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ABSTRACT

TOPICS IN QUANTUM SHEAF COHOMOLOGY

Zhentao Lu

Ron Donagi

Quantum sheaf cohomology generalizes the theory quantum cohomology, in the

sense that it deals with a class of more general sheaves rather than the tangent

bundle. In this thesis we study quantum sheaf cohomology of bundles on smooth

projective toric varieties. The basic case is when the bundle is a deformation of the

tangent bundle. We study the quantum correlators defined by the quantum sheaf

cohomology. We give a mathematical proof of a formula that computes the quantum

correlators in this case, confirming the conjecture in the physics literature. The next

important case is when the bundle is of higher rank than the tangent bundle. We

study bundles being deformations of T ⊕ O where T is the tangent bundle and

O is the trivial bundle. We give a rudimentary description of the classical and

quantum sheaf cohomology ring in this case. We also discuss other interesting cases

and the demanding from physics, as well as the connections between them and the

previously mentioned ones.
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Chapter 1

Introduction

The study of quantum sheaf cohomology (QSC) arises from the physics problem

of understanding the Gauged Linear Sigma Model (GLSM), introduced by Witten

[21]. There are two versions of GLSM, the (2,2) theory and the (0,2) theory, where

(2,2) and (0,2) indicates the amount of supersymmetry of the theory. Both theories

study maps from Riemann surfaces to compact Kähler manifolds. The former theory

considers the manifold with its tangent bundle, while the latter considers more

general bundles.

The study of the (2,2) theory is more mature and the associated quantum co-

homology theory is studied by Batyrev [2] and Morrison-Plesser [16]. The main

result there, the Toric Residue Mirror Conjecture (TRMC, see Equation (2.4.4)), is

formulated in [1] based on [16], and is proved independently by Szenes-Vergne [20]

and Borisov [4].
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Quantum sheaf cohomology is associated to the study of the (0,2) theory, which

is relatively new and many problems remain open. See [15] for a survey. The basic

object studied here is a compact Kähler manifold V with an omalous1 holomorphic

vector bundle E on it. An important quantity in the (0,2) theory (as well as in

the (2,2) theory) is the set of correlators. For cohomology elements in H1(V, E∨),

the classical correlator is a sheaf cohomology analog of the intersection number of

divisors, while the quantum correlator is a weighted sum of classical correlators of

the moduli spaces parametrized by effective curve classes of V .

Donagi, Guffin, Katz and Sharpe in [9] devoloped the mathematical theory of

the quantum sheaf cohomology for any smooth projective toric variety X with a

bundle E defined by the deformed toric Euler sequence (2.1.1). Bundles defined

this way are naturally omalous, and they can be studied using Koszul complex.

The quantum sheaf cohomology ring is defined by specifying the quantum Stanley-

Reisner ideals. This enables the authors of [9] to define the quantum correlators

with values in a one-dimensional complex vector space H∗.

From the physics side, McOrist and Melnikov formulated a conjectures about

the quantum correlators in [17].

Conjecture 1.0.1. For a toric variety V with a holomorphic vector bundle E de-

fined by a deformed toric Euler sequence (See (2.1.1) below), the quantum correlator

of σi’s in H1(E∨) can be computed by the following summation formula:

1 “Omalous” means “non-anomalous”, i.e. the Chern classes satisfy ci(E) = ci(V ), i = 1, 2.
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〈σi1 , ..., σis〉quantum =
∑

{u∈W∨|ṽj(u)=qj}

σI∏
c∈[Σ(1)] Qc

∏r
j=1 ṽj

detj,k(ṽj,k)
. (1.0.1)

In the above formula, the quantities on the right hand side are constructed from

the map in the deformed toric Euler sequence defining E . We will give the precise

definition of the notations later in this thesis.

The authors of [17] work in the physics theory of Coulomb branch and derive

the formula (1.0.1) there. They then conjecture that the same formula holds for

the geometric case as described in Conjecture 1.0.1.

Conjecture 1.0.1 has the feature that the quantum correlators take values in the

complex numbers. Compared to the result in [9], it offers a specific identification of

H∗ to C, and an effective way computing it.

In Chapter 2 we prove Conjecture 1.0.1 using results of [9]. We then explore

the next important case, where the omalous bundle is a deformation of T ⊕ O, in

Chapter 3. Lastly, in Chapter 4, we discuss the case when the variety is a complete

intersection in a toric variety, as well as the QSC for Grassmannians. These two

directions are motivated by physicists’ interest: complete intersections contains

the case of Calabi-Yau manifolds which are interested to string theorists; QSC on

Grassmannians generalizes the current theory to the case with non-abelian gauge

groups.
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Chapter 2

QSC for Deformations of Tangent

Bundles on Toric Varieties

In Section 2.1 we set up the basic notations, introduce the classical correlators, and

review some results in the case where E is the tangent bundle of the toric variety.

In Section 2.2, we prove an integral formula that computes the classical corre-

lators for E being a deformation of the tangent bundle TV with small deformation

parameters.

In Section 2.3, we define the quantum correlators following [9]. Then we use this

to write the quantum correlator, which is the sum of all contributions of classical

correlators from different moduli spaces parametrized by effective curve classes of

the toric variety, into an integral form.

In Section 2.4, we show that Equation (1.0.1) can be written as an integral,
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which has the same integrand as the one in Section 2.3. However the two integrals

are over different cycles. we will prove the equality of the two integrals, which

proves Conjecture 1.0.1. The proof is inspired by the (2,2) case work [20] proving

the TRMC. In the end we comment on the significance of this summation formula.

2.1 Preliminaries

2.1.1 The basic setting

Throughout this thesis, let V be an n-dimensional smooth projective toric variety

with the fan Σ, and let Σ(k) be the collection of all k-dimensional cones of the

fan Σ. Each ray i ∈ Σ(1) corresponds to a prime divisor Di via the orbit-cone

correspondence.

Let E be a holomorphic vector bundle of rank n on V , defined by the deformed

toric Euler sequence (sometimes referred as monadic deformation, as E is the cok-

ernel of two bundles that are direct sums of line bundles)

0→ O⊗W∨ →
⊕
i∈Σ(1)

O(Di)→ E → 0. (2.1.1)

We will also make use of the dual sequence

0→ E∨ →
⊕
i∈Σ(1)

O(−Di)
E−→ O ⊗W → 0. (2.1.2)
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2.1.2 The definition of the polymology

Note that W ∼= H1(E∨) for all bundles E∨ defined by different E maps. The space

of cohomology
⊕

p,qH
q(V,∧qE∨) together with cup product forms an associative

algebra H∗E(V ) called the polymology of E .

Recall that the cohomology of toric varieties can be described using Stanley-

Reisner ideals:

H∗TV (V ) ∼= Sym∗W/SR(V ). (2.1.3)

We can describe the polymology in a similar way.

Let E be the second map in (2.1.2) whose kernel defines E∨. Then E is in

Hom(⊕(−Di),O⊗W ) ∼= H0(⊕O(Di))⊗W . For each i ∈ Σ(1) we have an expres-

sion in monomials

Ei =
∑

m∈∆i∩M

aimχ
m, (2.1.4)

where χm,m ∈ ∆i ∩M is a basis of H0(O(Di)) and aim takes values in W .

Since it is shown by [9] that the quantum sheaf cohomology does not depend on

non-linear deformations, we can focus on the linear part of Ei defined by

Elin
i :=

∑
i′∈{i′∈Σ(1) | Di′∼Di}

aii′xi′ , (2.1.5)

where Di′ ∼ Di means they are linearly equivalent divisors, and xi′ ∈ H0(O(Di)) is
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the element in the homogeneous coordinate ring of the toric variety corresponding

to a global section vanishing on Di′ .

For the divisor class c, we introduce the notation Qc = det(aij) with i, j running

through all rays k ∈ Σ(1) such that [Dk] = c.

An important notion in toric geometry is the primitive collection. A primitive

collection P ⊂ Σ(1) is a collection of rays such that no cone in Σ contains all the

rays in P , but for any proper subset P ′ of P , there is a cone in Σ that contains all

the rays in P ′.

It can be shown that for each primitive collection P of rays in Σ(1), if it contains

one ray i, it has to contain all i′ such that Di′ ∼ Di.

For any subset S ⊂ Σ(1), let [S] = {[Di] | i ∈ S}.

Define the deformed Stanley-Reisner ideal SR(V, E) ⊂ Sym∗W to be the ideal

generated by
∏

c∈[P ]Qc with P running through all primitive collections of the fan,

i.e.,

SR(V, E) = 〈
∏
c∈[P ]

Qc | P is a primitive collection〉. (2.1.6)

Then it is proved in [9] that the polymology of E satisfies:

H∗E(V ) ∼= Sym∗W/SR(V, E). (2.1.7)

7



2.1.3 The classical correlators

For i ∈ Σ(1), let αi ∈ W be the first Chern class of the toric invariant divisor Di

(under the identification W ∼= H1(Ω)) and denote U = {αi | i ∈ Σ(1)}. Let σi ∈ W

be a general element of W and σI =
∏

i∈I σi ∈ Sym∗W .

Note that (2.1.2) implies that ∧nE∨ ∼= O(−
∑

i∈Σ(1)Di) ∼= K, the canonical

bundle. Hence Hn(V,∧nE∨) is one-dimensional. Identify Hn(V,∧nE∨) with C by

integrating over the fundamental class. For σi, i ∈ I, one can first take the image

of σI in H∗E(V ), project to the degree (n, n) part [σI ]n, and define the (classical)

correlator of σi, i ∈ I to be the image of [σI ]n in C. Denote the correlator of σi, i ∈ I

by 〈σI〉.

2.1.4 An integral formula for the (2,2) classical correlators

Following the physicists’ language, we call the case in which E is the tangent bundle

TV the (2,2) case. In this case the polymology of E is just the cohomology of

holomorphic forms, and the ring structure can be computed by intersection theory

(recall that V is a smooth projective toric variety).

In this section, we present an integral formula for the (2,2) classical correlators

found by Szenes and Vergne in [20]. We will generalize this formula in Section 2.2.

First we need more notations.

Choose a maximal cone σ ∈ Σ(n), and fix an order of αi1 , ..., αir corresponding

to rays that are not in σ. This fixes a translation invariant measure dµ on W∨,
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where dµ = dαi1 ∧ dαi2 ∧ ... ∧ dαir .

For each prime toric divisor class c ∈ [Σ(1)], let Hc be a hypersurface in W∨

defined by Hc = {u ∈ W∨ | Qc(u) = 0}. Let U(E) be the complement of the union

of Hc, c ∈ [Σ(1)]. In the current case where E = TV , U(TV ) is the complement of

the union of hyperplanes defined by αi = 0, i ∈ Σ(1). Let r = dimW∨.

We can then state the following theorem:

Theorem 2.1.1. There is a homology class h(TV ) ⊂ Hr(U(TV ),Z) such that the

following integral computes the (2,2) classical correlators for any σi ∈ W, i ∈ I.

〈σI〉 =
1

(2πi)r

∫
h(TV )

σI∏
i∈Σ(1) αi

dµ. (2.1.8)

Moreover, the homology class is represented by a disjoint union of tori with

orientations, as described below.

Description of the homology class.

To describe h(TV ), we first introduce the set FL(U) of complete flags

F = {F0 = {0} ⊂ F1 ⊂ F2 ⊂ ... ⊂ Fr−1 ⊂ Fr = W}, (2.1.9)

such that each Fj is generated by some αi ∈ U.

We say an ordered basis γF = (γF1 , ..., γ
F
r ) of W is compatible with F , if the

following conditions hold:

9



(a) γFj is rationally generated by αi ∈ U,

(b) {γFm}
j
m=1 is a basis of Fj,

(c) dγF1 ∧ ... ∧ dγFr = dµ.

Fix a ξ in the Kähler cone c of V . Let FL+(U, ξ) be the set of those flags

F = {Fj} ∈ FL(U) such that ξ is in the interior of the cone spanned by κj,

j = 1, 2, ..., r, where κj =
∑
{αi∈U|αi∈Fj} αi.

For each flag F , we always fix a compatible basis γF . Let uj = γFj (u) for u ∈ W∨.

Consider the torus TF (ε) = {u ∈ W∨ | |uj| = εj, j = 1, ..., r}. Let

Z(ε) =
∑

F∈FL+(U,ξ)

ν(F )TF (ε), (2.1.10)

where ν(F ) = ±1 depending on the orientation of κj. Szenes and Vergne prove the

theorem by showing that Z(ε) represents h(TV ) for ε in some specific neighbourhood

of 0. We will specify the constraint for ε in Section 2.2.

2.2 An integral formula for (0,2) classical corre-

lators

In this section we prove an integral formula which computes the classical correla-

tors for E being a deformation of the tangent bundle TV with small deformation

parameters. The statement is Theorem 2.2.1 below.

10



2.2.1 The integral formula

We fix the same translation invariant measure dµ on W∨ as in Section 2.1.4. And

recall that U(E) is the complement of the union of all the hypersurfaces Hc = {u ∈

W∨ | Qc(u) = 0} in W∨, for c ∈ [Σ(1)]. r = dimW∨. Our first result generalizes

the formula for (2,2) classical correlators:

Theorem 2.2.1. For E being a small deformation of the tangent bundle TV , there

is a homology class h(E) ⊂ Hr(U(E),Z) such that the following integral computes

the (0,2) classical correlators for any σi ∈ W, i ∈ I:

〈σI〉 =
1

(2πi)r

∫
h(E)

σI∏
c∈[Σ(1)] Qc

dµ, (2.2.1)

where Qc’s are factors of generators of SR(V, E), as described in (2.1.6).

Moreover, h(E) is represented by Z(ε) as described in (2.1.10).

Remark:

(a) There are constrains on εj.That is Nεi < εi+1, i = 1, 2, ..., r − 1, for a suffi-

ciently large N , namely, N is larger than N0(F ) which could be chosen as follows:

For all l ∈ Σ(1), write αl =
∑
aliγ

F
i . Define N0(F ) = r · (maxl(

1
|ali|

) · (maxi |ali|)).

(b) The integral vanishes on SR(V, E). This consists the main part of the proof.

(c) It is shown in [9] that the quantum sheaf relations do not depend on the

non-linear deformations. Hence the correlation functions, being linear functions

vanishing on the ideal generated by the quantum sheaf relations, do not depend on

11



the non-linear deformations.

2.2.2 Preparatory results

We state and prove some lemmas before we prove Theorem 2.2.1 in next section.

Lemma 2.2.2. Fix a flag F and a collection {αl, l ∈ L}. If there exist a k, 1 ≤

k ≤ r such that Fk is not generated by elements of {αl, l ∈ L} but every Fi, i < k

is, then
∏

l∈L αL is non-zero on the region Ω = {u; |uk| ≤ εk, |ui| = εi, for i 6= k}.

Proof:

For any l ∈ L, express αl in terms of the basis γFi , we have αl =
∑
aliγ

F
i . Order

the sum in the descending order regarding i-index, and call the largest index s.

Then s 6= k by the definition of k.

Then, for u ∈ Ω, l ∈ L,

|αl(u)| = |
∑s

i=1 aliui|

≥ |as| · |us| −
∑s−1

i=1 |ai| · |ui|

≥ |as|εs −
∑s−1

i=1 |ai| · εi

> εs−1(N0(F ) · |as| − r ·maxi(|ai|))

> 0,

(2.2.2)

by the definition of N0(F ).

Lemma 2.2.3. Let P ⊂ Σ(1) be a primitive collection.

12



(a)

When {αi, i ∈ L = Σ(1)−P − J} does not form a basis compatible with the flag

F , ∫
TF (ε)

αJ∏
i 6∈P αi

dµ = 0.

In particular, when {αi, i ∈ L} does not generate W , we have

∫
TF (ε)

f∏
i∈L αi

dµ = 0

for any TF (ε).

(b) When αi, i ∈ Σ(1)− P − J form a basis compatible with both the flag F and

F ′,
∫
TF ′ (ε)

αJ∏
c6∈P Qc

= sgn(F ′, F ) ·
∫
TF (ε)

αJ∏
c6∈P Qc

, where sgn(F ′, F ) = ±1 depending

Proof:

(a) Let L = Σ(1)− P − J . {αi, i ∈ L} satisfies the assumption of Lemma 2.2.2,

hence
∏

l∈L αL, is non-zero on Ω.

Hence the integrand is defined on the region Ω. Note that TF (ε) = ∂Ω. Hence∫
TF (ε)

f
prodi 6∈Pαi

dµ =
∫

Ω
d( f

prodi6∈Pαi
dµ) = 0.

(b) In this case we will rename the indices of {αi, i ∈ Σ(1) − P − J}, so that

Fj is generated by {α1, ..., αj}. If we write αj(u) =
∑j

i=1 ajiui, then |αj(u)/ajj| =

|uj +
∑i=j−1

i=1
aji
ajj
ui|. This allows us to use a linear homotopy map to show that

|αj(u)/ajj| = εj is homotopic to |uj| = εj. Thus we conclude that TF (ε) = ±[Tα],

where Tα = {u; |αj(u)/ajj| = εj} and [Tα] is its homology class.

13



Recall that Qc is a deformation of
∏

j,[Dj ]=c
αj. We may group the αj’s for j ∈ J

in a similar fasion. Namely, we have

αJ =
∏
c

(
∏

j∈J,[Dj ]=c

αj). (2.2.3)

Since J ⊂ Σ(1)− P , we have

αJ∏
c6∈P Qc

=
1∏

c 6∈P
Qc∏

j∈J,[Dj ]=c αj

. (2.2.4)

One observation is that r of the factors Qc/(
∏

j∈J,[Dj ]=c αj) are of degree 1 as

rational functions, and the others are of degree 0, since αi, i ∈ Σ(1) − P − J form

a basis of W . We denote the degree 1 factors as α̃i, i = 1, ..., r, and the degree 0

factors lj. Rewrite (
∏
lj)α̃1 as α̃1 so that all lj are absorbed. After re-indexing, we

can assume that α̃i is a small deformation of αi. Then we claim that the integration

result satisfies

|
∫
TF (ε)

αJ∏
c 6∈P Qc

dµ| = |
∫
Tα̃

1∏r
i=1 α̃i

dµ|, (2.2.5)

where Tα̃ = {u; |α̃j(u)/ajj| = εj}. To see why this is true, we note that similarly

to the above description of deforming TF to Tα, we can deform Tα to Tα̃, as long

as Qc(E) is a sufficiently small deformation of Qc(T ) =
∏

i;[Di]=c
αi. Since Tα̃ only

differs by possibly an orientation from the permutation of αi for different F ’s, we

conclude that the result is independent of the flag F as long as {αi, i ∈ Σ(1)−P−J}

forms a basis compatible with F .

14



2.2.3 Proof of the Theorem

Since Szenes-Vergne [20] has proved the corresponding result in (2,2) case, the map

σ 7→
∫
TF (ε)

σ∏
c∈[Σ(1)] Qc

dµ (2.2.6)

is not identically zero for small deformations. So it suffices to prove that for σ ∈

SR(V, E) with deg σ = n,

∫
h(E)

σ∏
c∈[Σ(1)] Qc

dµ =
∑

F∈FL+(ξ)

ν(F )

∫
TF (ε)

σ∏
c∈[Σ(1)] Qc

dµ = 0. (2.2.7)

Since SR(V, E) is generated by {
∏

c∈P Qc|P ⊂ Σ(1) is a primitive collection},

it suffices to prove that the above equality (2.2.7) is true for those σ of the form

σ = (
∏

c∈P Qc) · σJ , where P is a primitive collection, J ⊂ Σ(1), and |J | = n− |P |.

Now we compute this by deforming the corresponding (2,2) result.

Note that
∏

c 6∈P Qc is a small deformation of
∏

i 6∈P αi, we can write
∏

c 6∈P Qc =∏
i 6∈P αi − δα̃, for some small δ ∈ C and α̃ ∈ Sym∗W. So we have

∫
h(E)

σ∏
c∈[Σ(1)]Qc

dµ =
∫
h(E)

αJ∏
c 6∈P Qc

dµ

=
∫
h(E)

αJ∏
i 6∈P (αi−δα̃)

dµ

=
∫
h(E)

αJ∏
i 6∈P αi

(
∑∞

n=0( δα̃∏
i 6∈P αi

)n)dµ

=
∑∞

m=0

∫
h(E)

(δα̃)mαJ
(
∏
i 6∈P αi)

m+1dµ.

(2.2.8)
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Claim: for each monomial
∏

i∈K αi such that
∏
i∈K αi

(
∏
i 6∈P αi)

m+1 has degree −r,

∫
h(E)

∏
i∈K αi

(
∏

i 6∈P αi)
m+1

dµ = 0. (2.2.9)

Proof of the Claim: by Lemma 2.2.3, if the factors of the denominator do not

generate W , the integration is 0. Hence it reduces to the case when the factors of

the denominator generate W .

For k ∈ K, write αk =
∑
aklαl, where l runs through those indices appearing

in the denominator. This reduces the integrand to

∏
i∈K αi

(
∏

i 6∈P αi)
m+1

dµ =
∑
l

akl ·
∏

i∈K,i6=k αi

(
∏

i 6∈P αi)
m+1/αl

dµ. (2.2.10)

Observe that as long as the remaining denominator of a summand generates W , we

can repeat this process of expressing the numerator terms into linear combinations

of the denominator terms and then canceling out a term. This process terminates

after finite steps, and the final expression is a summation of terms of two types:

Type (i): terms with non-generating denominators.

Type (ii): terms with factors of the denominator generate W, while the numer-

ator is a constant (degree 0).

Type (i) terms integrate to 0 by Lemma 2.2.3. So to prove the claim, it suffices

16



to show that each Type (ii) term integrates to 0. Namely

∫
h(E)

1∏r
j=1 αij

dµ = 0. (2.2.11)

Type (ii) terms have denominators of degree r, since the cancellation process

preserves the degree of the fraction. Note that for the factors of the degree r

denominator to generate W which is r dimensional, these r factors have to be

distinct. So, being factors of (
∏

i 6∈P αi)
m+1, they are actually factors of

∏
i 6∈P αi.

Hence we have ∫
h(E)

1∏r
j=1 αij

dµ

=
∫
h(E)

∏
i∈L αi∏

i∈Σ(1)−P αi

=
∫
h(E)

∏
i∈L∪P αi∏
i∈Σ(1) αi

= 0

(2.2.12)

The last equality comes from Theorem 2.1.1 and the fact that
∏

i∈L∪P αi ∈ SR(V ).

This proves Equation (2.2.11). Hence the claim is proved.

The theorem then follows from the claim and Equation (2.2.8).
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2.3 The first integral formula for quantum corre-

lators

2.3.1 The quantum correlators

Let d
βj
c be the intersection number of βj with any divisor in the divisor class c.

The quantum correlator of σi ∈ W, i ∈ I is defined to be a summation over the

GLSM moduli spaces Mβ indexed by effective curves β:

〈σI〉quantum =
∑
β

〈σIFβ〉βqβ, (2.3.1)

where β runs over the lattice points in the Mori cone (generated by effective

curve classes) of the toric variety V , and Fβ is the four-Fermi term introduced in

[9]:

Fβ =
∏

c∈[Σ(1)]

Qh1(dβc )
c . (2.3.2)

Also, when β
′

dominates β, the correlators over different moduli spaces are related

by the “exchange rate” Rβ′β:

〈σIFβ〉β = 〈σIFβRβ′β〉β′ ,

Rβ′β =
∏

cQ
h0(dβ

′
c )−h0(dβc )

c .

(2.3.3)

Remark: This holds even when β is not effective. The re-definition of qβ: Instead

18



of viewing qβ as a formal parameter, we now consider complex value of it. For each

z =
∑n+r

i=1 ziωi ∈ g (ωi corresponds to the ray i ∈ Σ(1)), and each β ∈ H2(V,Z),

define qβ(z) =
∏n+r

i=1 z
〈αi,β〉
i , where αi ∈ H2(V,Z) corresponds to the ray i ∈ Σ(1).

2.3.2 The Mori cone of smooth projective variety

The Mori cone of a variety is the closure of the cone effective curves. For projective

toric variety V , the Mori cone NE(V ) is a strongly convex rational polyhedral

cone of full dimension in N1(V ), the real vector space of proper 1-cycles modulo

numerical equivalence. ([8], pp 292 - 295.) Theorem 6.4.11 of [8] gives a concrete

description of the Mori cone for any projective simplicial toric variety, representing

it by specifying a generator for each primitive collection of V .1 As a corollary, we

have:

Proposition 2.3.1. The number of primitive collections of a simplicial projective

toric variety V is no less than its Picard number.

Proof: By the above mentioned theorem, the number of primitive collections is

the same as the number of cone generators of the Mori cone. Since the Mori has

dimension r = the Picard number, the proposition is proved.

1The simplical condition is not necessary, as commented in [8], p 307.
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2.3.3 The integral formula

Note that we can choose generators of the Mori cone. Since the dimension of the

Mori cone equals the Picard number r, we can choose r generators β1, ..., βr such

that they generates all the lattice points in a possibly bigger cone containing the

Mori cone. We also require that 〈βj,
∑n+r

i=1 Di〉 ≥ 0. Since outside the Mori cone

the moduli space is simply empty and (2.3.3) still holds in this case, we can write

the summation over the Mori cone as summation over this (possibly bigger) cone:

〈σI〉quantum = lim−→
B

∑
β dominated by B

〈σI · Fβ ·RBβq
β〉B

= lim−→
B

〈σI
∑
β

∏
c

Qh0(dBc )−h0(dβc )+h1(dβc )
c qβ〉B

= lim−→
B

〈σI
∏
c

Qh0(dBc )−1
c

∑
β

∏
c

Q−d
β
c

c qβ〉B

= lim
N→∞

〈σI
∏
c

Qh0(dBc )−1
c

r∏
j=1

(
N∑

aj=0

u
aj
j )〉B

= lim
N→∞

〈σI
∏
c

Qh0(dBc )−1
c

r∏
j=1

1− uN+1
j

1− uj
〉B,

(2.3.4)

where uj =
∏

cQ
−d

βj
c

c qβj , and we will later write qj for qβj .

Now we have:

〈σI〉quantum = lim
N→∞

1

(2πi)r

∫
h(E)

1∏
cQ

h0(dBc )
c

·

(
σI
∏
c

Qh0(dBc )−1
c

r∏
j=1

1− uN+1
j

1− uj

)
dµ.

= lim
N→∞

1

(2πi)r

∫
h(E)

1∏
c∈[Σ(1)] Qc

·

(
σI

r∏
j=1

1− uN+1
j

1− uj

)
dµ.

(2.3.5)
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Take a representative Z(ε) of h(E) and take qj sufficiently small, we will have |uj| < 1

on h(E). We also write vj = u−1
j =

∏
cQ

d
βj
c
c q−1

j , ṽj =
∏

cQ
d
βj
c
c . So we have |vj| > 1

on h(E). Hence

〈σI〉quantum = lim
N→∞

1

(2πi)r

∫
Z(ε)

σI∏
cQc

r∏
j=1

1− uN+1
j

1− uj
dµ

= lim
N→∞

1

(2πi)r

∫
Z(ε)

σI∏
c∈[Σ(1)] Qc

r∏
j=1

1− uN+1
j

1− uj
dµ

=
1

(2πi)r

∫
Z(ε)

σI∏
cQc

r∏
j=1

1

1− uj
dµ

=
1

(2πi)r

∫
Z(ε)

σI
∏

j vj∏
c∈[Σ(1)] Qc

r∏
j=1

1

vj − 1
dµ

(2.3.6)

Thus we have proved the following result:

Theorem 2.3.2. Let E be a holomorphic vector bundle defined by the deformed toric

Euler sequence (2.1.1) with small deformations. Let Z(ε) be a cycle representing

h(E) and z ∈ (C∗)n. Let qj = zβj , j = 1, ..., r. For a fixed basis β1, ..., βr and

z ∈ (C∗)n such that |qj| < minu∈Z(ε) |ṽj(u)| holds, we have

〈σI〉quantum =
1

(2πi)r

∫
Z(ε)

σI∏
c∈[Σ(1)] Qc

∏r
j=1 ṽj∏r

j=1(ṽj − qj)
dµ. (2.3.7)
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2.4 Quantum correlator: summation formula

2.4.1 The Main Result

In McOrist-Melnikov [17], there is a summation formula for quantum correlators,

for E defined by the deformed toric Euler sequence 2.1.1 with a linear deformation.

The authors derive it from physics argument using Coulomb branch techniques.

Using the quantum sheaf cohomology theory set up by [9], we state it as Conjecture

1.0.1 in the Introduction.

Denote the partial derivative of ∂f(u)
∂uk

by f,k. Recall that ṽj =
∏

c∈[Σ(1)] Q
d
βj
c
c ,

z ∈ (C∗)n, qj = zβj , j = 1, ..., r. β1, ..., βr generates a cone containing the Mori

cone. Let z ∈ (C∗)n such that |qj| < minu∈Z(ε) |ṽj(u)| holds. The main result of this

thesis is a mathematical proof of Conjecture 1.0.1, including possibly non-linear

deformations:

Main Result. Let E be a holomorphic vector bundle defined by the deformed toric

Euler sequence (2.1.1) with small deformations such that Theorem 2.2.1 holds. Then

〈σi1 , ..., σis〉quantum =
∑

{u∈W∨|ṽj(u)=qj}

σI∏
c∈[Σ(1)] Qc

∏r
j=1 ṽj

detj,k(ṽj,k)
. (2.4.1)

holds for z in a complex open region contained in (C∗)n.

Remarks: (a) Let hq ∈ Hr(W
∨ − {u ∈ W∨ | ṽj(u) = qj},Z) be the homology

of the real r-dimensional cycle defined by {u ∈ W∨ | |ṽj(u)− qj| < δ}, for a δ that
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is small enough. Then the above formula (2.4.1) can be written as

〈σI〉quantum =
1

(2πi)r

∫
hq

σI∏
c∈[Σ(1)] Qc

∏r
j=1 ṽj∏r

j=1(ṽj − qj)
dµ. (2.4.2)

Equation (2.3.7) and (2.4.2) has exactly the same integrand.

(b) When E is the tangent bundle, (2.4.2) is reduced to

〈σI〉quantum =
1

(2πi)r

∫
hq

σI∏
i∈Σ(1) αi

∏r
j=1 ṽj∏r

j=1(ṽj − qj)
dµ. (2.4.3)

This resembles the conclusion of the hypersurface case of the “Toric Residue

Mirror Conjecture” in (2,2) theory [1], which says2 for anti-canonical hypersurface

X (i.e. the fundamental class is dual to κ =
∑

i∈Σ(1) αi) in a Fano simplicial

toric variety V of dimension n, the quantum correlator 〈σi1 ...σin−1〉quantum for σi ∈

H1(X,T ∗X) coming from the restriction of H1(V, T ∗V ) is

〈σi1 ...σin−1〉quantum =
1

(2πi)r

∫
hq

σI
(1− κ)

∏
i∈Σ(1) αi

∏r
j=1 ṽj∏r

j=1(ṽj − qj)
dµ. (2.4.4)

The main goal of this section is to prove the Main Result by proving (2.4.2).

Our proof is inspired by Szenes and Vergne’s proof of (2.4.4).

We set up some notations in 2.4.2. Then we state the theorem and some lemmas.

We prove the theorem in 2.4.3.

2We adopt the formulation of [20]. See Proposition 4.7 there.
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2.4.2 Some preparations

We fix a bundle E1 such that Theorem 2.3.2 holds. Multiply the deformation pa-

rameters in the map defining E1 by t, we get a one parameter family Et. Then

Theorem 2.3.2 holds for |t| ≤ 1 and E0 = TV .

Specifying the bundle dependence of the map ṽj =
∏

cQ
d
βj
c
c , we denote it by ṽ

(t)
j .

We make some definitions generalizing those (2,2) case notations in [20] to the

(0,2) case:

Define

Ẑ(t)(ξ) = {u ∈ U ; |ṽ(t)
j | = e−〈ξ,βj〉}. (2.4.5)

Ẑ(t)(ξ) can be viewed as the preimage of a torus T (ξ) = {y ∈ (C∗)r; |yj| =

e−〈ξ,βj〉}, under the map ṽ(t) = (ṽ
(t)
1 , ..., ṽ

(t)
r ) : U(E)→ (C∗)r.

For S ⊂ {1, 2, ...n} define

TS(ξ, η) =

y ∈ (C∗)r; |yj| =


exp(−〈ξ, βj〉), if j ∈ S,

exp(−〈ξ − η, βj〉), if j 6∈ S.


and Tδ(q) = {y ∈ (C∗)r; |yj − qj| = δ, j = 1, ..., r}. Let Z

(t)
S (ξ, η) and Z

(t)
δ (q)

be the pull-back of TS(ξ, η) and Tδ(q) respectively by ṽ(t). Note that results about

Ẑ(ξ) apply to Ẑ
(t)
S (ξ, η).

Remark about notations: In order to keep the notations clean, we omit the
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label (t) when t = 1, as well as (ξ, η), and simply write ZS, Zδ, ṽ.

Let R(ξ, η) be the multi-dimensional annulus

R(ξ, η) = {y = (y1, ..., yr) ∈ (C∗)r; 〈ξ − η, βj〉 < − log |yj| < 〈ξ, βj〉, j = 1, ..., r},

and let W (ξ, η) be the pull-back of R(ξ, η) by the map q(z).

To simplify notation we will write Λ for
1

(2πi)r
σI∏

c∈[Σ(1)] Qc

∏r
j=1 ṽj∏r

j=1(ṽj − qj)
dµ.

We also recall the definition of τ -regularity from [20]:

Definition 2.4.1. ([20]) U = {αi ∈ W ; i ∈ Σ(1)}. Define

ΣU =

{∑
i∈η

αi; η ⊂ Σ(1)}

}
,

which is the collection of partial sums of elements of U. For each subset ρ ⊂ ΣU

which generates W , we can write ξ =
∑

γ∈ρ a
ρ
γ(ξ)γ. Denote

min(ΣU, ξ) = min{|aργ(ξ)|; ρ ⊂ ΣU, ρ basis of W, γ ∈ ρ}.

We say ξ ∈ W is τ -regular for τ > 0 if min(ΣU, ξ) > τ .

The main theorem of this section is:

Theorem 2.4.1. Let ξ be τ -regular for τ sufficiently large. For z ∈ W (ξ, η), the
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following holds:

〈σI〉quantum =

∫
hq

Λ. (2.4.6)

The requirement for the technical assumption for ξ being τ -regular for suffi-

ciently large τ will be seen in Proposition 2.4.4.

We first collect some facts about the (2,2) case, and then state some lemmas

before proving the theorem.

Proposition 2.4.2. Let ξ be τ -regular for τ sufficiently large. In the (2,2) case, ṽ(0)

is regular over (ṽ(0))−1(R(ξ, η)). Hence, ṽ(t) is also regular over (ṽ(0))−1(R(ξ, η)).

Lemma 2.4.3. Let ξ be τ -regular for τ sufficiently large. The (2,2) case map ṽ(0) is

proper from (ṽ(0))−1(R(ξ, η)) to R(ξ, η). Moreover, the (0,2) case map ṽ(t) is proper

on from a suitable region to R(ξ, η) when |t| ≤ 1.

Proof: the (2,2) case is proved in [20]3. The (0,2) case follows from deformation,

as explained below:

Denote the compact set (ṽ(0))−1(R(ξ, η)) by K, and its boundary by ∂K.

Since E is a small deformation of TV , we can pick (ξ′, η′) such that

(1) R(ξ′, η′) ( R(ξ, η),

(2) (ṽ(t))−1(R(ξ′, η′)) ∩ ∂K = φ, and

(3) (ṽ(t))−1(R(ξ′, η′)) ∩K 6= φ.

This then implies the properness of ṽ(t) on (ṽ(t))−1(R(ξ′, η′)) ∩K, which is the

3It is Proposition 5.15, the map ṽ(0) is just p in [20].
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‘suitable region’ in the lemma.

The technical assumption for ξ being τ -regular for sufficiently large τ is made

to achieve the following result in (2,2) case:

Proposition 2.4.4. (Theorem 6.2 of [20]) If τ is sufficiently large, then for any

τ -regular ξ ∈ c, the set Ẑ(0)(ξ) is a smooth compact cycle whose homology class

equals h(E) ∈ Hr(U(E0),Z) = Hr(U(TV ),Z).

Corollary 2.4.5. The homology class of Ẑ(t)(ξ) ∩K is h(Et) ∈ Hr(U(E),Z).

Proof: Lemma 2.4.3 shows the properness of ṽ(t) on (ṽ(t))−1(R(ξ′, η′))∩K. Since

ṽ(t) is regular on this region, the cycles Ẑ(t)(ξ) ∩K and Ẑ(0)(ξ) are homologous as

preimages of T (ξ) ⊂ R(ξ, η) under ṽt.

Note: Since we always need to take the compact cycles and we can always do

so by intersecting with K by Lemma 2.4.3, we will simply write Z for Z ∩K in the

rest of this thesis.

Lemma 2.4.6. (a)
∫
Zφ

Λ = 〈σI〉quantum.

(b)
∫
ZS

Λ = 0, when S 6= φ.

Proof: By Corollary 2.4.5, ZS represents h(E) ∈ Hr(U(E),Z).

(a) For Zφ, we have |qj| < |ṽj(u)|. By Theorem 2.3.2,

〈σI〉quantum =

∫
Zφ

Λ. (2.4.7)
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(b) For ZS, S 6= φ, without loss of generality assume the index 1 ∈ S. Then

for u ∈ ZS we have |ṽ1(u)| = exp(−〈ξ, βj〉) < |q1|. Hence Λ can be defined on

C = {u ∈ U ; |ṽ1(u)| = e−〈ξ,β1〉, |ṽj(u)| = e−〈ξ,βj〉, j ≥ 2.}. Since ZS = ∂C, this leads

to ∫
ZS

Λ =

∫
C

dΛ = 0. (2.4.8)

2.4.3 The proof of the Main Result

The proof makes use of Szenes-Vergne’s proof for (2,2) case.

It is easy to show4 that

∑
S⊂{1,2,...,n}

(−1)|S|TS is homologous to Tδ(q)

in the open set {y ∈ (C∗)r; yj 6= qjfor j = 1, ..., r}. The properness of ṽ by Lemma

2.4.3 then implies that
∑

(−1)|S|ZS is homologous to Zδ(q) in U(E) ∩ U(β, q). So

∫
∑

(−1)|S|ZS

Λ =

∫
Zδ(q)

Λ. (2.4.9)

Lemma 2.4.6 then implies that

∫
Zφ

Λ =

∫
hq

Λ. (2.4.10)

4See Proposition 6.3 of [20].

28



This together with (2.4.7) finishes the proof.

Remark: It is worth pointing out that in the (2,2) case, the summation formula

is further explained as a toric residue of the dual toric variety. This gives the (2,2)

formula the meaning of mirror symmetry. In the (0,2) case, an explanation of the

right hand side of this flavour is still lacking. In future work, we hope to describe

a set of dual data and explain the right hand side as a “(0,2) toric residue” of the

dual data, making the formula into a (0,2) mirror symmetry statement.
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Chapter 3

QSC for Higher Rank Bundles on

Toric Varieties

3.1 Introduction

In this chapter we show how to compute the quantum sheaf cohomology ring of

bundles that are deformations of the direct sum of the tangent bundle and copies

of the trivial bundles over a smooth complete toric variety.

We work over a smooth projective toric variety V . In [9], the authors show how

to compute the quantum sheaf relations of deformations of tangent bundles over

V . And in last chapter we computed the quantum correlators in that case. In this

chapter, we set out to understand the case when E∨ is a generic deformation of

T ⊕Om.
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3.2 T⊕O

3.2.1 Definition of E∨

In this section we give the definition of the bundle E∨ we are considering.

Let V be a smooth, complete, n dimensional toric variety. Recall the Toric Euler

sequence for the cotangent bundle of V is:

0→ Ω→ ⊕n+r
i=1O(−Di)

e // Pic(V)⊗O → 0. 1 (3.2.1)

We set Z = ⊕n+r
i=1O(−Di) andW = Pic(V)⊗C. To define E∨, we add a trivial bundle

O to Z, and deform the map (e, 0) : Z⊕O → W⊗O to ε = (ε′, ε0) : Z⊕O → W⊗O.

Now we define E∗ to be the kernel of ε if it is a vector bundle, i.e. E∗ fits in the

following short exact sequence:

0→ E∨ → Z ⊕O → W ⊗O → 0. (3.2.2)

Let i : Z → Z ⊕ O be the inclusion z 7→ (z, 0), then the following diagram of

1[8]p363 vp387
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exact sequences commutes:

0

��

0

��
Z ε′ //

i
��

W ⊗O

0 // E∗ // Z ⊕O ε //

��

W ⊗O //

��

0

O //

��

0

��
0 0

(3.2.3)

Thus snake lemma implies 0 → Kerε′ → E∗ → O → Cokerε′ → 0. We further

restrict ourselves to the case when Cokerε′ = 0. Thus we have

0

��

0

��
0 // E∨0 //

��

Z ε′ //

i
��

W ⊗O // 0

0 // E∗ //

��

Z ⊕O ε //

��

W ⊗O // 0

O

��

O

��
0 0

(3.2.4)

3.2.2 hp,p

We first quote a theorem from [9] regarding the vanishing of cohomology of a par-

ticular type of line bundles.
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Theorem 3.2.1. Let Di, i = 1, ..., k be toric invariant divisors of V .

(i) If ∩ki=1Di is nonempty, then Hj(O(−
∑k

i=1 Di)) = 0 for all j.

(ii) If K is a primitive collection, then

hk−1(O(−
∑k

i=1Di)) = 1 and Hj(O(−
∑k

i=1Di)) = 0 for j 6= k − 1.

Theorem 3.2.2. For a generic bundle E∨ fitting in the above diagram of short exact

sequences, we have

(i)For p ≤ n+1
2

, hp(V,∧pE∨) ∼= hp,pprim, where hp,pprim is the dimension of the primitive

cohomology of V ;

(ii) For p ≥ n+1
2

, Hp−1(V,∧pE∨) ∼= Hn+1−p(V,∧n+1−pE∨)∗;

(iii) Hq(V,∧pE∨) vanishes for all other (p, q).

Note that when n is odd and p = n+1
2

, all Hq(∧pE∨) vanishes since there is no

primitive cohomology of that dimension. Proof of the Theorem: (i) For any positive

integer p, the Koszul resolution of

0→ E∨0 → E∨ → O → 0 (3.2.5)

is

0 // ∧pE∨0 // ∧pE∨ dp // ∧p−1E∨ // . . . // O // 0, (3.2.6)

which is a long exact sequence. In particular, this shows that Ker dp = ∧pE∨0 , ∀p.
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Hence for each p, we have a short exact sequence

0→ ∧pE∨0 → ∧pE∨ → ∧p−1E∨0 → 0. (3.2.7)

This gives rise to a long exact sequence of cohomology:

. . . // H i(∧pE∨0 ) // H i(∧pE∨) // H i(∧p−1E∨0 )

// H i+1(∧pE∨0 ) // H i+1(∧pE∨) // H i+1(∧p−1E∨0 )

// H i+2(∧pE∨0 ) // H i+2(∧pE∨) // H i+2(∧p−1E∨0 )

(3.2.8)

Recall that E∨0 is a deformation of cotangent bundle. By semicontinuity, for a generic

E∨0 , hq(∧pE∨0 ) ≤ hq(∧pΩ).

Since our variety V is toric, hq(∧pΩ) vanishes when p 6= q.2 Hence Hq(∧pE∨0 ) = 0

when p 6= q. This further implies that Hp(∧pE∨0 ) ∼= Hp(∧pΩ). So we have a long

exact sequence:

0→ Hp−1(∧pE∨)→ Hp−1(∧p−1E∨0 ) δ // Hp(∧pE∨0 )→ Hp(∧pE∨)→ 0. (3.2.9)

When [δ] ∈ Ext1(O,Ω) is a Kaehler class, the map δ is conducted by a Lefschetz

operator, so it is injective when p ≤ n+1
2

and surjective when p ≥ n+1
2

, by the

Hard Lefschetz Theorem. Since injectivity and surjectivity are open conditions and

2See [8] Theorem 9.3.2 in the section Vanishing Theorems II.
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they are true for any Kaehler class, it is true generically. (To be precise: It is only

obviously true for Ω → E∨ → O, but then it is true by semicontinuity that for a

generic extension E∨0 → E∨ → O and p ≤ n+1
2

, Hp−1(∧pE∨) = 0, and similarly for

p ≥ n+1
2

. )

Part (ii) is just Serre duality.

3.2.3 Realistic check: Euler characteristic

Let’s check about the holomorphic Euler characteristic of ∧pE∨. To be precise, we

will check that the holomorphic Euler characteristic of ∧pE∨ agrees with that of

∧p(E∨0 ⊕O).

By (3.2.7), we know the holomorphic Euler characteristic χ(∧pE∨) = χ(∧pE∨0 ) +

χ(∧p−1E∨0 ). As for χ(∧p(E∨0 ⊕ O)), since ∧p(E∨0 ⊕ O) ∼= ∧pE∨0 ⊕ ∧p−1E∨0 , we have

χ(∧p(E∨0 ⊕O)) = χ(∧pE∨0 ) + χ(∧p−1E∨0 ). So indeed they are the same.

3.3 Description of Hp(V,∧pE∨)

We want to describe Hp(V,∧pE∨) for p < n+1
2

in term of a quotient of SpW .

We first look at the case p = 2.
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3.3.1 An example: p = 2

From the short exact sequence(3.2.2), we have the Koszul resolution:

0 // ∧2E∨ // ∧2(Z ⊕O) // (Z ⊕O)⊗W // S2W ⊗O // 0 (3.3.1)

This can be broken into two short exact sequences

0 // ∧2E∨ // ∧2(Z ⊕O) // K1
// 0 (3.3.2)

and

0 // K1
// (Z ⊕O)⊗W // S2W ⊗O // 0, (3.3.3)

from which we can write down the long exact sequences of cohomology:

0 // H0(∧2E∨) // H0(∧2(Z ⊕O)) // H0(K1)

// H1(∧2E∨) // H1(∧2(Z ⊕O)) // H1(K1)

// H2(∧2E∨) // H2(∧2(Z ⊕O)) // H2(K1)

// . . .

(3.3.4)
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and

0 // H0(K1) // H0((Z ⊕O)⊗W )) // H0(S2W ⊗O)

// H1(K1) // H1((Z ⊕O)⊗W )) // H1(S2W ⊗O)

// H2(K1) // H2((Z ⊕O)⊗W )) // H2(S2W ⊗O)

// . . .

(3.3.5)

Now we can do some direct computations:

By Theorem 3.2.2, H i(∧2E∨) = 0 for any i 6= 2.

For ∧2(Z⊕O) ∼= ∧2Z⊕Z: Recall Z = ⊕iO(−Di), Di’s are all the toric invariant

divisors. Hence by Theorem 3.2.1, for i 6= 1, H i(∧2(Z⊕O)) ∼= H i(Z)⊕H i(∧2Z) = 0,

and H1(∧2(Z ⊕O)) ∼= H1(∧2Z). We define P 1 = H1(∧2Z).

Now the long exact sequence (3.3.4) becomes

0→ H0(K1)→ 0→ P 1 → H1(K1) → H2(∧2E∨)→ 0 (3.3.6)

So we have H0(K1) = 0 and

H2(∧2E∨) ∼= H1(K1)/P 1. (3.3.7)

For (Z ⊕O)⊗W , H0((Z ⊕O)⊗W ) = W and H i((Z ⊕O)⊗W ) = 0 for i > 0.

For S2W ⊗O, H0(S2W ⊗O) = S2W , and H i(S2W ⊗O) = 0 for i > 0.
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Now the long exact sequence (3.3.5) becomes

0→ W → S2W → H1(K1)→ 0 (3.3.8)

Hence

H1(K1) ∼= S2W/W := S2W. (3.3.9)

Combine (3.3.7) and (3.3.9) we have

H2(∧2E∨) ∼= S2W/P 1. (3.3.10)

3.3.2 A second example: p = 3

For p = 3 < n+1
2

, we will brief repeat the calculations for p = 2 in order to fill in

the missing feature of the general Hp(∧pE∨).

We begin with the Koszul resolution:

0→ ∧3E∨ → ∧3(Z ⊕O)→ ∧2(Z ⊕O)⊗W → (Z ⊕O)⊗ S2W → S3W ⊗O → 0,

(3.3.11)

break it into short exact sequences

0 −→ ∧3E∨ −→ ∧3(Z ⊕O) −→ K2 −→ 0, (3.3.12)
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0 −→ K2 −→ ∧2(Z ⊕O)⊗W −→ K1 −→ 0, (3.3.13)

and

0 −→ K1 −→ (Z ⊕O)⊗ S2W −→ S3W ⊗O −→ 0. (3.3.14)

Similarly to the p = 2 case, we have the induced long exact sequences of cohomology,

and we can do direct computations to single out non-vanishing pieces of H i(∧3E∨),

H i(∧3(Z ⊕ O)), H i(∧2(Z ⊕ O) ⊗ W ), H i((Z ⊕ O) ⊗ S2W ), and H i(S3W ⊗ O).

Since no new feature appears to this stage and everything is parallel to p = 2

case via Theorem 3.2.2 and Theorem 3.2.1, we will simply summarize the possibly

non-vanishing homology in the following diagrams:

0 −→ ∧3E∨ −→ ∧3(Z ⊕O) −→ K2 −→ 0

H1 : 0 P 1 H1(K2)

H2 : 0 P 2 H2(K2)

H3 : H3(∧3E∨) 0 0

(3.3.15)

0 −→ K2 −→ ∧2(Z ⊕O)⊗W −→ K1 −→ 0

H0 : 0 0 H0(K1)

H1 : H1(K2) P 1 ⊗W H1(K1)

H2 : H2(K2) 0 0

(3.3.16)
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0 −→ K1 −→ (Z ⊕O)⊗ S2W −→ S3W ⊗O −→ 0

H0 : H0(K1) S2W S3W

H1 : H1(K1) 0 0

H2 : 0 0 0

(3.3.17)

Note that P 2 := H2(∧3Z).

Here comes the new feature: The map H1(K2) → H1(∧2(Z ⊕ O) ⊗ W ) is

injective. We will prove this later as a lemma. With this understood, we conclude

that

Ker(H1(K1)→ H2(K2)) ∼= Coker(H1(K2)→ P 1 ⊗W ) ∼=
P 1 ⊗W
P 1 ⊗ C

∼= P 1 ⊗W.

(3.3.18)

Hence we have a description of H3(∧3E∨) now:

H3(∧3E∨) ∼= H2(K2)/P 2 ∼=
H1(K1)

P 2 ⊕ P 1 ⊗W
∼=

S3W

P 2 ⊕ P 1 ⊗W
. (3.3.19)

Note that W = Ker(C→ W ).

Lemma 3.3.1. The map H1(K2)→ H1(∧2(Z ⊕O)⊗W ) is injective.

This will recur in the general p case.

40



Proof: The definition of K2 fit it into the following commutative diagram:

K2

∧3(Z ⊕O) ∧2(Z ⊕O)⊗W

''

ε //

i2

77

(3.3.20)

where ε : ∧3(Z ⊕ O) → ∧2(Z ⊕ O) ⊗ W , as a map in the Koszul resolution, is

induced by the map ε : Z ⊕O → W ⊗O.

From (3.3.15) we see that H1(K2) ∼= H1(∧3(Z ⊕ O)) ∼= P 1. So to proof the

injectivity of i2∗ : H1(K2) → H1((∧2(Z ⊕ O) ⊗ W ) is equivalent to proof the

injectivity of ε∗ : H1(∧3(Z ⊕ O)) → H1(∧2(Z ⊕ O) ⊗ W ). By Theorem 3.2.1,

H1(∧3(Z ⊕O)) ∼= H1(∧2Z) is generated by {sI |I ∈ P2}, where P2 is the set of all

length-2 primitive collections of toric invariant divisors. ε∗(sI) = sI ⊗ w0, where

w0 = ε(0, 1) = ε0(1) ∈ W .

Say ε∗(
∑

I cIsI) = 0, where cI ∈ C. Then
∑

I cIsI ⊗ w0 = (
∑

I cIsI) ⊗ w0 = 0.

Thus
∑

I cIsI = 03, which means ε∗ is injective.

3.3.3 General Description of Hp(V,∧pE∨)

Theorem 3.3.2. Let E∨ be a bundle as defined above, i.e. fitting into Diagram

3.2.4 of short exact sequences, and be generic in the sense that Theorem 3.2.2’s

3We are making use our assumption that E∨ does not split, which means w0 6= 0.
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conclusions hold. Then for p < n+1
2

,

Hp(V,∧pE∨) ∼=
SpW

⊕pj=2P
j−1 ⊗ Sp−jW

, (3.3.21)

where SpW = Coker(Sp−1W → SpW ), and the map Sp−1W → SpW is induced by

ε0 = ε|O : O → W ⊗O, and P j−1 := Hj−1(∧jZ).

Proof:

From the short exact sequence(3.2.2) we build the Koszul resolution:

0→ ∧pE∨ → ∧p(Z ⊕O)→ . . .→ ∧j(Z ⊕O)⊗ Sp−jW → O× SpW → 0 (3.3.22)

and further break it into short exact sequences

0→ Kj → (∧jZ ⊕ ∧j−1Z)⊗ Sp−jW → Kj−1 → 0, (3.3.23)

for j = 0, . . . , p. Note that Kp = ∧pE∨, K0 = SpW ⊗O. Now we study the induced
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long exact sequences in cohomology:

. . . // Hj−3(Kj) // Hj−3((∧jZ ⊕ ∧j−1Z)⊗ Sp−jW ) // Hj−3(Kj−1)

// Hj−2(Kj) // Hj−2((∧jZ ⊕ ∧j−1Z)⊗ Sp−jW ) // Hj−2(Kj−1)

// Hj−1(Kj) // Hj−1((∧jZ ⊕ ∧j−1Z)⊗ Sp−jW ) // Hj−1(Kj−1)

// Hj(Kj) // . . .

(3.3.24)

First, by Theorem 3.2.1, H i((∧jZ⊕∧j−1Z)⊗Sp−jW ) ∼= H i(∧jZ⊕∧j−1Z)⊗Sp−jW

vanishes for all i except i = j − 2 and i = j − 1.

Then we see Hj−3(Kj−1) ↪→ Hj−2(Kj) ↪→ . . . ↪→ Hp−2(Kp) = 0, Hence

Hj−3(Kj−1) = 0.

Now we can list all possible non-vanishing terms

0→ Kj → (∧jZ ⊕ ∧j−1Z)⊗ Sp−jW → Kj−1 → 0.

Hj−3 : 0 0 0

Hj−2 : 0 P j−2 ⊗ Sp−jW Hj−2(Kj−1)

Hj−1 : Hj−1(Kj) P j−1 ⊗ Sp−jW Hj−1(Kj−1)

Hj : Hj(Kj) 0 0

(3.3.25)
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and rewrite the long exact sequence 3.3.24 as

0 // P j−2 ⊗ Sp−j
∼= // Hj−2(Kj−1) 0 // Hj−1(Kj)

P j−1 ⊗ Sp−jW // Hj−1(Kj−1) δ // Hj(Kj) // 0,
ε∗ //

(3.3.26)

where, as before, P j := Hj(∧j+1(Z)).

Next, we claim the map Hj−2(Kj−1)→ Hj−1(Kj) is always the zero map. (This

will be proved as Lemma 3.3.3 below.) Hence Hj−2(Kj−1) ∼= P j−2 ⊗ Sp−jW , and

Hj−1(Kj) ↪→ P j−1 ⊗ Sp−jW . Hence

Coker ε∗ ∼=
P j−1 ⊗ Sp−jW
Hj−1(Kj)

∼=
P j−1 ⊗ Sp−jW
P j−1 ⊗ Sp−j−1W

∼= P j−1 ⊗ Sp−jW. (3.3.27)

This will give us the desired description:

Hj(Kj) ∼=
Hj−1(Kj−1)

Ker δ
∼=
Hj−1(Kj−1)

Coker ε∗
∼=

Hj−1(Kj−1)

P j−1 ⊗ Sp−jW
. (3.3.28)

Repeat this for all j, we get

Hp(V,∧pE∨) ∼=
SpW

⊕pj=2P
j−1 ⊗ Sp−jW

,

which is exactly Equation (3.3.21).

Lemma 3.3.3. The map Hj−2(Kj−1)→ Hj−1(Kj) is always the zero map. Hence
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Hj−2(Kj−1) ∼= P j−2 ⊗ Sp−jW , and Hj−1(Kj) ↪→ P j−1 ⊗ Sp−jW .

Proof: By induction. When j = p, we know that Hp−1(Kp) = 0. So the lemma

is true.

Assume the lemma is true for j + 1, then

Hj−1(Kj) ∼= Hj−1((∧jZ ⊕ ∧j−1Z)⊗ Sp−jW ) ∼= P j−1 ⊗ Sp−j−1W. (3.3.29)

To show it is true for j, it suffices to show that the map i2 : Hj−1(Kj) → P j−1 ⊗

Sp−jW is injective. Note that we have the commutative diagram

Kj−1

(∧jZ ⊕ ∧j−1Z)⊗ Sp−jW (∧j−1Z ⊕ ∧j−2Z)⊗ Sp−j+1W

**

ε //
i2

44

(3.3.30)

from the definition of Kj−1. By (3.3.29), it suffices to show that ε∗ : Hj−1((∧jZ ⊕

∧j−1Z)⊗ Sp−jW )→ Hj−1((∧j−1Z ⊕ ∧j−2Z)⊗ Sp−j+1W ) is injective.

We take a close look at the map ε∗: by Theorem 3.2.1, the domain, P j−1 ⊗

Sp−j−1W is generated by {sI ⊗wJ |I ∈ Pj, wJ ∈ Sp−j−1W , where Pj is the set of all

length-2 primitive collections of toric invariant divisors. ε∗(sI⊗wJ) = sI⊗w0⊗swJ ,

where the ‘s’ in ⊗s indicates a symmetric tensor product.

Now we can check the injectivity easily: say ε∗(
∑

I cIsI ⊗wI) = 0 (note that we

have summed up the J indices for fix I), where cI ∈ C. Then
∑

I cIsI ⊗wI ⊗sw0 =

(
∑

I cIsI⊗wI)⊗sw0 = 0. Thus
∑

I cIsI⊗wI = 04, which means ε∗ is injective.

4We are making use our assumption that E∨ does not split, which means w0 6= 0.
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3.4 The Ring Structure

By Theorem 3.2.2, the dimension of the possible non-vanishing ones of Hq(∧pE∨)

are: (Let hp,q = dimHq(∧pE∨))

n = 2m n = 2m+ 1

h0,0

h1,1

. . .
hm,m hm+1,m

hm+2,m+1

. . .
hn+1,n

h0,0

h1,1

. . .
hm,m

hm+2,m+1

hm+3,m+2

. . .
hn+1,n

(3.4.1)

The two diagrams are centrosymmetric by the duality part of Theorem 3.2.2.

So the cup-length is at most n+2
2

.

We want to understand the multiplicative structure of H∗(∧∗E∨).

First we introduce the following notion: For a ring R (commutative with 1), let

the double of R be a ring

R(2) = R⊕R∗, (3.4.2)

u v = u v or v(u) or 0 We then define R0 =
⊕bn+1

2
c

p=0 Hp(∧pE∨), and R = R
(2)
0 .

It is clear that the cohomology ring is R and it only remains to describe R0,

which is done by the following theorem:

Theorem 3.4.1. Under the isomorphism in the description (3.3.21) of Hp(∧pE∨),
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the cup product Hp(∧pE∨) × Hq(∧qE∨) → Hp+q(∧p+qE∨) is just the multiplication

of the symmetric algebra.

Proof: Similar to the T case.

3.5 Further questions

There are a few questions remaining: First, we only get results for generic deforma-

tions. We can ask further whether this is true for all deformations. Next, we need

to do the quantum part. Also, we believe similar results on generic deformations of

T ⊕Os, for s ≤ r = rank(Pic(V )). (For larger s, E∨ splits.)
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Chapter 4

Further Discussions

4.1 QSC for complete intersections in toric vari-

eties

We want to extend the theory of quantum sheaf cohomology to omalous bundles

over complete intersections in toric varieties. These include many Calabi-Yaus that

are of interest for string compactifications.

The first case is when X ⊂ V is a hypersurface. The tangent bundle of X is the

cohomology of the following monad sequence, i.e. a (non-exact) complex of vector

bundles, each a direct sum of line bundles:

0→ OX ⊗W∨ → ⊕OX(Di)→ NX/V → 0, (4.1.1)
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where NX/V is the normal bundle.

The cohomology of a small deformation of this sequence will be an omalous

bundle E on X. The authors of [9] conjecture that the “toric part” of the quantum

sheaf cohomology ring structure of E could be described similarly to the toric variety

case.

We are currently working on this conjecture. This should enable us to compute

quantum correlators and to prove the (0,2) quantum restriction conjecture in [18].

The argument will presumably generalize those given in [4][12][20] for the (2,2) case

when E is the tangent bundle. Another consistency check arises from the observation

that certain toric varieties can be realized as complete intersections in others; in

such cases, the quantum cohomology computed here must reproduce the answer

obtained in Chapter 2.

4.2 QSC for Grassmannians

The theory of quantum cohomology on Grassmannians has been studied by many

authors ([3, 19]). Accordingly, the quantum sheaf cohomology analogy will be

interesting to both mathematicians and physicists. An ongoing project [10] studies

this problem, aiming to generalize the quantum cohomology ring

QH∗X = Z[c1, ..., cl, q]/(σk+1, ..., σn−1, σn + (−1)lq) (4.2.1)
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of X = Gr(k, n) in [3] to omalous bundles.
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