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An exciting time for Machine Learning!
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APPLICATIONS OF MACHINE LEARNING

Speech and Language Technologies,
automatic speech recognition,

machine translation, question-answering, 
dialog systems

Computer Vision: 
Object, Face and Handwriting 
Recognition, Image Captioning

Scientific Data Analysis 
(e.g. Bioinformatics,  Astronomy)

Recommender Systems Self-driving cars Financial Prediction and 
Automated Trading
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Computer Games

DeepMind’s system learning to play 
ATARI games at super-human level



Computer Games



GAMES
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ML: MANY METHODS WITH MANY LINKS TO

OTHER FIELDS

Reinforcement Learning
Control Theory

Decision Making

Kernel Methods, 
SVMs, Gaussian 

Processes Symbolic Systems, 
Logic-based (ILP), 
Relational Learning 

Probabilistic Models
Bayesian Methods

Neural Networks
Deep Learning

Decision Trees 
Random Forests

Linear Statistical Models
Logistic Regression

Unsupervised Learning:
Feature Discovery

Clustering 
Dim. Reduction

Graphical Models
Causal Inference
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Neural networks and deep learning
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NEURAL NETWORKS
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Neural networks are tunable nonlinear func-
tions with many parameters.

Parameters θ are weights of neural net.

Neural nets model p(y(n)|x(n),θ) as a nonlin-
ear function of θ and x, e.g.:

p(y(n) = 1|x(n),θ) = σ(
∑

i

θix
(n)
i )

Multilayer neural networks model the overall function as a
composition of functions (layers), e.g.:

y(n) =
∑

j

θ
(2)
j σ(

∑

i

θ
(1)
ji x(n)i ) + ε(n)

Usually trained to maximise likelihood (or penalised likelihood) using
variants of stochastic gradient descent (SGD) optimisation.
NN = nonlinear function + basic stats + basic optimisation
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DEEP LEARNING

Deep learning systems are neural network models similar to
those popular in the ’80s and ’90s, with:

I some architectural and algorithmic innovations (e.g. many
layers, ReLUs, dropout, LSTMs)

I vastly larger data sets (web-scale)

I vastly larger-scale compute resources (GPU, cloud)

I much better software tools (Theano, Torch, TensorFlow)

I vastly increased industry investment and media hype

figure from http://www.andreykurenkov.com/
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LIMITATIONS OF DEEP LEARNING

Neural networks and deep learning systems give amazing
performance on many benchmark tasks but they are generally:

I very data hungry (e.g. often millions of examples)
I very compute-intensive to train and deploy (cloud GPU

resources)
I poor at representing uncertainty
I easily fooled by adversarial examples
I finicky to optimise: non-convex + choice of architecture,

learning procedure, initialisation, etc, require expert
knowledge and experimentation

I uninterpretable black-boxes, lacking in trasparency,
difficult to trust
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Beyond deep learning
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TOOLBOX VS MODELLING VIEWS OF MACHINE

LEARNING

I Machine Learning is a toolbox of methods for
processing data: feed the data into one of many possible
methods; choose methods that have good theoretical or
empirical performance; make predictions and decisions

I Machine Learning is the science of learning models
from data: define a space of possible models; learn the
parameters and structure of the models from data; make
predictions and decisions
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MACHINE LEARNING AS

PROBABILISTIC MODELLING

I A model describes data that one could observe
from a system

I If we use the mathematics of probability
theory to express all forms of uncertainty and
noise associated with our model...

I ...then inverse probability (i.e. Bayes rule)
allows us to infer unknown quantities, adapt
our models, make predictions and learn from
data.
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BAYES RULE

P(hypothesis|data) =
P(hypothesis)P(data|hypothesis)∑

h P(h)P(data|h)

I Bayes rule tells us how to do inference
about hypotheses (uncertain quantities)
from data (measured quantities).

I Learning and prediction can be seen as
forms of inference.

Reverend Thomas Bayes (1702-1761)
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ONE SLIDE ON BAYESIAN MACHINE LEARNING

Everything follows from two simple rules:
Sum rule: P(x) =

∑
y P(x, y)

Product rule: P(x, y) = P(x)P(y|x)

Learning:

P(θ|D,m) =
P(D|θ,m)P(θ|m)

P(D|m)

P(D|θ,m) likelihood of parameters θ in model m
P(θ|m) prior probability of θ
P(θ|D,m) posterior of θ given data D

Prediction:
P(x|D,m) =

∫
P(x|θ,D,m)P(θ|D,m)dθ

Model Comparison:

P(m|D) =
P(D|m)P(m)

P(D)
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WHY SHOULD WE CARE?

Calibrated model and prediction uncertainty: getting
systems that know when they don’t know.

Automatic model complexity control and structure learning
(Bayesian Occam’s Razor)
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WHAT DO I MEAN BY BEING BAYESIAN?

Let’s return to the example of neural networks / deep learning:
Dealing with all sources of parameter uncertainty
Also potentially dealing with structure uncertainty

inputs

outputs

x

y

weights

hidden
units

weights

Feedforward neural nets model p(y(n)|x(n),θ)
Parameters θ are weights of neural net.

Structure is the choice of architecture,
number of hidden units and layers, choice of
activation functions, etc.
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BAYESIAN DEEP LEARNING

Bayesian deep learning can be implemented in many ways:
I Laplace approximations (MacKay, 1992)
I variational approximations (Hinton and van Camp, 1993; Graves, 2011)
I MCMC (Neal, 1993)
I Stochastic gradient Langevin dynamics (SGLD; Welling and Teh, 2011)
I Probabilistic back-propagation (Hernandez-Lobato et al, 2015, 2016)
I Dropout as Bayesian averaging (Gal and Ghahramani, 2015, 2016)

Figure from Yarin Gal’s thesis “Uncertainty in Deep Learning” (2016)

→ NIPS 2016 workshop on Bayesian Deep Learning
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When do we need probabilities?
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WHEN IS THE PROBABILISTIC APPROACH

ESSENTIAL?

Many aspects of learning and intelligence depend crucially on
the careful probabilistic representation of uncertainty:

I Forecasting
I Decision making
I Learning from limited, noisy, and missing data
I Learning complex personalised models
I Data compression
I Automating modelling, discovery, and experiment design
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WHY DOES UBER CARE?

Many aspects of learning and intelligence depend crucially on
the careful probabilistic representation of uncertainty:

I Forecasting, Decision making, Learning from limited, noisy, and
missing data, Learning complex personalised models, Data
compression, Automating modelling, discovery, and experiment
design

supply (driver) and demand (rider) prediction, ETA prediction,
pricing, business intelligence, modelling traffic and cities, mapping,
self-driving cars, customer service, UberEATs personalization...
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Automating 
Machine Learning

Automatic 
Statistician

Bayesian 
Nonparametrics

Probabilistic 
Programming

Large-scale 
Inference

Computational 
Resource 
Allocation

Bayesian 
Optimisation

Nonlinear regression and Gaussian processes

Consider the problem of nonlinear regression:
You want to learn a function f with error bars from data D = {X,y}

x

y

A Gaussian process defines a distribution over functions p(f) which can be used for
Bayesian regression:

p(f |D) =
p(f)p(D|f)

p(D)

Let f = (f(x1), f(x2), . . . , f(xn)) be an n-dimensional vector of function values
evaluated at n points xi 2 X . Note, f is a random variable.

Definition: p(f) is a Gaussian process if for any finite subset {x1, . . . , xn} ⇢ X ,
the marginal distribution over that subset p(f) is multivariate Gaussian.

statesmean = [‐1, 1, 0]  # Emission parameters.

initial    = Categorical([1.0/3, 1.0/3, 1.0/3]) # Prob distr of state[1].

trans      = [Categorical([0.1, 0.5, 0.4]), Categorical([0.2, 0.2, 0.6]), 

              Categorical([0.15, 0.15, 0.7])]   # Trans distr for each state. 

data       = [Nil, 0.9, 0.8, 0.7, 0, ‐0.025, ‐5, ‐2, ‐0.1, 0, 0.13] 

@model hmm begin # Define a model hmm.

 states = Array(Int, length(data))

 @assume(states[1] ~ initial)

 for i = 2:length(data)

   @assume(states[i] ~ trans[states[i‐1]])

   @observe(data[i]  ~ Normal(statesmean[states[i]], 0.4))

 end

 @predict states

end

anglicanHMM :: Dist [n]

anglicanHMM = fmap (take (length values) . fst) $ score (length values ‐ 1) 

                                                  (hmm init trans gen) where

   states = [0,1,2]

   init = uniform states

   trans 0 = fromList $ zip states [0.1,0.5,0.4]

   trans 1 = fromList $ zip states [0.2,0.2,0.6]

   trans 2 = fromList $ zip states [0.15,0.15,0.7]

   gen 0 = certainly (‐1)

   gen 1 = certainly 1

   gen 2 = certainly 0

   values = [0.9,0.8,0.7] :: [Double]

   addNoise = flip Normal 1

   score 0 d = d

   score n d = score (n‐1) $ condition d (prob . (`pdf` (values !! n))

                                             . addNoise . (!! n) . snd) 

Example Probabilistic Program for a Hidden Markov Model (HMM)

Julia

Haskell

An automatic report for the dataset : 10-sulphuric

The Automatic Statistician

Abstract

This report was produced by the Automatic Bayesian Covariance Discovery
(ABCD) algorithm.

1 Executive summary

The raw data and full model posterior with extrapolations are shown in figure 1.

Raw data
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Figure 1: Raw data (left) and model posterior with extrapolation (right)

The structure search algorithm has identified nine additive components in the data. The first 4
additive components explain 90.5% of the variation in the data as shown by the coefficient of de-
termination (R2) values in table 1. The first 8 additive components explain 99.8% of the variation
in the data. After the first 6 components the cross validated mean absolute error (MAE) does not
decrease by more than 0.1%. This suggests that subsequent terms are modelling very short term
trends, uncorrelated noise or are artefacts of the model or search procedure. Short summaries of the
additive components are as follows:

• A very smooth function.
• A constant. This function applies from 1964 until 1990.
• An approximately periodic function with a period of 1.0 years.
• A smooth function. This function applies from 1969 until 1977.
• A smooth function. This function applies from 1964 until 1969 and from 1977 onwards.
• A periodic function with a period of 2.6 years. This function applies until 1964.
• Uncorrelated noise. This function applies until 1964.
• Uncorrelated noise. This function applies from 1964 until 1990.
• Uncorrelated noise. This function applies from 1990 onwards.

Model checking statistics are summarised in table 2 in section 4. These statistics have revealed
statistically significant discrepancies between the data and model in component 1.

The rest of the document is structured as follows. In section 2 the forms of the additive components
are described and their posterior distributions are displayed. In section 3 the modelling assumptions
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An automatic report for the dataset : 03-mauna

The Automatic Statistician

Abstract

This report was produced by the Automatic Bayesian Covariance Discovery
(ABCD) algorithm.

1 Executive summary

The raw data and full model posterior with extrapolations are shown in figure 1.

Raw data
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Figure 1: Raw data (left) and model posterior with extrapolation (right)

The structure search algorithm has identified five additive components in the data. The first additive
component explains 98.6% of the variation in the data as shown by the coefficient of determination
(R2) values in table 1. The first 2 additive components explain 99.9% of the variation in the data.
After the first 3 components the cross validated mean absolute error (MAE) does not decrease by
more than 0.1%. This suggests that subsequent terms are modelling very short term trends, uncor-
related noise or are artefacts of the model or search procedure. Short summaries of the additive
components are as follows:

• A very smooth monotonically increasing function.

• An approximately periodic function with a period of 1.0 years.

• A smooth function.

• Uncorrelated noise.

• A rapidly varying smooth function.

Model checking statistics are summarised in table 2 in section 4. These statistics have not revealed
any inconsistencies between the model and observed data.

The rest of the document is structured as follows. In section 2 the forms of the additive components
are described and their posterior distributions are displayed. In section 3 the modelling assumptions
of each component are discussed with reference to how this affects the extrapolations made by the
model. Section 4 discusses model checking statistics, with plots showing the form of any detected
discrepancies between the model and observed data.
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An automatic report for the dataset : 02-solar

The Automatic Statistician

Abstract

This report was produced by the Automatic Bayesian Covariance Discovery
(ABCD) algorithm.

1 Executive summary

The raw data and full model posterior with extrapolations are shown in figure 1.

Raw data
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Figure 1: Raw data (left) and model posterior with extrapolation (right)

The structure search algorithm has identified eight additive components in the data. The first 4
additive components explain 92.3% of the variation in the data as shown by the coefficient of de-
termination (R2) values in table 1. The first 6 additive components explain 99.7% of the variation
in the data. After the first 5 components the cross validated mean absolute error (MAE) does not
decrease by more than 0.1%. This suggests that subsequent terms are modelling very short term
trends, uncorrelated noise or are artefacts of the model or search procedure. Short summaries of the
additive components are as follows:

• A constant.
• A constant. This function applies from 1643 until 1716.
• A smooth function. This function applies until 1643 and from 1716 onwards.
• An approximately periodic function with a period of 10.8 years. This function applies until

1643 and from 1716 onwards.
• A rapidly varying smooth function. This function applies until 1643 and from 1716 on-

wards.
• Uncorrelated noise with standard deviation increasing linearly away from 1837. This func-

tion applies until 1643 and from 1716 onwards.
• Uncorrelated noise with standard deviation increasing linearly away from 1952. This func-

tion applies until 1643 and from 1716 onwards.
• Uncorrelated noise. This function applies from 1643 until 1716.

Model checking statistics are summarised in table 2 in section 4. These statistics have revealed
statistically significant discrepancies between the data and model in component 8.
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Automatic construction and description of nonparametric models
James Robert Lloyd1, David Duvenaud1, Roger Grosse2,

Joshua B. Tenenbaum2, Zoubin Ghahramani1

1: Department of Engineering, University of Cambridge, UK 2: Massachusetts Institute of Technology, USA

This analysis was automatically generated Modelling structure through
Gaussian process kernels

• The kernel specifies which structures are likely under the GP prior
- which determines the generalisation properties of the model.

Squared
Exponential (SE)

Periodic
(Per)

Linear
(Lin)

local variation repeating structure linear functions

• Composite kernels can express many types of structure

Lin ⇥ Lin SE ⇥ Per Lin + Per SE + Per

quadratic
functions

locally
periodic

periodic
with trend

periodic
with noise

SE ⇥ Lin Lin ⇥ Per SE1 + SE2 SE1 ⇥ SE2

increasing
variation

growing
amplitude

f1(x1) +f2(x2) f (x1, x2)

• Building composite kernels previously required human expertise

We can build models by a greedy search

No structure

SE Lin

Lin + Per Lin ⇥ SE

Lin ⇥ SE + SE . . . Lin ⇥ (SE + Per)

. . . . . . . . .

. . .

. . . Lin ⇥ Per

Per

Automatically describing model properties

How to automatically describe arbitrarily complex kernels:

• The kernel is distributed into a sum of products

• Sums of kernels are sums of functions so each product is described separately

• Each kernel in a product modifies the model in a consistent way. . .

• . . . so one kernel is described by a noun phrase, and the others modify it

• Text descriptions are complemented by plots of the posterior

Kernels can be distributed into a sum of products

SE ⇥
�
Lin + Per + SE

�

becomes (after simplification)

(SE ⇥ Lin) + (SE ⇥ Per) + (SE).

Sums of kernels correspond to sums of functions

entire signal

= + +

SE ⇥ Lin SE ⇥ Per SE
smooth trend + periodicity + short-term deviation

If f1(x) ⇠ gp(0, k1) and f2(x) ⇠ gp(0, k2) then f1(x)+f2(x) ⇠ gp(0, k1+k2).
Therefore, a sum of kernels can be described as a sum of independent functions.

Each kernel in a product roughly corresponds to an adjective

Kernel How it modifies the prior

SE functions change smoothly
Per functions repeat
Lin standard deviation varies linearly

Example description

SE|{z}
approximately

⇥ Per|{z}
periodic function

⇥ Lin|{z}
with linearly growing amplitude

Per has been chosen to act as the noun while SE and Lin modify the description

Code available at github.com/jamesrobertlloyd/gpss-research
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that the test statistic was larger in magnitude under the posterior compared to the prior unexpectedly
often.

ACF Periodogram QQ
# min min loc max max loc max min
1 0.502 0.582 0.341 0.413 0.341 0.679
2 0.802 0.199 0.558 0.630 0.049 0.785
3 0.251 0.475 0.799 0.447 0.534 0.769
4 0.527 0.503 0.504 0.481 0.430 0.616
5 0.493 0.477 0.503 0.487 0.518 0.381

Table 2: Model checking statistics for each component. Cumulative probabilities for minimum of
autocorrelation function (ACF) and its location. Cumulative probabilities for maximum of peri-
odogram and its location. p-values for maximum and minimum deviations of QQ-plot from straight
line.

The nature of any observed discrepancies is now described and plotted and hypotheses are given for
the patterns in the data that may not be captured by the model.

4.1 Moderately statistically significant discrepancies

4.1.1 Component 2 : An approximately periodic function with a period of 1.0 years

The following discrepancies between the prior and posterior distributions for this component have
been detected.

• The qq plot has an unexpectedly large positive deviation from equality (x = y). This
discrepancy has an estimated p-value of 0.049.

The positive deviation in the qq-plot can indicate heavy positive tails if it occurs at the right of the
plot or light negative tails if it occurs as the left.

QQ uncertainty plot for component 2
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Figure 17: ACF (top left), periodogram (top right) and quantile-quantile (bottom left) uncertainty
plots. The blue line and shading are the pointwise mean and 90% confidence interval of the plots
under the prior distribution for component 2. The green line and green dashed lines are the corre-
sponding quantities under the posterior.

4.2 Model checking plots for components without statistically significant discrepancies

4.2.1 Component 1 : A very smooth monotonically increasing function

No discrepancies between the prior and posterior of this component have been detected

8

2.4 Component 4 : An approximately periodic function with a period of 10.8 years. This
function applies until 1643 and from 1716 onwards

This component is approximately periodic with a period of 10.8 years. Across periods the shape of
this function varies smoothly with a typical lengthscale of 36.9 years. The shape of this function
within each period is very smooth and resembles a sinusoid. This component applies until 1643 and
from 1716 onwards.

This component explains 71.5% of the residual variance; this increases the total variance explained
from 72.8% to 92.3%. The addition of this component reduces the cross validated MAE by 16.82%
from 0.18 to 0.15.

Posterior of component 4
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Figure 8: Pointwise posterior of component 4 (left) and the posterior of the cumulative sum of
components with data (right)

Figure 9: Pointwise posterior of residuals after adding component 4
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4.2.1 Component 1 : A very smooth monotonically increasing function

No discrepancies between the prior and posterior of this component have been detected

8

Scalable variational Gaussian process classification

(w/ Hensman & Matthews, AISTATS 2015)

Key ingredients:

• inducing point approximation O(N3) ! O(M2N)
• a single variational bound requiring one-dim quadrature
• stochastic optimisation of variational parameters and inducing point locations

Scalable Variational Gaussian Process Classification
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Figure 3: Performance of the airline delay dataset.
The red horizontal line depicts performance of a linear
classifier, whilst the blue line shows performance of the
stochastically optimized KLsparse method.

our randomly selected hold-out set of 100000 points,
this achieved an error rate of 37%, the negative-log
probability of the held-out data was 0.642.

We built a Gaussian process kernel using the sum of
a Matern- 3

2 and a linear kernel. For each, we intro-
duced parameters which allowed for the scaling of the
inputs (sometimes called Automatic Relevance Deter-
mination, ARD). Using a similar optimization scheme
to the MNIST data above, our method was able to ex-
ceed the performance of a linear model in a few min-
utes, as shown in Figure 3. The kernel parameters at
convergence suggested that the problem is highly non-
linear: the relative variance of the linear kernel was
negligible. The optimized lengthscales for the Matern
part of the covariance suggested that the most useful
features were the time of day and time of year.

6 Discussion

We have presented two novel variational bounds for
performing sparse GP classification. The first, like
the existing GFITC method, makes an approximation
to the covariance matrix before introducing the non-
conjugate likelihood. These approaches are somewhat
unsatisfactory since in performing approximate infer-
ence, we necessarily introduce additional parameters
(variational means and variances, or the parameters
of EP factors), which naturally scale linearly with N .

Our proposed KLSP bound outperforms the state-of-
the art GFITC method on benchmark datasets, and is
capable of being optimized in a stochastic fashion as
we have shown, making GP classification applicable to
big data for the first time.

In future work, we note that this work opens the door
for several other GP models: if the likelihood factorizes
in N , then our method is applicable through Gauss-
Hermite quadrature of the log likelihood. We also note
that it is possible to relax the restriction of q(u) to
a Gaussian form, and mixture model approximations
follow straightforwardly, allowing scalable extensions
of Nguyen and Bonilla [2014].
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award.
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In future work, we note that this work opens the door
for several other GP models: if the likelihood factorizes
in N , then our method is applicable through Gauss-
Hermite quadrature of the log likelihood. We also note
that it is possible to relax the restriction of q(u) to
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Results for GP classification on 5.9 million data points.
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Automating Inference:
Probabilistic Programming
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PROBABILISTIC PROGRAMMING

Problem: Probabilistic model development and the derivation
of inference algorithms is time-consuming and error-prone.

Solution:
I Develop Probabilistic Programming Languages for

expressing probabilistic models as computer programs that
generate data (i.e. simulators).

I Derive Universal Inference Engines for these languages
that do inference over program traces given observed data
(Bayes rule on computer programs).

Example languages: BUGS, Infer.NET, BLOG, STAN, Church,
Venture, Anglican, Probabilistic C, Stochastic Python*, Haskell,
Turing, WebPPL ...

Example inference algorithms: Metropolis-Hastings, variational
inference, particle filtering, particle cascade, slice sampling*, particle
MCMC, nested particle inference*, austerity MCMC*
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PROBABILISTIC PROGRAMMINGThe Modelling Interface - HMM Example

K = 5; N = 201; initial = fill(1.0 / K, K)

means = (collect(1.0:K)*2-K)*2

@model hmmdemo begin

states = tzeros(Int,N)

# Uncomment for a Bayesian HMM

# for i=1:K, T[i,:] ~ Dirichlet(ones(K)./K); end

states[1] ~ Categorical(initial)

for i = 2:N

states[i] ~ Categorical(vec(T[states[i-1],:]))

obs[i] ~ Normal(means[states[i]], 4)

end

return states

end
H. Ge MLG, Cambridge University 6/10

states[1] states[2] states[3]

data[1] data[2] data[3]

initial trans

statesmean

...

...

Probabilistic programming could revolutionise scientific modelling,
machine learning, and AI.

→ NIPS 2015 tutorial by Frank Wood
→ Noah Goodman’s book
→ Turing: https://github.com/yebai/Turing.jl
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TURING

Show video
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Automating Optimisation:
Bayesian optimisation
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BAYESIAN OPTIMISATION
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Problem: Global optimisation of black-box functions that are
expensive to evaluate

x∗ = arg max
x

f (x)

Solution: treat as a problem of sequential decision-making and model
uncertainty in the function.

This has myriad applications, from robotics to drug design, to
learning neural network hyperparameters.
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BAYESIAN OPTIMISATION: IN A NUTSHELL
Exploration in black-box optimization

Black-box optimization
in a nutshell:

1 initial sample

2 initialize our model

3 get the acquisition
function ↵(x)

4 optimize it!
xnext = arg max↵(x)

5 sample new data;
update model

6 repeat!

7 make
recommendation

[Močkus et al., 1978, Jones et al., 1998, Jones, 2001]
3/36

(slide thanks to Matthew W. Hoffman)
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BAYESIAN OPTIMISATION: WHY IS IT IMPORTANT?
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A good framework for thinking about any optimisation problem. It is
especially useful if:

I evaluating the function is expensive

I evaluating derivatives is hard or impossible

I there is noise in the function evaluations

I there may be (possibly noisy) constraints

I there is prior information about the function

I one needs to optimise many similar functions
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Automating model discovery:
The automatic statistician

Zoubin Ghahramani 31 / 51



THE AUTOMATIC STATISTICIAN

Data Search

Language of models

Evaluation

Model Prediction

Translation

Checking

Report

Problem: Data are now ubiquitous; there is great value from
understanding this data, building models and making
predictions... however, there aren’t enough data scientists,
statisticians, and machine learning experts.

Solution: Develop a system that automates model discovery
from data:

I processing data, searching over models, discovering a good
model, and explaining what has been discovered to the user.
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INGREDIENTS OF AN AUTOMATIC STATISTICIANWHAT WOULD AN AUTOMATIC STATISTICIAN DO?

Data Search

Language of models

Evaluation

Model Prediction

Translation

Checking

Report

James Robert Lloyd and Zoubin Ghahramani 3 / 43

I An open-ended language of models
I Expressive enough to capture real-world phenomena. . .
I . . . and the techniques used by human statisticians

I A search procedure
I To efficiently explore the language of models

I A principled method of evaluating models
I Trading off complexity and fit to data

I A procedure to automatically explain the models
I Making the assumptions of the models explicit. . .
I . . . in a way that is intelligible to non-experts
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A PICTURE: GPS, LINEAR AND LOGISTIC

REGRESSION, AND SVMS

Logistic 
Regression

Linear  
Regression

Kernel  
Regression

Bayesian 
Linear  

Regression

GP  
Classification

Bayesian 
Logistic  

Regression

Kernel  
Classification

GP 
Regression

Classification

Bayesian
Kernel

→ GPflow: a Gaussian process library using TensorFlow
Zoubin Ghahramani 34 / 51



Automatic Statistician for Regression
and Time-Series Models
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MODEL SEARCH: MAUNA LOA KEELING CURVE
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MODEL SEARCH: MAUNA LOA KEELING CURVE
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MODEL SEARCH: MAUNA LOA KEELING CURVE
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EXAMPLE: AN ENTIRELY AUTOMATIC ANALYSIS

Raw data

1950 1952 1954 1956 1958 1960 1962
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Full model posterior with extrapolations
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Four additive components have been identified in the data

I A linearly increasing function.

I An approximately periodic function with a period of 1.0 years and
with linearly increasing amplitude.

I A smooth function.

I Uncorrelated noise with linearly increasing standard deviation.
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EXAMPLE REPORTS

See http://www.automaticstatistician.com
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GOOD PREDICTIVE PERFORMANCE AS WELL

Standardised RMSE over 13 data sets
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I Tweaks can be made to the algorithm to improve accuracy
or interpretability of models produced. . .

I . . . but both methods are highly competitive at extrapolation
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Automatic Statistician for Classification
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A Sample Report

An AutoGPC Report on the Pima Diabetes Dataset2

AutoGPC Data Analysis Report on Pima Dataset

The Automatic Statistician

24th May 2016

This report is automatically generated by the AutoGPC. AutoGPC is an automatic Gaussian
process (GP) classifier that aims to find the structure underlying a dataset without human input.
For more information, please visit http://github.com/charles92/autogpc.

The training dataset spans 4 input dimensions, which are variables ‘plasma glucose’, ‘body
mass index’, ‘pedigree function’ and ‘age’. There is one binary output variable y, where y = 0
(negative) represents ‘not diabetic’, and y = 1 (positive) represents ‘diabetic’.

The training dataset contains 724 data points. Among them, 249 (34.39%) have positive
class labels, and the other 475 (65.61%) have negative labels. All input dimensions as well as
the class label assignments are plotted in Figure 1.

plasma glucose
28.5

214.5

body mass index
14.29

61.21

pedigree function
-0.1471

2.5541

age
15.0

87.0

Figure 1: The input dataset. Positive samples (‘diabetic’) are coloured red, and negative ones
(‘not diabetic’) blue.

1 Executive Summary
The best kernel that we have found relates the class label assignment to input variables ‘plasma
glucose’, ‘pedigree function’ and ‘age’. In specific, the model involves an additive combination

1

of variable ‘plasma glucose’ and a 2-way interaction between variables ‘pedigree function’ and
‘age’ (SE1 + SE3 ◊ SE4). This model can achieve a cross-validated error rate of 22.38% and a
negative log marginal likelihood of 353.28.

We have also analysed the relevance of each input variable. They are listed below in Table
1 in descending order of inferred relevance (i.e. in ascending order of cross-validated error of
the best one-dimensional GP classifier).

Table 1: Input variables

Statistics Classifier Performance
Dimension Variable Min Max Mean Kernel NLML Error

1 plasma glucose 44.00 199.00 121.88 smooth 381.22 25.00%
2 body mass index 18.20 67.10 32.47 smooth 347.18 33.71%
3 pedigree function 0.08 2.42 0.47 smooth 366.12 33.71%
– Baseline – – – constant 373.79 34.39%
4 age 21.00 81.00 33.35 smooth 344.69 34.54%

In the rest of the report, we will first describe the contribution of each individual input
variable (Section 2). This is followed by a detailed analysis of the additive components that
jointly make up the best model (Section 3).

2 Individual Variable Analysis
First, we try to classify the training samples using only one of the 4 input dimensions. By
considering the best classification performance that is achievable in each dimension, we are
able to infer which dimensions are the most relevant to the class label assignment.

Note that in Table 1 the baseline performance is also included, which is achieved with
a constant GP kernel. The effect of the baseline classifier is to indiscriminately classify all
samples as either positive or negative, whichever is more frequent in the training data. The
classifier performance in each input dimension will be compared against this baseline to tell if
the input variable is discriminative in terms of class determination.

2.1 Variable ‘plasma glucose’
Variable ‘plasma glucose’ has mean value 121.88 and standard deviation 30.73. Its observed
minimum and maximum are 44.00 and 199.00 respectively. A GP classifier trained on this
variable alone can achieve a cross-validated error of 25.00%.

Compared with the null model (baseline), this variable contains some evidence of class label
assignment. There is a positive correlation between the value of this variable and the likelihood
of the sample being classified as positive. The GP posterior trained on this variable is plotted in
Figure 2.

2.2 Variable ‘pedigree function’
Variable ‘pedigree function’ has mean value 0.47 and standard deviation 0.33. Its observed
minimum and maximum are 0.08 and 2.42 respectively. A GP classifier trained on this variable
alone can achieve a cross-validated error of 33.71%.

This variable provides little evidence of class label assignment given a baseline error rate of
34.39%. The GP posterior trained on this variable is plotted in Figure 3.
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Figure 2: Trained classifier on variable ‘plasma glucose’.

0.0 0.5 1.0 1.5 2.0 2.5

pedigree function

0.0

0.5

1.0

⇡
=

�
(f

)

Figure 3: Trained classifier on variable ‘pedigree function’.

3

2.3 Variable ‘body mass index’

Variable ‘body mass index’ has mean value 32.47 and standard deviation 6.88. Its observed
minimum and maximum are 18.20 and 67.10 respectively. A GP classifier trained on this vari-
able alone can achieve a cross-validated error of 33.71%.

This variable provides little evidence of class label assignment given a baseline error rate of
34.39%. The GP posterior trained on this variable is plotted in Figure 4.
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Figure 4: Trained classifier on variable ‘body mass index’.

2.4 Variable ‘age’

Variable ‘age’ has mean value 33.35 and standard deviation 11.76. Its observed minimum and
maximum are 21.00 and 81.00 respectively. A GP classifier trained on this variable alone can
achieve a cross-validated error of 34.54%.

The classification performance (in terms of error rate) based on this variable alone is even
worse than that of the naïve baseline classifier. The GP posterior trained on this variable is
plotted in Figure 5.

3 Additive Component Analysis

The pattern underlying the dataset can be decomposed into 2 additive components, which con-
tribute jointly to the final classifier which we have trained. With all components in action, the
classifier can achieve a cross-validated error rate of 22.38%. The performance cannot be further
improved by adding more components.

In Table 2 we list the full additive model, all input variables, as well as more complex
additive components (if any) considered above, ranked by their cross-validated error rate.
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Figure 5: Trained classifier on variable ‘age’.

Table 2: Classification performance of the full model, its additive components (if any), all input
variables, and the baseline.

Dimensions Kernel expression NLML Error
1, 3, 4 SE1 + SE3 ◊ SE4 280.45 21.83%

1 SE1 381.22 25.00%
3, 4 SE3 ◊ SE4 422.79 30.80%

2 SE2 347.18 33.71%
3 SE3 366.12 33.71%
– C (Baseline) 373.79 34.39%
4 SE4 344.69 34.54%

5

3.1 Component 1
With only one additive component, the GP classifier can achieve a cross-validated error rate
of 25.00%. The corresponding negative log marginal likelihood is 381.22. This component
operates on variable ‘plasma glucose’, as shown in Figure 6.
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Figure 6: Trained classifier on variable ‘plasma glucose’.

3.2 Component 2
With 2 additive components, the cross-validated error can be reduced by 2.62% to 22.38%. The
corresponding negative log marginal likelihood is 353.28. The additional component operates
on variables ‘pedigree function’ and ‘age’, as shown in Figure 7.
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(a) Current additive component involving vari-
ables ‘pedigree function’ and ‘age’.

(b) Previous and current components combined,
involving variables ‘plasma glucose’, ‘pedigree
function’ and ‘age’.

Figure 7: Trained classifier on variables ‘plasma glucose’, ‘pedigree function’ and ‘age’.
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2Obtained from [Smith et al., 1988]
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A Sample Report

AutoGPC Report: Executive Summary

I Full model description
. . . , the model involves an additive combination of variable ‘plasma glu-
cose’ and a 2-way interaction between variables ‘pedigree function’ and ‘age’
(SE1 + SE3 ⇥ SE4). This model can achieve a cross-validated error rate of
22.38% and a negative log marginal likelihood of 353.28.

I Summary of input variables

of variable ‘plasma glucose’ and a 2-way interaction between variables ‘pedigree function’ and
‘age’ (SE1 + SE3 ◊ SE4). This model can achieve a cross-validated error rate of 22.38% and a
negative log marginal likelihood of 353.28.

We have also analysed the relevance of each input variable. They are listed below in Table
1 in descending order of inferred relevance (i.e. in ascending order of cross-validated error of
the best one-dimensional GP classifier).

Table 1: Input variables

Statistics Classifier Performance

Variable Min Max Mean Kernel NLML Error

1 plasma glucose 44.00 199.00 121.88 smooth 381.22 25.00%
2 body mass index 18.20 67.10 32.47 smooth 347.18 33.71%
3 pedigree function 0.08 2.42 0.47 smooth 366.12 33.71%
– Baseline – – – constant 373.79 34.39%
4 age 21.00 81.00 33.35 smooth 344.69 34.54%

Table 2: Input variables

Statistics Classifier Performance
Dimension Variable Min Max Mean Kernel NLML Error

1 plasma glucose 44.00 199.00 121.88 smooth 381.22 25.00%
2 body mass index 18.20 67.10 32.47 smooth 347.18 33.71%
3 pedigree function 0.08 2.42 0.47 smooth 366.12 33.71%
– Baseline – – – constant 373.79 34.39%
4 age 21.00 81.00 33.35 smooth 344.69 34.54%

In the rest of the report, we will first describe the contribution of each individual input
variable (Section 2). This is followed by a detailed analysis of the additive components that
jointly make up the best model (Section 3).

2 Individual Variable Analysis
First, we try to classify the training samples using only one of the 4 input dimensions. By
considering the best classification performance that is achievable in each dimension, we are
able to infer which dimensions are the most relevant to the class label assignment.

Note that in Table 1 the baseline performance is also included, which is achieved with
a constant GP kernel. The effect of the baseline classifier is to indiscriminately classify all
samples as either positive or negative, whichever is more frequent in the training data. The
classifier performance in each input dimension will be compared against this baseline to tell if
the input variable is discriminative in terms of class determination.

2.1 Variable ‘plasma glucose’
Variable ‘plasma glucose’ has mean value 121.88 and standard deviation 30.73. Its observed
minimum and maximum are 44.00 and 199.00 respectively. A GP classifier trained on this
variable alone can achieve a cross-validated error of 25.00%.

2
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A Sample Report

AutoGPC Report: Individual Variable Analysis

I Variable ‘plasma glucose’: moderate evidence, monotonic
. . . Compared with the null model (baseline), this variable contains some ev-
idence of class label assignment. There is a positive correlation between the
value of this variable and the likelihood of the sample being classified as pos-
itive.

I Variable ‘body mass index’: little evidence
. . . This variable provides little evidence of class label assignment given a
baseline error rate of 34.39%.

I Variable ‘age’: no evidence
. . . The classification performance (in terms of error rate) based on this vari-
able alone is even worse than that of the naïve baseline classifier.

I Other variants: strong evidence, etc.
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A Sample Report

AutoGPC Report: Additive Component Analysis

I For example, for the second additive component
[With only one additive component, . . . ]
With 2 additive components, the cross-validated error can be reduced by
2.62% to 22.38%. The corresponding negative log marginal likelihood is
353.28. The additional component operates on variables ‘pedigree function’
and ‘age’, as shown in Figure . . .

I Summary of all models

Figure 5: Trained classifier on variable ‘age’.

Table 2: Classification performance of the full model, its additive components (if any), all input
variables, and the baseline.

Dim Kernel expression NLML Error

1, 3, 4 SE1 + SE3 ◊ SE4 280.45 21.83%
1 SE1 381.22 25.00%

3, 4 SE3 ◊ SE4 422.79 30.80%
2 SE2 347.18 33.71%
3 SE3 366.12 33.71%
– C (Baseline) 373.79 34.39%
4 SE4 344.69 34.54%

Table 3: Classification performance of the full model, its additive components (if any), all input
variables, and the baseline.

Dimensions Kernel expression NLML Error
1, 3, 4 SE1 + SE3 ◊ SE4 280.45 21.83%

1 SE1 381.22 25.00%
3, 4 SE3 ◊ SE4 422.79 30.80%

2 SE2 347.18 33.71%
3 SE3 366.12 33.71%
– C (Baseline) 373.79 34.39%
4 SE4 344.69 34.54%
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THE AUTOML COMPETITION

I New algorithms for building machine learning systems that learn
under strict time, CPU, memory and disk space constraints,
making decisions about where to allocate computational
resources so as to maximise statistical performance.

I Second and First place in the first two rounds of the AutoML
classification challenge to “design machine learning methods
capable of performing all model selection and parameter tuning
without any human intervention.”Zoubin Ghahramani 41 / 51



CONCLUSIONS

Probabilistic modelling offers a framework for building
systems that reason about uncertainty and learn from data,
going beyond traditional pattern recognition problems.

I have briefly reviewed some of the frontiers of our research,
centred around the theme of automating machine learning,
including:

I The automatic statistician
I Probabilistic programming
I Bayesian optimisation

Ghahramani, Z. (2015) Probabilistic machine learning and artificial
intelligence. Nature 521:452–459.
http://www.nature.com/nature/journal/v521/n7553/full/nature14541.html
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PAPERS

General:

Ghahramani, Z. (2013) Bayesian nonparametrics and the probabilistic approach to modelling.
Philosophical Trans. Royal Society A 371: 20110553.

Ghahramani, Z. (2015) Probabilistic machine learning and artificial intelligence Nature
521:452–459. http://www.nature.com/nature/journal/v521/n7553/full/nature14541.html

Automatic Statistician:

Website: http://www.automaticstatistician.com

Duvenaud, D., Lloyd, J. R., Grosse, R., Tenenbaum, J. B. and Ghahramani, Z. (2013) Structure
Discovery in Nonparametric Regression through Compositional Kernel Search. ICML 2013.

Lloyd, J. R., Duvenaud, D., Grosse, R., Tenenbaum, J. B. and Ghahramani, Z. (2014) Automatic
Construction and Natural-language Description of Nonparametric Regression Models AAAI
2014. http://arxiv.org/pdf/1402.4304v2.pdf

Lloyd, J. R., and Ghahramani, Z. (2015) Statistical Model Criticism using Kernel Two Sample
Tests. http://mlg.eng.cam.ac.uk/Lloyd/papers/kernel-model-checking.pdf. NIPS 2015.

Bayesian Optimisation:

Hernández-Lobato, J. M., Hoffman, M. W., and Ghahramani, Z. (2014) Predictive entropy
search for efficient global optimization of black-box functions. NIPS 2014

Hernández-Lobato, J.M., Gelbart, M.A., Adams, R.P., Hoffman, M.W., Ghahramani, Z. (2016)
A General Framework for Constrained Bayesian Optimization using Information-based Search.
Journal of Machine Learning Research. 17(160):1–53.
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PAPERS II

Probabilistic Programming:

Turing: https://github.com/yebai/Turing.jl

Chen, Y., Mansinghka, V., Ghahramani, Z. (2014) Sublinear-Time Approximate MCMC
Transitions for Probabilistic Programs. arXiv:1411.1690

Ge, Hong, Adam Scibior, and Zoubin Ghahramani (2016) Turing: rejuvenating probabilistic
programming in Julia. (In preparation).

Bayesian neural networks:

José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation for scalable
learning of Bayesian neural networks. ICML, 2015.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning. ICML, 2016.

Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in recurrent
neural networks. NIPS, 2016.

José Miguel Hernández-Lobato, Yingzhen Li, Daniel Hernández-Lobato, Thang Bui, and
Richard E Turner. Black-box alpha divergence minimization. ICML, 2016.
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BACKGROUND: GAUSSIAN PROCESSES

Consider the problem of nonlinear regression: You want to
learn a function f with error bars from data D = {X, y}

x

y

A Gaussian process defines a distribution over functions p(f ) which
can be used for Bayesian regression:

p(f |D) = p(f )p(D|f )
p(D)

Definition: p(f ) is a Gaussian process if for any finite subset
{x1, . . . , xn} ⊂ X , the marginal distribution over that subset p(f) is
multivariate Gaussian.
GPs can be used for regression, classification, ranking, dim. reduct...
→ GPflow: a Gaussian process library using TensorFlow
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BAYESIAN NEURAL NETWORKS AND GAUSSIAN

PROCESSES

inputs

outputs

x

y

weights

hidden
units

weights

Bayesian neural network
Data: D = {(x(n), y(n))}N

n=1 = (X, y)
Parameters θ are weights of neural net

prior p(θ|α)
posterior p(θ|α,D) ∝ p(y|X,θ)p(θ|α)
prediction p(y′|D, x′,α) =

∫
p(y′|x′,θ)p(θ|D,α) dθ

A neural network with one hidden layer, infinitely
many hidden units and Gaussian priors on the weights
→ a GP (Neal, 1994). He also analysed infinitely deep
networks. x

y
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THE ATOMS OF OUR LANGUAGE OF MODELS

Five base kernels

0 0

0

0 0

Squared
exp. (SE)

Periodic
(PER)

Linear
(LIN)

Constant
(C)

White
noise (WN)

Encoding for the following types of functions

Smooth
functions

Periodic
functions

Linear
functions

Constant
functions

Gaussian
noise
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THE COMPOSITION RULES OF OUR LANGUAGE

I Two main operations: addition, multiplication

0 0

LIN × LIN
quadratic
functions

SE × PER
locally
periodic

0

0

LIN + PER
periodic plus
linear trend

SE + PER
periodic plus
smooth trend
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MODEL CHECKING AND CRITICISM

I Good statistical modelling should include model criticism:
I Does the data match the assumptions of the model?

I Our automatic statistician does posterior predictive checks,
dependence tests and residual tests

I We have also been developing more systematic
nonparametric approaches to model criticism using kernel
two-sample testing:

→ Lloyd, J. R., and Ghahramani, Z. (2015) Statistical Model Criticism using
Kernel Two Sample Tests. NIPS 2015.
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BAYESIAN OPTIMISATION
Predictive Entropy Search with Unknown Constraints

tial and decay rate), 2 momentum parameters (initial and
final), 2 dropout parameters (input layer and other layers),
2 other regularization parameters (weight decay and max
weight norm), the number of hidden units in each of the 3
hidden layers, the activation function (RELU or sigmoid).
The network is trained on a using the deepnet package1,
and the prediction time is computed as the average time of
1000 predictions, each for a batch of size 128. The net-
work is trained on the MNIST digit classification task with
momentum-based stochastic gradient descent for 5000 iter-
ations. The objective is reported as the classification error
rate on the validation set. As above, we treat constraint
violations as the worst possible value (in this case a classi-
fication error of 1.0).

Figure 4 shows the results of 50 iterations of Bayesian opti-
mization. In this experiment and the next, the y-axis repre-
sents observed function values, �1 = 0.05, a Matérn 5/2 GP
covariance kernel is used, and GP hyperparameters are in-
tegrated out using slice sampling (Neal, 2000) as in Snoek
et al. (2012). Curves are the mean over 5 independent ex-
periments. We find that PESC performs significantly better
than EIC. However, when the noise level is high, report-
ing the best observation is an overly optimistic metric (due
to “lucky” evaluations); on the other hand, ground-truth is
not available. Therefore, to validate our results further, we
used the recommendations made at the final iteration of
Bayesian optimization for each method (EIC and PESC)
and evaluted the function with these recommended param-
eters. We repeated the evaluation 10 times for each of the 5
repeated experiments to compute a ground-truth score av-
eraged of 50 function evaluations. This procedure yields a
score of 0.45±0.06 for PESC and 0.79±0.03 for EIC (as in
the Figure, constraint violations are treated as a classifica-
tion error of 100%). This result is consistent with Figure 4
in that PESC performs significantly better than EIC, but
also demonstrates that, due to noise, Figure 4 is overly op-
timistic. While we may believe this optimism to affect both
methods equally, the ground-truth measurement provides a
more reliable result and a much clearer understanding of
the classification error attained by Bayesian optimization.

5.5. Tuning Markov chain Monte Carlo

Hybrid Monte Carlo, also known as Hamiltonian Monte
Carlo (HMC), is a popular Markov Chain Monte Carlo
(MCMC) technique that uses gradient information in a nu-
merical integration to select the next sample. However,
using numerical integration gives rise to new parameters
like the integration step size and the number of integration
steps. Following the experimental set up in Gelbart et al.
(2014), we optimize the number of effective samples pro-
duced by an HMC sampler limited to 5 minutes of com-

1https://github.com/nitishsrivastava/deepnet

Figure 4. Classification error of a 3-hidden-layer neural network
constrained to make predictions in under 2 ms.

putation time, subject to passing of the Geweke (Geweke,
1992) and Gelman-Rubin (Gelman & Rubin, 1992) conver-
gence diagnostics, as well as the constraint that the numer-
ical integration should not diverge. We tune 4 parameters
of an HMC sampler: the integration step size, number of
integration steps, fraction of the allotted 5 minutes spent in
burn-in, and an HMC mass parameter (see Neal, 2011). We
use the coda R package (Plummer et al., 2006) to compute
the effective sample size and the Geweke convergence di-
agnostic, and the PyMC python package (Patil et al., 2010)
to compute the Gelman-Rubin diagnostic over two inde-
pendent traces. Following Gelbart et al. (2014), we impose
the constraints that the absolute value of the Geweke test
score be at most 2.0 and the Gelman-Rubin score be at most
1.2, and sample from the posterior distribution of a logistic
regression problem using the UCI German credit data set
(Frank & Asuncion, 2010).

Figure 5 evaluates EIC and PESC on this task, averaged
over 10 independent experiments. As above, we perform a
ground-truth assessment of the final recommendations. The
average effective sample size is 3300± 1200 for PESC and
2300 ± 900 for EIC. From these results we draw a similar
conclusion to that of Figure 5; namely, that PESC outper-
forms EIC but only by a small margin, and furthermore that
the experiment is very noisy.

6. Discussion
In this paper, we addressed global optimization with un-
known constraints. We described existing methods and
discuss their weaknesses. We presented PESC, a method
based on the theoretically appealing expected information
gain heuristic. We showed in Figure 1 that the mathemat-
ical approximations involved in PESC are quite accurate,
and that PESC performs about equally well to a ground
truth method based on rejection sampling. In sections 5.2
to 5.5, we showed that PESC outperforms current methods

(work with J.M. Hernández-Lobato, M.A. Gelbart, M.W. Hoffman, & R.P.
Adams) arXiv:1511.09422 arXiv:1511.07130 arXiv:1406.2541
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