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NAHM’S EQUATIONS AND ROOT SYSTEMS
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Abstract A method of deriving solutions to Nahm’s equations based
on root structure of simple Lie algebras is given. As an illustration
of this method the recently found solutions to Nahm’s equations with
tetrahedral and octahedral symmetries are shown to correspond to A2

and A3 root systems.

1. It is well known [7] [4] that the N -monopole solutions of the self-dual SU(2)
Yang-Mills theory are equivalent to the Nahm data. The latter consist of mero-
morphic functions T1, T2, T3 defined on the interval [0, 2], regular on (0, 2) and with
values in N ×N matrices. The Ti satisfy Nahm’s equations

dTk(s)

ds
=

1

2
ǫijk[Ti(s), Tj(s)], (1)

and have simple poles at 0 and 2, the residues of which form an irreducible N -
dimensional representation of su(2). Furthermore it is required that the Ti satisfy

the reality conditions which, in a suitable basis, read: T †
i (s) = −Ti(s) and Ti(s) =

T t
i (2 − s).
Recently, solutions to the Nahm equations with tetrahedral, octahedral and

dodecahedral symmetries were found in [5] [6]. These solutions were derived by
requiring that the monopole spectral curve defined by the equation

P (η, ζ) ≡ det(η + i(T1 + iT2)− 2iT3ζ − i(T1 − iT2)ζ
2) = 0

has the regular solid symmetry. On the other hand it has been known for some
time [8] [9] that Nahm’s equations are closely related to the classical Yang-Baxter
equation which plays an important role in the theory of integrable models. Solu-
tions to the classical Yang-Baxter equation can be classified using the structure
of root spaces of simple Lie algebras [1]. More recently another class of equations
resembling Nahm’s equations appeared in connection with integrable models of
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Calogero type. These are integrability relations of the elliptic Dunkl differential
operators [3]. Classification of solutions to these equations given in [2] involves
Weyl groups of classical Lie algebras or, more generally, finite Coxeter groups. All
these recent developments in understanding equations appearing naturally in the
theory of integrable models strongly suggests that the proper approach for solving
Nahm’s equations should involve root systems of simple Lie algebras. In this paper
we propose an ansatz for solving Nahm’s equations based on the root systems of An

type and we show that the tetrahedral and octahedral solutions of [5] fit into the
scheme. Starting with a few assumptions we derive their basic consequences con-
centrating on the Lie-algebraic interpretation of existing solutions. New solutions
to Nahm’s equations together with detailed proofs will be presented elsewhere.

2. Recall that any simple Lie algebra L of rank r corresponding to the root
system R is generated by Hµ, µ = 1, . . . , r and Eα, α ∈ R which satisfy the
following relations

[Hµ, Hν ] = 0, [Hµ, Eα] = αµEα,

[Eα, Eβ ] = Nα,βEα+β , (if α+ β ∈ R), [Eα, E−α] =

r
∑

µ=1

αµHµ,

where αµ, Nα,β are complex numbers. Since we are interested in solutions of a
matrix equation we take any N -dimensional representation of L chosen so that
E†

α = E−α and H†
µ = Hµ. It is useful to represent Nahm’s data as a three-

component vector field T(s) = (T1(s), T2(s), T3(s)). Then Nahm’s equations take
the form d

dsT(s) = T(s) ∧ T(s). We search for solutions of this equation in the
form

T(s) =
∑

α∈R+

(eα(s)Eα + e−α(s)E−α), (2)

where R+ is a set of positive roots and eα(s) are three-dimensional vector fields.
The reality condition for the Nahm’s data T imply that e−α(s) = −e

∗
α(s) while (1)

becomes
deβ(s)

ds
=

1

2

∑

α∈R

Nα,β−αeα(s) ∧ eβ−α(s) (3)

with a constraint

∑

α∈R+

αµeα(s) ∧ e−α(s) = 0, µ = 1, . . . , r. (4)

We are looking for the most symmetric configuration of monopoles, i.e., we require
that any exchange of at least two monopoles does not change the configuration of
the system. Motivated by the examples discussed in section 3, we find that the
maximal symmetry requirement can be expressed as two conditions satisfied for all
positive roots α

eα(s) · e∗α(s) = f(s) (5)
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and
eα(s) ∧ e

∗
α(s) = ig(s)vα (6)

where f(s) and g(s) are real functions. We assume that the function g(s) does not
depend on the phases φαi, i = 1, 2, 3, of the components of eα(s). Equations (6)
combined with (4) lead to the following condition for the vectors vα,

∑

α∈R+

αµvα = 0, µ = 1, 2, . . . , r. (7)

Since the vectors vα are not linearly independent we impose the following irre-
ducibility and normalisation condition. The vector vα has a norm 1 if there are
no vectors parallel to vα among all the other vβ . Otherwise we set vα to zero.
Furthermore if vα = 0 for all α in a subset P+ of R+ and for β ∈ R+ − P+,
eβ(s) ∧ e

∗
β(s) 6= 0, then eα(s) = 0 for α ∈ P+. This last condition prevents a

reduction of the solution to Nahm’s equations corresponding to a root system of a
Lie algebra of rank r to the solution corresponding to a Lie algebra of lower rank.

Combining (5) and (6) one obtains

eα(s) · eα(s) = |f(s)2 − g2(s)|1/2eiθα(s),

for some functions θα. On the other hand, taking the derivative of (5) and using
(3) one arrives at the following constraints

∑

α∈R+

Nα,β−α(eα(s) ∧ eβ−α(s)) · e∗α+β(s) + c.c =
df(s)

ds
(8)

In the A2 case, this constraint is fulfilled automatically. In the A3 case, the con-
straints (8) are solved by imposing that Nα,β(eα(s) ∧ eβ(s)) · e∗α+β(s) are real and
equal to each other for all α, β ∈ R. This gives

df(s)

ds
= 4Nα,β(eα(s) ∧ eβ(s)) · e∗α+β(s), (9)

3. We now use the above ansatz to derive solutions to Nahm’s equations in the
A2 and A3 cases. In the A2 case equations (3) read

deα1
(s)

ds
= −e

∗
α2
(s) ∧ eα3

(s),
deα2

(s)

ds
= e

∗
α1
(s) ∧ eα3

(s),

deα3
(s)

ds
= −eα1

(s) ∧ eα2
(s), (10)

where α1, α2 are simple positive roots and α3 = α1+α2. The irreducibility condition
together with (7) imply that vα1

= vα2
= vα3

= 0. This in turn determines the
choice of the components of eαi

(s) to be eαij = ejδij and reduces equations (10) to

de1(s)

ds
= −e∗2(s)e3(s),

de2(s)

ds
= −e∗1(s)e3(s),

de3(s)

ds
= −e1(s)e2(s). (11)
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The system of equations (11) can easily be solved using the technique described in
[2]. One finds

f(s) = P(u), u = ζ1/3s+ s0,

where ζ and s0 are constants and P is the Weierstrass elliptic function given as a
solution of the equation P ′(u)2 = 4(P(u)3 − 1). Setting ei(s) = f(s)1/2eiθi(s) one
finds that θ2 = θ1 + c1, θ3 = −θ1 + c2, and

tan

(

1

2
(3θ1(s) + c1 − c2)

)

= ±c3 exp(3

∫

f(s)1/2ds), (12)

where c1, c2, c3 are constants of integration. From the point of view of the monopole
dynamics a spectral curve is the gauge invariant object, i.e., different Nahm’s data
that correspond to the same spectral curve describe the same monopole. It can
be easily checked that the spectral curve in the A2 case does not depend on the
functions θi. Therefore there is a freedom of fixing constants ci and the function θ1
restricted by (12). It is convenient to choose c1 = c2 = 0 and tan(θ1(s)) = 2/P ′(u).
This choice leads to

e1(s) = e2(s) =
P ′(u)

2P(u)
+ i

1

P(u)
, e3(s) = −e∗1(s). (13)

In the three-dimensional representation of A2 given by

Eα1
=





0 1 0
0 0 0
0 0 0



 , Eα2
=





0 0 0
0 0 1
0 0 0



 , Eα3
=





0 0 1
0 0 0
0 0 0



 ,

the Nahm data read

T =









0 e1 0
−e∗1 0 0
0 0 0



 ,





0 0 0
0 0 e1
0 −e∗1 0



 ,





0 0 −e∗1
0 0 0
e1 0 0







 .

With e1 given by (13) this is precisely the solution to Nahm’s equations with
tetrahedral symmetry found in [5].

As a second example we take the root system of A3. There are six positive roots
αi, i = 1, . . . 6 which we choose so that α1, α2, α3 are simple roots and α4 = α1+α2,
α5 = α2 + α3, and α6 = α1 + α2 + α3. Nahm’s equations (3) read now

e
′
α1

= −eα4
∧ e

∗
α2

− eα6
∧ e

∗
α5
, e

′
α2

= eα4
∧ e

∗
α1

− eα5
∧ e

∗
α3
,

e
′
α3

= eα5
∧ eα2

+ eα6
∧ e

∗
α4
, e

′
α4

= eα1
∧ eα2

− eα6
∧ e

∗
α3
, (14)

e
′
α5

= eα2
∧ eα3

+ eα6
∧ e

∗
α1
, e

′
α6

= eα1
∧ eα5

− eα3
∧ eα4

.

The irreducibility conditions and the constraints (7) can be easily solved to give

vα1
=

1√
2
(0, 1, 1), vα2

=
1√
2
(1, 0, 1), vα3

=
1√
2
(0,−1, 1),
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vα4
=

1√
2
(−1,−1, 0), vα5

=
1√
2
(−1, 1, 0), vα6

=
1√
2
(1, 0,−1).

These then are reflected by the relations between the components of vector fields
eαi

, namely eα12 = −eα13, eα21 = −eα23, eα32 = eα33, eα41 = −eα42, eα51 = eα52,
eα61 = eα63. Therefore there are at most two different moduli of the components
in each eαi

. Let hαi,1 be a modulus of the component of eαi
which occurs once and

hαi,2 be a modulus of the component of eαi
which occurs twice. The assumption

that g(s) does not depend on the phases of eαj implies that for each α there is
kα ∈ Z such that φα,i − φα,j = (2kα + 1)π/2, where eαi = hα,1 exp(iφα,i) and
eαj = hα,2 exp(iφα,j). Choosing g(s) to be positive one finds

f(s) = hα,1(s)
2 + 2hα,2(s)

2, g(s) =
√
8hα,1(s)hα,2(s),

for all positive roots α. Therefore there exist functions u(s) and v(s), independent
of α, such that hα1 = u and hα2 = v.

Next we take a closer look at the structure of phases φα,i. From (9) it follows
that φα,i + φβ,i = φα+β,i + kα+βπ and that kα6

= kα4
− 1. Furthermore from (14)

one deduces that the phases φα,i are independent of s. Using the gauge freedom
we may choose kα6

= 0. This choice reduces the system of equations (14) to the
two-dimensional problem

dv

ds
= 2uv,

du

ds
= 2(v2 − u2), (15)

a solution of which is given by

v(s) = c1/4
P(t) + i

P(t)− i
, u(s) =

1

2

d

ds
log v(s), (16)

where t = ±
√
2c1/4eiπ/4s, c = v2(v2 − 2u2) is the integration constant and P is the

Weierstrass elliptic function given by the equation P ′(t)2 = P(t)(P(t)2 − 1). The
solution (16) is equivalent to the octahedral solution to Nahm’s equations found in
[5].

4. In this brief paper we have described a method of deriving symmetric Nahm’s
data from the root systems of simple Lie algebras of An type. We have shown that
the tetrahedral and octahedral monopole configurations correspond to root systems
of A2 and A3 type. For the sake of brevity and clarity we skipped all the proofs
and detailed derivations of the results. We intend to present them in a forthcoming
full-size article. We also intend to give new solutions to Nahm’s equations as well
as proofs of non-existence of solutions for certain root systems (such as A4 for
example). Finally we would like to mention that each solution to Nahm’s equation
obtained in the way described in this paper gives rise to an integrable model of
particles interacting on the line. A detailed description and solutions of these
models are currently being investigated.
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