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The Success of SAT

• Well-known NP-complete decision problem [C71]

• In practice, SAT is a success story of Computer Science
– Hundreds (even more?) of practical applications
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Preliminaries

• Variables: w , x , y , z , a, b, c , . . .

• Literals: w , x̄ , ȳ , a, . . . , but also ¬w ,¬y , . . .

• Clauses: disjunction of literals or set of literals

• Formula: conjunction of clauses or set of clauses

• Model (satisfying assignment): partial/total mapping from
variables to {0, 1}

• Formula can be SAT/UNSAT

• Example:

F , (r) ^ (r̄ _ s) ^ (w̄ _ a) ^ (x̄ _ b) ^ (ȳ _ z̄ _ c) ^ (b̄ _ c̄ _ d)

– Example models:
I {r , s, a, b, c, d}
I {r , s, x̄ , y , w̄ , z , ā, b, c, d}
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Resolution

• Resolution rule: [DP60,R65]

(↵ _ x) (� _ x̄)
(↵ _ �)

– Complete proof system for propositional logic

– Extensively used with (CDCL) SAT solvers

• Self-subsuming resolution (with ↵0
✓ ↵): [e.g. SP04,EB05]

(↵ _ x) (↵0
_ x̄)

(↵)
– (↵) subsumes (↵ _ x)
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Unit Propagation

F = (r) ^ (r̄ _ s)^

(w̄ _ a) ^ (x̄ _ ā _ b)

(ȳ _ z̄ _ c) ^ (b̄ _ c̄ _ d)

• Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

• Additional definitions:
– Antecedent (or reason) of an implied assignment

I (b̄ _ c̄ _ d) for d

– Associate assignment with decision levels
I w = 1@1, x = 1@2, y = 1@3, z = 1@4
I r = 1@0, d = 1@4, ...
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The DPLL Algorithm
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The DPLL Algorithm

Assign value
to variable

Unassigned
variables ?

Unit 
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

• Optional: pure literal rule

F = (x_y)^(a_b)^(ā_b)^(a_b̄)^(ā_b̄)

Level Dec. Unit Prop.

0

1

2

3

;

x

y

a b ?

a ā

y

a ā
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What is a CDCL SAT Solver?

• Extend DPLL SAT solver with: [DP60,DLL62]

– Clause learning & non-chronological backtracking [MSS96,BS97,Z97]

I Exploit UIPs [MSS96,SSS12]

I Minimize learned clauses [SB09,VG09]

I Opportunistically delete clauses [MSS96,MSS99,GN02]

– Search restarts [GSK98,BMS00,H07,B08]

– Lazy data structures
I Watched literals [MMZZM01]

– Conflict-guided branching
I Lightweight branching heuristics [MMZZM01]

I Phase saving [PD07]

– ...



How Significant are CDCL SAT Solvers?
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Limmat (2002)
Zchaff (2002)
Berkmin (2002)
Forklift (2003)
Siege (2003)
Zchaff (2004)
SatELite (2005)
Minisat 2 (2006)
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Clause Learning

Level Dec. Unit Prop.
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• Analyze conflict

– Reasons: x and z
I Decision variable & literals assigned at lower decision levels

– Create new clause: (x̄ _ z̄)

• Can relate clause learning with resolution

– Learned clauses result from (selected) resolution operations
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Clause Learning – After Bracktracking
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– Always bactrack after a conflict [MMZZM01]
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Multiple UIPs
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• First UIP:
– Learn clause (w̄ _ ȳ _ ā)

• But there can be more than 1
UIP

• Second UIP:
– Learn clause (x̄ _ z̄ _ a)

• In practice smaller clauses more
e↵ective

– Compare with (w̄ _ x̄ _ ȳ _ z̄)

• Multiple UIPs proposed in GRASP [MSS96]

– First UIP learning proposed in Cha↵ [MMZZM01]

• Not used in recent state of the art CDCL SAT solvers

• Recent results show it can be beneficial on current instances [SSS12]
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(x̄ _ ȳ _ z̄ _ b̄)

• Learn clause (x̄ _ ȳ _ z̄ _ b̄)
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(ā _ c̄) (z̄ _ b̄ _ c) (x̄ _ ȳ _ z̄ _ a)
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resolution

– Resolving with reason of c yields
(w̄ _ x̄ _ ā _ b̄)

• Can apply recursive minimization

• Learn clause (w̄ _ x̄)

• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new nodes
– Learn clause if only marked nodes visited
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Search Restarts I

• Heavy-tail behavior: [GSK98]

– 10000 runs, branching randomization on industrial instance

• Use rapid randomized restarts (search restarts)



Search Restarts II

• Restart search after a number
of conflicts

• Increase cuto↵ after each
restart

– Guarantees completeness
– Di↵erent policies exist (see

refs)

• Works for SAT & UNSAT
instances. Why?

• Learned clauses e↵ective after
restart(s)
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Data Structures Basics

• Each literal l should access clauses containing l
– Why?

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L

– Clause learning can generate large clauses
I Worst-case size: O(n)

– Worst-case number of literals: O(mn)
– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be e↵ective requires a more e�cient
representation:

– Watched literals are one example of lazy data structures
I But there are others
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Watched Literals

[MMZZM01]

• Important states of a clause

• Associate 2 references with
each clause

• Deciding unit requires
traversing all literals

• References unchanged when
backtracking
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Additional Key Techniques

• Lightweight branching [e.g. MMZZM01]

– Use conflict to bias variables to branch on, associate score with
each variable

– Prefer recent bias by regularly decreasing variable scores

• Clause deletion policies
– Not practical to keep all learned clauses
– Delete less used clauses [e.g. MSS96,GN02,ES03]

• Proven recent techniques:
– Phase saving [PD07]

– Literal blocks distance [AS09]
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CDCL – A Glimpse of the Future

• Clause learning techniques [e.g. ABHJS08,AS09]

– Clause learning is the key technique in CDCL SAT solvers
– Many recent papers propose improvements to the basic clause

learning approach

• Preprocessing & inprocessing
– Many recent papers [e.g. JHB12,HJB11]

– Essential in some applications

• Application-driven improvements
– Incremental SAT

I Handling of assumptions due to MUS extractors [LB13]



Part II

SAT-Based Problem Solving



How to Solve Problems with SAT?

• CNF encodings
– Represent problem as instance of SAT
– E.g. Eager SMT, Pseudo-Boolean constraints, etc.

• Embedding of SAT solvers
– SAT solver used to implement domain specific algorithm
– White-box integration
– E.g. Lazy SMT, Pseudo-Boolean constraints/optimization, etc.

• SAT solvers as oracles
– Algorithm invokes SAT solver as an NP oracle
– Black-box integration
– E.g. MaxSAT, MUSes, (2)QBF, etc.

• Note:
– CNF encodings most often used with either black-box or white-box

approaches
– SAT techniques adapted in many other domains: QBF, ASP, ILP,

CSP, ...
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SAT-Based Problem Solving

Problem Solving
with SAT

Embeddings

Pseudo-
Boolean

Branch&-
Bound

Enumeration

OPT SAT

Lazy SMT

Lazy
Cl. Gen.

Oracles

MaxSAT

MUS

MCS

Min. Mod-
els

Backbones

Enumeration

CEGAR
SMT

CEGAR
QBF

MC: ic3

Encodings

ATPG

Eager SMT

Planning

BMC

• Some apps associated with more than one concept: planning,
BMC, lazy clause generation, etc.



Examples of SAT-Based Problem Solving I

• Function problems in FPNP[log n]
– Unweighted Maximum Satisfiability (MaxSAT)
– Minimal Correction Subsets (MCSes)
– Minimal models
– ...

• Function problems in FPNP

– Weighted Maximum Satisfiability (MaxSAT)
– Minimal Unsatisfiable Subformulas (MUSes)
– Minimal Equivalent Subformulas (MESes)
– Prime implicates
– ...

• Enumeration problems
– Models
– MUSes
– MCSes
– MaxSAT
– ...



Examples of SAT-Based Problem Solving II

• Decision problems in ⌃P
2

– 2QBF
– ...

• Function problems in FP⌃P
2

– (Weighted) Quantified MaxSAT (QMaxSAT) [IJMS13]

– Smallest MUS (SMUS) [IJMS13]

– ...

• Decision problems in PSPACE
– QBF
– ...

• ...
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Encoding to CNF

• What to encode?
– Boolean formulas

I Tseitin’s encoding
I Plaisted&Greenbaum’s encoding
I ...

– Cardinality constraints
– Pseudo-Boolean (PB) constraints
– Can also translate to SAT:

I Constraint Satisfaction Problems (CSPs)
I Answer Set Programming (ASP)
I Model Finding
I ...

• Key issues:
– Encoding size
– Arc-consistency?
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Representing Boolean Formulas / Circuits I

• Satisfiability problems can be defined on Boolean circuits/formulas
• Can represent circuits/formulas as CNF formulas [T68,PG86]

– For each (simple) gate, CNF formula encodes the consistent
assignments to the gate’s inputs and output

I Given z = OP(x , y), represent in CNF z $ OP(x , y)

– CNF formula for the circuit is the conjunction of CNF formula for
each gate

Fc = (a _ c) ^ (b _ c) ^ (ā _ b̄ _ c̄)

Ft = (r̄ _ t) ^ (s̄ _ t) ^ (r _ s _ t̄)

NAND

OR

a
b c

r
s t



Representing Boolean Formulas / Circuits II

NAND
a
b c

a b c Fc(a,b,c)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Fc = (a _ c) ^ (b _ c) ^ (ā _ b̄ _ c̄)



Representing Boolean Formulas / Circuits III

• CNF formula for the circuit is the conjunction of the CNF formula
for each gate

– Can specify objectives with additional clauses

NAND
AND

OR

a
b c

d

x y
z = 1?

F = (a _ x) ^ (b _ x) ^ (ā _ b̄ _ x̄) ^

(x _ ȳ) ^ (c _ ȳ) ^ (x̄ _ c̄ _ y) ^

(ȳ _ z) ^ (d̄ _ z) ^ (y _ d _ z̄) ^ (z)

• Note: z = d _ (c ^ (¬(a ^ b)))
– No distinction between Boolean circuits and formulas
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Cardinality Constraints

• How to handle cardinality constraints,
Pn

j=1 xj  k ?

– How to handle AtMost1 constraints,
Pn

j=1 xj  1 ?

– General form:
Pn

j=1 xj ./ k , with ./ 2 {<,,=,�, >}

• Solution #1:
– Use PB solver
– Di�cult to keep up with advances in SAT technology
– For SAT/UNSAT, best solvers already encode to CNF

I E.g. Minisat+, but also QMaxSat, MSUnCore, (W)PM2

• Solution #2:
– Encode cardinality constraints to CNF
– Use SAT solver
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Equals1, AtLeast1 & AtMost1 Constraints

•
Pn

j=1 xj = 1: encode with (
Pn

j=1 xj  1) ^ (
Pn

j=1 xj � 1)

•
Pn

j=1 xj � 1: encode with (x1 _ x2 _ . . . _ xn)

•
Pn

j=1 xj  1 encode with:

– Pairwise encoding
I Clauses: O(n2) ; No auxiliary variables

– Sequential counter [S05]

I Clauses: O(n) ; Auxiliary variables: O(n)

– Bitwise encoding [P07,FP01]

I Clauses: O(n log n) ; Auxiliary variables: O(log n)

– ...



Bitwise Encoding

• Encode
Pn

j=1 xj  1 with bitwise encoding:

– Auxiliary variables v0, . . . , vr�1 ; r = dlog ne (with n > 1)

– If xj = 1, then v0 . . . vr�1 = b0 . . . br�1, the binary encoding of j � 1

xj ! (v0 = b0)^. . .^(vr�1 = br�1) , (x̄j_(v0 = b0)^. . .^(vr�1 = br�1))

– Clauses (x̄j _ (vi $ bi )) = (x̄j _ li ), i = 0, . . . , r � 1, where
I li ⌘ vi , if bi = 1
I li ⌘ v̄i , otherwise

– If xj = 1, assignment to vi variables must encode j � 1
I All other x variables must take value 0

– If all xj = 0, any assignment to vi variables is consistent

– O(n log n) clauses ; O(log n) auxiliary variables

• An example: x1 + x2 + x3  1
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General Cardinality Constraints

• General form:
Pn

j=1 xj  k (or
Pn

j=1 xj � k)

– Sequential counters [S05]

I Clauses/Variables: O(n k)

– BDDs [ES06]

I Clauses/Variables: O(n k)

– Sorting networks [ES06]

I Clauses/Variables: O(n log2 n)

– Cardinality Networks: [ANORC09,ANORC11a]

I Clauses/Variables: O(n log2 k)

– Pairwise Cardinality Networks: [CZI10]

– ...
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Pseudo-Boolean Constraints

• General form:
Pn

j=1 aj xj  b

– Operational encoding [W98]

I Clauses/Variables: O(n)
I Does not guarantee arc-consistency

– BDDs [ES06]

I Worst-case exponential number of clauses

– Polynomial watchdog encoding [BBR09]

I Let ⌫(n) = log(n) log(amax)
I Clauses: O(n3⌫(n)) ; Aux variables: O(n2⌫(n))

– Improved polynomial watchdog encoding [ANORC11b]

I Clauses & aux variables: O(n3 log(amax))

– ...



Encoding PB Constraints with BDDs I

• Encode 3x1 + 3x2 + x3  3
• Construct BDD

– E.g. analyze variables by decreasing coe�cients

• Extract ITE-based circuit from BDD
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Encoding PB Constraints with BDDs II

• Encode 3x1 + 3x2 + x3  3

• Extract ITE-based circuit from BDD

• Simplify and create final circuit:

ITE
1 0
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z

NO
R

1

NA
ND

x1

x2 x3 x2x3



More on PB Constraints

• How about
Pn

j=1 aj xj = k ?

– Can use (
Pn

j=1 aj xj � k) ^ (
Pn

j=1 aj xj  k), but...

I
Pn

j=1 aj xj = k is a subset-sum constraint

(special case of a knapsack constraint)
I Cannot find all consequences in polynomial time [S03,FS02,T03]

• Example:

4x1 + 3x2 + 2x3 = 5

– Replace by (4x1 + 3x2 + 2x3 � 5) ^ (4x1 + 3x2 + 2x3  5)
– Let x2 = 0
– Either constraint can still be satisfied, but not both
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CSP Constraints

• Many possible encodings:

– Direct encoding [dK89,GJ96,W00]

– Log encoding [W00]

– Support encoding [K90,G02]

– Log-Support encoding [G07]

– Order encoding for finite linear CSPs [TTKB09]



Direct Encoding for CSP w/ Binary Constraints

• Variable xi with domain Di , with mi = |Di |

• Represent values of xi with Boolean variables xi ,1, . . . , xi ,mi

• Require
Pmi

k=1 xi ,k = 1
– Su�ces to require

Pmi

k=1 xi,k � 1 [W00]

• If the pair of assignments xi = vi ^ xj = vj is not allowed, add
binary clause (x̄i ,vi _ x̄j ,vj )
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Embedding SAT Solvers

SAT Solver

BacktrackingPropagation

Branching

Constraint Propagators
/ Theory Solvers

Assignments +
Constraints

Assignments +
Explanations

• Modify SAT solver to interface
problem-specific propagators (or
theory solvers)

• Typical interface:
– SAT solvers communicates

assignments/constraints to
propagators

– Retrieve resulting assignments or
explanations for inconsistency

• Well-known examples (many more):
– Branch&bound PB optimization
– Non-clausal SAT solvers
– Lazy SMT solving (see later talks)

• Key problem:
– Keeping up with improvements in

SAT solvers



Pseudo-Boolean Constraints & Optimization

• Pseudo-Boolean Constraints:
– Boolean variables: x1, . . . , xn
– Linear inequalities:

X

j2N

aij lj � bi , lj 2 {xj , x̄j}, xj 2 {0, 1}, aij , bi 2 N+
0

• Pseudo-Boolean Optimization (PBO):

minimize
P
j2N

cj · xj

subject to
P
j2N

aij lj � bi ,

lj 2 {xj , x̄j}, xj 2 {0, 1}, aij , bi , cj 2 N+
0

• Branch and bound (B&B) PBO algorithm: [MMS00]

– Extend SAT solver
– Must develop propagator for PB constraints
– B&B search for computing optimum cost function value

I Trivial upper bound: all xj = 1
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Limitations with Embeddings

• B&B MaxSAT solving:
– Cannot use unit propagation
– Cannot learn clauses

• MUS extraction:
– Decision of clauses to include in MUS based on unsatisfiable

outcomes
– No immediate gain from embedding SAT solvers
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Practical Aspects of Using SAT Oracles

• Incremental vs. non-incremental SAT [ES03]

– Incremental SAT:
I Replace each clause (Ci ) with (Ci _ āi ), where ai is assumption

variable
I When calling SAT solver, each assumption can be assigned 1, 0, or

be left unassigned

I ai = 1 to activate clause Ci

I ai = 0 to deactivate clause Ci

I Add clause (āi ) to delete Ci

I Note: incremental SAT enables clause reuse

– Non-incremental SAT:

I Submit complete formula to SAT solver in each iteration
I Note: di�cult to instrument clause reuse

• What does the SAT oracle compute/return?
1. Yes/No: (st) SAT(F)

2. Compute model: (st, µ) SAT(F)
3. Compute unsatisfiable cores: (st, µ,U) SAT(F)
4. Compute proof traces/resolution proof: (st, µ, T ) SAT(F)
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variable
I When calling SAT solver, each assumption can be assigned 1, 0, or

be left unassigned
I ai = 1 to activate clause Ci

I ai = 0 to deactivate clause Ci
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Defining MUSes

x6 _ x2 ¬x6 _ x2 ¬x2 _ x1 ¬x1

¬x6 _ x8 x6 _ ¬x8 x2 _ x4 ¬x4 _ x5

x7 _ x5 ¬x7 _ x5 ¬x5 _ x3 ¬x3

• Formula is unsatisfiable but not irreducible

• Can remove clauses, and formula still unsatisfiable

• A Minimal Unsatisfiable Subformula (MUS) is an unsatisfiable and
irreducible subformula

• How to compute an MUS?
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Deletion-Based MUS Extraction

Input : Unsatisfiable CNF Formula F

Output: MUS M

begin

M F // MUS over-approximation

foreach c 2M do

if not SAT(M\ {c}) then
M M\ {c} // If UNSAT(M\ {c}), then c 62M

return M // Final M is MUS

end

• Number of calls to SAT solver: O(|F|)
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M F // MUS over-approximation

foreach c 2M do
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end

• Number of calls to SAT solver: O(|F|)
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An Example
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Computed MUS



More on MUS Extraction

Algorithm # Oracle Calls Reference

Insertion (Default) O(m ⇥ k) [SP88]

Deletion (Default) O(m) [CD91,BDTW93]

QuickXplain O(k ⇥ (1 + log m
k )) [J01,J04]

Dichotomic O(k ⇥ logm) [HLSB06]

Insertion with Relaxation Variables O(m) [MSL11]

Deletion with Model Rotation O(m) [BLMS12,MSL11]

Progression O(k ⇥ log(1 + m
k )) [MSJB13]

• Additional Techniques:
– Restrict formula to unsatisfiable subsets [BDTW93,HLSB06,DHN06,MSL11]

– Check redundancy condition [vMW08,MSL11,BLMS12]

– Model rotation, recursive model rotation, etc. [MSL11,BMS11,BLMS12,W12]
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k )) [MSJB13]

• Additional Techniques:
– Restrict formula to unsatisfiable subsets [BDTW93,HLSB06,DHN06,MSL11]

– Check redundancy condition [vMW08,MSL11,BLMS12]

– Model rotation, recursive model rotation, etc. [MSL11,BMS11,BLMS12,W12]
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Defining Maximum Satisfiability

x6 _ x2 ¬x6 _ x2 ¬x2 _ x1 ¬x1

¬x6 _ x8 x6 _ ¬x8 x2 _ x4 ¬x4 _ x5

x7 _ x5 ¬x7 _ x5 ¬x5 _ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

• The MaxSAT solution is one of the smallest MCSes
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MaxSAT Problem(s)

• MaxSAT:
– All clauses are soft
– Maximize number of satisfied soft clauses
– Minimize number of unsatisfied soft clauses

• Partial MaxSAT:
– Hard clauses must be satisfied
– Minimize number of unsatisfied soft clauses

• Weighted MaxSAT
– Weights associated with (soft) clauses
– Minimize sum of weights of unsatisfied clauses

• Weighted Partial MaxSAT
– Weights associated with soft clauses
– Hard clauses must be satisfied
– Minimize sum of weights of unsatisfied soft clauses



MaxSAT Problem(s)

• MaxSAT:
– All clauses are soft
– Maximize number of satisfied soft clauses
– Minimize number of unsatisfied soft clauses

• Partial MaxSAT:
– Hard clauses must be satisfied
– Minimize number of unsatisfied soft clauses

• Weighted MaxSAT
– Weights associated with (soft) clauses
– Minimize sum of weights of unsatisfied clauses

• Weighted Partial MaxSAT
– Weights associated with soft clauses
– Hard clauses must be satisfied
– Minimize sum of weights of unsatisfied soft clauses



MaxSAT Problem(s)

• MaxSAT:
– All clauses are soft
– Maximize number of satisfied soft clauses
– Minimize number of unsatisfied soft clauses

• Partial MaxSAT:
– Hard clauses must be satisfied
– Minimize number of unsatisfied soft clauses

• Weighted MaxSAT
– Weights associated with (soft) clauses
– Minimize sum of weights of unsatisfied clauses

• Weighted Partial MaxSAT
– Weights associated with soft clauses
– Hard clauses must be satisfied
– Minimize sum of weights of unsatisfied soft clauses



MaxSAT Problem(s)

• MaxSAT:
– All clauses are soft
– Maximize number of satisfied soft clauses
– Minimize number of unsatisfied soft clauses

• Partial MaxSAT:
– Hard clauses must be satisfied
– Minimize number of unsatisfied soft clauses

• Weighted MaxSAT
– Weights associated with (soft) clauses
– Minimize sum of weights of unsatisfied clauses

• Weighted Partial MaxSAT
– Weights associated with soft clauses
– Hard clauses must be satisfied
– Minimize sum of weights of unsatisfied soft clauses



Definitions

• Cost of assignment:
– Sum of weights of unsatisfied clauses

• Optimum solution (OPT):
– Assignment with minimum cost

• Upper Bound (UB):
– Assignment with cost not less than OPT
– E.g.

P
ci2' wi + 1; hard clauses may be inconsistent

• Lower Bound (LB):
– No assignment with cost no larger than LB
– E.g. �1; it may be possible to satisfy all soft clauses
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• Optimum solution (OPT):
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• Upper Bound (UB):
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– E.g.

P
ci2' wi + 1; hard clauses may be inconsistent

• Lower Bound (LB):
– No assignment with cost no larger than LB
– E.g. �1; it may be possible to satisfy all soft clauses
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Iterative SAT Solving – Refine UB

LB

OPT

UB0

• Require
P

wi ri  UB0 � 1

• While SAT, refine UB
– New UB given by cost of unsatisfied clauses, i.e.

P
wi ri

• Repeat until constraint
P

wi ri  UBk � 1 becomes UNSAT
– UBk denotes the optimum value

• Worst-case # of iterations exponential on instance size

• Example tools:
– Minisat+: CNF encoding of constraints [ES06]

– SAT4J: native handling of constraints [LBP10]

– QMaxSat: CNF encoding of constraints [KZFH12]

– ...
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Fu&Malik’s Core-Guided Approach

x6 _ x2 ¬x6 _ x2 ¬x2 _ x1 ¬x1

¬x6 _ x8 x6 _ ¬x8 x2 _ x4 ¬x4 _ x5

x7 _ x5 ¬x7 _ x5 ¬x5 _ x3 ¬x3

Example CNF formula
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Formula is UNSAT; OPT  |'|� 1; Get unsat core
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i=1 ri  1

Add relaxation variables and AtMost1 constraint
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Fu&Malik’s Core-Guided Approach
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P6
i=1 ri  1

P14
i=7 ri  1

Add new relaxation variables and AtMost1 constraint
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Fu&Malik’s Core-Guided Approach

x6 _ x2_r7 ¬x6 _ x2_r8 ¬x2 _ x1_r1_r9 ¬x1_r2_r10

¬x6 _ x8 x6 _ ¬x8 x2 _ x4_r3 ¬x4 _ x5_r4
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MaxSAT solution is |'|� I = 12� 2 = 10



Organization of Fu&Malik’s Algorithm

• Clauses characterized as:
– Soft: initial set of soft clauses
– Hard: initially hard, or added during execution of algorithm

I E.g. clauses from AtMost1 constraints

• While exist unsatisfiable cores [FM06]

– Add fresh set B of relaxation variables to soft clauses in core
– Add new AtMost1 constraint

X

bi2B

bi  1

I At most 1 relaxation variable from set B can take value 1

• (Partial) MaxSAT solution is |'|� I

– I: number of iterations (⌘ number of computed unsat cores)

• Can be adapted for weighted MaxSAT [ABL09a,MMSP09]
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Oracle-Based MaxSAT Solving I

• Iterative: [MHLPMS13]

– Linear search SAT/UNSAT (refine UB) [e.g. LBP10]

– Linear search UNSAT/SAT (refine LB)
– Binary search [e.g. FM06]

– Bit-based
– Mixed linear/binary search [e.g. KZFH12]

• Core-Guided: [MHLPMS13,ABL13]

– FM/(W)MSU1.X/WPM1 [FM06,MSM08,MMSP09,ABL09a,ABGL12]

– (W)MSU3 [MSP07]

– (W)MSU4 [MSP08]

– (W)PM2 [ABL09a,ABL09b,ABL10,ABGL13]

– Core-guided binary search (w/ disjoint cores) [HMMS11,MHMS12]

I Bin-Core, Bin-Core-Dis, Bin-Core-Dis2

• Iterative subsetting [DB11,DB13a,DB13b]



Oracle MaxSAT Solving II

• A sample of recent algorithms:

Algorithm # Oracle Calls Reference
Linear search SU Exponential [e.g. LP10]

Binary search Linear [e.g. FM06]

WMSU1/WPM1 Exponential* [FM06,MSM08,MMSP09,ABL09a,ABGL12]

WPM2 Exponential* [ABL10,ABGL13]

Bin-Core-Dis Linear [HMMS11,MHMS12]

Iterative subsetting Exponential [DB11,DB13a,DB13b]

* Weighted case; depends on computed cores

• Example MaxSAT solvers:
– MSUnCore; WPM1, WPM2; QMaxSAT; SAT4J; etc.
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Problem Statement

[GMN09]

Given: 9X8Y .�, where � is a propositional formula

Question: Is there an assignment ⌧ to X such that 8Y .�[X/⌧ ]?

Example

9x1, x2 8y1, y2. (x1 ! y1) ^ (x2 ! y2)

solution: x1 = 0, x2 = 0
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Motivation

• ⌃P
2 complete

• interesting problems in this class, e.g. certain nonmonotonic
reasoning, aspects of model checking, conformant planning

• separate track at QBF Eval



Looking at Assignments

Y

X

⇠

µ



Looking at Assignments

Y

X

⇠

µ

1



Looking at Assignments

Y

X

⇠

µ

11 0 . . .
. . .

0 . . .
. . .

1



Looking at Assignments

Y

X

⇠

µ

11 0 . . .
. . .

0 . . .
. . .

1

⌧ 1 1 . . . 1 1 . . . 1



Looking at Assignments

Y

X

⇠

µ

�[Y /µ]

11 0 . . .
. . .

0 . . .
. . .

1

⌧ 1 1 . . . 1 1 . . . 1



Expanding 9X8Y .� into SAT

9X8Y . � �! SAT

0

@
^

µ2B|Y |

�[Y /µ]

1

A

Example

9x1, x28y1, y2. (x1 $ y1) ^ (x2 $ y2) ^ (x̄1 _ x̄2)

Expansion:
(x1 $ 0) ^ (x2 $ 0) ^ (x̄1 _ x̄2)

^ (x1 $ 0) ^ (x2 $ 1) ^ (x̄1 _ x̄2)
^ (x1 $ 1) ^ (x2 $ 0) ^ (x̄1 _ x̄2)
^
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Abstraction of 9X8Y .�

• Consider only some set of assignments ! ✓ B
|Y |

^

µ2!
�[Y /µ]

• If a solution to the problem is a solution to the abstraction

^

µ2B|Y |

�[Y /µ] )
^

µ2!
�[Y /µ]

• But not the other way around, a solution to an abstraction is not
necessarily a solution to the original problem.
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CEGAR Loop

input : 9X8Y .�
output: (true, ⌧) if there exists ⌧ s.t. 8Y .�[X/⌧ ],

(false, –) otherwise

!  ;;
while true do

(outc1, ⌧) SAT(
V

µ2! �[Y /µ]); // find a candidate

if outc1 = false then

return (false,–); // no candidate found

end

if “ ⌧ is a solution ”; // solution check

then

return (true, ⌧)
else

“Grow ! ”; // refinement

end

end
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Testing for Solution

A value ⌧ is a solution to 9X8Y .� i↵

8Y .�[X/⌧ ] i↵ UNSAT(¬�[X/⌧ ])

If SAT(¬�[X/⌧ ]) by some µ, then µ is a counterexample to ⌧

Example
9x1, x2 8y1, y2. (x1 ! y1) ^ (x2 ! y2)

• candidate: x1 = 1, x2 = 1

• counterexamples: y1 = 0, y2 = 0
y1 = 0, y2 = 1
y1 = 1, y2 = 0
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AReQS (Abstraction Refinement-based QBF Solver)

input : 9X8Y .�
output: (true, ⌧) if there exists ⌧ s.t. 8Y .�[X/⌧ ],

(false, –) otherwise

!  ;; // start with the empty expansion

while true do

(outc1, ⌧) SAT(
V

µ2! �[Y /µ]); // find a candidate

if outc1 = false then

return (false,–); // no candidate found

end

(outc2, µ) SAT (¬�[X/⌧ ]); // find a counterexample

if outc2 = false then

return (true, ⌧) ; // candidate is a solution

end

!  ! [ {µ} ; // refine

end



AReQS — Conclusions

• ... is a CEGAR-based algorithm for 2QBF [JMS11]

• ... uses SAT solver as an oracle

• ... gradually expands given 2QBF into a SAT formula

• Can be extended to arbitrary number of levels by recursion
(RAReQS) [JKMSC12]
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SAT-Based Problem Solving – A Glimpse of the Future

• Remarkable (and increasing) number of applications of SAT

• Can use SAT for solving problems in di↵erent complexity classes
– FPNP[log n], FPNP, ...
– E.g. tackling problems in the polynomial hierarchy

• Many new recent algorithms for concrete problems
– MaxSAT
– MUSes
– MCSes
– Enumeration problems
– ...

• Better encodings?

• White-box vs. black-box approaches?
– But use of oracles inevitable in many cases



Thank You
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