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An exciting time for Machine Learning!

Zoubin Ghahramani



APPLICATIONS OF MACHINE LEARNING

Speech and Language Technologies, Computer Vision: Scientific Data Analysis

(e.g.Bioinformatics, Astronomy)

automatic speech recognition,

machine translation, question-answering, Object, Face and Handwriting

dialog systems Recognition, Image Captioning

Self-driving cars Financial Prediction and
Autonamous eving Automated Trading
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Computer Games

Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider



Computer Games




- BRAINS VS. ARTIFICIAL INTELLIGENCE
Be sure to tweet @WinBigRivers and @SCSatCMU using #BrainsvsAl

JANUARY 11-30 | NAM-7PM

One big blind is $100, and one small biind is $50.

Hands Dealt: 115,756/120,000

BRAINS : ($1,560,189) LIBRATUS : $1,560,189

DONG KIM : ($84,054) JASON LES : ($862,347)
LIBRATUS : $84,054 LIBRATUS : $862,347

JIMMY CHOU : ($338,347) DANIEL MCAULAY : ($275,441)
LIBRATUS : $338,347 LIBRATUS : $275,441

Parentheses indicate a negative number.
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Kernel Methods,
SVMs, Gaussian
Processes

Symbolic Systems,
Logic-based (ILP),
Relational Learning

Reinforcement Learning
Control Theory
Decision Making

Probabilistic Models
Bayesian Methods

Deep Learning

Graphical Models
Causal Inference

Decision Trees
Random Forests

Unsupervised Learning:
Feature Discovery
Clustering

Dim. Reduction

Linear Statistical Models
Logistic Regression
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Neural networks and deep learning
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NEURAL NETWORKS

Neural networks are tunable nonlinear func-
y tions with many parameters.

outputs
weights Parameters @ are weights of neural net.

Neural nets model p(y |x("), ) as a nonlin-
ear function of 8 and x, e.g.:

PO =11 ,0) = o(3 " 6"

Multilayer neural networks model the overall function as a
composition of functions (layers), e.g.:

Y =3 p? Ze ) 4 e
J

Usually trained to maximise likelihood (or penalised likelihood) using
variants of stochastic gradient descent (SGD) optimisation.
NN = nonlinear function + basic stats + basic optimisation
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DEEP LEARNING
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Deep learning systems are neural network models similar to
those popular in the *80s and ’90s, with:

>

some architectural and algorithmic innovations (e.g. many
layers, ReLUs, dropout, LSTMs)

vastly larger data sets (web-scale)
vastly larger-scale compute resources (GPU, cloud)
much better software tools (Theano, Torch, TensorFlow)

vastly increased industry investment and media hype

figure from http://www.andreykurenkov.com/
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LIMITATIONS OF DEEP LEARNING

Neural networks and deep learning systems give amazing

performance on many benchmark tasks but they are generally:

>

>

very data hungry (e.g. often millions of examples)

very compute-intensive to train and deploy (cloud GPU
resources)

poor at representing uncertainty
easily fooled by adversarial examples

finicky to optimise: non-convex + choice of architecture,
learning procedure, initialisation, etc, require expert
knowledge and experimentation

uninterpretable black-boxes, lacking in trasparency,
difficult to trust
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Beyond deep learning
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» Machine Learning is a toolbox of methods for
processing data: feed the data into one of many possible
methods; choose methods that have good theoretical or
empirical performance; make predictions and decisions

» Machine Learning is the science of learning models
from data: define a space of possible models; learn the
parameters and structure of the models from data; make
predictions and decisions
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MACHINE LEARNING AS
PROBABILISTIC MODELLING

» A model describes data that one could observe
from a system

» If we use the mathematics of probability
theory to express all forms of uncertainty and
noise associated with our model...

» ...then inverse probability (i.e. Bayes rule)
allows us to infer unknown quantities, adapt
our models, make predictions and learn from
data.
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P(hypothesis)P(data|hypothesis)
> P(h)P(datalh)

P(hypothesis|data) =

» Bayes rule tells us how to do inference
about hypotheses (uncertain quantities)
from data (measured quantities).

» Learning and prediction can be seen as

forms of inference.
Reverend Thomas Bayes (1702-1761)
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Everything follows from two simple rules:
Sum rule: P(x) =3 P(x,y)
Product rule:  P(x,y) = P(x)P(y|x)

Learning:
P(D|O. m\P(0|\m P(D|0,m) likelihood of parameters € in model m
P(9|D, m) = ( | ’ ) ( l ) P(0|m) prior probability of 6
P(Dlm) P(0|D,m)  posterior of 0 given data D
Prediction:

P(x|D,m) = /P(x]Q,’D,m)P(9|D,m)d9

Model Comparison:
P(D|m)P(m
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Calibrated model and prediction uncertainty: getting
systems that know when they don’t know.

Automatic model complexity control and structure learning
(Bayesian Occam’s Razor)
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WHAT DO I MEAN BY BEING BAYESIAN?

Let’s return to the example of neural networks / deep learning:
Dealing with all sources of parameter uncertainty
Also potentially dealing with structure uncertainty

y

Feedforward neural nets model p(y |x("), §)

outputs

weights Parameters @ are weights of neural net.

hidden Structure is the choice of architecture,

units

number of hidden units and layers, choice of

ight . . .
welghts activation functions, etc.

inputs
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Bayesian deep learning can be implemented in many ways:
» Laplace approximations (MacKay, 1992)

variational approximations (Hinton and van Camp, 1993; Graves, 2011)
MCMC (Neal, 1993)

Stochastic gradient Langevin dynamics (SGLD; Welling and Teh, 2011)
Probabilistic back-propagation (Hernandez-Lobato et al, 2015, 2016)
Dropout as Bayesian averaging (Gal and Ghahramani, 2015, 2016)

vvyyvyyy

Figure from Yarin Gal’s thesis “Uncertainty in Deep Learning” (2016)
— NIPS 2016 workshop on Bayesian Deep Learning
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When do we need probabilities?



Many aspects of learning and intelligence depend crucially on
the careful probabilistic representation of uncertainty:

>

Forecasting

v

Decision making

v

Learning from limited, noisy, and missing data

v

Learning complex personalised models

v

Data compression

v

Automating modelling, discovery, and experiment design
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WHY DOES UBER CARE?

Many aspects of learning and intelligence depend crucially on
the careful probabilistic representation of uncertainty:

» Forecasting, Decision making, Learning from limited, noisy, and
missing data, Learning complex personalised models, Data
compression, Automating modelling, discovery, and experiment
design

supply (driver) and demand (rider) prediction, ETA prediction,
pricing, business intelligence, modelling traffic and cities, mapping,
self-driving cars, customer service, UberEAT's personalization...
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Probabilistic
Programming

Automatic
Statistician

Large-scale

Inference

Automating
Machine Learning
Bayesian

Nonparametrics Computational
Resource

N \ Allocation

Bayesian Deep Bayesian
Learning Optimisation

B een
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Automating Inference:
Probabilistic Programming
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Problem: Probabilistic model development and the derivation
of inference algorithms is time-consuming and error-prone.
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PROBABILISTIC PROGRAMMING

Problem: Probabilistic model development and the derivation
of inference algorithms is time-consuming and error-prone.
Solution:

» Develop Probabilistic Programming Languages for
expressing probabilistic models as computer programs that
generate data (i.e. simulators).

» Derive Universal Inference Engines for these languages
that do inference over program traces given observed data
(Bayes rule on computer programs).

Zoubin Ghahramani

24/5



PROBABILISTIC PROGRAMMING

Problem: Probabilistic model development and the derivation
of inference algorithms is time-consuming and error-prone.
Solution:

» Develop Probabilistic Programming Languages for
expressing probabilistic models as computer programs that
generate data (i.e. simulators).

» Derive Universal Inference Engines for these languages
that do inference over program traces given observed data
(Bayes rule on computer programs).

Example languages: BUGS, Infer.NET, BLOG, STAN, Church,
Venture, Anglican, Probabilistic C, Stochastic Python*, Haskell,
Turing, WebPPL ...

Example inference algorithms: Metropolis-Hastings, variational
inference, particle filtering, particle cascade, slice sampling*, particle
MCMC, nested particle inference*, austerity MCMC*
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K = 5; N = 201; initial = £fill(1.0 / K, K)
means = (collect(1l.0:K)*2-K)*2

@model hmmdemo begin
states = tzeros(Int,N)

# Uncomment for a Bayesian HMM
# for 4=1:K, T[%,:] ~ Dirichlet(ones(K)./K); end

states[1] ~ Categorical(initial)
for i = 2:N
states[i] ~ Categorical(vec(T[states[i-1].
obs[i] ~ Normal(means[states[i]], 4)
end
return states
end

)

Probabilistic programming could revolutionise scientific modelling,
machine learning, and Al

— NIPS 2015 tutorial by Frank Wood
— Noah Goodman’s book

— Turing: https://github.com/yebai/Turing. jl
Zoubin Ghahramani 25/51



Show video
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Automating Optimisation:
Bayesian optimisation
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=3 =4

Posterior
Posterior

new
observ.

A\

Problem: Global optimisation of black-box functions that are
expensive to evaluate

Acquisition function
Acquisition function

next
point

x* = argmax f(x)
X
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Posterior
Posterior
93
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next
point

Acquisition function
Acquisition function

VAN

Problem: Global optimisation of black-box functions that are
expensive to evaluate

x* = argmax f(x)
X

Solution: treat as a problem of sequential decision-making and model
uncertainty in the function.

This has myriad applications, from robotics to drug design, to
learning neural network hyperparameters.
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Black-box optimization
in a nutshell:

@ initial sample
@ initialize our model

© get the acquisition
o function a(x)

O optimize it!
Xnext = arg max a(x)
@ sample new data;
update model

@ repeat!

@ make
recommendation

[Motkus et al., 1978, Jones et al., 1998, Jones, 2001] 3/36

(slide thanks to Matthew W. Hoffman)
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A good framework for thinking about any optimisation problem. It is
especially useful if:

» evaluating the function is expensive
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BAYESIAN OFINISATION: WY IS I MFORTANT?.
A
LA

A good framework for thinking about any optimisation problem. It is
especially useful if:

» evaluating the function is expensive

» evaluating derivatives is hard or impossible
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BAYESIAN OFINISATION: WY IS I MFORTANT?.
A
LA

A good framework for thinking about any optimisation problem. It is
especially useful if:

» evaluating the function is expensive
» evaluating derivatives is hard or impossible

» there is noise in the function evaluations
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e~

A good framework for thinking about any optimisation problem. It is
especially useful if:

i

Acquisiton

» evaluating the function is expensive
» evaluating derivatives is hard or impossible
» there is noise in the function evaluations

» there may be (possibly noisy) constraints
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BAYESIAN OPTIMISATION: WHY IS IT IMPORTANT?
™

A good framework for thinking about any optimisation problem. It is
especially useful if:

» evaluating the function is expensive
» evaluating derivatives is hard or impossible

» there is noise in the function evaluations

v

there may be (possibly noisy) constraints

v

there is prior information about the function
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BAYESIAN OPTIMISATION: WHY IS IT IMPORTANT?
| A \/\

A good framework for thinking about any optimisation problem. It is
especially useful if:

» evaluating the function is expensive

» evaluating derivatives is hard or impossible
» there is noise in the function evaluations

» there may be (possibly noisy) constraints

» there is prior information about the function

» one needs to optimise many similar functions
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Automating model discovery:
The automatic statistician

Zoubin Ghahramani



Problem: Data are now ubiquitous; there is great value from
understanding this data, building models and making
predictions... however, there aren’t enough data scientists,
statisticians, and machine learning experts.

Zoubin Ghahramani 32/51



THE AUTOMATIC STATISTICIAN

e
Checking

Problem: Data are now ubiquitous; there is great value from
understanding this data, building models and making
predictions... however, there aren’t enough data scientists,
statisticians, and machine learning experts.

Solution: Develop a system that automates model discovery
from data:

» processing data, searching over models, discovering a good
model, and explaining what has been discovered to the user.

Zoubin Ghahramani 32/51



INGREDIENTS OF AN AUTOMATIC STATISTICIAN

@) s |~ on | o

» An open-ended language of models
» Expressive enough to capture real-world phenomena. . .
» ...and the techniques used by human statisticians

v

A search procedure
» To efficiently explore the language of models

v

A principled method of evaluating models
» Trading off complexity and fit to data

v

A procedure to automatically explain the models
» Making the assumptions of the models explicit. . .
» ...in a way that is intelligible to non-experts
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Linear
Regression

Logistic
Regression

Bayesian
Linear H
Regression

Kernel
Classification

Bayesian
Logistic
Regression

Kernel
Regression

GP GP
Regression > Classification

Classification

Bayesian
Kernel

— GPflow: a Gaussian process library using TensorFlow

Zoubin Ghahramani
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Automatic Statistician for Regression
and Time-Series Models
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INGREDIENTS OF AN AUTOMATIC STATISTICIAN

@) s |~ on | o

» An open-ended language of models
» Expressive enough to capture real-world phenomena. . .
» ...and the techniques used by human statisticians

v

A search procedure
» To efficiently explore the language of models

v

A principled method of evaluating models
» Trading off complexity and fit to data

v

A procedure to automatically explain the models
» Making the assumptions of the models explicit. . .
» ...in a way that is intelligible to non-experts
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MODEL SEARCH: MAUNA LOA KEELING CURVE

SE x (Per+ RQ)
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MODEL SEARCH: MAUNA LOA KEELING CURVE
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Raw data Full model posterior vith extrapolations

1950 1952 1954 1956 1958 1960 1962 1950 1952 1954 1956 1958 1960 1962

Four additive components have been identified in the data
» A linearly increasing function.

> An approximately periodic function with a period of 1.0 years and
with linearly increasing amplitude.

» A smooth function.

» Uncorrelated noise with linearly increasing standard deviation.
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See http://www.automaticstatistician.com

Zoubin Ghahramani

An automatic report for the dataset : 07-call-cents

“The Automatic Statstcian

Abstract

was produced by the Aulomatic Bayesian Covariance Discovery
RS soien

FITTTIIn]
PITLIITiT]

Figare 1 Raw data (et aad model posicior with exizapolaton (ight)

An automatic report for the dataset : 02-solar

The Automatie Staistican

Abstract

was profuced by the Auomatic Bayesian Covarance Discorery
ittty

1 Executive summary

“_JﬁMWMMMmMm

slgorithm has A The first 2 ki igure 1 Raw daca e with ext ion (ri
St ot . ; Figare 1 R dica f) and model posirior wih exrapolation (g}
intable 1. The fist 3 addit
o n ‘The siructuze scarch algorithm ha idenified eigh ditive componcnis in the data The fist &
more than 0.1%. e addiivecomponentscxplsin 92,35 of e variaion nth data s hown by the cofficint o de-
mode o search procedur. the a0 ccminusion () values in abl 1. The fst 6 aditve componcacs cxplain 99,76 of th variation
componcots a1 s ollows: s
decrease by more than 0,15 Tis suggests hat subsequen: erms ae modeling very shor lerm
o ends,
. occeas s futi o] addiy
ik
i Fancti Fr e & o Acomsant.
o mmwu_unmw A constant. This funccon applis fom 1643 undl 1716,
« An cxactly 10 yeus.

1973

any inconsisiccics becweea the model and observed .

= A smoodh fcdon This funcion spplies unl 1643 and o 1716 o
108 yesrs.

« an approxima
and from 1316 omvarts.

A rapidly vasying smooth fusctcn. This function apples uns! 1643 and from 1716 on-
wards.

. gevi 1837, This fune.
tion applies il 1643 and from 1716 onwards.

. 1952, Thisfunc
tion applies il 1643 and from 1716 omvards.
 Uncorrelaied noise. This fuscion appliesfrom 1643 unil 716,

Mode] chocking satstis are summarised n tabl 2 in sction 4. These sitsics have rvesled

39/51



GOOD PREDICTIVE PERFORMANCE AS WELL

Standardised RMSE over 13 data sets
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o
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ABCD ABCD Spectral ~ Trend, cyclical Bayesian ared Lmear
accuracy interpretability  kernels irregular MKL Eureqa Changepomls Exponennal regression

» Tweaks can be made to the algorithm to improve accuracy
or interpretability of models produced. ..

.. but both methods are highly competitive at extrapolation

Zoubin Ghahramani
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Automatic Statistician for Classification



An AutoGPC Report on the Pima Diabetes Dataset?

2QObtained from [Smith et al., 1988]
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AutoGPC Report: Executive Summary

» Full model description
..., the model involves an additive combination of variable ‘plasma glu-
cose’ and a 2-way interaction between variables ‘pedigree function’ and ‘age’
(SE; + SE; x SE4). This model can achieve a cross-validated error rate of
22.38% and a negative log marginal likelihood of 353.28.

» Summary of input variables

Statistics Classifier Performance
Variable Min Max Mean Kernel NLML  Error
1 plasma glucose 44.00 199.00 121.88 smooth 381.22 25.00%
2 body massindex 18.20 67.10 3247 smooth 347.18 33.71%
3 pedigree function  0.08 242 047 smooth 366.12 33.71%
— Baseline - - — constant 37379 34.39%
4 age 21.00 81.00 3335 smooth 344.69 34.54%

Zoubin Ghahramani
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AutoGPC Report: Individual Variable Analysis

» Variable ‘plasma glucose': moderate evidence, monotonic
... Compared with the null model (baseline), this variable contains some ev-
idence of class label assignment. There is a positive correlation between the
value of this variable and the likelihood of the sample being classified as pos-
itive.

» Variable ‘body mass index’: little evidence

... This variable provides little evidence of class label assignment given a
baseline error rate of 34.39%.

» Variable ‘age’: no evidence
... The classification performance (in terms of error rate) based on this vari-
able alone is even worse than that of the naive baseline classifier.

» Other variants: strong evidence, etc.
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AutoGPC Report: Additive Component Analysis

» For example, for the second additive component
[With only one additive component, .. . ]

With 2 additive components, the cross-validated error can be reduced by
2.62% to 22.38%. The corresponding negative log marginal likelihood is
353.28. The additional component operates on variables ‘pedigree function’

and ‘age’, as shown in Figure . ..

» Summary of all models

Zoubin Ghahramani

Dim  Kernel expression NLML  Error
1,3,4 SE; +SE; x SE; 28045 21.83%
1 SE, 381.22  25.00%
3,4 SE;3 x SE4 42279 30.80%
2 SE, 347.18 33.71%
3 SEj 366.12  33.71%
— C (Baseline) 373.79  34.39%
4 SE, 344.69 34.54%
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THE AUTOML COMPETITION

» New algorithms for building machine learning systems that learn
under strict time, CPU, memory and disk space constraints,
making decisions about where to allocate computational
resources so as to maximise statistical performance.

ChaLearn Automatic Machine Learning Challenge (AutoML)
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» Second and First place in the first two rounds of the AutoML
classification challenge to “design machine learning methods
capable of performing all model selection and parameter tuning

without any human intervention.”
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CONCLUSIONS

Probabilistic modelling offers a framework for building
systems that reason about uncertainty and learn from data,
going beyond traditional pattern recognition problems.

I have briefly reviewed some of the frontiers of our research,
centred around the theme of automating machine learning,
including:

» The automatic statistician

» Probabilistic programming

» Bayesian optimisation

Ghahramani, Z. (2015) Probabilistic machine learning and artificial
intelligence. Nature 521:452-459.

http://www.nature.com/nature/journal/v521/n7553/full/natureld4541.html
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Probabilistic Programming:
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BACKGROUND: GAUSSIAN PROCESSES

Consider the problem of nonlinear regression: You want to
learn a function f with error bars from data D = {X,y}

X

A Gaussian process defines a distribution over functions p(f) which
can be used for Bayesian regression:

p()p(DIf)

p(fID) =

p(D)
Definition: p(f) is a Gaussian process if for any finite subset
{x1,...,x,} C X, the marginal distribution over that subset p(f) is

multivariate Gaussian.
GPs can be used for regression, classification, ranking, dim. reduct...

— GPflow: a Gaussian process library using TensorFlow
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Bayesian neural network
Data: D = {(x), y")}¥_ | = (X,y)
Parameters 6 are weights of neural net

outputs

weights

hidden
units

prior p(0la)
posterior  p(8|a, D) o< p(y|X, 0)p(6]cx)
prediction  p(y'|D,x', @) = [p(y'|x', 0)p(0|D, cx) d6

weights

inputs

X

A neural network with one hidden layer, infinitely
many hidden units and Gaussian priors on the weights
— a GP (Neal, 1994). He also analysed infinitely deep
networks. x
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Five base kernels

JUome T

Squared Periodic Linear Constant White
exp. (SE) (PER) (LIN) ©) noise (WN)

Encoding for the following types of functions

o =

Smooth Periodic Linear Constant Gaussian

functions functions functions functions noise
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THE COMPOSITION RULES OF OUR LANGUAGE

» Two main operations: addition, multiplication

NS B I s

Linx Ly duadratic
functions

0

LIN + PER periodic plus

linear trend

Zoubin Ghahramani

SE x PER

0

SE + PER

locally
periodic

periodic plus
smooth trend
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MODEL CHECKING AND CRITICISM

» Good statistical modelling should include model criticism:
» Does the data match the assumptions of the model?
» Our automatic statistician does posterior predictive checks,
dependence tests and residual tests

» We have also been developing more systematic
nonparametric approaches to model criticism using kernel
two-sample testing:

— Lloyd, J. R., and Ghahramani, Z. (2015) Statistical Model Criticism using
Kernel Two Sample Tests. NIPS 2015.
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(work with J.M. Hernandez-Lobato, M.A. Gelbart, M.W. Hoffman, & R.P.
Adams) arXiv:1511.09422 arXiv:1511.07130 arXiv:1406.2541
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Figure 4. Classification error of a 3-hidden-layer neural network

constrained to make predictions in under 2 ms.
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