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SPECTRAL APPROXIMATION OF TIME-HARMONIC

MAXWELL EQUATIONS IN THREE-DIMENSIONAL EXTERIOR

DOMAINS

LINA MA, JIE SHEN, AND LI-LIAN WANG

Abstract. We develop in this paper an efficient and robust spectral-Galerkin method for solving
the three-dimensional time-harmonic Maxwell equations in exterior domains. We first reduce the
problem to a bounded domain by using the capacity operator which characterizes the transparent
boundary condition (TBC). Then, we adopt the transformed field expansion (TFE) approach to
reduce the problem to a sequence of Maxwell equations in a spherical shell. Finally, we develop
an efficient spectral algorithm by using Legendre approximation in the radial direction and vector
spherical harmonic expansion in the tangential directions.
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1. Introduction

We consider in this paper the approximation of the time-harmonic Maxwell equa-
tions in a three-dimensional exterior domain:

− iωµH + curlE = 0, −iωεE − curlH = 0, in R
3\D̄;

E × n|∂D = g; lim
r→∞

r
(√

µ/εH × er −E
)
= 0,

(1)

where D is a three-dimensional, simply connected, bounded scatterer, i =
√
−1

is the complex unit, g is resulted from a given incident field, µ is the magnetic
permeability, ε is the electric permittivity, ω is the frequency of the harmonic wave,
n is the unit outward normal of D and er = x/r with r = |x|. The boundary
condition at infinity in (1) is known as the Silver-Müller radiation condition.

The Maxwell equations (1) play an important role in many scientific and engi-
neering applications, and are also of fundamental mathematical interest (see e.g.,
[13, 4, 11]). Despite its seemingly simplicity, the system (1) is notoriously difficult
to solve numerically. Some of the main challenges include: (i) the indefiniteness
when ω is not small; (ii) highly oscillatory solutions when ω is large; (iii) the incom-
pressibility (i.e., div(µH) = div(εE) = 0), which is implicitly implied by (1); and
(iv) the unboundedness of the domain. On the one hand, one needs to construct ap-
proximation spaces such that the discrete problems are well posed and lead to good
approximations for a wide range of wave number. On the other hand, a perhaps
more difficult problem is to develop efficient algorithms for solving the indefinite
linear system, particularly for large wave numbers, from the given discretization.
We refer to [11] and the references therein, for various contributions with respect to
numerical approximations of the time-harmonic Maxwell equations. Most notably,
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a very popular and effective method for dealing with the unboundedness of the
domain is to introduce a perfectly matched layer (PML), initially proposed in [3].

In this paper, we propose a spectral approximation based on the tensor-product
of vector spherical harmonics (VSH), which forms a complete orthogonal basis for
L2-vector-valued functions on the spherical surface, and Legendre polynomials in
the radial direction. It is well-known that the Maxwell equations with constant
magnetic permeability and electric permittivity are separable if D is a ball, and
its solution can be explicitly expressed in terms of the VSH and the spherical
Hankel functions [13]. While the explicit solution is very useful for some theoretical
considerations, it has much less value in practice, since most practical problems
would have one or more of the following situations: non-spherical domains, non-
constant magnetic permeability and electric permittivity, non-homogeneous source
etc., where an explicit solution would not be available.

In order to deal with more general scatterers D and non-homogeneous source
functions, we adapt the so-called transformed field expansion (TFE) [15], which
has proven to be effective for a variety of situations (cf. [14, 5, 6, 9]). The TFE
approach consists of four steps: (i) reduce the problem in an unbounded domain
to a bounded domain with transparent boundary conditions; (ii) transform the
reduced bounded domain to a separable domain, consider the reduced domain as
a perturbation of the separable domain, and expand the solution in term of the
perturbation parameter ε; (iii) solve for each expansion coefficient in the separable
domain; and (iv) sum up the expansion terms using a robust Padé approximation.
The essential step in the above TFE approach is the step (iii), i.e., solve the Maxwell
equations in the separable domain (which is a spherical shell in this case) with non-
homogeneous source term and non-local boundary conditions at the outer spherical
surface.

In this paper, we shall develop an efficient and robust spectral solver for the
non-homogeneous Maxwell equations in a spherical shell. More precisely, we shall
use VSH to decouple the problem into a sequence of one-dimensional problems that
can be efficiently solved using a direct spectral-Galerkin method. Therefore, the
entire TFE approach does not involve any iterative solver, and it is robust for low
to moderately high wave numbers and to scatterers which have sufficiently smooth
boundaries.

The rest of the paper is organized as follows. In the next section, we introduce the
VSH and present the formulation of the capacity operator characterizing the exact
non-reflecting boundary condition. In Section 3, we present the TFE algorithm,
and and formulae in Appendix B. In Section 4, we describe the Legendre spectral-
Galerkin method for the reduced one-dimensional problems, and give the numerical
results in Section 5. In Appendix A, we provide some useful formulae for the
VSH, while in Appendix B, we derive the Maxwell equation in the transformed
coordinates, and the recursion formulae in the TFE approach.

2. Vector spherical harmonics and the capacity operator

In this section, we recall some essential properties of VSH, and derive the explicit
formula for the capacity operator expressed in terms of VSH, which characterizes
the exact DtN boundary condition at the outer spherical surface.

2.1. Vector spherical harmonics. Several versions of VSH with different nota-
tion and properties have been used in practice (see e.g., [12, 10, 2, 13, 8, 7]). In
what follows, we adopt the family of VSH in [10, 13], and remark its relation with
several other families documented in the above literature (see Remark 2.1 below).
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Recall that the spherical coordinates (r, θ, φ) are related to the Cartesian coor-
dinates x = (x1, x2, x3) by (cf. [13]):

(2) x1 = r sin θ cosφ, x2 = r sin θ sinφ, x3 = r cos θ,

with the moving (right-handed) orthonormal coordinate basis {er, eθ, eφ} :

er = x/r, eθ = (cos θ cosφ, cos θ sinφ,− sin θ), eφ = (− sinφ, cosφ, 0).(3)

For any v = (v1, v2, v3), we denote by vr, vθ and vφ the projections of v onto er, eθ
and eφ, respectively, that is, v = vrer + vθeθ + vφeφ with

(4) vr = v · er, vθ = v · eθ, vφ = v · eφ .
Hereafter, let S be the unit spherical surface, and denote by ∆S and∇S the Laplace-
Beltrami and tangent gradient operators on S. Recall that

(5) ∆Su =
1

sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

sin2 θ

∂2u

∂φ2
, ∇Su =

∂u

∂θ
eθ +

1

sin θ

∂u

∂φ
eφ.

The spherical harmonics {Y m
l } (as normalized in [13]) are eigenfunctions of ∆S ,

namely,

(6) ∆SY
m
l = −l(l+ 1)Y m

l , l ≥ 0, |m| ≤ l;

and form an orthonormal basis for L2(S) :

(7)

∫

S

Y m
l Y m′

l′ dS = δll′δmm′ .

The family of VSH is defined by

Tm
l = ∇SY

m
l × er =

1

sin θ

∂Y m
l

∂φ
eθ −

∂Y m
l

∂θ
eφ, for l ≥ 1, 0 ≤ |m| ≤ l,(8)

V m
l = (l + 1)Y m

l er −∇SY
m
l , for l ≥ 0, 0 ≤ |m| ≤ l,(9)

Wm
l = lY m

l er +∇SY
m
l , for l ≥ 1, 0 ≤ |m| ≤ l.(10)

Notice that V 0
0 = er/

√
4π. With the understanding of T 0

0 =W 0
0 = 0, the indexes

{l,m} run over {(l,m) : l ≥ 0, 0 ≤ |m| ≤ l}. We collect in Appendix A the
properties of VSH to be used throughout the paper.

Remark 2.1. The VSH in Hill [10] were denoted by {V lm,X lm,W lm}. In fact, we
have the relation

V lm = − V m
l√

(l + 1)(2l + 1)
, X lm =

iTm
l√

l(l + 1)
, W lm =

Wm
l√

l(2l+ 1)
.(11)

Nédélec [13] employed the notation {Iml , Tm
l , N

m
l }, and there hold

(12) Nm
l+1 = V m

l , Tm
l = Tm

l , Iml−1 =Wm
l .

The Spherepack [18] used the notation
{
Y m
l er,∇SY

m
l ,

−−→
curlSY

m
l

}
in Morse and

Feshbach [12] (also see [13, Thm. 2.4.8]). Noting that
−−→
curlSY

m
l = ∇SY

m
l × er (cf.

[13, (2.4.176)]), we have

(13) Y m
l er =

Wm
l + V m

l

2l+ 1
, ∇SY

m
l =

(l + 1)Wm
l − lV m

l

2l+ 1
,

−−→
curlSY

m
l = Tm

l .

In the numerical experiments in Section 5, we shall use the VSH in the Spherepack.
�
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Define the vector L2-space and its tangential vector space:

(14) L2(S) = (L2(S))3, TL2(S) =
{
u ∈ L2(S) : u · er = 0

}
.

The family of VSH, {Tm
l ,V

m
l ,W

m
l }, forms a complete, orthogonal basis of L2(S),

while the family {Tm
l ,∇SY

m
l } forms an orthogonal basis for TL2(S) (cf. (5) and

(A.1)-(A.2)).

2.2. The capacity operator. As the problem (1) is set in an unbounded domain,
we first truncate the unbounded domain at an artificial spherical surface r = b.
Since the exact solution for the homogeneous Maxwell equations (1) exterior to the
ball r ≤ b with µ and ε being constant can be obtained by using the separation of
variables [13], we can set up the exact DtN nonreflecting boundary condition:

(15) H × n− TbES = 0, at r = b,

where for simplicity, we assume hereafter µ = ε = 1 (so the wave number k =
ω
√
εµ = ω), and the capacity operator Tb, acting on the tangential component of

E (i.e., ES = −E × n × n), can be determined as in [13] (see (23) below). Here,
for the readers’ reference, we sketch the derivation.

Given the tangential component of E on the artificial surface (note that ES ∈
TL2(S)), we write

(16) ES

∣∣
r=b

=

∞∑

l=1

l∑

|m|=0

[
cml T

m
l + dml ∇SY

m
l

]
.

Then the exterior problem:

curl Ee = ikHe, curl He = −ikEe, r > b;

Ee × er = ES , at r = b; lim
r→∞

r
(
He × er −Ee

)
= 0,

(17)

can be solved analytically by using separation of variables. The solution {He,Ee}
can be expressed in VSH series in terms of {cml , dml } (see [13, Thm. 5.3.2]). Then,
the capacity operator Tb, which associates ES to He×er on the artificial spherical
surface, is given by (see [13, (5.3.87)-(5.3.88)] with kb in place of k):

(18) TbES =He × er
∣∣
r=b

=

∞∑

l=1

l∑

|m|=0

[ cml
ikb

Θl(kb)T
m
l +

ikb dml
Θl(kb)

∇SY
m
l

]
,

where

(19) Θl(kb) = zl(kb) + 1 with zl(r) = r
d
dr
h
(1)
l (r)

h
(1)
l (r)

,

and h
(1)
l (r) is the spherical Hankel function of the first kind (cf. [1]). By imposing

H × er =He × er at r = b, we obtain the exact boundary condition at r = b with
TbES given by (18)-(19), but it is expressed by the expansion coefficients {cml , dml }
of ES . Thus, it is necessary to represent it in terms of the expansion coefficients of
the field E with r ≤ b. For this purpose, we write

(20) E(r, θ, φ) =

∞∑

l=0

l∑

|m|=0

[
vml (r)V m

l (θ, φ) + tml (r)Tm
l (θ, φ) + wm

l (r)Wm
l (θ, φ)

]
,

where we recall that T 0
0 =W 0

0 = 0. Using (20) and the identities:

(21) V m
l ×er = −Tm

l , T
m
l ×er = −∇SY

m
l , Wm

l ×er = Tm
l , ∇SY

m
l ×er = Tm

l ,
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we find

(22) ES

∣∣
r=b

= −(E×er
)
×er

∣∣
r=b

=

∞∑

l=1

l∑

|m|=0

[
tml (b)Tm

l +
(
wm

l −vml
)
(b)∇SY

m
l

]
.

Comparing the coefficients in (18) and (22) leads to

(23) TbES

∣∣
r=b

=

∞∑

l=1

l∑

|m|=0

[ tml (b)

ikb
Θl(kb)T

m
l +

ikb
(
wm

l − vml
)
(b)

Θl(kb)
∇SY

m
l

]
,

where Θl is defined by (19).

3. Transformed field expansion and dimension reduction

EliminatingH and using the capacity operator, we reduce the problem (1) (with
µ = ε = 1) to

curl curlE − k2E = 0, in Ωb\D̄;

E × n|∂D = g; curlE × er − ikTbES = 0, at r = b,
(24)

where Ωb is the ball of radius b, and Tb is defined in (23).
We now apply the TFE approach to (24).

3.1. Change of variables. Assume that the scatterer is given by

D =
{
r < a+ h(θ, φ) : θ ∈ [0, π), φ ∈ [0, 2π)

}
,

for some a > 0. Let us choose b such that b > maxθ,φ{a+ h(θ, φ)}, and then map
the domain: Ωb\D̄ = {a+h(θ, φ) < r < b)} to the spherical shell: Ω = {a < r′ < b}
with the change of variables:

(25) r′ =
dr − bh(θ, φ)

d− h(θ, φ)
, θ′ = θ, φ′ = φ,

where d = b− a.
Let E = (Er,ES), where Er and ES are the axial component and tangential

component of E, respectively. We first notice that we can rewrite the Maxwell
equation

curl curlE − k2E = 0,

after multiplying both sides by r2, as

−∇S · (∇SEr) +∇S · (∂r(rES))− r2k2Er = 0,(26)

∇S(∇S · (E × er))× er + r∂r(∇SEr)− r∂2r (rES)− r2k2ES = 0.(27)

Let us denote the transformed field by

(28) F (r′, θ′, φ′) := E(r, θ, φ) = E
(
r′ +

A(r′, θ′, φ′)

d
, θ′, φ′

)
:= (Fr′ ,F S),

with A(r′, θ′, φ′) = h(θ′, φ′)(b− r′).
After some tedious manipulations (see Appendix B), we find that the system

(26)-(27) is transformed into:

−∇S · (∇SFr′) +∇S · (∂r′(r′F S))− r′2k2Fr′ = fr′ ,

∇S(∇S · (F × er))× er + r′∂r′(∇SFr)− r′∂2r′(r
′F S)− r′2k2F S = f tp,

F × er +
Fr′(a)

a
∇Sh = g̃S , at r′ = a,

(curlF )× er − ikTbF S = J , at r′ = b,

(29)
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where fr′ , f tp, g̃S and J are given in (B.5)-(B.8) in Appendix B.

3.2. Recursion by boundary perturbation. Now we assume h = εq, and ex-
pand

F (r′, θ′, φ′; ε) =

∞∑

n=0

F n(r′, θ′, φ′)εn.(30)

Writing F n = (Fn
r′ ,F

n
S), plugging the above expansion into (29), and collecting the

terms in powers of ε, we arrive at the following recursion for n ≥ 0:

−∇S · (∇SF
n
r′) +∇S · (∂r′(r′F n

S))− r′2k2Fn
r′ = fn

r′ ,

∇S(∇S · (F n × er))× er + r′∂r′(∇SF
n
r′)− r′∂2r′(r

′F n
S)− r′2k2F n

S = fn
tp,

F n × er = g̃nS , at r′ = a,

(curlF n)× er − ikTbF n
S = Jn, at r′ = b,

(31)

where fn
r′ , f

n
tp, g̃

n
S and Jn are given in (B.14)-(B.17) in Appendix B. We note in

particular that fn
r′ , f

n
tp and Jn only depend on the previous four expansion terms,

namely {F n−i, i = 1, 2, 3, 4}.
We can rewrite the above system in the more compact form:

curl curlF n − k2F n =
1

r′2
fn, in Ω,(32)

F n × er|r=a = g̃nS ; curlF n × er − ikTbF n
S = Jn, at r = b,(33)

where fn = (fn
r′ ,f

n
tp). Hence, using the TFE approach, it boils down to solving a

sequence of non-homogeneous Maxwell equations in the spherical shell Ω. We are
therefore concerned with developing an efficient, robust solver for this prototype
system.

3.3. Dimension reduction. We now consider the following problem:

curl curlE − k2E = F , in Ω,(34)

E × er|r=a = g; curlE × er − ikTbES = h, at r = b,(35)

which has to be solved for each expansion order n with given F , g and h.
It follows from [13, Thm. 5.3.2] that the problem admits a unique solution,

provided that F ∈ L2(Ω) with ∇ · F = 0 and g, h ∈ TL2(S). We refer the
interested readers to [4, 13] for delicate regularity analysis of the above problem.

We first expand, in terms of VSH, the unknown function E as in (20), and the
source function F as:
(36)

F (r, θ, φ) =
∞∑

l=0

l∑

|m|=0

[
fv
l,m(r)V m

l (θ, φ) + f t
l,m(r)Tm

l (θ, φ) + fw
l,m(r)Wm

l (θ, φ)
]
.

Then, we expand the given data g and h in terms of VSH basis of TL2(S) :

g(θ, φ) =

∞∑

l=1

l∑

|m|=0

[
ĝml T

m
l (θ, φ) + g̃ml ∇SY

m
l (θ, φ)

]
,

h(θ, φ) =

∞∑

l=1

l∑

|m|=0

[
ĥml T

m
l (θ, φ) + h̃ml ∇SY

m
l (θ, φ)

]
.

(37)
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For simplicity of presentation, we define the handy differentiation operators:

(38) d+l =
d

dr
+
l

r
, d−l =

d

dr
− l

r
.

Inserting the expansion (20) and (36)-(37) into (34), we find from the property (A.9)
that (34) reduces to a sequence of one-dimensional problems in {vml , tml , wm

l }. More
precisely, we have v00 = 0, and for l ≥ 1 and |m| ≤ l,

l

2l + 1
d−l
[
d−l−1w

m
l − d+l+2v

m
l

]
− k2vml = fv

l,m, r ∈ (a, b),(39)

l + 1

2l + 1
d+l+1

[
d+l+2v

m
l − d−l−1w

m
l

]
− k2wm

l = f t
l,m, r ∈ (a, b),(40)

− 1

r2
d

dr

(
r2
dtml
dr

)
+
l(l + 1)

r2
tml − k2tml = fw

l,m, r ∈ (a, b).(41)

Similarly, inserting the expansion (20) and (37) into (35), and using (21), (23) and
(A.9), the boundary conditions (35) become

wm
l (a)− vml (a) = ĝml , tml (a) = −g̃ml ,(42)

[
d−l−1w

m
l − d+l+2v

m
l

]
(b) + k2b

(wm
l − vml )(b)

Θl(kb)
= ĥml ,(43)

∂rt
m
l (b)− b−1zl(kb)t

m
l (b) = h̃ml .(44)

Note that the modes tml (coefficients of Tm
l ) are completely decoupled from the

modes vml and wm
l .

In summary, we only have to solve the following sequence (l ≥ 1 and |m| ≤ l)
of one-dimensional problems with unknowns: v = vml , w = wm

l , u = tml , and with

given data fv = fv
l,m, f

w = fw
l,m, ĝ = ĝml , ĥ = ĥml , g̃ = −g̃ml , h̃ = h̃ml :

βld
−
l

[
d−l−1w − d+l+2v

]
− k2v = fv, r ∈ (a, b),(45)

(1 − βl)d
+
l+1

[
d+l+2v − d−l−1w

]
− k2w = fw, r ∈ (a, b),(46)

w(a) − v(a) = ĝ,
[
d−l−1w − d+l+2v

]
(b) + k2b

(w − v)(b)

Θl(kb)
= ĥ;(47)

and

− 1

r2
d

dr

(
r2
du

dr

)
+
l(l + 1)

r2
u− k2u = f t, r ∈ (a, b),(48)

u(a) = g̃, u′(b)− b−1zl(kb)u(b) = h̃,(49)

where βl = l/(2l+ 1) and zl is defined in (19).

Remark 3.1. We derive immediately from the solvability of the 3D problem (34)-
(35) that there exists a unique triple {v, w, u} for each (l,m) that solves (45)-
(49). �

Remark 3.2. Observe that the problem (48)-(49) is exactly the equation reduced
from the time-harmonic Helmholtz equation with exact DtN boundary condition
in a spherical shell (cf. [17, (3.6)]). Since efficient algorithms and wave number-
explicit a priori estimates for this problem have already presented in [17], we shall
concentrate below on (45)-(47). �
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4. Spectral-Galerkin method for the one-dimensional systems

We now construct the spectral-Galerkin method for the coupled system (45)-
(47). First, we make a simple variable transform, e.g., w − ĝ → w, to homogenize
the Dirichlet boundary condition in (45)-(47) at r = a. Hence, it suffices to consider

βld
−
l [d

−
l−1w − d+l+2v]− k2v = f1, r ∈ (a, b),(50)

(1− βl)d
+
l+1[d

+
l+2v − d−l−1w]− k2w = f2, r ∈ (a, b),(51)

w(a)− v(a) = 0, [d−l−1w − d+l+2v](b) + k2b
(w − v)(b)

Θl(kb)
= hb.(52)

Define the complex vector-valued functions v = (v, w)t, f = (f1, f2)
t,φ = (φ1, φ2)

t,
and the differential operators:

(53) ∇̃l = (d+l+2,−d−l−1), ∇̃l · v = d+l+2v − d−l−1w.

4.1. Weak formulation and well-posedness. Let I = (a, b), and PN be the
set of all real algebraic polynomials of degree at most N. Define the approximation
space

(54) XN =
{
φ = (φ1, φ2)

t ∈ (PN + iPN )2 : φ1(a)− φ2(a) = 0
}
,

and the weighted inner product by (u, v)ω =
∫
I
u(r)v̄(r)ω(r)dr with ω(r) = r2,

where v̄ is the complex conjugate of v. Then, the spectral-Galerkin approximation
of (50)-(52) is to find vN = (vN , wN )t ∈ XN such that

B(vN ,φ) := (∇̃l · vN , ∇̃l · φ)ω − k2(LvN ,φ)ω +
k2b3

Θl(kb)
(vN − wN )(b)(φ1 − φ2)(b)

= (INLf ,φ)ω + b2hb (φ1 − φ2)(b), ∀φ ∈ XN ,

(55)

where L is a 2-by-2 diagonal matrix:

L = diag
(
(2l+ 1)/l, (2l+ 1)/(l + 1)

)
,

and IN is the Legendre-Gauss-Lobatto interpolation operator. In the derivation
of (55), we used the identities obtained from integration by parts and the built-in
boundary condition in XN :

∫ b

a

d−l (d
−
l−1wN − d+l+2vN )φ̄1r

2dr =−
∫ b

a

(d−l−1wN − d+l+2vN )(d+l+2φ1)r
2dr

+ (d−l−1wN − d+l+2vN )φ̄1r
2
∣∣∣
b

a
;

∫ b

a

d+l+1(d
+
l+2vN − d−l−1wN )φ̄2r

2dr =−
∫ b

a

(d+l+2vN − d−l−1wN )(d−l−1φ2)r
2dr

+ (d+l+2vN − d−l−1wN )φ̄2r
2
∣∣∣
b

a
.

Proposition 4.1. For any a > 0 and fixed l, k, b,N , the problem (55) admits a

unique solution vN ∈ XN .

Proof. Recall that (cf. [11, Lemma 9.20]):

(56) c1l ≤ |Θl(kb)| ≤ c2l, ∀ l ≥ 1,
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where c1, c2 are positive constants depending on kb. Thus, taking φ = vN in (55),
and taking the real part of the resulted equation, leads to

Re
(
B(vN ,vN )

)
≥ ‖∇̃l · vN‖2ω − k2(LvN ,vN )ω − k2b3

c1l
|(vN − wN )(b)|2,(57)

where ‖u‖2ω = (u, u)ω. In view of (vN − wN )(a) = 0, we derive from an inverse
inequality (cf. [16, Thm. 3.33]) that

|(vN − wN )(b)| =
∣∣∣
∫ b

a

∂r(vN − wN )dr
∣∣∣ ≤

√
b − a‖∂r(vN − wN )‖

≤ cN2‖vN − wN‖,(58)

where c is a positive constant independent of N. Notice that

‖∇̃l · vN‖2ω =
∥∥∥∂r(vN − wN ) +

l + 2

r
vN − l − 1

r
wN

∥∥∥
2

ω

≥ a2‖∂r(vN − wN )‖2 − l + 2

a
(‖vN‖2 + ‖wN‖2);

(LvN ,vN )ω ≤ 2l+ 1

l
(‖vN‖2 + ‖wN‖2).

We deduce from the above and (57)-(58) that for a > 0,

Re
(
B(vN ,vN )

)
≥ a2‖∂r(vN − wN )‖2 − C(‖vN‖2 + ‖wN‖2),(59)

where C is positive constant depending on l, b, k,N.
Since XN is finite dimensional and (vN − wN )(a) = 0, it is easy to check that

‖|vN‖| := ‖∂r(vN−wN )‖ is a norm on XN . Indeed, all norms on XN are equivalent.
Hence, for fixedN, (59) is indeed a G̊arding type inequality which implies the unique
solvability of the problem (55) (see, e.g., [13, P. 218]). �

We remark that since Re
(
1/Θl(kb)

)
< 0 (which can be derived from [13, (2.6.23)]),

the corresponding term can not contribute to the energy norm. Consequently, we
have to use the trace inequality (58) to derive the G̊arding type inequality (59).

Note also that the above proof does not provide a wave-number explicit a priori

estimate on the energy norm. Hence, it is not possible to derive, from the above
result, a wave-number explicit error estimate for (55), as was done for the decoupled
equation (48)-(49) in [17]. In a forthcoming paper, we shall consider a different ap-
proach, which is more suitable for analysis but less convenient for implementation,
and derive wave-number explicit error estimates.

4.2. Implementation. We now describe an efficient implementation of the scheme
(55). The efficiency of the algorithm essentially relies on the choice of basis func-
tions for XN defined in (54).

Let Ln(r) be the (real-valued) Legendre polynomials of degree n, transformed
from [−1, 1] to [a, b] via a linear mapping, which satisfies Ln(a) = (−1)n and
Ln(b) = 1. Define

φ0 =
1 + i

2
(x+1); φj = (1+i)(Lj−1−Lj+1), 1 ≤ j ≤ N−1; φN = −1 + i

2
(x−1).

Set

ψj =

(
φj
0

)
, ψN+j =

(
0
φj

)
, 0 ≤ j ≤ N − 1; ψ2N =

(
φN
φN

)
.(60)
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Figure 1. Nonzero entries of the system matrix in (63).

One verifies readily that ψj ∈ XN for all 0 ≤ j ≤ 2N and that they are linearly
independent. Since dim(XN ) = 2N + 1, we have

XN = span
{
ψ0,ψ1, · · · ,ψ2N

}
.(61)

Hence, the approximate solution vN can be written as

vN =

2N∑

j=0

αjψj =

( ∑N−1
j=0 αjφj + α2NφN

∑N−1
j=0 αN+jφj + α2NφN

)
=

(
vN
wN

)
.(62)

Setting

ψj = (ψ1,j , ψ2,j)
t, 0 ≤ j ≤ 2N ; α = (α0, α1, · · · , α2N )t;

sij =

∫ b

a

(d+l+2ψ1,j − d−l−1ψ2,j)(d
+
l+2ψ1,i − d−l−1ψ2,i)r

2dr, 0 ≤ i, j ≤ 2N ;

aij = −k2
∫ b

a

(2l + 1

l
ψ1,jψ1,i +

2l+ 1

l + 1
ψ2,jψ2,i

)
r2dr, 0 ≤ i, j ≤ 2N ;

bij =
k2b3

Θl(kb)
(ψ1,j − ψ2,j)(b)(ψ1,i − ψ2,i)(b), 0 ≤ i, j ≤ 2N ;

fi =

∫ b

a

(2l+ 1

l
(INf1)ψ1,i +

2l + 1

l + 1
(INf2)ψ2,i

)
r2dr − b2gb(ψ1,i − ψ2,i)(b),

f̃ = (f0, f1, · · · , f2N )t; S = (sij), A = (aij), B = (bij),

we find that the linear system (55) reduces to the matrix form:

(63)
(
S+ A+ B

)
α = f̃ .

We note that the coefficient matrices S, A and B are sparse, see Figure 1, and

Hermitian, i.e., S = S
t
, and likewise for A and B. To compute their non-zero entries,

we only need to compute
∫ b

a

φ′j(r)φ
′
i(r)r

2dr,

∫ b

a

φ′j(r)φi(r)r
2dr,

∫ b

a

φj(r)φi(r)r
2dr,

which can be evaluated exactly by using the properties of Legendre polynomials.
It is worthwhile to point out that the basis functions in (60) are constructed

to minimize the coupling of vN and wN . Indeed, they are coupled through the
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single basis function ψ0. Hence, the system (63) can be solved efficiently by using
a block Gaussian elimination process to solve for α2N first, followed by solving two
decoupled systems of size N each for (α0, · · · , αN−1)

t and (αN , · · · , α2N−1)
t.

5. Numerical results

In this section, we provide some numerical results to show the accuracy and
efficiency of the proposed method. We use the exact multiple solutions of (34)-(35)
(cf. [13]) as the reference solution.

In the first example, we take the exact solution of (34)-(35) to be

E =

M0∑

l=1

∑

m≤l

{
h
(1)
l (kr)Tm

l (θ, φ) +
−−→
CurlS

(
h
(1)
l (kr)Tm

l (θ, φ)
)}
,(64)

which is a linear combination of the transverse electric and magnetic multipole
solutions. By using (13), we find

−−→
CurlS

(
h
(1)
l (kr)Tm

l (θ, φ)
)
=− l

2l + 1

(
k
d

dz
h
(1)
l (kr) − l

r
h
(1)
l (kr)

)
V m

l

+
l + 1

2l + 1

(
k
d

dz
h
(1)
l (kr) +

l+ 1

r
h
(1)
l (kr)

)
Wm

l .

(65)

Hence, the exact solution {v, w, u} of (45)-(49) is

v := vml = − l

2l+ 1

(
k
d

dz
h
(1)
l (kr) − l

r
h
(1)
l (kr)

)
,

w =: wm
l =

l + 1

2l+ 1

(
k
d

dz
h
(1)
l (kr) +

l + 1

r
h
(1)
l (kr)

)
,

u := tml = h
(1)
l (kr).

(66)

We look for the approximate field:
(67)

EM0

N (r, θ, φ) =

M0∑

l=1

l∑

|m|=0

[
vml,N (r)V m

l (θ, φ) + tml,N (r)Tm
l (θ, φ) + wm

l,N (r)Wm
l (θ, φ)

]
,

where {vml,N , wm
l,N} are computed from (55), i.e., spectral-Galerkin approximation

of {vml , wm
l }, and {tml,N} are the spectral-Galerkin approximation of {tml }. Using

the orthogonality (A.1), we have the expression:
∥∥E −EM0

N

∥∥2
L2(Ω)

=

M0∑

l=1

∑

m≤l

(‖tml − tml,N‖2
L2(I)

l(l + 1)
+

‖vml − vml,N‖2
L2(I)

(l + 1)(2l + 1)
+

‖wm
l − wm

l,N‖2
L2(I)

l(2l+ 1)

)
.

In the computation, we take a = 2, b = 4 and M0 = 10. In Figure 2, we plot the
relative discrete L2-error:

∥∥E −EM0

N

∥∥
l2(Ω)

/
∥∥E
∥∥
l2(Ω)

,

against various N for k = 40, 60, 100 from left to right. We observe that the error
decays exponentially, as soon as N enters the asymptotic range, which is for this
case roughly N > k.

In the second example, we consider an exact solution generated by the boundary
data g at the scatterer’s surface. More precisely, the exact electric field E is given
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Figure 2. Relative discrete l2-errors against N for k = 40, 60, 100.

by

E =

M1∑

l=1

l∑

|m|=0

{
gm1,lh

(1)
l (kr)Tm

l (θ, φ) + gm2,l
−−→
CurlS

(
h
(1)
l (kr)Tm

l (θ, φ)
)}
,

where

gm1,l = − 1

l(l+ 1)h
(1)
l (ka)

∫

S

(g · ∇SY
m
l ) dσ,

gm2,l =
a

l(l + 1)h
(1)
l (ka)(zl(ka) + 1)

∫

S

(g · −−→CurlSY
m
l ) dσ.

For given g, we can compute gm1,l and g
m
2,l using Spherepack [18].

Consider the incident wave: −eikx so that g = eikx. We take a = 2, b = 4
and M1 = 20, and plot in Figure 3, the discrete relative L2-errors against N
for k = 10, 20, 30 We observe that the error behaves very similarly as in the first
example.
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Figure 3. Relative discrete l2-errors against N for k = 10, 20, 30.

6. Concluding remarks

We developed in this paper an efficient and robust spectral-Galerkin method
to solve the three-dimensional time-harmonic Maxwell equations in exterior do-
mains. The method is based on the transformed field expansion (TFE) approach
which reduces the original problem in a general exterior domain to a sequence of
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Maxwell equations in a separable spherical shell. By using a proper set of vector
spherical harmonic functions, we are able to reduce the Maxwell equations in a
separable spherical shell to a sequence of one-dimensional problems in the axial
direction. Then, we proposed an efficient Legendre-Galerkin algorithm to solve the
one-dimensional problems.

This method does not involve any iterative algorithm for solving linear systems.
Hence, it is robust to wave numbers as long as the solution is well resolved by
the spectral discretization. Also, the method enjoys spectral accuracy, i.e., the
convergence rate increases as the smoothness of data increases.

To the best of the authors’ knowledge, this is the first full spectral method
for solving the three-dimensional time-harmonic Maxwell equations in exterior do-
mains. While we have restricted our attention to problems with constant magnetic
permeability and electric permittivity, it is clear that our method can be easily
extended to layered materials which will lead to one-dimensional problems with
piecewise-constant coefficients that can be solved efficiently with a spectral-element
method.

References

[1] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Dover, New York, 1964.
[2] R.G. Barrera, G.A. Estevez and J. Giraldo, Vector spherical harmonics and their application

to magnetostatics, European J. Phys., 6 (1985) 287.
[3] J.P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J.

Comput. Phys., 114 (1994) 185–200.
[4] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, volume 93

of Applied Mathematical Sciences, Springer-Verlag, Berlin, third edition, 2013.
[5] Q. Fang, D.P. Nicholls and J. Shen, A stable, high–order method for two–dimensional

bounded–obstacle scattering, J. Comput. Phys., 224 (2007) 1145–1169.
[6] Q. Fang, J. Shen and L.L. Wang, An efficient and accurate spectral method for acoustic

scattering in elliptic domains, Numer. Math.: Theory, Methods Appl., 2 (2009) 258–274.
[7] W. Freeden and M. Schreiner, Spherical Functions of Mathematical Geosciences: A Scalar,

Vectorial, and Tensorial Setup, Springer Verlag, 2009.
[8] T. Hagstrom and S. Lau, Radiation boundary conditions for Maxwell’s equations: a review

of accurate time-domain formulations, J. Comput. Math., 25 (2007) 305–336.
[9] Y. He, D.P. Nicholls and J. Shen, An efficient and stable spectral method for electromagnetic

scattering from a layered periodic structure, J. Comput. Phys., 231 (2012) 3007–3022.
[10] E.L. Hill, The theory of vector spherical harmonics. Amer. J. Phys., 22 (1954) 211–214.
[11] P. Monk, Finite Element Methods for Maxwell’s Equations. Numerical Mathematics and

Scientific Computation. Oxford University Press, New York, 2003.
[12] P.M. Morse and H. Feshbach, Methods of Theoretical Physics. 2 volumes, McGraw-Hill Book

Co., Inc., New York, 1953.
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Appendix A. Properties of the vector spherical harmonics

The VSH are mutually orthogonal in L2(S) =
(
L2(S)

)3
:

∫

S

Tm
l · V m′

l′ dS =

∫

S

Tm
l ·Wm′

l′ dS =

∫

S

V m
l ·Wm′

l′ dS = 0,

∫

S

V m
l · V m′

l′ dS = (l + 1)(2l+ 1)δll′δmm′ ,

∫

S

Tm
l · Tm′

l′ dS = l(l + 1)δll′δmm′ ,

∫

S

Wm
l ·Wm′

l′ dS = l(2l+ 1)δll′δmm′ ,

(A.1)

which, together with (13), implies
∫

S

Tm
l · ∇SY

m
l dS = 0,

∫

S

∇Y m
l · ∇SY

m′

l′ dS = l(l+ 1)δll′δmm′ .(A.2)

Let f and v be differentiable scaler and vector functions, respectively. Recall
that in spherical coordinates (cf. [1]):

(A.3) grad f = ∇f =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

1

r sin θ

∂f

∂φ
eφ,

(A.4) div v = ∇ · v =
1

r2
∂
(
r2vr

)

∂r
+

1

r sin θ

∂
(
sin θvθ

)

∂θ
+

1

r sin θ

∂vφ
∂φ

,

curl v = ∇× v =
1

r sin θ

(∂
(
sin θvφ

)

∂θ
− ∂vθ
∂φ

)
er +

1

r

( 1

sin θ

∂vr
∂φ

− ∂
(
rvφ
)

∂r

)
eθ

+
1

r

(∂
(
rvθ
)

∂r
− ∂rvr

∂θ

)
eφ.

(A.5)

Let d+l and d−l be the differentiation operators defined in (38) and we further
define

(A.6) Ll =
d2

dr2
+

2

r

d

dr
− l(l + 1)

r2
.

In view of (11), the following properties can be derived from [10]:

• The scalar gradient:

(A.7) (2l + 1)grad
(
fY m

l

)
=
(
d−l f

)
V m

l+1 +
(
d+l+1f

)
Wm

l−1.

• The vector divergence:

div
(
fV m

l

)
= (l + 1)

(
d+l+2f

)
Y m
l , div

(
fTm

l

)
= 0, div

(
fWm

l

)
= l
(
d−l−1f

)
Y m
l .

(A.8)

• The vector curl:

curl
(
fV m

l

)
=
(
d+l+2f

)
Tm

l , curl
(
fWm

l

)
= −

(
d−l−1f

)
Tm

l ,

(2l+ 1)curl
(
fTm

l

)
= (l + 1)

(
d+l+1f

)
Wm

l − l
(
d−l f

)
V m

l .
(A.9)

• The vector Laplace:

∆
(
fV m

l

)
= Ll+1(f)V

m
l , ∆

(
fTm

l

)
= Ll(f)T

m
l , ∆

(
fWm

l

)
= Ll−1(f)W

m
l .

(A.10)
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Appendix B. Formulae related to the transformed field expansion

Recall that we set F (r′, θ′, φ′) = E(r, θ, φ) with the transform (25), and we need
to compute curl curlE − k2E in the new coordinates.

For any scalar function E and vector function E, we have the following formulae
under the spherical coordinates:

∇E = ∂rEer +
1

r
∂θEeθ +

1

r sin θ
∂φEeφ,

∇ ·E =
1

r2
∂r(r

2Er) +
1

r sin θ
∂θ(sin θEθ) +

1

r sin θ
∂φEφ,

∇SE = ∂θEeθ +
1

sin θ
∂φEeφ,

∇S ·ES =
1

sin θ
∂θ(sin θEθ) +

1

sin θ
∂φEφ,

curlE =
1

r sin θ

(
∂θ(sin θEφ)− ∂φEθ

)
er +

1

r

( 1

sin θ
∂φEr − ∂r(rEφ)

)
eθ

+
1

r

(
∂r(rEθ)− ∂θEr

)
eφ,

(B.1)

where E = (Er,ES) = (Er , Eθ, Eφ).
We can rewrite the last identity as

curlE = ∇ · (E × er)er +∇Er × er −
1

r
∂r(rE × er)

= ∇ · (E × er)er +
1

r
∇SEr × er −

1

r
∂r(rE × er).

Notice the last two terms only involve the component of θ, φ. Consequently, we
can derive

curl curlE =∇ ·
(
∇Er × er × er −

1

r
∂r(rE × er × er)

)
er

+∇(∇ · (E × er))× er

− 1

r
∂r(r∇Er × er × er − ∂r(rE × er × er))

=∇ ·
(
− 1

r
∇SEr −

1

r
∂r(rE × er × er)

)
er

+∇(∇ · (E × er))× er

− 1

r
∂r(−∇SEr − ∂r(rE × er × er))

=
[
−∇ ·

(1
r
∇SEr

)
−∇ ·

(1
r
∂r(rE × er × er)

)]
er

+
1

r
∇S(∇ · (E × er))× er +

1

r
∂r(∇SEr) +

1

r
∂2r (rE × er × er)

=
[
− 1

r2
∇S · (∇SEr) +

1

r2
∇S · (∂r(rES))

]
er

+
1

r2
∇S(∇S · (E × er))× er +

1

r
∂r(∇SEr)−

1

r
∂2r (rES).
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The change of variables leads to

∂r′F =
d− h(θ, φ)

d
∂rE,(B.2)

∂θ′F =
∂θ′h(θ′, φ′)(b − r′)

d
∂rE + ∂θE =

∂θ′h(θ′, φ′)(b − r′)

d− h(θ′, φ′)
∂r′F + ∂θE,(B.3)

∂φ′F =
∂φ′h(θ′, φ′)(b − r′)

d
∂rE + ∂φE =

∂φ′h(θ′, φ′)(b − r′)

d− h(θ′, φ′)
∂r′F + ∂φE.(B.4)

With the above preparation and additional calculations, we can derive the fol-
lowing formulae for fr′ , f tp and J in (29):

d2fr′ = (2dh+ h2)∇S · (∇SFr′)− (d− h)∇SA · (∂r′(∇SFr′))

− (d− h)∇S · (∂r′Fr′∇SA)− ∂r′Fr′(∇Sh · ∇SA)

+∇SA · ∂r′(∂r′Fr′∇SA)− (2dh+ h2)∇S · (∂r′(r′F S))

− h(d− h)∇S · (∂r′(r′F S))− d∇Sh · ∂r′(r′F S)

+ d(d− h)∇SA · ∂2r′(r′F S)−∇Sh · (∂r′(AF S))

− (d− h)∇S · (∂r′(AF S)) +∇SA · ∂2r′(AF S) +

4∑

i=1

Hi(h)k
2Fr′ ,

(B.5)

d2f tp = −(2dh+ h2)∇S(∇S · (F × er)) + (d− h)∂r′(∇S · (F × er))∇SA

+ (d− h)∇S(∇SA · ∂r′(F × er)) +∇SA · ∂r′(F × er)∇Sh

− ∂r′(∇SA · ∂r′(F × er))∇SA− (2dh+ h2)r′∂r′(∇SFr′)

− h(d− h)r′∂r′(∇SFr′)−A(d− h)∂r′(∇′
SFr′) + (dr′ +A)∂r′(∂r′Fr′∇SA)

+ (2dh+ h2)r′∂2r′(r
′F S) + (2dh− h2 +Ad)r′∂2r′(r

′F S)

+ (r′d+A)∂2r′(AF S) +
4∑

i=1

Hi(h)k
2F S ,

(B.6)

and

dJ =
h

b
∇S · (F × er)

∣∣∣
r′=b

er +
h

b
∇SFr′ × er

∣∣∣
r′=b

+
1

b
∂r′(AF × er)

∣∣∣
r′=b

− hikTbF S ,
(B.7)

where F = (Fr′ ,F S), and

H1 := 2dAr′ − 2dhr′2, H2 := h2r′2 − 4hAr′ +A2,

H3 :=
2

d
h2Ar′ − 2

d
hA2, H4 :=

1

d2
h2A2.

Notice that the normal vector to the sphere

n(θ, φ) =
(
1 +

1

r2
||∇Sh||2

)− 1

2

(
er −

1

r
∇Sh

)∣∣∣
r=a+h(θ,φ)

.

Defining

gn(θ, φ) =
(
1 +

1

(a+ h(θ, φ))2
||∇Sh||2

) 1

2

,
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we can write the boundary condition on the surface of the obstacle as

E ×
(
er +

1

a
∇Sh

)
= g̃,(B.8)

where g̃ = gng. The componentwise formulation of (B.8) reads

− 1

r sin θ
∂φhEθ +

1

r
∂θhEφ = g̃r,(B.9)

1

r sin θ
∂φhEr + Eφ = g̃θ,(B.10)

− 1

r
∂θhEr − Eθ = g̃φ.(B.11)

Thus, we have

g̃r =
1

r
∂θhg̃θ +

1

r sin θ
∂φhg̃φ

∣∣∣
r=a+h(θ,φ)

,(B.12)

and

F × er
∣∣
r′=a

+
1

a
∇ShFr′ × er = g̃S .(B.13)

Similarly, we can determine the following formulae for fn
r′ , f

n
tp and Jn in (31):

d2fn
r =2dq∇S · (∇SF

n−1
r′ ) + q2∇S · (∇SF

n−2
r′ )− d∇SAq · (∂r′(∇SF

n−1
r′ ))

+ q∇SAq · (∂r′(∇SF
n−2
r′ ))− d∇S · (∂r′Fn−1

r′ ∇SAq)

+ q∇S · (∂r′Fn−2
r′ ∇SAq)− ∂r′F

n−2
r′ (∇Sq · ∇SAq)

+∇SAq · ∂r′(∂r′Fn−2
r ∇SAq)− 2dq∇S · (∂r′(r′F n−1

S ))

− q2∇S · (∂r′(r′F n−2
S ))− dq∇S · (∂r′(r′F n−1

S )) + q2∇S · (∂r′(r′F n−2
S ))

− d∇Sq · ∂r′(r′F n−1
S ) + d2∇SAq · ∂2r′(r′F n−1

S )− dq∇SAq · ∂2r′(r′F n−2
S )

−∇Sq · (∂r′(AqF
n−2
S ))− d∇S · (∂r′(AqF

n−1
S )) + q∇S · (∂r′(AqF

n−2
S ))

+∇SAq · ∂2r′(AqF
n−2
S ) +

4∑

i=1

H̃(q)ik
2Fn−i

r′ ,

(B.14)

d2fn
tp =− 2dq∇S(∇S · (F n−1 × er))− q2∇S(∇S · (F n−2 × er))

+ d∂r′(∇S · (F n−1 × er))∇SAq − q∂r′(∇S · (F n−2 × er))∇SAq

+ d∇S(∇SAq · ∂r′(F n−1 × er))− q∇S(∇SAq · ∂r′(F n−2 × er))
+∇SAq · ∂r′(F n−2 × er)∇Sq − ∂r′(∇SAq · ∂r′(F n−2 × er))∇SAq

− 2dqr′∂r′(∇SF
n−1
r′ )− q2r′∂r′(∇SF

n−2
r′ )− dqr′∂r′(∇SF

n−1
r′ )

+ q2r′∂r′(∇SF
n−2
r′ )− dAq∂r′(∇SF

n−1
r′ ) + qAq∂r′(∇SF

n−2
r′ )

+ dr′∂r′(∂r′F
n−1
r′ ∇SAq) +Aq∂r′(∂r′F

n−1
r′ ∇SAq) + 2dqr′∂2r′(r

′F n−1
S )

+ q2r′∂2r′(r
′F n−2

S ) + 2dqr′∂2r′(r
′F n−1

S )− q2r′∂2r′(r
′F n−2

S )

+Aqdr
′∂2r′(r

′F n−1
S ) + dr′∂2r′(AqF

n−1
S ) +Aq∂

2
r′(AqF

n−2
S )

+

4∑

i=1

H̃(q)ik
2F n−i

S ,

(B.15)
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g̃nS = δn0gS − Fr′(a)
n−1

a
∇Sq,(B.16)

and

dJn =
q

b
∇S · (F n−1 × er)

∣∣∣
r′=b

er +
q

b
∇SF

n−1
r′ × er

∣∣∣
r′=b

+
1

b
∂r′(AqF

n−1 × er)
∣∣∣
r′=b

− qikTbF n−1
S ,

(B.17)

where Fm = (Fm
r′ ,F

m
S ) for any m, and

H̃1 := 2dAqr
′ − 2dqr′2, H̃2 := q2r′2 − 4qAqr

′ +A2
q ,

H̃3 :=
2

d
q2Aqr

′ − 2

d
qA2

q , H̃4 :=
1

d2
q2A2

q .
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