4. Compute proof traces/resolution proof: $(s t, \mu, \mathcal{T}) \leftarrow \operatorname{SAT}(\mathcal{F})$

Outline

CNF Encodings

SAT Embeddings

SAT Oracles
MUS Extraction

MaxSAT
2QBF

What Next in SAT-Based Problem Solving?

Defining MUSes

$$
\begin{array}{lllc}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} & \neg x_{1} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} & \neg x_{4} \vee x_{5} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} & \neg x_{3}
\end{array}
$$

- Formula is unsatisfiable but not irreducible

Defining MUSes

$$
\begin{array}{llll}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} & \neg x_{1} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} & \neg x_{4} \vee x \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} & \neg x_{3}
\end{array}
$$

- Formula is unsatisfiable but not irreducible
- Can remove clauses, and formula still unsatisfiable

Defining MUSes

$x_{6} \vee x_{2}$	$\neg x_{6} \vee x_{2}$	$\neg x_{2} \vee x_{1}$	$\neg x_{1}$
$\neg x_{6} \vee x_{8}$	$x_{6} \vee \neg x_{8}$	$x_{2} \vee x_{4}$	$\neg x_{4} \vee x_{5}$
$x_{7} \vee x_{5}$	$\neg x_{7} \vee x_{5}$	$\neg x_{5} \vee x_{3}$	$\neg x_{3}$

- Formula is unsatisfiable but not irreducible
- Can remove clauses, and formula still unsatisfiable
- A Minimal Unsatisfiable Subformula (MUS) is an unsatisfiable and irreducible subformula

Defining MUSes

$$
\begin{array}{lllc}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} & \neg x_{1} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} & \neg x_{4} \vee x_{5} \\
\hline x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} & \neg x_{3}
\end{array}
$$

- Formula is unsatisfiable but not irreducible
- Can remove clauses, and formula still unsatisfiable
- A Minimal Unsatisfiable Subformula (MUS) is an unsatisfiable and irreducible subformula

Defining MUSes

$$
x_{6} \vee x_{2} \quad \neg x_{6} \vee x_{2}
$$

$$
\neg x_{6} \vee x_{8} \quad x_{6} \vee \neg x_{8}
$$

$$
x_{7} \vee x_{5} \quad \neg x_{7} \vee x_{5}
$$

- Formula is unsatisfiable but not irreducible
- Can remove clauses, and formula still unsatisfiable
- A Minimal Unsatisfiable Subformula (MUS) is an unsatisfiable and irreducible subformula

Defining MUSes

$$
\begin{array}{lllc}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} & \neg x_{1} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} & \neg x_{4} \vee x_{5} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} & \neg x_{3}
\end{array}
$$

- Formula is unsatisfiable but not irreducible
- Can remove clauses, and formula still unsatisfiable
- A Minimal Unsatisfiable Subformula (MUS) is an unsatisfiable and irreducible subformula
- How to compute an MUS?

Deletion-Based MUS Extraction

Input : Unsatisfiable CNF Formula \mathcal{F}
Output: MUS M
begin
$\mathcal{M} \leftarrow \mathcal{F} \quad / /$ MUS over-approximation
foreach $c \in \mathcal{M}$ do
if not $\operatorname{SAT}(\mathcal{M} \backslash\{c\})$ then $\mathcal{M} \leftarrow \mathcal{M} \backslash\{c\} \quad / / \operatorname{If} \operatorname{UNSAT}(\mathcal{M} \backslash\{c\})$, then $c \notin \mathcal{M}$
return $\mathcal{M} \quad / /$ Final \mathcal{M} is MUS
end

- Number of calls to SAT solver: $\mathcal{O}(|\mathcal{F}|)$

Deletion-Based MUS Extraction

Input : Unsatisfiable CNF Formula \mathcal{F}
Output: MUS M
begin
$\mathcal{M} \leftarrow \mathcal{F} \quad / /$ MUS over-approximation
foreach $c \in \mathcal{M}$ do
if not $\operatorname{SAT}(\mathcal{M} \backslash\{c\})$ then
$\mathcal{M} \leftarrow \mathcal{M} \backslash\{c\} \quad / /$ Remove c from \mathcal{M}
return \mathcal{M}
end

- Number of calls to SAT solver: $\mathcal{O}(|\mathcal{F}|)$

An Example

$$
\begin{aligned}
& \left(\neg x_{1} \vee x_{2}\right) \\
& \left(\neg x_{3} \vee x_{2}\right) \\
& \left(x_{1} \vee x_{2}\right) \\
& \left(\neg x_{3}\right) \\
& \left(\neg x_{2}\right)
\end{aligned}
$$

UNSAT instance

An Example

$$
\begin{aligned}
& \left(\neg x_{1} \vee x_{2}\right) \\
& \left(\neg x_{3} \vee x_{2}\right) \\
& \left(x_{1} \vee x_{2}\right) \\
& \left(\neg x_{3}\right) \\
& \left(\neg x_{2}\right)
\end{aligned}
$$

Hide clause $\left(\neg x_{1} \vee x_{2}\right)$

An Example

$$
\begin{aligned}
& \left(\neg x_{3} \vee x_{2}\right) \\
& \left(x_{1} \vee x_{2}\right) \\
& \left(\neg x_{3}\right) \\
& \left(\neg x_{2}\right)
\end{aligned}
$$

SAT instance \rightarrow keep clause $\left(\neg x_{1} \vee x_{2}\right)$

An Example

$$
\begin{aligned}
& \left(\neg x_{1} \vee x_{2}\right) \\
& \left(\neg x_{3} \vee x_{2}\right) \\
& \left(x_{1} \vee x_{2}\right) \\
& \left(\neg x_{3}\right) \\
& \left(\neg x_{2}\right)
\end{aligned}
$$

Hide clause $\left(\neg x_{3} \vee x_{2}\right)$

An Example

$$
\begin{aligned}
& \left(\neg x_{1} \vee x_{2}\right) \\
& \left(x_{1} \vee x_{2}\right) \\
& \left(\neg x_{3}\right) \\
& \left(\neg x_{2}\right)
\end{aligned}
$$

UNSAT instance \rightarrow remove clause $\left(\neg x_{3} \vee x_{2}\right)$

An Example

$$
\begin{aligned}
& \left(\neg x_{1} \vee x_{2}\right) \\
& \left(x_{1} \vee x_{2}\right) \\
& \left(\neg x_{3}\right) \\
& \left(\neg x_{2}\right)
\end{aligned}
$$

Hide clause $\left(x_{1} \vee x_{2}\right)$

An Example

$$
\begin{aligned}
& \left(\neg x_{1} \vee x_{2}\right) \\
& \\
& \left(\neg x_{3}\right) \\
& \left(\neg x_{2}\right)
\end{aligned}
$$

SAT instance \rightarrow keep clause $\left(x_{1} \vee x_{2}\right)$

An Example

$$
\begin{aligned}
& \left(\neg x_{1} \vee x_{2}\right) \\
& \left(x_{1} \vee x_{2}\right) \\
& \left(\neg x_{3}\right) \\
& \left(\neg x_{2}\right)
\end{aligned}
$$

Hide clause $\left(\neg x_{3}\right)$

An Example

$$
\begin{aligned}
& \left(\neg x_{1} \vee x_{2}\right) \\
& \left(x_{1} \vee x_{2}\right) \\
& \left(\neg x_{2}\right)
\end{aligned}
$$

UNSAT instance \rightarrow remove clause $\left(\neg x_{3}\right)$

An Example

$$
\begin{aligned}
& \left(\neg x_{1} \vee x_{2}\right) \\
& \left(x_{1} \vee x_{2}\right) \\
& \left(\neg x_{2}\right)
\end{aligned}
$$

Hide clause ($\neg x_{2}$)

An Example

$$
\begin{aligned}
& \left(\neg x_{1} \vee x_{2}\right) \\
& \left(x_{1} \vee x_{2}\right)
\end{aligned}
$$

SAT instance \rightarrow keep clause $\left(\neg x_{2}\right)$

An Example

$$
\begin{aligned}
& \left(\neg x_{1} \vee x_{2}\right) \\
& \left(x_{1} \vee x_{2}\right) \\
& \left(\neg x_{2}\right)
\end{aligned}
$$

Computed MUS

More on MUS Extraction

Algorithm	\# Oracle Calls	Reference
Insertion (Default)	$\mathcal{O}(m \times k)$	[SP88]
Deletion (Default)	$\mathcal{O}(m)$	[CD91,BDTW93]
QuickXplain	$\mathcal{O}\left(k \times\left(1+\log \frac{m}{k}\right)\right)$	[J01,J04]
Dichotomic	$\mathcal{O}(k \times \log m)$	[HLSB06]
Insertion with Relaxation Variables	$\mathcal{O}(m)$	[MSL11]
Deletion with Model Rotation	$\mathcal{O}(m)$	[BLMS12,MSL11]
Progression	$\mathcal{O}\left(k \times \log \left(1+\frac{m}{k}\right)\right)$	[MSJB13]

More on MUS Extraction

Algorithm	\# Oracle Calls	Reference
Insertion (Default)	$\mathcal{O}(m \times k)$	[SP88]
Deletion (Default)	$\mathcal{O}(m)$	[CD91,BDTW93]
QuickXplain	$\mathcal{O}\left(k \times\left(1+\log \frac{m}{k}\right)\right)$	[J01,J04]
Dichotomic	$\mathcal{O}(k \times \log m)$	[HLSB06]
Insertion with Relaxation Variables	$\mathcal{O}(m)$	[MSL11]
Deletion with Model Rotation	$\mathcal{O}(m)$	[BLMS12,MSL11]
Progression	$\mathcal{O}\left(k \times \log \left(1+\frac{m}{k}\right)\right)$	[MSJB13]

- Additional Techniques:
- Restrict formula to unsatisfiable subsets
- Check redundancy condition [vMW08,MSL11,BLMS12]
- Model rotation, recursive model rotation, etc. [MSL11,BMS11,BLMS12,W12]

Outline

CNF Encodings

SAT Embeddings

SAT Oracles
MUS Extraction
MaxSAT
2QBF

What Next in SAT-Based Problem Solving?

Defining Maximum Satisfiability

$x_{6} \vee x_{2}$	$\neg x_{6} \vee x_{2}$	$\neg x_{2} \vee x_{1}$	$\neg x_{1}$
$\neg x_{6} \vee x_{8}$	$x_{6} \vee \neg x_{8}$	$x_{2} \vee x_{4}$	$\neg x_{4} \vee x_{5}$
$x_{7} \vee x_{5}$	$\neg x_{7} \vee x_{5}$	$\neg x_{5} \vee x_{3}$	$\neg x_{3}$

- Given unsatisfiable formula, find largest subset of clauses that is satisfiable

Defining Maximum Satisfiability

- Given unsatisfiable formula, find largest subset of clauses that is satisfiable
- A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula

Defining Maximum Satisfiability

$$
\begin{array}{llll}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} & \neg x_{1} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} & \neg x_{4} \vee x_{5} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} & \neg x_{3}
\end{array}
$$

- Given unsatisfiable formula, find largest subset of clauses that is satisfiable
- A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula
- The MaxSAT solution is one of the smallest MCSes

MaxSAT Problem(s)

- MaxSAT:
- All clauses are soft
- Maximize number of satisfied soft clauses
- Minimize number of unsatisfied soft clauses

MaxSAT Problem(s)

- MaxSAT:
- All clauses are soft
- Maximize number of satisfied soft clauses
- Minimize number of unsatisfied soft clauses
- Partial MaxSAT:
- Hard clauses must be satisfied
- Minimize number of unsatisfied soft clauses

MaxSAT Problem(s)

- MaxSAT:
- All clauses are soft
- Maximize number of satisfied soft clauses
- Minimize number of unsatisfied soft clauses
- Partial MaxSAT:
- Hard clauses must be satisfied
- Minimize number of unsatisfied soft clauses
- Weighted MaxSAT
- Weights associated with (soft) clauses
- Minimize sum of weights of unsatisfied clauses

MaxSAT Problem(s)

- MaxSAT:
- All clauses are soft
- Maximize number of satisfied soft clauses
- Minimize number of unsatisfied soft clauses
- Partial MaxSAT:
- Hard clauses must be satisfied
- Minimize number of unsatisfied soft clauses
- Weighted MaxSAT
- Weights associated with (soft) clauses
- Minimize sum of weights of unsatisfied clauses
- Weighted Partial MaxSAT
- Weights associated with soft clauses
- Hard clauses must be satisfied
- Minimize sum of weights of unsatisfied soft clauses

Definitions

- Cost of assignment:
- Sum of weights of unsatisfied clauses
- Optimum solution (OPT):
- Assignment with minimum cost
- Upper Bound (UB):
- Assignment with cost not less than OPT
- E.g. $\sum_{c_{i} \in \varphi} w_{i}+1$; hard clauses may be inconsistent
- Lower Bound (LB):
- No assignment with cost no larger than LB
- E.g. -1 ; it may be possible to satisfy all soft clauses

Definitions

- Cost of assignment:
- Sum of weights of unsatisfied clauses
- Optimum solution (OPT):
- Assignment with minimum cost
- Upper Bound (UB):
- Assignment with cost not less than OPT
- E.g. $\sum_{c_{i} \in \varphi} w_{i}+1$; hard clauses may be inconsistent
- Lower Bound (LB):
- No assignment with cost no larger than LB
- E.g. -1 ; it may be possible to satisfy all soft clauses

Iterative SAT Solving - Refine UB

- Require $\sum w_{i} r_{i} \leq U B_{0}-1$

Iterative SAT Solving - Refine UB

- Require $\sum w_{i} r_{i} \leq U B_{0}-1$
- While SAT, refine UB
- New UB given by cost of unsatisfied clauses, i.e. $\sum w_{i} r_{i}$

Iterative SAT Solving - Refine UB

- Require $\sum w_{i} r_{i} \leq U B_{0}-1$
- While SAT, refine UB
- New UB given by cost of unsatisfied clauses, i.e. $\sum w_{i} r_{i}$

Iterative SAT Solving - Refine UB

- Require $\sum w_{i} r_{i} \leq U B_{0}-1$
- While SAT, refine UB
- New UB given by cost of unsatisfied clauses, i.e. $\sum w_{i} r_{i}$
- Repeat until constraint $\sum w_{i} r_{i} \leq U B_{k}-1$ becomes UNSAT
- $U B_{k}$ denotes the optimum value

Iterative SAT Solving - Refine UB

- Require $\sum w_{i} r_{i} \leq U B_{0}-1$
- While SAT, refine UB
- New UB given by cost of unsatisfied clauses, i.e. $\sum w_{i} r_{i}$
- Repeat until constraint $\sum w_{i} r_{i} \leq U B_{k}-1$ becomes UNSAT
- $U B_{k}$ denotes the optimum value
- Worst-case \# of iterations exponential on instance size

Iterative SAT Solving - Refine UB

- Require $\sum w_{i} r_{i} \leq U B_{0}-1$
- While SAT, refine UB
- New UB given by cost of unsatisfied clauses, i.e. $\sum w_{i} r_{i}$
- Repeat until constraint $\sum w_{i} r_{i} \leq U B_{k}-1$ becomes UNSAT
- $U B_{k}$ denotes the optimum value
- Worst-case \# of iterations exponential on instance size
- Example tools:
- Minisat+: CNF encoding of constraints
- SAT4J: native handling of constraints
- QMaxSat: CNF encoding of constraints
- ...

Fu\&Malik's Core-Guided Approach

$$
\begin{array}{lllc}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} & \neg x_{1} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} & \neg x_{4} \vee x_{5} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} & \neg x_{3}
\end{array}
$$

Example CNF formula

Fu\&Malik's Core-Guided Approach

$$
\begin{array}{lll}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5}
\end{array} \quad \begin{array}{ll}
\neg x_{2} \vee x_{1} & \neg x_{1} \\
x_{2} \vee x_{4} & \neg x_{4} \vee x_{5} \\
\neg x_{5} \vee x_{3} & \neg x_{3}
\end{array}
$$

Formula is UNSAT; OPT $\leq|\varphi|-1$; Get unsat core

Fu\&Malik's Core-Guided Approach

$$
\begin{array}{cccc}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} \vee r_{1} & \neg x_{1} \vee r_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} \vee r_{5} & \neg x_{3} \vee r_{6} \\
\sum_{i=1}^{6} r_{i} \leq 1 & & &
\end{array}
$$

Add relaxation variables and AtMost1 constraint

Fu\&Malik's Core-Guided Approach

Formula is (again) UNSAT; OPT $\leq|\varphi|-2$; Get unsat core

Fu\&Malik's Core-Guided Approach

$$
\begin{array}{cccc}
x_{6} \vee x_{2} \vee r_{7} & \neg x_{6} \vee x_{2} \vee r_{8} & \neg x_{2} \vee x_{1} \vee r_{1} \vee r_{9} & \neg x_{1} \vee r_{2} \vee r_{10} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
x_{7} \vee x_{5} \vee r_{11} & \neg x_{7} \vee x_{5} \vee r_{12} & \neg x_{5} \vee x_{3} \vee r_{5} \vee r_{13} & \neg x_{3} \vee r_{6} \vee r_{14} \\
\sum_{i=1}^{6} r_{i} \leq 1 & \sum_{i=7}^{14} r_{i} \leq 1 & &
\end{array}
$$

Add new relaxation variables and AtMost1 constraint

Fu\&Malik's Core-Guided Approach

$$
\begin{array}{cccc}
x_{6} \vee x_{2} \vee r_{7} & \neg x_{6} \vee x_{2} \vee r_{8} & \neg x_{2} \vee x_{1} \vee r_{1} \vee r_{9} & \neg x_{1} \vee r_{2} \vee r_{10} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
x_{7} \vee x_{5} \vee r_{11} & \neg x_{7} \vee x_{5} \vee r_{12} & \neg x_{5} \vee x_{3} \vee r_{5} \vee r_{13} & \neg x_{3} \vee r_{6} \vee r_{14} \\
\sum_{i=1}^{6} r_{i} \leq 1 & \sum_{i=7}^{14} r_{i} \leq 1 & &
\end{array}
$$

Instance is now SAT

Fu\&Malik's Core-Guided Approach

$$
\begin{array}{cccc}
x_{6} \vee x_{2} \vee r_{7} & \neg x_{6} \vee x_{2} \vee r_{8} & \neg x_{2} \vee x_{1} \vee r_{1} \vee r_{9} & \neg x_{1} \vee r_{2} \vee r_{10} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
x_{7} \vee x_{5} \vee r_{11} & \neg x_{7} \vee x_{5} \vee r_{12} & \neg x_{5} \vee x_{3} \vee r_{5} \vee r_{13} & \neg x_{3} \vee r_{6} \vee r_{14} \\
\sum_{i=1}^{6} r_{i} \leq 1 & \sum_{i=7}^{14} r_{i} \leq 1 & &
\end{array}
$$

MaxSAT solution is $|\varphi|-\mathcal{I}=12-2=10$

Organization of Fu\&Malik's Algorithm

- Clauses characterized as:
- Soft: initial set of soft clauses
- Hard: initially hard, or added during execution of algorithm
- E.g. clauses from AtMost1 constraints
- While exist unsatisfiable cores
- Add fresh set B of relaxation variables to soft clauses in core
- Add new AtMost1 constraint

$$
\sum_{b_{i} \in B} b_{i} \leq 1
$$

- At most 1 relaxation variable from set B can take value 1
- (Partial) MaxSAT solution is $|\varphi|$ - I
- I: number of iterations (\equiv number of computed unsat cores)

Organization of Fu\&Malik's Algorithm

- Clauses characterized as:
- Soft: initial set of soft clauses
- Hard: initially hard, or added during execution of algorithm
- E.g. clauses from AtMost1 constraints
- While exist unsatisfiable cores
- Add fresh set B of relaxation variables to soft clauses in core
- Add new AtMost1 constraint

$$
\sum_{b_{i} \in B} b_{i} \leq 1
$$

- At most 1 relaxation variable from set B can take value 1
- (Partial) MaxSAT solution is $|\varphi|$ - I
- I: number of iterations (\equiv number of computed unsat cores)
- Can be adapted for weighted MaxSAT

Oracle-Based MaxSAT Solving I

- Iterative:
- Linear search SAT/UNSAT (refine UB)
- Linear search UNSAT/SAT (refine LB)
- Binary search
- Bit-based
- Mixed linear/binary search
- Core-Guided:
[MHLPMS13,ABL13]
- FM/(W)MSU1.X/WPM1
- (W)MSU3
[MSP07]
- (W)MSU4
[MSP08]
- (W)PM2
- Core-guided binary search (w/ disjoint cores)
[HMMS11,MHMS12]
- Bin-Core, Bin-Core-Dis, Bin-Core-Dis2
- Iterative subsetting

Oracle MaxSAT Solving II

- A sample of recent algorithms:

Algorithm	\# Oracle Calls	Reference
Linear search SU	Exponential	[e.g. LP 10$]$
Binary search	Linear	[e.g. FM06]
WMSU1/WPM1	Exponential*	[FM06,MSM08,MMSP09,ABLO9a,ABGL12]
WPM2	Exponential*	[ABL10,ABGL13]
Bin-Core-Dis	Linear	[HMMS11,MHMS12]
Iterative subsetting	Exponential	[DB11,DB13,DB13b]

* Weighted case; depends on computed cores
- Example MaxSAT solvers:
- MSUnCore; WPM1, WPM2; QMaxSAT; SAT4J; etc.

Outline

CNF Encodings

SAT Embeddings

SAT Oracles
MUS Extraction
MaxSAT
2QBF

What Next in SAT-Based Problem Solving?

Problem Statement

Given: $\exists X \forall Y . \phi$, where ϕ is a propositional formula
Question: Is there an assignment τ to X such that $\forall Y . \phi[X / \tau]$?

Problem Statement

Given: $\exists X \forall Y . \phi$, where ϕ is a propositional formula
Question: Is there an assignment τ to X such that $\forall Y . \phi[X / \tau]$?

Example

$$
\exists x_{1}, x_{2} \forall y_{1}, y_{2} \cdot\left(x_{1} \rightarrow y_{1}\right) \wedge\left(x_{2} \rightarrow y_{2}\right)
$$

solution: $x_{1}=0, x_{2}=0$

Motivation

- Σ_{2}^{P} complete
- interesting problems in this class, e.g. certain nonmonotonic reasoning, aspects of model checking, conformant planning
- separate track at QBF Eval

Looking at Assignments

Expanding $\exists X \forall Y . \phi$ into SAT

$$
\exists X \forall Y . \phi \longrightarrow \operatorname{SAT}\left(\bigwedge_{\mu \in \mathcal{B}^{|Y|}} \phi[Y / \mu]\right)
$$

Expanding $\exists X \forall Y . \phi$ into SAT

$$
\exists X \forall Y . \phi \longrightarrow \operatorname{SAT}\left(\bigwedge_{\mu \in \mathcal{B}^{|Y|}} \phi[Y / \mu]\right)
$$

Example

$$
\exists x_{1}, x_{2} \forall y_{1}, y_{2} .\left(x_{1} \leftrightarrow y_{1}\right) \wedge\left(x_{2} \leftrightarrow y_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right)
$$

Expansion:

$$
\begin{array}{ll}
& \left(x_{1} \leftrightarrow 0\right) \wedge\left(x_{2} \leftrightarrow 0\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right) \\
\wedge & \left(x_{1} \leftrightarrow 0\right) \wedge\left(x_{2} \leftrightarrow 1\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right) \\
\wedge & \left(x_{1} \leftrightarrow 1\right) \wedge\left(x_{2} \leftrightarrow 0\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right) \\
\wedge & \left(x_{1} \leftrightarrow 1\right) \wedge\left(x_{2} \leftrightarrow 1\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right)
\end{array}
$$

Expanding $\exists X \forall Y . \phi$ into SAT

$$
\exists X \forall Y . \phi \longrightarrow \operatorname{SAT}\left(\bigwedge_{\mu \in \mathcal{B}^{|Y|}} \phi[Y / \mu]\right)
$$

Example

$$
\exists x_{1}, x_{2} \forall y_{1}, y_{2} .\left(x_{1} \leftrightarrow y_{1}\right) \wedge\left(x_{2} \leftrightarrow y_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right)
$$

Expansion:

$$
\begin{array}{ll}
& \left(x_{1} \leftrightarrow 0\right) \wedge\left(x_{2} \leftrightarrow 0\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right) \\
\wedge & \left(x_{1} \leftrightarrow 0\right) \wedge\left(x_{2} \leftrightarrow 1\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right) \\
\wedge & \left(x_{1} \leftrightarrow 1\right) \wedge\left(x_{2} \leftrightarrow 0\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right) \\
\wedge & \left(x_{1} \leftrightarrow 1\right) \wedge\left(x_{2} \leftrightarrow 1\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right)
\end{array}
$$

Abstraction of $\exists X \forall Y . \phi$

- Consider only some set of assignments $\omega \subseteq \mathcal{B}^{|Y|}$

$$
\bigwedge_{\mu \in \omega} \phi[Y / \mu]
$$

Abstraction of $\exists X \forall Y . \phi$

- Consider only some set of assignments $\omega \subseteq \mathcal{B}^{|Y|}$

$$
\bigwedge_{\mu \in \omega} \phi[Y / \mu]
$$

- If a solution to the problem is a solution to the abstraction

$$
\bigwedge_{\mu \in \mathcal{B}^{|Y|}} \phi[Y / \mu] \Rightarrow \bigwedge_{\mu \in \omega} \phi[Y / \mu]
$$

Abstraction of $\exists X \forall Y . \phi$

- Consider only some set of assignments $\omega \subseteq \mathcal{B}^{|Y|}$

$$
\bigwedge_{\mu \in \omega} \phi[Y / \mu]
$$

- If a solution to the problem is a solution to the abstraction

$$
\bigwedge_{\mu \in \mathcal{B}^{|Y|}} \phi[Y / \mu] \Rightarrow \bigwedge_{\mu \in \omega} \phi[Y / \mu]
$$

- But not the other way around, a solution to an abstraction is not necessarily a solution to the original problem.

CEGAR Loop

input : $\exists X \forall Y . \phi$
output: (true,τ) if there exists τ s.t. $\forall Y . \phi[X / \tau]$,
(false, -) otherwise
$\omega \leftarrow \emptyset ;$
while true do
$\left(\right.$ outc $\left._{1}, \tau\right) \leftarrow \operatorname{SAT}\left(\bigwedge_{\mu \in \omega} \phi[Y / \mu]\right) ;$
// find a candidate if outc ${ }_{1}=$ false then
return (false,-);
// no candidate found
end
if " τ is a solution";
then
return (true, τ)
else
"Grow ω ";
// refinement
end
end

CEGAR Loop

input : $\exists X \forall Y . \phi$
output: (true,τ) if there exists τ s.t. $\forall Y . \phi[X / \tau]$,
(false, -) otherwise
$\omega \leftarrow \emptyset ;$
while true do
$\left(\right.$ outc $\left._{1}, \tau\right) \leftarrow \operatorname{SAT}\left(\bigwedge_{\mu \in \omega} \phi[Y / \mu]\right) ;$
// find a candidate if outc ${ }_{1}=$ false then
return (false,-);
// no candidate found
end
if " τ is a solution";
then
return (true, τ)
else
"Grow ω ";
// refinement
end
end

Testing for Solution

A value τ is a solution to $\exists X \forall Y . \phi$ iff

$$
\forall Y . \phi[X / \tau] \text { iff UNSAT }(\neg \phi[X / \tau])
$$

Testing for Solution

A value τ is a solution to $\exists X \forall Y . \phi$ iff

$$
\forall Y . \phi[X / \tau] \text { iff UNSAT }(\neg \phi[X / \tau])
$$

If $\operatorname{SAT}(\neg \phi[X / \tau])$ by some μ, then μ is a counterexample to τ

Testing for Solution

A value τ is a solution to $\exists X \forall Y . \phi$ iff

$$
\forall Y . \phi[X / \tau] \text { iff UNSAT }(\neg \phi[X / \tau])
$$

If $\operatorname{SAT}(\neg \phi[X / \tau])$ by some μ, then μ is a counterexample to τ
Example
$\exists x_{1}, x_{2} \forall y_{1}, y_{2} .\left(x_{1} \rightarrow y_{1}\right) \wedge\left(x_{2} \rightarrow y_{2}\right)$

- candidate: $x_{1}=1, x_{2}=1$
- counterexamples: $y_{1}=0, y_{2}=0$

$$
\begin{aligned}
& y_{1}=0, y_{2}=1 \\
& y_{1}=1, y_{2}=0
\end{aligned}
$$

Refinement

Refinement

Refinement

AReQS (Abstraction Refinement-based QBF Solver)

input : $\exists X \forall Y . \phi$
output: (true,τ) if there exists τ s.t. $\forall Y . \phi[X / \tau]$,
(false, -) otherwise
$\omega \leftarrow \emptyset ;$
// start with the empty expansion
while true do

$$
\left(\text { outc }_{1}, \tau\right) \leftarrow \operatorname{SAT}\left(\bigwedge_{\mu \in \omega} \phi[Y / \mu]\right) ; \quad / / \text { find a candidate }
$$ if outc ${ }_{1}=$ false then

return (false,-); // no candidate found end
(outc $2, \mu) \leftarrow \operatorname{SAT}(\neg \phi[X / \tau]) ; \quad / /$ find a counterexample if outc ${ }_{2}=$ false then return (true, τ) ; // candidate is a solution end
$\omega \leftarrow \omega \cup\{\mu\} ;$
end

AReQS - Conclusions

- ... is a CEGAR-based algorithm for 2QBF

AReQS - Conclusions

- ... is a CEGAR-based algorithm for 2QBF
- ... uses SAT solver as an oracle

AReQS - Conclusions

- ... is a CEGAR-based algorithm for 2QBF
- ... uses SAT solver as an oracle
- ... gradually expands given 2QBF into a SAT formula

AReQS - Conclusions

- ... is a CEGAR-based algorithm for 2QBF
- ... uses SAT solver as an oracle
- ... gradually expands given 2QBF into a SAT formula
- Can be extended to arbitrary number of levels by recursion (RAReQS)

Outline

CNF Encodings

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?

SAT-Based Problem Solving - A Glimpse of the Future

- Remarkable (and increasing) number of applications of SAT
- Can use SAT for solving problems in different complexity classes
- $F P^{N P}[\log n], F P^{N P}, \ldots$
- E.g. tackling problems in the polynomial hierarchy
- Many new recent algorithms for concrete problems
- MaxSAT
- MUSes
- MCSes
- Enumeration problems
- ...
- Better encodings?
- White-box vs. black-box approaches?
- But use of oracles inevitable in many cases

Thank You

References - DPLL \& CDCL SAT Solvers I

DP60	M. Davis, H. Putnam: A Computing Procedure for Quantification Theory. J. ACM 7(3): 201-215 (1960)
DLL62	M. Davis, G. Logemann, D. Loveland: A machine program for theorem- proving. Commun. ACM 5(7): 394-397 (1962)
MSS96	J. Marques-Silva, K. Sakallah: GRASP - a new search algorithm for satisfia- bility. ICCAD 1996: 220-227
BS97	R. Bayardo Jr., R. Schrag: Using CSP Look-Back Techniques to Solve Real- World SAT Instances. AAAI/IAAI 1997: 203-208
Z97	H. Zhang: SATO: An Efficient Propositional Prover. CADE 1997: 272-275
GSK98	C. Gomes, B. Selman, H. Kautz: Boosting Combinatorial Search Through Randomization. AAAI 1998: 431-437
MSS99	J. Marques-Silva, K. Sakallah: GRASP: A Search Algorithm for Propositional Satisfiability. IEEE Trans. Computers 48(5): 506-521 (1999)
BMS00	L. Baptista, J. Marques-Silva: Using Randomization and Learning to Solve Hard Real-World Instances of Satisfiability. CP 2000: 489-494
MMZZM01	M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik: Chaff: Engineering an Efficient SAT Solver. DAC 2001: 530-535

References - DPLL \& CDCL SAT Solvers II

\(\left.$$
\begin{array}{ll}\text { GN02 } & \begin{array}{l}\text { E. Goldberg, Y. Novikov: BerkMin: A Fast and Robust Sat-Solver. DATE } \\
\text { 2002: 142-149 }\end{array} \\
\text { ES03 } & \begin{array}{l}\text { N. Een, Niklas Sorensson: An Extensible SAT-solver. SAT 2003: 502-518 } \\
\text { KD07 }\end{array}
$$

K. Pipatsrisawat, A. Darwiche: A Lightweight Component Caching Scheme

for Satisfiability Solvers. SAT 2007: 294-299\end{array}\right]\)| J. Huang: The Effect of Restarts on the Efficiency of Clause Learning. IJCAI |
| :--- |
| 2007: 2318-2323 |

References - CNF Encodings I

T68	G. Tseitin: On the complexity of derivation in propositional calculus. In: Slisenko, A.O. (ed.) Studies in Constructive Mathematics and Mathematical Logic, pp. 115-125 (1970)
B68	K. Batcher: Sorting Networks and Their Applications. AFIPS Spring Joint Computing Conference 1968: 307-314
PG86	David A. Plaisted, Steven Greenbaum: A Structure-Preserving Clause Form Translation. J. Symb. Comput. 2(3): 293-304 (1986)
dK89	Johan de Kleer: A Comparison of ATMS and CSP Techniques. IJCAI 1989: 290-296
GJ96	R. Genisson, P. Jegou: Davis and Putnam were Already Checking Forward. ECAI 1996: 180-184
W98	J. Warners: A Linear-Time Transformation of Linear Inequalities into Con- junctive Normal Form. Inf. Process. Lett. 68(2): 63-69 (1998)
W00	T. Walsh: SAT v CSP. CP 2000: 441-456

References - CNF Encodings II

FP01	A. Frisch, T. Peugniez: Solving Non-Boolean Satisfiability Problems with Stochastic Local Search. IJCAI 2001: 282-290
FS02	T. Fahle, M. Sellmann: Cost Based Filtering for the Constrained Knapsack Problem. Annals OR 115(1-4): 73-93 (2002)
S03	M. Sellmann: Approximated Consistency for Knapsack Constraints. CP 2003: 679-693
F03	M. Trick: A Dynamic Programming Approach for Consistency and Propaga- tion for Knapsack Constraints. Annals OR 118(1-4): 73-84 (2003)
S05	C. Sinz: Towards an Optimal CNF Encoding of Boolean Cardinality Con- straints. CP 2005: 827-831
ES06	N. Een, N. Sorensson: Translating Pseudo-Boolean Constraints into SAT. JSAT 2(1-4): 1-26 (2006) M. Gavanelli: The Log-Support Encoding of CSP into SAT. CP 2007: 815- G07\quad822 P07\quadS. Prestwich: Variable Dependency in Local Search: Prevention Is Better Than Cure. SAT 2007: 107-120

References - CNF Encodings III

ANORC09	R. Asin, R. Nieuwenhuis, A. Oliveras, E. RodrÃguez-Carbonell: Cardinality Networks and Their Applications. SAT 2009: 167-180
BBR09	O. Bailleux, Y. Boufkhad, O. Roussel: New Encodings of Pseudo-Boolean Constraints into CNF. SAT 2009: 181-194
TTKB09	Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa, Mutsunori Banbara: Com- piling finite linear CSP into SAT. Constraints 14(2): 254-272 (2009)
CZI10	M. Codish, M. Zazon-Ivry: Pairwise Cardinality Networks. LPAR (Dakar) 2010: 154-172
ANORC11a	R. Asin, R. Nieuwenhuis, A. Oliveras, E. RodrÃguez-Carbonell: Cardinality Networks: a theoretical and empirical study. Constraints 16(2): 195-221 (2011)
ANORC11bI. Abio, R. Nieuwenhuis, A. Oliveras, E. Rodriguez-Carbonell: BDDs for Pseudo-Boolean Constraints - Revisited. SAT 2011	

References - Embedding SAT Solvers, Iterative MaxSAT \& PBO

MMS06	V. Manquinho, J. Marques-Silva: On Using Cutting Planes in Pseudo- Boolean Optimization. JSAT 2(1-4): 209-219 (2006)
NOT06	R. Nieuwenhuis, A. Oliveras, C. Tinelli: Solving SAT and SAT Modulo The- ories: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J. ACM 53(6): 937-977 (2006)
S07	R. Sebastiani: Lazy Satisability Modulo Theories. JSAT 3(3-4): 141-224 (2007)
BSST09	C. Barrett, R. Sebastiani, S. Seshia, C. Tinelli: Satisfiability Modulo Theories. Handbook of Satisfiability 2009: 825-885
LBP10	D. Le Berre, A. Parrain: The Sat4j library, release 2.2. JSAT 7(2-3): 59-6 (2010) KZFH12 M. Koshimura, T. Zhang, H. Fujita, R. Hasegawa: QMaxSAT: A Partial Max-SAT Solver. JSAT 8(1/2): 95-100 (2012)

References - MUSes I

SP88	J. de Siqueira, J.-F. Puget: Explanation-Based Generalisation of Failures. ECAI 1988: 339-344
CD91	J. Chinneck, E. Dravnieks: Locating Minimal Infeasible Constraint Sets in Linear Programs. INFORMS Journal on Computing 3(2): 157-168 (1991)
BDTW93	R. R. Bakker, F. Dikker, F. Tempelman, P. M. Wognum: Diagnosing and Solving Over-Determined Constraint Satisfaction Problems. IJCAI 1993: 276-281 J. Junker: QUICKXPLAIN: Conflict Detection for Arbitrary Constraint Prop- J01 agation Algorithms, WMSPC IJCAI 2001
J04	U. Junker: QUICKXPLAIN: Preferred Explanations and Relaxations for Over- Constrained Problems. AAAI 2004: 167-172
HLSB06	F. Hemery, C. Lecoutre, L. Sais, F. Boussemart: Extracting MUCs from Constraint Networks. ECAI 2006: 113-117
CMP07	E. Gregoire, B. Mazure, C. Piette: Local-search Extraction of MUSes. Con- straints 12(3): 325-344 (2007)
vMW08	H. van Maaren, S. Wieringa: Finding Guaranteed MUSes Fast. SAT 2008: 291-304

References - MUSes II

DGHP09	C. Desrosiers, P. Galinier, A. Hertz, S. Paroz: Using heuristics to find minimal unsatisfiable subformulas in satisfiability problems. J. Comb. Optim. 18(2): 124-150 (2009)
MS10	J. Marques-Silva: Minimal Unsatisfiability: Models, Algorithms and Applica- tions. ISMVL 2010: 9-14
MSL11	J. Marques-Silva, I. Lynce: On Improving MUS Extraction Algorithms. SAT 2011: 159-173
BMS11	A. Belov, J. Marques-Silva: Accelerating MUS extraction with recursive model rotation. FMCAD 2011: 37-40
BLMS12	A. Belov, I. Lynce, J. Marques-Silva: Towards Efficient MUS Extraction. AI Communications, 25(2): 97-116 (2012)
BMS12	A. Belov, J. Marques-Silva: MUSer2: An Efficient MUS Extractor, System Description. Journal on Satisfiability, Boolean Modeling and Computation, 8: 123-128 (2012)
W12	Siert Wieringa: Understanding, Improving and Parallelizing MUS Finding
Using Model Rotation. CP 2012: 672-687	

References - Core-Guided MaxSAT I

FM06	Z. Fu, S. Malik: On Solving the Partial MAX-SAT Problem. SAT 2006: $252-265$
MSP07	J. Marques-Silva, J. Planes: On Using Unsatisfiability for Solving Maximum Satisfiability CoRR abs/0712.1097: (2007)
MSP08	J. Marques-Silva, Jordi Planes: Algorithms for Maximum Satisfiability using Unsatisfiable Cores. DATE 2008: 408-413
MSM08	J. Marques-Silva, V. Manquinho: Towards More Effective Unsatisfiability- Based Maximum Satisfiability Algorithms. SAT 2008: 225-230
MMSP09	V. Manquinho, J. Marques Silva, J. Planes: Algorithms for Weighted Boolean Optimization. SAT 2009: 495-508
ABL09a	C. Ansotegui, M. Bonet, J. Levy: Solving (Weighted) Partial MaxSAT through Satisfiability Testing. SAT 2009: 427-440
ABL09b	C. Ansotegui, M. L. Bonet, J. Levy: On Solving MaxSAT Through SAT. CCIA 2009: 284-292
ABL10	C. Ansotegui, M. Bonet, J. Levy: A New Algorithm for Weighted Partial MaxSAT. AAAI 2010
HMMS11	F. Heras, A. Morgado, J. Marques-Silva: Core-Guided Binary Search Algo- rithms for Maximum Satisfiability. AAAI 2011.

References - Core-Guided MaxSAT

DB11	J. Davies, F. Bacchus: Solving MAXSAT by Solving a Sequence of Simpler SAT Instances. CP 2011: 225-239
MHMS12	A. Morgado, F. Heras, J. Marques-Silva: Improvements to Core-Guided Bi- nary Search for MaxSAT. SAT 2012.
ABGL12	C. Ansotegui, M. Bonet, J. Gabas, J. Levy: Improving SAT-Based Weighted MaxSAT Solvers. CP 2012: 86-101
DB13a	J. Davies, F. Bacchus: Exploiting the Power of MIP Solvers in MaxSAT. SAT 2013: 166-181
ABL13	C. Ansotegui, M. Bonet, J. Levy: SAT-based MaxSAT algorithms. Artif. Intell. 196: 77-105 (2013
ABGL13	C. Ansotegui, M. Bonet, J. Gabas and J. Levy: Improving WPM2 for (Weighted) Partial MaxSAT. CP 2013
DB13b	J. Davies and F. Bacchus: Postponing Optimization to Speed Up MaxSAT Solving. CP 2013
MHLPMS13A. Morgado, F. Heras, M. Liffiton, J. Planes, J. Marques-Silva: Iterative and Core-Guided MaxSAT Solving: A Survey and Assessment. Constraints: An	
International Journal. In Press (2013)	

References - 2QBF \& QBF

GMN09 E. Giunchiglia, P. Marin, M. Narizzano: Reasoning with Quantified Boolean Formulas. Handbook of Satisfiability 2009: 761-780
JMS11 M. Janota, J. Marques-Silva: Abstraction-Based Algorithm for 2QBF. SAT 2011: 230-244
JKMSC12 M. Janota, W. Klieber, J. Marques-Silva, E. Clarke: Solving QBF with Counterexample Guided Refinement. SAT 2012: 114-128
KJMSC13 W. Klieber, M. Janota, J. Marques-Silva, E. Clarke: Solving QBF with Free Variables. CP 2013

References - Additional References

R65	J. Robinson: A Machine-Oriented Logic Based on the Resolution Principle. J. ACM 12(1): 23-41 (1965)
C71	S. Cook: The Complexity of Theorem-Proving Procedures. STOC 1971: 151-158
ZM03	L. Zhang, S. Malik: Validating SAT Solvers Using an Independent Resolution- Based Checker: Practical Implementations and Other Applications. DATE 2003: 10880-10885
SP04	S. Subbarayan, D. Pradhan: NiVER: Non-increasing Variable Elimination Resolution for Preprocessing SAT Instances. SAT 2004: 276-291
EB05	N. Een, A. Biere: Effective Preprocessing in SAT Through Variable and Clause Elimination. SAT 2005: 61-75
HJB11	M. Heule, M. Jarvisalo, A. Biere: Efficient CNF Simplification Based on Binary Implication Graphs. SAT 2011: 201-215
JHB12	M. Jarvisalo, M. Heule, A. Biere: Inprocessing Rules. IJCAR 2012: 355-370
IJMS13	A. Ignatiev, M. Janota, J. Marques-Silva: Quantified Maximum Satisfiability:
- A Core-Guided Approach. SAT 2013: 250-266	

