
Chapter 6

The Proximal Operator

Underlying Space: In this chapter E is a Euclidean space, meaning a finite
dimensional space endowed with an inner product 〈·, ·〉 and the Euclidean norm
‖ · ‖ =

√
〈·, ·〉.

This chapter is devoted to the study of the proximal mapping, which will be fun-
damental in many of the algorithms that will be explored later in the book. The
operator and its properties were first studied by Moreau, and hence it is also referred
to as “Moreau’s proximal mapping.”

6.1 Definition, Existence, and Uniqueness

Definition 6.1 (proximal mapping). Given a function f : E → (−∞,∞], the
proximal mapping of f is the operator given by

proxf (x) = argminu∈E

{
f(u) +

1

2
‖u− x‖2

}
for any x ∈ E.

We will often use the term “prox” instead of “proximal.” The mapping proxf
takes a vector x ∈ E and maps it into a subset of E, which might be empty, a
singleton, or a set with multiple vectors as the following example illustrates.

Example 6.2. Consider the following three functions from R to R:

g1(x) ≡ 0,

g2(x) =

⎧⎪⎨⎪⎩ 0, x 
= 0,

−λ, x = 0,

g3(x) =

⎧⎪⎨⎪⎩ 0, x 
= 0,

λ, x = 0,
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Figure 6.1. The left and right images are the plots of the functions g2 and
g3, respectively, with λ = 0.5 from Example 6.2.

where λ > 0 is a given constant. The plots of the noncontinuous functions g2 and
g3 are given in Figure 6.1. The prox of g1 can computed as follows:

proxg1(x) = argminu∈R

{
g1(u) +

1

2
(u− x)2

}
= argminu∈R

{
1

2
(u− x)2

}
= {x}.

To compute the prox of g2, note that proxg2(x) = argminu∈Rg̃2(u, x), where

g̃2(u, x) ≡ g2(u) +
1

2
(u− x)2 =

⎧⎪⎨⎪⎩ −λ+ x2

2 , u = 0,

1
2 (u − x)2, u 
= 0.

For x 
= 0, the minimum of 1
2 (u − x)2 over R \ {0} is attained at u = x(
= 0) with

a minimal value of 0. Therefore, in this case, if 0 > −λ + x2

2 , then the unique

minimizer of g̃2(·, x) is u = 0, and if 0 < −λ + x2

2 , then u = x is the unique

minimizer of g̃2(·, x); finally, if 0 = −λ + x2

2 , then 0 and x are the two minimizers
g̃2(·, x). When x = 0, the minimizer of g̃2(·, 0) is u = 0. To conclude,

proxg2(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{0}, |x| <

√
2λ,

{x}, |x| >
√
2λ,

{0, x}, |x| =
√
2λ.

Similar arguments show that

proxg3(x) =

⎧⎪⎨⎪⎩ {x}, x 
= 0,

∅, x = 0.

The next theorem, called the first prox theorem, states that if f is proper closed
and convex, then proxf (x) is always a singleton, meaning that the prox exists and
is unique. This is the reason why in the last example only g1, which was proper
closed and convex, had a unique prox at any point.

Copyright © 2017 Society for Industrial and Applied Mathematics



6.2. First Set of Examples of Proximal Mappings 131

Theorem 6.3 (first prox theorem). Let f : E → (−∞,∞] be a proper closed
and convex function. Then proxf (x) is a singleton for any x ∈ E.

Proof. For any x ∈ E,

proxf (x) = argminu∈Ef̃(u,x), (6.1)

where f̃(u,x) ≡ f(u) + 1
2‖u − x‖2. The function f̃(·,x) is a closed and strongly

convex function as a sum of the closed and strongly convex function 1
2‖ · −x‖2

and the closed and convex function f (see Lemma 5.20 and Theorem 2.7(b)). The
properness of f̃(·,x) immediately follows from the properness of f . Therefore, by
Theorem 5.25(a), there exists a unique minimizer to the problem in (6.1).

When f is proper closed and convex, the last result shows that proxf (x) is
a singleton for any x ∈ E. In these cases, which will constitute the vast majority
of cases that will be discussed in this chapter, we will treat proxf as a single-
valued mapping from E to E, meaning that we will write proxf (x) = y and not
proxf (x) = {y}.

If we relax the assumptions in the first prox theorem and only require closed-
ness of the function, then it is possible to show under some coerciveness assumptions
that proxf (x) is never an empty set.

Theorem 6.4 (nonemptiness of the prox under closedness and coercive-
ness). Let f : E → (−∞,∞] be a proper closed function, and assume that the
following condition is satisfied:

the function u �→ f(u) +
1

2
‖u− x‖2 is coercive for any x ∈ E. (6.2)

Then proxf (x) is nonempty for any x ∈ E.

Proof. For any x ∈ E, the proper function h(u) ≡ f(u) + 1
2‖u − x‖2 is closed

as a sum of two closed functions. Since by the premise of the theorem it is also
coercive, it follows by Theorem 2.14 (with S = E) that proxf (x), which consists of
the minimizers of h, is nonempty.

Example 6.2 actually gave an illustration of Theorem 6.4 since although both
g2 and g3 satisfy the coercivity assumption (6.2), only g2 was closed, and thus the
fact that proxg3(x) was empty for a certain value of x, as opposed to proxg2(x),
which was never empty, is not surprising.

6.2 First Set of Examples of Proximal Mappings
Equipped just with the definition of the proximal mapping, we will now compute
the proximal mapping of several proper closed and convex functions.
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132 Chapter 6. The Proximal Operator

6.2.1 Constant

If f ≡ c for some c ∈ R, then

proxf (x) = argminu∈E

{
c+

1

2
‖u− x‖2

}
= x.

Therefore,

proxf (x) = x

is the identity mapping.

6.2.2 Affine

Let f(x) = 〈a,x〉 + b, where a ∈ E and b ∈ R. Then

proxf (x) = argminu∈E

{
〈a,u〉+ b+

1

2
‖u− x‖2

}
= argminu∈E

{
〈a,x〉 + b− 1

2
‖a‖2 + 1

2
‖u− (x− a)‖2

}
= x− a.

Therefore,

proxf (x) = x− a

is a translation mapping.

6.2.3 Convex Quadratic

Let f : Rn → R be given by f(x) = 1
2x

TAx+bTx+ c, where A ∈ Sn+,b ∈ Rn, and
c ∈ R. The vector proxf (x) is the minimizer of the problem

min
u∈E

{
1

2
uTAu+ bTu+ c+

1

2
‖u− x‖2

}
.

The optimal solution of the last problem is attained when the gradient of the ob-
jective function vanishes:

Au+ b+ u− x = 0,

that is, when

(A+ I)u = x− b,

and hence

proxf (x) = (A+ I)−1(x− b).
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6.2. First Set of Examples of Proximal Mappings 133

6.2.4 One-Dimensional Examples

The following lemma contains several prox computations of one-dimensional func-
tions.

Lemma 6.5. The following are pairs of proper closed and convex functions and
their prox mappings:

g1(x) =

⎧⎪⎨⎪⎩ μx, x ≥ 0,

∞, x < 0,
proxg1(x) = [x− μ]+,

g2(x) = λ|x|, proxg2(x) = [|x| − λ]+sgn(x),

g3(x) =

⎧⎪⎨⎪⎩ λx3, x ≥ 0,

∞, x < 0,
proxg3(x) =

−1+
√

1+12λ[x]+
6λ ,

g4(x) =

⎧⎪⎨⎪⎩ −λ log x, x > 0,

∞, x ≤ 0,
proxg4(x) =

x+
√
x2+4λ
2 ,

g5(x) = δ[0,η]∩R(x), proxg5(x) = min{max{x, 0}, η},

where λ ∈ R+, η ∈ [0,∞], and μ ∈ R.

Proof. The proofs repeatedly use the following trivial arguments: (i) if f ′(u) = 0
for a convex function f , then u must be one of its minimizers; (ii) if a minimizer of
a convex function exists and is not attained at any point of differentiability, then it
must be attained at a point of nondifferentiability.

[prox of g1] By definition, proxg1(x) is the minimizer of the function

f(u) =

⎧⎪⎨⎪⎩ ∞, u < 0,

f1(u), u ≥ 0,

where f1(u) = μu+ 1
2 (u−x)2. First note that f ′1(u) = 0 if and only if u = x−μ. If

x > μ, then f ′(x−μ) = f ′1(x−μ) = 0, implying that in this case proxg1(x) = x−μ.
Otherwise, if x ≤ μ, the minimizer of f is not attained at a point of differentiability,
meaning that it has to be attained at 0, which is the only point of nondifferentiability
in the domain of f , so that proxg1(x) = 0.

[prox of g2] proxg2(x) is the minimizer of the function

h(u) =

⎧⎪⎨⎪⎩ h1(u) ≡ λu+ 1
2 (u− x)2, u > 0,

h2(u) ≡ −λu+ 1
2 (u− x)2, u ≤ 0.

If the minimizer is attained at u > 0, then 0 = h′1(u) = λ + u − x, meaning that
u = x− λ. Therefore, if x > λ, then proxg2(x) = x− λ. The same argument shows
that if x < −λ, then proxg2(x) = x+λ. If |x| ≤ λ, then proxg2(x) must be the only
point of nondifferentiability of h, namely, 0.
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134 Chapter 6. The Proximal Operator

[prox of g3] proxg3(x) is the minimizer of the function

s(u) =

⎧⎪⎨⎪⎩ λu3 + 1
2 (u− x)2, u ≥ 0,

∞, u < 0.

If the minimizer is positive, then ũ = proxg3(x) satisfies s
′(ũ) = 0, that is,

3λũ2 + ũ− x = 0.

The above equation has a positive root if and only if x > 0, and in this case the

(unique) positive root is proxg3(x) = ũ = −1+
√
1+12λx
6λ . If x ≤ 0, the minimizer of s

is attained at the only point of nondifferentiability of s in its domain, that is, at 0.
[prox of g4] ũ = proxg4(x) is a minimizer over R++ of

t(u) = −λ logu+
1

2
(u− x)2,

which is determined by the condition that the derivative vanishes:

−λ
ũ
+ (ũ− x) = 0,

that is,

ũ2 − ũx− λ = 0.

Therefore (taking the positive root),

proxg4(x) = ũ =
x+

√
x2 + 4λ

2
.

[prox of g5] We will first assume that η < ∞. Note that ũ = proxg5(x) is the
minimizer of

w(u) =
1

2
(u− x)2

over [0, η]. The minimizer of w over R is u = x. Therefore, if 0 ≤ x ≤ η, then
ũ = x. If x < 0, then w is increasing over [0, η], and hence ũ = 0. Finally, if x > η,
then w is decreasing over [0, η], and thus ũ = η. To conclude,

proxg5(x) = ũ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x, 0 ≤ x ≤ η,

0, x < 0,

η, x > η,

= min{max{x, 0}, η}.

For η = ∞, g5(x) = δ[0,∞)(x), and in this case, g5 is identical to g1 with μ = 0,
implying that proxg5(x) = [x]+, which can also be written as

proxg5(x) = min{max{x, 0},∞}.
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6.3. Prox Calculus Rules 135

6.3 Prox Calculus Rules
In this section we gather several important results on the calculus of proximal
mappings. Note that some of the results do not require any convexity/closedness
assumptions.

Theorem 6.6 (prox of separable functions). Suppose that f : E1 × E2 × · · · ×
Em → (−∞,∞] is given by

f(x1,x2, . . . ,xm) =

m∑
i=1

fi(xi) for any xi ∈ Ei, i = 1, 2, . . . ,m.

Then for any x1 ∈ E1,x2 ∈ E2, . . . ,xm ∈ Em,

proxf (x1,x2, . . . ,xm) = proxf1(x1)× proxf2(x2)× · · · × proxfm(xm). (6.3)

Proof. Formula (6.3) is a result of the following chain of equalities:

proxf (x1,x2, . . . ,xm) = argminy1,y2,...,ym

m∑
i=1

[
1

2
‖yi − xi‖2 + fi(yi)

]

=

m∏
i=1

argminyi

[
1

2
‖yi − xi‖2 + fi(yi)

]

=

m∏
i=1

proxfi(xi).

Remark 6.7. If f : Rn → R is proper closed convex and separable,

f(x) =

n∑
i=1

fi(xi),

with fi being proper closed and convex univariate functions, then the result of The-
orem 6.6 can be rewritten as

proxf (x) = (proxfi(xi))
n
i=1.

Example 6.8 (l1-norm). Suppose that g : Rn → R is given by g(x) = λ‖x‖1,
where λ > 0. Then

g(x) =

n∑
i=1

ϕ(xi), (6.4)

where ϕ(t) = λ|t|. By Lemma 6.5 (computation of proxg2), proxϕ(s) = Tλ(s), where
Tλ is defined as

Tλ(y) = [|y| − λ]+sgn(y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y − λ, y ≥ λ,

0, |y| < λ,

y + λ, y ≤ −λ.
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136 Chapter 6. The Proximal Operator

Figure 6.2. The soft thresholding function T1.

The function Tλ is called the soft thresholding function, and its description is given
in Figure 6.2.

By Theorem 6.6,
proxg(x) = (Tλ(xj))nj=1.

We will expand the definition of the soft thresholding function for vectors by ap-
plying it componentwise, that is, for any x ∈ Rn,

Tλ(x) ≡ (Tλ(xj))nj=1 = [|x| − λe]+ � sgn(x).

In this notation,

proxg(x) = Tλ(x).

Example 6.9 (negative sum of logs). Let g : Rn → (−∞,∞] be given by

g(x) =

⎧⎪⎨⎪⎩ −λ
∑n
j=1 log xj , x > 0,

∞ else,

where λ > 0. Then g(x) =
∑n
i=1 ϕ(xi), where

ϕ(t) =

⎧⎪⎨⎪⎩ −λ log t, t > 0,

∞, t < 0.

By Lemma 6.5 (computation of proxg4),

proxϕ(s) =
s+

√
s2 + 4λ

2
.

Thus, by Theorem 6.6,
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proxg(x) = (proxϕ(xj))
n
j=1 =

⎛⎝xj +
√
x2j + 4λ

2

⎞⎠n

j=1

.

Example 6.10 (l0-norm). Let f : Rn → R be given by f(x) = λ‖x‖0, where
λ > 0 and ‖x‖0 = #{i : xi 
= 0} is the l0-norm discussed in Example 2.11. For any
x ∈ Rn,

f(x) =

n∑
i=1

I(xi),

where

I(t) =

⎧⎪⎨⎪⎩ λ, t 
= 0,

0, t = 0.

Note that I(·) = J(·) + λ, where

J(t) =

⎧⎪⎨⎪⎩ 0, t 
= 0,

−λ, t = 0,

and that by Example 6.2,

proxJ(s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{0}, |s| <

√
2λ,

{s}, |s| >
√
2λ,

{0, s}, |s| =
√
2λ.

(6.5)

We can write the above as proxJ(s) = H√2λ(s), where Hα is the so-called hard
thresholding operator defined by

Hα(s) ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{0}, |s| < α,

{s}, |s| > α,

{0, s}, |s| = α.

The operators proxJ and proxI are the same since for any s ∈ R,

proxI(s) = argmint

{
I(t) +

1

2
(t− s)2

}
= argmint

{
J(t) + λ+

1

2
(t− s)2

}
= argmint

{
J(t) +

1

2
(t− s)2

}
= proxJ (s).
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138 Chapter 6. The Proximal Operator

Thus, invoking Theorem 6.6, it follows that27

proxg(x) = H√2λ(x1)× H√2λ(x2)× · · · × H√2λ(xn).

Theorem 6.11 (scaling and translation). Let g : E → (−∞,∞] be a proper
function. Let λ 
= 0 and a ∈ E. Define f(x) = g(λx+ a). Then

proxf (x) =
1

λ

[
proxλ2g(λx + a)− a

]
. (6.6)

Proof. By definition of the prox,

proxf (x) = argminu

{
f(u) +

1

2
‖u− x‖2

}
= argminu

{
g(λu+ a) +

1

2
‖u− x‖2

}
. (6.7)

Making the change of variables

z = λu+ a, (6.8)

the objective function in the minimization problem (6.7) becomes

g(z) +
1

2

∥∥∥∥ 1λ(z− a) − x

∥∥∥∥2 =
1

λ2

[
λ2g(z) +

1

2
‖z− (λx+ a)‖2

]
. (6.9)

The minimizer of (6.9) is z = proxλ2g(λx + a), and hence by (6.8), it follows that
(6.6) holds.

Theorem 6.12 (prox of λg(·/λ)). Let g : E → (−∞,∞] be proper, and let λ 
= 0.
Define f(x) = λg(x/λ). Then

proxf (x) = λproxg/λ(x/λ).

Proof. Note that

proxf (x) = argminu

{
f(u) +

1

2
‖u− x‖2

}
= argminu

{
λg
(u
λ

)
+

1

2
‖u− x‖2

}
.

27Actually, proxg(x) should be a subset of Rn, meaning the space of n-length column vectors,
but here we practice some abuse of notation and represent proxg(x) as a set of n-length row
vectors.
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Making the change of variables z = u
λ , we can continue to write

proxf (x) = λargminz

{
λg(z) +

1

2
‖λz− x‖2

}
= λargminz

{
λ2
[
g(z)

λ
+

1

2

∥∥∥z− x

λ

∥∥∥2]}
= λargminz

{
g(z)

λ
+

1

2

∥∥∥z− x

λ

∥∥∥2}
= λproxg/λ(x/λ).

Theorem 6.13 (quadratic perturbation). Let g : E → (−∞,∞] be proper, and
let f(x) = g(x) + c

2‖x‖2 + 〈a,x〉 + γ, where c > 0, a ∈ E, and γ ∈ R. Then

proxf (x) = prox 1
c+1 g

(
x− a

c+ 1

)
.

Proof. Follows by the following simple computation:

proxf (x) = argminu

{
f(u) +

1

2
‖u− x‖2

}
= argminu

{
g(u) +

c

2
‖u‖2 + 〈a,u〉+ γ +

1

2
‖u− x‖2

}
= argminu

{
g(u) +

c+ 1

2

∥∥∥∥u−
(
x− a

c+ 1

)∥∥∥∥2
}

= prox 1
c+1 g

(
x− a

c+ 1

)
.

Example 6.14. Consider the function f : R → (−∞,∞] given for any x ∈ R by

f(x) =

⎧⎪⎨⎪⎩ μx, 0 ≤ x ≤ α,

∞ else,

where μ ∈ R and α ∈ [0,∞]. To compute the prox of f , note first that f can be
represented as

f(x) = δ[0,α]∩R(x) + μx.

By Lemma 6.5 (computation of proxg5), proxδ[0,α]∩R
(x) = min{max{x, 0}, α}. There-

fore, using Theorem 6.13 with c = 0, a = μ, γ = 0, we obtain that for any x ∈ R,

proxf (x) = proxg(x− μ) = min{max{x− μ, 0}, α}.
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Unfortunately, there is no useful calculus rule for computing the prox mapping
of a composition of a function with a general affine mapping. However, if the
associated linear transformation satisfies a certain orthogonality condition, such a
rule exists.

Theorem 6.15 (composition with an affine mapping). Let g : Rm →
(−∞,∞] be a proper closed convex function, and let f(x) = g(A(x) + b), where
b ∈ Rm and A : V → Rm is a linear transformation satisfying28 A ◦ AT = αI for
some constant α > 0. Then for any x ∈ V,

proxf (x) = x+
1

α
AT (proxαg(A(x) + b)− A(x) − b).

Proof. By definition, proxf (x) is the optimal solution of

min
u∈V

{
f(u) +

1

2
‖u− x‖2

}
,

which can be rewritten as

min
u∈V

{
g(A(u) + b) +

1

2
‖u− x‖2

}
.

The above problem can be formulated as the following constrained problem:

minu∈V,z∈Rm g(z) +
1

2
‖u− x‖2

s.t. z = A(u) + b.
(6.10)

Denote the optimal solution of (6.10) by (z̃, ũ) (the existence and uniqueness of z̃
and ũ follow by the underlying assumption that g is proper closed and convex).
Note that ũ = proxf (x). Fixing z = z̃, we obtain that ũ is the optimal solution of

minu∈V
1

2
‖u− x‖2

s.t. A(u) = z̃− b.
(6.11)

Since strong duality holds for problem (6.11) (see Theorem A.1), by Theorem A.2,
it follows that there exists y ∈ Rm for which

ũ ∈ argminu∈V

{
1

2
‖u− x‖2 + 〈y,A(u) − z̃+ b〉

}
(6.12)

A(ũ) = z̃− b. (6.13)

By (6.12),

ũ = x− AT (y). (6.14)

28The identity transformation I was defined in Section 1.10.
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Substituting this expression of ũ into (6.13), we obtain

A(x− AT (y)) = z̃− b,

and hence, using the assumption that A ◦ AT = αI,

αy = A(x) + b− z̃,

which, combined with (6.14), yields an explicit expression for ũ = proxf (x) in terms
of z̃:

proxf (x) = ũ = x+
1

α
AT (z̃− A(x) − b). (6.15)

Substituting u = ũ in the minimization problem (6.10), we obtain that z̃ is given
by

z̃ = argminz∈Rm

{
g(z) +

1

2

∥∥∥∥x+
1

α
AT (z− A(x)− b)− x

∥∥∥∥2
}

= argminz∈Rm

{
g(z) +

1

2α2
‖AT (z− A(x) − b)‖2

}
(∗)
= argminz∈Rm

{
αg(z) +

1

2
‖z− A(x)− b‖2

}
= proxαg(A(x) + b),

where the equality (∗) uses the assumption that A ◦ AT = αI. Plugging the
expression for z̃ into (6.15) produces the desired result.

Example 6.16. Let g : E → (−∞,∞] be proper closed and convex where E = Rd,
and let f : Em → (−∞,∞] be defined as

f(x1,x2, . . . ,xm) = g(x1 + x2 + · · ·+ xm).

The above can be written as f(x1,x2, . . . ,xm) = g(A(x1,x2, . . . ,xm)), where A :
E
m → E is the linear transformation

A(x1,x2, . . . ,xm) = x1 + x2 + · · ·+ xm.

Obviously, the adjoint operator AT : E → E
m is given by

AT (x) = (x,x, . . . ,x),

and for any x ∈ E,

A(AT (x)) = mx.

Thus, the conditions of Theorem 6.15 are satisfied with α = m and b = 0, and
consequently, for any (x1,x2, . . . ,xm) ∈ Em,
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proxf (x1,x2, . . . ,xm)j = xj+
1

m

(
proxmg

(
m∑
i=1

xi

)
−

m∑
i=1

xi

)
, j = 1, 2, . . . ,m.

Example 6.17. Let f : Rn → R be given by f(x) = |aTx|, where a ∈ Rn \ {0}.
We can write f as f(x) = g(aTx), where g(t) = |t|. By Lemma 6.5 (proxg2 com-
putation), proxλg = Tλ, with Tλ(x) = [|x| − λ]+sgn(x) being the soft thresholding
operator defined in Example 6.8. Invoking Theorem 6.15 with α = ‖a‖2, b = 0,
and A defined as the transformation x �→ aTx, we obtain that

proxf (x) = x+
1

‖a‖2 (T‖a‖2(a
Tx)− aTx)a.

Theorem 6.18 (norm composition). Let f : E → R be given by f(x) = g(‖x‖),
where g : R → (−∞,∞] is a proper closed and convex function satisfying dom(g) ⊆
[0,∞). Then

proxf (x) =

⎧⎪⎨⎪⎩ proxg(‖x‖) x
‖x‖ , x 
= 0,

{u ∈ E : ‖u‖ = proxg(0)}, x = 0.
(6.16)

Proof. By definition, proxf (0) is the set of minimizers of the problem

min
u∈E

{
f(u) +

1

2
‖u‖2

}
= min

u∈E

{
g(‖u‖) + 1

2
‖u‖2

}
.

Making the change of variables w = ‖u‖, the problem reduces to (recalling that
dom(g) ⊆ [0,∞))

min
w∈R

{
g(w) +

1

2
w2

}
.

The optimal set of the above problem is proxg(0), and hence proxf (0) is the set
of vectors u satisfying ‖u‖ = proxg(0). We will now compute proxf (x) for x 
= 0.
The optimization problem associated with the prox computation can be rewritten
as the following double minimization problem:

min
u∈E

{
g(‖u‖) + 1

2
‖u− x‖2

}
= min

u∈E

{
g(‖u‖) + 1

2
‖u‖2 − 〈u,x〉+ 1

2
‖x‖2

}
= min
α∈R+

min
u∈E:‖u‖=α

{
g(α) +

1

2
α2 − 〈u,x〉+ 1

2
‖x‖2

}
.
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Using the Cauchy–Schwarz inequality, it is easy to see that the minimizer of the
inner minimization problem is

u = α
x

‖x‖ , (6.17)

and the corresponding optimal value is

g(α) +
1

2
α2 − α‖x‖+ 1

2
‖x‖2 = g(α) +

1

2
(α − ‖x‖)2.

Therefore, proxf (x) is given by u in (6.17) with α given by

α = argminα∈R+

{
g(α) +

1

2
(α− ‖x‖)2

}
= argminα∈R

{
g(α) +

1

2
(α− ‖x‖)2

}
= proxg(‖x‖),

where the second equality is due to the assumption that dom(g) ⊆ [0,∞). Thus,
proxf (x) = proxg(‖x‖) x

‖x‖ .

Example 6.19 (prox of Euclidean norm). Let f : E → R be given by f(x) =
λ‖x‖, where λ > 0 and ‖ · ‖ is the underlying Euclidean norm (recall that in this
section we assume that the underlying space is Euclidean). Then f(x) = g(‖x‖),
where

g(t) =

⎧⎪⎨⎪⎩ λt, t ≥ 0,

∞, t < 0.

Then by Theorem 6.18, for any x ∈ E,

proxf (x) =

⎧⎪⎨⎪⎩ proxg(‖x‖) x
‖x‖ , x 
= 0,

{u ∈ E : ‖u‖ = proxg(0)}, x = 0.

By Lemma 6.5 (computation of proxg1), proxg(t) = [t − λ]+. Thus, proxg(0) = 0
and proxg(‖x‖) = [‖x‖ − λ]+, and therefore

proxf (x) =

⎧⎪⎨⎪⎩ [‖x‖ − λ]+
x
‖x‖ , x 
= 0,

0, x = 0.

Finally, we can write the above formula in the following compact form:

proxλ‖·‖(x) =

(
1− λ

max{‖x‖, λ}

)
x.
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Example 6.20 (prox of cubic Euclidean norm). Let f(x) = λ‖x‖3, where
λ > 0. Then f(x) = λg(‖x‖), where

g(t) =

⎧⎪⎨⎪⎩ t3, t ≥ 0,

∞, t < 0.

Then by Theorem 6.18, for any x ∈ R,

proxf (x) =

⎧⎪⎨⎪⎩ proxg(‖x‖) x
‖x‖ , x 
= 0,

{u ∈ E : ‖u‖ = proxg(0)}, x = 0.

By Lemma 6.5 (computation of proxg3), proxg(t) =
−1+

√
1+12λ[t]+
6λ . Therefore,

proxg(0) = 0 and

proxf (x) =

⎧⎪⎨⎪⎩
−1+

√
1+12λ‖x‖
6λ

x
‖x‖ , x 
= 0,

0, x = 0,

and thus

proxλ‖·‖3(x) =
2

1 +
√

1 + 12λ‖x‖
x.

Example 6.21 (prox of negative Euclidean norm). Let f : E → R be given
by f(x) = −λ‖x‖, where λ > 0. Since f is not convex, we do not expect the prox
to be a single-valued mapping. However, since f is closed, and since the function
u �→ f(u)+ 1

2‖u−x‖2 is coercive for any x ∈ E, it follows by Theorem 6.4 that the
set proxf (x) is always nonempty. To compute the prox, note that f(x) = g(‖x‖),
where

g(t) =

⎧⎪⎨⎪⎩ −λt, t ≥ 0,

∞, t < 0.

By Theorem 6.18, for any x ∈ R,

proxf (x) =

⎧⎪⎨⎪⎩ proxg(‖x‖) x
‖x‖ , x 
= 0,

{u ∈ E : ‖u‖ = proxg(0)}, x = 0.

By Lemma 6.5 (computation of proxg1), proxg(t) = [t+λ]+. Therefore, proxg(0) = λ
and
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prox−λ‖·‖(x) =

⎧⎪⎨⎪⎩
(
1 + λ

‖x‖

)
x, x 
= 0,

{u : ‖u‖ = λ}, x = 0.

Example 6.22 (prox of absolute value over symmetric intervals). Consider
the function f : R → (−∞,∞] given by

f(x) =

⎧⎪⎨⎪⎩ λ|x|, |x| ≤ α,

∞ else,

where λ ∈ [0,∞) and α ∈ [0,∞]. Then f(x) = g(|x|), where

g(x) =

⎧⎪⎨⎪⎩ λx, 0 ≤ x ≤ α,

∞ else.

Thus, by Theorem 6.18, for any x,

proxf (x) =

⎧⎪⎨⎪⎩ proxg(|x|) x|x| , x 
= 0,

{u ∈ R : |u| = proxg(0)}, x = 0.
(6.18)

By Example 6.14, proxg(x) = min{max{x− λ, 0}, α}, which, combined with (6.18)
and the fact that x

|x| = sgn(x) for any x 
= 0, yields the formula

proxλ|·|+δ[−α,α]
(x) = min{max{|x| − λ, 0}, α}sgn(x).

Using the previous example, we can compute the prox of weighted l1-norms
over boxes.

Example 6.23 (prox of weighted l1 over a box). Consider the function f :
Rn → R given by

f(x) =

⎧⎪⎨⎪⎩
∑n
i=1 ωi|xi|, −α ≤ x ≤ α,

∞, else,

for any x ∈ R
n, where ω ∈ Rn+ and α ∈ [0,∞]n. Then f =

∑n
i=1 fi, where

fi(x) =

⎧⎪⎨⎪⎩ wi|x|, −αi ≤ x ≤ αi,

∞, else.
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Using Example 6.22 and invoking Theorem 6.6, we finally obtain that

proxf (x) = (min{max{|xi| − ωi, 0}, αi}sgn(xi))ni=1 .

The table below summarizes the main prox calculus rules discussed in this
section.

f(x) proxf (x) Assumptions Reference

∑m
i=1 fi(xi) proxf1 (x1)× · · · × proxfm (xm) Theorem 6.6

g(λx+ a) 1
λ

[
proxλ2g(λx+ a)− a

]
λ �= 0,a ∈ E, g

proper
Theorem 6.11

λg(x/λ) λproxg/λ(x/λ) λ �= 0, g proper Theorem 6.12

g(x)+ c
2
‖x‖2 +

〈a,x〉+ γ
prox 1

c+1
g(

x−a
c+1

) a ∈ E, c > 0,
γ ∈ R, g proper

Theorem 6.13

g(A(x) + b) x+ 1
α
AT (proxαg(A(x) + b)−A(x)− b) b ∈ Rm,

A : V → Rm,
g proper
closed convex,
A ◦ AT = αI,
α > 0

Theorem 6.15

g(‖x‖)
proxg(‖x‖) x

‖x‖ , x �= 0

{u : ‖u‖ = proxg(0)}, x = 0
g proper
closed convex,
dom(g) ⊆
[0,∞)

Theorem 6.18

6.4 Prox of Indicators—Orthogonal Projections

6.4.1 The First Projection Theorem

Let g : E → (−∞,∞] be given by g(x) = δC(x), where C is a nonempty set. Then

proxg(x) = argminu∈E

{
δC(u) +

1

2
‖u− x‖2

}
= argminu∈C‖u− x‖2 = PC(x).

Thus, the proximal mapping of the indicator function of a given set is the orthogonal
projection29 operator onto the same set.

Theorem 6.24. Let C ⊆ E be nonempty. Then proxδC (x) = PC(x) for any x ∈ E.

If C is closed and convex, in addition to being nonempty, the indicator function
δC is proper closed and convex, and hence by the first prox theorem (Theorem 6.3),
the orthogonal projection mapping (which coincides with the proximal mapping)
exists and is unique. This is the first projection theorem.

29The orthogonal projection operator was introduced in Example 3.31.
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Theorem 6.25 (first projection theorem). Let C ⊆ E be a nonempty closed
convex set. Then PC(x) is a singleton for any x ∈ E.

6.4.2 First Examples in Rn

We begin by recalling30 several known expressions for the orthogonal projection
onto some basic subsets of Rn. Since the assumption made throughout the book is
that (unless otherwise stated) Rn is endowed with the dot product, and since the
standing assumption in this chapter is that the underlying space is Euclidean, it
follows that the endowed norm is the l2-norm.

Lemma 6.26 (projection onto subsets of Rn). Following are pairs of nonempty
closed and convex sets and their corresponding orthogonal projections:

nonnegative orthant C1 = Rn+, [x]+,

box C2 = Box[�,u], (min{max{xi, 
i}, ui})ni=1,

affine set C3 = {x ∈ Rn : Ax = b}, x−AT (AAT )−1(Ax− b),

l2 ball C4 = B‖·‖2 [c, r], c+ r
max{‖x−c‖2,r}(x − c),

half-space C5 = {x : aTx ≤ α}, x− [aTx−α]+
‖a‖2 a,

where � ∈ [−∞,∞)n,u ∈ (−∞,∞]n are such that � ≤ u, A ∈ R
m×n has full row

rank, b ∈ Rm, c ∈ Rn, r > 0, a ∈ Rn \ {0}, and α ∈ R.

Note that we extended the definition of box sets given in Section 1.7.1 to
include unbounded intervals, meaning that Box[�,u] is also defined when the com-
ponents of � might also take the value −∞, and the components of u might take
the value ∞. However, boxes are always subsets of Rn, and the formula

Box[�,u] = {x ∈ R
n : � ≤ x ≤ u}

still holds. For example, Box[0,∞e] = Rn+.

6.4.3 Projection onto the Intersection of a Hyperplane and a
Box

The next result develops an expression for the orthogonal projection onto another
subset of Rn—the intersection of an hyperplane and a box.

Theorem 6.27 (projection onto the intersection of a hyperplane and a
box). Let C ⊆ Rn be given by

C = Ha,b ∩ Box[�,u] = {x ∈ R
n : aTx = b, � ≤ x ≤ u},

where a ∈ Rn \{0}, b ∈ R,� ∈ [−∞,∞)n,u ∈ (−∞,∞]n. Assume that C 
= ∅. Then

PC(x) = PBox[�,u](x− μ∗a),

30The derivations of the orthogonal projection expressions in Lemma 6.26 can be found, for
example, in [10].
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where Box[�,u] = {y ∈ R
n : 
i ≤ yi ≤ ui, i = 1, 2, . . . , n} and μ∗ is a solution of the

equation

aTPBox[�,u](x− μa) = b. (6.19)

Proof. The orthogonal projection of x onto C is the unique optimal solution of

min
y

{
1

2
‖y − x‖22 : aTy = b, � ≤ y ≤ u

}
. (6.20)

A Lagrangian of the problem is

L(y;μ) =
1

2
‖y−x‖22+μ(aTy−b) =

1

2
‖y−(x−μa)‖22−

μ2

2
‖a‖22+μ(aTx−b). (6.21)

Since strong duality holds for problem (6.20) (see Theorem A.1), it follows by
Theorem A.2 that y∗ is an optimal solution of problem (6.20) if and only if there
exists μ∗ ∈ R (which will actually be an optimal solution of the dual problem) for
which

y∗ ∈ argmin�≤y≤uL(y;μ
∗), (6.22)

aTy∗ = b. (6.23)

Using the expression of the Lagrangian given in (6.21), the relation (6.22) can be
equivalently written as

y∗ = PBox[�,u](x− μ∗a).

The feasibility condition (6.23) can then be rewritten as

aTPBox[�,u](x− μ∗a) = b.

Remark 6.28. The projection onto the box Box[�,u] is extremely simple and is
done component-wise as described in Lemma 6.26. Note also that (6.19) actually
consists in finding a root of the nonincreasing function ϕ(μ) = aTPBox(x−μa)− b,
which is a task that can be performed efficiently even by simple procedures such as
bisection. The fact that ϕ is nonincreasing follows from the observation that ϕ(μ) =∑n

i=1 aimin{max{xi − μai, 
i}, ui} − b and the fact that μ �→ aimin{max{xi −
μai, 
i}, ui} is a nonincreasing function for any i.

A direct consequence of Theorem 6.27 is an expression for the orthogonal
projection onto the unit simplex.

Corollary 6.29 (orthogonal projection onto the unit simplex). For any
x ∈ Rn,

PΔn(x) = [x− μ∗e]+,

where μ∗ is a root of the equation

eT [x− μ∗e]+ − 1 = 0.
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Proof. Invoking Theorem 6.27 with a = e, b = 1, 
i = 0, ui = ∞, i = 1, 2, . . . , n,
and noting that in this case PBox[�,u](x) = [x]+, the result follows.

In order to expend the variety of sets on which we will be able to find simple
expressions for the orthogonal projection mapping, in the next two subsections, we
will discuss how to project onto level sets and epigraphs.

6.4.4 Projection onto Level Sets

Theorem 6.30 (orthogonal projection onto level sets). Let C = Lev(f, α) =
{x ∈ E : f(x) ≤ α}, where f : E → (−∞,∞] is proper closed and convex, and
α ∈ R. Assume that there exists x̂ ∈ E for which f(x̂) < α. Then

PC(x) =

⎧⎪⎨⎪⎩ Pdom(f)(x), f(Pdom(f)(x)) ≤ α,

proxλ∗f (x) else,
(6.24)

where λ∗ is any positive root of the equation

ϕ(λ) ≡ f(proxλf (x)) − α = 0.

In addition, the function ϕ is nonincreasing.

Proof. The orthogonal projection of x onto C is an optimal solution of the problem

min
y∈E

{
1

2
‖y − x‖2 : f(y) ≤ α,y ∈ X

}
,

where X = dom(f). A Lagrangian of the problem is (λ ≥ 0)

L(y;λ) =
1

2
‖y − x‖2 + λf(y) − αλ. (6.25)

Since the problem is convex and satisfies Slater’s condition, strong duality holds (see
Theorem A.1), and therefore it follows by the optimality conditions in Theorem A.2
that y∗ is an optimal solution of problem (6.25) if and only if there exists λ∗ ∈ R+

for which

y∗ ∈ argminy∈XL(y;λ
∗), (6.26)

f(y∗) ≤ α, (6.27)

λ∗(f(y∗)− α) = 0. (6.28)

There are two cases. If PX(x) exists and f(PX(x)) ≤ α, then y∗ = PX(x), and
λ∗ = 0 is a solution to the system (6.26), (6.27), (6.28). Otherwise, if PX(x) does
not exist or f(PX(x)) > α, then λ∗ > 0, and in this case the system (6.26), (6.27),
(6.28) reduces to y∗ = proxλ∗f (x) and f(proxλ∗f (x)) = α, which yields the formula
(6.24).

To prove that ϕ is nonincreasing, recall that

proxλf (x) = argminy∈X

{
1

2
‖y− x‖2 + λ(f(y) − α)

}
.
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Take 0 ≤ λ1 < λ2. Then denoting v1 = proxλ1f (x) and v2 = proxλ2f (x), we have

1

2
‖v2 − x‖2 + λ2(f(v2)− α)

=
1

2
‖v2 − x‖2 + λ1(f(v2)− α) + (λ2 − λ1)(f(v2)− α)

≥ 1

2
‖v1 − x‖2 + λ1(f(v1)− α) + (λ2 − λ1)(f(v2)− α)

=
1

2
‖v1 − x‖2 + λ2(f(v1)− α) + (λ2 − λ1)(f(v2)− f(v1))

≥ 1

2
‖v2 − x‖2 + λ2(f(v2)− α) + (λ2 − λ1)(f(v2)− f(v1)).

Therefore, (λ2 − λ1)(f(v2) − f(v1)) ≤ 0. Since λ1 < λ2, we can conclude that
f(v2) ≤ f(v1). Finally,

ϕ(λ2) = f(v2)− α ≤ f(v1)− α = ϕ(λ1),

establishing the monotonicity of ϕ.

Remark 6.31. Note that in Theorem 6.30 f is assumed to be closed, but this
does not necessarily imply that dom(f) is closed. In cases where dom(f) is not
closed, it might happen that Pdom(f)(x) does not exist and formula (6.24) amounts
to PC(x) = proxλ∗f (x).

Example 6.32 (projection onto the intersection of a half-space and a box).
Consider the set

C = H−a,b ∩ Box[�,u] = {x ∈ R
n : aTx ≤ b, � ≤ x ≤ u},

where a ∈ R
n \ {0}, b ∈ R, � ∈ [−∞,∞)n and u ∈ (−∞,∞]n. Assume that C 
= ∅.

Then C = Lev(f, b), where f(x) = aTx+ δBox[�,u](x). For any λ > 0,

proxλf (x) = proxλaT (·)+δBox[�,u](·)(x)
(∗)
= proxδBox[�,u]

(x− λa) = PBox[�,u](x− λa),

where in the equality (∗) we used Theorem 6.13. Invoking Theorem 6.30, we obtain
the following formula for the projection on C:

PC(x) =

⎧⎪⎨⎪⎩ PBox[�,u](x), aTPBox[�,u](x) ≤ b,

PBox[�,u](x− λ∗a), aTPBox[�,u](x) > b,

where λ∗ is any positive root of the nonincreasing function

ϕ(λ) = aTPBox[�,u](x − λa)− b.
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Example 6.33 (projection onto the l1 ball). Let C = B‖·‖1 [0, α] = {x ∈ Rn :
‖x‖1 ≤ α}, where α > 0. Then C = Lev(f, α) with f(x) = ‖x‖1. The prox of
λf = λ‖ · ‖1 for any λ > 0 was computed in Example 6.8, where it was shown that

proxλf (x) = Tλ(x) for all x ∈ R
n

with Tλ being the soft thresholding operator given by Tλ(x) = [x− λe]+ � sgn(x).
Invoking Theorem 6.30, we obtain that

PB‖·‖1 [0,α]
(x) =

⎧⎪⎨⎪⎩ x, ‖x‖1 ≤ α,

Tλ∗(x), ‖x‖1 > α,

where λ∗ is any positive root of the nonincreasing function

ϕ(λ) = ‖Tλ(x)‖1 − α.

The next example uses a generalization of the soft thresholding mapping,
which will be called the two-sided soft thresholding operator, and is defined for any
a,b ∈ (−∞,∞]n as

Sa,b(x) = (min{max{|xi| − ai, 0}, bi}sgn(xi))ni=1, x ∈ R
n.

Obviously,
Sλe,∞e = Tλ.

Here ∞e is the n-dimensional column vector whose elements are all ∞. A plot of
the function t �→ S1,2(t) is given in Figure 6.3.

0 5

0

1

2

3

Figure 6.3. The two-sided soft thresholding function t �→ S1,2(t) =
min{max{|t| − 1, 0}, 2}sgn(t).

Example 6.34 (projection onto the intersection of weighted l1 ball and a
box). Let C ⊆ Rn be given by

C =

{
x ∈ R

n :

n∑
i=1

ωi|xi| ≤ β,−α ≤ x ≤ α

}
,
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where ω ∈ R
n
+, α ∈ [0,∞]n, and β ∈ R++. Then obviously C = Lev(f, β), where

f(x) = ωT |x|+ δBox[−α,α](x) =

⎧⎪⎨⎪⎩
∑n
i=1 ωi|xi|, −α ≤ x ≤ α,

∞ else

for any x ∈ Rn. By Example 6.23, for any λ > 0 and x ∈ Rn,

proxλf (x) = (min{max{|xi| − λωi, 0}, αi}sgn(xi))ni=1 = Sλω,α(x).

Therefore, invoking Theorem 6.30, we obtain that

PC(x) =

⎧⎪⎨⎪⎩ PBox[−α,α](x), ωT |PBox[−α,α](x)| ≤ β,

Sλ∗ω,α(x), ωT |PBox[−α,α](x)| > β,

where λ∗ is any positive root of the nonincreasing function

ϕ(λ) = ωT |Sλω,α(x)| − β.

As a final illustration of Theorem 6.30, we give an example in which the
domain of f is not closed.

Example 6.35. Let
C =

{
x ∈ R

n
++ : Πni=1xi ≥ α

}
,

where α > 0. The key property that will allow us to compute the orthogonal
projection onto C is the fact that it can be rewritten as

C =

{
x ∈ R

n
++ : −

n∑
i=1

log xi ≤ − logα

}
.

Thus, C = Lev(f,− logα), where f : Rn → (−∞,∞] is the negative sum of logs
function:

f(x) =

⎧⎪⎨⎪⎩ −
∑n
i=1 log xi, x ∈ Rn++,

∞ else.

In Example 6.9 it was shown that for any x ∈ R
n,

proxλf (x) =

⎛⎝xj +
√
x2j + 4λ

2

⎞⎠n

j=1

.

We can now invoke Theorem 6.30 to obtain a formula (up to a single parameter
that can be found by a one-dimensional search) for the projection onto C, but there
is one issue that needs to be treated delicately. If x /∈ Rn++, meaning that it has at
least one nonpositive element, then PRn

++
(x) does not exist. In this case only the

second part of (6.24) is relevant, meaning that PC(x) = proxλ∗f (x). To conclude,
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PC(x) =

⎧⎪⎪⎨⎪⎪⎩
x, x ∈ C,(
xj+

√
x2
j+4λ∗

2

)n
j=1

, x /∈ C,

where λ∗ is any positive root of the nonincreasing function

ϕ(λ) = −
∑n
j=1 log

(
xj+

√
x2
j+4λ

2

)
+ logα.

6.4.5 Projection onto Epigraphs

We can use Theorem 6.30 to prove a theorem on the projection onto epigraphs of
convex functions.

Theorem 6.36 (orthogonal projection onto epigraphs). Let

C = epi(g) = {(x, t) ∈ E× R : g(x) ≤ t},

where g : E → R is convex. Then

PC((x, s)) =

⎧⎪⎨⎪⎩ (x, s), g(x) ≤ s,

(proxλ∗g(x), s+ λ∗), g(x) > s,

where λ∗ is any positive root of the function

ψ(λ) = g(proxλg(x)) − λ− s.

In addition, ψ is nonincreasing.

Proof. Define f : E× R → R as f(x, t) ≡ g(x)− t. By definition of the prox,

proxλf (x, s) = argminy,t

{
1

2
‖y − x‖2 + 1

2
(t− s)2 + λf(y, t)

}
= argminy,t

{
1

2
‖y − x‖2 + 1

2
(t− s)2 + λg(y) − λt

}
.

The above problem is separable in y and t, and thus

proxλf (x, s) =

(
argminy

{
1

2
‖y− x‖2 + λg(y)

}
, argmint

{
1

2
(t− s)2 − λt

})
=
(
proxλg(x), proxλh(s)

)
,

where h(t) ≡ −t. Since λh is linear, then by Section 6.2.2, proxλh(z) = z + λ for
any z ∈ R. Thus,

proxλf (x, s) =
(
proxλg(x), s+ λ

)
.

Copyright © 2017 Society for Industrial and Applied Mathematics



154 Chapter 6. The Proximal Operator

Since epi(g) = Lev(f, 0), we can invoke Theorem 6.30 (noting that dom(f) = E)
and obtain that

PC((x, s)) =

⎧⎪⎨⎪⎩ (x, s), g(x) ≤ s,

(proxλ∗g(x), s+ λ), g(x) > s,

where λ∗ is any positive root of the function

ψ(λ) = g(proxλg(x)) − λ− s,

which by Theorem 6.30 is nonincreasing.

Example 6.37 (projection onto the Lorentz cone). Consider the Lorentz cone,
which is given by Ln = {(x, t) ∈ Rn × R : ‖x‖2 ≤ t}. We will show that for any
(x, s) ∈ Rn × R,

PLn(x, s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
‖x‖2+s
2‖x‖2 x, ‖x‖2+s2

)
, ‖x‖2 ≥ |s|,

(0, 0), s < ‖x‖2 < −s,

(x, s), ‖x‖2 ≤ s.

To show the above,31 we invoke Theorem 6.36 to obtain the formula

PLn((x, s)) =

⎧⎪⎨⎪⎩ (x, s), ‖x‖2 ≤ s,

(proxλ∗‖·‖2(x), s+ λ∗), ‖x‖2 > s,

where λ∗ is any positive root of the nonincreasing function

ψ(λ) = ‖proxλ‖·‖2(x)‖2 − λ− s. (6.29)

Let (x, s) ∈ Rn × R be such that ‖x‖2 > s. Recall that by Example 6.19,

proxλ‖·‖2(x) =

[
1− λ

max{‖x‖2, λ}

]
+

x.

Plugging the above into the expression of ψ in (6.29) yields

ψ(λ) =

⎧⎪⎨⎪⎩ ‖x‖2 − 2λ− s, λ ≤ ‖x‖2,

−λ− s, λ ≥ ‖x‖2.

The unique positive root λ∗ of the piecewise linear function ψ is

λ∗ =

⎧⎪⎨⎪⎩
‖x‖2−s

2 , ‖x‖2 ≥ −s,

−s, ‖x‖2 < −s.

31Actually, the formula for PC(x) when ‖x‖2 = s appears twice in the formula, but in both
cases it amounts to (x, s).

Copyright © 2017 Society for Industrial and Applied Mathematics



6.4. Prox of Indicators—Orthogonal Projections 155

Thus, in the case ‖x‖2 > s (noting that ‖x‖2 ≥ −s corresponds to the case where
‖x‖2 ≥ λ∗ and ‖x‖2 < −s corresponds to ‖x‖2 ≤ λ∗),

(proxλ∗‖·‖2(x), s + λ∗) =

([
1− λ∗

max{‖x‖2, λ∗}

]
+

x, s+ λ∗

)
,

=

⎧⎪⎨⎪⎩
([

1− ‖x‖2−s
2‖x‖2

]
+
x, ‖x‖2+s2

)
, ‖x‖2 ≥ −s,

(0, 0), ‖x‖2 < −s.

=

⎧⎪⎨⎪⎩
(
‖x‖2+s
2‖x‖2 x, ‖x‖2+s2

)
, ‖x‖2 ≥ −s,

(0, 0), ‖x‖2 < −s.

Recalling that ‖x‖2 > s, we have thus established that PLn(x, s) = (0, 0) when
s < ‖x‖2 < −s and that whenever (x, s) satisfies ‖x‖2 > s and ‖x‖2 ≥ −s, the
formula

PLn(x, s) =

(
‖x‖2 + s

2‖x‖2
x,

‖x‖2 + s

2

)
(6.30)

holds. The result now follows by noting that

{(x, s) : ‖x‖2 ≥ |s|} = {(x, s) : ‖x‖2 > s, ‖x‖2 ≥ −s} ∪ {(x, s) : ‖x‖2 = s},

and that formula (6.30) is trivial for the case ‖x‖2 = s (amounts to PLn(x, s) =
(x, s)).

Example 6.38 (projection onto the epigraph of the l1-norm). Let

C = {(y, t) ∈ R
n × R : ‖y‖1 ≤ t}.

Invoking Theorem 6.36 and recalling that for any λ > 0, proxλ‖·‖1 = Tλ, where Tλ
is the soft thresholding operator (see Example 6.8), it follows that

PC((x, s)) =

⎧⎪⎨⎪⎩ (x, s), ‖x‖1 ≤ s,

(Tλ∗(x), s+ λ∗), ‖x‖1 > s,

where λ∗ is any positive root of the nonincreasing function

ϕ(λ) = ‖Tλ(x)‖1 − λ− s.

6.4.6 Summary of Orthogonal Projection Computations

Table 6.1 describes all the examples of orthogonal projection computations onto
subsets of Rn and Rn × R that were discussed so far.
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Table 6.1. The following notation is used in the table. [x]+ is the non-
negative part of x, Tλ(y) = ([|yi| − λ]+sgn(yi))

n
i=1, and Sa,b(x) = (min{max{|xi| −

ai, 0}, bi}sgn(xi))ni=1.

set (C) PC(x) Assumptions Reference

Rn
+ [x]+ − Lemma 6.26

Box[�,u] PC(x)i = min{max{xi, 	i}, ui} 	i ≤ ui Lemma 6.26

B‖·‖2 [c, r] c+ r
max{‖x−c‖2,r} (x− c) c ∈ Rn, r > 0 Lemma 6.26

{x : Ax = b} x−AT (AAT )−1(Ax − b) A ∈ Rm×n,
b ∈ Rm,
A full row rank

Lemma 6.26

{x : aTx ≤ b} x− [aTx−b]+
‖a‖2 a 0 �= a ∈

Rn, b ∈ R

Lemma 6.26

Δn [x − μ∗e]+ where μ∗ ∈ R satisfies
eT [x− μ∗e]+ = 1

Corollary 6.29

Ha,b ∩ Box[�,u] PBox[�,u](x − μ∗a) where μ∗ ∈ R

satisfies aTPBox[�,u](x− μ∗a) = b

a ∈ Rn \ {0},
b ∈ R

Theorem 6.27

H−
a,b ∩ Box[�,u]

⎧⎪⎨
⎪⎩

PBox[�,u](x), aTvx ≤ b,

PBox[�,u](x− λ∗a), aTvx > b,

vx = PBox[�,u](x),

aTPBox[�,u](x− λ∗a) = b, λ∗ > 0

a ∈ Rn \ {0},
b ∈ R

Example 6.32

B‖·‖1 [0, α]

⎧⎪⎨
⎪⎩

x, ‖x‖1 ≤ α,

Tλ∗ (x), ‖x‖1 > α,

‖Tλ∗ (x)‖1 = α, λ∗ > 0

α > 0 Example 6.33

{x : ωT |x| ≤ β,

−α ≤ x ≤ α}

⎧⎪⎨
⎪⎩

vx, ωT |vx| ≤ β,

Sλ∗ω,α(x), ωT |vx| > β,

vx = PBox[−α,α](x),

ωT |Sλ∗ω,α(x)| = β, λ∗ > 0

ω ∈ Rn
+, α ∈

[0,∞]n, β ∈
R++

Example 6.34

{x > 0 : Πxi ≥ α}

⎧⎪⎪⎨
⎪⎪⎩

x, x ∈ C,(
xj+

√
x2
j+4λ∗

2

)n

j=1

, x /∈ C,

Πn
j=1

(
(xj +

√
x2j + 4λ∗)/2

)
=

α, λ∗ > 0

α > 0 Example 6.35

{(x, s) : ‖x‖2 ≤ s}

( ‖x‖2+s
2‖x‖2 x,

‖x‖2+s
2

)
if ‖x‖2 ≥ |s|

(0, 0) if s < ‖x‖2 < −s,

(x, s) if ‖x‖2 ≤ s.

Example 6.37

{(x, s) : ‖x‖1 ≤ s}

⎧⎪⎨
⎪⎩

(x, s), ‖x‖1 ≤ s,

(Tλ∗ (x), s+ λ∗), ‖x‖1 > s,

‖Tλ∗ (x)‖1 − λ∗ − s = 0, λ∗ > 0

Example 6.38
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6.5 The Second Prox Theorem
We can use Fermat’s optimality condition (Theorem 3.63) in order to prove the
second prox theorem.

Theorem 6.39 (second prox theorem). Let f : E → (−∞,∞] be a proper
closed and convex function. Then for any x,u ∈ E, the following three claims are
equivalent:

(i) u = proxf (x).

(ii) x− u ∈ ∂f(u).

(iii) 〈x− u,y − u〉 ≤ f(y)− f(u) for any y ∈ E.

Proof. By definition, u = proxf (x) if and only if u is the minimizer of the problem

min
v

{
f(v) +

1

2
‖v − x‖2

}
,

which, by Fermat’s optimality condition (Theorem 3.63) and the sum rule of sub-
differential calculus (Theorem 3.40), is equivalent to the relation

0 ∈ ∂f(u) + u− x. (6.31)

We have thus shown the equivalence between claims (i) and (ii). Finally, by the
definition of the subgradient, the membership relation of claim (ii) is equivalent to
(iii).

A direct consequence of the second prox theorem is that for a proper closed
and convex function, x = proxf (x) if and only x is a minimizer of f .

Corollary 6.40. Let f be a proper closed and convex function. Then x is a
minimizer of f if and only if x = proxf (x).

Proof. x is a minimizer of f if and only if 0 ∈ ∂f(x), that is, if and only if
x−x ∈ ∂f(x), which by the second prox theorem (equivalence between (i) and (ii))
is the same as x = proxf (x).

When f = δC , with C being a nonempty closed and convex set, the equivalence
between claims (i) and (iii) in the second prox theorem amounts to the second
projection theorem.

Theorem 6.41 (second projection theorem). Let C ⊆ E be a nonempty
closed and convex set. Let u ∈ C. Then u = PC(x) if and only if

〈x − u,y − u〉 ≤ 0 for any y ∈ C.

Another rather direct result of the second prox theorem is the firm nonexpan-
sivity of the prox operator.
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Theorem 6.42 (firm nonexpansivity of the prox operator). Let f be a proper
closed and convex function. Then for any x,y ∈ E,

(a) (firm nonexpansivity)

〈x− y, proxf (x)− proxf (y)〉 ≥ ‖proxf (x) − proxf (y)‖2.

(b) (nonexpansivity)

‖proxf (x) − proxf (y)‖ ≤ ‖x− y‖.

Proof. (a) Denoting u = proxf (x),v = proxf (y), by the equivalence of (i) and (ii)
in the second prox theorem (Theorem 6.39), it follows that

x− u ∈ ∂f(u),y − v ∈ ∂f(v).

Thus, by the subgradient inequality,

f(v) ≥ f(u) + 〈x− u,v − u〉,
f(u) ≥ f(v) + 〈y − v,u− v〉.

Summing the above two inequalities, we obtain

0 ≥ 〈y − x+ u− v,u− v〉,

which is the same as
〈x− y,u− v〉 ≥ ‖u− v‖2,

that is,
〈x− y, proxf (x)− proxf (y)〉 ≥ ‖proxf (x) − proxf (y)‖2.

(b) If proxf (x) = proxf (y), then the inequality is obvious. Assume that
proxf (x) 
= proxf (y). Using (a) and the Cauchy–Schwarz inequality, it follows that

‖proxf (x) − proxf (y)‖2 ≤ 〈proxh(x) − proxh(y),x − y〉
≤ ‖proxh(x) − proxh(y)‖ · ‖x− y‖.

Dividing by ‖proxh(x) − proxh(y)‖, the desired result is established.

The following result shows how to compute the prox of the distance function
to a nonempty closed and convex set. The proof is heavily based on the second
prox theorem.

Lemma 6.43 (prox of the distance function). Let C ⊆ E be a nonempty,
closed, and convex set. Let λ > 0. Then for any x ∈ E,

proxλdC (x) =

⎧⎪⎨⎪⎩ (1− θ)x+ θPC(x), dC(x) > λ,

PC(x), dC(x) ≤ λ,
(6.32)
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where32

θ =
λ

dC(x)
. (6.33)

Proof. Let u = proxλdC (x). By the second prox theorem (Theorem 6.39),

x− u ∈ λ∂dC(u). (6.34)

We will split the analysis into two cases.

Case I. u /∈ C. By Example 3.49, (6.34) is the same as

x− u = λ
u− PC(u)

dC(u)
.

Denoting α = λ
dC(u) , the last equality can be rewritten as

u =
1

α+ 1
x+

α

α+ 1
PC(u) (6.35)

or as
x− PC(u) = (α+ 1)(u− PC(u)). (6.36)

By the second projection theorem (Theorem 6.41), in order to show that PC(u) =
PC(x), it is enough to show that

〈x− PC(u),y − PC(u)〉 ≤ 0 for any y ∈ C. (6.37)

Using (6.36), we can deduce that (6.37) is equivalent to

(α+ 1)〈u− PC(u),y − PC(u)〉 ≤ 0 for any y ∈ C,

which is a valid inequality by the second projection theorem, and hence PC(u) =
PC(x). Using this fact and taking the norm in both sides of (6.36), we obtain that

dC(x) = (α + 1)dC(u) = dC(u) + λ,

which also shows that in this case dC(x) > λ (since dC(u) > 0) and that

1

α+ 1
=

dC(u)

λ+ dC(u)
=
dC(x) − λ

dC(x)
= 1− θ,

where θ is given in (6.33). Therefore, (6.35) can also be written as (recalling also
that PC(u) = PC(x))

proxλdC (x) = (1 − θ)x+ θPC(x). (6.38)

Case II. If u ∈ C, then u = PC(x). To show this, let v ∈ C. Since u = proxλdC (x),
it follows in particular that

λdC(u) +
1

2
‖u− x‖2 ≤ λdC(v) +

1

2
‖v− x‖2,

32Since θ is used only when x /∈ C, it follows that dC(x) > 0, so that θ is well defined.
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and hence, since dC(u) = dC(v) = 0,

‖u− x‖ ≤ ‖v − x‖.

Therefore,
u = argminv∈C‖v − x‖ = PC(x).

By Example 3.49, the optimality condition (6.34) becomes

x− PC(x)

λ
∈ NC(u) ∩B[0, 1],

which in particular implies that ∥∥∥∥x− PC(x)

λ

∥∥∥∥ ≤ 1,

that is,
dC(x) = ‖PC(x) − x‖ ≤ λ.

Since the first case in which (6.38) holds corresponds to vectors satisfying dC(x) > λ,
while the second case in which proxλdC (x) = PC(x) corresponds to vectors satisfying
dC(x) ≤ λ, the desired result (6.32) is established.

6.6 Moreau Decomposition
A key property of the prox operator is the so-called Moreau decomposition theo-
rem, which connects the prox operator of proper closed convex functions and their
conjugates.

Theorem 6.44 (Moreau decomposition). Let f : E → (−∞,∞] be proper
closed and convex. Then for any x ∈ E,

proxf (x) + proxf∗(x) = x.

Proof. Let x ∈ E and denote u = proxf (x). Then by the equivalence between
claims (i) and (ii) in the second prox theorem (Theorem 6.39), it follows that x−u ∈
∂f(u), which by the conjugate subgradient theorem (Theorem 4.20) is equivalent
to u ∈ ∂f∗(x−u). Using the second prox theorem again, we conclude that x−u =
proxf∗(x). Therefore,

proxf (x) + proxf∗(x) = u+ (x− u) = x.

The next result is a useful extension of the Moreau decomposition theorem.

Theorem 6.45 (extended Moreau decomposition). Let f : E → (−∞,∞] be
proper closed and convex, and let λ > 0. Then for any x ∈ E,

proxλf (x) + λproxλ−1f∗ (x/λ) = x. (6.39)
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Proof. Using Moreau decomposition, for any x ∈ E,

proxλf (x) = x− prox(λf)∗(x) = x− proxλf∗(·/λ)(x), (6.40)

where the second equality follows by Theorem 4.14(a). By Theorem 6.12,

proxλf∗(·/λ)(x) = λproxλ−1f∗ (x/λ) ,

which, combined with (6.40), yields (6.39).

6.6.1 Support Functions

Using Moreau decomposition, we can develop a formula for computing the prox
of a support function of a given nonempty closed and convex set in terms of the
orthogonal projection operator.

Theorem 6.46 (prox of support functions). Let C ⊆ E be a nonempty closed
and convex set, and let λ > 0. Then for any x ∈ E,

proxλσC
(x) = x− λPC(x/λ). (6.41)

Proof. A direct consequence of the extended Moreau decomposition formula (The-
orem 6.45) along with the fact that (σC)

∗ = δC (Example 4.9).

Following are several examples of prox computations using formula (6.41).

Example 6.47 (prox of norms). Let f : E → R be given by f(x) = λ‖x‖α,
where λ > 0 and ‖ · ‖α is any norm on E. Note that ‖ · ‖α is not necessarily the
endowed norm on E, which is denoted by ‖ ·‖ and in this chapter is always assumed
to be the Euclidean norm. We know by Example 2.31 that

‖x‖α = σC(x),

where

C = B‖·‖α,∗ [0, 1] = {x ∈ E : ‖x‖α,∗ ≤ 1}

with ‖ · ‖α,∗ being the dual norm of ‖ · ‖α. Invoking Theorem 6.46, we obtain

proxλ‖·‖α(x) = x− λPB‖·‖α,∗ [0,1](x/λ).

Example 6.48 (prox of l∞-norm). By Example 6.47 we have for all λ > 0 and
x ∈ Rn,

proxλ‖·‖∞(x) = x− λPB‖·‖1 [0,1]
(x/λ).
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The projection onto the l1 unit ball can be easily computed by finding a root of a
nonincreasing one-dimensional function; see Example 6.33.

Example 6.49 (prox of the max function). Consider the max function g :
R
n → R given by g(x) = max(x) ≡ max{x1, x2, . . . , xn}. It is easy to see that the

max function is actually the support function of the unit simplex:

max(x) = σΔn(x).

Therefore, by Theorem 6.46, for any λ > 0 and x ∈ R
n,

proxλmax(·)(x) = x− λPΔn(x/λ).

The projection onto the unit simplex can be efficiently computed by finding a root
of a nonincreasing one-dimensional function; see Corollary 6.29.

Example 6.50 (prox of the sum-of-k-largest-values function). Let f : Rn →
R be given by

f(x) = x[1] + x[2] + · · ·+ x[k],

where k ∈ {1, 2, . . . , n} and for any i, x[i] denotes ith largest value in the vector x.
It is not difficult to show that f = σC , where

C = {y ∈ R
n : eTy = k,0 ≤ y ≤ e}.

Therefore, by Theorem 6.46,

proxλf (x) = x− λPC(x/λ).

That is, for any x ∈ R
n,

proxλf (x) = x− λP{y:eTy=k,0≤y≤e}(x/λ).

As in the previous examples, computing the projection onto C amounts to finding
a root of a monotone one-dimensional function; see Theorem 6.27.

Example 6.51 (prox of the sum-of-k-largest-absolute-values function). Let
f : Rn → R be given by

f(x) =

k∑
i=1

|x〈i〉|,

where k ∈ {1, 2, . . . , n} and x〈i〉 is the component of x with the ith largest absolute
value, meaning in particular that |x〈1〉| ≥ |x〈2〉| ≥ · · · ≥ |x〈n〉|. Then

f(x) = max

{
n∑
i=1

zixi : ‖z‖1 ≤ k,−e ≤ z ≤ e

}
.

Therefore, f = σC , where

C = {z ∈ R
n : ‖z‖1 ≤ k,−e ≤ z ≤ e} ,

and consequently, by Theorem 6.46,

proxλf (x) = x− λPC(x/λ).
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That is, for any x ∈ R
n,

proxλf (x) = x− λP{y:‖y‖1≤k,−e≤y≤e}(x/λ).

The orthogonal projection in the above formula amounts to finding a root of a
nonincreasing one-dimensional function; see Example 6.34.

6.7 The Moreau Envelope

6.7.1 Definition and Basic Properties

Definition 6.52 (Moreau envelope). Given a proper closed convex function
f : E → (−∞,∞] and μ > 0, the Moreau envelope of f is the function

Mμ
f (x) = min

u∈E

{
f(u) +

1

2μ
‖x− u‖2

}
. (6.42)

The parameter μ is called the smoothing parameter. The explanation for this
terminology will be given in Section 6.7.2. By the first prox theorem (Theorem
6.3), the minimization problem in (6.42) has a unique solution, given by proxμf (x).
Therefore, Mμ

f (x) is always a real number and

Mμ
f (x) = f(proxμf (x)) +

1

2μ
‖x− proxμf (x)‖2.

Example 6.53 (Moreau envelope of indicators). Let f = δC , where C ⊆ E is
a nonempty closed and convex set. By Theorem 6.24, proxμf (x) = PC(x). Thus,
for any x ∈ E,

Mμ
f (x) = δC(PC(x)) +

1

2μ
‖x− PC(x))‖2,

and hence

Mμ
δC

=
1

2μ
d2C .

The next example will show that the Moreau envelope of the (Euclidean) norm
is the so-called Huber function defined as

Hμ(x) =

⎧⎪⎨⎪⎩
1
2μ‖x‖2, ‖x‖ ≤ μ,

‖x‖ − μ
2 , ‖x‖ > μ.

(6.43)

The one-dimensional Huber function is plotted in Figure 6.4, where it is illustrated
that the function becomes smoother as μ becomes larger.
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Figure 6.4. The Huber function with parameters μ = 0.1, 1, 4. The func-
tion becomes smoother as μ gets larger.

Example 6.54 (Huber function). Let f : E → R be given by f(x) = ‖x‖. Then
by Example 6.19, for any x ∈ E and μ > 0,

proxμf (x) =

(
1− μ

max{‖x‖, μ}

)
x.

Therefore,

Mμ
f (x) = ‖proxμf (x)‖ +

1

2μ
‖x− proxμf (x)‖2 =

⎧⎪⎨⎪⎩
1
2μ‖x‖2, ‖x‖ ≤ μ,

‖x‖ − μ
2 , ‖x‖ > μ.

Thus, for any μ > 0,

Mμ
‖·‖ = Hμ.

Note that the Moreau envelope function is actually a result of an infimal
convolution operation between the function f and the function

ωμ(x) =
1

2μ
‖x‖2. (6.44)

That is,
Mμ
f = f�ωμ.

One consequence of this observation is that by Theorem 2.19, if f is a proper closed33

and convex function, then Mμ
f is convex. We summarize the above discussion in

the following theorem.

33Actually, closedness is not necessary in order to establish the convexity of the Moreau envelope.
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Theorem 6.55. Let f : E → (−∞,∞] be a proper closed and convex function, and
let ωμ be given in (6.44), where μ > 0. Then

(a) Mμ
f = f�ωμ;

(b) Mμ
f : E → R is real-valued and convex.

We can immediately conclude from Theorem 6.55(a) along with the formula
for the conjugate of the infimal convolution (Theorem 4.16) an expression for the
conjugate of the Moreau envelope.

Corollary 6.56. Let f : E → (−∞,∞] be a proper closed and convex function and
let ωμ be given in (6.44), where μ > 0. Then

(Mμ
f )
∗ = f∗ + ω 1

μ
.

Another useful algebraic property of the Moreau envelope is described in the
following result.

Lemma 6.57. Let f : E → (−∞,∞] be a proper closed and convex function, and
let λ, μ > 0. Then for any x ∈ E,

λMμ
f (x) =M

μ/λ
λf (x). (6.45)

Proof. For any x ∈ E,

λMμ
f (x) = λmin

u

{
f(u) +

1

2μ
‖u− x‖2

}
= min

u

{
λf(u) +

1

2μ/λ
‖u− x‖2

}
=M

μ/λ
λf (x).

A simple calculus rule states that the Moreau envelope of a separable sum of
functions is the sum of the corresponding Moreau envelopes.

Theorem 6.58 (Moreau envelope of separable functions). Suppose that
E = E1 × E2 × · · · × Em, and let f : E → (−∞,∞] be given by

f(x1,x2, . . . ,xm) =
m∑
i=1

fi(xi), x1 ∈ E1,x2 ∈ E2, . . . ,xm ∈ Em,

with fi : Ei → (−∞,∞] being a proper closed and convex function for any i. Then
given μ > 0, for any x1 ∈ E1,x2 ∈ E2, . . . ,xm ∈ Em,

Mμ
f (x1,x2, . . . ,xm) =

m∑
i=1

Mμ
fi
(xi).
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Proof. For any x1 ∈ E1,x2 ∈ E2, . . . ,xm ∈ Em, denoting x = (x1,x2, . . . ,xm), we
have

Mμ
f (x) = min

ui∈Ei,i=1,2,...,m

{
f(u1,u2, . . . ,um) +

1

2μ
‖(u1,u2, . . . ,um)− x‖2

}
= min

ui∈Ei,i=1,2,...,m

{
m∑
i=1

fi(ui) +
1

2μ

m∑
i=1

‖ui − xi‖2
}

=

m∑
i=1

min
ui∈Ei

{
fi(ui) +

1

2μ
‖ui − xi‖2

}

=

m∑
i=1

Mμ
fi
(xi).

Example 6.59 (Moreau envelope of the l1-norm). Consider the function f :
Rn → R given by f(x) = ‖x‖1. Note that

f(x) = ‖x‖1 =

n∑
i=1

g(xi),

where g(t) = |t|. By Example 6.54, Mμ
g = Hμ. Thus, invoking Theorem 6.58, we

obtain that for any x ∈ Rn,

Mμ
f (x) =

n∑
i=1

Mμ
g (xi) =

n∑
i=1

Hμ(xi).

6.7.2 Differentiability of the Moreau Envelope

The main differentiability properties of the Moreau envelope function are stated in
the next result.

Theorem 6.60 (smoothness of the Moreau envelope). Let f : E → (−∞,∞]
be a proper closed and convex function. Let μ > 0. Then Mμ

f is 1
μ -smooth over E,

and for any x ∈ E,

∇Mμ
f (x) =

1

μ

(
x− proxμf (x)

)
.

Proof. By Theorem 6.55(a), Mμ
f = f�ωμ, where ωμ = 1

2μ‖ · ‖2. We can therefore

invoke Theorem 5.30, whose assumptions are satisfied (taking ω = ωμ and L = 1
μ ),

and conclude that Mμ
f is 1

μ -smooth. In addition, since

proxμf (x) = argminu∈E

{
f(u) +

1

2μ
‖u− x‖2

}
,

it follows that the vector u(x) defined in Theorem 5.30 is equal to proxμf (x) and
that

∇Mμ
f (x) = ∇ωμ(x− u(x)) =

1

μ
(x− proxμf (x)).
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Example 6.61 (1-smoothness of 1
2
d2
C). Let C ⊆ E be a nonempty closed and

convex set. Recall that by Example 6.53, 1
2d

2
C =M1

δC
. Then by Theorem 6.60, 1

2d
2
C

is 1-smooth and

∇
(
1

2
d2C

)
(x) = x− proxδC (x) = x− PC(x).

Note that the above expression for the gradient was already derived in Example
3.31 and that the 1-smoothness of 1

2d
2
C was already established twice in Examples

5.5 and 5.31.

Example 6.62 (smoothness of the Huber function). Recall that the Huber
function is given by

Hμ(x) =

⎧⎪⎨⎪⎩
1
2μ‖x‖2, ‖x‖ ≤ μ,

‖x‖ − μ
2 , ‖x‖ > μ.

By Example 6.54, Hμ = Mμ
f , where f(x) = ‖x‖. Then, by Theorem 6.60, Hμ is

1
μ -smooth and

∇Hμ(x) =
1

μ

(
x− proxμf (x)

)
(∗)
=

1

μ

(
x−

(
1− μ

max{‖x‖, μ}

)
x

)

=

⎧⎪⎨⎪⎩
1
μx, ‖x‖ ≤ μ,

x
‖x‖ , ‖x‖ > μ,

where the equality (∗) uses the expression for proxμf developed in Example 6.19.

6.7.3 Prox of the Moreau Envelope

An interesting and important result states that if we can compute the prox of a
proper closed and convex function f , then we can also compute the prox of its
Moreau envelope.

Theorem 6.63 (prox of Moreau envelope). Let f : E → (−∞,∞] be a proper
closed and convex function, and let μ > 0. Then for any x ∈ E,

proxMμ
f
(x) = x+

1

μ+ 1

(
prox(μ+1)f (x) − x

)
.

Proof. First note that

min
u

{
Mμ
f (u) +

1

2
‖u− x‖2

}
= min

u
min
y

{
f(y) +

1

2μ
‖u− y‖2 + 1

2
‖u− x‖2

}
.

(6.46)
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Exchanging the order of minimizations, we obtain the following problem:

min
y

min
u

{
f(y) +

1

2μ
‖u− y‖2 + 1

2
‖u− x‖2

}
. (6.47)

The optimal solution of the inner minimization problem in u is attained when the
gradient w.r.t. u vanishes:

1

μ
(u− y) + (u− x) = 0,

that is, when

u = uμ ≡ μx+ y

μ+ 1
. (6.48)

Therefore, the optimal value of the inner minimization problem in (6.47) is

f(y) +
1

2μ
‖uμ − y‖2 + 1

2
‖uμ − x‖2 = f(y) +

1

2μ

∥∥∥∥μx− μy

μ+ 1

∥∥∥∥2 + 1

2

∥∥∥∥y − x

μ+ 1

∥∥∥∥2
= f(y) +

1

2(μ+ 1)
‖x− y‖2.

Therefore, the optimal solution of (6.46) is given by (6.48), where y is the solution
of

min
y

{
f(y) +

1

2(μ+ 1)
‖x− y‖2

}
,

that is, y = prox(μ+1)f (x). To summarize,

proxMμ
f
(x) =

1

μ+ 1

(
μx+ prox(μ+1)f (x)

)
.

Combining Theorem 6.63 with Lemma 6.57 leads to the following corollary.

Corollary 6.64. Let f : E → (−∞,∞] be a proper closed and convex function,
and let λ, μ > 0. Then for any x ∈ E,

proxλMμ
f
(x) = x+

λ

μ+ λ

(
prox(μ+λ)f (x) − x

)
.

Proof. proxλMμ
f
(x) = prox

M
μ/λ
λf

(x) = x+ λ
μ+λ

(
prox(μ+λ)f (x)− x

)
.

Example 6.65 (prox of λ
2
d2
C). Let C ⊆ E be a nonempty closed and convex set,

and let λ > 0. Consider the function f = 1
2d

2
C . Then, by Example 6.53, f = M1

g ,
where g = δC . Recall that proxg = PC . Therefore, invoking Corollary 6.64, we
obtain that for any x ∈ E,

proxλf (x) = proxλM1
g
(x) = x+

λ

λ+ 1

(
prox(λ+1)g(x)− x

)
= x+

λ

λ+ 1
(PC(x)− x) .

To conclude,
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proxλ
2 d

2
C
(x) =

λ

λ+ 1
PC(x) +

1

λ+ 1
x.

Example 6.66 (prox of the Huber function). Consider the function

f(x) = λHμ(x),

where Hμ is the Huber function with a smoothing parameter μ > 0 given in (6.43).
By Example 6.54, Hμ = Mμ

g , where g(x) = ‖x‖. Therefore, by Corollary 6.64, it
follows that for any λ > 0 and x ∈ E (recalling the expression for the prox of the
Euclidean norm derived in Example 6.19),

proxλHμ
(x) = proxλMμ

g
(x) = x+

λ

μ+ λ

(
prox(μ+λ)g(x) − x

)
= x+

λ

μ+ λ

((
1− μ+ λ

max{‖x‖, μ+ λ}

)
x− x

)
,

which, after some algebraic cancellations, reduces to

proxλHμ
(x) =

(
1− λ

max{‖x‖, μ+ λ}

)
x.

Similarly to the Moreau decomposition formula for the prox operator (Theo-
rem 6.45), we can obtain a decomposition formula for the Moreau envelope function.

Theorem 6.67 (Moreau envelope decomposition). Let f : E → (−∞,∞] be
a proper closed and convex function, and let μ > 0. Then for any x ∈ E,

Mμ
f (x) +M

1/μ
f∗ (x/μ) =

1

2μ
‖x‖2.

Proof. Recall that for any x ∈ E,

Mμ
f (x) = min

u∈E
{f(u) + ψ(u)} ,

where ψ(u) ≡ 1
2μ‖u− x‖2. By Fenchel’s duality theorem (Theorem 4.15), we have

Mμ
f (x) = max

v∈E
{−f∗(v) − ψ∗(−v)} = −min

v∈E
{f∗(v) + ψ∗(−v)} .

Denote φ(·) = 1
2‖ · −x‖2. Then

φ∗(v) =
1

2
‖v‖2 + 〈x,v〉.
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Since ψ = 1
μφ, it follows by Theorem 4.14 that

ψ∗(v) =
1

μ
φ∗(μv) =

μ

2
‖v‖2 + 〈x,v〉.

Therefore,

Mμ
f (x) = −min

v∈E

{
f∗(v) +

μ

2
‖v‖2 − 〈x,v〉

}
,

and hence

Mμ
f (x) = −min

v∈E

{
f∗(v) +

μ

2
‖v − x/μ‖2 − 1

2μ
‖x‖2

}
=

1

2μ
‖x‖2 −M

1/μ
f∗ (x/μ),

establishing the desired result.

6.8 Miscellaneous Prox Computations
In this section we gather several examples of prox computations that are not linked
to any specific result established in this chapter.

6.8.1 Norm of a Linear Transformation over Rn

Lemma 6.68. Let f : Rn → R be given by f(x) = ‖Ax‖2, where A ∈ Rm×n is
with full row rank, and let λ > 0. Then

proxλf (x) =

⎧⎪⎨⎪⎩ x−AT (AAT )−1Ax, ‖(AAT )−1Ax‖2 ≤ λ,

x−AT (AAT + α∗I)−1Ax, ‖(AAT )−1Ax‖2 > λ,

where α∗ is the unique positive root of the decreasing function

g(α) = ‖(AAT + αI)−1Ax‖22 − λ2.

Proof. The vector proxλf (x) is the unique optimal solution to

min
u∈Rn

{
λ‖Au‖2 +

1

2
‖u− x‖22

}
,

which can also be rewritten as

min
u∈Rn,z∈Rm

{
1

2
‖u− x‖22 + λ‖z‖2 : z = Au

}
. (6.49)

To construct a Lagrangian dual problem, we first form the Lagrangian:

L(u, z;y) =
1

2
‖u− x‖22 + λ‖z‖2 + yT (z−Au)

=

[
1

2
‖u− x‖22 − (ATy)Tu

]
+
[
λ‖z‖2 + yT z

]
.
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Since the Lagrangian is separable w.r.t. u and z, the dual objective function can be
rewritten as

min
u,z

L(u, z;y) = min
u

[
1

2
‖u− x‖22 − (ATy)Tu

]
+min

z

[
λ‖z‖2 + yT z

]
. (6.50)

The minimizer of the minimization problem in u is ũ = x+ATy with a correspond-
ing optimal value of

min
u

[
1

2
‖u− x‖22 − (ATy)Tu

]
=

1

2
‖ũ− x‖22 − (ATy)T ũ

= −1

2
yTAATy − (Ax)Ty. (6.51)

As for the second minimization problem, note that

min
z

[
λ‖z‖2 + yT z

]
= −max

z
[(−y)T z− λ‖z‖2] = −g∗(−y),

where g(·) = λ‖ · ‖2. Since g∗(w) = λδB‖·‖2 [0,1]
(w/λ) = δB‖·‖2 [0,λ]

(see Section

4.4.12 and Theorem 4.14), we can conclude that

min
z

[
λ‖z‖2 + yT z

]
=

⎧⎪⎨⎪⎩ 0, ‖y‖2 ≤ λ,

−∞, ‖y‖2 > λ.

Combining this with (6.51), we obtain the following dual problem:

max
y∈Rm

{
−1

2
yTAATy − (Ax)Ty : ‖y‖2 ≤ λ

}
. (6.52)

Note that strong duality holds for the primal-dual pair of problems (6.49) and (6.52)
(see Theorem A.1). To solve problem (6.52), we will first rewrite it as a minimization
problem:

min
y∈Rm

{
1

2
yTAATy + (Ax)Ty : ‖y‖22 ≤ λ2

}
. (6.53)

So far we have shown that

proxλf (x) = x+ATy, (6.54)

where y is an optimal solution of problem (6.53). Since problem (6.53) is convex and
satisfies Slater’s condition, it follows by the KKT conditions that y is an optimal
solution of (6.53) if and only if there exists α∗ (optimal dual variable) for which

(AAT + α∗I)y +Ax = 0, (6.55)

α∗(‖y‖22 − λ2) = 0, (6.56)

‖y‖22 ≤ λ2, (6.57)

α∗ ≥ 0. (6.58)

There are two options. In the first, α∗ = 0, and then by (6.55),

y = −(AAT )−1Ax. (6.59)
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Since (6.56) and (6.58) are automatically satisfied for α∗ = 0, we can conclude
that y given in (6.59) is the optimal solution of (6.53) if and only if (6.57) is
satisfied, meaning if and only if ‖(AAT )−1Ax‖2 ≤ λ. In this case, by (6.54),
proxλf (x) = x−AT (AAT )−1Ax.

On the other hand, if ‖(AAT )−1Ax‖2 > λ, then α∗ > 0, and hence by the
complementary slackness condition (6.56),

‖y‖22 = λ2. (6.60)

By (6.55),
y = −(AAT + α∗I)−1Ax.

Using (6.60), we can conclude that α∗ can be uniquely determined as the positive
root of the function

g(α) = ‖(AAT + αI)−1Ax‖22 − λ2.

It is easy to see that g is strictly decreasing for α ≥ 0, and therefore g has a unique
root.

6.8.2 Squared l1-Norm

The prox of the l1-norm has a simple formula. In this section we will show how to
compute the prox of the squared l1-norm—a task that will prove itself to be much
more complicated. We will require the following lemma that expresses ‖x‖21 as the
optimal value of an optimization problem written in terms of the function

ϕ(s, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
s2

t , t > 0,

0, s = 0, t = 0,

∞ else.

(6.61)

By Example 2.32, ϕ is closed and convex (even though it is not continuous at
(s, t) = (0, 0)).

Lemma 6.69 (variational representation of ‖ · ‖2
1). For any x ∈ Rn the

following holds:

min
λ∈Δn

n∑
j=1

ϕ(xj , λj) = ‖x‖21, (6.62)

where ϕ is defined in (6.61). An optimal solution of the minimization problem in
(6.62) is given by

λ̃j =

⎧⎪⎨⎪⎩
|xj|
‖x‖1 , x 
= 0,

1
n , x = 0,

j = 1, 2, . . . , n. (6.63)

Proof. Since problem (6.62) consists of minimizing a closed and convex function
(by Example 2.32) over a compact set, then by the Weierstrass theorem for closed
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functions (Theorem 2.12), it possesses an optimal solution, which we denote by
λ∗ ∈ Δn. Define

I0 = {i ∈ {1, 2, . . . , n} : λ∗i = 0},
I1 = {i ∈ {1, 2, . . . , n} : λ∗i > 0}.

By the definitions of I0 and I1, we have

∑
i∈I1

λ∗j =
n∑
i=1

λ∗j = 1. (6.64)

It holds that xi = 0 for any i ∈ I0, since otherwise we will have that ϕ(xi, λ
∗
i ) = ∞,

which is a clear contradiction to the optimality of λ∗. Therefore, using the Cauchy–
Schwarz inequality,

n∑
j=1

|xj | =
∑
j∈I1

|xj | =
∑
j∈I1

|xj |√
λ∗j

√
λ∗j ≤

√√√√∑
j∈I1

x2j
λ∗j

·
√∑
j∈I1

λ∗j
(6.64)
=

√√√√∑
j∈I1

x2j
λ∗j
.

We can thus conclude that

n∑
j=1

ϕ(xj , λ
∗
j ) =

∑
j∈I1

ϕ(xj , λ
∗
j ) =

∑
j∈I1

x2j
λ∗j

≥ ‖x‖21. (6.65)

On the other hand, since λ∗ is an optimal solution of the problem in (6.62),

n∑
j=1

ϕ(xj , λ
∗
j ) ≤

n∑
j=1

ϕ(xj , λ̃j) = ‖x‖21, (6.66)

where λ̃ is given by (6.63). Combining (6.65) and (6.66), we finally conclude that
the optimal value of the minimization problem in (6.62) is ‖x‖21 and that λ̃ is an
optimal solution.

Lemma 6.70 (prox of ‖ · ‖2
1).

34 Let f : Rn → R be given by f(x) = ‖x‖21, and
let ρ > 0. Then

proxρf (x) =

⎧⎪⎨⎪⎩
(
λixi

λi+2ρ

)n
i=1

, x 
= 0,

0, x = 0,

where λi =
[√

ρ|xi|√
μ∗ − 2ρ

]
+

with μ∗ being any positive root of the nonincreasing

function

ψ(μ) =
n∑
i=1

[√
ρ|xi|√
μ

− 2ρ

]
+

− 1.

34The computation of the prox of the squared l1-norm is due to Evgeniou, Pontil, Spinellis, and
Nassuphis [54].
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Proof. If x = 0, then obviously proxρf (x) = argminu
{
1
2‖u‖22 + ρ‖u‖21

}
= 0.

Assume that x 
= 0. By Lemma 6.69, u = proxρf (x) if and only if it is the u-part
of the optimal solution of

min
u∈Rn,λ∈Δn

{
1

2
‖u− x‖22 + ρ

n∑
i=1

ϕ(ui, λi)

}
,

where ϕ is defined in (6.61). Minimizing first with respect to u, we obtain that
ui =

λixi

λi+2ρ , and the problem thus reduces to

minλ

n∑
i=1

ρx2i
λi + 2ρ

s.t. eTλ = 1,

λ ≥ 0.

(6.67)

By Theorem A.1, strong duality holds for problem (6.67) (taking the underlying set
as X = R

n
+). Associating a Lagrange multiplier μ to the equality constraint, the

Lagrangian is

L(λ;μ) =

n∑
i=1

(
ρx2i

λi + 2ρ
+ λiμ

)
− μ.

By Theorem A.2, λ∗ is an optimal solution of (6.67) if and only if there exists μ∗

for which

λ∗ ∈ argminλ≥0L(λ;μ
∗), (6.68)

eTλ∗ = 1. (6.69)

Since the minimum in (6.68) is finite and attained, and since x 
= 0, it follows
that μ∗ > 0 (otherwise, if μ∗ = 0, the minimum in (6.68) would not be attained).
Exploiting the separability of the Lagrangian, it follows that (6.68) is the same as

λ∗i =

[√
ρ|xi|√
μ

− 2ρ

]
+

.

The dual optimal variable μ∗ is chosen to satisfy (6.69):

n∑
i=1

[√
ρ|xi|√
μ

− 2ρ

]
+

= 1.

6.8.3 Projection onto the Set of s-Sparse Vectors

Let s ∈ {1, 2, . . . , n} and consider the set

Cs = {x ∈ R
n : ‖x‖0 ≤ s} .

The set Cs comprises all s-sparse vectors, meaning all vectors with at most s nonzero
elements. Obviously Cs is not convex; for example, for n = 2, (0, 1)T , (1, 0)T ∈ C1,
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but (0.5, 0.5)T = 0.5(0, 1)T+0.5(1, 0)T /∈ C1. The set Cs is closed as a level set of the
closed function ‖·‖0 (see Example 2.11). Therefore, by Theorem 6.4, PCs = proxδCs

is nonempty; however, the nonconvexity of Cs implies that PCs(x) is not necessarily
a singleton.

The set PCs(x) is described in Lemma 6.71 below. The description requires
some additional notation. For a vector x ∈ Rn and a set of indices S ⊆ {1, 2, . . . , n},
the vector xS is the subvector of x that corresponds to the indices in S. For example,
for n = 4, if x = (4, 3, 5,−1)T , then x{1,4} = (4,−1)T ,x{2,3} = (3, 5)T . For a given
indices set S ⊆ {1, 2, . . . , n}, the matrix US is the submatrix of the identity matrix
In comprising the columns corresponding to the indices in S. For example, for
n = 3,

U{1,3} =

⎛⎜⎜⎜⎜⎝
1 0

0 0

0 1

⎞⎟⎟⎟⎟⎠ , U{2} =

⎛⎜⎜⎜⎜⎝
0

1

0

⎞⎟⎟⎟⎟⎠ .

For a given indices set S ⊆ {1, 2, . . . , n}, the complement set Sc is given by Sc =
{1, 2, . . . , n} \ S.

Finally, we recall our notation (that was also used in Example 6.51) that for
a given x ∈ Rn, x〈i〉 is the ith largest value among |x1|, |x2|, . . . , |xn|. Therefore, in
particular, |x〈1〉| ≥ |x〈2〉| ≥ · · · ≥ |x〈n〉|. Lemma 6.71 shows that PCs(x) comprises
all vectors consisting of the s components of x with the largest absolute values
and with zeros elsewhere. There may be several choices for the s components with
largest absolute values, and this is why PCs(x) might consist of several vectors.
Note that in the statement of the lemma, we characterize the property of an index
set S to “comprise s indices corresponding to the s largest absolute values in x” by
the relation

S ⊆ {1, 2, . . . , n}, |S| = s,
∑
i∈S

|xi| =
s∑
i=1

|x〈i〉|.

Lemma 6.71 (projection onto Cs). Let s ∈ {1, 2, . . . , n} and x ∈ R
n. Then

PCs(x) =

{
USxS : |S| = s, S ⊆ {1, 2, . . . , n},

∑
i∈S

|xi| =
s∑
i=1

|x〈i〉|
}
.

Proof. Since Cs consists of all s-sparse vectors, it can be represented as the fol-
lowing union:

Cs =
⋃

S⊆{1,2,...,n},|S|=s
AS ,

where AS = {x ∈ Rn : xSc = 0}. Therefore,35

PCs(x) ⊆
⋃

S⊆{1,2,...,n},|S|=s
{PAS (x)} . (6.70)

35Since AS is convex, we treat PAS
(x) as a vector and not as a singleton set. The inclusion

(6.70) holds since if B1, B2, . . . , Bm are closed convex sets, then P∪m
i=1Bi

(x) ⊆ ∪m
i=1{PBi

(x)} for
any x.
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The vectors in PCs(x) will be the vectors PAS (x) with the smallest possible
value of ‖PAS (x)− x‖2. The vector PAS (x) is the optimal solution of the problem

min
y∈Rn

{
‖y − x‖22 : ySc = 0

}
,

which can be rewritten as

min
y∈Rn

{
‖yS − xS‖22 + ‖xSc‖22 : ySc = 0

}
.

The optimal solution of the above problem is obviously given by yS = xS ,ySc = 0,
that is, y = USxS , and the optimal value is ‖xSc‖22. The vectors in PCs(x) will
therefore be of the form USxS , with indices sets S with cardinality s and with
minimal value ‖xSc‖22, which is equivalent to the condition that S consists of s
indices corresponding to the s largest absolute values in x.

Example 6.72. Suppose that n = 4. Then

PC2 [(2, 3,−2, 1)T ] = {(2, 3, 0, 0)T , (0, 3,−2, 0)T}.
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6.9 Summary of Prox Computations

f(x) dom(f) proxf (x) Assumptions Reference

1
2x

TAx +

bTx + c

R
n (A + I)−1(x− b) A ∈ S

n
+, b ∈

R
n, c ∈ R

Section 6.2.3

λx3
R+

−1+
√

1+12λ[x]+
6λ λ > 0 Lemma 6.5

μx [0, α] ∩ R min{max{x− μ, 0}, α} μ ∈ R, α ∈
[0,∞]

Example 6.14

λ‖x‖ E

(
1− λ

max{‖x‖,λ}
)
x ‖·‖—Euclidean

norm, λ > 0
Example 6.19

−λ‖x‖ E

(
1 + λ

‖x‖
)
x, x 
= 0,

{u : ‖u‖ = λ}, x = 0.
‖·‖—Euclidean
norm, λ > 0

Example 6.21

λ‖x‖1 R
n Tλ(x) = [|x| − λe]+ � sgn(x) λ > 0 Example 6.8

‖ω � x‖1 Box[−α,α] Sω,α(x) α ∈ [0,∞]n,
ω ∈ R

n
+

Example 6.23

λ‖x‖∞ R
n x− λPB‖·‖1 [0,1](x/λ) λ > 0 Example 6.48

λ‖x‖a E x− λPB‖·‖a,∗ [0,1](x/λ) ‖x‖a—
arbitrary
norm, λ > 0

Example 6.47

λ‖x‖0 R
n H√

2λ(x1)× · · · × H√
2λ(xn) λ > 0 Example 6.10

λ‖x‖3 E
2

1+
√

1+12λ‖x‖x ‖·‖—Euclidean
norm, λ > 0,

Example 6.20

−λ
n∑

j=1

log xj R
n
++

⎛
⎝ xj+

√
x2
j
+4λ

2

⎞
⎠

n

j=1

λ > 0 Example 6.9

δC(x) E PC(x) ∅ 
= C ⊆ E Theorem 6.24

λσC (x) E x− λPC(x/λ) λ > 0, C 
= ∅
closed convex

Theorem 6.46

λmax{xi} R
n x− λPΔn (x/λ) λ > 0 Example 6.49

λ
∑k

i=1 x[i] R
n x− λPC(x/λ),

C = He,k ∩ Box[0,e]
λ > 0 Example 6.50

λ
∑k

i=1 |x〈i〉| R
n x− λPC(x/λ),

C = B‖·‖1 [0, k] ∩ Box[−e, e]
λ > 0 Example 6.51

λMμ
f (x) E x +

λ
μ+λ

(
prox(μ+λ)f (x)− x

) λ, μ > 0, f
proper closed
convex

Corollary 6.64

λdC(x) E x +

min
{

λ
dC (x)

, 1
}
(PC(x)− x)

∅ 
= C closed
convex, λ > 0

Lemma 6.43

λ
2 d

2
C(x) E

λ
λ+1PC(x) + 1

λ+1x ∅ 
= C closed
convex, λ > 0

Example 6.65

λHμ(x) E

(
1− λ

max{‖x‖,μ+λ}
)
x λ, μ > 0 Example 6.66

ρ‖x‖21 R
n

(
vixi

vi+2ρ

)n

i=1
, v =[√

ρ
μ |x| − 2ρ

]
+
,eTv = 1 (0

when x = 0)

ρ > 0 Lemma 6.70

λ‖Ax‖2 R
n x − AT (AAT + α∗I)−1Ax,

α∗ = 0 if ‖v0‖2 ≤ λ; oth-
erwise, ‖vα∗‖2 = λ; vα ≡
(AAT + αI)−1Ax

A ∈ R
m×n

with full row
rank, λ > 0

Lemma 6.68
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