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ABSTRACT I present a decentralized process for finding
the equilibria of an economy characterized by a finite number
of linear equilibrium conditions. The process finds all equilib-
ria or, If there are none, reports that, in a finite number ofsteps
at most equal to the number of equations. The communication
and computational complexity compare favorably with other
decentralzed processes. The process may also be interpreted as
an algorithm for solving a distributed system of linear equa-
tions. Comparisons with the Linpack program for LU (lower
and upper trianula decomposition of the matrix of the
equation system, a version of Gaussian elation) are pre-
sented.

This paper presents a decentralized process for finding the
equilibria of an economy characterized by a finite number of
linear equilibrium conditions. The process differs from others
that have been studied in connection with stability (global and
local) of equilibrium in that it is given by an algorithm
requiring a finite number of steps, rather than an infinite
iterative process, as, for instance, a process given by differ-
ence or differential equations.

Furthermore, it is not assumed that equilibria exist. Ifthere
are no equilibria, the process discovers this and stops; ifthere
are equilibria, the process finds them all in a fixed number of
steps depending on the number of equilibrium conditions.
The process is decentralized in the following sense. In a

certain subset of economies with N agents, the equilibrium
condition of an individual agent is a linear equation in RN
(possibly several linear equations)t with N + 1 coefficients,
not all zero.t That equation (i.e., its coefficients) need be
known only to the agent whose equilibrium condition it is.
The process requires each agent to transmit a message
consisting of a certain finite number of points of RN to one
other agent. When N > 2, the messages transmitted are
insufficient for any agent to learn the complete system of
equilibrium equations.§ At each step ofthe process one agent
decides on a message by using only knowledge ofhis/her own
equilibrium condition and the message received from one
other agent.

Literature. The problem of finding equilibrium is related to
and stems from previous work on the stability of equilibrium
(1-13). [Work on computation of equilibria should also be
mentioned, although that deals with nonlinear equilibrium
conditions and does not concern itself with decentralized
methods (14).] For the present purpose the literature on
stability of equilibrium may be summarized as follows. Pa-
pers (1-3) studied price adjustment processes in which prices
change according to excess demand. The objective was to
show that every economic environment that satisfies condi-
tions ensuring the existence of competitive equilibria has
(globally or locally) stable equilibria. This turned out not to
be the case (4, 5). To guarantee stability, additional condi-
tions, such as "gross substitutes," are required. Smale (6)

studied an adjustment process that involved much bigger
messages than just the sign, or value, of excess demand. He
showed that price equilibria could be stabilized, provided the
process starts sufficiently near the boundary of the price
simplex, by using the derivatives of the demand functions.
Saari and Simon (7) showed that the number ofvariables used
in the global Newton process cannot be significantly reduced
without losing stability. Previously, 1 (8) analyzed an example
consisting of a pure exchange economy with two goods and
two agents and quasilinear utilities (hence, linear individual
equilibrium conditions) and showed that there is no decen-
tralized message exchange process given by difference equa-
tions with a nonvanishing linear part, whose message space
is the same size as that of the competitive mechanism, that
can stabilize the (unique) static equilibrium for all specifica-
tions of the agents' parameters. Jordan (9) introduced a new
and broader class of decentralized dynamic processes, given
by differential equations, and showed that even in that class
the informational requirements of local stability are larger
than what is needed for decentralized verification of equilib-
rium. Papers (10, 11) differ from Jordan's in particular
specifications but come to the same general conclusion-
namely, that requiring local stability of equilibrium by a
decentralized message exchange process entails larger infor-
mational requirements than does the decentralized verifica-
tion of equilibrium. The literature shows that to guarantee
local stability of equilibrium for all environments for which
equilibria exist entails higher informational costs. The diffi-
culties exposed in that literature are already present even in
the case of linear individual equilibrium conditions.

Motivation and Summary. From the standpoint of mecha-
nism design, both the amount ofcommunication required and
the complexity ofcalculations performed by economic agents
are important attributes of a mechanism for finding equilib-
rium. In ref. 13 a class of processes is presented in which
agents are asked to respond to messages only by indicating
whether the proposal encoded in the message is "too big" or
"too small." Those processes augment with one bit the
messages required for decentralized verification of equilib-
rium and use an algorithm based on the idea of bisection.
Those processes converge in the limit when individual equi-
librium conditions are linear. However, while the message
space used by these processes is small, perhaps minimal, the
complexity is exponential in the number of agents. The
motivation for the process presented in this paper is to

If some agents have more than one equation and there are Nagents,
then the space will be RM, M > N. For simplicity we assume that
each agent's equilibrium condition is given by one equation.
*The Appendix presents an example of a two-person, two-
commodity exchange economy with a decentralized message ex-
change process whose equilibria realize the Walrsian allocation.
The equilibria of the message exchange process are given by linear
individual equilibrium equations.
§Agent 2 receives enough information to deduce the coefficients of
the first equation up to a factor of proportionality. However, agent
2 learns nothing of subsequent equations, if any. Hence, as is seen
below, N = 2 is the sole exception.
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preserve as much as possible the low communication require-
ments of the binary bisection processes in ref. 13, while
reducing complexity from exponential to polynomial.
The process presented below achieves polynomial (in the

number of equations) complexity, but at the cost of increas-
ing the messages used by the process from one binary bit to
one real number. The complexity ofthe calculations required
of each agent is linear in the number, N, of equations, the
total complexity (as if one agent performed the entire com-
putation) is of order N3, and convergence occurs in, at most,
N steps.

In addition, the process allows at low cost the exploration
of the effects of policy interventions that change coefficients
of some of the equations of the system.
The remainder of this paper is organized as follows. The

process is defined formally and it is shown that (a) it applies
to any system ofN linear equations; (b) ifthe equations have
solutions, it finds all of them in N steps; and (c) if there are
no solutions, the process discovers this in, at most, N steps.
The results oftrial computations are discussed in which the

process is viewed as an algorithm for solving a general system
of linear equations. These are compared with the perfor-
mance ofLinpack's¶ implementation ofLU (lower and upper
tangular decomposition of the matrix of the equation sys-
tem, a version of Guassian elimination). Linpack's program,
a highly refined Fortran program, seems preferable for many
but not all problems. However, the present algorithm is
decentalized whereas Linpack's is not. Linpack's LU is
slightly faster, slightly more accurate, and with pivoting quite
stable. The present program seems to have an advantage in
situations in which a class of related problems is to be solved
in which there is a block ofequations common to all problems
of the class.

Notation. Suppose there are N agents, each with a linear
equilibrium condition. Let the equilibrium condition of agent
ibe

a'x= c' a,xERN, ciER, [1]

i= 1, . . . , N

where aix is the inner product of a' and x. The solutions ofthe
equation system 1 are called equilibria. For i = 1, ... , N
define

g(x) = ax- c'. [2]

Then the equation system 1 can also be written vectorially as
g(x) = 0. or in matrix notation as Ax = c, where A is the
coefficient matrix ((aj)) and c is the vector ofconstant terms.
We assume that agent i knows the function gi, and hence

his/her own equilibrium condition, but does not know gJ for
j # i. Thus, the system ofequations 1 is distributed among the
agents.
We do not assume that an equilibrium exists, or ifone does

exist, that it is unique.
The equation system 1 can also be regarded as a distributed

system in which the equations are distributed among proces-
sors; if fully distributed then each processor has in its
memory theN + 1 coefficients ofone and only one equation.

ISee footnoted.
cThe forward step of Gaussian elimination involves operations on
every equation below the one under consideration. Pivoting, es-
sential for numerical stability of Gaussian elimination, requires at
each step the calculation of the maximum of certain coefficients
over the set of equations below the current candidate for the pivot.
While it is possible to perform these operations in a distributed
fashion-i.e., where each equation is stored in a separate proces-
sor-the amount of communication required to do so would be so
large as to negate many of the attractive features of the algorithm.

In this interpretation the process is seen as a distributed
algorithm for solving the equation system 1.
The Algorithm (Informal). The basic idea ofthe process or

algorithm can be described in intuitive geometric terms. This
is easiest in the case where A is nonsingular, and there are no
other nongeneric special cases, so this assumption is main-
tained throughout this subsection. A more formal and com-
plete specification of the algorithm follows.
Each equation i of system 1 defines a hyperplane, Hi inRN,

provided a' # 0. The agents (processors) are ordered 1, 2,
... , N. The process goes in steps from agent 1 to agent N.
First, agent 1 finds N points that satisfy equation 1; that is,
agent 1 finds N points in HI. Agent 1 transmits those points
to agent 2, who uses them to find N - 1 points that satisfy
both equations 1 and 2-i.e., that lie in H1 n H2. These N -
1 points are communicated to agent 3, who uses them to find
N - 2 points in H1 n H2 n H3, and so on until agentN uses
the two points transmitted from agentN - 1 to find one point,
the solution, in Hi n ... n HN
The process of finding these points is as follows. Agent 1

uses the standard coordinate axes in RN, each of which can
be characterized as the line generated by two points, one of
which is the origin and the other a point all of whose
coordinates but one are 0 and the remaining coordinate is 1.
For each of these N lines, agent 1 finds the point at which it
intersects HI. (Generally there will be such a point. Special
cases in which such a point does not exist are treated in detail
below.) TheseNpoints are affinely independent, because the
lines that generated them are linearly independent. They are
the points that agent 1 communicates to agent 2.
Agent 2 uses the Npoints received from agent 1 to generate

N - 1 lines, by selecting one of these points to be common
to all the lines and using each of the remainingN - 1 points
communicated by agent 1 to generate each oftheN - 1 lines.
Because the N - 1 points sent by agent 1 lie in HI, so do

the lines connecting pairs of them. Having calculated these
lines, agent 2 then finds theN - 1 points at which those lines
intersect H2. The points of intersection exist generically.
These N - 1 points lie in H1 n H2, because the lines used to
generate them lie in H1, and the points chosen on those lines
also lie in H2. This process continues until agent N finally
finds the point in H1n.. . nHN.

In economic models the equilibrium condition of an agent
often consists of several equations. In that case each agent
will use the algorithm, starting from the points received from
the preceding agent and find the requisite number of points
satisfying his/her equations in sequence, one equation at a
time.
The various nongeneric special cases that can arise, and

the modifications needed to make the process deal with them
are described in the formal presentation.
The Algorithm (Formal). The process or algorithm pro-

ceeds equation by equation in steps from equation 1 to
equation N of system 1.
Step 1: Agent 1 begins with N + 1 points ofRN denoted

VO = {v8, vI, .. ., VJ.J}, where v0 is the jth standard basis
vector, and v8 is the null vector. These N + 1 points are
affinely independent,** or equivalently, the N vectors, VO
= {jv - v8O° j = 1, . . . , N}, are linearly independent.
Agent 1 uses theseN + 1 points to find Npoints that satisfy

equation 1 of system 1. We make use of certain auxiliary
results (Propositions 1-4).
PROPOSITION 1. There is at least one point v? in VO such

that gl(v,) # 0.

**A collection ofr points inRN, r ; N, is an affinely independent set,
if the smallest linear manifold that contains them has dimension r.
The smallest linear manifold that contains the points is the inter-
section of all linear manifolds that contain them.
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Proof: Otherwise VO would contain N + 1 affinely inde-
pendent points, each an element of the (N - 1)-dimensional
hyperplane H1 defined by the equation gi(x) = 0, which is
impossible. q.e.d.

Suppose, without loss of generality (the points can be
relabeled), that gl(vo°) # 0. Agent 1 forms the lines

L(vo, v) = {x E RN x =vg + Ay(vy-vg), A4 E R},

forj E {1, .. . , N}.

For each j E {1, . . . , N} the line L(vO, v,°) either intersects
the hyperplane H1 given by gl(x) = 0 or is parallel to it. In the
first case, g1(v7) - gl(v3) # 0, and in the second case, gl(v7)
- g1(vO°) = 0. Forj E {1, . . . , N}, define

g-l(4
ij =1(vJ) - gl(V4 if g1(v0) - g'(v0) #0

and otherwise let 49 be undefined. It is easy to see the
following.
PROPOSITION 2. There is at least one point vp in V0, other

than v8, such that (*) gl(vjO) - g1(vO) # 0.
Proof: If not, then there exists a scalar k such that for al1

j E {1, . . . , N}, g1(v7) = g1(v8) = k, and hence for allj E{0,
1, . .. , N}, g1(v,0) = k. Thus, N + 1 affinely independent
points lie in an (N - 1)-dimensional hyperplane, which is
impossible. q.e.d.

Let v° be one ofthe points for which (*) holds. Then we may
define VA = v8 + X1(v? - vAO, and forj E {2, ... , N} define

{=V° Al(v-V)vj v

if Xj is defined,
otherwise.

PROPOSITION 3. The points in V1 = {vJ, ...., v } satisfy
equation I of system 1.
Proof: (i) Supposej is a value for which gl(v,) - gl(vt) #

0. Equation 1 of system 1, a1vJl - c1 = 0, is equivalent to

0 = a1[Vg + J(vo°-vs)] - cl = alvo + al(v5° - V0°) - c'.
that is, to

^1I1 - AV0ac1-avd
aA vj

g l(vo)
gl(vjo) _ gl(vV)

which holds by construction. (ii) On the other hand, ifj is a
value for which gi(v.Q) - gi(v8) = 0, then

ii 1ii 0 1 10 1
av1-c- =aiy1l+vj-v0 -c

= a'vi - c1 + aiVj4 - C1 - a V0 + C

= gi(v1) + [gl(v) - gl(vo)]

=0,

because gl(vl) = 0 by part i, and gl(v0) - gi(v&) = 0 by
hypothesis. Hence, a1vj, - c1 = g1(vjl) = 0. q.e.d.

It is also straightforward to show that the points in V1 = {VI,

. , v'N} are affinely independent. However, in order to use
the same argument in subsequent steps of the process we
state the more general proposition as follows.
PROPOSITION 4. If the points in V' = {v6, .. ., vI} are

affinely independent, and the points in V" = {v', . ., v'q} are
generated by Eqs. 3, i.e.,

V+ A(v-v6)
v-t~;(vj -v6)

ifg(vp) - gk(V6) # 0,
otherwise,

then for some equation gk, 0 - k c N, the points of V" are
affinely independent.
Proof: Suppose not. Then there exist scalars Oj,j = 2,...,

N, not all zero, such that O2(v' - v';) + ... + Oq(v'g - vA) =
0. But

°= C(V5 - VI; + + Oq(1Vtq' V'

= O2A'(v - vO) + ... + OqA*q(v - v)

q

-E OjA1(vj - VO),
j=2

where we define

*_k(V) -gk(V) # 0,= otherwise.

Note that for allj = 2,... , q, A*# 0, and by construction,
k # 0. Since the scalars Oj, j = 2,.. ,q, are not all zero,

it follows that the vectors are linearly dependent, contrary to
the hypothesis that the points in V' are affmiely independent.
q.e.d.

Proposition 4, together with the fact that the points in V0
are affinely independent, establishes that the points in V1 are
affinely independent.
Thus, at the end of step 1, agent 1 has found N affinely

independent points that satisfy equation 1 of system 1. The
set V1 consisting of these points is the starting state for step
2. The starting state for step s (if Step s is reached) is a set
Vs-1 consisting ofp,_1 points satisfying equations 1, 2,...,
s - 1, where Ps-, is a positive integer at most equal to N.

Step s: Note first that Proposition 1 need not hold for s 2
2. Step s begins with the set Vs-' consisting ofN - Ps-i +
1 affinely independent points that satisfy the first s - 1
equations of system 1. If the points in Vs-' also satisfy
equation s-i.e., if gs(vjsf1) = 0, forj = Ps-, . . . , N-then
Vs = Vs-1 and the process goes to step s + 1.

If, on the other hand, in step s there is some element v1-1
in VS-1, say, without loss of generality, vs-' such that
gs(vs-1) # 0 and if gs(vi) - g (v ) = 0 for all] = Ps-i,
... .,A, then equation s is inconsistent with the preceding s
- 1 equations, and the system 1 has no solution.

If, however, this is not the case-i.e., if gs(vs-j) # 0 and,
for somej, gs(vjs-1) - gs(vIj1) # 0, then, forj = p5, . N.
Aj is defined by

s- -g (V~ps-)
J ,g(vjs- ) - gs(v7s- )

if g,(v1-,) - gs(vs-7) # 0,

and is otherwise not defined. Furthermore,

J vs- + Ai(vs-4 - if A is defined,
v VStvs+ (vi - vS) otherwise.

The counterparts of Propositions 3 and 4 show that Vs =
{vpo, . ., 4V} consists ofN - p5 + 1 affinely independent
points that satisfy the first s equations, where

Ps-i if VS = VSi
Ps lPs-i + 1 otherwise.

In applying Proposition 4, the set V' is replaced by Vs1 and
V by Vs.
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The process ends in one of two states:
* Equation s - N is the first equation that is inconsistent

with the preceding ones, in which case the process stops in
step s; if equation N is the first equation that is inconsistent
with the preceding ones, then the process ends in stepN (i.e.,
step N is not completed) and notes the inconsistency-i.e.,
VN is empty.
* The process continues through step N, with VN not

empty, in which case VN spans the (N - pN)-dimensional
linear manifold of solutions.

If the matrix A of system 1 is of full rank, then Ps = s for
all s = 1, . . . , N. In particular, PN = N, and the solution
manifold consists of one point.
Communication and Complexity. The communication and

computational complexity properties of this process are as
follows. (All calculations are made for the nonsingular case,
so that ps = s; when each agent has only one equilibrium
equation, as has been assumed, we can write s = i, and hence
Ps = Pi = i.)

(a) The messages used by the process consist of finite
subsets of RN, which is the space in which equilibrium
resides. The first agent transmits N points, the second N -
1, and so on until the last agent transmits one point, the
solution. Thus, the total number of points of RN communi-
cated is at most IkN k = N(N + 1)/2, which is of order N2.
In the "normal" case (i.e., without singularities or other
nongeneric special cases), the nonzero coordinates in the
points transmitted by agent i occur in a known pattern, and
their number is i. Hence the number of coordinates commu-
nicated by agent i is i(N - i + 1), which is linear in N. As i
varies from 1 to N, the number of coordinates transmitted
varies fromN to N2/4 [or (N + 1)2/4, depending on whether
N is even or odd] and then back to N.
Note that while agent 2 receives enough information to

allow him/her to identify the equation ofthe first agent, agent
2 learns nothing about the equilibrium conditions of subse-
quent agents, and no agent after agent 2 receives enough
information to identify any equation other than his/her own.

(b) The complexity [the number offloating point operations
(flops)] of agent i's computation is, for i = 2,. . , N, 2(2i +
1)N - 4i(i - 1), which is, for each i, linear in N. (For i = 1
the complexity is N.) The agent whose computations have
maximum complexity is i = N/2 [or (N + 1)/2, depending on
whether N is even or odd], and the complexity of the most
complex computation is of order N2.
The total number of flops performed by all agents is of

order (2/3)N3; if only multiplications are counted, it is of
order (1/3)N3.

(c) Each agent i must have enough memory to store at most
N + 1 coefficients of his/her equation, and, of course,
sufficient computational capacity to carry out the simple
arithmetic operations needed to evaluate his/her linear func-
tion and to calculate the points in Vi. We should also mention
the possibility that a specialized network of low capacity
(cheap) processors might be used to solve distributed prob-
lems in an on-line fashion.
Comparing the communication and computational com-

plexity of this algorithmic process with the one(s) presented
in ref. 13, we see that the increase in message size per agent
from bits to real numbers is accompanied by a decrease in
both communication and computational complexity per agent
from exponential to polynomial, and a reduction in the
number of steps corresponding to the replacement of a
process that converges only in the limit to one that requires
only a finite number of steps.

Trial Computations. We may suppose that all the equations
are in the memory ofa single processor, and view this process
as an algorithm for solving a general system of linear equa-

tions. A Fortran implementation of this algorithmtt was used
to run trial computations and to compare its performance
with that of the Linpack implementation of LU (referring to
lower and upper triangular decomposition of the matrix A), a
version of Gaussian elimination, also a Fortran program.#4
The results of trials on a set of randomly generated matrices,
ranging in size up to N = 1200, are summarized as follows.
Linpack is slightly faster; Linpack is about an order of
magnitude more accurate-i.e., if Linpack is accurate to 20
decimal places, the present algorithm is accurate to about 19;
both algorithms were stable in all problems run.
While a zero denominator in the formula for one of the

multipliers A] does not present any difficulty, a sufficiently
small denominator might create instability for the algorithm
presented here. This can be dealt with by using a procedure
analogous to pivoting to select the common point in step s,
denoted ve1a above, so as to ensure that the denominator is
not too small. As might be expected, this problem did not
appear in the trial computations with random matrices but
can be expected to slow the computations in difficult cases.
The Linpack program for LU is highly efficient. It is the

result of many years of experience with that algorithm. It
remains to be seen whether the program we now have for the
algorithm presented here might still have room for improve-
ment.

In any case, there is a class of problems for which the
present algorithm appears to have an advantage, aside from
being decentralized. In many situations in which related
systems oflinear equations are to be solved, the systems have
a block of equations in common and only a subset of
equations varies from problem to problem. In this case, the
present algorithm would solve the common equations once,
finding a set of points spanning the solution manifold for
those equations, and use this set as the starting points for the
remaining equations. For all but the first problem, this
effectively reduces the size ofthe problem to be solved to the
size of the block of equations that differ among problems.

This property should be useful in comparative static, or
sensitivity, analyses in which the equations can be ordered so
that parameter changes effect only a final subset ofequations.

Appendix. The following is an example of an economy and
a decentralized mechanism given by a system of linear
equations. The outcome resulting from an equilibrium of the
mechanism for a given set of parameters characterizing the
economic agents (the environment) is the Walrasian trade
vector for that environment.
There are two agents, 1 and 2, and two commodities, Xand

Y. Let the initial endowments be wi and wi', i = 1, 2; and let
the utility functions be

u'(X, Y) = a'Y' + 1/2(3i(Yi)2 + Xi, i = 1, 2.

To express the model in terms of net trades, let yi = Yi - wiy;
x= xi- wX, i = 1,2; y' + y2 = 0. The budget constraint of
agent i is, taking X as numeraire, xi + pyi = 0. Note that if
yi and p are known, then xi is determined. Therefore it
suffices to determine yi and p. First-order conditions are

aui
-i =a'+3,(y +wy) +p =0, i= 1, 2.

Let y _ y'; then from the feasibility constraint on trades, -y
= y2, which on substitution into the first-order conditions

ttThe program was written by Frederick D. Dean, who also carried
out the trials. The program is available on request.

#The Linpack LU program can be obtained by e-mail from
(netlib@research.att.com). The "Linpack Users' Guide," by J. J.
Dongarra, C. B. Moler, J. R. Bunch, & G. W. Stewart, was
published in 1979 by SIAM, Philadelphia.
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gives al + p'(y + wy) + p = 0 and a2 + Y2(-y+ 4) + p
= 0. Let yi = ai + iiwiy' i = 1, 2. Then further substitution
in the first-order conditions yields y9 + ply + p = 0, and 92
- P2y + p = 0. Eliminating p yields the equation y2 - 2y =

Yl+ ply. For Oi = (60l, 69 , define 61 = (yl, Pl) and 62 = (9,
_.2). Then the first-order condition is 61 + 62y = 6

2+ e2Y
Therefore,

1 2@.~~~~ ~~~-y= -g lo provided 60 -_0 # 0. [Al]

Eq. Al expresses the "optimal" or desired value of y (the
Walrasian trade) as a function of the parameters.
A decentralized message-exchange process whose equilib-

rium yields the desired value ofy-i.e., the one given by Eq.
Al-is as follows. Let the messages be (ml, m2), and let the
individual equilibrium condition of agent i, for i = 1, 2, be

61+ 0Im2 -ml= O. and 02 + 02 -ml=O. [A2]

Solving for ml and m2, we find that

6l602 6l62 61 2
M

1 2 2 1 and 1 1
ml= 2 _ 1 an0=42 _ 1

We see that m2 = y, the desired trade in the commodity Y,
as a function of the parameters, and ml is the price.
The equation system A2 has the property that the ith

equation contains only parameters of agent i, for i = 1, 2, and
the equilibrium message equations are, ofcourse, linear in ml
and M2
To complete the specification of the mechanism, the out-

come function is the projection into the space of M2; i.e.,
h(ml, m2) = M2.

I am indebted to Leo Hurwicz and Carl Simon for helpful com-
ments. Scott E. Page wrote a Pascal program implementing the
process presented here, and Frederick D. Dean, a graduate student
in Computer Science at Northwestern University, wrote the Fortran
program used in the computational trials reported. Neither of them
is responsible for any errors that remain. This research was sup-
ported by National Science Foundation Grant IRI-9020270.
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