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PREFACE TO THE FIRST EDITION

This book is a considerable expansion of lectures I gave at the School of
Mathematical and Physical Sciences, University of Sussex during the winter
term of 1986. The audience included postgraduate students and faculty members
working in particle physics, condensed matter physics and general relativity. The
lectures were quite informal and I have tried to keep this informality as much as
possible in this book. The proof of a theorem is given only when it is instructive
and not very technical; otherwise examples will make the theorem plausible.
Many figures will help the reader to obtain concrete images of the subjects.

In spite of the extensive use of the concepts of topology, differential ge-
ometry and other areas of contemporary mathematics in recent developments in
theoretical physics, it is rather difficult to find a self-contained book that is easily
accessible to postgraduate students in physics. This book is meant to fill the gap
between highly advanced books or research papers and the many excellent intro-
ductory books. As a reader, I imagined a first-year postgraduate student in theo-
retical physics who has some familiarity with quantum field theory and relativity.
In this book, the reader will find many examples from physics, in which topo-
logical and geometrical notions are very important. These examples are eclectic
collections from particle physics, general relativity and condensed matter physics.
Readers should feel free to skip examples that are out of their direct concern.
However, I believe these examples should be the theoretical minima to students
in theoretical physics. Mathematicians who are interested in the application of
their discipline to theoretical physics will also find this book interesting.

The book is largely divided into four parts. Chapters 1 and 2 deal with the
preliminary concepts in physics and mathematics, respectively. In chapter 1,
a brief summary of the physics treated in this book is given. The subjects
covered are path integrals, gauge theories (including monopoles and instantons),
defects in condensed matter physics, general relativity, Berry’s phase in quantum
mechanics and strings. Most of the subjects are subsequently explained in detail
from the topological and geometrical viewpoints. Chapter 2 supplements the
undergraduate mathematics that the average physicist has studied. If readers are
quite familiar with sets, maps and general topology, they may skip this chapter
and proceed to the next.

Chapters 3 to 8 are devoted to the basics of algebraic topology and
differential geometry. In chapters 3 and 4, the idea of the classification of spaces
with homology groups and homotopy groups is introduced. In chapter 5, we

 



define a manifold, which is one of the central concepts in modern theoretical
physics. Differential forms defined there play very important roles throughout this
book. Differential forms allow us to define the dual of the homology group called
the de Rham cohomology group in chapter 6. Chapter 7 deals with a manifold
endowed with a metric. With the metric, we may define such geometrical
concepts as connection, covariant derivative, curvature, torsion and many more.
In chapter 8, a complex manifold is defined as a special manifold on which there
exists a natural complex structure.

Chapters 9 to 12 are devoted to the unification of topology and geometry.
In chapter 9, we define a fibre bundle and show that this is a natural setting
for many physical phenomena. The connection defined in chapter 7 is naturally
generalized to that on fibre bundles in chapter 10. Characteristic classes defined
in chapter 11 enable us to classify fibre bundles using various cohomology
classes. Characteristic classes are particularly important in the Atiyah–Singer
index theorem in chapter 12. We do not prove this, one of the most important
theorems in contemporary mathematics, but simply write down the special forms
of the theorem so that we may use them in practical applications in physics.

Chapters 13 and 14 are devoted to the most fascinating applications of
topology and geometry in contemporary physics. In chapter 13, we apply the
theory of fibre bundles, characteristic classes and index theorems to the study of
anomalies in gauge theories. In chapter 14, Polyakov’s bosonic string theory is
analysed from the geometrical point of view. We give an explicit computation of
the one-loop amplitude.

I would like to express deep gratitude to my teachers, friends and students.
Special thanks are due to Tetsuya Asai, David Bailin, Hiroshi Khono, David
Lancaster, Shigeki Matsutani, Hiroyuki Nagashima, David Pattarini, Felix E A
Pirani, Kenichi Tamano, David Waxman and David Wong. The basic concepts
in chapter 5 owe very much to the lectures by F E A Pirani at King’s College,
University of London. The evaluation of the string Laplacian in chapter 14 using
the Eisenstein series and the Kronecker limiting formula was suggested by T Asai.
I would like to thank Euan Squires, David Bailin and Hiroshi Khono for useful
comments and suggestions. David Bailin suggested that I should write this book.
He also advised Professor Douglas F Brewer to include this book in his series. I
would like to thank the Science and Engineering Research Council of the United
Kingdom, which made my stay at Sussex possible. It is a pity that I have no
secretary to thank for the beautiful typing. Word processing has been carried out
by myself on two NEC PC9801 computers. Jim A Revill of Adam Hilger helped
me in many ways while preparing the manuscript. His indulgence over my failure
to meet deadlines is also acknowledged. Many musicians have filled my office
with beautiful music during the preparation of the manuscript: I am grateful to
J S Bach, Ryuichi Sakamoto, Ravi Shankar and Erik Satie.

Mikio Nakahara
Shizuoka, February 1989

 



PREFACE TO THE SECOND EDITION

The first edition of the present book was published in 1990. There has been
incredible progress in geometry and topology applied to theoretical physics and
vice versa since then. The boundaries among these disciplines are quite obscure
these days.

I found it impossible to take all the progress into these fields in this second
edition and decided to make the revision minimal. Besides correcting typos, errors
and miscellaneous small additions, I added the proof of the index theorem in terms
of supersymmetric quantum mechanics. There are also some rearrangements of
material in many places. I have learned from publications and internet homepages
that the first edition of the book has been read by students and researchers from a
wide variety of fields, not only in physics and mathematics but also in philosophy,
chemistry, geodesy and oceanology among others. This is one of the reasons
why I did not specialize this book to the forefront of recent developments. I
hope to publish a separate book on the recent fascinating application of quantum
field theory to low dimensional topology and number theory, possibly with a
mathematician or two, in the near future.

The first edition of the book has been used in many classes all over the world.
Some of the lecturers gave me valuable comments and suggestions. I would like
to thank, in particular, Jouko Mikkelsson for constructive suggestions. Kazuhiro
Sakuma, my fellow mathematician, joined me to translate the first edition of the
book into Japanese. He gave me valuable comments and suggestions from a
mathematician’s viewpoint. I also want to thank him for frequent discussions
and for clarifying many of my questions. I had a chance to lecture on the material
of the book while I was a visiting professor at Helsinki University of Technology
during fall 2001 through spring 2002. I would like to thank Martti Salomaa for
warm hospitality at his materials physics laboratory. Sami Virtanen was the course
assisitant whom I would like to thank for his excellent work. I would also like to
thank Juha Vartiainen, Antti Laiho, Teemu Ojanen, Teemu Keski-Kuha, Markku
Stenberg, Juha Heiskala, Tuomas Hytönen, Antti Niskanen and Ville Bergholm
for helping me to find typos and errors in the manuscript and also for giving me
valuable comments and questions.

Jim Revill and Tom Spicer of IOP Publishing have always been generous
in forgiving me for slow revision. I would like to thank them for their generosity
and patience. I also want to thank Simon Laurenson for arranging the copyediting,
typesetting and proofreading and Sarah Plenty for arranging the printing, binding

 



and scheduling. The first edition of the book was prepared using an old NEC
computer whose operating system no longer exists. I hesitated to revise the
book mainly because I was not so courageous as to type a more-than-500-page
book again. Thanks to the progress of information technology, IOP Publishing
scanned all the pages of the book and supplied me with the files, from which I
could extract the text files with the help of optical character recognition (OCR)
software. I would like to thank the technical staff of IOP Publishing for this
painstaking work. The OCR is not good enough to produce the LATEX codes for
equations. Mariko Kamada edited the equations from the first version of the book.
I would like to thank Yukitoshi Fujimura of Peason Education Japan for frequent
TEX-nical assistance. He edited the Japanese translation of the first edition of the
present book and produced an excellent LATEX file, from which I borrowed many
LATEX definitions, styles, diagrams and so on. Without the Japanese edition, the
publication of this second edition would have been much more difficult.

Last but not least, I would thank my family to whom this book is dedicated.
I had to spend an awful lot of weekends on this revision. I wish to thank my
wife, Fumiko, and daughters, Lisa and Yuri, for their patience. I hope my
little daughters will someday pick up this book in a library or a bookshop and
understand what their dad was doing at weekends and late after midnight.

Mikio Nakahara
Nara, December 2002

 



HOW TO READ THIS BOOK

As the author of this book, I strongly wish that this book is read in order. However,
I admit that the book is thick and the materials contained in it are diverse. Here
I want to suggest some possibilities when this book is used for a course in
mathematics or mathematical physics.

(1) A one year course on mathematical physics: chapters 1 through 10.
Chapters 11 and 12 are optional.

(2) A one-year course on geometry and topology for mathematics students:
chapters 2 through 12. Chapter 2 may be omitted if students are familiar with
elementary topology. Topics from physics may be omitted without causing
serious problems.

(3) A single-semester course on geometry and topology: chapters 2 through
7. Chapter 2 may be omitted if the students are familiar with elementary
topology. Chapter 8 is optional.

(4) A single-semester course on differential geometry for general relativity:
chapters 2, 5 and 7.

(5) A single-semester course on advanced mathematical physics: sections 1.1–
1.7 and sections 12.9 and 12.10, assuming that students are familiar with
Riemannian geometry and fibre bundles. This makes a self-contained course
on the path integral and its application to index theorem.

Some repetition of the material or a summary of the subjects introduced in
the previous part are made to make these choices possible.

 



NOTATION AND CONVENTIONS

The symbols �,�,�,� and � denote the sets of natural numbers, integers,
rational numbers, real numbers and complex numbers, respectively. The set of
quaternions is defined by

� = {a + bi + c j + dk| a, b, c, d ∈ �}
where (1, i, j, k) is a basis such that i · j = − j · i = k, j · k = −k · j = i ,
k · i = −i ·k = j , i2 = j2 = k2 = −1. Note that i, j and k have the 2×2 matrix
representations i = iσ3, j = iσ2, k = iσ1 where σi are the Pauli spin matrices

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
.

The imaginary part of a complex number z is denoted by Im z while the real part
is Re z.

We put c (speed of light) = h̄ (Planck’s constant/2π) = kB (Boltzmann’s
constant) = 1, unless otherwise stated explicitly. We employ the Einstein
summation convention: if the same index appears twice, once as a superscript
and once as a subscript, then the index is summed over all possible values. For
example, if µ runs from 1 to m, one has

AµBµ =
m∑
µ=1

AµBµ.

The Euclid metric is gµν = δµν = diag(+1, . . . ,+1)while the Minkowski metric
is gµν = ηµν = diag(−1,+1, . . . ,+1).

The symbol� denotes ‘the end of a proof’.

 



1

QUANTUM PHYSICS

A brief introduction to path integral quantization is presented in this chapter.
Physics students who are familiar with this subject and mathematics students who
are not interested in physics may skip this chapter and proceed directly to the next
chapter. Our presentation is sketchy and a more detailed account of this subject
is found in Bailin and Love (1996), Cheng and Li (1984), Huang (1982), Das
(1993), Kleinert (1990), Ramond (1989), Ryder (1986) and Swanson (1992). We
closely follow Alvarez (1995), Bertlmann (1996), Das (1993), Nakahara (1998),
Rabin (1995), Sakita (1985) and Swanson (1992).

1.1 Analytical mechanics

We introduce some elementary principles of Lagrangian and Hamiltonian
formalisms that are necessary to understand quantum mechanics.

1.1.1 Newtonian mechanics

Let us consider the motion of a particle m in three-dimensional space and let x(t)
denote the position of m at time t .1 Suppose this particle is moving under an
external force F(x). Then x(t) satisfies the second-order differential equation

m
d2x(t)

dt2
= F(x(t)) (1.1)

called Newton’s equation or the equation of motion.
If force F(x) is expressed in terms of a scalar function V (x) as F(x) =

−∇V (x), the force is called a conserved force and the function V (x) is called
the potential energy or simply the potential. When F is a conserved force, the
combination

E = m

2

(
dx
dt

)2

+ V (x) (1.2)

is conserved. In fact,

dE

dt
=

∑
k=x,y,z

[
m

dxk

dt

d2xk

dt2 + ∂V

∂xk

dxk

dt

]
=

∑
k

(
m

d2xk

dt2 + ∂V

∂xk

)
dxk

dt
= 0

1 We call a particle with mass m simply ‘a particle m’.

 



where use has been made of the equation of motion. The function E , which is
often the sum of the kinetic energy and the potential energy, is called the energy.

Example 1.1. (One-dimensional harmonic oscillator) Let x be the coordinate
and suppose the force acting on m is F(x) = −kx , k being a constant. This force
is conservative. In fact, V (x) = 1

2 kx2 yields F(x) = −dV (x)/dx = −kx .
In general, any one-dimensional force F(x) which is a function of x only is
conserved and the potential is given by

V (x) = −
∫ x

F(ξ) dξ.

An example of a force that is not conserved is friction F = −η dx/dt . We
will be concerned only with conserved forces in the following.

1.1.2 Lagrangian formalism

Newtonian mechanics has the following difficulties;

1. This formalism is based on a vector equation (1.1) which is not very easy to
handle unless an orthogonal coordinate system is employed.

2. The equation of motion is a second-order equation and the global properties
of the system cannot be figured out easily.

3. The analysis of symmetries is not easy.
4. Constraints are difficult to take into account.

Furthermore, quantum mechanics cannot be derived directly from
Newtonian mechanics. The Lagrangian formalism is now introduced to overcome
these difficulties.

Let us consider a system whose state (the position of masses for example)
is described by N parameters {qi } (1 ≤ i ≤ N). The parameter is an element
of some space M .2 The space M is called the configuration space and the {qi}
are called the generalized coordinates. If one considers a particle on a circle, for
example, the generalized coordinate q is an angle θ and the configuration space
M is a circle. The generalized velocity is defined by q̇i = dqi/dt .

The Lagrangian L(q, q̇) is a function to be defined in Hamilton’s
principle later. We will restrict ourselves mostly to one-dimensional space but
generalization to higher-dimensional space should be obvious. Let us consider
a trajectory q(t) (t ∈ [ti , t f ]) of a particle with conditions q(ti ) = qi and
q(t f ) = q f . Consider a functional3

S[q(t), q̇(t)] =
∫ t f

ti
L(q, q̇) dt (1.3)

2 A manifold, to be more precise, see chapter 5.
3 A functional is a function of functions. A function f (•) produces a number f (x) for a given number
x . Similarly, a functional F[•] assigns a number F[ f ] to a given function f (x).

 



called the action. Given a trajectory q(t) and q̇(t), the action S[q, q̇] produces
a real number. Hamilton’s principle, also known as the principle of the least
action, claims that the physically realized trajectory corresponds to an extremum
of the action. Now the Lagrangian must be chosen so that Hamilton’s principle is
fulfilled.

It turns out to be convenient to write Hamilton’s principle in a local form
as a differential equation. Suppose q(t) is a path realizing an extremum of S.
Consider a variation δq(t) of the trajectory such that δq(ti ) = δq(t f ) = 0. The
action changes under this variation by

δS =
∫ t f

ti
L(q + δq, q̇ + δq̇) dt −

∫ t f

ti
L(q, q̇) dt

=
∫ t f

ti

(
∂L

∂q
− d

dt

∂L

∂ q̇

)
δq dt (1.4)

which must vanish because q yields an extremum of S. Since this is true for any
δq , the integrand of the last line of (1.4) must vanish. Thus, the Euler–Lagrange
equation

∂L

∂q
− d

dt

∂L

∂ q̇
= 0 (1.5)

has been obtained. If there are N degrees of freedom, one obtains

∂L

∂qk
− d

dt

∂L

∂ q̇k
= 0 (1 ≤ k ≤ N). (1.6)

If we introduce the generalized momentum conjugate to the coordinate qk

by

pk = ∂L

∂ q̇k
(1.7)

the Euler–Lagrange equation takes the form

d pk

dt
= ∂L

∂qk
. (1.8)

By requiring this equation to reduce to Newton’s equation, one quickly finds the
possible form of the Lagrangian in the ordinary mechanics of a particle. Let us
put L = 1

2 m q̇2 − V (q). By substituting this Lagrangian into the Euler–Lagrange
equation, it is easily shown that it reduces to Newton’s equation of motion,

mq̈k + ∂V

∂qk
= 0. (1.9)

Let us consider the one-dimensional harmonic oscillator for example. The
Lagrangian is

L(x, ẋ) = 1
2 mẋ2 − 1

2 kx2 (1.10)

 



from which one finds mẍ + kx = 0.
It is convenient for later purposes to introduce the notion of a functional

derivative. Let us consider the case with a single degree of freedom for simplicity.
Define the functional derivative of S with respect to q by

δS[q, q̇]
δq(s)

≡ lim
ε→0

{S[q(t)+ εδ(t − s), q̇(t)+ ε d
dt δ(t − s)] − S[q(t), q̇(t)]}
ε

.

(1.11)
Since

S

[
q(t)+ εδ(t − s), q̇(t)+ ε d

dt
δ(t − s)

]
=

∫
dt L

(
q(t)+ εδ(t − s), q̇(t)+ ε d

dt
δ(t − s)

)
=

∫
dt L(q, q̇)+ ε

∫
dt

(
∂L

∂q
δ(t − s)+ ∂L

∂ q̇

d

dt
δ(t − s)

)
+ �(ε2)

= S[q, q̇] + ε
(
∂L

∂q
(s)− d

dt

∂L

∂ q̇
(s)

)
+�(ε2),

the Euler–Lagrange equation may be written as

δS

δq(s)
= ∂L

∂q
(s)− d

dt

(
∂L

∂ q̇

)
(s) = 0. (1.12)

Let us next consider symmetries in the context of the Lagrangian formalism.
Suppose the Lagrangian L is independent of a certain coordinate qk .4 Such
a coordinate is called cyclic. The momentum which is conjugate to a cyclic
coordinate is conserved. In fact, the condition ∂L/∂qk = 0 leads to

d pk

dt
= d

dt

∂L

∂ q̇k
= ∂L

∂qk
= 0. (1.13)

This argument can be mathematically elaborated as follows. Suppose the
Lagrangian L has a symmetry, which is continuously parametrized. This means,
more precisely, that the action S = ∫

dt L is invariant under the symmetry
operation on qk(t). Let us consider an infinitesimal symmetry operation qk(t)→
qk(t) + δqk(t) on the path qk(t).5 This implies that if qk(t) is a path producing
an extremum of the action, then qk(t) → qk(t) + δqk(t) also corresponds to an
extremum. Since S is invariant under this change, it follows that

δS =
∫ t f

ti

∑
k

δqk

(
∂L

∂qk
− d

dt

∂L

∂ q̇k

)
+

∑
k

[
δqk

∂L

∂ q̇k

]t f

ti

= 0.

4 Of course, L may depend on q̇k . Otherwise, the coordinate qk is not our concern at all.
5 Since the symmetry is continuous, it is always possible to define such an infinitesimal operation.
Needless to say, δq(ti ) and δq(t f ) do not, in general, vanish in the present case.

 



The first term in the middle expression vanishes since q is a solution to the Euler–
Lagrange equation. Accordingly, we obtain∑

k

δqk(ti )pk(ti ) =
∑

k

δqk(t f )pk(t f ) (1.14)

where use has been made of the definition pk = ∂L/∂ q̇k . Since ti and t f

are arbitrary, this equation shows that the quantity
∑

k δqk(t)pk(t) is, in fact,
independent of t and hence conserved.

Example 1.2. Let us consider a particle m moving under a force produced by a
spherically symmetric potential V (r), where r, θ, φ are three-dimensional polar
coordinates. The Lagrangian is given by

L = 1
2 m[ṙ2 + r2(θ̇2 + sin2 θφ̇2)] − V (r).

Note that qk = φ is cyclic, which leads to the conservation law

δφ
∂L

∂φ̇
∝ mr2 sin2 θφ̇ = constant.

This is nothing but the angular momentum around the z axis. Similar arguments
can be employed to show that the angular momenta around the x and y axes are
also conserved.

A few remarks are in order:

• Let Q(q) be an arbitrary function of q . Then the Lagrangians L and
L + dQ/dt yield the same Euler–Lagrange equation. In fact,

∂

∂qk

(
L + dQ

dt

)
− d

dt

[
∂

∂ q̇k

(
L + dQ

dt

)]
= ∂L

∂qk
+ ∂

∂qk

dQ

dt
− d

dt

∂L

∂ q̇k
− d

dt

∂

∂ q̇k

(∑
j

∂Q

∂q j
q̇ j

)

= ∂

∂qk

dQ

dt
− d

dt

∂Q

∂qk
= 0.

• An interesting observation is that Newtonian mechanics is realized as an
extremum of the action but the action itself is defined for any trajectory. This
fact plays an important role in path integral formation of quantum theory.

1.1.3 Hamiltonian formalism

The Lagrangian formalism yields a second-order ordinary differencial equation
(ODE). In contrast, the Hamiltonian formalism gives equations of motion which
are first order in the time derivative and, hence, we may introduce flows in the

 



phase space defined later. What is more important, however, is that we can make
the symplectic structure manifest in the Hamiltonian formalism, which will be
shown in example 5.12 later.

Suppose a Lagrangian L is given. Then the corresponding Hamiltonian is
introduced via Legendre transformation of variables as

H (q, p) ≡
∑

k

pk q̇k − L(q, q̇), (1.15)

where q̇ is eliminated in the left-hand side (LHS) in favour of p by making use of
the definition of the momentum pk = ∂L(q, q̇)/∂ q̇k . For this transformation to
be defined, the Jacobian must satisfy

det

(
∂pi

∂ q̇ j

)
= det

(
∂2 L

∂ q̇i q̇ j

)
�= 0.

The space with coordinates (qk, pk) is called the phase space.
Let us consider an infinitesimal change in the Hamiltonian induced by δqk

and δpk,

δH =
∑

k

[
δpkq̇k + pkδq̇k − ∂L

∂qk
δqk − ∂L

∂ q̇k
δq̇k

]
=

∑
k

[
δpkq̇k − ∂L

∂qk
δqk

]
.

It follows from this relation that

∂H

∂pk
= q̇k,

∂H

∂qk
= − ∂L

∂qk
(1.16)

which are nothing more than the replacements of independent variables.
Hamilton’s equations of motion are obtained from these equations if the Euler–
Lagrange equation is employed to replace the LHS of the second equation,

q̇k = ∂H

∂pk
ṗk = −∂H

∂qk
. (1.17)

Example 1.3. Let us consider a one-dimensional harmonic oscillator with the
Lagrangian L = 1

2 mq̇2 − 1
2 mω2q2, where ω2 = k/m. The momentum conjugate

to q is p = ∂L/∂ q̇ = mq̇, which can be solved for q̇ to yield q̇ = p/m. The
Hamiltonian is

H (q, p) = pq̇ − L(q, q̇) = p2

2m
+ 1

2
mω2q2. (1.18)

Hamilton’s equations of motion are:

d p

dt
= −mω2q

dq

dt
= p

m
. (1.19)

 



Let us take two functions A(q, p) and B(q, p) defined on the phase space of
a Hamiltonian H . Then the Poisson bracket [A, B] is defined by 6

[A, B] =
∑

k

(
∂A

∂qk

∂B

∂pk
− ∂A

∂pk

∂B

∂qk

)
. (1.20)

Exercise 1.1. Show that the Poisson bracket is a Lie bracket, namely it satisfies

[A, c1 B1 + c2 B2] = c1[A, B1] + c2[A, B2] linearity (1.21a)

[A, B] = −[B, A] skew-symmetry (1.21b)

[[A, B],C] + [[C, A], B] + [[B,C], A] = 0 Jacobi identity. (1.21c)

The fundamental Poisson brackets are

[pi , p j ] = [qi , q j ] = 0 [qi , p j ] = δi j . (1.22)

It is important to notice that the time development of a physical quantity
A(q, p) is expressed in terms of the Poisson bracket as

dA

dt
=

∑
k

(
dA

dqk

dqk

dt
+ dA

d pk

d pk

dt

)
=

∑
k

(
dA

dqk

∂H

∂pk
− dA

d pk

∂H

∂qk

)
= [A, H ]. (1.23)

If it happens that [A, H ] = 0, the quantity A is conserved, namely dA/dt = 0.
The Hamilton equations of motion themselves are written as

d pk

dt
= [pk, H ] dqk

dt
= [qk, H ]. (1.24)

Theorem 1.1. (Noether’s theorem) Let H (qk, pk) be a Hamiltonian which is
invariant under an infinitesimal coordinate transformation qk → q ′k = qk +
ε fk(q). Then

Q =
∑

k

pk fk(q) (1.25)

is conserved.

Proof. One has H (qk, pk) = H (q ′k, p′k) by definition. It follows from q ′k =
qk + ε fk(q) that the Jacobian associated with the coordinate change is

i j = ∂q ′i
∂q j

	 δi j + ε ∂ fi (q)

∂q j
6 When the commutation relation [A, B] of operators is introduced later, the Poisson bracket will be
denoted as [A, B]PB to avoid confusion.

 



up to �(ε). The momentum transforms under this coordinate change as

pi →
∑

j

p j
−1
j i 	 pi − ε

∑
j

p j
∂ f j

∂qi
.

Then, it follows that

0 = H (q ′k, p′k)− H (qk, pk)

= ∂H

∂qk
ε f (q)− ∂H

∂p j
εpi

∂ fi

∂q j

= ε
[
∂H

∂qk
fk(q)− ∂H

∂p j
pi
∂ fi

∂q j

]
= ε[H, Q] = ε dQ

dt
,

which shows that Q is conserved. �

This theorem shows that to find a conserved quantity is equivalent to finding
a transformation which leaves the Hamiltonian invariant.

A conserved quantity Q is the ‘generator’ of the transformation under
discussion. In fact,

[qi , Q] =
∑

k

[
∂qi

∂qk

∂Q

∂pk
− ∂qi

∂pk

∂Q

∂qk

]
=

∑
k

δik fk(q) = fi (q)

which shows that δqi = ε fi (q) = ε[qi , Q].
A few examples are in order. Let H = p2/2m be the Hamiltonian of a free

particle. Since H does not depend on q , it is invariant under q 
→ q+ε·1, p 
→ p.
Therefore, Q = p · 1 = p is conserved. The conserved quantity Q is identified
with the linear momentum.

Example 1.4. Let us consider a paticle m moving in a two-dimensional plane with
the axial symmetric potential V (r). The Lagrangian is

L(r, θ) = 1
2 m(ṙ2 + r2φ̇2)− V (r).

The canonical conjugate momenta are:

pr = mṙ pθ = mr2θ̇ .

The Hamiltonian is

H = pr ṙ + pθ θ̇ − L = p2
r

2m
+ p2

θ

2mr2
+ V (r).

This Hamiltonian is clearly independent of θ and, hence, invariant under the
transformation

θ 
→ θ + ε · 1, pθ 
→ pθ .

 



The corresponding conserved quantity is

Q = pθ · 1 = mr2θ̇

that is the angular momentum.

1.2 Canonical quantization

It was known by the end of the 19th century that classical physics,
namely Newtonian mechanics and classical electromagnetism, contains serious
inconsistencies. Later at the beginning of the 20th century, these were resolved by
the discoveries of special and general relativities and quantum mechanics. So far,
there is no single experiment which contradicts quantum theory. It is surprising,
however, that there is no proof for quantum theory. What one can say is that
quantum theory is not in contradiction to Nature. Accordingly, we do not prove
quantum mechanics here but will be satisfied with outlining some ‘rules’ on which
quantum theory is based.

1.2.1 Hilbert space, bras and kets

Let us consider a complex Hilbert space7

� = {|φ〉, |ψ〉, . . .}. (1.26)

An element of� is called a ket or a ket vector.
A linear function α : �→ � is defined by

α(c1|ψ1〉 + c2|ψ2〉) = c1α(|ψ1〉)+ c2α(|ψ2〉) ∀ci ∈ � , |ψi 〉 ∈ �.
We employ a special notation introduced by Dirac and write the linear function
as 〈α| and the action as 〈α|ψ〉 ∈ � . The set of linear functions is itself a vector
space called the dual vector space of�, denoted�∗. An element of� is called
a bra or a bra vector.

Let {|e1〉, |e2〉, . . .} be a basis of �.8 Any vector |ψ〉 ∈ � is then expanded
as |ψ〉 =∑

k ψk |ek〉, where ψk ∈ � is called the kth component of |ψ〉. Now let
us introduce a basis {〈ε1|, 〈ε2|, . . .} in �∗. We require that this basis be a dual
basis of {|ek〉}, that is

〈εi |e j 〉 = δi j . (1.27)

7 In quantum mechanics, a Hilbert space often means the space of square integrable functions L2(M)
on a space (manifold) M. In the following, however, we need to deal with such functions as δ(x) and
eikx with infinite norm. An extended Hilbert space which contains such functions is called the rigged
Hilbert space. The treatment of Hilbert spaces here is not mathematically rigorous but it will not cause
any inconvenience.
8 We assume� is separable and there are, at most, a countably infinite number of vectors in the basis.
Note that we cannot impose an orthonormal condition since we have not defined the norm of a vector.

 



Then an arbitrary linear function 〈α| is expanded as 〈α| = ∑
k αk〈εk |, where

αk ∈ � is the kth component of 〈α|. The action of 〈α| ∈ �∗ on |ψ〉 ∈ � is now
expressed in terms of their components as

〈α|ψ〉 =
∑

i j

αiψ j 〈εi |e j 〉 =
∑

i j

αiψ jδi j =
∑

i

αiψi . (1.28)

One may consider |ψ〉 as a column vector and 〈α| as a row vector so that 〈α|ψ〉
is regarded as just a matrix multiplication of a row vector and a column vector,
yielding a scalar.

It is possible to introduce a one-to-one correspondence between elements in
� and�∗. Let us fix a basis {|ek〉} of� and {〈εk|} of�∗. Then corresponding to
|ψ〉 = ∑

k ψk |ek〉, there exists an element 〈ψ| = ∑
k ψ

∗
k 〈εk | ∈ �∗. The reason

for the complex conjugation of ψk becomes clear shortly. Then it is possible to
introduce an inner product between two elements of�. Let |φ〉, |ψ〉 ∈ �. Their
inner product is defined by

(|φ〉, |ψ〉) ≡ 〈φ|ψ〉 =
∑

k

φ∗kψk . (1.29)

We customarily use the same letter to denote corresponding bras and kets. The
norm of a vector |ψ〉 is naturally defined by the inner product. Let ‖|ψ〉‖ =√〈ψ|ψ〉. It is easy to show that this definition satisfies all the axioms of the norm.
Note that the norm is real and non-negative thanks to the complex conjugation in
the components of the bra vector.

By using the inner product between two ket vectors, it becomes possible
to construct an orthonormal basis {|ek〉} such that (|ei 〉, |e j 〉) = 〈ei |e j 〉 = δi j .
Suppose |ψ〉 = ∑

k ψk |ek〉. By multiplying 〈ek | from the left, one obtains
〈ek |ψ〉 = ψk . Then |ψ〉 is expressed as |ψ〉 = ∑

k〈ek |ψ〉|ek〉 = ∑
k |ek〉〈ek |ψ〉.

Since this is true for any |ψ〉, we have obtained the completeness relation∑
k

|ek〉〈ek | = I, (1.30)

I being the identity operator in � (the unit matrix when� is finite dimensional).

1.2.2 Axioms of canonical quantization

Given an isolated classical dynamical system such as a harmonic oscillator, we
can construct a corresponding quantum system following a set of axioms.

A1. There exists a Hilbert space � for a quantum system and the state of the
system is required to be described by a vector |ψ〉 ∈ �. In this sense,
|ψ〉 is also called the state or a state vector. Moreover, two states |ψ〉 and
c|ψ〉 (c ∈ � , c �= 0) describe the same state. The state can also be described
as a ray representation of�.

 



A2. A physical quantity A in classical mechanics is replaced by a Hermitian
operator Â acting on �.9 The operator Â is often called an observable.
The result obtained when A is measured is one of the eigenvalues of Â. (The
Hermiticity of Â has been assumed to guarantee real eigenvalues.)

A3. The Poisson bracket in classical mechanics is replaced by the commutator

[ Â, B̂] ≡ ÂB̂ − B̂ Â (1.31)

multiplied by −i/h̄. The unit in which h̄ = 1 will be employed hereafter
unless otherwise stated explicitly. The fundamental commutation relations
are (cf (1.22))

[q̂i , q̂ j ] = [ p̂i , p̂ j ] = 0 [q̂i , p̂ j ] = iδi j . (1.32)

Under this replacement, Hamilton’s equations of motion become

dq̂i

dt
= 1

i
[q̂i , H ] d p̂i

dt
= 1

i
[ p̂i , H ]. (1.33)

When a classical quantity A is independent of t explicitly, A satisifies the
same equation as Hamilton’s equation. By analogy, for Â which does not
depend on t explicitly, one has Heisenberg’s equation of motion:

d Â

dt
= 1

i
[ Â, Ĥ ]. (1.34)

A4. Let |ψ〉 ∈ � be an arbitrary state. Suppose one prepares many systems, each
of which is in this state. Then, observation of A in these systems at time t
yields random results in general. Then the expectation value of the results is
given by

〈A〉t = 〈ψ| Â(t)|ψ〉〈ψ|ψ〉 . (1.35)

A5. For any physical state |ψ〉 ∈ �, there exists an operator for which |ψ〉 is one
of the eigenstates.10

These five axioms are adopted as the rules of the game. A few comments
are in order. Let us examine axiom A4 more carefully. Let us assume that |ψ〉 is
normalized as ‖|ψ〉‖2 = 〈ψ|ψ〉 = 1 for simplicity. Suppose Â(t) has the set of
discrete eigenvalues {an}with the corresponding normalized eigenvectors {|n〉}:11

Â(t)|n〉 = an|n〉 〈n|n〉 = 1.

9 An operator on � is denoted by .̂ This symbol will be dropped later unless this may cause
confusion.
10 This axiom is often ignored in the literature. The raison d’etre of this axiom will be clarified later.
11 Since Â(t) is Hermitian, it is always possible to choose {|n〉} to be orthonormal.

 



Then the expectation value of Â(t) with respect to an arbitrary state

|ψ〉 =
∑

n

ψn |n〉 ψn = 〈n|ψ〉

is
〈ψ| Â(t)|ψ〉 =

∑
m,n

ψ∗mψn〈m| Â(t)|n〉 =
∑

n

an|ψn|2.

From the fact that the result of the measurement of A in state |n〉 is always an , it
follows that the probability of the outcome of the measurement being an , that is
the probability of |ψ〉 being in |n〉, is

|ψn|2 = |〈n|ψ〉|2.
The number 〈n|ψ〉 represents the ‘weight’ of the state |n〉 in the state |ψ〉 and is
called the probability amplitude.

If Â has a continuous spectrum a, the state |ψ〉 is expanded as

|ψ〉 =
∫

daψ(a)|a〉.

The completeness relation now takes the form∫
da |a〉〈a| = I. (1.36)

Then, from the identity
∫

da′ |a′〉〈a′|a〉 = |a〉, one must have the normalization

〈a′|a〉 = δ(a′ − a), (1.37)

where δ(a) is the Dirac δ-function. The expansion coefficient ψ(a) is obtained
from this normalization condition as ψ(a) = 〈a|ψ〉. If |ψ〉 is normalized as
〈ψ|ψ〉 = 1, one should have

1 =
∫

da da′ψ∗(a)ψ(a′)〈a|a′〉 =
∫

da |ψ(a)|2.

It also follows from the relation

〈ψ| Â|ψ〉 =
∫

a|ψ(a)|2 da

that the probability with which the measured value of A is found in the interval
[a, a + da] is |ψ(a)|2 da. Therefore, the probability density is given by

ρ(a) = |〈a|ψ〉|2. (1.38)

Finally let us clarify why axiom A5 is required. Suppose that the system
is in the state |ψ〉 and assume that the probability of the state to be in |φ〉
simultaneously is |〈ψ|φ〉|2. This has already been mentioned, when |ψ〉 is an
eigenstate of some observable. Axiom A5 asserts that this is true for an arbitrary
state |ψ〉.

 



1.2.3 Heisenberg equation, Heisenberg picture and Schrödinger picture

The formal solution to the Heisenberg equation of motion

d Â

dt
= 1

i
[ Â, Ĥ ]

is easily obtained as

Â(t) = eiĤ t Â(0)e−iĤt . (1.39)

Therefore, the operators Â(t) and Â(0) are related by the unitary operator

Û(t) = e−iĤt (1.40)

and, hence, are unitary equivalent. This formalism, in which operators depend on
t , while states do not, is called the Heisenberg picture.

It is possible to introduce another picture which is equivalent to the
Heisenberg picture. Let us write down the expectation value of Â with respect
to the state |ψ〉 as

〈Â(t)〉 = 〈ψ|eiĤ t Â(0)e−iĤt |ψ〉
= (〈ψ|eiĤ t ) Â(0)(e−iĤt |ψ〉).

If we write |ψ(t)〉 ≡ e−iĤ t |ψ〉, we find that the expectation value at t is also
expressed as

〈Â(t)〉 = 〈ψ(t)| Â(0)|ψ(t)〉. (1.41)

Thus, states depend on t while operators do not in this formalism. This formalism
is called the Schrödinger picture.

Our next task is to find the equation of motion for |ψ(t)〉. To avoid confusion,
quantities associated with the Schrödinger picture (the Heisenberg picture) are

denoted with the subscript S (H), respectively. Thus, |ψ(t)〉S = e−iĤ t |ψ〉H
and ÂS = ÂH(0). By differentiating |ψ(t)〉S with respect to t , one finds the
Schrödinger equation:

i
d

dt
|ψ(t)〉S = Ĥ |ψ(t)〉S. (1.42)

Note that the Hamiltonian Ĥ is the same for both the Schrödinger picture and the
Heisenberg picture. We will drop the subscripts S and H whenever this does not
cause confusion.

1.2.4 Wavefunction

Let us consider a particle moving on the real line � and let x̂ be the position
operator with the eigenvalue y and the corresponding eigenvector |y〉; x̂ |y〉 =
y|y〉. The eigenvectors are normalized as 〈x |y〉 = δ(x − y).

 



Similarly, let q be the eigenvalue of p̂ with the eigenvector |q〉; p̂|q〉 = q|q〉
such that 〈p|q〉 = δ(p − q).

Let |ψ〉 ∈ � be a state. The inner product

ψ(x) ≡ 〈x |ψ〉 (1.43)

is the component of |ψ〉 in the basis |x〉,

|ψ〉 =
∫
|x〉〈x | dx |ψ〉 =

∫
ψ(x)|x〉 dx .

The coefficient ψ(x) ∈ � is called the wavefunction. According to the
earlier axioms of quantum mechanics outlined, it is the probability amplitude of
finding the particle at x in the state |ψ〉, namely |ψ(x)|2 dx is the probability of
finding the particle in the interval [x, x + dx]. Then it is natural to impose the
normalization condition ∫

dx |ψ(x)|2 = 〈ψ|ψ〉 = 1 (1.44)

since the probability of finding the particle anywhere on the real line is always
unity.

Similarly, ψ(p) = 〈p|ψ〉 is the probability amplitude of finding the particle
in the state with the momentum p and the probability of finding the momentum
of the particle in the interval [p, p + d p] is |ψ(p)|2 d p.

The inner product of two states in terms of the wavefunctions is

〈ψ|φ〉 =
∫

dx 〈ψ|x〉〈x |φ〉 =
∫

dx ψ∗(x)φ(x), (1.45a)

=
∫

d p 〈ψ|p〉〈p|φ〉 =
∫

d pψ∗(p)φ(p). (1.45b)

An abstract ket vector is now expressed in terms of a more concrete
wavefunction ψ(x) or ψ(p). What about the operators? Now we write down the
operators in the basis |x〉. From the defining equation x̂ |x〉 = x |x〉, one obtains
〈x |x̂ = 〈x |x , which yields after multiplication by |ψ〉 from the right,

〈x |x̂ |ψ〉 = x〈x |ψ〉 = xψ(x). (1.46)

This is often written as (x̂ψ)(x) = xψ(x).
What about the momentum operator p̂? Let us consider the unitary operator

Û(a) = e−ia p̂.

Lemma 1.1. The operator Û(a) defined as before satisfies

Û(a)|x〉 = |x + a〉. (1.47)

 



Proof. It follows from [x̂, p̂] = i that [x̂, p̂n] = in p̂n−1 for n = 1, 2, . . ..
Accordingly, we have

[x̂, Û (a)] =
[

x̂,
∑

n

(−ia)n

n! p̂n
]
= aÛ(a)

which can also be written as

x̂Û(a)|x〉 = Û(a)(x̂ + a)|x〉 = (x + a)Û(a)|x〉.
This shows that Û(a)|x〉 ∝ |x + a〉. Since Û (a) is unitary, it preseves the norm
of a vector. Thus, Û(a)|x〉 = |x + a〉. �

Let us take an infinitesimal number ε. Then

Û(ε)|x〉 = |x + ε〉 	 (1− iε p̂)|x〉.
It follows from this that

p̂|x〉 = |x + ε〉 − |x〉−iε
ε→0−→ i

d

dx
|x〉 (1.48)

and its dual

〈x | p̂ = 〈x + ε| − 〈x |
iε

ε→0−→ −i
d

dx
〈x |. (1.49)

Therefore, for any state |ψ〉, one obtains

〈x | p̂|ψ〉 = −i
d

dx
〈x |ψ〉 = −i

d

dx
ψ(x). (1.50)

This is also written as ( p̂ψ)(x) = −i dψ(x)/dx .
Similarly, if one uses a basis |p〉, one will have the momentum representation

of the operators as

x̂ |p〉 = − i
d

d p
|p〉 (1.51)

p̂|p〉 = p|p〉 (1.52)

〈p|x̂ |ψ〉 = i
d

d p
ψ(p) (1.53)

〈p| p̂|ψ〉 = pψ(p). (1.54)

Exercise 1.2. Prove (1.51)–(1.54).

Proposition 1.1.

〈x |p〉 = 1√
2π

eipx (1.55)

〈p|x〉 = 1√
2π

e−ipx (1.56)

 



Proof. Take |ψ〉 = |p〉 in the relation

( p̂ψ)(x) = 〈x | p̂|ψ〉 = −i
d

dx
ψ(x)

to find

p〈x |p〉 = 〈x | p̂|p〉 = −i
d

dx
〈x |p〉.

The solution is easily found to be

〈x |p〉 = Ceipx .

The normalization condition requires that

δ(x − y) = 〈x |y〉 = 〈x |
∫
|p〉〈p| d p |y〉

= C2
∫

d p eip(x−y)

= C22πδ(x − y),

where C has been taken to be real. This shows that C = 1/
√

2π . The proof of
(1.56) is left as an exercise. �

Thus, ψ(x) and ψ(p) are related as

ψ(p) = 〈p|ψ〉 =
∫

dx 〈p|x〉〈x |ψ〉 =
∫

dx√
2π

e−ipxψ(x) (1.57)

which is nothing other than the Fourier transform of ψ(x).
Let us next derive the Schrödinger equation which ψ(x) satisfies. By

applying 〈x | on (1.42) from the left, we obtain

〈x |i d

dt
|ψ(t)〉 = 〈x |Ĥ |ψ(t)〉

where the subscript S has been dropped. For a Hamiltonian of the type Ĥ =
p̂2/2m + V (x̂), we obtain the time-dependent Schrödinger equation:

i
d

dt
ψ(x, t) =

〈
x

∣∣∣∣∣ p̂2

2m
+ V (x̂)

∣∣∣∣∣ψ(t)
〉

= − 1

2m

d2

dx2ψ(x, t) + V (x)ψ(x, t), (1.58)

where ψ(x, t) ≡ 〈x |ψ(t)〉.
Suppose a solution of this equation is written in the form ψ(x, t) =

T (t)φ(x). By substituting this into (1.58) and dividing the result by ψ(x, t),
we obtain

iT ′(t)
T (t)

= −φ
′′(x)/2m + V (x)φ(x)

φ(x)

 



where the prime denotes the derivative with respect to a relevant variable. Since
the LHS is a function of t only while the right-hand side (RHS) of x only, they
must be a constant, which we label E . Accordingly, there are two equations,
which should be solved simultaneously,

iT ′(t) = ET (t) (1.59)

− 1

2m

d2

dx2
φ(x)+ V (x)φ(x) = Eφ(x). (1.60)

The first equation is easily solved to yield

T (t) = exp(−iEt) (1.61)

while the second one is the eigenvalue problem of the Hamiltonian operator
and called the time-independent Schrödinger equation, the stationary state
Schrödinger equation or, simply, the Schrödinger equation. For three-
dimensional space, it is written as

− 1

2m
∇2φ(x)+ V (x)φ(x) = Eφ(x). (1.62)

1.2.5 Harmonic oscillator

It is instructive to stop here for the moment and work out some non-trivial
example. We take a one-dimensional harmonic oscillator as an example since
it is not trivial, it is still solvable exactly and it is very important in the folllowing
applications.

The Hamiltonian operator is

Ĥ = p̂2

2m
+ 1

2
mω2x̂2 [x̂, p̂] = i. (1.63)

The (time-independent) Schrödinger equation is

− 1

2m

d2

dx2
ψ(x)+ 1

2
mω2x2ψ(x) = Eψ(x). (1.64)

By rescaling the variables as ξ = √mωx , ε = E/h̄ω, one arrives at

ψ ′′ + (ε − ξ2)ψ = 0. (1.65)

The normalizable solution of this ordinary differential equation (ODE) exists only
when ε = εn ≡ (n + 1

2 ) (n = 0, 1, 2, . . .) namely

E = En ≡ (n + 1
2 )ω (n = 0, 1, 2, . . .) (1.66)

and the normalized solution is written in terms of the Hermite polynomial

Hn(ξ) = (−1)neξ
2/2 dne−ξ2/2

dξn
(1.67)

 



as

ψ(ξ) =
√

mω

2nn!√π Hn(ξ)e−ξ
2/2. (1.68)

This eigenvalue problem can also be analysed by an algebraic method.
Define the annihilation operator â and the creation operator â† by

â =
√

mω

2
x̂ + i

√
1

2mω
p̂ (1.69)

â† =
√

mω

2
x̂ − i

√
1

2mω
p̂. (1.70)

The number operator N̂ is defined by

N̂ = â†â. (1.71)

Exercise 1.3. Show that

[â, â] = [â†, â†] = 0 [â, â†] = 1 (1.72)

and
[N̂ , â] = −â [N̂ , â†] = â†. (1.73)

Show also that
Ĥ = (N̂ + 1

2 )ω. (1.74)

Let |n〉 be a normalized eigenvector of N̂ ,

N̂ |n〉 = n|n〉.
Then it follows from the commutation relations proved in exercise 1.3 that

N̂(â|n〉) = (â N̂ − â)|n〉 = (n − 1)(â|n〉)
N̂ (â†|n〉) = (â† N̂ + â†)|n〉 = (n + 1)(â†|n〉).

Therefore, â decreases the eigenvalue by one while â† increases it by one, hence
the name annihilation and creation. Note that the eigenvalue n ≥ 0 since

n = 〈n|N̂ |n〉 = (〈n|â†)(â|n〉) = ‖â|n〉‖2 ≥ 0.

The equality holds if and only if â|n〉 = 0. Take a fixed n0 > 0 and apply â
many times on |n0〉. Eventually the eigenvalue of âk|n0〉 will be negative for
some integer k > n0, which is a contradiction. This can be avoided only when n0
is a non-negative integer. Thus, there exists a state |0〉 which satisfies â|0〉 = 0.
The state |0〉 is called the ground state. Since N̂ |0〉 = â†â|0〉 = 0, this state is

 



the eigenvector of N̂ with the eigenvalue 0. The wavefunction ψ0(x) ≡ 〈x |0〉 is
obtained by solving the first-order ODE

〈x |â|0〉 =
√

1

2mω

(
d

dx
ψ0(x)+ mωxψ0(x)

)
= 0. (1.75)

The solution is easily found to be

ψ0(x) = C exp(−mωx2/2) (1.76)

where C is the normalization constant given in (1.68). An arbitrary vector |n〉 is
obtained from |0〉 by a repeated application of â†.

Exercise 1.4. Show that

|n〉 = 1√
n! (â

†)n|0〉 (1.77)

satisfies N̂ |n〉 = n|n〉 and is normalized.

Thus, the spectrum of N̂ turns out to be Spec N̂ = {0, 1, 2, . . .} and hence
the spectrum of the Hamiltonian is

Spec Ĥ = { 1
2 ,

3
2 ,

5
2 , . . .}. (1.78)

1.3 Path integral quantization of a Bose particle

The canonical quantization of a classical system has been discussed in the
previous section. There the main role was played by the Hamiltonian and the
Lagrangian did not show up at all. In the present section, it will be shown that
there exists a quantization process, called the path integral quantization, based
heavily on the Lagrangian.

1.3.1 Path integral quantization

We start our analysis with one-dimensional systems. Let x̂(t) be the position
operator in the Heisenberg picture. Suppose the particle is found at xi at time
ti (>0). Then the probability amplitude of finding this particle at x f at later time
t f (>ti ) is

〈x f , t f |xi , ti 〉 (1.79)

where the vectors are defined in the Heisenberg picture, 12

x̂(ti )|xi , ti 〉 = xi |xi , ti 〉 (1.80)

x̂(t f )|x f , t f 〉 = x f |x f , t f 〉. (1.81)
12 We have dropped S and H again to simplify the notation. Note that |xi , ti 〉 is an instantaneous
eigenvector and hence parametrized by the time ti when the position is measured. This should not be
confused with the dynamical time dependence of a wavefunction in the Schrödinger picture.

 



The probability amplitude (1.79) is also called the transition amplitude.
Let us rewrite the probability amplitude in terms of the Schrödinger picture.

Let x̂ = x̂(0) be the position operator with the eigenvector

x̂ |x〉 = x |x〉. (1.82)

Since x̂ has no time dependence, its eigenvector should be also time independent.
If

x̂(ti ) = eiĤ ti x̂e−iĤti (1.83)

is substituted into (1.80), we obtain

eiĤ ti x̂e−iĤti |xi , ti 〉 = xi |xi , ti 〉.
By multiplying e−iĤ ti from the left, we find

x̂[e−iĤti |xi , ti 〉] = xi [e−iĤti |xi , ti 〉].
This shows that the two eigenvectors are related as

|xi , ti 〉 = eiĤ ti |xi〉. (1.84)

Similarly, we have

|x f , t f 〉 = eiĤ t f |x f 〉, (1.85)

from which we obtain
〈x f , t f | = 〈x f |e−iĤ t f . (1.86)

From these results, we express the probability amplitude in the Schrödinger
picture as

〈x f , t f |xi , ti 〉 = 〈x f |e−iĤ(t f−ti )|xi 〉. (1.87)

In general, the function

h(x, y; β) ≡ 〈x |e−Ĥβ |y〉 (1.88)

is called the heat kernel of Ĥ . This nomenclature originates from the similarity
between the Schrödinger equation and the heat equation. The amplitude (1.87) is
the heat kernel of Ĥ with imaginary β:

〈x f , t f |xi , ti 〉 = h(x f , xi ; i(t f − ti )). (1.89)

Now the amplitude (1.87) is expressed in the path integral formalism. To
this end, we consider the case in which t f − ti = ε is an infinitesimal positive
number. Let us put xi = x and x f = y to simplify the notation and suppose the
Hamiltonian is of the form

Ĥ = p̂2

2m
+ V (x̂). (1.90)
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Figure 1.1. The integration contour.

We first prove the following lemma.

Lemma 1.2. Let a be a positive constant. Then∫ ∞

−∞
e−iap2

d p =
√
π

ia
. (1.91)

Proof. The integral is different from an ordinary Gaussian integral in that the
coefficient of p2 is a pure imaginary number. First replace p by z = x + iy. The
integrand exp(−iaz2) is analytic in the whole z-plane. Now change the integration
contour from the real axis to the one shown in figure 1.1. Along path 1, we have
dz = dx and hence this path gives the same contribution as the original integration
(1.91). The contribution from paths 2 and 4 vanishes as R →∞. Noting that the
variable along path 3 is z = (1− i)x , we evaluate the contribution from this path
as

(1− i)
∫ −∞

∞
e−2ax2

dx = −e−iπ/4
√
π

a
.

The summation of all the contribution must vanish due to Cauchy’s theorem and,
hence, ∫ ∞

−∞
d p e−iap2 = e−iπ/4

√
π

a
=

√
π

ia
. �

Now this lemma is employed to obtain the heat kernel for an infinitesimal
time interval.

Proposition 1.2. Let Ĥ be a Hamiltonian of the form (1.90) and ε be an
infinitesimal positive number. Then for any x, y ∈ �, we find that

〈x |e−iĤε|y〉 = 1√
2π iε

exp

[
iε

{
m

2

(
(x − y)2

ε

)2

− V

(
x + y

2

)}
+ �(ε2)+ �(ε(x − y)2)

]
. (1.92)

 



Proof. The completeness relation for the momentum eigenvectors is inserted into
the LHS of (1.92) to yield

〈x |e−iĤε|y〉 =
∫

dk〈x |e−iε Ĥ |k〉〈k|y〉

=
∫

dk

2π
e−ikye−iε Ĥx eikx

where

Ĥx = − 1

2m

d2

dx2
+ V (x).

Now we find from the commutation relation of ∂x ≡ d/dx and eikx that

∂xeikx = ikeikx + eikx∂x = eikx (ik + ∂x ).

Repeated application of this commutation relation yields

∂n
x eikx = eikx (ik + ∂x)

n (n = 0, 1, 2, . . .)

from which we obtain

e−iε[−∂2
x /2m+V (x)]eikx = eikxe−iε[−(ik+∂x )

2/2m+V (x)].

Therefore,

〈x |e−iĤε|y〉 =
∫

dk

2π
eik(x−y)e−iε[−(ik+∂x )

2/2m+V (x)]

=
∫

dk

2π
e−i[εk2/2m−k(x−y)]e−iε[−ik∂x/m−∂2

x /2m+V (x)] · 1

where the ‘1’ at the end of the last line is written explicitly to remind us of the
fact ∂x 1 = 0. If we further put p = √ε/2mk and expands the last exponential
function in the last line, we obtain

〈x |e−iε Ĥ |y〉 =
√

2m

ε
eim(x−y)2/2ε

∫
d p

2π
e−i[p+√m/2ε(x−y)]2

×
∞∑

n=0

(−iε)n

n!

[
i

√
2

εm
p∂x − ∂2

x

2m
+ V (x)

]n

· 1.

 



If we put q = p +√m/2ε(x − y) and use lemma 1.2, we obtain:

〈x |e−iε Ĥ |y〉 =
√

2m

ε
eim(x−y)2/2ε

∫
dq

2π
e−iq2

×
[

1+ (−iε)V (x)+ (−ε
2)

2

(−i)

ε
(x − y)∂x V (x)

+�(ε2)+�(ε|x − y|2)
]

=
√

m

2π iε
eiε(m/2)[(x−y)/ε]2

× exp

[
−iεV

(
x + y

2

)
+�(ε2)+�(ε|x − y|2)

]
.

Thus, the proposition has been proved. �

Note that the average value (x+ y)/2 appeared as the variable of V in (1.92).
This prescription is often called the Weyl ordering.

It is found from (1.92) that the integrand oscillates very rapidly for |x− y| >√
ε and it can be regarded as zero in the sense of distribution (the Riemann–

Lebesgue theorem). Therefore, as x − y < ε, the exponent of (1.92) approaches
the action for an infinitesimal time interval [0, ε],

�S =
∫ ε

0
dt

[m

2
v2 − V (x)

]
	

[m

2
v2 − V (x)

]
ε (1.93)

where v = (x − y)/ε is the average velocity and x is the average position.
Equation (1.92) also satisfies the boundary condition for ε→ 0,

〈x |e−iĤε|y〉 ε→0−→ 〈x |y〉 = δ(x − y). (1.94)

This can be shown by noting that∫ ∞

−∞
dx

√
m

2π iε
eim(x−y)2/2ε = 1.

The transition amplitude (1.79) for a finite time interval is obtained by
infinitely repeating the transition amplitude for an infinitesimal time interval one
after another. Let us first divide the interval t f − ti into n equal intervals,

ε = t f − ti
n

.

Put t0 = ti and tk = t0+εk (0 ≤ k ≤ n). Clearly tn = t f . Insert the completeness
relation

1 =
∫

dxk|xk, tk〉〈xk , tk | (1 ≤ k ≤ n − 1)

 



for each instant of time tk into (1.79) to yield

〈x f , t f |xi , ti 〉 = 〈x f , t f |
∫

dxn−1|xn−1, tn−1〉〈xn−1, tn−1|

×
∫

dxn−2|xn−2, tn−2〉 . . .
∫

dx1|x1, t1〉〈x1, t1|x0, t0〉.

Let us consider here the limit ε→ 0, namely n →∞. Proposition 1.2 states that
for an infinitesimal ε, we have

〈xk, tk |xk−1, tk−1〉 	
√

m

2π iε
ei�Sk

where

�Sk = ε
[

m

2

(
xk − xk−1

ε

)2

− V

(
xk−1 + xk

2

)]
.

Therefore, we find

〈x f , t f |xi , ti 〉 = lim
n→∞

( m

2π iε

)n/2
∫ n−1∏

j=1

dx j exp

(
i

n∑
k=1

�Sk

)
. (1.95)

If n − 1 points x1, x2, . . . , xn−1 are fixed, we obtain a piecewise linear path from
x0 to xn via these points. Then we define S({xk}) = ∑

k �Sk , which in the limit
n →∞ can be written as

S({xk}) n→∞−→ S[x(t)] =
∫ t f

ti
dt

[m

2
v2 − V (x)

]
. (1.96)

Note, however, that the S[x(t)] defined here is formal; the variables xk and xk−1
need not be close to each other and hence v = (xk − xk−1)/ε may diverge. This
transition amplitude is written symbolically as

〈x f , t f |xi , ti 〉 =
∫
�x exp

[
i
∫ t f

ti
dt

(m

2
v2 − V (x)

)]
=

∫
�x exp

[
i
∫ t f

ti
dt L(x, ẋ)

]
(1.97)

which is called the path integral representation of the transition amplitude. It
should be stressed again that the ‘v’ is not well defined and that this expression is
just a symbolic representation of the limit (1.95).

The integration measure is understood as∫
�x = summation over all paths x(t) with x(ti) = xi , x(t f ) = x f (1.98)

 



Figure 1.2. All the paths with fixed endpoints are considered in the path integral. The
integrand exp[iS({xk})] is integrated over these paths.

see figure 1.2. Although �x or S({xk}) is ill defined in the limit n → ∞, the
amplitude 〈x f , t f |xi , ti 〉 constructed from�x and S({xk}) together is well defined
and hence meaningful. This point is clarified in the following example.

Example 1.5. Let us work out the transition amplitude of a free particle moving
on the real axis with the Lagrangian

L = 1
2 mẋ2. (1.99)

The canonical conjugate momentum is p = ∂L/∂ ẋ = mẋ and the Hamiltonian is

H = pẋ − L = p2

2m
. (1.100)

The transition amplitude is calculated within the canonical quantum theory as

〈x f , t f |xi , ti 〉 = 〈x f |e−iĤT |xi〉 =
∫

d p〈x f |e−iĤT |p〉〈p|xi 〉

=
∫

d p

2π
eip(x f−xi )e−iT (p2/2m)

=
√

m

2π iT
exp

(
im(x f − xi )

2

2T

)
(1.101)

where T = t f − ti .
This result is obtained using the path integral formalism next. The amplitude

is expressed as

〈x f , t f |xi , ti 〉 = lim
n→∞

( m

2π iε

)n/2
∫

dx1 . . . dxn−1

exp

[
iε

n∑
k=1

m

2

(
xk − xk−1

ε

)2 ]
(1.102)

 



where ε = T/n. After scaling the coordinates as

yk =
( m

2ε

)1/2
xk

the amplitude becomes

〈x f , t f |xi , ti 〉 = lim
n→∞

( m

2π iε

)n/2
(

2ε

m

)(n−1)/2

∫
dy1 . . . dyn−1 exp

[
i

n∑
k=1

(yk − yk−1)
2
]
. (1.103)

It can be shown by induction (exercise) that

∫
dy1 . . . dyn−1 exp

[
i

n∑
k=1

(yk − yk−1)
2
]
=

[
(iπ)(n−1)

n

]1/2

ei(yn−y0)
2/n.

Taking the limit n →∞, we finally obtain

〈x f , t f |xi , ti 〉 = lim
n→∞

( m

2π iε

)n/2
(

2π iε

m

)(n−1)/2 1√
n

eim(x f −xi )
2/(2nε)

=
√

m

2π iT
exp

[
im(x f − xi )

2

2T

]
. (1.104)

It should be noted here that the exponent is the classical action. In fact, if we
note that the average velocity is v = (x f − xi )/(t f − ti ), the classical action is
found to be

Scl =
∫ t f

ti
dt

1

2
mv2 = m(x f − xi )

2

2(t f − ti )
.

It happens in many exactly solvable systems that the transition amplitude takes
the form

〈x f , t f |xi , ti 〉 = AeiScl, (1.105)

where all the effects of quantum fluctuation are taken into account in the prefactor
A.

1.3.2 Imaginary time and partition function

Suppose the spectrum of a Hamiltonian Ĥ is bounded from below. Then it is
always possible, by adding a postive constant to the Hamiltonian, to make Ĥ
positive definite;

Spec Ĥ = {0 < E0 ≤ E1 ≤ E2 ≤ · · ·} . (1.106)

 



It has been assumed for simplicity that the ground state is not degenerate. The

spectral decomposition of e−iĤt given by

e−iĤt =
∑

n

e−iEnt |n〉〈n| (1.107)

is analytic in the lower half-plane of t , where Ĥ |n〉 = En |n〉. Introduce the Wick
rotation by the replacement

t = −iτ (τ ∈ �+ ) (1.108)

where �+ is the set of positive real numbers. The variable τ is regarded as
imaginary time, which is also known as the Euclidean time since the world
distance changes from t2 − x2 to −(τ 2 + x2). Physical quantities change under
this change of variable as

ẋ = dx

dt
= i

dx

dτ

e−iĤ t = e−Ĥτ

i
∫ t f

ti
dt

[
1

2
mẋ2 − V (x)

]
= i(−i)

∫ τ f

τi

dτ

[
−1

2
m

(
dx

dτ

)2

− V (x)

]

= −
∫ τ f

τi

dτ

[
1

2
m

(
dx

dτ

)2

+ V (x)

]
.

Accordingly, the path integral is expressed in terms of the new variable as

〈x f , τ f |xi , τi 〉 = 〈x f |e−Ĥ(τ f−τi )|xi〉

=
∫
�̄x e

− ∫ τ f
τi dτ

[
1
2 m

(
dx
dτ

)2+V (x)

]
, (1.109)

where �̄ is the integration measure in the imaginary time τ .
For a given Hamiltonian Ĥ , the partition function is defined as

Z(β) = Tr e−β Ĥ (β > 0), (1.110)

where the trace is over the Hilbert space associated with Ĥ .
Let us take the eigenstates {|En〉} of Ĥ as the basis vectors of the Hilbert

space;
Ĥ |En〉 = En|En〉, 〈Em |En〉 = δmn.

Then the partition function is expressed as

Z(β) =
∑

n

〈En |e−β Ĥ |En〉 =
∑

n

〈En |e−βEn |En〉

=
∑

n

e−βEn . (1.111)

 



The partition function is also expressed in terms of the eigenvector |x〉 of x̂ .
Namely

Z(β) =
∫

dx〈x |e−β Ĥ |x〉. (1.112)

If β is identified with the Euclidean time by putting β = iT , we find that

〈x f |e−iĤT |xi〉 = 〈x f |e−β Ĥ |xi 〉,
from which we obtain the path integral expression of the partition function

Z(β) =
∫

dy
∫

x(0)=x(β)=y
�̄x exp

{
−

∫ β

0
dτ

(
1

2
mẋ2 + V (x)

)}
=

∫
periodic

�̄x exp

{
−

∫ β

0
dτ

(
1

2
mẋ2 + V (x)

)}
, (1.113)

where the integral in the last line is over all paths periodic in [0, β].

1.3.3 Time-ordered product and generating functional

Define the T -product of Heisenberg operators A(t) and B(t) by

T [A(t1)B(t2)] = A(t1)B(t2)θ(t1 − t2)+ B(t2)A(t1)θ(t2 − t1) (1.114)

θ(t) being the Heaviside function.13 Generalization to the case with more than
three operators should be trivial; operators in the bracket are rearranged so that the
time parameters decrease from the left to the right. The T -product of n operators
is expanded into n! terms, each of which is proportional to the product of n − 1
Heaviside functions. An important quantity in quantum mechanics is the matrix
element of the T -product,

〈x f , t f |T [x̂(t1)x̂(t f ) · · · x̂(tn)]|xi , ti 〉, (ti < t1, t2, . . . , tn < t f ). (1.115)

Suppose ti < t1 ≤ t2 ≤ · · · ≤ tn < t f in equation (1.115). By inserting the
completeness relation

1 =
∫ ∞

−∞
dxk|xk, tk〉〈xk, tk | (k = 1, 2, . . . , n)

into equation (1.115), we obtain

〈x f , t f |x̂(tn) · · · x̂(t1)|xi , ti 〉
= 〈x f , t f |x̂(tn)

∫
dxn|xn, tn〉〈xn, tn | · · · x̂(t1)

∫
dx1|x1, t1〉〈x1, t1|xi , ti 〉

=
∫

dx1 . . . dxn x1 . . . xn〈x f , t f |xn, tn〉 · · · 〈x1, t1|xi , ti 〉 (1.116)

13 The Heaviside function is defined by

θ(x) =
{

0 x < 0

1 x ≥ 0.

 



where use has been made of the eigenvalue equation x̂(tk)|xk, tk〉 = xk|xk, tk〉. If
〈xk, tk |xk−1, tk−1〉 in the last line is expressed in terms of a path integral, we find

〈x f , t f |x̂(tn) . . . x̂(t1)|xi , ti 〉 =
∫
�x x(t1) . . . x(tn)e

iS . (1.117)

It is crucial to note that x̂(tk) in the LHS is a Heisenberg operator, while
x(tk) (=xk) in the RHS is the real value of a classical path x(t) at time tk .
Accordingly, the RHS remains true for any ordering of the time parameters in
the LHS as long as the Heisenberg operators are arranged in a way defined by the
T -product. Thus, the path integral expression automatically takes the T -product
ordering into account to yield

〈x f , t f |T [x̂(tn) . . . x̂(t1)]|xi , ti 〉 =
∫
�x x(t1) . . . x(tn)eiS. (1.118)

The reader is encouraged to verify this result explicitly for n = 2.
It turns out to be convenient to define the generating functional Z [J ] to

obtain the matrix elements of the T -products efficiently. We couple an external
field J (t) (also called the source) with the coordinate x(t) as x(t)J (t) in the
Lagrangian, where J (t) is defined on the interval [ti , t f ]. Define the action with
the source as

S[x(t), J (t)] =
∫ t f

ti
dt [ 1

2 mẋ2 − V (x)+ x J ]. (1.119)

The transition amplitude in the presence of J (t) is then given by

〈x f , t f |xi , ti 〉J =
∫
�x exp

[
i
∫ t f

ti
dt ( 1

2 mẋ2 − V (x)+ x J )

]
. (1.120)

The functional derivative of this equation with respect to J (t) (ti < t < t f ) yields

δ

δ J (t)
〈x f , t f |xi , ti 〉J =

∫
�x ix(t) exp

[
i
∫ t f

ti
dt ( 1

2 mẋ2 − V (x)+ x J )

]
.

(1.121)
Higher functional derivatives are easy to obtain; the factor ix(tk) appears in the
integrand of the path integral each time δ/δ J (t) acts on 〈x f , t f |xi , ti 〉J . This is
nothing but the matrix element of the T -product of the Heisenberg operator x̂(t)
in the presence of the source J (t). Accordingly, if we put J (t) = 0 in the end of
the calculation, we obtain

〈x f , t f |T [x(tn) . . . x(t1)] |xi , ti 〉
= (−i)n

δn

δ J (t1) . . . δ J (tn)

∫
�x eiS[x(t),J (t)]

∣∣∣∣
J=0
. (1.122)

It often happens in physical applications that the transition probability
amplitude between general states, in particular the ground states, is required

 



rather than those between coordinate eigenstates. Suppose the system under
consideration is in the ground state |0〉 at ti and calculate the probability amplitude
with which the system is also in the ground state at later time t f . Suppose
J (t) is non-vanishing only on an interval [a, b] ⊂ [ti , t f ]. (The reason for this
assumption will become clear later.) The transition amplitude in the presence of
J (t) may be obtained from the Hamiltonian H J = H − x(t)J (t) and the unitary
operator U J (t f , ti ) of the Hamiltonian. The transition probability amplitude
between the coordinate eigenstates is

〈x f , t f |xi , ti 〉J = 〈x f |U J (t f , ti )|xi〉
= 〈x f |e−iH(t f −b)U J (b, a)e−iH(a−ti)|xi〉, (1.123)

where use has been made of the fact H J = H outside the interval [a, b]. By
inserting the completeness relations of the energy eigenvectors

∑
n |n〉〈n| = 1

into this equation, we obtain

〈x f , t f |xi , ti 〉J =
∑
m,n

〈x f |e−iH(t f −b)|m〉〈m|U J (b, a)|n〉〈n|e−iH(a−ti )|xi〉

=
∑
m,n

e−iEm(t f−b)e−iEn(a−ti )〈x f |m〉〈n|xi 〉〈m|U J (b, a)|n〉.

(1.124)

Now let us Wick rotate the time variable t → −iτ under which the exponential
function changes as e−iEt → e−Eτ . Then the limit τ f → ∞, τi → −∞
picks up only the ground states m = n = 0. Alternatively, we may introduce a
small imaginary term−iεx2 in the Hamiltonian so that the eigenvalue has a small
negative imaginary part. Then only the ground state survives in the summations
over m and n under τ f →∞, τi → −∞.

After all we have proved that

lim
t f→∞

ti→−∞
〈x f , t f |xi , ti 〉J = 〈x f |0〉〈0|xi〉Z [J ] (1.125)

where we have defined the generating functional

Z [J ] = 〈0|U J (b, a)|0〉 = lim
t f→∞

ti→−∞
〈0|U J (t f , ti )|0〉. (1.126)

The generating functional may be also expressed as

Z [J ] = lim
t f→∞

ti→−∞

〈x f , t f |xi , ti 〉J
〈x f |0〉〈0|xi〉 . (1.127)

Note that the denominator is just a constant independent of Z [J ]. Now we have
found the path integral representation for Z [J ],

Z [J ] = �
∫
�x eiS[x,J ] (1.128)

 



where the path integral is over paths with arbitrarily fixed xi and x f . The
normalization constant� is chosen so that Z [0] = 1, namely

�−1 =
∫
�x eiS[x,0].

It is readily shown that Z [J ] generates the matrix elements of the T -product
between the ground states:

〈0|T [x(t1) · · · x(tn)] |0〉 = (−i)n
δn

δ J (t1) · · · δ J (tn)
Z [J ]

∣∣∣∣
J=0
. (1.129)

1.4 Harmonic oscillator

We work out the path integral quantization of a harmonic oscillator, which is an
example of systems for which the path integral may be evaluated exactly. We also
introduce the zeta function regularization, which is a useful tool in many areas of
theoretical physics.

1.4.1 Transition amplitude

The Lagrangian of a one-dimensional harmonic oscillator is

L = 1
2 mẋ2 − 1

2 mω2x2. (1.130)

The transition amplitude is given by

〈x f , t f |xi , ti 〉 =
∫
�x eiS[x(t)], (1.131)

where S[x(t)] = ∫ t f
ti

L dt is the action.
Let us expand S[x] around its extremum xc(t) satisfying

δS[x]
δx

∣∣∣∣
x=xc(t)

= 0. (1.132)

Clearly xc(t) is the classical path connecting (xi , ti ) and (x f , t f ) and satifies the
Euler–Lagrange equation

ẍc + ω2xc = 0. (1.133)

The solution of equation (1.133) satifying xc(ti ) = xi and xc(t f ) = x f is easily
obtained as

xc(t) = 1

sinωT
[x f sinω(t − ti )+ xi sinω(t f − t)] (1.134)

where T = t f − ti . Substituting this solution into the action, we obtain (exercise)

Sc ≡ S[xc]
= mω

2 sinωT
[(x2

f + x2
i ) cosωT − 2x f xi ]. (1.135)

 



Now the expansion of S[x] around x = xc takes the form

S[xc + y] = S[xc] + 1

2!
∫

dt1 dt2 y(t1)y(t2)
δ2S[x]

δx(t1)δx(t2)

∣∣∣∣
x=xc

(1.136)

where y(t) satisfies the boundary condition y(ti ) = y(t f ) = 0. Note that (1) the
first-order term vanishes since δS[x]/δx = 0 at x = xc and (2) terms of order
three and higher do not exist since the action is second order in x . Therefore, this
expansion is exact and this problem is exactly solvable as we see later.

By noting that

δ

δx(t1)

∫ t f

ti
dt

[
1

2
mẋ(t)2 − 1

2
mω2x(t)2

]
= − m

d2

dt2
1

x(t1)− mω2x(t1)

= − m

(
d2

dt2
1

+ ω2

)
x(t1)

and that
δx(t1)

δx(t2)
= δ(t1 − t2)

we obtain the second-order functional derivative

δ2S[x]
δx(t1)δx(t2)

= −m

(
d2

dt2
1

+ ω2

)
δ(t1 − t2). (1.137)

Substituting this into equation (1.136) we find that

S[xc + y] = S[xc] − m

2!
∫

dt1 dt2 y(t1)y(t2)

(
d2

dt2
1

+ ω2

)
δ(t1 − t2)

= S[xc] + m

2

∫
dt (ẏ2 − ω2 y2), (1.138)

where the boundary condition y(ti) = y(t f ) = 0 has been taken into account.
Since �x is translationally invariant,14 we may replace �x by �y to obtain

〈x f , t f |xi , ti 〉 = eiS[xc]
∫

y(ti )=y(t f )=0
�y ei m

2

∫ t f
ti

dt ( ẏ2−ω2 y2)
. (1.139)

Let us evaluate the fluctuation part

I f =
∫

y(0)=y(T)=0
�y ei m

2

∫ T
0 dt ( ẏ2−ω2 y2) (1.140)

14 Integrating over all possible paths x(t) with x(ti ) = xi and x(t f ) = x f is equivalent to integrating
over all possible paths y(t) with y(ti ) = y(t f ) = 0, where x(t) = xc(t)+ y(t).

 



where we have shifted the t variable so that ti now becomes t = 0. We expand
y(t) as

y(t) =
∑
n∈�

an sin
nπ t

T
(1.141)

in conformity with the boundary condition. Substitution of this expansion into the
integral in the exponent yields∫ T

0
dt (ẏ2 − ω2 y2) = T

2

∑
n∈�

a2
n

[(nπ

T

)2 − ω2
]
.

The Fourier transform from y(t) to {an}may be regarded as a change of variables
in the integration. For this transformation to be well defined, the number of
variables must be the same. Suppose the number of the time slice is N + 1,
including t = 0 and t = T , for which there are N − 1 independent yk .
Correspondingly, we must put an = 0 for n > N − 1. The Jacobian associated
with this change of variables is

JN = det
∂yk

∂an
= det

[
sin

(
nπ tk

T

)]
(1.142)

where tk is the kth time step when [0, T ] is divided into N infinitesimal steps.
This Jacobian can be evaluated most easily for a free particle. Since the

transformation {yk} → {an} is independent of the potential, the Jacobian should
be identical for both cases. The probability amplitude for a free particle has been
obtained in (1.104) leading to

〈x f , T |xi , 0〉 =
(

1

2π iT

)1/2

exp
[
i

m

2T
(x f − xi )

2
]
=

(
1

2π iT

)1/2

eiS[xc].
(1.143)

This is written in terms of a path integral as

eiS[xc]
∫

y(0)=y(T)=0
�y ei m

2

∫ T
0 dt ẏ2

. (1.144)

By comparing these two expressions and noting that

m

2

∫ T

0
dt ẏ2 → m

N∑
n=1

a2
nn2π2

4T

we arrive at the equality(
1

2π iT

)1/2

=
∫

y(0)=y(T)=0
�y ei m

2

∫ T
0 dt ẏ2

= lim
N→∞ JN

(
1

2π iε

)1/2 ∫
da1 . . . daN−1 exp

(
im

N−1∑
n=1

a2
nπ

2n2

4T

)
.

 



By carrying out the Gaussian integrals, it is found that(
1

2π iT

)1/2

= lim
N→∞ JN

(
1

2π iε

)N/2 N−1∏
n=1

1

n

(
4π iT

π2

)1/2

= lim
N→∞ JN

(
1

2π iε

)N/2 1

(N − 1)!
(

4π iT

π2

)(N−1)/2

from which we finally obtain, for finite N , that

JN = N−N/22−(N−1)/2πN−1(N − 1)!. (1.145)

The Jacobian JN clearly diverges as N → ∞. This does not matter at all,
however, since we are not interested in JN on its own but a combination with
other (divergent) factors.

The transition amplitude of a harmonic oscillator is now given by

〈x f , T |xi , 0〉 = lim
N→∞ JN

(
1

2π iε

)N/2

eiS[xc]

×
∫

da1 . . . daN−1 exp

[
i
mT

4

N−1∑
n=1

a2
n

{(nπ

T

)2 − ω2
}]
.

(1.146)

The integrals over an are simple Gaussian integrals and easily carried out to yield

∫
dan exp

[
imT

4
a2

n

{(nπ

T

)2 − ω2
}]
=

(
4iT

πn2

)1/2
[

1−
(
ωT

nπ

)2
]−1/2

.

By substituting this result into equation (1.146), we obtain

〈x f , t f |xi , ti 〉 = lim
N→∞ JN

(
N

2π iT

)N/2

eiS[xc]

×
N−1∏
k=1

[
1

k

(
4iT

π

)1/2
]

N−1∏
n=1

[
1−

(
ωT

nπ

)2
]−1/2

=
(

1

2π iT

)1/2

eiS[xc]
N−1∏
n=1

[
1−

(
ωT

nπ

)2
]−1/2

. (1.147)

The infinite product over n is well known and reduces to

lim
N→∞

N∏
n=1

[
1−

(
ωT

nπ

)2
]
= sinωT

ωT
(1.148)

 



Note that the divergence of JN cancelled with the divergence of the other terms
to yield a finite value. Finally we have shown that

〈x f , t f |xi , ti 〉 =
( ω

2π i sinωT

)1/2
eiS[xc]

=
( ω

2π i sinωT

)1/2
exp

[
iω

2 sinωT
{(x2

f + x2
i ) cosωT − 2xi x f }

]
.

(1.149)

1.4.2 Partition function

The partition function of a harmonic oscillator is easily obtained from the
eigenvalue En = (n + 1/2)ω,

Tr e−β Ĥ =
∞∑

n=0

e−β(n+1/2)ω = 1

2 sinh(βω/2)
. (1.150)

The inverse temperature β can be regarded as the imaginary time by putting
iT = β. Then the partition function may be evaluated from the path integral
point of view.

Method 1: The trace may be taken over {|x〉} to yield

Z(β) =
∫

dx 〈x |e−β Ĥ |x〉

=
(

ω

2π i(−i sinhβω)

)1/2

×
∫

dx exp i

[
ω

−2i sinhβω
(2x2 coshβω − 2x2)

]
=

(
ω

2π sinh βω

)1/2 [
π

ω tanh(βω/2)

]1/2

= 1

2 sinh(βω/2)
(1.151)

where use has been made of equation (1.149).
The following exercise serves as a preliminary to Method 2.

Exercise 1.5. (1) Let A be a symmetric positive-definite n × n matrix. Show that∫
dx1 . . . dxn exp

(
−

∑
i, j

xi Ai j x j

)
= πn/2(det A)−1/2 = πn/2

∏
i

λ
−1/2
i

(1.152)

 



where λi is the eigenvalue of A.
(2) Let A be a positive-definite n × n Hermite matrix. Show that∫

dz1 dz̄1 . . . dzn dz̄n exp

(
−

∑
i, j

z̄i Ai j z j

)
= πn(det A)−1 = πn

∏
i

λ−1
i .

(1.153)

Method 2: We next obtain the partition function by evaluating the path
integral over the fluctuations with the help of the functional determinant and the
ζ -function regularization. We introduce the imaginary time τ = it and rewrite
the path integral as∫

y(0)=y(T )=0
�y exp

[
i

2

∫
dt y

(
− d2

dt2 − ω2
)

y

]
→

∫
y(0)=y(β)=0

�̄y exp

[
− 1

2

∫
dτ y

(
− d2

dτ 2 + ω2
)

y

]
,

where we noted the boundary condition y(0) = y(β) = 0. Here the bar on �
implies the path integration measure with imaginary time.

Let A be an n × n Hermitian matrix with positive-definite eigenvalues
λk (1 ≤ k ≤ n). Then for real variables xk , we obtain from exercise 1.5 that

n∏
k=1

(∫ ∞

−∞
dxk

)
e−

1
2

∑
p,q x p Apq xq =

n∏
k=1

1√
λk
= 1√

det A

where we neglected numerical factors. This is a generalization of the well-known
Gaussian integral ∫ ∞

−∞
dxe−

1
2λx2 =

√
2π

λ

for λ > 0. We define the determinant of an operator � by the (properly
regularized) infinite product of its eigenvalues λk as Det � = ∏

k λk .15 Then
the previous path integral is written as∫

y(0)=y(β)=0
�̄y exp

[
− 1

2

∫
dτ y

(
− d2

dτ 2
+ω2

)
y

]
= 1√

DetD(−d2/dτ 2 + ω2)
,

(1.154)
where the subscript ‘D’ implies that the eigenvalues are evaluated with the
Dirichlet boundary condition y(0) = y(β) = 0.

The general solution y(τ ) satisfying the boundary condition is written as

y(τ ) = 1√
β

∑
n∈�

yn sin
nπτ

β
. (1.155)

15 We will use ‘det’ for the determinant of a finite dimensional matrix while ‘Det’ for the (formal)
determinant of an operator throughout this book. Similarly, the trace of a finite-dimensional matrix is
denoted ‘tr’ while that of an operator is denoted ‘Tr’.

 



Note that yn ∈ � since y(τ ) is a real function. Since the eigenvalue of the
eigenfunction sin(nπτ/β) is λn = (nπ/β)2 + ω2, the functional determinant
is formally written as

DetD

(
− d2

dτ 2
+ ω2

)
=

∞∏
n=1

λn =
∞∏

n=1

[(
nπ

β

)2

+ ω2

]

=
∞∏

n=1

(
nπ

β

)2 ∞∏
p=1

[
1+

(
βω

pπ

)2
]
. (1.156)

The first infinite product in the last line is written as

DetD

(
− d2

dτ 2

)
.

We will evaluate this infinite product through the ζ -function regularization. Let
� be an operator with positive-definite eigenvalues λn . Then we have formally

log Det� = Tr log� =
∑

n

logλn . (1.157)

Now we define the spectral ζ -function as

ζ�(s) ≡
∑

n

1

λs
n
. (1.158)

The RHS converges for sufficiently large Re s and ζ�(s) is analytic with respect
to s in this region. Moreover, it can be analytically continued to the whole s-plane
except at a possible finite number of points. By noting that

dζ�(s)

ds

∣∣∣∣
s=0

= −
∑

n

logλn

we arrive at the expression

Det� = exp

[
−dζ�(s)

ds

∣∣∣∣
s=0

]
. (1.159)

We replace � by −d2/dτ 2 in the case at hand to find

ζ−d2/dτ 2(s) =
∑
n≥1

(
nπ

β

)−2s

=
(
β

π

)2s

ζ(2s) (1.160)

where ζ(2s) is the celebrated Riemann ζ -function. It is analytic over the whole
s-plane except at the simple pole at s = 1. From the well-known values

ζ(0) = − 1
2 ζ ′(0) = − 1

2 log(2π) (1.161)

 



we obtain

ζ ′−d2/dτ 2(0) = 2 log

(
β

π

)
ζ(0)+ 2ζ ′(0) = − log(2β).

We have finally shown that

DetD

(
− d2

dτ 2

)
= elog(2β) = 2β (1.162)

and that

DetD

(
− d2

dτ 2
+ ω2

)
= 2β

∞∏
p=1

[
1+

(
βω

pπ

)2
]
. (1.163)

The infinite product in this equation is well known but let us pretend that we are
ignorant about this product.

The partition function is now expressed as

Tr e−βH =
[

2β
∞∏

p=1

{
1+

(
βπ

pπ

)2 }]−1/2 [
π

ω tanh(βω/2)

]1/2

. (1.164)

By comparing this with the result (1.151), we have proved the formula

∞∏
n=1

[
1+

(
βω

nπ

)2
]
= π

βω
sinh(βω)

namely
∞∏

n=1

(
1+ x2

n2

)
= sinh(πx)

πx
. (1.165)

What about the infinite product expansion of the cosh function? This is given
by using the path integral with respect to the fermion, which we will work out in
the next section.

1.5 Path integral quantization of a Fermi particle

The particles observed in Nature are not necessarily Bose particles whose position
and momentum operators obey the commutation relation [p, x] = −i. There are
particles called fermions whose operators satisfy anti-commutation relations. A
classical description of a fermion requires anti-commuting numbers called the
Grassmann numbers.

 



1.5.1 Fermionic harmonic oscillator

The bosonic harmonic oscillator in the previous section is described by the
Hamiltonian16

H = 1
2 (a

†a + aa†)

where a and a† satisfy the commutation relations

[a, a†] = 1 [a, a] = [a†, a†] = 0.

The Hamiltonian has eigenvalues (n + 1/2)ω (n ∈ �) with the eigenvector |n〉:
H |n〉 = (n + 1

2 )ω|n〉.
Now suppose there is a Hamiltonian

H = 1
2 (c

†c − cc†)ω. (1.166)

This is called the fermionic harmonic oscillator, which may be regarded as
a Fourier component of the Dirac Hamiltonian, which describes relativistic
fermions. If the operators c and c† should satisfy the same commutation relations
as those satisfied by bosons, the Hamiltonian would be a constant H = −ω/2.
Suppose, in contrast, they satisfy the anti-commutation relations

{c, c†} ≡ cc† + c†c = 1 {c, c} = {c†, c†} = 0. (1.167)

The Hamiltonian takes the form

H = 1
2 [c†c − (1− cc†)]ω = (N − 1

2 )ω (1.168)

where N = c†c. It is easy to see that the eigenvalue of N must be either 0 or 1.
In fact, N satisfies N2 = c†cc†c = N , namely N(N − 1) = 0. This is nothing
other than the Pauli principle.

Let us study the Hilbert space of the Hamiltonian H . Let |n〉 be an
eigenvector of H with the eigenvalue n, where n = 0, 1 as shown earlier. It
is easy to verify the following relations;

H |0〉 = −ω
2
|0〉 H |1〉 = ω

2
|1〉

c†|0〉 = |1〉 c|0〉 = 0 c†|1〉 = 0 c|1〉 = |0〉.
It is convenient to introduce the component expressions

|0〉 =
(

0
1

)
|1〉 =

(
1
0

)
.

16 We will drop ˆ on operators from now on unless this may cause confusion.

 



Exercise 1.6. Suppose the basis vectors have this form. Show that the operators
have the following matrix representations

c =
(

0 0
1 0

)
, c† =

(
0 1
0 0

)
,

N =
(

1 0
0 0

)
, H = ω

2

(
1 0
0 −1

)
.

The commutation relation [x, p] = i for a boson has been replaced by
[x, p] = 0 in the path integral formalism of a boson. For a fermion, the anti-
commutation relation {c, c†} = 1 should be replaced by {θ, θ∗} = 0, where θ and
θ∗ are anti-commuting classical numbers called Grassmann numbers.

1.5.2 Calculus of Grassmann numbers

To distinguish anti-commuting Grassmann numbers from commuting real and
complex numbers, the latter will be called the ‘c-number’, where c stands for
commuting. Let n generators {θ1, . . . , θn} satisfy the anti-commutation relations

{θi , θ j } = 0 ∀i, j. (1.169)

Then the set of the linear combinations of {θi } with the c-number coefficients is
called the Grassmann number and the algebra generated by {θi } is called the
Grassmann algebra, denoted by n . An arbitrary element f of n is expanded
as

f (θ) = f0 +
n∑

i=1

fiθi +
∑
i< j

fi j θiθ j + · · ·

=
∑

0≤k≤n

1

k!
∑
{i}

fi1,...ik θi1 . . . θik , (1.170)

where f0, fi , fi j , . . . and fi1,...,ik are c-numbers that are anti-symmetric under the
exchange of any two indices. The element f is also written as

f (θ) =
∑

ki=0,1

f̃k1,...,kn θ
k1
1 . . . θ kn

n . (1.171)

Take n = 2 for example. Then

f (θ) = f0 + f1θ1 + f2θ2 + f12θ1θ2

= f̃00 + f̃10θ1 + f̃01θ2 + f̃11θ1θ2.

The subset of λn which is generated by monomials of even (resp. odd) power in
θk is denoted by n+ (n−):

n = n+ ⊕n−. (1.172)

 



The separation of n into these two subspaces is called �2-grading. We call an
element of n+ (n−) G-even (G-odd). Note that dimλn = 2n while dimn+ =
dimn− = 2(n−1).

The generator θk does not have a magnitude and hence the set of Grassmann
numbers is not an ordered set. Zero is the only number that is a c-number as well
as a Grassmann number simultaneously. A Grassmann number commutes with a
c-number. It should be clear that the generators satisfy the following relations:

θ2
k = 0

θk1θk2 . . . θkn = εk1k2...kn θ1θ2 . . . θn (1.173)

θk1θk2 . . . θkm = 0 (m > n),

where

εk1...kn =


+1 if {k1 . . . kn} is an even permutation of {1 . . .n}
−1 if {k1 . . . kn} is an odd permutation of {1 . . . n}
0 otherwise.

A function of Grassmann numbers is defined as a Taylor expansion of the
function. When n = 1, for example, we have

eθ = 1+ θ
since higher-order terms in θ vanish identically.

1.5.3 Differentiation

It is assumed that the differential operator acts on a function from the left:

∂θ j

∂θi
= ∂

∂θi
θ j = δi j . (1.174)

It is also assumed that the differential operator anti-commutes with θk . The
Leibnitz rule then takes the form

∂

∂θi
(θ jθk) = ∂θ j

∂θi
θk − θ j

∂θk

∂θi
= δi j θk − δikθ j . (1.175)

Exercise 1.7. Show that

∂

∂θi

∂

∂θ j
+ ∂

∂θ j

∂

∂θi
= 0. (1.176)

It is easily shown from this exercise that the differential operator is nilpotent

∂2

∂θ2
i

= 0. (1.177)

Exercise 1.8. Show that
∂

∂θi
θ j + θ j

∂

∂θi
= δi j . (1.178)

 



1.5.4 Integration

Supprisingly enough, integration with respect to a Grassmann variable is
equivalent to differentiation. Let D denote differentiation with respect to a
Grassmann variable and let I denote integration, where integration is understood
as a definite integral. Suppose they satisfy the relations

(1) I D = 0,
(2) DI = 0,
(3) D(A) = 0 ⇒ I (B A) = I (B)A,

where A and B are arbitrary functions of Grassmann variables. The first relation
states that the integration of a derivative of any function yields the surface term
and it is set to zero. The second relation states that a derivative of a definite
integral vanishes. The third relation implies that A is a constant if D(A) = 0 and
hence it can be taken out of the integral. These relations are satified if we take
I ∝ D. Here we adopt the normalization I = D and put

∫
dθ f (θ) = ∂ f (θ)

∂θ
. (1.179)

We find from the previous definition that

∫
dθ = ∂1

∂θ
= 0

∫
dθ θ = ∂θ

∂θ
= 1.

If there are n generators {θk}, equation (1.179) is generalized as

∫
dθ1 dθ2 . . . dθn f (θ1, θ2, . . . , θn) = ∂

∂θ1

∂

∂θ2
. . .

∂

∂θn
f (θ1, θ2, . . . , θn).

(1.180)
Note the order of dθk and ∂/∂θk .

The equivalence of differentiation and integration leads to an odd behaviour
of integration under the change of integration variables. Let us consider the case
n = 1 first. Under the change of variable θ ′ = aθ (a ∈ � ), we obtain

∫
dθ f (θ) = ∂ f (θ)

∂θ
= ∂ f (θ ′/a)

∂θ ′/a
= a

∫
dθ ′ f (θ ′/a)

 



which leads to dθ ′ = (1/a)dθ . This is readily extended to the case of n variables.
Let θi → θ ′i = ai j θ j . Then∫

dθ1 . . . θn f (θ) = ∂

∂θ1
. . .

∂

∂θn
f (θ)

=
n∑

ki=1

∂θ ′k1

∂θ1
. . .
∂θ ′kn

∂θn

∂

∂θ ′k1

. . .
∂

∂θ ′kn

f (a−1θ ′)

=
n∑

ki=1

εk1...kn ak11 . . . akn n
∂

∂θ ′k1

. . .
∂

∂θ ′kn

f (a−1θ ′)

= det a
∫

dθ ′1 . . . θ ′n f (a−1θ ′).

Accordingly, the integral measure transforms as

dθ1 dθ2 . . . θn = det a dθ ′1 dθ ′2 . . . dθ
′
n. (1.181)

1.5.5 Delta-function

The δ-function of a Grassmann variable is introduced as∫
dθ δ(θ − α) f (θ) = f (α) (1.182)

for a single variable. If we substitute the expansion f (θ) = a + bθ into this
definition, we obtain ∫

dθ δ(θ − α)(a + bθ) = a + bα

from which we find that the δ-function is explicitly given by

δ(θ − α) = θ − α. (1.183)

Extension of this result to n variables is easily verified to be (note the order of
variables)

δn(θ − α) = (θn − αn) . . . (θ2 − α2)(θ1 − α1). (1.184)

The integral form of the δ-function is obtained from∫
dξ eiξθ =

∫
dξ (1+ iξθ) = iθ

as

δ(θ) = θ = −i
∫

dξ eiξθ . (1.185)

 



1.5.6 Gaussian integral

Let us consider the integral

I =
∫

dθ∗1 dθ1 . . . dθ∗n dθn e−
∑

i j θ
∗
i Mi j θ j (1.186)

where {θi } and {θ∗i } are two sets of independent Grassmann variables. The n × n
c-number matrix M is taken to be anti-symmetric since θi and θ∗i anti-commute.
The integral is evaluated with the help of the change of variables θ ′i =

∑
j Mi j θ j

as

I = det M
∫

dθ∗1 dθ ′1 . . . dθ∗n dθ ′ne−
∑

i θ
∗
i θ
′
i

= det M

[∫
dθ∗ dθ(1+ θ ′θ∗)

]n

= det M. (1.187)

We prove an interesting formula as an application of the Gaussian integral.

Proposition 1.3. Let a be an anti-symmetric matrix of order 2n and define the
Pfaffian of a by

Pf(a) = 1

2nn!
∑

Permutations of{i1,...,i2n }

sgn(P)ai1 i2 . . . ai2n−1i2n . (1.188)

Then
det a = Pf(a)2. (1.189)

Proof. Observe that

I =
∫

dθ2n . . . dθ1 exp

[
1

2

∑
i j

θi ai j θ j

]
= 1

2nn!
∫

dθ2n . . . dθ1

(∑
i j

θi ai j θ j

)n

= Pf(a).

Note also that

I 2 =
∫

dθ2n . . . dθ1 dθ ′2n . . . dθ1 exp

[
1

2

∑
i j

(θi ai j θ j + θ ′i ai j θ
′
j )

]
.

Under the change of variables

ηk = 1√
2
(θk + θ ′k), η∗k =

1√
2i
(θk − θ ′k),

 



we obtain the Jacobian = (−1)n and

θiθ j + θ ′i θ ′j = ηiη
∗
j − η∗jηi

dη2n . . . dηi dη∗2n . . . dη
∗
1 = (−1)n

2
dη1 dη∗1 . . . dη2n dη∗2n,

from which we verify that

Pf(a)2 =
∫

dη1 dη∗1 . . . dη2n dη∗2n exp

[∑
i j

η∗i ai jη j

]
= det a. �

Exercise 1.9. (1) Let M be a skewsymmetric matrix and Ki be Grassmann
numbers. Show that∫

dθ1 . . . dθn e−
1
2

t
θ ·M ·θ+t K ·θ = 2n/2

√
det M e−t K ·M−1·K/4. (1.190)

(2) Let M be a skew-Hermitian matrix and Ki and K ∗i be Grassmann numbers.
Show that∫

dθ∗1 dθ1 . . . dθ∗n dθn e−θ†·M ·θ+K †·θ+θ†·K = det M eK †·M−1·K . (1.191)

1.5.7 Functional derivative

The functional derivative with respect to a Grassmann variable can be defined
similarly to that for a commuting variable. Let ψ(t) be a Grassmann variable
depending on a c-number parameter t and F[ψ(t)] be a functional of ψ . Then we
define

δF[ψ(t)]
δψ(s)

= 1

ε
{F[ψ(t)+ εδ(t − s)] − F[ψ(t)]}, (1.192)

where ε is a Grassmann parameter. The Taylor expansion of F[ψ(t)− εδ(t − s)]
with respect to ε is linear in ε since ε2 = 0. Accordingly, the limit ε → 0 is
not necessary. A word of caution: division by a Grassmann number is not well
defined in general. Here, however, the numerator is proportional to ε and division
by ε simply means picking up the coefficient of ε in the numerator.

1.5.8 Complex conjugation

Let {θi } and {θ∗i } be two sets of the generators of Grassmann numbers. Define the
complex conjugation of θi by (θi )

∗ = θ∗i and (θ∗i )∗ = θi . We define

(θiθ j )
∗ = θ∗j θ∗i . (1.193)

Otherwise, the real c-number θiθ
∗
i does not satisify the reality condition

(θiθ
∗
i )
∗ = θiθ

∗
i .

 



1.5.9 Coherent states and completeness relation

The fermion annihilation and creation operators c and c† satisfy the anti-
commutation relations {c, c} = {c†, c†} = 0 and {c, c†} = 1 and the number
operator N = c†c has the eigenvectors |0〉 and |1〉. Let us consider the Hilbert
space spanned by these vectors

� = Span{|0〉, |1〉}.
An arbitrary vector | f 〉 in � may be written in the form

| f 〉 = |0〉 f0 + |1〉 f1,

where f0, f1 ∈ � .
Now we consider the states

|θ〉 = |0〉 + |1〉θ (1.194)

〈θ | = 〈0| + θ∗〈1| (1.195)

where θ and θ∗ are Grassmann numbers. These states are called the coherent
states and are eigenstates of c and c† respectively,

c|θ〉 = |0〉θ = |θ〉θ, 〈θ |c† = θ∗〈0| = θ∗〈θ |.
Exercise 1.10. Verify the following identities;

〈θ ′|θ〉 = 1+ θ ′∗θ = eθ
′∗θ ,

〈θ | f 〉 = f0 + θ∗ f1,

〈θ |c†| f 〉 = 〈θ |1〉 f0 = θ∗ f0 = θ∗〈θ | f 〉,
〈θ |c| f 〉 = 〈θ |0〉 f1 = ∂

∂θ∗
〈θ | f 〉.

Let
h(c, c†) = h00 + h10c† + h01c+ h11c†c hi j ∈ �

be an arbitrary function of c and c†. Then the matrix elements of h are

〈0|h|0〉 = h00 〈0|h|1〉 = h01 〈1|h|0〉 = h10 〈1|h|1〉 = h00 + h11.

It is easily found from these matrix elements that

〈θ |h|θ ′〉 = (h00 + θ∗h10 + h01θ
′ + θ∗θ ′h11)eθ

∗θ ′ . (1.196)

Lemma 1.3. Let |θ〉 and 〈θ | be defined as before. Then the completeness relation
takes the form ∫

dθ∗ dθ |θ〉〈θ |e−θ∗θ = I. (1.197)

 



Proof. Straightforward calculation yields∫
dθ∗ dθ |θ〉〈θ |e−θ∗θ

=
∫

dθ∗ dθ(|0〉 + |1〉θ)(〈0| + θ∗〈1|)(1− θ∗θ)

=
∫

dθ∗ dθ
(|0〉〈0| + |1〉θ〈0| + |0〉θ∗〈1| + |1〉θθ∗〈1|) (1− θ∗θ)

= |0〉〈0| + |1〉〈1| = I. �

1.5.10 Partition function of a fermionic oscillator

We obtain here the partition fuction of a fermionic harmonic oscillator as an
application of the path integral formalism of fermions. The Hamiltonian is
H = (c†c − 1/2)ω, which has eigenvalues±ω/2. The partition function is then

Z(β) = Tr e−βH =
1∑

n=0

〈n|e−βH |n〉 = eβω/2 + e−βω/2 = 2 cosh(βω/2).

(1.198)
Now we evaluate Z(β) in two different ways using a path integral. We start our
exposition with the following lemma.

Lemma 1.4. Let H be the Hamiltonian of a fermionic harmonic oscillator. Then
the partition function is written as

Tr e−βH =
∫

dθ∗ dθ〈−θ |e−βH |θ〉e−θ∗θ . (1.199)

Proof. Let us insert the completeness relation (1.197) into the definition of a
partition function to obtain

Z(β) =
∑

n=0,1

〈n|e−βH |n〉

=
∑

n

∫
dθ∗ dθe−θ∗θ 〈n|θ〉〈θ |e−βH |n〉

=
∑

n

∫
dθ∗ dθ (1− θ∗θ)(〈n|0〉 + 〈n|1〉θ)(〈0|e−βH |n〉 + θ∗〈1|e−βH |n〉)

=
∑

n

∫
dθ∗ dθ(1− θ∗θ)[〈0|e−βH |n〉〈n|0〉

− θ∗θ〈1|e−βH |n〉〈n|1〉 + θ〈0|e−βH |n〉〈n|1〉 + θ∗〈1|e−βH |n〉〈n|0〉].

 



The last term of the last line does not contribute to the integral and hence we may
change θ∗ to −θ∗. Then

Z(β) =
∑

n

∫
dθ∗ dθ(1− θ∗θ)[〈0|e−βH |n〉〈n|0〉

− θ∗θ〈1|e−βH |n〉〈n|1〉 + θ〈0|e−βH |n〉〈n|1〉 − θ∗〈1|e−βH |n〉〈n|0〉]
=

∫
dθ∗ dθ e−θ∗θ 〈−θ |e−βH |θ〉. �

Accordingly, the coordinate in the trace is over anti-periodic orbits. The
Grassmann variable is θ at τ = 0 while −θ at τ = β and we have to impose an
anti-periodic boundary condition over [0, β] in the trace.

Use the expression

e−βH = lim
N→∞(1− βH/N)N

and insert the completeness relation at each time step to find

Z(β) = lim
N→∞

∫
dθ∗ dθ e−θ∗θ 〈−θ |(1− βH/N)N |θ〉

= lim
N→∞

∫
dθ∗ dθ

N−1∏
k=1

∫
dθ∗k dθk e−

∑N−1
n=1 θ

∗
n θn

× 〈−θ |(1− εH )|θN−1〉〈θN−1| . . . |θ1〉〈θ1|(1− εH )|θ〉

= lim
N→∞

∫ N∏
k=1

dθ∗k dθk e−
∑N

n=1 θ
∗
n θn

× 〈θN |(1− εH )|θN−1〉〈θN−1| . . . |θ1〉〈θ1|(1− εH )| − θN 〉

where we have put ε = β/N and θ = −θN = θ0, θ
∗ = −θ∗N = θ∗0 .

Each matrix element is evaluated as

〈θk |(1− εH )|θk−1〉 = 〈θk |θk−1〉
[

1− ε 〈θk |H |θk−1〉
〈θk |θk−1〉

]
	 〈θk |θk−1〉e−ε〈θk |H |θk−1〉/〈θk |θk−1〉

= eθ
∗
k θk−1 e−εω(θ∗k θk−1−1/2)

= eεω/2e(1−εω)θ∗k θk−1 .

 



The partition function is now expressed in terms of the path integral as

Z(β) = lim
N→∞ eβω/2

N∏
k=1

∫
dθ∗k dθke−

∑N
n=1 θ

∗
n θn e(1−εω)

∑N
n=1 θ

∗
n θn−1

= eβω/2 lim
N→∞

N∏
k=1

∫
dθ∗k dθke−

∑N
n=1[θ∗n (θn−θn−1)+εωθ∗n θn−1]

= eβω/2 lim
N→∞

N∏
k=1

∫
dθ∗k dθke−θ†·B·θ , (1.200)

where

θ =


θ1
θ2
...

θN

 θ† = (
θ∗1 , θ∗2 , . . . , θ∗N

)

BN =


1 0 . . . 0 −y
y 1 0 . . . 0
0 y 1 . . . 0
...

. . .
...

0 0 . . . y 1


with y = −1 + εω in the last line. We finally find from the definition of the
Gaussian integral of Grassmann numbers that

Z(β) = eβω/2 lim
N→∞ det BN = eβω/2 lim

N→∞[1+ (1− βω/N)N ]
= eβω/2(1+ e−βω) = 2 cosh 1

2βω. (1.201)

This should be compared with the partition function (1.151) of the bosonic
harmonic oscillator.

This partition function is also obtained by making use of the ζ -function
regularization. It follows from the second line of equation (1.200) that

Z(β) = eβω/2 lim
N→∞

N∏
k=1

∫
dθ∗k dθke−

∑
n [(1−εω)θ∗n (θn−θn−1)/ε+ωθ∗n θn]

= eβω/2
∫
�θ∗�θ exp

[
−

∫ β

0
dτ θ∗

(
(1− εω) d

dτ
+ ω

)
θ

]
= eβω/2 DetAPBC

(
(1− εω) d

dτ
+ ω

)
.

Here the subscript APBC implies that the eigenvalue should be evaluated for the
solutions that satisfy the anti-periodic boundary condition θ(β) = −θ(0). It

 



might seem odd that the differential operator contains ε. We find later that this
gives a finite contribution to the infinite product of eigenvalues. Let us expand
the orbit θ(τ ) in the Fourier modes. The eigenmodes and the corresponding
eigenvalues are

exp

(
π i(2n + 1)τ

β

)
, (1− εω)π i(2n + 1)

β
+ ω,

where n = 0,±1,±2, . . .. It should be noted that the coherent states are
overcomplete and that the actual number of degrees of freedom is N , which is
related to ε as ε = β/N . Then we have to truncate the product at −N/4 ≤ k ≤
N/4 since one complex variable has two real degrees of freedom. Accordingly,
the partition function takes the form

Z(β) = eβω/2 lim
N→∞

N/4∏
k=−N/4

[
i(1− εω)π(2n − 1)

β
+ ω

]

= eβω/2e−βω/2
∞∏

k=1

[(
2π(n − 1/2)

β

)2

+ ω2

]

=
∞∏

k=1

[
π(2k − 1)

β

]2 ∞∏
n=1

[
1+

(
βω

π(2n − 1)

)2
]
.

The first infinite product, which we call P , is divergent and requires
regularization. Note, first, that

log P =
∞∑

k=1

2 log

[
2π(k − 1/2)

β

]
.

Define the corresponding ζ -function by

ζ̃ (s) =
∞∑

k=1

[
2π(k − 1/2)

β

]−s

=
(
β

2π

)s

ζ(s, 1/2)

with which we obtain P = e−2ζ̃ ′(0). Here

ζ(s, a) =
∞∑

k=0

1

(k + a)s
(0 < a < 1) (1.202)

is the generalized ζ -function (the Hurwitz ζ -function). The derivative of ζ̃ (s)
at s = 0 yields

ζ̃ ′(0) = log

(
β

2π

)
ζ(0, 1/2)+ ζ ′(0, 1/2) = −1

2
log 2,

 



where use has been made of the values 17

ζ(0, 1/2) = 0 ζ ′(0, 1/2) = − 1
2 log 2.

Finally we obtain

P = e−2ζ̃ ′(0) = elog 2 = 2. (1.203)

Note that P is independent of β after regularization.
Putting them all together, we arrive at the partition function

Z(β) = 2
∞∏

n=1

[
1+

(
βω

π(2n − 1)

)2
]
. (1.204)

By making use of the well-known formula

cosh
x

2
=

∞∏
n=1

[
1+ x2

π2(2n − 1)2

]
(1.205)

we obtain

Z(β) = 2 cosh
βω

2
. (1.206)

Suppose, alternatively, we are ignorant about the formula (1.205). Then,
by equating equation (1.201) with equation (1.204), we have proved the formula
(1.205) with the help of path integrals. This is a typical application of physics
to mathematics: evaluate some physical quantity by two different methods
and equate the results. Then we often obtain a non-trivial relation which is
mathematically useful.

1.6 Quantization of a scalar field

1.6.1 Free scalar field

The analysis made in the previous sections may be easily generalized to a case
with many degrees of freedom. We are interested, in particular, in a system with
infinitely many degrees of freedom; the quantum field theory (QFT). Let us
start our exposition with the simplest case, that is, the scalar field theory. Let
φ(x) be a real scalar field at the spacetime coordinates x = (x, x0) where x is the
space coordinate while x0 is the time coordinate. The action depends on φ and its
derivatives ∂µφ(x) = ∂φ(x)/∂xµ:

S =
∫

dx �(φ, ∂µφ). (1.207)

17 The first formula follows from the relation ζ(s, 1/2) = (2s − 1)ζ(s), which is derived from
the identity ζ(s,1/2) + ζ(s) = 2s ∑∞

n=1[1/(2n − 1)s + 1/(2n)s ] = 2sζ(s). The second formula
is obtained by differentiating ζ(s, 1/2) = (2s − 1)ζ(s) with respect to s and using the formula
ζ(0) = −1/2.

 



Here � is the Lagrangian density. The Euler–Lagrange equation now takes the
form

∂

∂xµ

(
∂�

∂(∂µφ)

)
− ∂�
∂φ
= 0. (1.208)

The Lagrangian density of a free scalar field is

�0(φ, ∂µφ) = − 1
2 (∂µφ∂

µφ + m2φ2). (1.209)

The Euler–Lagrange equation derived from this Lagrangian density is the Klein–
Gordon equation

(�− m2)φ = 0, (1.210)

where � = ∂µ∂µ = −∂2
0 +∇2.

The vacuum-to-vacuum amplitude in the presence of a source J has the path
integral representation 〈0,∞|0,−∞〉J ∝ Z0[J ], where

Z0[J ] =
∫
�φ exp

[
i
∫

dx

(
�0 + Jφ + i

2
εφ2

)]
(1.211)

where the iε term has been added to regularize the path integral.18 Integration by
parts yields

Z0[J ] =
∫
�φ exp

[
i
∫

dx ( 1
2 {φ(�− m2)φ + iεφ2} + Jφ)

]
. (1.212)

Let φc be the classical solution to the Klein–Gordon equation in the presence
of the source,

(�− m2 + iε)φc = −J. (1.213)

The solution is easily found to be

φc(x) = −
∫

dy�(x − y)J (y) (1.214)

where �(x − y) is the Feynman propagator

�(x − y) = −1

(2π)d

∫
ddk

eik(x−y)

k2 + m2 − iε
. (1.215)

Here d denotes the spacetime dimension. Note that�(x − y) satisfies

(�− m2 + iε)�(x − y) = δd (x − y).

It is easy to show that (exercise) the functional Z0[J ] is now written as

Z0[J ] = Z0[0] exp

[
− i

2

∫
dx dy J (x)�(x − y)J (y)

]
. (1.216)

18 Alternatively, we can introduce the imaginary time τ = ix0 to Wick rotate the time axis.

 



It is instructive to note that the propagator is conversely obtained by the functional
derivative of Z0[J ],

�(x − y) = i

Z0[0]
δ2 Z0[J ]
δ J (x)δ J (y)

∣∣∣∣
J=0
. (1.217)

The amplitude Z0[0] is the vacuum-to-vacuum amplitude in the absence of
the source and may be evaluated as follows. Let us introduce the imaginary time
x4 = τ = ix0. Then, we obtain

Z0[0] =
∫
�̄φ exp

[
1
2

∫
dx φ(�̄− m2)φ

]
= [Det(�̄− m2)]−1/2, (1.218)

where �̄ = ∂2
τ +∇2 and the deteminant is understood in the sense of section 1.4,

namely it is the product of eigenvalues with a relevant boundary condition.
A free complex scalar field theory has a Lagrangian density

�0 = −∂µφ∗∂µφ − m2|φ|2 + Jφ∗ + J ∗φ (1.219)

where the source terms have been included. The generating functional is now
given by

Z0[J, J ∗] =
∫
�φ�φ∗ exp

[
i
∫

dx (�0 − iε|φ|2)
]

=
∫
�φ�φ∗ exp

[
i
∫

dx {φ∗(�− m2 + iε)φ + J ∗φ + Jφ∗}
]
.

(1.220)

The propagator is now given by

�(x − y) = i

Z0[0, 0]
δ2 Z0[J, J ∗]
δ J ∗(x)δ J (y)

∣∣∣∣
J=J ∗=0

. (1.221)

By substituting the Klein–Gordon equations

(�− m2)φc = −J (�− m2)φ∗c = −J ∗ (1.222)

we separate the generating functional as

Z0[J, J ∗] = Z0[0, 0] exp

[
− i

∫
dx dy J ∗(x)�(x − y)J (y)

]
(1.223)

where

Z0[0, 0] =
∫
�φ�φ∗ exp

[
− i

∫
dxφ∗(�− m2 − iε)φ

]
= [Det(�̄− m2)]−1. (1.224)

Wick rotation has been made to occur at the last line.

 



1.6.2 Interacting scalar field

It is possible to add interaction terms to the free field Lagrangian (1.209),

�(φ, ∂µφ) = �0(φ, ∂µφ)− V (φ). (1.225)

The possible form of V (φ) is restricted by the symmetry and renormalizability of
the theory. A typical form of V is a polynomial

V (φ) = g

n!φ
n (n ≥ 3, n ∈ �)

where the constant g ∈ � controls the strength of the interaction. The generating
functional is defined similarly to the free theory as

Z [J ] =
∫
�φ exp

[
i
∫

dx { 1
2φ(�− m2)φ − V (φ)+ Jφ}

]
. (1.226)

The presence of V (φ) makes things slightly more complicated. It can be handled
at least perturbatively as

Z [J ] =
∫
�φ exp

[
−i

∫
dx V (φ)

]
exp

[
i
∫

dx {�0 + Jφ}
]

= exp

[
−i

∫
dx V

(
1

i

δ

δ J (x)

)]∫
�φ exp

[
i
∫

dx {�0 + Jφ}
]

= exp

[
−i

∫
dx V

(
1

i

δ

δ J (x)

)]
Z0[J ]

=
∞∑

k=0

∫
dx1 . . .

∫
dxk

(−i)k

k!

× V

(
1

i

δ

δ J (x1)

)
. . .V

(
1

i

δ

δ J (xk)

)
Z0[J ]. (1.227)

The generating functional Z [J ] generates the vacuum expectation value
of the T -product of field operators, also known as the Green function
Gn(x1, . . . , xn), as

Gn(x1, . . . , xn) ≡ 〈0|T [φ(x1) . . . φ(xn)]|0〉
= (−i)nδn

δ J (x1) . . . δ J (xn)
Z [J ]

∣∣∣∣
J=0
. (1.228)

Since this is the nth functional derivative of Z [J ] around J = 0, we obtain the
functional Taylor expansion of Z [J ] as

Z [J ] =
∞∑

n=1

1

n!
[ n∏

i=1

∫
dxi J (xi)

]
〈0|T [φ(x1) . . . φ(xn)]|0〉

= 〈0|T e
∫

dx J (x)φ(x)|0〉. (1.229)

 



The connected n-point functions are generated by W [J ] defined by

Z [J ] = e−W [J ]. (1.230)

The effective action �[φcl] is defined by the Legendre transformation

�[φcl] ≡ W [J ] −
∫

dτ dx Jφcl (1.231)

where

φcl ≡ 〈φ〉J = δW [J ]
δ J

. (1.232)

The functional �[φcl] generates one-particle irreducible diagrams.

1.7 Quantization of a Dirac field

The Lagrangian of the free Dirac field ψ is

�0 = ψ̄(i/∂ − m)ψ, (1.233)

where /∂ = γ µ∂µ. In general /A ≡ γ µAµ. Variation with respect to ψ̄ yields the
Dirac equation

(i/∂ − m)ψ = 0. (1.234)

The Dirac field, in canonical quantization, satisifes the anti-commutation
relation

{ψ̄(x0, x), ψ(x0, y)} = δ(x − y). (1.235)

Accordingly, it is expressed as a Grassmann number function in path integrals.
The generating functional is

Z0[η̄, η] =
∫
�ψ̄�ψ exp

[
i
∫

dx
(
ψ̄(i/∂ − m)ψ + ψ̄η + η̄ψ)]

(1.236)

where η, η̄ are Grassmannian sources.
The propagator is given by the functional derivative with respect to the

sources,

S(x − y) = − δ2 Z0[η̄, η]
δη̄(x)δη(y)

= 1

(2π)d

∫
dd k

eikx

/k − m − iε
= (i/∂ + m + iε)�(x − y)

(1.237)

where �(x − y) is the scalar field propagator.
By making use of the Dirac equations

(i/∂ − m)ψ = −η ψ̄(i
←−
/∂ + m) = η̄ (1.238)

 



the generating functional is cast into the form

Z0[η̄, η] = Z0[0, 0] exp

[
−i

∫
dx dy η̄(x)S(x − y)η(y)

]
. (1.239)

After Wick rotation τ = ix0, the normalization factor is obtained as

Z0[0, 0] = Det(i/∂ − m) =
∏

i

λi (1.240)

where λi is the i th eigenvalue of the Dirac operator i/∂ − m.

1.8 Gauge theories

At present, physically sensible theories of fundamental interactions are based
on gauge theories. The gauge principle—physics should not depend on how we
describe it—is in harmony with the principle of general relativity. Here we give
a brief summary of classical aspects of gauge theories. For further references, the
reader should consult those books listed at the beginning of this chapter.

1.8.1 Abelian gauge theories

The reader should be familiar with Maxwell’s equations:

div B = 0 (1.241a)

∂B
∂ t
+ curl E = 0 (1.241b)

div E = ρ (1.241c)

∂E
∂ t
− curl E = − j . (1.241d)

The magnetic field B and the electric field E are expressed in terms of the vector
potential Aµ = (φ, A) as

B = curl A E = ∂ A
∂ t
− gradφ. (1.242)

Maxwell’s equations are invariant under the gauge transformation

Aµ→ Aµ + ∂µχ (1.243)

where χ is a scalar function. This invariance is manifest if we define the
electromagnetic field tensor Fµν by

Fµν ≡ ∂µAν − ∂ν Aµ =


0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bz

Ez By −Bx 0

 . (1.244)

 



From the construction, F is invariant under (1.243). The Lagrangian of the
electromagnetic fields is given by

�EM = − 1
4 Fµν Fµν + Aµ jµ (1.245)

where jµ = (ρ, j).

Exercise 1.11. Show that (1.241a) and (1.241b) are written as

∂ξ Fµν + ∂µFνξ + ∂νFξµ = 0 (1.246a)

while (1.241c) and (1.241d) are

∂νFµν = jµ (1.246b)

where the raising and lowering of spacetime indices are carried out with the
Minkowski metric η = diag(−1, 1, 1, 1). Verify that (1.246b) is the Euler–
Lagrange equation derived from (1.245).

Let ψ be a Dirac field with electric charge e. The free Dirac Lagrangian

�0 = ψ̄(iγ µ∂µ + m)ψ (1.247)

is clearly invariant under the global gauge transformation

ψ → e−ieαψ ψ̄ → ψ̄eieα (1.248)

where α ∈ � is a constant. We elevate this symmetry to invariance under the local
gauge transformation,

ψ → e−ieα(x)ψ ψ̄ → ψ̄eieα(x). (1.249)

The Lagrangian transforms under (1.249) as

ψ̄(iγ µ∂µ + m)ψ → ψ̄(iγ µ∂µ + eγ µ∂µα + m)ψ. (1.250)

Since the extra term e∂µα looks like a gauge transformation of the vector
potential, we couple the gauge field Aµ with ψ so that the Lagrangian has a local
gauge symmetry. We find that

� = ψ̄[iγ µ(∂µ − ieAµ)+ m]ψ (1.251)

is invariant under the combined gauge transformation,

ψ → ψ ′ = e−ieα(x)ψ ψ̄ → ψ̄ ′ = ψ̄eieα(x)

Aµ→ A′µ = Aµ − ∂µα(x).
(1.252)

 



Let us introduce the covariant derivatives,

∇µ ≡ ∂µ − ieAµ ∇′µ ≡ ∂µ − ieA′µ. (1.253)

The reader should verify that ∇µψ transforms in a nice way,

∇′µψ ′ = e−ieα(x)∇µψ. (1.254)

The total quantum electrodynamic (QED) Lagrangian is

�QED = − 1
4 FµνFµν + ψ̄(iγ µ∇µ + m)ψ. (1.255)

Exercise 1.12. Let φ = (φ1 + iφ2)/
√

2 be a complex scalar field with electric
charge e. Show that the Lagrangian

� = ηµν(∇µφ)†(∇νφ)+ m2φ†φ (1.256)

is invariant under the gauge transformation

φ→ e−ieα(x)φ φ† → φ†eieα(x) Aµ→ Aµ − ∂µα(x). (1.257)

1.8.2 Non-Abelian gauge theories

The gauge transformation just described is a member of a U(1) group, that
is a complex number of modulus 1, which happens to be an Abelian group.
A few decades ago, Yang and Mills (1954) introduced non-Abelian gauge
transformations. At that time, non-Abelian gauge theories were studied from
curiosity. Nowadays, they play a central role in elementary particle physics.

Let G be a compact semi-simple Lie group such as SO(N) or SU(N). The
anti-Hermitian generators {Tα} satisfy the commutation relations

[Tα, Tβ ] = fαβ
γ Tγ (1.258)

where the numbers fαβγ are called the structure constants of G. An element U
of G near the unit element can be expressed as

U = exp(−θαTα). (1.259)

We suppose a Dirac field ψ transforms under U ∈ G as

ψ → Uψ ψ̄ → ψ̄U †. (1.260)

[Remark: Strictly speaking, we have to specify the representation of G to which
ψ belongs. If readers feel uneasy about (1.260), they may consider ψ is in the
fundamental representation, for example.]

Consider the Lagrangian

� = ψ̄[iγ µ(∂µ + g�µ)+ m]ψ (1.261)

 



where the Yang–Mills gauge field�µ takes its values in the Lie algebra of G, that
is, �µ can be expanded in terms of Tα as �µ = AµαTα . (Script fields are anti-
Hermitian.) The constant g is the coupling constant which controls the strength
of the coupling between the Dirac field and the gauge field. It is easily verified
that � is invariant under

ψ → ψ ′ = Uψ ψ̄ → ψ̄ ′ = ψ̄U†

�µ → �′µ = U�µU† + g−1U∂µU†.
(1.262)

The covariant derivative is defined by ∇µ = ∂µ + g�µ as before. The covariant
derivative ∇µψ transforms covariantly under the gauge transformation

∇′µψ ′ = U∇µψ. (1.263)

The Yang–Mills field tensor is

�µν ≡ ∂µ�ν − ∂ν�µ + g[�µ,�ν]. (1.264)

The component Fµνα is

Fµν
α = ∂µAν

α − ∂ν Aµ
α + g fβγ

αAµ
β Aν

γ . (1.265)

If we define the dual field tensor ∗�µν ≡ 1
2εµνκλ�

κλ, it satisfies the Bianchi
identity,

�µ ∗ �µν ≡ ∂µ ∗ �µν + g[�µ, ∗�µν] = 0. (1.266)

Exercise 1.13. Show that �µν transforms under (1.262) as

�µν → U�µνU
†. (1.267)

From this exercise, we find a gauge-invariant action

�YM = − 1
2 tr(�µν�µν) (1.268a)

where the trace is over the group matrix. The component form is

�YM = − 1
2 FµναFµν

β tr(TαTβ) = 1
4 FµναFµνα (1.268b)

where we have normalized {Tα} so that tr(TαTβ) = − 1
2δαβ . The field equation

derived from (1.268) is

�µ�µν = ∂µ�µν + g[�µ,�µν] = 0. (1.269)

 



1.8.3 Higgs fields

If the gauge symmetry is manifest in our world, there would be many observable
massless vector fields. The absence of such fields, except for the electromagnetic
field, forces us to break the gauge symmetry. The theory is left renormalizable if
the symmetry is broken spontaneously.

Let us consider a U(1) gauge field coupled to a complex scalar field φ, whose
Lagrangian is given by

� = − 1
4 FµνFµν + (∇µφ)†(∇µφ)− λ(φ†φ − v2)2. (1.270)

The potential V (φ) = λ(φ†φ − v2)2 has minima V = 0 at |φ| = v. The
Lagrangian (1.270) is invariant under the local gauge transformation

Aµ→ Aµ − ∂µα φ→ e−ieαφ φ† → eieαφ†. (1.271)

This symmetry is spontaneously broken due to the vacuum expectation value
(VEV) 〈φ〉 of the Higgs field φ. We expand φ as

φ = 1√
2
[v + ρ(x)]eiα(x)/v ∼ 1√

2
[v + ρ(x)+ iα(x)]

assuming v �= 0. If v �= 0, we may take the unitary gauge in which the phase of
φ is ‘gauged away’ so that φ has only the real part,

φ(x) = 1√
2
(v + ρ(x)). (1.272)

If we substitute (1.272) into (1.270) and expand in ρ, we have

� = − 1
4 Fµν Fµν + 1

2∂µρ∂
µρ + 1

2 e2 AµAµ(v2 + 2vρ + ρ2)

− 1
4λ(4v

2ρ2 + 4vρ3 + ρ4). (1.273)

The equations of motion for Aµ and ρ derived from the free parts are

∂νFνµ + 2e2v2 Aµ = 0 ∂µ∂
µρ + 2λv2ρ = 0. (1.274)

From the first equation, we find Aµ must satisfy the Lorentz condition ∂µAµ = 0.
The apparent degrees of freedom of (1.270) are 2(photon)+2(complex scalar) =
4. If VEV �= 0, we have 3(massive vector)+ 1(real scalar) = 4. The field A0 has
a mass term with the wrong sign and so cannot be a physical degree of freedom.
The creation of massive fields out of a gauge field is called the Higgs mechanism..

1.9 Magnetic monopoles

Maxwell’s equations unify electricity and magnetism. In the history of physics
they should be recognized as the first attempt to unify forces in Nature. In spite
of their great success, Dirac (1931) noticed that there existed an asymmetry in
Maxwell’s equations: the equation div B = 0 denies the existence of magnetic
charges. He introduced the magnetic monopole, a point magnetic charge, to make
the theory symmetric.

 



1.9.1 Dirac monopole

Consider a monopole of strength g sitting at r = 0,

div B = 4πgδ3(r). (1.275)

It follows from �(1/r) = −4πδ3(r) and ∇(1/r) = −r/r3 that the solution of
this equation is

B = gr/r3. (1.276)

The magnetic flux � is obtained by integrating B over a sphere S of radius R so
that

� =
∮

S
B · dS = 4πg. (1.277)

What about the vector potential which gives the monopole field (1.276)? If
we define the vector potential AN by

AN
x = −gy

r(r + z)
AN

y = gx

r(r + z)
AN

z = 0 (1.278a)

we easily verify that

curl AN = gr/r3 + 4πgδ(x)δ(y)θ(−z). (1.279)

We have curl AN = B except along the negative z-axis (θ = π). The singularity
along the z-axis is called the Dirac string and reflects the poor choice of the
coordinate system. If, instead, we define another vector potential

AS
x = gy

r(r − z)
AS

y = −gx

r(r − z)
AS

z = 0 (1.278b)

we have curl AS = B except along the positive z-axis (θ = 0) this time. The
existence of a singularity is a natural consequence of (1.277). If there were a
vector A such that B = curl A with no singularity, we would have, from Gauss’
law,

� =
∮

S
B · dS =

∮
S

curl A · dS =
∫

V
div(curl A) dV = 0

where V is the volume inside the surface S. This problem is avoided only when
we abandon the use of a single vector potential.

Exercise 1.14. Let us introduce the polar coordinates (r, θ, φ). Show that the
vector potentials AN and AS are expressed as

AN(r) = g(1− cos θ)

r sin θ
êφ (1.280a)

AS(r) = −g(1+ cos θ)

r sin θ
êφ (1.280b)

where êφ = − sinφ êx + cosφ êy .

 



1.9.2 The Wu–Yang monopole

Wu and Yang (1975) noticed that the geometrical and topological structures
behind the Dirac monopole are best described by fibre bundles. In chapters 9
and 10, we give an account of the Dirac monopole in terms of fibre bundles and
their connections. Here we outline the idea of Wu and Yang without introducing
the fibre bundle. Wu and Yang noted that we may employ more than one vector
potential to describe a monopole. For example, we may avoid singularities if
we adopt AN in the northern hemisphere and AS in the southern hemisphere
of the sphere S surrounding the monopole. These vector potentials yield the
magnetic field B = gr/r3, which is non-singular everywhere on the sphere.
On the equator of the sphere, which is the boundary between the northern and
southern hemispheres, AN and AS are related by the gauge transformation,
AN− AS = grad. To compute this quantity, we employ the result of exercise
1.14,

AN − AS = 2g

r sin θ
êφ = grad(2gφ) (1.281)

where use has been made of the expression

grad f = ∂ f

∂r
êr + 1

r

∂ f

∂θ
êθ + 1

r sin θ

∂ f

∂φ
êφ.

Accordingly, the gauge transformation function connecting AN and AS is

 = 2gφ. (1.282)

Note that  is ill defined at θ = 0 and θ = π . Since we perform the gauge
transformation only at θ = π/2, these singularities do not show up in our analysis.
The total flux is

� =
∮

S
curl A · dS =

∫
UN

curl AN · dS+
∫

US

curl AS · dS (1.283)

where UN and US stand for the northern and southern hemispheres respectively.
Stokes’ theorem yields

� =
∮

equator
AN · ds −

∮
equator

AS · ds =
∮

equator
(AN − AS) · ds

=
∮

equator
grad(2gφ) · ds = 4gπ (1.284)

in agreement with (1.277).

1.9.3 Charge quantization

Consider a point particle with electric charge e and mass m moving in the field
of a magnetic monopole of charge g. If the monopole is heavy enough, the

 



Schrödinger equation of the particle takes the form

1

2m

(
p − e

c
A
)2
ψ(r) = Eψ(r). (1.285)

It is easy to show that under the gauge transformation A → A + grad, the
wavefunction changes as ψ → exp(ie/h̄c)ψ . In the present case, AN and AS

differ only by the gauge transformation AN− AS = grad(2gφ). If ψN andψS are
wavefunctions defined on UN and US respectively, they are related by the phase
change

ψS(r) = exp

(−ie

h̄c

)
ψN(r). (1.286)

Let us take θ = π/2 and study the behaviour of wavefunctions as we go round
the equator of the sphere from φ = 0 to φ = 2π . The wavefunction is required to
be single valued, hence (1.286) forces us to take

2eg

h̄c
= n n ∈ �. (1.287)

This is the celebrated Dirac quantization condition for the magnetic charge; if
the magnetic monopole exists, the magnetic charge takes discrete values,

g = h̄cn

2e
n ∈ �. (1.288)

By the same token, if there exists a magnetic monopole somewhere in the
universe, all the electric charges are quantized.

1.10 Instantons

The vacuum-to-vacuum amplitude in the Euclidean theory is

Z ≡ 〈0|0〉 ∝
∫
�φ e−S[φ,∂µφ] (1.289)

where S is the Euclidean action. Equation (1.289) shows that the principal
contribution to Z comes from the values of φ(x) which give the local minima
of S[φ, ∂µφ]. In many theories there exist a number of local minima in addition
to the absolute minimum. In the case of non-Abelian gauge theories these minima
are called instantons.

1.10.1 Introduction

Let us consider the SU(2) gauge theory defined in the four-dimensional Euclidean
space �4 . The action is

S =
∫

d4 x�(x) =
∫

d4 x[− 1
2 tr�µν�µν] (1.290)

 



where the field strength is

�µν = ∂µ�ν − ∂ν�µ + g[�µ,�ν] (1.291)

with
�µ ≡ Aµ

α σα

2i
�µν ≡ Fµν

α σα

2i
.

The field equation is

�µ�µν = ∂µ�µν + g[�µ,�µν] = 0. (1.292)

In the path integral only those field configurations with finite action
contribute. Suppose�µ satisfies

�µ → iU(x)−1∂µU(x) as |x | → ∞ (1.293)

where U(x) is an element of SU(2). We easily find that �µν vanishes for the �µ
of (1.293). We require that on sphere S3 of large radius, the gauge potential be
given by (1.293).

Later we show that this configuration is characterized by the way in which
S3 is mapped to the gauge group SU(2). Non-trivial configurations are those that
cannot be deformed continuously to a uniform configuration. They were proposed
by Belavin et al (1975) and are called instantons.

1.10.2 The (anti-)self-dual solution

In general, solving a second-order differential equation is more difficult than
solving a first-order one. It is nice if a second-order differential equation can
be replaced by a first-order one which is equivalent to the original problem. Let
us consider the inequality∫

d4x tr
(
�µν ± ∗�µν

)2 ≥ 0. (1.294)

Clearly (1.294) is saturated if

�µν = ± ∗ �µν. (1.295)

If the positive sign is chosen, � is said to be self-dual while the negative sign
gives an anti-self-dual solution. If (1.295) is satisfied, the field equation is
automatically satisfied since

�µ�µν = ±�µ ∗ �µν = 0 (Bianchi identity). (1.296)

As we will show in section 10.5, the integral

Q ≡ −1

16π2

∫
d4x tr�µν ∗ �µν (1.297)

 



is an integer characterizing the way S3 is mapped to SU(2). If � is self-dual then
Q is positive, and if � is anti-self-dual then Q is negative. From (1.294), we find
(note that ∗�µν ∗ �µν = �µν�µν) that∫

d4x (2�µν�
µν ± 2 ∗ �µν ∗ �µν) ≥ 0. (1.298)

From this inequality and the definition of the action, we find that

S ≥ 8π2|Q| (1.299)

where the inequality is saturated for (1.295). Let us concentrate on the self-dual
solution � = ∗�. We look for an instanton solution of the form

�µ = i f (r)U(x)−1∂µU(x) (1.300)

where r ≡ |x | and

f (r)→ 1 as r →∞ (1.301a)

U(x) = 1

r
(x4 − ixiσi ). (1.301b)

Substituting (1.300) into (1.295), we find that f satisfies

r
d f (r)

dr
= 2 f (1− f ). (1.302)

The solution that satisfies the boundary condition (1.301a) is

f (r) = r2

r2 + λ2
(1.303)

where λ is a parameter that specifies the size of the instanton. Substituting this
into (1.300) we find that

�µ(x) = ir2

r2 + λ2
U(x)−1∂µU(x) (1.304)

and the corresponding field strength

�µν(x) = 4λ2

r2 + λ2
σµν (1.305)

where

σi j ≡ 1

4i
[σi , σ j ] σi0 ≡ 1

2
σi = −σ0i . (1.306)

This solution gives Q = +1 and S = 8π2.

 



Problems

1.1 Consider a Hamiltonian of the form

H =
∫

dnx

[
1

2

(
∂φ

∂ t

)2

+ 1

2
(∇φ)2 + V (φ)

]

where V (φ) (≥ 0) is a potential. If φ is a time-independent classical solution, we
may drop the first term and write H [φ] = H1[φ] + H2[φ], where

H1[φ] ≡ 1
2

∫
dn x (∇φ)2 H2[φ] ≡

∫
dn x V (φ).

(1) Consider a scale transformation φ(x) → φ(λx). Show that Hi [φ]
transforms as

H1[φ] → H λ
1 [φ] = λ(n−2)H1[φ] H2[φ] → H λ

2 [φ] = λ−n H2[φ].
(2) Suppose φ satisfies the field equation. Show that

(2− n)H1[φ] − nH2[φ] = 0.

[Hint: Take the λ-derivative of H λ
1 [φ] + H λ

2 [φ] and put λ = 1.]
(3) Show that time-independent topological excitations of H [φ] exist if and

only if n = 1 (Derrick’s theorem). Consider ways out of this restriction.

 



2

MATHEMATICAL PRELIMINARIES

In the present chapter we introduce elementary concepts in the theory of maps,
vector spaces and topology. A modest knowledge of undergraduate mathematics,
such as set theory, calculus, complex analysis and linear algebra is assumed.

The main purpose of this book is to study the application of the theory of
manifolds to the problems in physics. Vector spaces and topology are, in a sense,
two extreme viewpoints of manifolds. A manifold is a space which locally looks
like �n (or � n ) but not necessarily globally. As a first approximation, we may
model a small part of a manifold by a Euclidean space �n (or � n ) (a small
area around a point on a surface can be approximated by the tangent plane at
that point); this is the viewpoint of a vector space. In topology, however, we
study the manifold as a whole. We want to study the properties of manifolds and
classify manifolds using some sort of ‘measures’. Topology usually comes with
an adjective: algebraic topology, differential topology, combinatorial topology,
general topology and so on. These adjectives refer to the measure we use when
classifying manifolds.

2.1 Maps

2.1.1 Definitions

Let X and Y be sets. A map (or mapping) f is a rule by which we assign y ∈ Y
for each x ∈ X . We write

f : X → Y. (2.1)

If f is defined by some explicit formula, we may write

f : x 
→ f (x) (2.2)

There may be more than two elements in X that correspond to the same y ∈ Y . A
subset of X whose elements are mapped to y ∈ Y under f is called the inverse
image of y, denoted by f −1(y) = {x ∈ X | f (x) = y}. The set X is called
the domain of the map while Y is called the range of the map. The image of
the map is f (X) = {y ∈ Y |y = f (x) for some x ∈ X} ⊂ Y . The image
f (X) is also denoted by im f . The reader should note that a map cannot be
defined without specifying the domain and the range. Take f (x) = exp x , for
example. If both the domain and the range are �, f (x) = −1 has no inverse

 



image. If. however, the domain and the range are the complex plane � , we find
f −1(−1) = {(2n+1)π i|n ∈ Z}. The domain X and the range Y are as important
as f itself in specifying a map.

Example 2.1. Let f : � → � be given by f (x) = sin x . We also write
f : x 
→ sin x . The domain and the range are � and the image f (�) is [−1, 1].
The inverse image of 0 is f −1(0) = {nπ |n ∈ �}. Let us take the same function
f (x) = sin x = (eix − e−ix)/2i but f : � → � this time. The image f (C) is the
whole complex plane � .

Definition 2.1. If a map satisfies a certain condition it bears a special name.

(a) A map f : X → Y is called injective (or one to one) if x �= x ′ implies
f (x) �= f (x ′).

(b) A map f : X → Y is called surjective (or onto) if for each y ∈ Y there
exists at least one element x ∈ X such that f (x) = y.

(c) A map f : X → Y is called bijective if it is both injective and surjective.

Example 2.2. A map f : � → � defined by f : x 
→ ax (a ∈ � − {0}) is
bijective. f : � → � defined by f : x 
→ x2 is neither injective nor surjective.
f : � → � given by f : x 
→ exp x is injective but not surjective.

Exercise 2.1. A map f : � → � defined by f : x 
→ sin x is neither injective
nor surjective. Restrict the domain and the range to make f bijective.

Example 2.3. Let M be an element of the general linear group GL(n,�) whose
matrix representation is given by n× n matrices with non-vanishing determinant.
Then M : �n → �n , x 
→ Mx is bijective. If det M = 0, it is neither injective
nor surjective.

A constant map c : X → Y is defined by c(x) = y0 where y0 is a fixed
element in Y and x is an arbitrary element in X . Given a map f : X → Y , we
may think of its restriction to A ⊂ X , which is denoted as f |A : A → Y . Given
two maps f : X → Y and g : Y → Z , the composite map of f and g is a map
g ◦ f : X → Z defined by g ◦ f (x) = g( f (x)). A diagram of maps is called
commutative if any composite maps between a pair of sets do not depend on how
they are composed. For example, in figure 2.1, f ◦ g = h ◦ j and f ◦ g = k etc.

Exercise 2.2. Let f : � → � be defined by f : x → x2 and g : � → � by
g : x → exp x . What are g ◦ f : � → � and f ◦ g : � → �?

If A ⊂ X , an inclusion map i : A → X is defined by i(a) = a for any
a ∈ A. An inclusion map is often written as i : A ↪→ X . The identity map
idX : X → X is a special case of an inclusion map, for which A = X . If
f : X → Y defined by f : x 
→ f (x) is bijective, there exists an inverse map
f −1 : Y → X , such that f −1 : f (x)→ x , which is also bijective. The maps f

 



g

k

X

Z

j

Y

f

h
W

Figure 2.1. A commutative diagram of maps.

and f −1 satisfy f ◦ f −1 = idY and f −1 ◦ f = idX . Conversely, if f : X → Y
and g : Y → X satisfy f ◦ g = idY and g ◦ f = idX , then f and g are bijections.
This can be proved from the following exercise.

Exercise 2.3. Show that if f : X → Y and g : Y → X satisfy g ◦ f = idX , f is
injective and g is surjective. If this is applied to f ◦ g = idY as well, we obtain
the previous result.

Example 2.4. Let f : � → (0,∞) be a bijection defined by f : x 
→ exp x .
Then the inverse map f −1 : (0,∞) → � is f −1 : x 
→ ln x . Let g :
(−π/2, π/2) → (−1, 1) be a bijection defined by g : x → sin x . The inverse
map is g−1 : x 
→ sin−1 x .

Exercise 2.4. The n-dimensional Euclidean group En is made of an n-
dimensional translation a : x → x+a (x, a ∈ �n ) and an O(n) rotation R : x →
Rx, R ∈ O(n). A general element (R, a) of En acts on x by (R, a) : x 
→ Rx+a.
The product is defined by (R2, a2) × (R1, a1) : x 
→ R2(R1x + a1) + a2, that
is, (R2, a2) ◦ (R1, a1) = (R2 R1, R2a1+ a2). Show that the maps a, R and (R, a)
are bijections. Find their inverse maps.

Suppose certain algebraic structures (product or addition, say) are endowed
with the sets X and Y . If f : X → Y preserves these algebraic structures, then f
is called a homomorphism. For example, let X be endowed with a product. If f
is a homomorphism, it preserves the product, f (ab) = f (a) f (b). Note that ab is
defined by the product rule in X , and f (a) f (b) by that in Y . If a homomorphism
f is bijective, f is called an isomorphism and X is said to be isomorphic to Y ,
denoted x ∼= y.

 



2.1.2 Equivalence relation and equivalence class

Some of the most important concepts in mathematics are equivalence relations
and equivalence classes. Although these subjects are not directly related to maps,
it is appropriate to define them at this point before we proceed further. A relation
R defined in a set X is a subset of X2. If a point (a, b) ∈ X2 is in R, we may write
a Rb. For example, the relation> is a subset of �2 . If (a, b) ∈ >, then a > b.

Definition 2.2. An equivalence relation ∼ is a relation which satisfies the
following requirements:

(i) a ∼ a (reflective).
(ii) If a ∼ b, then b ∼ a (symmetric).
(iii) If a ∼ b and b ∼ c, then a ∼ c (transitive).

Exercise 2.5. If an integer is divided by 2, the remainder is either 0 or 1. If two
integers n and m yield the same remainder, we write m ∼ n. Show that ∼ is an
equivalence relation in �.

Given a set X and an equivalence relation ∼, we have a partition of X into
mutually disjoint subsets called equivalence classes. A class [a] is made of all
the elements x in X such that x ∼ a,

[a] = {x ∈ X |x ∼ a} (2.3)

[a] cannot be empty since a ∼ a. We now prove that if [a] ∩ [b] �= ∅ then
[a] = [b]. First note that a ∼ b. (Since [a] ∩ [b] �= ∅ there is at least one
element in [a] ∩ [b] that satisfies c ∼ a and c ∼ b. From the transitivity, we
have a ∼ b.) Next we show that [a] ⊂ [b]. Take an arbitrary element a′ in [a];
a′ ∼ a. Then a ∼ b implies b ∼ a′, that is a′ ∈ [b]. Thus, we have [a] ⊂ [b].
Similarly, [a] ⊃ [b] can be shown and it follows that [a] = [b]. Hence, two
classes [a] and [b] satisfy either [a] = [b] or [a] ∩ [b] = ∅. In this way a set X
is decomposed into mutually disjoint equivalence classes. The set of all classes
is called the quotient space, denoted by X/ ∼. The element a (or any element
in [a]) is called the representative of a class [a]. In exercise 2.5, the equivalence
relation ∼ divides integers into two classes, even integers and odd integers. We
may choose the representative of the even class to be 0, and that of the odd class
to be 1. We write this quotient space �/∼. �/∼ is isomorphic to �2, the cyclic
group of order 2, whose algebra is defined by 0 + 0 = 0, 0 + 1 = 1 + 0 = 1
and 1 + 1 = 0. If all integers are divided into equivalence classes according to
the remainder of division by n, the quotient space is isomorphic to �n, the cyclic
group of order n.

Let X be a space in our usual sense. (To be more precise, we need the
notion of topological space, which will be defined in section 2.3. For the time
being we depend on our intuitive notion of ‘space’.) Then quotient spaces may
be realized as geometrical figures. For example, let x and y be two points in �.

 



Figure 2.2. In (a) all the points x + 2nπ , n ∈ �are in the same equivalence class [x]. We
may take x ∈ [0, 2π) as a representative of [x]. (b) The quotient space �/ ∼ is the circle
S1.

Introduce a relation ∼ by: x ∼ y if there exists n ∈ � such that y = x + 2πn.
It is easily shown that ∼ is an equivalence relation. The class [x] is the set
{. . . , x − 2π, x, x + 2π, . . .}. A number x ∈ [0, 2π) serves as a representative of
an equivalence class [x], see figure 2.2(a). Note that 0 and 2π are different points
in � but, according to the equivalence relation, these points are looked upon as
the same element in �/ ∼. We arrive at the conclusion that the quotient space
�/ ∼ is the circle S1 = {eiθ |0 ≤ θ < 2π}; see figure 2.2(b). Note that a point
ε is close to a point 2π − ε for infinitesimal ε. Certainly this is the case for S1,
where an angle ε is close to an angle 2π − ε, but not the case for �. The concept
of closeness of points is one of the main ingredients of topology.

Example 2.5. (a) Let X be a square disc {(x, y) ∈ �2 | |x | ≥ 1, |y| ≥ 1}. If we
identify the points on a pair of facing edges, (−1, y) ∼ (1, y), for example, we
obtain the cylinder, see figure 2.3(a). If we identify the points (−1,−y) ∼ (1, y),
we find the Möbius strip, see figure 2.3(b). [Remarks: If readers are not familiar
with the Möbius strip, they may take a strip of paper and glue up its ends after
a π-twist. Because of the twist, one side of the strip has been joined to the
other side, making the surface single sided. The Möbius strip is an example
of a non-orientable surface, while the cylinder has definite sides and is said to
be orientable. Orientability will be discussed in terms of differential forms in
section 5.5.]

(b) Let (x1, y1) and (x2, y2) be two points in �2 and introduce an equivalence
relation ∼ by: (x1, y1) ∼ (x2, y2) if x2 = x1 + 2πnx and y2 = y1 + 2πny ,
nx , ny ∈ �. Then ∼ is an equivalence relation. The quotient space �2/ ∼ is
the torus T 2 (the surface of a doughnut), see figure 2.4(a). Alternatively, T 2 is

 



Figure 2.3. (a) The edges |x| = 1 are identified in the direction of the arrows to form a
cylinder. (b) If the edges are identified in the opposite direction, we have a Möbius strip.

Figure 2.4. If all the points (x + 2πnx , y + 2πny), nx , ny ∈ � are identified as in (a),
the quotient space is taken to be the shaded area whose edges are identified as in (b). This
resulting quotient space is the torus T 2.

represented by a rectangle whose edges are identified as in figure 2.4(b).
(c) What if we identify the edges of a rectangle in other ways? Figure 2.5

gives possible identifications. The spaces obtained by these identifications are

 



Figure 2.5. The Klein bottle (a) and the projective plane (b).

called the Klein bottle, figure 2.5(a), and the projective plane, figure 2.5(b),
neither of which can be realized (or embedded) in the Euclidean space �3 without
intersecting with itself. They are known to be non-orientable.

The projective plane, which we denote RP2, is visualized as follows. Let us
consider a unit vector n and identify n with−n, see figure 2.6. This identification
takes place when we describe a rod with no head or tail, for example. We are
tempted to assign a point on S2 to specify the ‘vector’ n. This works except for
one point. Two antipodal points n = (θ, φ) and −n = (π − θ, π + φ) represent
the same state. Then we may take a northern hemisphere as the coset space S2/ ∼
since only a half of S2 is required. However, the coset space is not just an ordinary
hemisphere since the antipodal points on the equator are identified. By continuous
deformation of this hemisphere into a square, we obtain the square in figure 2.5(b).

(d) Let us identify pairs of edges of the octagon shown in figure 2.7(a). The
quotient space is the torus with two handles, denoted by �2, see figure 2.7(b).
�g , the torus with g handles, can be obtained by a similar identification, see
problem 2.1. The integer g is called the genus of the torus.

(e) Let D2 = {(x, y) ∈ �2 |x2 + y2 ≤ 1} be a closed disc. Identify the
points on the boundary {(x, y) ∈ �2 |x2 + y2 = 1}; (x1, y1) ∼ (x2, y2) if
x2

1 + y2
1 = x2

2 + y2
2 = 1. Then we obtain the sphere S2 as the quotient space

D2/ ∼, also written as D2/S1, see figure 2.8. If we take an n-dimensional disc
Dn = {(x0, . . . , xn) ∈ �n+1 |(x0)

2 + · · · + (xn)2 ≤ 1} and identify the points on
the surface Sn−1, we obtain the n-sphere Sn , namely Dn/Sn−1 = Sn .

Exercise 2.6. Let H be the upper-half complex plane {τ ∈ � | Im τ ≥ 0}. Define a

 



Figure 2.6. If n has no head or tail, one cannot distinguish n from −n and they must
be identified. One obtains the projective plane R P2 by this identification n ∼ −n;
R P2 	 S2/ ∼. It suffices to take a hemisphere to describe the coset space. Note, however,
that the antipodal points on the equator are identified.

Figure 2.7. If the edges of (a) are identified a torus with two holes (genus two) is obtained.

Figure 2.8. A disc D2 whose boundary S1 is identified is the sphere S2.

group

SL(2,�)≡
{(

a b
c d

) ∣∣∣∣a, b, c, d ∈ �, ad− bc = 1

}
. (2.4)

 



Introduce a relation ∼, for τ, τ ′ ∈ H, by τ ∼ τ ′ if there exists a matrix

A =
(

a b
c d

)
∈ SL(2,�)

such that
τ ′ = (aτ + b)/(cτ + d). (2.5)

Show that this is an equivalence relation. (The quotient space H/SL(2,�) is
shown in figure 8.3.)

Example 2.6. Let G be a group and H a subgroup of G. Let g, g′ ∈ G and
introduce an equivalence relation ∼ by g ∼ g′ if there exists h ∈ H such that
g′ = gh. We denote the equivalence class [g] = {gh|h ∈ H } by gH . The class
gH is called a (left) coset. gH satisfies either gH ∩ g′H = ∅ or gH = g′H .
The quotient space is denoted by G/H . In general G/H is not a group unless H
is a normal subgroup of G, that is, ghg−1 ∈ H for any g ∈ G and h ∈ H . If
H is a normal subgroup of G, G/H is called the quotient group, whose group
operation is given by [g] ∗ [g′] = [gg′], where ∗ is the product in G/H . Take
ghε[g] and g′h′ε[g′]. Then there exists h′′εH such that hg′ = g′h′′ and hence
ghg′h′ = gg′h′′h′ε[gg′]. The unit element of G/H is the equivalence class [e]
and the inverse element of [g] is [g−1].
Exercise 2.7. Let G be a group. Two elements a, b ∈ G are said to be conjugate
to each other, denoted by a 	 b, if there exists g ∈ G such that b = gag−1. Show
that 	 is an equivalence relation. The equivalence class [a] = {gag−1|g ∈ G} is
called the conjugacy class.

2.2 Vector spaces

2.2.1 Vectors and vector spaces

A vector space (or a linear space) V over a field K is a set in which two
operations, addition and multiplication by an element of K (called a scalar), are
defined. (In this book we are mainly interested in K = � and � .) The elements
(called vectors) of V satisfy the following axioms:

(i) u + v = v + u.
(ii) (u + v)+ w = u + (v + w).
(iii) There exists a zero vector 0 such that v + 0 = v.
(iv) For any u, there exists −u, such that u + (−u) = 0.
(v) c(u + v) = cu + cv.
(vi) (c + d)u = cu + du.
(vii) (cd)u = c(du).
(viii) 1u = u.

Here u, v,w ∈ V and c, d ∈ K and 1 is the unit element of K .

 



Let {vi } be a set of k (>0) vectors. If the equation

x1v1 + x2v2 + · · · + xkvk = 0 (2.6)

has a non-trivial solution, xi �= 0 for some i , the set of vectors {v j } is called
linearly dependent, while if (2.6) has only a trivial solution, xi = 0 for any i ,
{vi } is said to be linearly independent. If at least one of the vectors is a zero
vector 0, the set is always linearly dependent.

A set of linearly independent vectors {ei } is called a basis of V , if any
element v ∈ V is written uniquely as a linear combination of {ei }:

v = v1e1 + v2e2 + · · · + vn en . (2.7)

The numbers vi ∈ K are called the components of v with respect to the basis
{e j }. If there are n elements in the basis, the dimension of V is n, denoted by
dim V = n. We usually write the n-dimensional vector space over K as V (n, K )
(or simply V if n and K are understood from the context). We assume n is finite.

2.2.2 Linear maps, images and kernels

Given two vector spaces V and W , a map f : V → W is called a linear map
if it satisfies f (a1v1 + a2v2) = a1 f (v1) + a2 f (v2) for any a1, a2 ∈ K and
v1, v2 ∈ V . A linear map is an example of a homomorphism that preserves the
vector addition and the scalar multiplication. The image of f is f (V ) ⊂ W and
the kernel of f is {v ∈ V | f (v) = 0} and denoted by im f and ker f respectively.
ker f cannot be empty since f (0) is always 0. If W is the field K itself, f is
called a linear function. If f is an isomorphism, V is said to be isomorphic to
W and vice versa, denoted by V ∼= W . It then follows that dim V = dim W .
In fact, all the n-dimensional vector spaces are isomorphic to K n , and they are
regarded as identical vector spaces. The isomorphism between the vector spaces
is an element of GL(n, K ).

Theorem 2.1. If f : V → W is a linear map, then

dim V = dim(ker f )+ dim(im f ). (2.8)

Proof. Since f is a linear map, it follows that ker f and im f are vector spaces,
see exercise 2.8. Let the basis of ker f be {g1, . . . , gr } and that of im f be
{h′1, . . . , h′s}. For each i (1 ≤ i ≤ s), take hi ∈ V such that f (hi ) = h′i and
consider the set of vectors {g1, . . . , gr , h1, . . . , hs}.

Now we show that these vectors form a linearly independent basis of V .
Take an arbitrary vector v ∈ V . Since f (v) ∈ im f , it can be expanded as f (v) =
ci h′i = ci f (hi ). From the linearity of f , it then follows that f (v−ci hi ) = 0, that
is v − ci hi ∈ ker f . This shows that an arbitrary vector v is a linear combination
of {g1, . . . , gr , h1, . . . , hs}. Thus, V is spanned by r + s vectors. Next let us

 



assume ai gi + bi hi = 0. Then 0 = f (0) = f (ai gi + bi hi ) = bi f (hi ) = bi h′i ,
which implies that bi = 0. Then it follows from ai gi = 0 that ai = 0, and
the set {g1, . . . , gr , h1, . . . , hs} is linearly independent in V . Finally we find
dim V = r + s = dim(ker f )+ dim(im f ). �

[Remark: The vector space spanned by {h1, . . . , hs} is called the orthogonal
complement of ker f and is denoted by (ker f )⊥.]

Exercise 2.8. (1) Let f : V → W be a linear map. Show that both ker f and im f
are vector spaces.

(2) Show that a linear map f : V → V is an isomorphism if and only if
ker f = {0}.

2.2.3 Dual vector space

The dual vector space has already been introduced in section 1.2 in the context of
quantum mechanics. The exposition here is more mathematical and complements
the materials presented there.

Let f : V → K be a linear function on a vector space V (n, K ) over a
field K . Let {ei } be a basis and take an arbitrary vector v = v1e1 + · · · + vnen .
From the linearity of f , we have f (v) = v1 f (e1) + · · · + vn f (en). Thus, if we
know f (ei ) for all i , we know the result of the operation of f on any vector. It is
remarkable that the set of linear functions is made into a vector space, namely a
linear combination of two linear functions is also a linear function.

(a1 f1 + a2 f2)(v) = a1 f1(v)+ a2 f2(v) (2.9)

This linear space is called the dual vector space to V (n, K ) and is denoted by
V ∗(n, K ) or simply by V ∗. If dim V is finite, dim V ∗ is equal to dim V . Let
us introduce a basis {e∗i } of V ∗. Since e∗i is a linear function it is completely
specified by giving e∗i(e j ) for all j . Let us choose the dual basis,

e∗i (e j ) = δi
j . (2.10)

Any linear function f , called a dual vector in this context, is expanded in terms
of {e∗i},

f = fi e
∗i . (2.11)

The action of f on v is interpreted as an inner product between a column vector
and a row vector,

f (v) = fi e
∗i (v j e j ) = fiv

j e∗i(e j ) = fiv
i . (2.12)

We sometimes use the notation 〈 , 〉 : V ∗ × V → K to denote the inner product.
Let V and W be vector spaces with a linear map f : V → W and let

g : W → K be a linear function on W (g ∈ W ∗). It is easy to see that the
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Figure 2.9. The pullback of a function g is a function f ∗(g) = g ◦ f .

composite map g ◦ f is a linear function on V . Thus, f and g give rise to an
element h ∈ V ∗ defined by

h(v) ≡ g( f (v)) v ∈ V . (2.13)

Given g ∈ W∗, a map f : V → W has induced a map h ∈ V ∗. Accordingly,
we have an induced map f ∗ : W ∗ → V ∗ defined by f ∗ : g 
→ h = f ∗(g), see
figure 2.9. The map h is called the pullback of g by f ∗.

Since dim V ∗ = dim V , there exists an isomorphism between V and V ∗.
However, this isomorphism is not canonical; we have to specify an inner product
in V to define an isomorphism between V and V ∗ and vice versa, see the next
section. The equivalence of a vector space and its dual vector space will appear
recurrently in due course.

Exercise 2.9. Suppose { f j } is another basis of V and { f ∗i } the dual basis. In
terms of the old basis, f i is written as f i = Ai

j e j where A ∈ GL(n, K ). Show
that the dual bases are related by e∗i = f ∗ j A j

i .

2.2.4 Inner product and adjoint

Let V = V (m, K ) be a vector space with a basis {ei } and let g be a vector space
isomorphism g : V → V ∗, where g is an arbitrary element of GL(m, K ). The
component representation of g is

g : v j → gi jv
j . (2.14)

Once this isomorphism is given, we may define the inner product of two vectors
v1, v2 ∈ V by

g(v1, v2) ≡ 〈gv1, v2〉. (2.15)

Let us assume that the field K is a real number �. for definiteness. Then
equation (2.15) has a component expression,

g(v1, v2) = v1
i g j iv2

j . (2.16)

 



We require that the matrix (gi j ) be positive definite so that the inner product
g(v, v) has the meaning of the squared norm of v. We also require that the metric
be symmetric: gi j = g j i so that g(v1, v2) = g(v2, v1).

Next, let W = W (n,�) be a vector space with a basis { f α} and a vector
space isomorphism G : W → W∗. Given a map f : V → W , we may define the
adjoint of f , denoted by f̃ , by

G(w, f v) = g(v, f̃ w) (2.17)

where v ∈ V and w ∈ W . It is easy to see that (̃ f̃ ) = f . The component
expression of equation (2.17) is

wαGαβ f β iv
i = vi gi j f̃ j

αw
α (2.18)

where f β i and f̃ j
α are the matrix representations of f and f̃ respectively. If

gi j = δi j and Gαβ = δαβ , the adjoint f̃ reduces to the transpose f t of the matrix
f .

Let us show that dim im f = dim im f̃ . Since (2.18) holds for any v ∈ V
and w ∈ W , we have Gαβ f β i = gi j f̃ j

α , that is

f̃ = g−1 f tGt. (2.19)

Making use of the result of the following exercise, we obtain rank f = rank f̃ ,
where the rank of a map is defined by that of the corresponding matrix (note that
g ∈ GL(m,�) and G ∈ GL(n,�)). It is obvious that dim im f is the rank of a
matrix representing the map f and we conclude dim im f = dim im f̃ .

Exercise 2.10. Let V = V (m,�) and W = W (n,�) and let f be a matrix
corresponding to a linear map from V to W . Verify that rank f = rank f t =
rank(M f t N), where M ∈ GL(m, �) and N ∈ GL(n,�).

Exercise 2.11. Let V be a vector space over � . The inner product of two vectors
v1 and v2 is defined by

g(v1, v2) = v1
i gi jv2

j (2.20)

where ¯ denotes the complex conjugate. From the positivity and symmetry of the
inner product, g(v1, v2) = g(v2, v1), the vector space isomorphism g : V → V ∗
is required to be a positive-definite Hermitian matrix. Let f : V → W be a
(complex) linear map and G : W → W∗ be a vector space isomorphism. The
adjoint of f is defined by g(v, f̃ w) = G(w, f v). Repeat the analysis to show
that

(a) f̃ = g−1 f †G†, where † denotes the Hermitian conjugate, and
(b) dim im f = dim im f̃ .

Theorem 2.2. (Toy index theorem) Let V and W be finite-dimensional vector
spaces over a field K and let f : V → W be a linear map. Then

dim ker f − dim ker f̃ = dim V − dim W. (2.21)

 



Proof. Theorem 2.1 tells us that

dim V = dim ker f + dim im f

and, if applied to f̃ : W → V ,

dim W = dim ker f̃ + dim im f̃ .

We saw earlier that dim im f = dim im f̃ , from which we obtain

dim V − dim ker f = dim W − dim ker f̃ . �

Note that in (2.21), each term on the LHS depends on the details of the map
f . The RHS states, however, that the difference in the two terms is independent of
f ! This may be regarded as a finite-dimensional analogue of the index theorems,
see chapter 12.

2.2.5 Tensors

A dual vector is a linear object that maps a vector to a scalar. This may be
generalized to multilinear objects called tensors, which map several vectors and
dual vectors to a scalar. A tensor T of type (p, q) is a multilinear map that maps
p dual vectors and q vectors to �,

T :
p⊗

V ∗
q⊗

V → �. (2.22)

For example, a tensor of type (0, 1) maps a vector to a real number and is
identified with a dual vector. Similarly, a tensor of type (1, 0) is a vector. If
ω maps a dual vector and two vectors to a scalar, ω : V ∗ × V × V → �, ω is of
type (1, 2).

The set of all tensors of type (p, q) is called the tensor space of type (p, q)

and denoted by � p
q . The tensor product τ = µ⊗ ν ∈ � p

q ⊗ � p′
q ′ is an element of

�
p+p′
q+q ′ defined by

τ (ω1, . . . , ωp, ξ1, . . . , ξp′ ; u1, . . . , uq , v1, . . . , vq ′)

= µ(ω1, . . . , ωp; u1, . . . , uq )ν(ξ1, . . . , ξp′ ; v1, . . . , vq ′ ). (2.23)

Another operation in a tensor space is the contraction, which is a map from
a tensor space of type (p, q) to type (p − 1, q − 1) defined by

τ(. . . , e∗i , . . . ; . . . , ei , . . .) (2.24)

where {ei } and {e∗i } are the dual bases.

Exercise 2.12. Let V and W be vector spaces and let f : V → W be a linear
map. Show that f is a tensor of type (1, 1).

 



2.3 Topological spaces

The most general structure with which we work is a topological space. Physicists
often tend to think that all the spaces they deal with are equipped with metrics.
However, this is not always the case. In fact, metric spaces form a subset of
manifolds and manifolds form a subset of topological spaces.

2.3.1 Definitions

Definition 2.3. Let X be any set and � = {Ui |i ∈ I } denote a certain collection of
subsets of X . The pair (X,� ) is a topological space if � satisfies the following
requirements.

(i) ∅, X ∈ � .
(ii) If � is any (maybe infinite) subcollection of I , the family {U j | j ∈ J }
satisfies ∪ j∈J U j ∈ � .

(iii) If K is any finite subcollection of I , the family {Uk|k ∈ K } satisfies
∩k∈K Uk ∈ � .

X alone is sometimes called a topological space. The Ui are called the open
sets and � is said to give a topology to X .

Example 2.7. (a) If X is a set and � is the collection of all the subsets of X , then
(i)–(iii) are automatically satisfied. This topology is called the discrete topology.

(b) Let X be a set and � = {∅, X}. Clearly � satisfies (i)–(iii). This topology
is called the trivial topology. In general the discrete topology is too stringent
while the trivial topology is too trivial to give any interesting structures on X .

(c) Let X be the real line �. All open intervals (a, b) and their unions
define a topology called the usual topology; a and b may be −∞ and ∞
respectively. Similarly, the usual topology in �n can be defined. [Take a product
(a1, b1)× · · · × (an, bn) and their unions. . . .]

Exercise 2.13. In definition 2.3, axioms (ii) and (iii) look somewhat unbalanced.
Show that, if we allow infinite intersection in (iii), the usual topology in � reduces
to the discrete topology (and is thus not very interesting).

A metric d : X × X → � is a function that satisfies the conditions:

(i) d(x, y) = d(y, x)
(ii) d(x, y) ≥ 0 where the equality holds if and only if x = y
(iii) d(x, y)+ d(y, z) ≥ d(x, z)

for any x, y, z ∈ X . If X is endowed with a metric d , X is made into a topological
space whose open sets are given by ‘open discs’,

Uε(X) = {y ∈ X |d(x, y) < ε} (2.25)

 



and all their possible unions. The topology � thus defined is called the metric
topology determined by d . The topological space (X,� ) is called a metric space.
[Exercise: Verify that a metric space (X, � ) is indeed a topological space.]

Let (X,� ) be a topological space and A be any subset of X . Then � = {Ui }
induces the relative topology in A by � ′ = {Ui ∩ A|Ui ∈ � }.
Example 2.8. Let X = �n+1 and take the n-sphere Sn ,

(x0)2 + (x1)2 + · · · + (xn)2 = 1. (2.26)

A topology in Sn may be given by the relative topology induced by the usual
topology on �n+1 .

2.3.2 Continuous maps

Definition 2.4. Let X and Y be topological spaces. A map f : X → Y is
continuous if the inverse image of an open set in Y is an open set in X .

This definition is in agreement with our intuitive notion of continuity. For
instance, let f : � → � be defined by

f (x) =
{
−x + 1 x ≤ 0

−x + 1
2 x > 0.

(2.27)

We take the usual topology in �, hence any open interval (a, b) is an open
set. In the usual calculus, f is said to have a discontinuity at x = 0. For an
open set (3/2, 2) ⊂ Y , we find f −1((3/2, 2)) = (−1,−1/2) which is an open
set in X . If we take an open set (1 − 1/4, 1 + 1/4) ⊂ Y , however, we find
f −1((1 − 1/4, 1 + 1/4)) = (−1/4, 0] which is not an open set in the usual
topology.

Exercise 2.14. By taking a continuous function f : � → �, f (x) = x2 as an
example, show that the reverse definition, ‘a map f is continuous if it maps an
open set in X to an open set in Y ’, does not work. [Hint: Find where (−ε,+ε) is
mapped to under f .]

2.3.3 Neighbourhoods and Hausdorff spaces

Definition 2.5. Suppose � gives a topology to X . N is a neighbourhood of a
point x ∈ X if N is a subset of X and N contains some (at least one) open set Ui

to which x belongs. (The subset N need not be an open set. If N happens to be
an open set in � , it is called an open neighbourhood.)

Example 2.9. Take X = � with the usual topology. The interval [−1, 1] is a
neighbourhood of an arbitrary point x ∈ (−1, 1).

 



Definition 2.6. A topological space (X,� ) is a Hausdorff space if, for an
arbitrary pair of distinct points x, x ′ ∈ X , there always exist neighbourhoods
Ux of x and Ux ′ of x ′ such that Ux ∩Ux ′ = ∅.

Exercise 2.15. Let X = {John, Paul, Ringo, George} and U0 = ∅,U1 =
{John},U2 = {John, Paul},U3 = {John, Paul, Ringo, George}. Show that � =
{U0,U1,U2,U3} gives a topology to X . Show also that (X,� ) is not a Hausdorff
space.

Unlike this exercise, most spaces that appear in physics satisfy the Hausdorff
property. In the rest of the present book we always assume this is the case.

Exercise 2.16. Show that � with the usual topology is a Hausdorff space. Show
also that any metric space is a Hausdorff space.

2.3.4 Closed set

Let (X,� ) be a topological space. A subset A of X is closed if its complement
in X is an open set, that is X − A ∈ � . According to the definition, X and ∅ are
both open and closed. Consider a set A (either open or closed). The closure of A
is the smallest closed set that contains A and is denoted by Ā. The interior of A
is the largest open subset of A and is denoted by A◦. The boundary b(A) of A is
the complement of A◦ in A; b(A) = A− A◦. An open set is always disjoint from
its boundary while a closed set always contains its boundary.

Example 2.10. Take X = � with the usual topology and take a pair of open
intervals (−∞, a) and (b,∞) where a < b. Since (−∞, a) ∪ (b,∞) is open
under the usual topology, the complement [a, b] is closed. Any closed interval
is a closed set under the usual topology. Let A = (a, b), then Ā = [a, b].
The boundary b(A) consists of two points {a, b}. The sets (a, b), [a, b], (a, b],
and [a, b) all have the same boundary, closure and interior. In �n , the product
[a1, b1] × · · · × [an, bn] is a closed set under the usual topology.

Exercise 2.17. Whether a set A ⊂ X is open or closed depends on X . Let us take
an interval I = (0, 1) in the x-axis. Show that I is open in the x-axis � while it
is neither closed nor open in the xy-plane �2 .

2.3.5 Compactness

Let (X,� ) be a topological space. A family {Ai } of subsets of X is called a
covering of X , if ⋃

i∈I

Ai = X.

If all the Ai happen to be the open sets of the topology � , the covering is called
an open covering.

 



Definition 2.7. Consider a set X and all possible coverings of X . The set X is
compact if, for every open covering {Ui |i ∈ I }, there exists a finite subset J of I
such that {U j | j ∈ J } is also a covering of X .

In general, if a set is compact in �n , it must be bounded. What else is
needed? We state the result without the proof.

Theorem 2.3. Let X be a subset of �n . X is compact if and only if it is closed and
bounded.

Example 2.11. (a) A point is compact.
(b) Take an open interval (a, b) in � and choose an open covering Un =

(a, b − 1/n), n ∈ �. Evidently ⋃
n∈�

Un = (a, b).

However, no finite subfamily of {Un} covers (a, b). Thus, an open interval (a, b)
is non-compact in conformity with theorem 2.3.

(c) Sn in example 2.8 with the relative topology is compact, since it is closed
and bounded in �n+1 .

The reader might not appreciate the significance of compactness from the
definition and the few examples given here. It should be noted, however, that some
mathematical analyses as well as physics become rather simple on a compact
space. For example, let us consider a system of electrons in a solid. If the solid
is non-compact with infinite volume, we have to deal with quantum statistical
mechanics in an infinite volume. It is known that this is mathematically quite
complicated and requires knowledge of the advanced theory of Hilbert spaces.
What we usually do is to confine the system in a finite volume V surrounded by
hard walls so that the electron wavefunction vanishes at the walls, or to impose
periodic boundary conditions on the walls, which amounts to putting the system in
a torus, see example 2.5(b). In any case, the system is now put in a compact space.
Then we may construct the Fock space whose excitations are labelled by discrete
indices. Another significance of compactness in physics will be found when we
study extended objects such as instantons and Belavin–Polyakov monopoles, see
section 4.8. In field theories, we usually assume that the field approaches some
asymptotic form corresponding to the vacuum (or one of the vacua) at spatial
infinities. Similarly, a class of order parameter distributions in which the spatial
infinities have a common order parameter is an interesting class to study from
various points of view as we shall see later. Since all points at infinity are
mapped to a point, we have effectively compactified the non-compact space �n

to a compact space Sn = �n ∪ {∞}. This procedure is called the one-point
compactification.

 



2.3.6 Connectedness

Definition 2.8. (a) A topological space X is connected if it cannot be written as
X = X1 ∪ X2, where X1 and X2 are both open and X1 ∩ X2 = ∅. Otherwise X
is called disconnected.

(b) A topological space X is called arcwise connected if, for any points
x, y ∈ X , there exists a continuous map f : [0, 1] → X such that f (0) = x
and f (1) = y. With a few pathological exceptions, arcwise connectedness is
practically equivalent to connectedness.

(c) A loop in a topological space X is a continuous map f : [0, 1] → X
such that f (0) = f (1). If any loop in X can be continuously shrunk to a point, X
is called simply connected.

Example 2.12. (a) The real line � is arcwise connected while � − {0} is not.
�n (n ≥ 2) is arcwise connected and so is �n − {0}.

(b) Sn is arcwise connected. The circle S1 is not simply connected. If n ≥ 2,
Sn is simply connected. The n-dimensional torus

T n = S1 × S1 × · · · × S1︸ ︷︷ ︸
n

(n ≥ 2)

is arcwise connected but not simply connected.
(c) �2 − � is not arcwise connected. �2 − {0} is arcwise connected but not

simply connected. �3 − {0} is arcwise connected and simply connected.

2.4 Homeomorphisms and topological invariants

2.4.1 Homeomorphisms

As we mentioned at the beginning of this chapter, the main purpose of topology
is to classify spaces. Suppose we have several figures and ask ourselves which
are equal and which are different. Since we have not defined what is meant by
equal or different, we may say ‘they are all different from each other’ or ‘they
are all the same figures’. Some of the definitions of equivalence are too stringent
and some are too loose to produce any sensible classification of the figures or
spaces. For example, in elementary geometry, the equivalence of figures is given
by congruence, which turns out to be too stringent for our purpose. In topology,
we define two figures to be equivalent if it is possible to deform one figure into the
other by continuous deformation. Namely we introduce the equivalence relation
under which geometrical objects are classified according to whether it is possible
to deform one object into the other by continuous deformation. To be more
mathematical, we need to introduce the following notion of homeomorphism.

Definition 2.9. Let X1 and X2 be topological spaces. A map f : X1 → X2 is a
homeomorphism if it is continuous and has an inverse f −1 : X2 → X1 which is

 



Figure 2.10. (a) A coffee cup is homeomorphic to a doughnut. (b) The linked rings are
homeomorphic to the separated rings.

also continuous. If there exists a homeomorphism between X1 and X2, X1 is said
to be homeomorphic to X2 and vice versa.

In other words, X1 is homeomorphic to X2 if there exist maps f : X1 → X2
and g : X2 → X1 such that f ◦g = idX2 , and g◦ f = idX1 . It is easy to show that
a homeomorphism is an equivalence relation. Reflectivity follows from the choice
f = idX , while symmetry follows since if f : X1 → X2 is a homeomorphism
so is f −1 : X2 → X1 by definition. Transitivity follows since, if f : X1 → X2
and g : X2 → X3 are homeomorphisms so is g ◦ f : X1 → X3. Now we divide
all topological spaces into equivalence classes according to whether it is possible
to deform one space into the other by a homeomorphism. Intuitively speaking,
we suppose the topological spaces are made out of ideal rubber which we can
deform at our will. Two topological spaces are homeomorphic to each other if we
can deform one into the other continuously, that is, without tearing them apart or
pasting.

Figure 2.10 shows some examples of homeomorphisms. It seems impossible
to deform the left figure in figure 2.10(b) into the right one by continuous
deformation. However, this is an artefact of the embedding of these objects
in �3 . In fact, they are continuously deformable in �4 , see problem 2.3. To
distinguish one from the other, we have to embed them in S3, say, and compare
the complements of these objects in S3. This approach is, however, out of the
scope of the present book and we will content ourselves with homeomorphisms.

2.4.2 Topological invariants

Now our main question is: ‘How can we characterize the equivalence classes
of homeomorphism?’ In fact, we do not know the complete answer to this
question yet. Instead, we have a rather modest statement, that is, if two spaces
have different ‘topological invariants’, they are not homeomorphic to each
other. Here topological invariants are those quantities which are conserved under
homeomorphisms. A topological invariant may be a number such as the number
of connected components of the space, an algebraic structure such as a group or

 



a ring which is constructed out of the space, or something like connectedness,
compactness or the Hausdorff property. (Although it seems to be intuitively
clear that these are topological invariants, we have to prove that they indeed
are. We omit the proofs. An interested reader may consult any text book on
topology.) If we knew the complete set of topological invariants we could specify
the equivalence class by giving these invariants. However, so far we know a partial
set of topological invariants, which means that even if all the known topological
invariants of two topological spaces coincide, they may not be homeomorphic to
each other. Instead, what we can say at most is: if two topological spaces have
different topological invariants they cannot be homeomorphic to each other.

Example 2.13. (a) A closed line [−1, 1] is not homeomorphic to an open line
(−1, 1), since [−1, 1] is compact while (−1, 1) is not.

(b) A circle S1 is not homeomorphic to �, since S1 is compact in �2 while
� is not.

(c) A parabola (y = x2) is not homeomorphic to a hyperbola (x2 − y2 = 1)
although they are both non-compact. A parabola is (arcwise) connected while a
hyperbola is not.

(d) A circle S1 is not homeomorphic to an interval [−1, 1], although they
are both compact and (arcwise) connected. [−1, 1] is simply connected while
S1 is not. Alternatively S1 − {p}, p being any point in S1 is connected while
[−1, 1] − {0} is not, which is more evidence against their equivalence.

(e) Surprisingly, an interval without the endpoints is homeomorphic to a line
�. To see this, let us take X = (−π/2, π/2) and Y = � and let f : X → Y be
f (x) = tan x . Since tan x is one to one on X and has an inverse, tan−1 x , which
is one to one on �, this is indeed a homeomorphism. Thus, boundedness is not a
topological invariant.

(f) An open disc D2 = {(x, y) ∈ �2 |x2 + y2 < 1} is homeomorphic to �2 .
A homeomorphism f : D2 → �2 may be

f (x, y) =
(

x√
1− x2 − y2

,
y√

1− x2 − y2

)
(2.28)

while the inverse f −1 : �2 → D2 is

f −1(x, y) =
(

x√
1+ x2 + y2

,
y√

1+ x2 + y2

)
. (2.29)

The reader should verify that f ◦ f −1 = id�2 , and f −1 ◦ f = idD2 . As we
saw in example 2.5(e), a closed disc whose boundary S1 corresponds to a point
is homeomorphic to S2. If we take this point away, we have an open disc. The
present analysis shows that this open disc is homeomorphic to �2 . By reversing
the order of arguments, we find that if we add a point (infinity) to �2 , we obtain
a compact space S2. This procedure is the one-point compactification S2 =
�2 ∪ {∞} introduced in the previous section. We similarly have Sn = �n ∪ {∞}.

 



(g) A circle S1 = {(x, y) ∈ �2 |x2 + y2 = 1} is homeomorphic to a square
I 2 = {(x, y) ∈ �2 |(|x | = 1, |y| ≤ 1), (|x | ≤ 1, |y| = 1)}. A homeomorphism
f : I 2 → S1 may be given by

f (x, y) =
( x

r
,

y

r

)
r =

√
x2 + y2. (2.30)

Since r cannot vanish, (2.27) is invertible.

Exercise 2.18. Find a homeomorphism between a circle S1 = {(x, y) ∈ �2 |x2 +
y2 = 1} and an ellipse E = {(x, y) ∈ �2 |(x/a)2 + (y/b)2 = 1}.

2.4.3 Homotopy type

An equivalence class which is somewhat coarser than homeomorphism but which
is still quite useful is ‘of the same homotopy type’. We relax the conditions in
definition 2.9 so that the continuous functions f or g need not have inverses. For
example, take X = (0, 1) and Y = {0} and let f : X → Y , f (x) = 0 and
g : Y → X , g(0) = 1

2 . Then f ◦ g = idY , while g ◦ f �= idX . This shows that an
open interval (0, 1) is of the same homotopy type as a point {0}, although it is not
homeomorphic to {0}. We have more on this topic in section 4.2.

Example 2.14. (a) S1 is of the same homotopy type as a cylinder, since a cylinder
is a direct product S1 × � and we can shrink � to a point at each point of S1. By
the same reason, the Möbius strip is of the same homotopy type as S1.

(b) A disc D2 = {(x, y) ∈ �2 |x2 + y2 < 1} is of the same homotopy type
as a point. D2 − {(0, 0)} is of the same homotopy type as S1. Similarly, �2 − {0}
is of the same homotopy type as S1 and �3 − {0} as S2.

2.4.4 Euler characteristic: an example

The Euler characteristic is one of the most useful topological invariants.
Moreover, we find the prototype of the algebraic approach to topology in it. To
avoid unnecessary complication, we restrict ourselves to points, lines and surfaces
in �3 . A polyhedron is a geometrical object surrounded by faces. The boundary
of two faces is an edge and two edges meet at a vertex. We extend the definition
of a polyhedron a bit to include polygons and the boundaries of polygons, lines or
points. We call the faces, edges and vertices of a polyhedron simplexes. Note that
the boundary of two simplexes is either empty or another simplex. (For example,
the boundary of two faces is an edge.) Formal definitions of a simplex and a
polyhedron in a general number of dimensions will be given in chapter 3. We are
now ready to define the Euler characteristic of a figure in �3 .

Definition 2.10. Let X be a subset of �3 , which is homeomorphic to a polyhedron
K . Then the Euler characteristic χ(X) of X is defined by

χ(X) = (number of verticies in K )− (number of edges in K )

+ (number of faces in K ). (2.31)

 



Figure 2.11. Example of a polyhedron which is homeomorphic to a torus.

The reader might wonder if χ(X) depends on the polyhedron K or not. The
following theorem due to Poincaré and Alexander guarantees that it is, in fact,
independent of the polyhedron K .

Theorem 2.4. (Poincaré–Alexander) The Euler characteristic χ(X) is indepen-
dent of the polyhedron K as long as K is homeomorphic to X .

Examples are in order. The Euler characteristic of a point is χ(·) = 1 by
definition. The Euler characteristic of a line is χ(——) = 2 − 1 = 1, since a
line has two vertices and an edge. For a triangular disc, we find χ(triangle) =
3− 3+ 1 = 1. An example which is a bit non-trivial is the Euler characteristic of
S1. The simplest polyhedron which is homeomorphic to S1 is made of three edges
of a triangle. Then χ(S1) = 3−3 = 0. Similarly, the sphere S2 is homeomorphic
to the surface of a tetrahedron, hence χ(S2) = 4 − 6 + 4 = 2. It is easily seen
that S2 is also homeomorphic to the surface of a cube. Using a cube to calculate
the Euler characteristic of S2, we have χ(S2) = 8 − 12 + 6 = 2, in accord with
theorem 2.4. Historically this is the conclusion of Euler’s theorem: if K is any
polyhedron homeomorphic to S2, with v vertices, e edges and f two-dimensional
faces, then v − e + f = 2.

Example 2.15. Let us calculate the Euler characteristic of the torus T 2.
Figure 2.11(a) is an example of a polyhedron which is homeomorphic to T 2.
From this polyhedron, we find χ(T 2) = 16 − 32 + 16 = 0. As we saw
in example 2.5(b), T 2 is equivalent to a rectangle whose edges are identified;
see figure 2.4. Taking care of this identification, we find an example of a
polyhedron made of rectangular faces as in figure 2.11(b), from which we also
have χ(T 2) = 0. This approach is quite useful when the figure cannot be realized
(embedded) in �3 . For example, the Klein bottle (figure 2.5(a)) cannot be realized
in �3 without intersecting itself. From the rectangle of figure 2.5(a), we find
χ(Klein bottle) = 0. Similarly, we have χ(projective plane) = 1.

 



Figure 2.12. The connected sum. (a) S2�S2 = S2, (b) T 2�T 2 = �2.

Exercise 2.19. (a) Show that χ(Möbius strip) = 0.
(b) Show that χ(�2) = −2, where �2 is the torus with two handles (see

example 2.5). The reader may either construct a polyhedron homeomorphic to�2
or make use of the octagon in figure 2.6(a). We show later that χ(�g) = 2− 2g,
where �g is the torus with g handles.

The connected sum X�Y of two surfaces X and Y is a surface obtained by
removing a small disc from each of X and Y and connecting the resulting holes
with a cylinder; see figure 2.12. Let X be an arbitrary surface. Then it is easy to
see that

S2�X = X (2.32)

since S2 and the cylinder may be deformed so that they fill in the hole on X ; see
figure 2.12(a). If we take a connected sum of two tori we get (figure 2.12(b))

T 2�T 2 = �2. (2.33)

Similarly, �g may be given by the connected sum of g tori,

T 2�T 2� · · · �T 2︸ ︷︷ ︸
g factors

= �g . (2.34)

The connected sum may be used as a trick to calculate an Euler characteristic
of a complicated surface from those of known surfaces. Let us prove the following
theorem.

Theorem 2.5. Let X and Y be two surfaces. Then the Euler characteristic of the
connected sum X�Y is given by

χ(X�Y ) = χ(X)+ χ(Y )− 2.

 



Proof. Take polyhedra K X and KY homeomorphic to X and Y , respectively. We
assume, without loss of generality, that each of KY and KY has a triangle in it.
Remove the triangles from them and connect the resulting holes with a trigonal
cylinder. Then the number of vertices does not change while the number of edges
increases by three. Since we have removed two faces and added three faces,
the number of faces increases by −2 + 3 = 1. Thus, the change of the Euler
characteristic is 0− 3+ 1 = −2. �

From the previous theorem and the equality χ(T 2) = 0, we obtain χ(�2) =
0+ 0− 2 = −2 and χ(�g) = g × 0− 2(g − 1) = 2− 2g, cf exercise 2.19(b).

The significance of the Euler characteristic is that it is a topological invariant,
which is calculated relatively easily. We accept, without proof, the following
theorem.

Theorem 2.6. Let X and Y be two figures in �3 . If X is homeomorphic to Y , then
χ(X) = χ(Y ). In other words, if χ(X) �= χ(Y ), X cannot be homeomorphic to
Y .

Example 2.16. (a) S1 is not homeomorphic to S2, since χ(S1) = 0 while
χ(S2) = 2.

(b) Two figures, which are not homeomorphic to each other, may have the
same Euler characteristic. A point (·) is not homeomorphic to a line (—–) but
χ(·) = χ(—–) = 1. This is a general consequence of the following fact: if a
figure X is of the same homotopy type as a figure Y , then χ(X) = χ(Y ).

The reader might have noticed that the Euler characteristic is different from
other topological invariants such as compactness or connectedness in character.
Compactness and connectedness are geometrical properties of a figure or a space
while the Euler characteristic is an integer χ(X) ∈ �. Note that � is an
algebraic object rather than a geometrical one. Since the work of Euler, many
mathematicians have worked out the relation between geometry and algebra
and elaborated this idea, in the last century, to establish combinatorial topology
and algebraic topology. We may compute the Euler characteristic of a smooth
surface by the celebrated Gauss–Bonnet theorem, which relates the integral of
the Gauss curvature of the surface with the Euler characteristic calculated from
the corresponding polyhedron. We will give the generalized form of the Gauss–
Bonnet theorem in chapter 12.

Problems

2.1 Show that the 4g-gon in figure 2.13(a), with the boundary identified,
represents the torus with genus g of figure 2.13(b). The reader may use
equation (2.34).

2.2 Let X = {1, 1/2, . . . , 1/n, . . .} be a subset of �. Show that X is not closed in
�. Show that Y = {1, 1/2, . . . , 1/n, . . . , 0} is closed in �, hence compact.

 



Figure 2.13. The polygon (a) whose edges are identified is the torus �g with genus g.

2.3 Show that two figures in figure 2.109(b) are homeomorphic to each other. Find
how to unlink the right figure in �4 .

2.4 Show that there are only five regular polyhedra: a tetrahedron, a hexahedron,
an octahedron, a dodecahedron and an icosahedron. [Hint: Use Euler’s theorem.]

 



3

HOMOLOGY GROUPS

Among the topological invariants the Euler characteristic is a quantity readily
computable by the ‘polyhedronization’ of space. The homology groups are
refinements, so to speak, of the Euler characteristic. Moreover, we can easily read
off the Euler characteristic from the homology groups. Let us look at figure 3.1.
In figure 3.1(a), the interior is included but not in figure 3.1(b). How do we
characterize this difference? An obvious observation is that the three edges of
figure 3.1(a) form a boundary of the interior while the edges of figure 3.1(b) do
not (the interior is not a part of figure 3.1(b)). Clearly the edges in both cases
form a closed path (loop), having no boundary. In other words, the existence of
a loop that is not a boundary of some area implies the existence of a hole within
the loop. This is our guiding principle in classifying spaces here: find a region
without boundaries, which is not itself a boundary of some region. This principle
is mathematically elaborated into the theory of homology groups.

Our exposition follows Armstrong (1983), Croom (1978) and Nash and Sen
(1983). An introduction to group theory is found in Fraleigh (1976).

3.1 Abelian groups

The mathematical structures underlying homology groups are finitely generated
Abelian groups. Throughout this chapter, the group operation is denoted by +
since all the groups considered here are Abelian (commutative). The unit element
is denoted by 0.

3.1.1 Elementary group theory

Let G1 and G2 be Abelian groups. A map f : G1 → G2 is said to be a
homomorphism if

f (x + y) = f (x)+ f (y) (3.1)

for any x, y ∈ G1. 1f f is also a bijection, f is called an isomorphism. If there
exists an isomorphism f : G1 → G2, G1 is said to be isomorphic to G2, denoted
by G1 ∼= G2. For example, a map f : �→ �2 = {0, 1} defined by

f (2n) = 0 f (2n + 1) = 1

 



Figure 3.1. (a) is a solid triangle while (b) is the edges of a triangle without an interior.

is a homomorphism. Indeed

f (2m + 2n) = f (2(m + n)) = 0 = 0+ 0 = f (2m)+ f (2n)

f (2m + 1+ 2n + 1) = f (2(m + n + 1)) = 0 = 1+ 1

= f (2m + 1)+ f (2n + 1)

f (2m + 1+ 2n) = f (2(m + n)+ 1) = 1 = 1+ 0

= f (2m + 1)+ f (2n).

A subset H ⊂ G is a subgroup if it is a group with respect to the group
operation of G. For example,

k�≡ {kn|n ∈ �} k ∈ �
is a subgroup of �, while �2 = {0, 1} is not.

Let H be a subgroup of G. We say x, y ∈ G are equivalent if

x − y ∈ H (3.2)

and write x ∼ y. Clearly ∼ is an equivalence relation. The equivalence class to
which x belongs is denoted by [x]. Let G/H be the quotient space. The group
operation+ in G naturally induces the group operation+ in G/H by

[x] + [y] = [x + y]. (3.3)

Note that + on the LHS is an operation in G/H while + on the RHS is that in G.
The operation in G/H should be independent of the choice of representatives. In
fact, if [x ′] = [x], [y ′] = [y], then x − x ′ = h, y − y ′ = g for some h, g ∈ H
and we find that

x ′ + y ′ = x + y − (h + g) ∈ [x + y]
Furthermore, G/H becomes a group with this operation, since H is always a
normal subgroup of G; see example 2.6. The unit element of G/H is [0] = [h],

 



h ∈ H . If H = G, 0− x ∈ G for any x ∈ G and G/G has just one element [0].
If H = {0}, G/H is G itself since x − y = 0 if and only if x = y.

Example 3.1. Let us work out the quotient group �/2�. For even numbers
we have 2n − 2m = 2(n − m) ∈ 2� and [2m] = [2n]. For odd numbers
(2n+1)−(2m+1) = 2(n−m) ∈ 2�and [2m+1] = [2n+1]. Even numbers and
odd numbers never belong to the same equivalence class since 2n−(2m+1) /∈ 2�.
Thus, it follows that

�/2�= {[0], [1]}. (3.4)

If we define an isomorphism ϕ : �/2�→ �2 by ϕ([0]) = 0 and ϕ([1]) = 1, we
find �/2�∼= �2. For general k ∈ �, we have

�/k�∼= �k. (3.5)

Lemma 3.1. Let f : G1 → G2 be a homomorphism. Then
(a) ker f = {x |x ∈ G1, f (x) = 0} is a subgroup of G1,
(b) im f = {x |x ∈ f (G1) ⊂ G2} is a subgroup of G2.

Proof. (a) Let x, y ∈ ker f . Then x+ y ∈ ker f since f (x+ y) = f (x)+ f (y) =
0+0 = 0. Note that 0 ∈ ker f for f (0) = f (0)+ f (0). We also have−x ∈ ker f
since f (0) = f (x − x) = f (x)+ f (−x) = 0.

(b) Let y1 = f (x1), y2 = f (x2) ∈ im f where x1, x2 ∈ G1. Since f is a
homomorphism we have y1+ y2 = f (x1)+ f (x2) = f (x1+ x2) ∈ im f . Clearly
0 ∈ im f since f (0) = 0. If y = f (x), −y ∈ im f since 0 = f (x − x) =
f (x)+ f (−x) implies f (−x) = −y. �

Theorem 3.1. (Fundamental theorem of homomorphism) Let f : G1 → G2
be a homomorphism. Then

G1/ker f ∼= im f. (3.6)

Proof. Both sides are groups according to lemma 3.1. Define a map ϕ :
G1/ ker f → im f by ϕ([x]) = f (x). This map is well defined since for
x ′ ∈ [x], there exists h ∈ ker f such that x ′ = x + h and f (x ′) = f (x + h) =
f (x) + f (h) = f (x). Now we show that ϕ is an isomorphism. First, ϕ is a
homomorphism,

ϕ([x] + [y]) = ϕ([x + y]) = f (x + y)

= f (x)+ f (y) = ϕ([x])+ ϕ([y]).
Second, ϕ is one to one: if ϕ([x]) = ϕ([y]), then f (x) = f (y) or f (x)− f (y) =
f (x − y) = 0. This shows that x − y ∈ ker f and [x] = [y]. Finally, ϕ is onto:
if y ∈ im f , there exists x ∈ G1 such that f (x) = y = ϕ([x]). �

Example 3.2. Let f : �→ �2 be defined by f (2n) = 0 and f (2n+1) = 1. Then
ker f = 2� and im f = �2 are groups. Theorem 3.1 states that �/2�∼= �2, in
agreement with example 3.1.

 



3.1.2 Finitely generated Abelian groups and free Abelian groups

Let x be an element of a group G. For n ∈ �, nx denotes

x + · · · + x︸ ︷︷ ︸
n

(if n > 0)

and
(−x)+ · · · + (−x)︸ ︷︷ ︸

|n|
(if n < 0).

If n = 0, we put 0x = 0. Take r elements x1, . . . , xr of G. The elements of G of
the form

n1x1 + · · · + nr xr (ni ∈ �, 1≤ i ≤ r) (3.7)

form a subgroup of G, which we denote H . H is called a subgroup of G
generated by the generators x1, . . . , xr . If G itself is generated by finite
elements x1, . . . , xr , G is said to be finitely generated. If n1x1 + · · · + nr xr = 0
is satisfied only when n1 = · · · = nr = 0, x1, . . . , xr are said to be linearly
independent.

Definition 3.1. If G is finitely generated by r linearly independent elements, G is
called a free Abelian group of rank r .

Example 3.3. � is a free Abelian group of rank 1 finitely generated by 1 (or −1).
Let �⊕� be the set of pairs {(i, j)|i, j ∈ �}. It is a free Abelian group of rank 2
finitely generated by generators (1, 0) and (0, 1). More generally

�⊕�⊕ · · · ⊕ �︸ ︷︷ ︸
r

is a free Abelian group of rank r . The group �2 = {0, 1} is finitely generated by
1 but is not free since 1 is not linearly independent (note 1+ 1 = 0).

3.1.3 Cyclic groups

If G is generated by one element x,G = {0,±x,±2x, . . .}, G is called a cyclic
group. If nx �= 0 for any n ∈ �− {0}, it is an infinite cyclic group while if
nx = 0 for some n ∈ �− {0}, a finite cyclic group. Let G be a cyclic group
generated by x and let f : �→ G be a homomorphism defined by f (n) = nx .
f maps � onto G but not necessarily one to one. From theorem 3.1, we have
G = im f ∼= �/ ker f . Let N be the smallest positive integer such that Nx = 0.
Clearly

ker f = {0,±N,±2N, . . .} = N� (3.8)

and we have
G ∼= �/N�∼= �N. (3.9)

 



If G is an infinite cyclic group, then ker f = {0} and G ∼= �. Any infinite cyclic
group is isomorphic to �while a finite cyclic group is isomorphic to some �N.

We will need the following lemma and theorem in due course. We first state
the lemma without proof.

Lemma 3.2. Let G be a free Abelian group of rank r and let H (�=∅) be a subgroup
of G. We may always choose p generators x1, . . . , x p , out of r generators of G
so that k1x1, . . . , kpx p generate H . Thus, H ∼= k1�⊕ . . . ⊕ k p� and H is of
rank p.

Theorem 3.2. (Fundamental theorem of finitely generated Abelian groups)
Let G be a finitely generated Abelian group (not necessarily free) with m
generators. Then G is isomorphic to the direct sum of cyclic groups,

G ∼= �⊕ · · · ⊕ �︸ ︷︷ ︸
r

⊕�k1 ⊕ · · · ⊕ �kp (3.10)

where m = r + p. The number r is called the rank of G.

Proof. Let G be generated by m elements x1, . . . , xm and let

f : �⊕ · · · ⊕�︸ ︷︷ ︸
m

→ G

be a surjective homomorphism,

f (n1, . . . , nm) = n1x1 + · · · + nm xm.

Theorem 3.1 states that

�⊕ · · · ⊕ �︸ ︷︷ ︸
m

/ ker f ∼= G.

Since ker f is a subgroup of
�⊕ · · · ⊕ �︸ ︷︷ ︸

m

lemma 3.2 claims that if we choose the generators properly, we have

ker f ∼= k1�⊕ · · · ⊕ kp�.

We finally obtain

G ∼= �⊕ · · · ⊕ �︸ ︷︷ ︸
m

/ ker f ∼= �⊕ · · · ⊕ �︸ ︷︷ ︸
m

/(k1�⊕ · · · ⊕ kp�)

∼= �⊕ · · · ⊕ �︸ ︷︷ ︸
m−p

⊕�k1 ⊕ · · · ⊕ �kp. �

 



Figure 3.2. 0-, 1-, 2- and 3-simplexes.

3.2 Simplexes and simplicial complexes

Let us recall how the Euler characteristic of a surface is calculated. We first
construct a polyhedron homeomorphic to the given surface, then count the
numbers of vertices, edges and faces. The Euler characteristic of the polyhedron,
and hence of the surface, is then given by equation (2.31). We abstract this
procedure so that we may represent each part of a figure by some standard object.
We take triangles and their analogues in other dimensions, called simplexes, as
the standard objects. By this standardization, it becomes possible to assign to
each figure Abelian group structures.

3.2.1 Simplexes

Simplexes are building blocks of a polyhedron. A 0-simplex 〈p0〉 is a point, or
a vertex, and a 1-simplex 〈p0 p1〉 is a line, or an edge. A 2-simplex 〈p0 p1 p2〉 is
defined to be a triangle with its interior included and a 3-simplex 〈p0 p1 p2 p3〉 is
a solid tetrahedron (figure 3.2). It is common to denote a 0-simplex without the
bracket; 〈p0〉 may be also written as p0. It is easy to continue this construction
to any r -simplex 〈p0 p1 . . . pr 〉. Note that for an r -simplex to represent an r -
dimensional object, the vertices pi must be geometrically independent, that is, no
(r − 1)-dimensional hyperplane contains all the r + 1 points. Let p0, . . . , pr

be points geometrically independent in �m where m ≥ r . The r -simplex
σr = 〈p0, . . . , pr 〉 is expressed as

σ r =
{

x ∈ �m
∣∣∣∣x = r∑

i=0

ci pi , ci ≥ 0,
r∑

i=0

ci = 1

}
. (3.11)

(c0, . . . , cr ) is called the barycentric coordinate of x . Since σr is a bounded and
closed subset of �m , it is compact.

Let q be an integer such that 0 ≤ q ≤ r . If we choose q + 1 points
pi0 , . . . , piq out of p0, . . . , pr , these q + 1 points define a q-simplex σq =
〈pi0 , . . . , piq 〉, which is called a q-face of σr . We write σq ≤ σr if σq is a face of

 



Figure 3.3. A 0-face p0 and a 2-face 〈p1 p2 p3〉 of a 3-simplex 〈p0 p1 p2 p3〉.

σr . If σq �= σr , we say σq is a proper face of σr , denoted as σq < σr . Figure 3.3
shows a 0-face p0 and a 2-face 〈p1 p2 p3〉 of a 3-simplex 〈p0 p1 p2 p3〉. There are
one 3-face, four 2-faces, six 1-faces and four 0-faces. The reader should verify

that the number of q-faces in an r -simplex is

(
r + 1
q + 1

)
. A 0-simplex is defined

to have no proper faces.

3.2.2 Simplicial complexes and polyhedra

Let K be a set of finite number of simplexes in �m . If these simplexes are nicely
fitted together, K is called a simplicial complex. By ‘nicely’ we mean:

(i) an arbitrary face of a simplex of K belongs to K , that is, if σ ∈ K and
σ ′ ≤ σ then σ ′ ∈ K ; and

(ii) if σ and σ ′ are two simplexes of K , the intersection σ ∩ σ ′ is either empty
or a common face of σ and σ ′, that is, if σ, σ ′ ∈ K then either σ ∩ σ ′ = ∅
or σ ∩ σ ′ ≤ σ and σ ∩ σ ′ ≤ σ ′.

For example, figure 3.4(a) is a simplicial complex but figure 3.4(b) is not.
The dimension of a simplicial complex K is defined to be the largest dimension
of simplexes in K .

Example 3.4. Let σr be an r -simplex and K = {σ ′|σ ′ ≤ σr } be the set of
faces of σr . K is an r -dimensional simplicial complex. For example, take

 



Figure 3.4. (a) is a simplicial complex but (b) is not.

σ3 = 〈p0 p1 p2 p3〉 (figure 3.3). Then

K = {p0, p1, p2, p3, 〈p0 p1〉, 〈p0 p2〉, 〈p0 p3〉,
〈p1 p2〉, 〈p1 p3〉, 〈p2 p3〉, 〈p0 p1 p2〉, 〈p0 p1 p3〉,
〈p0 p2 p3〉, 〈p1 p2 p3〉, 〈p0 p1 p2 p3〉}. (3.12)

A simplicial complex K is a set whose elements are simplexes. If each
simplex is regarded as a subset of �m (m ≥ dim K ), the union of all the simplexes
becomes a subset of �m . This subset is called the polyhedron |K | of a simplicial
complex K . The dimension of |K | as a subset of �m is the same as that of K ;
dim |K | = dim K .

Let X be a topological space. If there exists a simplicial complex K and a
homeomorphism f : |K | → X , X is said to be triangulable and the pair (K , f )
is called a triangulation of X . Given a topological space X , its triangulation is
far from unique. We will be concerned with triangulable spaces only.

Example 3.5. Figure 3.5(a) is a triangulation of a cylinder S1×[0, 1]. The reader
might think that somewhat simpler choices exist, figure 3.5(b), for example. This
is, however, not a triangulation since, for σ2 = 〈p0 p1 p2〉 and σ ′2 = 〈p2 p3 p0〉, we
find σ2 ∩ σ ′2 = 〈p0〉 ∪ 〈p2〉, which is neither empty nor a simplex.

3.3 Homology groups of simplicial complexes

3.3.1 Oriented simplexes

We may assign orientations to an r -simplex for r ≥ 1. Instead of 〈. . .〉 for an
unoriented simplex, we will use (. . .) to denote an oriented simplex. The symbol
σr is used to denote both types of simplex. An oriented 1-simplex σ1 = (p0 p1) is
a directed line segment traversed in the direction p0 → p1 (figure 3.6(a)). Now

 



Figure 3.5. (a) is a triangulation of a cylinder while (b) is not.

Figure 3.6. An oriented 1-simplex (a) and an oriented 2-simplex (b).

(p0 p1) should be distinguished from (p1 p0). We require that

(p0 p1) = −(p1 p0). (3.13)

Here ‘−’ in front of (p1 p0) should be understood in the sense of a finitely
generated Abelian group. In fact, (p1 p0) is regarded as the inverse of (p0 p1).
Going from p0 to p1 followed by going from p1 to p0 means going nowhere,
(p0 p1)+ (p1 p0) = 0, hence−(p1 p0) = (p0 p1).

Similarly, an oriented 2-simplex σ2 = (p0 p1 p2) is a triangular region
p0 p1 p2 with a prescribed orientation along the edges (figure 3.6(b)). Observe that
the orientation given by p0 p1 p2 is the same as that given by p2 p0 p1 or p1 p2 p0
but opposite to p0 p2 p1, p2 p1 p0 or p1 p0 p2. We require that

(p0 p1 p2) = (p2 p0 p1) = (p1 p2 p0)

= − (p0 p2 p1) = −(p2 p1 p0) = −(p1 p0 p2).

Let P be a permutation of 0, 1, 2

P =
(

0 1 2
i j k

)
.

These relations are summarized as

(pi p j pk) = sgn(P)(p0 p1 p2)

 



where sgn(P) = +1 (−1) if P is an even (odd) permutation.
An oriented 3-simplex σ3 = (p0 p1 p2 p3) is an ordered sequence of four

vertices of a tetrahedron. Let

P =
(

0 1 2 3
i j k l

)
be a permutation. We define

(pi p j pk pl) = sgn(P)(p0 p1 p2 p3).

It is now easy to construct an oriented r -simplex for any r ≥ 1. The
formal definition goes as follows. Take r + 1 geometrically independent points
p0, p1, . . . , pr in �m . Let {pi0 , pi1 , . . . , pir } be a sequence of points obtained by
a permutation of the points p0, . . . , pr . We define {p0, . . . , pr } and {pi0, . . . , pir }
to be equivalent if

P =
(

0 1 . . . r
i0 i1 . . . ir

)
is an even permutation. Clearly this is an equivalence relation, the equivalence
class of which is called an oriented r-simplex. There are two equivalence
classes, one consists of even permutations of p0, . . . , pr , the other of odd
permutations. The equivalence class (oriented r -simplex) which contains
{p0, . . . , pr } is denoted by σr = (p0 p1 . . . pr ), while the other is denoted by
−σr = −(p0 p1 . . . pr ). In other words,

(pi0 pi1 . . . pir ) = sgn(P)(p0 p1 . . . pr ). (3.14)

For r = 0, we formally define an oriented 0-simplex to be just a point
σ0 = p0.

3.3.2 Chain group, cycle group and boundary group

Let K = {σα} be an n-dimensional simplicial complex. We regard the simplexes
σα in K as oriented simplexes and denote them by the same symbols σα as
remarked before.

Definition 3.2. The r-chain group Cr (K ) of a simplicial complex K is a free
Abelian group generated by the oriented r -simplexes of K . If r > dim K , Cr (K )
is defined to be 0. An element of Cr (K ) is called an r-chain.

Let there be Ir r -simplexes in K . We denote each of them by σr,i (1 ≤ i ≤
Ir ). Then c ∈ Cr (K ) is expressed as

c =
Ir∑

i=1

ciσr,i ci ∈ �. (3.15)

 



Figure 3.7. (a) An oriented 1-simplex with a fictitious boundary p1. (b) A simplicial
complex without a boundary.

The integers ci are called the coefficients of c. The group structure is given as
follows. The addition of two r -chains, c =∑

i ciσr,i and c′ =∑
i c′iσr,i , is

c + c′ =
∑

i

(ci + c′i )σr,i . (3.16)

The unit element is 0 = ∑
i 0 · σr,i , while the inverse element of c is −c =∑

i (−ci )σr,i . [Remark: An oppositely oriented r -simplex −σr is identified with
(−1)σr ∈ Cr (K ).] Thus, Cr (K ) is a free Abelian group of rank Ir ,

Cr (K ) ∼= �⊕�⊕ · · · ⊕ �︸ ︷︷ ︸
Ir

. (3.17)

Before we define the cycle group and the boundary group, we need to
introduce the boundary operator. Let us denote the boundary of an r -simplex
σr by ∂rσr . ∂r should be understood as an operator acting on σr to produce its
boundary. This point of view will be elaborated later. Let us look at the boundaries
of lower-dimensional simplexes. Since a 0-simplex has no boundary, we define

∂0 p0 = 0. (3.18)

For a 1-simplex (p0 p1), we define

∂1(p0 p1) = p1 − p0. (3.19)

The reader might wonder about the appearance of a minus sign in front of p0.
This is again related to the orientation. The following examples will clarify this
point. In figure 3.7(a), an oriented 1-simplex (p0 p2) is divided into two, (p0 p1)

and (p1 p2). We agree that the boundary of (p0 p2) is {p0} ∪ {p2} and so should
be that of (p0 p1) + (p1 p2). If ∂1(p0 p2) were defined to be p0 + p2, we would
have ∂1(p0 p1)+ ∂1(p1 p2) = p0 + p1 + p1 + p2. This is not desirable since p1
is a fictitious boundary. If, instead, we take ∂1(p0 p2) = p2 − p0, we will have
∂1(p0 p1) + ∂1(p1 p2) = p1 − p0 + p2 − p1 = p2 − p0 as expected. The next
example is the triangle of figure 3.7(b). It is the sum of three oriented 1-simplexes,

 



(p0 p1) + (p1 p2) + (p2 p0). We agree that it has no boundary. If we insisted on
the rule ∂1(p0 p1) = p0 + p1, we would have

∂1(p0 p1)+ ∂1(p1 p2)+ ∂1(p2 p0) = p0 + p1 + p1 + p2 + p2 + p0

which contradicts our intuition. If, on the other hand, we take ∂1(p0 p1) =
p1 − p0, we have

∂1(p0 p1)+ ∂1(p1 p2)+ ∂1(p2 p0) = p1 − p0 + p2 − p1 + p0 − p2 = 0

as expected. Hence, we put a plus sign if the first vertex is omitted and a minus
sign if the second is omitted. We employ this fact to define the boundary of a
general r -simplex.

Let σr (p0 . . . pr ) (r > 0) be an oriented r -simplex. The boundary ∂rσr of
σr is an (r − 1)-chain defined by

∂rσr ≡
r∑

i=0

(−1)i (p0 p1 . . . p̂i . . . pr ) (3.20)

where the point pi under ˆ is omitted. For example,

∂2(p0 p1 p2) = (p1 p2)− (p0 p2)+ (p0 p1)

∂3(p0 p1 p2 p3) = (p1 p2 p3)− (p0 p2 p3)+ (p0 p1 p3)− (p0 p1 p2).

We formally define ∂0σ0 = 0 for r = 0.
The operator ∂r acts linearly on an element c =∑

i ciσr,i of Cr (K ),

∂r c =
∑

i

ci∂rσr,i . (3.21)

The RHS of (3.21) is an element of Cr−1(K ). Accordingly, ∂r defines a map

∂r : Cr (K )→ Cr−1(K ). (3.22)

∂r is called the boundary operator. It is easy to see that the boundary operator
is a homomorphism.

Let K be an n-dimensional simplicial complex. There exists a sequence of
free Abelian groups and homomorphisms,

0
i−→ Cn(K )

∂n−→ Cn−1(K )
∂n−1−→ · · · ∂2−→ C1(K )

∂1−→ C0(K )
∂0−→ 0 (3.23)

where i : 0 ↪→ Cn(K ) is an inclusion map (0 is regarded as the unit element
of Cn(K )). This sequence is called the chain complex associated with K and
is denoted by C(K ). It is interesting to study the image and kernel of the
homomorphisms ∂r .

 



Definition 3.3. If c ∈ Cr (K ) satisfies

∂r c = 0 (3.24)

c is called an r-cycle. The set of r -cycles Zr (K ) is a subgroup of Cr (K ) and is
called the r-cycle group. Note that Zr (K ) = ker ∂r . [Remark: If r = 0, ∂0c
vanishes identically and Z0(K ) = C0(K ), see (3.23).]

Definition 3.4. Let K be an n-dimensional simplicial complex and let c ∈ Cr (K ).
If there exists an element d ∈ Cr+1(K ) such that

c = ∂r+1d (3.25)

then c is called an r-boundary. The set of r -boundaries Br (K ) is a subgroup
of Cr (K ) and is called the r-boundary group. Note that Br (K ) = im ∂r+1.
[Remark: Bn(K ) is defined to be 0.]

From lemma 3.1, it follows that Zr (K ) and Br (K ) are subgroups of Cr (K ).
We now prove an important relation between Zr (K ) and Br (K ), which is crucial
in the definition of homology groups.

Lemma 3.3. The composite map ∂r ◦ ∂r+1 : Cr+1(K )→ Cr−1(K ) is a zero map;
that is, ∂r (∂r+1c) = 0 for any c ∈ Cr+1(K ).

Proof. Since ∂r is a linear operator on Cr (K ), it is sufficient to prove the identity
∂r ◦ ∂r+1 = 0 for the generators of Cr+1(K ). If r = 0, ∂0 ◦ ∂1 = 0 since ∂0 is a
zero operator. Let us assume r > 0. Take σ = (p0 . . . pr pr+1) ∈ Cr+1(K ). We
find

∂r (∂r+1σ) = ∂r

r+1∑
i=0

(−1)i (p0 . . . p̂i . . . pr+1)

=
r+1∑
i=0

(−1)i∂r (p0 . . . p̂i . . . pr+1)

=
r+1∑
i=0

(−1)i
( i−1∑

j=0

(−1) j (p0 . . . p̂ j . . . p̂i . . . pr+1)

+
r+1∑

j=i+1

(−1) j−1(p0 . . . p̂i . . . p̂ j . . . pr+1)

)
=

∑
j<i

(−1)i+ j (p0 . . . p̂ j . . . p̂i . . . pr+1)

−
∑
j>i

(−1)i+ j (p0 . . . p̂i . . . p̂ j . . . pr+1) = 0 (3.26)

 



which proves the lemma. �

Theorem 3.3. Let Zr (K ) and Br (K ) be the r -cycle group and the r -boundary
group of Cr (K ), then

Br (K ) ⊂ Zr (K ) (⊂Cr (K )). (3.27)

Proof. This is obvious from lemma 3.3. Any element c of Br (K ) is written as
c = ∂r+1d for some d ∈ Cr+1(K ). Then we find ∂r c = ∂r (∂r+1d) = 0, that is,
c ∈ Zr (K ). This implies Zr (K ) ⊃ Br (K ). �

What are the geometrical pictures of r -cycles and r -boundaries? With our
definitions, ∂r picks up the boundary of an r -chain. If c is an r -cycle, ∂r c = 0 tells
us that c has no boundary. If c = ∂r+1d is an r -boundary, c is the boundary of d
whose dimension is higher than c by one. Our intuition tells us that a boundary
has no boundary, hence Zr (K ) ⊃ Br (K ). Those elements of Zr (K ) that are not
boundaries play the central role in this chapter.

3.3.3 Homology groups

So far we have defined three groups Cr (K ), Zr (K ) and Br (K ) associated with
a simplicial complex K . How are they related to topological properties of K or
to the topological space whose triangulation is K ? Is it possible for Cr (K ) to
express any property which is conserved under homeomorphism? We all know
that the edges of a triangle and those of a square are homeomorphic to each other.
What about their chain groups? For example, the 1-chain group associated with a
triangle is

C1(K1) = {i(p0 p1)+ j (p1 p2)+ k(p2 p0)|i, j, k ∈ �}
∼= �⊕�⊕�

while that associated with a square is

C1(K2) ∼= �⊕�⊕�⊕�.
Clearly C1(K1) is not isomorphic to C1(K2), hence Cr (K ) cannot be a candidate
of a topological invariant. The same is true for Zr (K ) and Br (K ). It turns out
that the homology groups defined in the following provide the desired topological
invariants.

Definition 3.5. Let K be an n-dimensional simplicial complex. The rth
homology group Hr(K ), 0 ≤ r ≤ n, associated with K is defined by

Hr(K ) ≡ Zr (K )/Br (K ). (3.28)

[Remarks: If necessary, we define Hr(K ) = 0 for r > n or r < 0. If we
want to stress that the group structure is defined with integer coefficients, we

 



write Hr(K ;�). We may also define the homology groups with �-coefficients,
Hr(K ;�) or those with �2-coefficients, Hr (K ;�2).]

Since Br (K ) is a subgroup of Zr (K ), Hr(K ) is well defined. The group
Hr(K ) is the set of equivalence classes of r -cycles,

Hr(K ) ≡ {[z]|z ∈ Zr (K )} (3.29)

where each equivalence class [z] is called a homology class. Two r -cycles z and
z′ are in the same equivalence class if and only if z− z′ ∈ Br (K ), in which case z
is said to be homologous to z′ and denoted by z ∼ z′ or [z] = [z′]. Geometrically
z − z′ is a boundary of some space. By definition, any boundary b ∈ Br (K ) is
homologous to 0 since b− 0 ∈ Br (K ). We accept the following theorem without
proof.

Theorem 3.4. Homology groups are topological invariants. Let X be
homeomorphic to Y and let (K , f ) and (L, g) be triangulations of X and Y
respectively. Then we have

Hr (K ) ∼= Hr(L) r = 0, 1, 2, . . . . (3.30)

In particular, if (K , f ) and (L, g) are two triangulations of X , then

Hr (K ) ∼= Hr(L) r = 0, 1, 2, . . . . (3.31)

Accordingly, it makes sense to talk of homology groups of a topological
space X which is not necessarily a polyhedron but which is triangulable. For an
arbitrary triangulation (K , f ), Hr(X) is defined to be

Hr(X) ≡ Hr(K ) r = 0, 1, 2, . . . . (3.32)

Theorem 3.4 tells us that this is independent of the choice of the triangulation
(K , f ).

Example 3.6. Let K = {p0}. The 0-chain is C0(K ) = {i p0|i ∈ �} ∼= �. Clearly
Z0(K ) = C0(K ) and B0(K ) = {0} (∂0 p0 = 0 and p0 cannot be a boundary of
anything). Thus

H0(K ) ≡ Z0(K )/B0(K ) = C0(K ) ∼= �. (3.33)

Exercise 3.1. Let K = {p0, p1} be a simplicial complex consisting of two 0-
simplexes. Show that

Hr(K ) =
{
�⊕� (r = 0)

{0} (r �= 0).
(3.34)

 



Example 3.7. Let K = {p0, p1, (p0 p1)}. We have

C0(K ) = {i p0 + j p1|i, j ∈ �}
C1(K ) = {k(p0 p1)|k ∈ �}.

Since (p0 p1) is not a boundary of any simplex in K , B1(K ) = {0} and

H1(K ) = Z1(K )/B1(K ) = Z1(K ).

If z = m(p0 p1) ∈ Z1(K ), it satisfies

∂1z = m∂1(p0 p1) = m{p1 − p0} = mp1 − mp0 = 0.

Thus, m has to vanish and Z1(K ) = 0, hence

H1(K ) = 0. (3.35)

As for H0(K ), we have Z0(K ) = C0(K ) = {i p0 + j p1} and

B0(K ) = im ∂1 = {∂1i(p0 p1)|i ∈ �} = {i(p0 − p1)|i ∈ �}.
Define a surjective (onto) homomorphism f : Z0(K )→ � by

f (i p0 + j p1) = i + j.

Then we find
ker f = f −1(0) = B0(K ).

Theorem 3.1 states that Z0(K )/ ker f ∼= im f = �, or

H0(K ) = Z0(K )/B0(K ) ∼= �. (3.36)

Example 3.8. Let K = {p0, p1, p2, (p0 p1), (p1 p2), (p2 p0)}, see figure 3.7(b).
This is a triangulation of S1. Since there are no 2-simplexes in K , we have
B1(K ) = 0 and H1(K ) = Z1(K )/B1(K ) = Z1(K ). Let z = i(p0 p1) +
j (p1 p2)+ k(p2 p0) ∈ Z1(K ) where i, j, k ∈ �. We require that

∂1z = i(p1 − p0)+ j (p2 − p1)+ k(p0 − p2)

= (k − i)p0 + (i − j)p1 + ( j − k)p2 = 0.

This is satisfied only when i = j = k. Thus, we find that

Z1(K ) = {i{(p0 p1)+ (p1 p2)+ (p2 p0)}|i ∈ �}.
This shows that Z1(K ) is isomorphic to � and

H1(K ) = Z1(K ) ∼= �. (3.37)

 



Let us compute H0(K ). We have Z0(K ) = C0(K ) and

B0(K ) = {∂1[l(p0 p1)+ m(p1 p2)+ n(p2 p0)]|l,m, n ∈ �}
= {(n − l)p0 + (l − m)p1 + (m − n)p2 | l,m, n ∈ �}.

Define a surjective homomorphism f : Z0(K )→ � by

f (i p0 + j p1 + kp2) = i + j + k.

We verify that
ker f = f −1(0) = B0(K ).

From theorem 3.1 we find Z0(K )/ ker f ∼= im f = �, or

H0(K ) = Z0(K )/B0(K ) ∼= �. (3.38)

K is a triangulation of a circle S1, and (3.37) and (3.38) are the homology
groups of S1.

Exercise 3.2. Let K = {p0, p1, p2, p3, (p0 p1), (p1 p2), (p2 p3), (p3 p0)} be a
simplicial complex whose polyhedron is a square. Verify that the homology
groups are the same as those of example 3.8 above.

Example 3.9. Let K = {p0, p1, p2, (p0 p1), (p1 p2), (p2 p0), (p0 p1 p2)}; see
figure 3.6(b). Since the structure of 0-simplexes and 1-simplexes is the same
as that of example 3.8, we have

H0(K ) ∼= �. (3.39)

Let us compute H1(K ) = Z1(K )/B1(K ). From the previous example, we
have

Z1(K ) = {i{(p0 p1)+ (p1 p2)+ (p2 p0)}|i ∈ �}.
Let c = m(p0 p1 p2) ∈ C2(K ). If b = ∂2c ∈ B1(K ), we have

b = m{(p1 p2)− (p0 p2)+ (p0 p1)}
= m{(p0 p1)+ (p1 p2)+ (p2 p0)} m ∈ �.

This shows that Z1(K ) ∼= B1(K ), hence

H1(K ) = Z1(K )/B1(K ) ∼= {0}. (3.40)

Since there are no 3-simplexes in K , we have B2(K ) = {0}. Then
H2(K ) = Z2(K )/B2(K ) = Z2(K ). Let z = m(p0 p1 p2) ∈ Z2(K ). Since
∂2z = m{(p1 p2)− (p0 p2)+ (p0 p1)} = 0, m must vanish. Hence, Z1(K ) = {0}
and we have

H2(K ) ∼= {0}. (3.41)

 



Exercise 3.3. Let

K = {p0, p1, p2, p3, (p0 p1), (p0 p2), (p0 p3), (p1 p2), (p1 p3), (p2 p3),

(p0 p1 p2), (p0 p1 p3), (p0 p2 p3), (p1 p2 p3)}
be a simplicial complex whose polyhedron is the surface of a tetrahedron. Verify
that

H0(K ) ∼= � H1(K ) ∼= {0} H2(K ) ∼= �. (3.42)

K is a triangulation of the sphere S2 and (3.42) gives the homology groups of S2.

3.3.4 Computation of H0(K )

Examples 3.6–3.9 and exercises 3.2, 3.3 share the same zeroth homology group,
H0(K ) ∼= �. What is common to these simplicial complexes? We have the
following answer.

Theorem 3.5. Let K be a connected simplicial complex. Then

H0(K ) ∼= �. (3.43)

Proof. Since K is connected, for any pair of 0-simplexes pi and p j , there exists
a sequence of 1-simplexes (pi pk), (pk pl), . . . , (pm p j ) such that ∂1((pi pk) +
(pk pl) + · · · + (pm p j )) = p j − pi . Then it follows that pi is homologous
to p j , namely [pi ] = [p j ]. Thus, any 0-simplex in K is homologous to p1 say.
Suppose

z =
I0∑

i=1

ni pi ∈ Z0(K )

where I0 is the number of 0-simplexes in K . Then the homology class [z] is
generated by a single point,

[z] =
[∑

i

ni pi

]
=

∑
i

ni [pi ] =
∑

i

ni [p1].

It is clear that [z] = 0, namely z ∈ B0(K ), if
∑

ni = 0.
Let σ j = (p j,1 p j,2) (1 ≤ j ≤ I1) be 1-simplexes in K , I1 being the number

of 1-simplexes in K , then

B0(K ) = im ∂1

= {∂1(n1σ1 + · · · + nI1σI1 )|n1, . . . , nI1 ∈ �}
= {n1(p1,2 − p1,1)+ · · · + nI1(pI1,2 − pI1,1)|n1, . . . , nI1 ∈ �}.

Note that n j (1 ≤ j ≤ I1) always appears as a pair +n j and −n j in an element
of B0(K ). Thus, if

z =
∑

j

n j p j ∈ B0(K ) then
∑

j

n j = 0.

 



Figure 3.8. A triangulation of the Möbius strip.

Now we have proved for a connected complex K that z = ∑
ni pi ∈ B0(K ) if

and only if
∑

ni = 0.
Define a surjective homomorphism f : Z0(K )→ � by

f (n1 p1 + · · · + nI0 pI0) =
I0∑

i=1

ni .

We then have ker f = f −1(0) = B0(K ). It follows from theorem 3.1 that
H0(K ) = Z0(K )/B0(K ) = Z0(K )/ ker f ∼= im f = �. �

3.3.5 More homology computations

Example 3.10. This and the next example deal with homology groups of non-
orientable spaces. Figure 3.8 is a triangulation of the Möbius strip. Clearly
B2(K ) = 0. Let us take a cycle z ∈ Z2(K ),

z = i(p0 p1 p2)+ j (p2 p1 p4)+ k(p2 p4 p3)

+ l(p3 p4 p5)+ m(p3 p5 p1)+ n(p1 p5 p0).

z satisfies

∂2z = i{(p1 p2)− (p0 p2)+ (p0 p1)}
+ j{(p1 p4)− (p2 p4)+ (p2 p1)}
+ k{(p4 p3)− (p2 p3)+ (p2 p4)}
+ l{(p4 p5)− (p3 p5)+ (p3 p4)}
+ m{(p5 p1)− (p3 p1)+ (p3 p5)}
+ n{(p5 p0)− (p1 p0)+ (p1 p5)} = 0.

Since each of (p0 p2), (p1 p4), (p2 p3), (p4 p5), (p3 p1) and (p5 p0) appears once
and only once in ∂2z, all the coefficients must vanish, i = j = k = l = m = n =

 



0. Thus, Z2(K ) = {0} and

H2(K ) = Z2(K )/B2(K ) ∼= {0}. (3.44)

To find H1(K ), we use our intuition rather than doing tedious computations.
Let us find the loops which make complete circuits. One such loop is

z = (p0 p1)+ (p1 p4)+ (p4 p5)+ (p5 p0).

Then all the other complete circuits are homologous to multiples of z. For
example, let us take

z′ = (p1 p2)+ (p2 p3)+ (p3 p5)+ (p5 p1).

We find that z ∼ z′ since

z − z′ = ∂2{(p2 p1 p4)+ (p2 p4 p3)+ (p3 p4 p5)+ (p1 p5 p0)}.
If, however, we take

z′′ = (p1 p4)+ (p4 p5)+ (p5 p0)+ (p0 p2)+ (p2 p3)+ (p3 p1)

we find that z′′ ∼ 2z since

2z − z′′ = 2(p0 p1)+ (p1 p4)+ (p4 p5)+ (p5 p0)− (p0 p2)

− (p2 p3)− (p3 p1)

= ∂2{(p0 p1 p2)+ (p1 p4 p2)+ (p2 p4 p3)+ (p3 p4 p5)

+ (p3 p5 p1)+ (p0 p1 p5)}.
We easily verify that all the closed circuits are homologous to nz, n ∈ �. H1(K )
is generated by just one element [z],

H1(K ) = {i [z]|i ∈ �} ∼= �. (3.45)

Since K is connected, it follows from theorem 3.5 that H0(K ) = {i [pa]|i ∈
�} ∼= �, pa being any 0-simplex of K .

Example 3.11. The projective plane �P2 has been defined in example 2.5(c) as
the sphere S2 whose antipodal points are identified. As a coset space, we may
take the hemisphere (or the disc D2) whose opposite points on the boundary S1

are identified, see figure 2.5(b). Figure 3.9 is a triangulation of the projective
plane. Clearly B2(K ) = {0}. Take a cycle z ∈ Z2(K ),

z = m1(p0 p1 p2)+ m2(p0 p4 p1)+ m3(p0 p5 p4)

+ m4(p0 p3 p5)+ m5(p0 p2 p3)+ m6(p2 p4 p3)

+ m7(p2 p5 p4)+ m8(p2 p1 p5)+ m9(p1 p3 p5)+ m10(p1 p4 p3).

 



Figure 3.9. A triangulation of the projective plane.

The boundary of z is

∂2z = m1{(p1 p2)− (p0 p2)+ (p0 p1)}
+ m2{(p4 p1)− (p0 p1)+ (p0 p4)}
+ m3{(p5 p4)− (p0 p4)+ (p0 p5)}
+ m4{(p3 p5)− (p0 p5)+ (p0 p3)}
+ m5{(p2 p3)− (p0 p3)+ (p0 p2)}
+ m6{(p4 p3)− (p2 p3)+ (p2 p4)}
+ m7{(p5 p4)− (p2 p4)+ (p2 p5)}
+ m8{(p1 p5)− (p2 p5)+ (p2 p1)}
+ m9{(p3 p5)− (p1 p5)+ (p1 p3)}
+ m10{(p4 p3)− (p1 p3)+ (p1 p4)} = 0.

Let us look at the coefficient of each 1-simplex. For example, we have (m1 −
m2)(p0 p1), hence m1 − m2 = 0. Similarly,

− m1 + m5 = 0,m4 − m5 = 0,m2 − m3 = 0,m1 − m8 = 0,

m9 − m10 = 0,−m2 + m10 = 0,m5 − m6 = 0,m6 − m7 = 0,

m6 + m10 = 0.

 



These ten conditions are satisfied if and only if mi = 0, 1 ≤ i ≤ 10. This means
that the cycle group Z2(K ) is trivial and we have

H2(K ) = Z2(K )/B2(K ) ∼= {0}. (3.46)

Before we calculate H1(K ), we examine H2(K ) from a slightly different
viewpoint. Let us add all the 2-simplexes in K with the same coefficient,

z ≡
10∑

i=1

mσ2,i m ∈ �.

Observe that each 1-simplex of K is a common face of exactly two 2-simplexes.
As a consequence, the boundary of z is

∂2z = 2m(p3 p5)+ 2m(p5 p4)+ 2m(p4 p3). (3.47)

Thus, if z ∈ Z2(K ), m must vanish and we find Z2(K ) = {0} as before. This
observation remarkably simplifies the computation of H1(K ). Note that any 1-
cycle is homologous to a multiple of

z = (p3 p5)+ (p5 p4)+ (p4 p3)

cf example 3.10. Furthermore, equation (3.47) shows that an even multiple of z is
a boundary of a 2-chain. Thus, z is a cycle and z + z is homologous to 0. Hence,
we find that

H1(K ) = {[z]|[z] + [z] ∼ [0]} ∼= �2. (3.48)

This example shows that a homology group is not necessarily free Abelian but
may have the full structure of a finitely generated Abelian group. Since K is
connected, we have H0(K ) ∼= �.

It is interesting to compare example 3.11 with the following examples.
In these examples, we shall use the intuition developed in this section on
boundaries and cycles to obtain results rather than giving straightforward but
tedious computations.

Example 3.12. Let us consider the torus T 2. A formal derivation of the homology
groups of T 2 is left as an exercise to the reader: see Fraleigh (1976), for example.
This is an appropriate place to recall the intuitive meaning of the homology
groups. The r th homology group is generated by those boundaryless r -chains
that are not, by themselves, boundaries of some (r + 1)-chains. For example,
the surface of the torus has no boundary but it is not a boundary of some 3-
chain. Thus, H2(T 2) is freely generated by one generator, the surface itself,
H2(T 2) ∼= �. Let us look at H1(T 2) next. Clearly the loops a and b in figure 3.10
have no boundaries but are not boundaries of some 2-chains. Take another loop
a′. a′ is homologous to a since a′ − a bounds the shaded area of figure 3.10.

 



Figure 3.10. a′ is homologous to a but b is not. a and b generate H1(T
2).

Figure 3.11. ai and bi (1 ≤ i ≤ g) generate H1(�g).

Hence, H1(T 2) is freely generated by a and b and H1(T 2) ∼= �⊕�. Since T 2 is
connected, we have H0(T 2) ∼= �.

Now it is easy to extend our analysis to the torus�g of genus g. Since�g has
no boundary and there are no 3-simplexes, the surface �g itself freely generates
H2(T 2) ∼= �. The first homology group H1(�g) is generated by those loops
which are not boundaries of some area. Figure 3.11 shows the standard choice for
the generators. We find

H1(�g) = {i1[a1] + j1[b1] + · · · + ig[ag] + jg[bg]}
∼= �⊕�⊕ · · · ⊕ �︸ ︷︷ ︸

2g

. (3.49)

Since �g is connected, H0(�g) ∼= �. Observe that ai (bi ) is homologous to the
edge ai (bi ) of figure 2.12. The 2g curves {ai , bi } are called the canonical system
of curves on �g .

Example 3.13. Figure 3.12 is a triangulation of the Klein bottle. Computations of
the homology groups are much the same as those of the projective plane. Since
B2(K ) = 0, we have H2(K ) = Z2(K ). Let z ∈ Z2(K ). If z is a combination
of all the 2-simplexes of K with the same coefficient, z = ∑

mσ2,i , the inner
1-simplexes cancel out to leave only the outer 1-simplexes

∂2z = −2ma

 



Figure 3.12. A triangulation of the Klein bottle.

where a = (p0 p1)+ (p1 p2)+ (p2 p0). For ∂2z to be 0, the integer m must vanish
and we have

H2(K ) = Z2(K ) ∼= {0}. (3.50)

To compute H1(K ) we first note, from our experience with the torus, that
every 1-cycle is homologous to ia + jb for some i, j ∈ �. For a 2-chain to have
a boundary consisting of a and b only, all the 2-simplexes in K must be added
with the same coefficient. As a result, for such a 2-chain z = ∑

mσ2,i , we have
∂z = 2ma. This shows that 2ma ∼ 0. Thus, H1(K ) is generated by two cycles a
and b such that a + a = 0, namely

H1(K ) = {i [a] + j [b]|i, j ∈ �} ∼= �2⊕�. (3.51)

We obtain H0(K ) ∼= � since K is connected.

 



3.4 General properties of homology groups

3.4.1 Connectedness and homology groups

Let K = {p0} and L = {p0, p1}. From example 3.6 and exercise 3.1, we have
H0(K ) = �and H0(L) = �⊕�. More generally, we have the following theorem.

Theorem 3.6. Let K be a disjoint union of N connected components, K =
K1 ∪ K2 ∪ · · · ∪ KN where Ki ∩ K j = ∅. Then

Hr(K ) = Hr(K1)⊕ Hr (K2)⊕ · · · ⊕ Hr(KN ). (3.52)

Proof. We first note that an r -chain group is consistently separated into a direct
sum of N r -chain subgroups. Let

Cr (K ) =
{ Ir∑

i=1

ciσr,i

∣∣∣∣ci ∈ �
}

where Ir is the number of linearly independent r -simplexes in K . It is always
possible to rearrange σi so that those r -simplexes in K1 come first, those in K2
next and so on. Then Cr (K ) is separated into a direct sum of subgroups,

Cr (K ) = Cr (K1)⊕ Cr (K2)⊕ · · · ⊕ Cr (KN ).

This separation is also carried out for Zr (K ) and Br (K ) as

Zr (K ) = Zr (K1)⊕ Zr (K2)⊕ · · · ⊕ Zr (KN )

Br (K ) = Br (K1)⊕ Br (K2)⊕ · · · ⊕ Br (KN ).

We now define the homology groups of each component Ki by

Hr(Ki ) = Zr (Ki )/Br (Ki ).

This is well defined since Zr (Ki ) ⊃ Br (Ki ). Finally, we have

Hr(K ) = Zr (K )/Br (K )

= Zr (K1)⊕ · · · ⊕ Zr (KN )/Br (K1)⊕ · · · ⊕ Br (KN )

= {Zr (K1)/Br (K1)} ⊕ · · · ⊕ {Zr (KN )/Br (KN )}
= Hr(K1)⊕ · · · ⊕ Hr(KN ). �

Corollary 3.1. (a) Let K be a disjoint union of N connected components,
K1, . . . , KN . Then it follows that

H0(K ) ∼= �⊕ · · · ⊕ �︸ ︷︷ ︸
N factors

. (3.53)

(b) If H0(K ) ∼= �, K is connected. [Together with theorem 3.5 we conclude
that H0(K ) ∼= � if and only if K is connected.]

 



3.4.2 Structure of homology groups

Zr (K ) and Br (K ) are free Abelian groups since they are subgroups of a free
Abelian group Cr (K ). It does not mean that Hr(K ) = Zr (K )/Br (K ) is also free
Abelian. In fact, according to theorem 3.2, the most general form of Hr(K ) is

Hr(K ) ∼= �⊕ · · · ⊕�︸ ︷︷ ︸
f

⊕�k1 ⊕ · · · ⊕�kp. (3.54)

It is clear from our experience that the number of generators of Hr(K ) counts
the number of (r + 1)-dimensional holes in |K |. The first f factors form a free
Abelian group of rank f and the next p factors are called the torsion subgroup
of Hr (K ). For example, the projective plane has H1(K ) ∼= �2 and the Klein
bottle has H1(K ) ∼= � ⊕ �2. In a sense, the torsion subgroup detects the
‘twisting’ in the polyhedron |K |. We now clarify why the homology groups with
�-coefficients are preferable to those with �2- or �-coefficients. Since �2 has no
non-trivial subgroups, the torsion subgroup can never be recognized. Similarly,
if �-coefficients are employed, we cannot see the torsion subgroup either, since
�/m� ∼= {0} for any m ∈ �− {0}. [For any a, b ∈ �, there exists a number
c ∈ � such that a − b = mc.] If Hr (K ;�) is given by (3.54), Hr(K ;�) is

Hr(K ;�) ∼= � ⊕ � ⊕ · · · ⊕ �︸ ︷︷ ︸
f

. (3.55)

3.4.3 Betti numbers and the Euler–Poincaré theorem

Definition 3.6. Let K be a simplicial complex. The r th Betti number br (K ) is
defined by

br (K ) ≡ dim Hr (K ;�). (3.56)

In other words, br (K ) is the rank of the free Abelian part of Hr(K ;�).
For example, the Betti numbers of the torus T 2 are (see example 3.12)

b0(K ) = 1, b1(K ) = 2, b2(K ) = 1

and those of the sphere S2 are (exercise 3.3)

b0(K ) = 1, b1(K ) = 0, b2(K ) = 1.

The following theorem relates the Euler characteristic to the Betti numbers.

Theorem 3.7. (The Euler–Poincaré theorem) Let K be an n-dimensional
simplicial complex and let Ir be the number of r -simplexes in K . Then

χ(K ) ≡
n∑

r=0

(−1)r Ir =
n∑

r=0

(−1)r br (K ). (3.57)

[Remark: The first equality defines the Euler characteristic of a general
polyhedron |K |. Note that this is the generalization of the Euler characteristic
defined for surfaces in section 2.4.]

 



Proof. Consider the boundary homomorphism,

∂r : Cr (K ;�) → Cr−1(K ;�)
where C−1(K ;�) is defined to be {0}. Since both Cr−1(K ;�) and Cr (K ;�) are
vector spaces, theorem 2.1 can be applied to yield

Ir = dim Cr (K ;�) = dim(ker ∂r )+ dim(im ∂r )

= dim Zr (K ;�) + dim Br−1(K ;�)
where B−1(K ) is defined to be trivial. We also have

br (K ) = dim Hr(K ;�) = dim(Zr (K ;�)/Br (K ;�))
= dim Zr (K ;�) − dim Br (K ;�).

From these relations, we obtain

χ(K ) =
n∑

r=0

(−1)r Ir =
n∑

r=0

(−1)r (dim Zr (K ;�) + dim Br−1(K ;�))

=
n∑

r=0

{(−1)r dim Zr (K ;�) − (−1)r dim Br (K ;�)}

=
n∑

r=0

(−1)r br (K ). �

Since the Betti numbers are topological invariants, χ(K ) is also conserved
under a homeomorphism. In particular, if f : |K | → X and g : |K ′| → X are
two triangulations of X , we have χ(K ) = χ(K ′). Thus, it makes sense to define
the Euler characteristic of X by χ(K ) for any triangulation (K , f ) of X .

Figure 3.13. A hole in S2, whose edges are identified as shown. We may consider S2 with
q such holes.

 



Problems

3.1 The most general orientable two-dimensional surface is a 2-sphere with h
handles and q holes. Compute the homology groups and the Euler characteristic
of this surface.

3.2 Consider a sphere with a hole and identify the edges of the hole as shown in
figure 3.13. The surface we obtained was simply the projective plane �P2 . More
generally, consider a sphere with q such ‘crosscaps’ and compute the homology
groups and the Euler characteristic of this surface.

 



4

HOMOTOPY GROUPS

The idea of homology groups in the previous chapter was to assign a group
structure to cycles that are not boundaries. In homotopy groups, however, we
are interested in continuous deformation of maps one to another. Let X and Y
be topological spaces and let � be the set of continuous maps, from X to Y . We
introduce an equivalence relation, called ‘homotopic to’, in � by which two maps
f, g ∈ � are identified if the image f (X) is continuously deformed to g(X) in
Y . We choose X to be some standard topological spaces whose structures are
well known. For example, we may take the n-sphere Sn as the standard space and
study all the maps from Sn to Y to see how these maps are classified according to
homotopic equivalence. This is the basic idea of homotopy groups.

We will restrict ourselves to an elementary study of homotopy groups, which
is sufficient for the later discussion. Nash and Sen (1983) and Croom (1978)
complement this chapter.

4.1 Fundamental groups

4.1.1 Basic ideas

Let us look at figure 4.1. One disc has a hole in it, the other does not. What
characterizes the difference between these two discs? We note that any loop in
figure 4.1(b) can be continuously shrunk to a point. In contrast, the loop α in
figure 4.1(a) cannot be shrunk to a point due to the existence of a hole in it. Some
loops in figure 4.1(a) may be shrunk to a point while others cannot. We say a loop
α is homotopic to β if α can be obtained from β by a continuous deformation. For
example, any loop in Y is homotopic to a point. It turns out that ‘homotopic to’
is an equivalence relation, the equivalence class of which is called the homotopy
class. In figure 4.1, there is only one homotopy class associated with Y . In X ,
each homotopy class is characterized by n ∈ �, n being the number of times the
loop encircles the hole; n < 0 if it winds clockwise, n > 0 if counterclockwise,
n = 0 if the loop does not wind round the hole. Moreover,� is an additive group
and the group operation (addition) has a geometrical meaning; n+m corresponds
to going round the hole first n times and then m times. The set of homotopy
classes is endowed with a group structure called the fundamental group.

 



Figure 4.1. A disc with a hole (a) and without a hole (b). The hole in (a) prevents the loop
α from shrinking to a point.

4.1.2 Paths and loops

Definition 4.1. Let X be a topological space and let I = [0, 1]. A continuous
map α : I → X is called a path with an initial point x0 and an end point x1 if
α(0) = x0 and α(1) = x1. If α(0) = α(1) = x0, the path is called a loop with
base point x0 (or a loop at x0).

For x ∈ X , a constant path cx : I → X is defined by cx (s) = x , s ∈ I . A
constant path is also a constant loop since cx(0) = cx(1) = x . The set of paths
or loops in a topological space X may be endowed with an algebraic structure as
follows.

Definition 4.2. Let α, β : I → X be paths such that α(1) = β(0). The product of
α and β, denoted by α ∗ β, is a path in X defined by

α ∗ β(s) =
{
α(2s) 0 ≤ s ≤ 1

2

β(2s − 1) 1
2 ≤ s ≤ 1

(4.1)

see figure 4.2. Since α(1) = β(0), α ∗ β is a continuous map from I to X .
[Geometrically, α ∗ β corresponds to traversing the image α(I ), in the first half,
then followed by β(I ) in the remaining half. Note that the velocity is doubled.]

Definition 4.3. Let α : I → X be a path from x0 to x1. The inverse path α−1 of α
is defined by

α−1(s) ≡ α(1 − s) s ∈ I. (4.2)

[The inverse path α−1 corresponds to traversing the image of α in the opposite
direction from x1 to x0.]

Since a loop is a special path for which the initial point and end point agree,
the product of loops and the inverse of a loop are defined in exactly the same way.

 



Figure 4.2. The product α ∗ β of paths α and β with a common end point.

It seems that a constant map cx is the unit element. However, it is not: α ∗ α−1

is not equal to cx ! We need a concept of homotopy to define a group operation in
the space of loops.

4.1.3 Homotopy

The algebraic structure of loops introduced earlier is not so useful as it is. For
example, the constant path is not exactly the unit element. We want to classify the
paths and loops according to a neat equivalence relation so that the equivalence
classes admit a group structure. It turns out that if we identify paths or loops that
can be deformed continuously one into another, the equivalence classes form a
group. Since we are primarily interested in loops, most definitions and theorems
are given for loops. However, it should be kept in mind that many statements are
also applied to paths with proper modifications.

Definition 4.4. Let α, β : I → X be loops at x0. They are said to be homotopic,
written as α ∼ β, if there exists a continuous map F : I × I → X such that

F(s, 0) = α(s), F(s, 1) = β(s) ∀s ∈ I

F(0, t) = F(1, t) = x0 ∀t ∈ I.
(4.3)

The connecting map F is called a homotopy between α and β.

It is helpful to represent a homotopy as figure 4.3(a). The vertical edges of
the square I × I are mapped to x0. The lower edge is α(s) while the upper edge
is β(s). In the space X , the image is continuously deformed as in figure 4.3(b).

Proposition 4.1. The relation α ∼ β is an equivalence relation.

 



Figure 4.3. (a) The square represents a homotopy F interpolating the loops α and β. (b)
The image of α is continuously deformed to the image of β in real space X .

Figure 4.4. A homotopy H between α and γ via β.

Proof. Reflectivity: α ∼ α. The homotopy may be given by F(s, t) = α(s) for
any t ∈ I .

Symmetry: Let α ∼ β with the homotopy F(s, t) such that F(s, 0) = α(s),
F(s, 1) = β(s). Then β ∼ α, where the homotopy is given by F(s, 1 − t).

Transitivity: Let α ∼ β and β ∼ γ . Then α ∼ γ . If F(s, t) is a homotopy
between α and β and G(s, t) is a homotopy between β and γ , a homotopy
between α and γ may be (figure 4.4)

H (s, t) =
{

F(s, 2t) 0 ≤ t ≤ 1
2

G(s, 2t − 1) 1
2 ≤ t ≤ 1.

�

 



4.1.4 Fundamental groups

The equivalence class of loops is denoted by [α] and is called the homotopy
class of α. The product between loops naturally defines the product in the set of
homotopy classes of loops.

Definition 4.5. Let X be a topological space. The set of homotopy classes of loops
at x0 ∈ X is denoted by π1(X, x0) and is called the fundamental group (or the
first homotopy group) of X at x0. The product of homotopy classes [α] and [β]
is defined by

[α] ∗ [β] = [α ∗ β]. (4.4)

Lemma 4.1. The product of homotopy classes is independent of the representa-
tive, that is, if α ∼ α′ and β ∼ β ′, then α ∗ β ∼ α′ ∗ β ′.

Proof. Let F(s, t) be a homotopy between α and α′ and G(s, t) be a homotopy
between β and β ′. Then

H (s, t) =
{

F(2s, t) 0 ≤ s ≤ 1
2

G(2s − 1, t) 1
2 ≤ s ≤ 1

is a homotopy between α ∗ β and α′ ∗ β ′, hence α ∗ β ∼ α′ ∗ β ′ and [α] ∗ [β] is
well defined. �

Theorem 4.1. The fundamental group is a group. Namely, if α, β, . . . are loops at
x ∈ X , the following group properties are satisfied:

(1) ([α] ∗ [β]) ∗ [γ ] = [α] ∗ ([β] ∗ [γ ])
(2) [α] ∗ [cx ] = [α] and [cx ] ∗ [α] = [α] (unit element)
(3) [α] ∗ [α−1] = [cx ], hence [α]−1 = [α−1] (inverse).

Proof. (1) Let F(s, t) be a homotopy between (α ∗ β) ∗ γ and α ∗ (β ∗ γ ). It may
be given by (figure 4.5(a))

F(s, t) =



α

(
4s

1+ t

)
0 ≤ s ≤ 1+ t

4

β(4s − t − 1)
1+ t

4
≤ s ≤ 2+ t

4

γ

(
4s − t − 2

2− t

)
2+ t

4
≤ s ≤ 1.

Thus, we may simply write [α ∗ β ∗ γ ] to denote [(α ∗ β) ∗ γ ] or [α ∗ (β ∗ γ )].

 



Figure 4.5. (a) A homotopy between (α ∗β)∗γ and α ∗ (β ∗γ ). (b) A homotopy between
α ∗ cx and α.

(2) Define a homotopy F(s, t) by (figure 4.5(b))

F(s, t) =


α

(
2s

1+ t

)
0 ≤ s ≤ t + 1

2

x
t + 1

2
≤ s ≤ 1.

Clearly this is a homotopy between α ∗ cx and α. Similarly, a homotopy between
cx ∗ α and α is given by

F(s, t) =


x 0 ≤ s ≤ 1− t

2

α

(
2s − 1+ t

1+ t

)
1− t

2
≤ s ≤ 1.

This shows that [α] ∗ [cx ] = [α] = [cx ] ∗ [α].
(3) Define a map F : I × I → X by

F(s, t) =
{
α(2s(1− t)) 0 ≤ s ≤ 1

2

α(2(1− s)(1 − t)) 1
2 ≤ s ≤ 1.

Clearly F(s, 0) = α ∗ α−1 and F(s, 1) = cx , hence

[α ∗ α−1] = [α] ∗ [α−1] = [cx ].
This shows that [α−1] = [α]−1. �

In summary, π1(X, x) is a group whose unit element is the homotopy class
of the constant loop cx . The product [α] ∗ [β] is well defined and satisfies the

 



Figure 4.6. From a loop α at x0, a loop η−1 ∗ α ∗ η at x1 is constructed.

group axioms. The inverse of [α] is [α]−1 = [α−1]. In the next section we
study the general properties of fundamental groups, which simplify the actual
computations.

4.2 General properties of fundamental groups

4.2.1 Arcwise connectedness and fundamental groups

In section 2.3 we defined a topological space X to be arcwise connected if, for
any x0, x1 ∈ X , there exists a path α such that α(0) = x0 and α(1) = x1.

Theorem 4.2. Let X be an arcwise connected topological space and let x0, x1 ∈
X . Then π1(X, x0) is isomorphic to π1(X, x1).

Proof. Let η : I → X be a path such that η(0) = x0 and η(1) = x1.
If α is a loop at x0, then η−1 ∗ α ∗ η is a loop at x1 (figure 4.6). Given an
element [α] ∈ π1(X, x0), this correspondence induces a unique element [α′] =
[η−1 ∗ α ∗ η] ∈ π1(X, x1). We denote this map by Pη : π1(X, x0)→ π1(X, x1)

so that [α′] = Pη([α]).
We show that Pη is an isomorphism. First, Pη is a homomorphism, since for

[α], [β] ∈ π1(X, x0), we have

Pη([α] ∗ [β]) = [η−1] ∗ [α] ∗ [β] ∗ [η]
= [η−1] ∗ [α] ∗ [η] ∗ [η−1] ∗ [β] ∗ [η]
= Pη([α]) ∗ Pη([β]).

To show that Pη is bijective, we introduce the inverse of Pη. Define a map
P−1
η : π1(X, x1)→ π1(X, x0) whose action on [α′] is P−1

η ([α′]) = [η∗α ∗η−1].

 



Clearly P−1 is the inverse of Pη since

P−1
η ◦ Pη([α]) = P−1

η ([η−1 ∗ α ∗ η]) = [η ∗ η−1 ∗ α ∗ η ∗ η−1] = [α].

Thus, P−1
η ◦ Pη = idπ1(X,x0). From the symmetry, we have Pη ◦ P−1

η = idπ1(X,x1).
We find from exercise 2.3 that Pη is one to one and onto. �

Accordingly, if X is arcwise connected, we do not need to specify the base
point since π1(X, x0) ∼= π1(X, x1) for any x0, x1 ∈ X , and we may simply write
π1(X).

Exercise 4.1. (1) Let η and ζ be paths from x0 to x1, such that η ∼ ζ . Show that
Pη = Pζ .

(2) Let η and ζ be paths such that η(1) = ζ(0). Show that Pη∗ζ = Pζ ◦ Pη.

4.2.2 Homotopic invariance of fundamental groups

The homotopic equivalence of paths and loops is easily generalized to arbitrary
maps. Let f, g : X → Y be continuous maps. If there exists a continuous map
F : X × I → Y such that F(x, 0) = f (x) and F(x, 1) = g(x), f is said to be
homotopic to g, denoted by f ∼ g. The map F is called a homotopy between f
and g.

Definition 4.6. Let X and Y be topological spaces. X and Y are of the same
homotopy type, written as X 	 Y , if there exist continuous maps f : X → Y
and g : Y → X such that f ◦ g ∼ idY and g ◦ f ∼ idX . The map f is
called the homotopy equivalence and g, its homotopy inverse. [Remark: If X is
homeomorphic to Y , X and Y are of the same homotopy type but the converse is
not necessarily true. For example, a point {p} and the real line � are of the same
homotopy type but {p} is not homeomorphic to �.]

Proposition 4.2. ‘Of the same homotopy type’ is an equivalence relation in the
set of topological spaces.

Proof. Reflectivity: X 	 X where idX is a homotopy equivalence. Symmetry:
Let X 	 Y with the homotopy equivalence f : X → Y . Then Y 	 X , the
homotopy equivalence being the homotopy inverse of f . Transitivity: Let X 	 Y
and Y 	 Z . Suppose f : X → Y , g : Y → Z are homotopy equivalences and
f ′ : Y → X , g′ : Z → Y , their homotopy inverses. Then

(g ◦ f )( f ′ ◦ g′) = g( f ◦ f ′)g′ ∼ g ◦ idY ◦ g′ = g ◦ g′ ∼ idZ

( f ′ ◦ g′)(g ◦ f ) = f ′(g′ ◦ g) f ∼ f ′ ◦ idY ◦ f = f ′ ◦ f ∼ idX

from which it follows X 	 Z . �

 



Figure 4.7. The circle R is a retract of the annulus X . The arrows depict the action of the
retraction.

One of the most remarkable properties of the fundamental groups is that two
topological spaces of the same homotopy type have the same fundamental group.

Theorem 4.3. Let X and Y be topological spaces of the same homotopy type. If
f : X → Y is a homotopy equivalence, π1(X, x0) is isomorphic to π1(Y, f (x0)).

The following corollary follows directly from theorem 4.3.

Corollary 4.1. A fundamental group is invariant under homeomorphisms, and
hence is a topological invariant.

In this sense, we must admit that fundamental groups classify topological
spaces in a less strict manner than homeomorphisms. What we claim at most is
that if topological spaces X and Y have different fundamental groups, X cannot
be homeomorphic to Y . Note, however, that the homotopy groups including the
fundamental groups have many applications to physics as we shall see in due
course. We should stress that the main usage of the homotopy groups in physics
is not to classify spaces but to classify maps or field configurations.

It is rather difficult to appreciate what is meant by ‘of the same homotopy
type’ for an arbitrary pair of X and Y . In practice, however, it often happens that
Y is a subspace of X . We then claim that X 	 Y if Y is obtained by a continuous
deformation of X .

Definition 4.7. Let R (�=∅) be a subspace of X . If there exists a continuous map
f : X → R such that f |R = idR , R is called a retract of X and f a retraction.

Note that the whole of X is mapped onto R keeping points in R fixed.
Figure 4.7 is an example of a retract and retraction.

 



Figure 4.8. The circle R is not a deformation retract of X .

Definition 4.8. Let R be a subspace of X . If there exists a continuous map
H : X × I → X such that

H (x, 0) = x H (x, 1) ∈ R for any x ∈ X (4.5)

H (x, t) = x for any x ∈ R and any t ∈ I . (4.6)

The space R is said to be a deformation retract of X . Note that H is a homotopy
between idX and a retraction f : X → R, which leaves all the points in R fixed
during deformation.

A retract is not necessarily a deformation retract. In figure 4.8, the circle R
is a retract of X but not a deformation retract, since the hole in X is an obstruction
to continuous deformation of idX to the retraction. Since X and R are of the same
homotopy type, we have

π1(X, a) ∼= π1(R, a) a ∈ R. (4.7)

Example 4.1. Let X be the unit circle and Y be the annulus,

X = {eiθ |0 ≤ θ < 2π} (4.8)

Y = {reiθ |0 ≤ θ < 2π, 1
2 ≤ r ≤ 2

3 } (4.9)

see figure 4.7. Define f : X ↪→ Y by f (eiθ ) = eiθ and g : Y → X by
g(reiθ ) = eiθ . Then f ◦ g : reiθ 
→ eiθ and g ◦ f : eiθ 
→ eiθ . Observe that
f ◦ g ∼ idY and g ◦ f = idX . There exists a homotopy

H (reiθ, t) = {1+ (r − 1)(1− t)}eiθ

which interpolates between idX and f ◦ g, keeping the points on X fixed.
Hence, X is a deformation retract of Y . As for the fundamental groups we have
π1(X, a) ∼= π1(Y, a) where a ∈ X .

 



Definition 4.9. If a point a ∈ X is a deformation retract of X , X is said to be
contractible.

Let ca : X → {a} be a constant map. If X is contractible, there exists a
homotopy H : X × I → X such that H (x, 0) = ca(x) = a and H (x, 1) =
idX (x) = x for any x ∈ X and, moreover, H (a, t) = a for any t ∈ I . The
homotopy H is called the contraction.

Example 4.2. X = �n is contractible to the origin 0. In fact, if we define
H : �n × I → � by H (x, t) = tx , we have (i) H (x, 0) = 0 and H (x, 1) = x
for any x ∈ X and (ii) H (0, 1) = 0 for any t ∈ I . Now it is clear that any convex
subset of �n is contractible.

Exercise 4.2. Let D2 = {(x, y) ∈ �2 |x2 + y2 ≤ 1}. Show that the unit circle
S1 is a deformation retract of D2 − {0}. Show also that the unit sphere Sn is a
deformation retract of Dn+1 − {0}, where Dn+1 = {x ∈ �n+1 ||x | ≤ 1}.
Theorem 4.4. The fundamental group of a contractible space X is trivial,
π1(X, x0) ∼= {e}. In particular, the fundamental group of �n is trivial,
π1(�n , x0) ∼= {e}.
Proof. A contractible space has the same fundamental group as a point {p} and a
point has a trivial fundamental group. �

If an arcwise connected space X has a trivial fundamental group, X is said
to be simply connected, see section 2.3.

4.3 Examples of fundamental groups

There does not exist a routine procedure to compute the fundamental groups,
in general. However, in certain cases, they are obtained by relatively simple
considerations. Here we look at the fundamental groups of the circle S1 and
related spaces.

Let us express S1 as {z ∈ � ||z| = 1}. Define a map p : � → S1 by
p : x 
→ exp(ix). Under p, the point 0 ∈ � is mapped to 1 ∈ S1, which is
taken to be the base point. We imagine that � wraps around S1 under p, see
figure 4.9. If x, y ∈ � satisfies x − y = 2πm(m ∈ �), they are mapped to the
same point in S1. Then we write x ∼ y. This is an equivalence relation and the
equivalence class [x] = {y|x − y = 2πm for some m ∈ �} is identified with
a point exp(ix) ∈ S1. It then follows that S1 ∼= �/2π�. Let f̃ : � → � be
a continuous map such that f̃ (0) = 0 and f̃ (x + 2π) ∼ f̃ (x). It is obvious
that f̃ (x + 2π) = f̃ (x) + 2nπ for any x ∈ �, where n is a fixed integer. If
x ∼ y (x − y = 2πm), we have

f̃ (x)− f̃ (y) = f̃ (y + 2πm)− f̃ (y)

= f̃ (y)+ 2πmn − f̃ (y) = 2πmn

 



Figure 4.9. The map p : � → S1 defined by x 
→ exp(ix) projects x + 2mπ to the same
point on S1, while f̃ : � → �, such that f̃ (0) = 0 and f̃ (x + 2π) = f̃ (x) + 2nπ for
fixed n, defines a map f : S1 → S1. The integer n specifies the homotopy class to which
f belongs.

hence f̃ (x) ∼ f̃ (y). Accordingly, f̃ : � → � uniquely defines a continuous
map f : �/2π� → �/2π� by f ([x]) = p ◦ f̃ (x), see figure 4.9. Note that f
keeps the base point 1 ∈ S1 fixed. Conversely, given a map f : S1 → S1, which
leaves 1 ∈ S1 fixed, we may define a map f̃ : � → � such that f̃ (0) = 0 and
f̃ (x + 2π) = f̃ (x)+ 2πn.

ln summary, there is a one-to-one correspondence between the set of maps
from S1 to S1 with f (1) = 1 and the set of maps from � to � such that f̃ (0) = 0
and f̃ (x + 2π) = f̃ (x) + 2πn. The integer n is called the degree of f and is
denoted by deg( f ). While x encircles S1 once, f (x) encircles S1 n times.

Lemma 4.2. (1) Let f, g : S1 → S1 such that f (1) = g(1) = 1. Then
deg( f ) = deg(g) if and only if f is homotopic to g.

(2) For any n ∈ �, there exists a map f : S1 → S1 such that deg( f ) = n.

 



Proof. (1) Let deg( f ) = deg(g) and f̃ , g̃ : � → � be the corresponding maps.
Then F̃(x, t) ≡ t f̃ (x) + (1 − t)g̃(x) is a homotopy between f̃ (x) and g̃(x). It
is easy to verify that F ≡ p ◦ F̃ is a homotopy between f and g. Conversely,
if f ∼ g : S1 → S1, there exists a homotopy F : S1 × I → S1 such that
F(1, t) = 1 for any t ∈ I . The corresponding homotopy F̃ : � × I → �
between f̃ and g̃ satisfies F̃(x + 2π, t) = F̃(x, t)+ 2nπ for some n ∈ �. Thus,
deg( f ) = deg(g).

(2) f̃ : x 
→ nx induces a map f : S1 → S1 with deg( f ) = n. �

Lemma 4.2 tells us that by assigning an integer deg( f ) to a map f : S1 → S1

such that f (1) = 1, there is a bijection between π1(S1, 1) and �. Moreover, this
is an isomorphism. In fact, for f, g : S1 → S1, f ∗ g, defined as a product of
loops, satisfies deg( f ∗ g) = deg( f ) + deg(g). [Let f̃ (x + 2π) = f̃ (x)+ 2πn
and g̃(x + 2π) = g̃(x)+ 2πm. Then f ∗ g(x + 2π) = f ∗ g(x)+ 2π(m + n).
Note that ∗ is not a composite of maps but a product of paths.] We have finally
proved the following theorem.

Theorem 4.5. The fundamental group of S1 is isomorphic to �,

π1(S
1) ∼= �. (4.10)

[Since S1 is arcwise connected, we may drop the base point.]

Although the proof of the theorem is not too obvious, the statement itself is
easily understood even by children. Suppose we encircle a cylinder with an elastic
band. If it encircles the cylinder n times, the configuration cannot be continuously
deformed into that with m (�=n) encirclements. If an elastic band encircles a
cylinder first n times and then m times, it encircles the cylinder n + m times in
total.

4.3.1 Fundamental group of torus

Theorem 4.6. Let X and Y be arcwise connected topological spaces. Then
π1(X × Y, (x0, y0)) is isomorphic to π1(X, x0)⊕ π1(Y, y0).

Proof. Define projections p1 : X × Y → X and p2 : X × Y → Y . If α is a
loop in X × Y at (x0, y0), α1 ≡ p1(α) is a loop in X at x0, and α2 ≡ p2(α)

is a loop in Y at y0. Conversely, any pair of loops α1 of X at x0 and α2 of Y
at y0 determines a unique loop α = (α1, α2) of X × Y at (x0, y0). Define a
homomorphism ϕ : π1(X × Y, (x0, y0))→ π1(X, x0)⊕ π1(Y, y0) by

ϕ([α]) = ([α1], [α2]).
By construction ϕ has an inverse, hence it is the required isomorphism and
π1(X × Y, (x0, y0)) ∼= π1(X, x0)⊕ π1(Y, y0). �

 



Example 4.3. (1) Let T 2 = S1 × S1 be a torus. Then

π1(T
2) ∼= π1(S

1)⊕ π1(S
1) ∼= �⊕�. (4.11)

Similarly, for the n-dimensional torus

T n = S1 × S1 × · · · × S1︸ ︷︷ ︸
n

we have
π1(T

n) ∼= �⊕�⊕ · · · ⊕ �︸ ︷︷ ︸
n

. (4.12)

(2) Let X = S1 × � be a cylinder. Since π1(�) ∼= {e}, we have

π1(X) ∼= �⊕ {e} ∼= �. (4.13)

4.4 Fundamental groups of polyhedra

The computation of fundamental groups in the previous section was, in a sense, ad
hoc and we certainly need a more systematic way of computing the fundamental
groups. Fortunately if a space X is triangulable, we can compute the fundamental
group of the polyhedron K , and hence that of X by a routine procedure. Let us
start with some aspects of group theories.

4.4.1 Free groups and relations

The free groups that we define here are not necessarily Abelian and we employ
multiplicative notation for the group operation. A subset X = {x j } of a group G
is called a free set of generators of G if any element g ∈ G − {e} is uniquely
written as

g = xi1
1 xi2

2 · · · xin
n (4.14)

where n is finite and ik ∈ �. We assume no adjacent x j are equal; x j �= x j+1.
If i j = 1, x j

1 is simply written as x j . If i j = 0, the term x j
0 should be dropped

from g. For example, g = a3b−2cb3 is acceptable but h = a3a−2cb0 is not. If
each element is to be written uniquely, h must be reduced to h = ac. If G has a
free set of generators, it is called a free group.

Conversely, given a set X , we can construct a free group G whose free set of
generators is X . Let us call each element of X a letter. The product

w = xi1
1 xi2

2 · · · xin
n (4.15)

is called a word, where x j ∈ X and i j ∈ �. If i j �= 0 and x j �= x j+1 the word is
called a reduced word. It is always possible to reduce a word by finite steps. For
example,

a−2b−3b3a4b3c−2c4 = a−2b0a4b3c2 = a2b3c2.

 



A word with no letters is called an empty word and denoted by 1. For example,
it is obtained by reducing w = a0.

A product of words is defined by simply juxtaposing two words. Note that a
juxtaposition of reduced words is not necessarily reduced but it is always possible
to reduce it. For example, if v = a2c−3b2 and w = b−2c2b3, the product vw is
reduced as

vw = a2c−3b2b−2c2b3 = a2c−3c2b3 = a2c−1b3.

Thus, the set of all reduced words form a well-defined free group called the free
group generated by X , denoted by F[X ]. The multiplication is the juxtaposition
of two words followed by reduction, the unit element is the empty word and the
inverse of

w = xi1
1 xi2

2 · · · xin
n

is
w−1 = x−in

n · · · x−i2
2 x−i1

1 .

Exercise 4.3. Let X = {a}. Show that the free group generated by X is
isomorphic to �.

In general, an arbitrary group G is specified by the generators and certain
constraints that these must satisfy. If {xk} is the set of generators, the constraints
are most commonly written as

r = xi1
k1

xi2
k2
· · · xin

kn
= 1 (4.16)

and are called relations. For example, the cyclic group of order n generated by x
(in multiplicative notation) satisfies a relation xn = 1.

More formally, let G be a group which is generated by X = {xk}. Any
element g ∈ G is written as g = x i1

1 xi2
2 · · · xin

n , where we do not require that
the expression be unique (G is not necessarily free). For example, we have
x i = xn+1 in �. Let F[X ] be the free group generated by X . Then there is a
natural homomorphism ϕ from F[X ] onto G defined by

xi1
1 xi2

2 · · · xin
n

ϕ−→ xi1
1 xi2

2 · · · xin
n ∈ G. (4.17)

Note that this is not an isomorphism since the LHS is not unique. ϕ is onto since X
generates both F[X ] and G. Although F[X ] is not isomorphic to G, F[X ]/ kerϕ
is (see theorem 3.1),

F[X ]/ kerϕ ∼= G. (4.18)

In this sense, the set of generators X and kerϕ completely determine the group
G. [kerϕ is a normal subgroup. Lemma 3.1 claims that kerϕ is a subgroup
of F[X ]. Let r ∈ kerϕ, that is, r ∈ F[X ] and ϕ(r) = 1. For any element
x ∈ F[X ], we have ϕ(x−1r x) = ϕ(x−1)ϕ(r)ϕ(x) = ϕ(x)−1ϕ(r)ϕ(x) = 1,
hence x−1r x ∈ kerϕ.]

 



In this way, a group G generated by X is specified by the relations. The
juxtaposition of generators and relations

(x1, . . . , x p; r1, . . . , rq) (4.19)

is called the presentation of G. For example,�n = (x; xn) and �= (x; ∅).
Example 4.4. Let �⊕ � = {xn ym |n,m ∈ �} be a free Abelian group generated
by X = {x, y}. Then we have xy = yx . Since xyx−1y−1 = 1, we have a relation
r = xyx−1y−1. The presentation of �⊕� is (x, y : xyx−1y−1).

4.4.2 Calculating fundamental groups of polyhedra

We shall be sketchy here to avoid getting into the technical details. We
shall follow Armstrong (1983); the interested reader should consult this book
or any textbook on algebraic topology. As noted in the previous chapter, a
polyhedron |K | is a nice approximation of a given topological space X within
a homeomorphism. Since fundamental groups are topological invariants, we have
π1(X) = π1(|K |). We assume X is an arcwise connected space and drop the base
point. Accordingly, if we have a systematic way of computing π1(|K |), we can
also find π1(X).

We first define the edge group of a simplicial complex, which corresponds to
the fundamental group of a topological space, then introduce a convenient way of
computing it. Let f : |K | → X be a triangulation of a topological space X . If we
note that an element of the fundamental group of X can be represented by loops
in X , we expect that similar loops must exist in |K | as well. Since any loop in |K |
is made up of 1-simplexes, we look at the set of all 1-simplexes in |K |, which can
be endowed with a group structure called the edge group of K .

An edge path in a simplicial complex K is a sequence v0v1 . . . vk of vertices
of |K |, in which the consecutive pair vivi+1 is a 0- or 1-simplex of |K |. [For
technical reasons, we allow the possibility vi = vi+1, in which case the relevant
simplex is a 0-simplex vi = vi+1.] If v0 = vk (=v), the edge path is called
an edge loop at v. We classify these loops into equivalence classes according to
some equivalence relation. We define two edge loops α and β to be equivalent
if one is obtained from the other by repeating the following operations a finite
number of times.

(1) If the vertices u, v and w span a 2-simplex in K , the edge path uvw may
be replaced by uw and vice versa; see figure 4.10(a).

(2) As a special case, if u = w in (1), the edge path uvw corresponds to
traversing along uv first then reversing backwards from v to w = u. This edge
path uvu may be replaced by a 0-simplex u and vice versa, see figure 4.10(b).

Let us denote the equivalence class of edge loops at v, to which vv1 . . . vk−1v

belongs, by {vv1 . . . vk−1v}. The set of equivalence classes forms a group under
the product operation defined by

{vu1 . . . uk−1v} ∗ {vv1 . . . vi−1v} = {vu1 . . . uk−1vv1 . . . vi−1v}. (4.20)

 



Figure 4.10. Possible deformations of the edge loops. In (a), uvw is replaced by uw. In
(b), uvu is replaced by u.

The unit element is an equivalence class {v} while the inverse of {vv1 . . . vk−1v}
is {vvk−1 . . . v1v}. This group is called the edge group of K at v and denoted by
E(K ; v).
Theorem 4.7. E(K ; v) is isomorphic to π1(|K |; v).

The proof is found in Armstrong (1983), for example. This isomorphism
ϕ : E(K ; v)→ π1(|K |; v) is given by identifying an edge loop in K with a loop
in |K |. To find E(K ; v), we need to read off the generators and relations. Let L
be a simplicial subcomplex of K , such that

(a) L contains all the vertices (0-simplexes) of K ;
(b) the polyhedron |L| is arcwise connected and simply connected.

Given an arcwise-connected simplicial complex K , there always exists a
subcomplex L that satisfies these conditions. A one-dimensional simplicial
complex that is arcwise connected and simply connected is called a tree. A tree
TM is called the maximal tree of K if it is not a proper subset of other trees.

Lemma 4.3. A maximal tree TM contains all the vertices of K and hence satisfies
conditions (a) and (b) above.

Proof. Suppose TM does not contain some vertex w. Since K is arcwise
connected, there is a 1-simplex vw in K such that v ∈ TM and w �∈ TM. TM ∪
{vw} ∪ {w} is a one-dimensional subcomplex of K which is arcwise connected,
simply connected and contains TM, which contradicts the assumption. �

Suppose we have somehow obtained the subcomplex L. Since |L| is simply
connected, the edge loops in |L| do not contribute to E(K ; v). Thus, we can
effectively ignore the simplexes in L in our calculations. Let v0 (=v), v1, . . . , vn

be the vertices of K . Assign an ‘object’ gi j for each ordered pair of vertices vi , v j

if 〈viv j 〉 is a 1-simplex of K . Let G(K ; L) be a group that is generated by all gi j .
What about the relations? We have the following.

 



(1) Since we ignore those simplexes in L, we assign gi j = 1 if 〈viv j 〉 ∈ L.
(2) If 〈viv jvk〉 is a 2-simplex of K , there are no non-trivial loops around viv jvk

and we have the relation gi j g jkgki = 1.

The generators {gi j } and the set of relations completely determine the group
G(K ; L).

Theorem 4.8. G(K ; L) is isomorphic to E(K ; v) 	 π1(|K |; v).
In fact, we can be more efficient than is apparent. For example, gii should

be set equal to 1 since gii corresponds to the vertex vi which is an element of
L. Moreover, from gi j g j i = gii = 1, we have gi j = g−1

j i . Therefore, we only
need to introduce those generators gi j for each pair of vertices vi , v j such that
〈viv j 〉 ∈ K − L and i < j . Since there are no generators gi j such that 〈viv j 〉 ∈ L,
we can ignore the first type of relation. If 〈viv jvk〉 is a 2-simplex of K − L such
that i < j < k, the corresponding relation is uniquely given by gi j g jk = gik

since we are only concerned with simplexes 〈viv j 〉 such that i < j .
To summarize, the rules of the game are as follows.

(1) First, find a triangulation f : |K | → X .
(2) Find the subcomplex L that is arcwise connected, simply connected and

contains all the vertices of K .
(3) Assign a generator gi j to each 1-simplex 〈viv j 〉 of K − L, for which i < j .
(4) Impose a relation gi j g jk = gik if there is a 2-simplex 〈viv jvk〉 such that

i < j < k. If two of the vertices vi , v j and vk form a 1-simplex of L, the
corresponding generator should be set equal to 1.

(5) Now π1(X) is isomorphic to G(K ; L) which is a group generated by {gi j }
with the relations obtained in (4).

Let us work out several examples.

Example 4.5. From our construction, it should be clear that E(K ; v) and G(K ; L)
involve only the 0-, 1- and 2-simplexes of K . Accordingly, if K (2) denotes a 2-
skeleton of K , which is defined to be the set of all 0-, 1- and 2-simplexes in K ,
we should have

π1(|K |) ∼= π1(|K (2)|). (4.21)

This is quite useful in actual computations. For example, a 3-simplex and its
boundary have the same 2-skeleton. A 3-simplex is a polyhedron |K | of the solid
ball D3, while its boundary |L| is a polyhedron of the sphere S2. Since D3 is
contractible, π1(|K |) ∼= {e}. From (4.21) we find π1(S2) ∼= π1(|K |) ∼= {e}. In
general, for n ≥ 2, the (n + 1)-simplex σn+1 and the boundary of σn+1 have the
same 2-skeleton. If we note that σn+1 is contractible and the boundary of σn+1 is
a polyhedron of Sn , we find the formula

π1(S
n) ∼= {e} n ≥ 2. (4.22)

 



Figure 4.11. A triangulation of a 3-bouquet. The bold lines denote the maximal tree L .

Example 4.6. Let K ≡ {v1, v2, v3, 〈v1v2〉, 〈v1v3〉, 〈v2v3〉} be a simplicial
complex of a circle S1. We take v1 as the base point. A maximal tree may be
L = {v1, v2, v3, 〈v1v2〉, 〈v1v3〉}. There is only one generator g23. Since there are
no 2-simplexes in K , the relation is empty. Hence,

π1(S
1) ∼= G(K ; L) = (g23; ∅) ∼= � (4.23)

in agreement with theorem 4.5.

Example 4.7. An n-bouquet is defined by the one-point union of n circles. For
example, figure 4.11 is a triangulation of a 3-bouquet. Take the common point
v as the base point. The bold lines in figure 4.11 form a maximal tree L. The
generators of G(K ; L) are g12, g34 and g56. There are no relations and we find

π1(3-bouquet) = G(K ; L) = (x, y, z; ∅). (4.24)

Note that this is a free group but not free Abelian. The non-commutativity can
be shown as follows. Consider loops α and β at v encircling different holes.
Obviously the product α∗β ∗α−1 cannot be continuously deformed into β, hence
[α] ∗ [β] ∗ [α]−1 �= [β], or

[α] ∗ [β] �= [β] ∗ [α]. (4.25)

In general, an n-bouquet has n generators g12, . . . , g2n−1 2n and the
fundamental group is isomorphic to the free group with n generators with no
relations.

 



Figure 4.12. A triangulation of the torus.

Example 4.8. Let D2 be a two-dimensional disc. A triangulation K of D2 is given
by a triangle with its interior included. Clearly K itself may be L and K − L is
empty. Thus, we find π1(K ) ∼= {e}.

Example 4.9. Figure 4.12 is a triangulation of the torus T 2. The shaded area is
chosen to be the subcomplex L. [Verify that it contains all the vertices and is both
arcwise and simply connected.] There are 11 generators with ten relations. Let us
take x = g02 and y = g04 and write down the relations

(a) g02 g27 = g07 → g07 = x
x 1

(b) g03 g37 = g07 → g37 = x
1 x

(c) g37 g78 = g38 → g38 = x
x 1

(d) g34 g48 = g38 → g48 = x
1 x

(e) g24 g48 = g28 → g24x = g28
x

(f) g02 g24 = g04 → xg24 = y
x y

 



(g) g04 g46 = g06 → g06 = y
y 1

(h) g01 g16 = g06 → g16 = y
1 y

(i) g16 g68 = g18 → g18 = y
y 1

(j) g12 g28 = g18 → g28 = y
1 y

.

It follows from (e) and (f) that x−1yx = g28. We finally have

g02 = g07 = g37 = g38 = g48 = x

g04 = g06 = g16 = g18 = g28 = y

g24 = x−1y

with a relation x−1 yx = y or

xyx−1y−1 = 1. (4.26)

This shows that G(K ; L) is generated by two commutative generators (note
xy = yx), hence (cf example 4.4)

G(K ; L) = (x, y; xyx−1y−1) ∼= �⊕� (4.27)

in agreement with (4.11).
We have the following intuitive picture. Consider loops α = 0 → 1 →

2 → 0 and β = 0 → 3 → 4 → 0. The loop α is identified with x = g02 since
g12 = g01 = 1 and β with y = g04. They generate π1(T 2) since α and β are
independent non-trivial loops. In terms of these, the relation is written as

α ∗ β ∗ α−1 ∗ β−1 ∼ cv (4.28)

where cv is a constant loop at v, see figure 4.13.
More generally, let �g be the torus with genus g. As we have shown in

problem 2.1, �g is expressed as a subset of �2 with proper identifications at
the boundary. The fundamental group of �g is generated by 2g loops αi , βi

(1 ≤ i ≤ g). Similarly, to (4.28), we verify that

g∏
i=1

(αi ∗ βi ∗ α−1
i ∗ β−1

i ) ∼ cv (4.29)

If we denote the generators corresponding to αi by xi and βi by yi , there is only
one relation among them,

g∏
i=1

(xi yi x
−1
i y−1

i ) = 1. (4.30)

 



Figure 4.13. The loops α and β satisfy the relation α ∗ β ∗ α−1 ∗ β−1 ∼ cv .

Figure 4.14. A triangulation of the Klein bottle.

Exercise 4.4. Figure 4.14 is a triangulation of the Klein bottle. The shaded area is
the subcomplex L. There are 11 generators and ten relations. Take x = g02 and
y = g04 and write down the relations for 2-simplexes to show that

π1(Klein bottle) ∼= (x, y; xyxy−1). (4.31)

Example 4.10. Figure 4.15 is a triangulation of the projective plane �P2 . The
shaded area is the subcomplex L. There are seven generators and six relations.

 



Figure 4.15. A triangulation of the projective plane.

Let us take x = g23 and write down the relations

(a) g23 g34 = g24 → g24 = x
x 1

(b) g24 g46 = g26 → g26 = x
x 1

(c) g12 g26 = g16 → g16 = x
1 x

(d) g13 g36 = g16 → g36 = x
1 x

(e) g35 g56 = g36 → g35 = x
1 x

(f) g23 g35 = g25 → x2 = 1.
x x 1

Hence, we find that
π1(�P2 ) ∼= (x; x2) ∼= �2. (4.32)

Intuitively, the appearance of a cyclic group is understood as follows.
Figure 4.16(a) is a schematic picture of �P2 . Take loops α and β. It is easy
to see that α is continuously deformed to a point, and hence is a trivial element of
π1(�P2 ). Since diametrically opposite points are identified in �P2 , β is actually

 



Figure 4.16. (a) α is a trivial loop while the loop β cannot be shrunk to a point. (b) β ∗ β
is continuously shrunk to a point.

a closed loop. Since it cannot be shrunk to a point, it is a non-trivial element of
π1(�P2 ). What about the product? β ∗β is a loop which traverses from P to Q∼
P twice. It can be read off from figure 4.16(b) that β ∗ β is continuously shrunk
to a point, and thus belongs to the trivial class. This shows that the generator x ,
corresponding to the homotopy class of the loop β, satisfies the relation x2 = 1,
which verifies our result.

The same pictures can be used to show that

π1(�P3 ) ∼= �2 (4.33)

where �P3 is identified as S3 with diametrically opposite points identified,
�P3 = S3/(x ∼ −x). If we take the hemisphere of S3 as the representative,
�P3 can be expressed as a solid ball D3 with diametrically opposite points on the
surface identified. If the discs D2 in figure 4.16 are interpreted as solid balls D3,
the same pictures verify (4.33).

Exercise 4.5. A triangulation of the Möbius strip is given by figure 3.8. Find the
maximal tree and show that

π1(Möbius strip) ∼= �. (4.34)

[Note: Of course the Möbius strip is of the same homotopy type as S1, hence
(4.34) is trivial. The reader is asked to obtain this result through routine
procedures.]

4.4.3 Relations between H1(K ) and π1(|K |)
The reader might have noticed that there is a certain similarity between the first
homology group H1(K ) and the fundamental group π1(|K |). For example, the
fundamental groups of many spaces (circle, disc, n-spheres, torus and many more)
are identical to the corresponding first homology group. In some cases, however,
they are different: H1(2-bouquet) ∼= �⊕ � and π1(2-bouquet) = (x, y : ∅), for

 



example. Note that H1(2-bouquet) is a free Abelian group while π1(2-bouquet)
is a free group. The following theorem relates π1(|K |) to H1(K ).

Theorem 4.9. Let K be a connected simplicial complex. Then H1(K ) is
isomorphic to π1(|K |)/F , where F is the commutator subgroup (see later) of
π1(|K |).

Let G be a group whose presentation is (xi ; rm). The commutator
subgroup F of G is a group generated by the elements of the form xi x j x

−1
i x−1

j .
Thus, G/F is a group generated by {xi } with the set of relations {rm} and
{xi x j x

−1
i x−1

j }. The theorem states that if π1(|K |) = (xi : rm), then H1(K ) ∼=
(xi : rm , xi x j x−1

i x−1
j ). For example, from π1(2-bouquet) = (x, y : ∅), we find

π1(2-bouquet)/F ∼= (x, y; xyx−1y−1) ∼= �⊕�
which is isomorphic to H1(2-bouquet).

The proof of theorem 4.9 is found in Greenberg and Harper (1981) and also
outlined in Croom (1978).

Example 4.11. From π1(Klein bottle) ∼= (x, y; xyxy−1), we have

π1(Klein bottle)/F ∼= (x, y; xyxy−1, xyx−1y−1).

Two relations are replaced by x2 = 1 and xyx−1y−1 = 1 to yield

π1(Klein bottle)/F ∼= (x, y; xyx−1y−1, x2) ∼= �⊕�2

∼= H1(Klein bottle)

where the factor � is generated by y and �2 by x .

Corollary 4.2. Let X be a connected topological space. Then π1(X) is isomorphic
to H1(X) if and only if π1(X) is commutative. In particular, if π1(X) is generated
by one generator, π1(X) is always isomorphic to H1(X). [Use theorem 4.9.]

Corollary 4.3. If X and Y are of the same homotopy type, their first homology
groups are identical: H1(X) = H1(Y ). [Use theorems 4.9 and 4.3.]

4.5 Higher homotopy groups

The fundamental group classifies the homotopy classes of loops in a topological
space X . There are many ways to assign other groups to X . For example, we may
classify homotopy classes of the spheres in X or homotopy classes of the tori in
X . It turns out that the homotopy classes of the sphere Sn (n ≥ 2) form a group
similar to the fundamental group.

 



4.5.1 Definitions

Let I n (n ≥ 1) denote the unit n-cube I × · · · × I ,

I n = {(s1, . . . , sn)|0 ≤ si ≤ 1 (1 ≤ i ≤ n)}. (4.35)

The boundary ∂ I n is the geometrical boundary of I n ,

∂ I n = {(s1, . . . , sn) ∈ I n | some si = 0 or 1}. (4.36)

We recall that in the fundamental group, the boundary ∂ I of I = [0, 1] is mapped
to the base point x0. Similarly, we assume here that we shall be concerned with
continuous maps α : I n → X , which map the boundary ∂ I n to a point x0 ∈ X .
Since the boundary is mapped to a single point x0, we have effectively obtained
Sn from I n ; cf figure 2.8. If I n/∂ I n denotes the cube I n whose boundary ∂ I n is
shrunk to a point, we have I n/∂ I n ∼= Sn . The map α is called an n-loop at x0. A
straightforward generalization of definition 4.4 is as follows.

Definition 4.10. Let X be a topological space and α, β : I n → X be n-loops at
x0 ∈ X . The map α is homotopic to β, denoted by α ∼ β, if there exists a
continuous map F : I n × I → X such that

F(s1, . . . , sn, 0) = α(s1, . . . , sn) (4.37a)

F(s1, . . . , sn, 1) = β(s1, . . . , sn) (4.37b)

F(s1, . . . , sn, t) = x0 for (s1, . . . , sn) ∈ ∂ I n, t ∈ I. (4.37c)

F is called a homotopy between α and β.

Exercise 4.6. Show that α ∼ β is an equivalence relation. The equivalence class
to which α belongs is called the homotopy class of α and is denoted by [α].

Let us define the group operations. The product α ∗ β of n-loops α and β is
defined by

α ∗ β(s1, . . . , sn) =
{
α(2s1, . . . , sn) 0 ≤ s1 ≤ 1

2

β(2s1 − 1, . . . , sn)
1
2 ≤ s1 ≤ 1.

(4.38)

The product α ∗ β looks like figure 4.17(a) in X . It is helpful to express it as
figure 4.17(b). If we define α−1 by

α−1(s1, . . . , sn) ≡ α(1 − s1, . . . , sn) (4.39)

it satisfies

α−1 ∗ α(s1, . . . , sn) ∼ α ∗ α−1(s1, . . . , sn) ∼ cx0(s1, . . . , sn) (4.40)

where cx0 is a constant n-loop at x0 ∈ X , cx0 : (s1, . . . , sn) 
→ x0. Verify that
both α ∗ β and α−1 are n-loops at x0.

 



Figure 4.17. A product α ∗ β of n-loops α and β.

Definition 4.11. Let X be a topological space. The set of homotopy classes of
n-loops (n ≥ 1) at x0 ∈ X is denoted by πn(X, x0) and called the nth homotopy
group at x0. πn(x, x0) is called the higher homotopy group if n ≥ 2.

The product α ∗ β just defined naturally induces a product of homotopy
classes defined by

[α] ∗ [β] ≡ [α ∗ β] (4.41)

where α and β are n-loops at x0. The following exercises verify that this product
is well defined and satisfies the group axioms.

Exercise 4.7. Show that the product of n-loops defined by (4.41) is independent
of the representatives: cf lemma 4.1.

Exercise 4.8. Show that the nth homotopy group is a group. To prove this, the
following facts may be verified; cf theorem 4.1.

(1) ([α] ∗ [β]) ∗ [γ ] = [α] ∗ ([β] ∗ [γ ]).
(2) [α] ∗ [cx ] = [cx ] ∗ [α] = [α].
(3) [α] ∗ [α−1] = [cx ], which defines the inverse [α]−1 = [α−1].
We have excluded π0(X, x0) so far. Let us classify maps from I 0 to X . We

note I 0 = {0} and ∂ I 0 = ∅. Let α, β : {0} → X be such that α(0) = x and
β(0) = y. We define α ∼ β if there exists a continuous map F : {0} × I → X
such that F(0, 0) = x and F(0, 1) = y. This shows that α ∼ β if and only if
x and y are connected by a curve in X , namely they are in the same (arcwise)
connected component. Clearly this equivalence relation is independent of x0 and
we simply denote the zeroth homology group by π0(X). Note, however, that
π0(X) is not a group and denotes the number of (arcwise) connected components
of X .

 



Figure 4.18. Higher homotopy groups are always commutative, α ∗ β ∼ β ∗ α.

4.6 General properties of higher homotopy groups

4.6.1 Abelian nature of higher homotopy groups

Higher homotopy groups are always Abelian; for any n-loops α and β at x0 ∈ X ,
[α] and [β] satisfy

[α] ∗ [β] = [β] ∗ [α]. (4.42)

To verify this assertion let us observe figure 4.18. Clearly the deformation is
homotopic at each step of the sequence. This shows that α ∗ β ∼ β ∗ α, namely
[α] ∗ [β] = [β] ∗ [α].

4.6.2 Arcwise connectedness and higher homotopy groups

If a topological space X is arcwise connected, πn(X, x0) is isomorphic to
πn(X, x1) for any pair x0, x1 ∈ X . The proof is parallel to that of theorem 4.2.
Accordingly, if X is arcwise connected, the base point need not be specified.

4.6.3 Homotopy invariance of higher homotopy groups

Let X and Y be topological spaces of the same homotopy type; see definition
4.6. If f : X → Y is a homotopy equivalence, the homotopy group πn(X, x0)

is isomorphic to πn(Y, f (x0)); cf theorem 4.3. Topological invariance of higher
homotopy groups is the direct consequence of this fact. In particular, if X is
contractible, the homotopy groups are trivial: πn(X, x0) = {e}, n > 1.

4.6.4 Higher homotopy groups of a product space

Let X and Y be arcwise connected topological spaces. Then

πn(X × Y ) ∼= πn(X)⊕ πn(Y ) (4.43)

cf theorem 4.6.

4.6.5 Universal covering spaces and higher homotopy groups

There are several cases in which the homotopy groups of one space are given by
the known homotopy groups of the other space. There is a remarkable property

 



between the higher homotopy groups of a topological space and its universal
covering space.

Definition 4.12. Let X and X̃ be connected topological spaces. The pair (X̃ , p),
or simply X̃ , is called the covering space of X if there exists a continuous map
p : X̃ → X such that

(1) p is surjective (onto)
(2) for each x ∈ X , there exists a connected open set U ⊂ X containing
x , such that p−1(U) is a disjoint union of open sets in X̃ , each of which is
mapped homeomorphically onto U by p.

In particular, if X̃ is simply connected, (X̃ , p) is called the universal
covering space of X . [Remarks: Certain groups are known to be topological
spaces. They are called topological groups. For example SO(n) and SU(n) are
topological groups. If X and X̃ in definition 4.12 happen to be topological groups
and p : X̃ → X to be a group homomorphism, the (universal) covering space is
called the (universal) covering group.]

For example, � is the universal covering space of S1, see section 4.3. Since
S1 is identified with U(1), � is a universal covering group of U(1) if � is regarded
as an additive group. The map p : � → U(1) may be p : x → ei2πx . Clearly p
is surjective and if U = {ei2πx |x ∈ (x0 − 0.1, x0 + 0.1)}, then

p−1(U) =
⋃
n∈�
(x0 − 0.1+ n, x0 + 0.1+ n)

which is a disjoint union of open sets of �. It is easy to show that p is also a
homomorphism with respect to addition in � and multiplication in U(1). Hence,
(�, p) is the universal covering group of U(1) = S1.

Theorem 4.10. Let (X̃ , p) be the universal covering space of a connected
topological space X . If x0 ∈ X and x̃0 ∈ X̃ are base points such that p(x̃0) = x0,
the induced homomorphism

p∗ : πn(X̃ , x̃0)→ πn(X, x0) (4.44)

is an isomorphism for n ≥ 2. [Warning: This theorem cannot be applied if n = 1;
π1(�) = {e} while π1(S1) = �.]

The proof is given in Croom (1978). For example, we have πn(�) = {e}
since � is contractible. Then we find

πn(S
1) ∼= πn(U(1)) = {e} n ≥ 2. (4.45)

Example 4.12. Let Sn = {x ∈ �n+1 | |x |2 = 1}. The real projective space �Pn is
obtained from Sn by identifying the pair of antipodal points (x,−x). It is easy to

 



see that Sn is a covering space of �Pn for n ≥ 2. Since π1(Sn) = {e} for n ≥ 2,
Sn is the universal covering space of �Pn and we have

πn(�Pm ) ∼= πn(S
m). (4.46)

It is interesting to note that �P3 is identified with SO(3). To see this let
us specify an element of SO(3) by a rotation about an axis n by an angle θ
(0 < θ < π) and assign a ‘vector’ � ≡ θn to this element. � takes its value in
the disc D3 of radius π . Moreover, πn and −πn represent the same rotation and
should be identified. Thus, the space to which � belongs is a disc D3 whose anti-
podal points on the surface S2 are identified. Note also that we may express �P3

as the northern hemisphere D3 of S3, whose anti-podal points on the boundary S2

are identified. This shows that �P3 is identified with SO(3).
It is also interesting to see that S3 is identified with SU(2). First note that

any element g ∈ SU(2) is written as

g =
(

a −b
b a

)
|a|2 + |b|2 = 1. (4.47)

If we write a = u + iv and b = x + iy, this becomes S3,

u2 + v2 + x2 + y2 = 1.

Collecting these results, we find

πn(SO(3)) = πn(�P3 ) = πn(S
3) = πn(SU(2)) n ≥ 2. (4.48)

More generally, the universal covering group Spin(n) of SO(n) is called the spin
group. For small n, they are

Spin(3) = SU(2) (4.49)

Spin(4) = SU(2)× SU(2) (4.50)

Spin(5) = USp(4) (4.51)

Spin(6) = SU(4). (4.52)

Here USp(2N) stands for the compact group of 2N × 2N matrices A satisfying
At J A = J , where

J =
(

0 IN

−IN 0

)
.

4.7 Examples of higher homotopy groups

In general, there are no algorithms to compute higher homotopy groups πn(X).
An ad hoc method is required for each topological space for n ≥ 2. Here, we
study several examples in which higher homotopy groups may be obtained by
intuitive arguments. We also collect useful results in table 4.1.

 



Table 4.1. Useful homotopy groups.

π1 π2 π3 π4 π5 π6

SO(3) �2 0 � �2 �2 �12
SO(4) �2 0 �+� �2+�2 �2+�2 �12+�12
SO(5) �2 0 � �2 �2 0
SO(6) �2 0 � 0 � 0
SO(n) n > 6 �2 0 � 0 0 0
U(1) � 0 0 0 0 0
SU(2) 0 0 � �2 �2 �12
SU(3) 0 0 � 0 � �6
SU(n) n > 3 0 0 � 0 � 0
S2 0 � � �2 �2 �12
S3 0 0 � �2 �2 �12
S4 0 0 0 � �2 �2
G2 0 0 � 0 0 �3
F4 0 0 � 0 0 0
E6 0 0 � 0 0 0
E7 0 0 � 0 0 0
E8 0 0 � 0 0 0

Example 4.13. If we note that πn(X, x0) is the set of the homotopy classes of
n-loops Sn in X , we immediately find that

πn(S
n, x0) ∼= � n ≥ 1. (4.53)

If α maps Sn onto a point x0 ∈ Sn , [α] is the unit element 0 ∈ �. Since both
I n/∂ I n and Sn are orientable, we may assign orientations to them. If α maps
I n/∂ I n homeomorphically to Sn in the same sense of orientation, then [α] is
assigned an element 1 ∈ �. If a homeomorphism α maps I n/∂ I n onto Sn in an
orientation of opposite sense, [α] corresponds to an element −1. For example,
let n = 2. Since I 2/∂ I 2 ∼= S2, the point in I 2 can be expressed by the polar
coordinate (θ, φ), see figure 4.19. Similarly, X = S2 can be expressed by the
polar coordinate (θ ′, φ′). Let α : (θ, φ) → (θ ′, φ′) be a 2-loop in X . If θ ′ = θ
and φ′ = φ, the point (θ ′, φ′) sweeps S2 once while the point (θ, φ) scans I 2

once in the same orientation. This 2-loop belongs to the class +1 ∈ π2(S2, x0).
If α : (θ, φ) → (θ ′, φ′) is given by θ ′ = θ and φ′ = 2φ, the point (θ ′, φ′)
sweeps S2 twice while (θ, φ) scans I 2 once. This 2-loop belongs to the class
2 ∈ π2(S2, x0). In general, the map (θ, φ) 
→ (θ, kφ), k ∈ �, corresponds to the
class k of π2(S2, x0). A similar argument verifies (4.53) for general n > 2.

Example 4.14. Noting that Sn is a universal covering space of �Pn for n > 2, we
find

πn(�Pn ) ∼= πn(S
n) ∼= � n ≥ 2. (4.54)

 



Figure 4.19. A point in I 2 may be expressed by polar coordinates (θ, φ).

[Of course this happens to be true for n = 1, since �P1 = S1.] For example, we
have π2(�P2 ) ∼= π2(S2) ∼= �. Since SU(2) = S3 is the universal covering group
of SO(3) = �P3 , it follows from theorem 4.10 that (see also (4.48))

π3(SO(3)) ∼= π3(SU(2)) ∼= π3(S
3) ∼= �. (4.55)

Shankar’s monopoles in superfluid 3He-A correspond to non-trivial elements
of these homotopy classes, see section 4.10. π3(SU(2)) is also employed in the
classification of instantons in example 9.8.

In summary, we have table 4.1. In this table, other useful homotopy groups
are also listed. We comment on several interesting facts.

(a) Since Spin(4) = SU(2) × SU(2) is the universal covering group of SO(4),
we have πn(SO(4)) = πn(SU(2))⊕ πn(SU(2)) for n > 2.

(b) There exists a map J called the J-homomorphism J : πk(SO(n)) →
πk+n(Sn), see Whitehead (1978). In particular, if k = 1, the homomorphism
is known to be an isomorphism and we have π1(SO(n)) = πn+1(Sn). For
example, we find

π1(SO(2)) ∼= π3(S
2) ∼= �

π1(SO(3)) ∼= π4(S
3) ∼= π4(SU(2)) ∼= π4(SO(3)) ∼= �2.

(c) The Bott periodicity theorem states that

πk(U(n)) ∼= πk(SU(n)) ∼=
{
{e} if k is even

� if k is odd
(4.56)

 



for n ≥ (k + 1)/2. Similarly,

πk(O(n)) ∼= πk(SO(n)) ∼=


{e} if k ≡ 2, 4, 5, 6 (mod 8)

�2 if k ≡ 0, 1 (mod 8)

� if k ≡ 3, 7 (mod 8)

(4.50)

for n ≥ k + 2. Similar periodicity holds for symplectic groups which we
shall not give here.

Many more will be found in appendix A, table 6 of Ito (1987).

4.8 Orders in condensed matter systems

Recently topological methods have played increasingly important roles in
condensed matter physics. For example, homotopy theory has been employed to
classify possible forms of extended objects, such as solitons, vortices, monopoles
and so on, in condensed systems. These classifications will be studied in
sections 4.8–4.10. Here, we briefly look at the order parameters of condensed
systems that undergo phase transitions.

4.8.1 Order parameter

Let H be a Hamiltonian describing a condensed matter system. We assume H is
invariant under a certain symmetry operation. The ground state of the system need
not preserve the symmetry of H . If this is the case, we say the system undergoes
spontaneous symmetry breakdown.

To illustrate this phenomenon, we consider the Heisenberg Hamiltonian

H = −J
∑
(i, j )

Si · S j + h ·
∑

i

Si (4.57)

which describes N ferromagnetic Heisenberg spins {Si }. The parameter J is a
positive constant, the summation is over the pair of the nearest-neighbour sites
(i, j) and h is the uniform external magnetic field. The partition function is
Z = tr e−βH , where β = 1/T is the inverse temperature. The free energy F
is defined by exp(−βF) = Z . The average magnetization per spin is

m ≡ 1

N

∑
i

〈Si 〉 = 1

Nβ

∂F

∂h
(4.58)

where 〈. . .〉 ≡ tr(. . . e−βH )/Z . Let us consider the limit h → 0. Although H
is invariant under the SO(3) rotations of all Si in this limit, it is well known that
m does not vanish for large enough β and the system does not observe the SO(3)
symmetry. It is said that the system exhibits spontaneous magnetization and
the maximum temperature, such that m �= 0 is called the critical temperature.

 



The vector m is the order parameter describing the phase transition between
the ordered state (m �= 0) and the disordered state (m = 0). The system is still
symmetric under SO(2) rotations around the magnetization axis m.

What is the mechanism underlying the phase transition? The free energy is
F = 〈H 〉 − T S, S being the entropy. At low temperature, the term T S in F
may be negligible and the minimum of F is attained by minimizing 〈H 〉, which
is realized if all Si align in the same direction. At high temperature, however, the
entropy term dominates F and the minimum of F is attained by maximizing S,
which is realized if the directions of Si are totally random.

If the system is at a uniform temperature, the magnitude |m| is independent
of the position and m is specified by its direction only. In the ground state, m
itself is expected to be independent of position. It is convenient to introduce
the polar coordinate (θ, φ) to specify the direction of m. There is a one-to-one
correspondence between m and a point on the sphere S2. Suppose m varies as a
function of position: m = m(x). At each point x of the space, a point (θ, φ) of
S2 is assigned and we have a map (θ(x), φ(x)) from the space to S2. Besides
the ground state (and excited states that are described by small oscillations
(spin waves) around the ground state) the system may carry various excited
states that cannot be obtained from the ground state by small perturbations.
What kinds of excitation are possible depends on the dimension of the space
and the order parameter. For example, if the space is two dimensional, the
Heisenberg ferromagnet may admit an excitation called the Belavin–Polyakov
monopole shown in figure 4.20 (Belavin and Polyakov 1975). Observe that m
approaches a constant vector ( ẑ in this case) so the energy does not diverge. This
condition guarantees the stability of this excitation; it is impossible to deform this
configuration into the uniform one with m far from the origin kept fixed. These
kinds of excitation whose stability depends on topological arguments are called
topological excitations. Note that the field m(x) defines a map m : S2 → S2

and, hence, are classified by the homotopy group π2(S2) = �.

4.8.2 Superfluid 4He and superconductors

In Bogoliubov’s theory, the order parameter of superfluid 4He is the expectation
value

〈φ(x)〉 =  (r) = �0(x)eiα(x) (4.59)

where φ(x) is the field operator. In the operator formalism,

φ(x) ∼ (creation operator)+ (annihilation operator)

from which we find the number of particles is not conserved if  (x) �= 0. This
is related to the spontaneous breakdown of the global gauge symmetry. The

 



Figure 4.20. A sketch of the Belavin–Polyakov monopole. The vector m approaches ẑ as
|x| → ∞.

Hamiltonian of 4He is

H =
∫

dx φ†(x)

(
−∇

2

2m
− µ

)
φ(x)

+ 1

2

∫
dx d y φ†(y)φ(y)V (|x − y|)φ†(x)φ(x). (4.60)

Clearly H is invariant under the global gauge transformation

φ(x)→ eiχφ(x). (4.61)

The order parameter, however, transforms as

 (x)→ eiχ�(x) (4.62)

and hence does not observe the symmetry of the Hamiltonian. The
phenomenological free energy describing 4He is made up of two contributions.
The main contribution is the condensation energy

�0 ≡ α

2! | (x)|
2 + β

4! | (x)|
4 (4.63a)

where α ∼ α0(T − Tc) changes sign at the critical temperature T ∼ 4 K.
Figure 4.21 sketches �0 for T > Tc and T < Tc. If T > Tc, the minimum
of �0 is attained at  (x) = 0 while if T < Tc at | | = �0 ≡ [−(6α/β)]1/2.
If  (x) depends on x, we have an additional contribution called the gradient
energy

�grad ≡ 1
2 K∇ (x) · ∇ (x) (4.63b)

 



Figure 4.21. The free energy has a minimum at | | = 0 for T > Tc and at | | = �0 for
T < Tc.

K being a positive constant. If the spatial variation of  (x) is mild enough, we
may assume�0 is constant (the London limit).

In the BCS theory of superconductors, the order parameter is given by
(Tsuneto 1982)

 αβ ≡ 〈ψα(x)ψβ(x)〉 (4.64)

ψα(x) being the (non-relativistic) electron field operator of spin α = (↑,↓). It
should be noted, however, that (4.64) is not an irreducible representation of the
spin algebra. To see this, we examine the behaviour of  αβ under a spin rotation.
Consider an infinitesimal spin rotation around an axis n by an angle θ , whose
matrix representation is

R = I2 + i
θ

2
nµσµ,

σµ being the Pauli matrices. Since ψα transforms as ψα → Rαβψβ we have

 αβ → Rα
α′ α′β ′ Rβ

β ′ = (R · · Rt)αβ

=
[
 + i

δ

2
n(σ σ2 − σ2σ )

]
αβ

where we note that σ t
µ = −σ2σµσ2. Suppose  αβ ∝ i(σ2)αβ . Then  does not

change under this rotation, hence it represents the spin-singlet pairing. We write

 αβ(x) = �(x)(iσ2)αβ = �0(x)eiϕ(x)(iσ2)αβ. (4.65a)

If, however, we take
 αβ(x) = �µ(x)i(σµ · σ2)αβ (4.65b)

 



we have
 αβ → [�µ + δεµνλnν�λ](iσµ · σ2)αβ.

This shows that �µ is a vector in spin space, hence (4.65b) represents the spin-
triplet pairing.

The order parameter of a conventional superconductor is of the form (4.65a)
and we restrict the analysis to this case for the moment. In (4.65a),�(x) assumes
the same form as  (x) of superfluid 4He and the free energy is again given by
(4.63). This similarity is attributed to the Cooper pair. In the superfluid state,
a macroscopic number of 4He atoms occupy the ground state (Bose–Einstein
condensation) which then behaves like a huge molecule due to the quantum
coherence. In this state creating elementary excitations requires a finite amount
of energy and the flow cannot decay unless this critical energy is supplied. Since
an electron is a fermion there is, at first sight, no Bose–Einstein condensation.
The key observation is the Cooper pair. By the exchange of phonons, a pair of
electrons feels an attractive force that barely overcomes the Coulomb repulsion.
This tiny attractive force makes it possible for electrons to form a pair (in
momentum space) that obeys Bose statistics. The pairs then condense to form
the superfluid state of the Cooper pairs of electric charge 2e.

An electromagnetic field couples to the system through the minimal coupling

�grad = 1
2 K

∣∣(∂µ − i2eAµ)�(x)
∣∣2 . (4.66)

(The term 2e is used since the Cooper pair carries charge 2e.) Superconductors
are roughly divided into two types according to their behaviour in applied
magnetic fields. The type-I superconductor forms an intermediate state in which
normal and superconducting regions coexist in strong magnetic fields. The
type-II superconductor forms a vortex lattice (Abrikosov lattice) to confine the
magnetic fields within the cores of the vortices with other regions remaining in
the superconducting state. A similar vortex lattice has been observed in rotating
superfluid 4He in a cylinder.

4.8.3 General consideration

ln the next two sections, we study applications of homotopy groups to the
classification of defects in ordered media. The analysis of this section is based
on Toulouse and Kléman (1976), Mermin (1979) and Mineev (1980).

As we saw in the previous subsections, when a condensed matter system
undergoes a phase transition, the symmetry of the system is reduced and this
reduction is described by the order parameter. For definiteness, let us consider the
three-dimensional medium of a superconductor. The order parameter takes the
formψ(x) = �0(x)eiϕ(x). Let us consider a homogeneous system under uniform
external conditions (temperature, pressure etc). The amplitude �0 is uniquely
fixed by minimizing the condensation free energy. Note that there are still a large
number of degrees of freedom left. ψ may take any value in the circle S1 ∼= U(1)

 



Figure 4.22. A circle S1 surrounding a line defect (vortex) is mapped to U(1) = S1. This
map is classified by the fundamental group π1(U(1).

determined by the phase eiϕ . In this way, a uniform system takes its value in
a certain region M called the order parameter space. For a superconductor,
M = U(1). For the Heisenberg spin system, M = S2. The nematic liquid crystal
has M = �P2 while M = S2×SO(3) for the superfluid 3He-A, see sections 4.9–
4.10.

If the system is in an inhomogeneous state, the gradient free energy cannot be
negligible and ψ may not be in M . If the characteristic size of the variation of the
order parameter is much larger than the coherence length, however, we may still
assume that the order parameter takes its value in M , where the value is a function
of position this time. If this is the case, there may be points, lines or surfaces in the
medium on which the order parameter is not uniquely defined. They are called the
defects. We have point defects (monopoles), line defects (vortices) and surface
defects (domain walls) according to their dimensionalities. These defects are
classified by the homotopy groups.

To be more mathematical, let X be a space which is filled with the medium
under consideration. The order parameter is a classical field ψ(x), which is also
regarded as a map ψ : X → M . Suppose there is a defect in the medium. For
concreteness, we consider a line defect in the three-dimensional medium of a
superconductor. Imagine a circle S1 which encircles the line defect. If each part
of S1 is far from the line defect, much further than the coherence length ξ , we
may assume the order parameter along S1 takes its value in the order parameter
space M = U(1), see figure 4.22. This is how the fundamental group comes into
the problem; we talk of loops in a topological space U(1). The map S1 → U(1)
is classified by the homotopy classes. Take a point r0 ∈ S1 and require that r0 be
mapped to x0 ∈ M . By noting that π1(U(1), x0) = �, we may assign an integer
to the line defect. This integer is called the winding number since it counts how
many times the image of S1 winds the space U(1). If two line defects have the

 



same winding number, one can be continuously deformed to the other. If two
line defects A and B merge together, the new line defect belongs to the homotopy
class of the product of the homotopy classes to which A and B belonged before
coalescence. Since the group operation in � is an addition, the new winding
number is a sum of the old winding numbers. A uniform distribution of the order
parameter corresponds to the constant map ψ(x) = x0 ∈ M , which belongs to
the unit element 0 ∈ �. If two line defects of opposite winding numbers merge
together, the new line defect can be continuously deformed into the defect-free
configuration.

What about the other homotopy groups? We first consider the dimensionality
of the defect and the sphere Sn which surrounds it. For example, consider a point
defect in a three-dimensional medium. It can be surrounded by S2 and the defect
is classified by π2(M, x0). If M has many components, π0(M) is non-trivia1. Let
us consider a three-dimensional Ising model for which M = {↓} ∪ {↑}. Then
there is a domain wall on which the order parameter is not defined. For example,
if S =↑ for x < 0 and S =↓ for x > 0, there is a domain wall in the yz-plane
at x = 0. In general, an m-dimensional defect in a d-dimensional medium is
classified by the homotopy group πn(M, x0) where

n = d − m − 1. (4.67)

In the case of the lsing model, d = 3,m = 2; hence n = 0.

4.9 Defects in nematic liquid crystals

4.9.1 Order parameter of nematic liquid crystals

Certain organic crystals exhibit quite interesting optical properties when they are
in their fluid phases. They are called liquid crystals and they are characterized
by their optical anisotropy. Here we are interested in so-called nematic liquid
crystals. An example of this is octyloxy-cyanobiphenyl whose molecular structure
is

The molecule of a nematic liquid crystal is very much like a rod and the order
parameter, called the director, is given by the average direction of the rod. Even
though the molecule itself has a head and a tail, the director has an inversion
symmetry; it does not make sense to distinguish the directors n =→ and −n =
←. We are tempted to assign a point on S2 to specify the director. This works
except for one point. Two antipodal points n = (θ, φ) and −n = (π − θ, π + φ)
represent the same state; see figure 4.23. Accordingly, the order parameter of the
nematic liquid crystal is the projective plane �P2 . The director field in general

 



Figure 4.23. Since the director n has no head or tail, one cannot distinguish n from −n.
Therefore, these two pictures correspond to the same order-parameter configuration.

Figure 4.24. A vortex in a nematic liquid crystal, which corresponds to the non-trivial
element of π1(�P2) = �2.

depends on the position r. Then we may define a map f : �3 → �P2 . This
map is called the texture. The actual order-parameter configuration in �3 is also
called the texture.

4.9.2 Line defects in nematic liquid crystals

From example 4.10 we have π1(�P2 ) ∼= �2 = {0, 1}. There exist two kinds
of line defect in nematic liquid crystals; one can be continuously deformed into
a uniform configuration while the other cannot. The latter represents a stable
vortex, whose texture is sketched in figure 4.24. The reader should observe how
the loop α is mapped to �P2 by this texture.

Exercise 4.9. Show that the line ’defect’ in figure 4.25 is fictitious, namely the
singularity at the centre may be eliminated by a continuous deformation of
directors with directors at the boundary fixed. This corresponds to the operation
1+ 1 = 0.

 



Figure 4.25. A line defect which may be continuously deformed into a uniform
configuration.

Figure 4.26. The texture of a point defect in a nematic liquid crystal.

4.9.3 Point defects in nematic liquid crystals

From example 4.14, we have π2(�P2 ) = �. Accordingly, there are stable point
defects in the nematic liquid crystal. Figure 4.26 shows the texture of the point
defects that belong to the class 1 ∈ �.

It is interesting to point out that a line defect and a point defect may be
combined into a ring defect, which is specified by both π1(�P2 ) and π2(�P2 ),
see Mineev (1980). If the ring defect is observed from far away, it looks like

 



Figure 4.27. The texture of a ring defect in a nematic liquid crystal. The loop α classifies
π1(�P2) while the sphere (2-loop) β classifies π2(�P2).

a point defect, while its local structure along the ring is specified by π1(�P2 ).
Figure 4.27 is an example of such a ring defect. The loop α classifies π1(�P2 ) ∼=
�2 while the sphere (2-loop) β classifies π2(�P2 ) = �.

4.9.4 Higher dimensional texture

The third homotopy group π(�P2 ) ∼= � leads to an interesting singularity-
free texture in a three-dimensional medium of nematic liquid crystal. Suppose
the director field approaches an asymptotic configuration, say n = (1, 0, 0)t,
as |r| → ∞. Then the medium is effectively compactified into the three-
dimensional sphere S3 and the topological structure of the texture is classified
by π3(�P2 ) ∼= �. What is the texture corresponding to a non-trivial element of
the homotopy group?

An arbitrary rotation in �3 is specified by a unit vector e, around which the
rotation is carried out, and the rotation angle α. It is possible to assign a ‘vector’
� = αe to this rotation. It is not exactly a vector since � = πe and −� = −πe
are the same rotation and hence should be identified. Therefore,� belongs to the
real projective space �P3 . Suppose we take n0 = (1, 0, 0)t as a standard director.
Then an arbitrary director configuration is specified by rotating n0 around some
axis e by an angle α: n = R(e, α)n0, where R(e, α) is the corresponding rotation
matrix in SO(3). Suppose a texture field is given by applying the rotation

αe(r) = f (r)r̂ (4.68)

 



Figure 4.28. The texture of the non-trivial element of π3(�P2) ∼= �. (a) shows the
rotation ‘vector’ αe. The length α approaches π as |r| → ∞. (b) shows the corresponding
director field.

to n0, where r̂ is the unit vector in the direction of the position vector r and

f (r) =
{

0 r = 0

π r →∞.

Figure 4.28 shows the director field of this texture. Note that although there
is no singularity in the texture, it is impossible to ‘wind off’ this to a uniform
configuration.

4.10 Textures in superfluid 3He-A

4.10.1 Superfluid 3He-A

Here comes the last and most interesting example. Before 1972 the only example
of the BCS superfluid was the conventional superconductor (apart from indirect
observations of superfluid neutrons in neutron stars). Figure 4.29 is the phase
diagram of superfluid 3He without an external magnetic field. From NMR and
other observations, it turns out that the superfluid is in the spin-triplet p-wave
state. Instead of the field operators (see (4.65b)), we define the order parameter
in terms of the creation and annihilation operators. The most general form of the
triplet superfluid order parameter is

〈cα,kcβ,−k〉 ∝
3∑
µ=1

(iσ2σµ)αβdµ(k) (4.69a)

 



Figure 4.29. The phase diagram of superfluid 3He.

where α and β are spin indices. The Cooper pair forms in the p-wave state hence
dµ(k) is proportional to Y1m ∼ ki ,

dµ(k) =
3∑

i=1

�0 Aµi ki . (4.69b)

The bulk energy has several minima. The absolute minimum depends on the
pressure and the temperature. We are particularly interested in the A phase in
figure 4.29.

The A-phase order parameter takes the form

Aµi = dµ(�1 + i�2)i (4.70)

where d is a unit vector along which the spin projection of the Cooper pair
vanishes and (�1,�2) is a pair of orthonormal unit vectors. The vector d takes
its value in S2. If we define l ≡ �1 × �2, the triad (�1,�2, l) forms an
orthonormal frame at each point of the medium. Since any orthonormal frame
can be obtained from a standard orthonormal frame (e1, e2, e3) by an application
of a three-dimensional rotation matrix, we conclude that the order parameter of
3He-A is S2 × SO(3). The vector l introduced here is the axis of the angular
momentum of the Cooper pair.

For simplicity, we neglect the variation of the d̂-vector. [In fact, d̂ is locked

 



along l̂ due to the dipole force.] The order parameter assumes the form

Ai = �0(�̂1 + �̂2)i (4.71)

where �̂1, �̂2 and l̂ ≡ �̂1 × �̂2 form an orthonormal frame at each point of
the medium. Let us take a standard orthonormal frame (e1, e2, e2). The frame
(�̂1, �̂2, l̂) is obtained by applying an element g ∈ SO(3) to the standard frame,

g : (e1, e2, e2)→ (�̂1, �̂2, l̂). (4.72)

Since g depends on the coordinate x , the configuration (�̂1(x), �̂2(x), l̂(x))
defines a map ψ : X → SO(3) as x 
→ g(x). The map ψ is called the texture
of a superfluid 3He.1 The relevant homotopy groups for classifying defects in
superfluid 3He-A are πn(SO(3)).

If a container is filled with 3He-A, the boundary poses certain conditions on
the texture. The vector l̂ is understood as the direction of the angular momentum
of the Cooper pair. The pair should rotate in the plane parallel to the boundary
wall, thus l̂ should be perpendicular to the wall. [Remark: If the wall is diffuse,
the orbital motion of Cooper pairs is disturbed and there is a depression in the
amplitude of the order parameter in the vicinity of the wall. We assume, for
simplicity, that the wall is specularly smooth so that Cooper pairs may execute
orbital motion with no disturbance.] There are several kinds of free energy and
the texture is determined by solving the Euler–Lagrange equation derived from
the total free energy under given boundary conditions.

Reviews on superfluid 3He are found in Anderson and Brinkman (1975),
Leggett (1975) and Mermin (1978).

4.10.2 Line defects and non-singular vortices in 3He-A

The fundamental group of SO(3) ∼= �P3 is π1(�P3 ) ∼= �2 ∼= {0, 1}.
Textures which belong to class 0 can be continuously deformed into the uniform
configuration. Configurations in class 1 are called disgyrations and have
been analysed by Maki and Tsuneto (1977) and Buchholtz and Fetter (1977).
Figure 4.30 describes these disgyrations in their lowest free energy configurations.

A remarkable property of �2 is the addition 1 + 1 = 0; the coalescence of
two disgyrations produces a trivial texture. By merging two disgyrations, we may
construct a texture that looks like a vortex of double vorticity (homotopy class
‘2’) without a singular core; see figure 4.31(a). It is easy to verify that the image
of the loop α traverses �P3 twice while that of the smaller loop β may be shrunk
to a point. This texture is called the Anderson–Toulouse vortex (Anderson and
Toulouse 1977). Mermin and Ho (1976) pointed out that if the medium is in a
cylinder, the boundary imposes the condition l̂ ⊥ (boundary) and the vortex is
cut at the surface, see figure 4.31(b) (the Mermin–Ho vortex).
1 The name ‘texture’ is, in fact, borrowed from the order-parameter configuration in liquid crystals,
see section 4.9.

 



Figure 4.30. Disgyrations in 3He-A.

Figure 4.31. The Anderson–Toulouse vortex (a) and the Mermin–Ho vortex (b). In (b) the
boundary forces l̂ to be perpendicular to the wall.

Since π2(�P3 ) ∼= {e}, there are no point defects in 3He-A. However,
π3(�P3 ) ∼= � introduces a new type of pointlike structure called the Shankar
monopole, which we will study next.

4.10.3 Shankar monopole in 3He-A

Shankar (1977) pointed out that there exists a pointlike singularity-free object
in 3He-A. Consider an infinite medium of 3He-A. We assume the medium is
asymptotically uniform, that is, (�̂1, �̂2, l̂) approaches a standard orthonormal
frame (e1, e2, e3) as |x | → ∞. Since all the points far from the origin are mapped
to a single point, we have compactified �3 to S3. Then the texture is classified
according to π3(�P3 ) = �. Let us specify an element of SO(3) by a ‘vector’
� = θn in �P3 as before (example 4.12). Shankar (1977) proposed a texture,

�(r) = r
r
· f (r) (4.73)

 



Figure 4.32. The Shankar monopole: (a) shows the ‘vectors’ �(r) and (b) shows the triad
(�̂1, �̂2, l̂). Note that as |r | → ∞ the triad approaches the same configuration.

where f (r) is a monotonically decreasing function such that

f (r) =
{

2π r = 0

0 r = ∞. (4.74)

We formally extend the radius of �P3 to 2π and define the rotation angle modulo
2π . This texture is called the Shankar monopole, see figure 4.32(a). At first sight
it appears that there is a singularity at the origin. Note, however, that the length
of � is 2π there and it is equivalent to the unit element of SO(3). Figure 4.32(b)
describes the triad field. Since �(r) = 0 as r →∞, irrespective of the direction,
the space �3 is compactified to S3. As we scan the whole space, �(r) sweeps
SO(3) twice and this texture corresponds to class 1 of π3(SO(3)) ∼= �.

Exercise 4.10. Sketch the Shankar monopole which belongs to the class −1 of
π3(�P3 ). [You cannot simply reverse the arrows in figure 4.32.]

Exercise 4.11. Consider classical Heisenberg spins defined in �2 , see section 4.8.
Suppose spins take the asymptotic value

n(x)→ ez |x | ≥ L (4.75)

for the total energy to be finite, see figure 4.20. Show that the extended objects in
this system are classified by π2(S2). Sketch examples of spin configurations for
the classes −1 and +2.

Problems

4.1 Show that the n-sphere Sn is a deformation retract of punctured Euclidean
space Rn+1 − {0}. Find a retraction.

 



4.2 Let D2 be the two-dimensional closed disc and S1 = ∂D2 be its boundary.
Let f : D2 → D2 be a smooth map. Suppose f has no fixed points, namely
f (p) �= p for any p ∈ D2. Consider a semi-line starting at p through f (p) (this
semi-line is always well defined if p �= f (p)). The line crosses the boundary at
some point q ∈ S1. Then define f̃ : D2 → S1 by f̃ (p) = q . Use π1(S1) = �
and π1(D2) = {0} to show that such an f̃ does not exist and hence, that f must
have fixed points. [Hint: Show that if such an f̃ existed, D2 and S1 would be of
the same homotopy type.] This is the two-dimensional version of the Brouwer
fixed-point theorem.

4.3 Construct a map f : S3 → S2 which belongs to the elements 0 and 1 of
π3(S2) ∼= �. See also example 9.9.

 



5

MANIFOLDS

Manifolds are generalizations of our familiar ideas about curves and surfaces to
arbitrary dimensional objects. A curve in three-dimensional Euclidean space is
parametrized locally by a single number t as (x(t), y(t), z(t)), while two numbers
u and v parametrize a surface as (x(u, v), y(u, v), z(u, v)). A curve and a surface
are considered locally homeomorphic to � and �2 , respectively. A manifold,
in general, is a topological space which is homeomorphic to �m locally; it may
be different from �m globally. The local homeomorphism enables us to give
each point in a manifold a set of m numbers called the (local) coordinate. If a
manifold is not homeomorphic to �m globally, we have to introduce several local
coordinates. Then it is possible that a single point has two or more coordinates.
We require that the transition from one coordinate to the other be smooth. As
we will see later, this enables us to develop the usual calculus on a manifold.
Just as topology is based on continuity, so the theory of manifolds is based on
smoothness.

Useful references on this subject are Crampin and Pirani (1986), Matsushima
(1972), Schutz (1980) and Warner (1983). Chapter 2 and appendices B and C of
Wald (1984) are also recommended. Flanders (1963) is a beautiful introduction
to differential forms. Sattinger and Weaver (1986) deals with Lie groups and Lie
algebras and contains many applications to problems in physics.

5.1 Manifolds

5.1.1 Heuristic introduction

To clarify these points, consider the usual sphere of unit radius in �3 . We
parametrize the surface of S2, among other possibilities, by two coordinate
systems—polar coordinates and stereographic coordinates. Polar coordinates θ
and φ are usually defined by (figure 5.1)

x = sin θ cosφ y = sin θ sin φ z = cos θ, (5.1)

where φ runs from 0 to 2π and θ from 0 to π . They may be inverted on the sphere
to yield

θ = tan−1

√
x2 + y2

z
φ = tan−1 y

x
. (5.2)

 



Figure 5.1. Polar coordinates (θ, φ) and stereographic coordinates (X,Y ) of a point P on
the sphere S2.

Stereographic coordinates, however, are defined by the projection from the North
Pole onto the equatorial plane as in figure 5.1. First, join the North Pole (0, 0, 1)
to the point P(x, y, z) on the sphere and then continue in a straight line to
the equatorial plane z = 0 to intersect at Q(X,Y, 0). Then X and Y are the
stereographic coordinates of P . We find

X = x

1− z
Y = y

1− z
. (5.3)

The two coordinate systems are related as

X = cot 1
2θ cosφ Y = cot 1

2θ sin φ. (5.4)

Of course, other systems, polar coordinates with different polar axes or
projections from different points on S2, could be used. The coordinates on the
sphere may be kept arbitrary until some specific calculation is to be carried out.
[The longitude is historically measured from Greenwich. However, there is no
reason why it cannot be measured from New York or Kyoto.] This arbitrariness
of the coordinate choice underlies the theory of manifolds: all coordinate systems
are equally good. It is also in harmony with the basic principle of physics: a
physical system behaves in the same way whatever coordinates we use to describe
it.

 



Another point which can be seen from this example is that no coordinate
system may be usable everywhere at once. Let us look at the polar coordinates
on S2. Take the equator (θ = 1

2π) for definiteness. If we let φ range from 0 to
2π , then it changes continuously as we go round the equator until we get all the
way to φ = 2π . There the φ-coordinate has a discontinuity from 2π to 0 and
nearby points have quite different φ-values. Alternatively we could continue φ
through 2π . Then we will encounter another difficulty: at each point we must
have infinitely many φ-values, differing from one another by an integral multiple
of 2π . A further difficulty arises at the poles, where φ is not determined at all.
[An explorer on the Pole is in a state of timelessness since time is defined by the
longitude.] Stereographic coordinates also have difficulties at the North Pole or
at any projection point that is not projected to a point on the equatorial plane; and
nearby points close to the Pole have widely different stereographic coordinates.

Thus, we cannot label the points on the sphere with a single coordinate
system so that both of the following conditions are satisfied.

(i) Nearby points always have nearby coordinates.
(ii) Every point has unique coordinates.

Note, however, that there are infinitely many ways to introduce coordinates that
satisfy these requirements on a part of S2. We may take advantage of this fact to
define coordinates on S2: introduce two or more overlapping coordinate systems,
each covering a part of the sphere whose points are to be labelled so that the
following conditions hold.

(i′) Nearby points have nearby coordinatcs in at least one coordinate system.
(ii′) Every point has unique coordinates in each system that contains it.

For example, we may introduce two stereographic coordinates on S2, one a
projection from the North Pole, the other from the South Pole. Are these
conditions (i′) and (ii′) enough to develop sensible theories of the manifold? In
fact, we need an extra condition on the coordinate systems.

(iii) If two coordinate systems overlap, they are related to each other in a
sufficiently smooth way.

Without this condition, a differentiable function in one coordinate system
may not be differentiable in the other system.

5.1.2 Definitions

Definition 5.1. M is an m-dimensional differentiable manifold if

(i) M is a topological space;
(ii) M is provided with a family of pairs {(Ui , ϕi )};
(iii) {Ui } is a family of open sets which covers M , that is, ∪i Ui = M . ϕi is a
homeomorphism from Ui onto an open subset U ′

i of �m (figure 5.2); and

 



Figure 5.2. A homeomorphism ϕi maps Ui onto an open subset U ′i ⊂ �
m , providing

coordinates to a point p ∈ Ui . If Ui ∩U j �= ∅, the transition from one coordinate system
to another is smooth.

(iv) given Ui and U j such that Ui ∩ U j �= ∅, the map ψi j = ϕi ◦ ϕ−1
j from

ϕ j (Ui ∩U j ) to ϕi (Ui ∩U j ) is infinitely differentiable.

The pair (Ui , ϕi ) is called a chart while the whole family {(Ui , ϕi )} is
called, for obvious reasons, an atlas. The subset Ui is called the coordinate
neighbourhood while ϕi is the coordinate function or, simply, the coordinate.
The homeomorphism ϕi is represented by m functions {x1(p), . . . , xm(p)}. The
set {xµ(p)} is also called the coordinate. A point p ∈ M exists independently of
its coordinates; it is up to us how we assign coordinates to a point. We sometimes
employ the rather sloppy notation x to denote a point whose coordinates are
{x1, . . . , xm}, unless several coordinate systems are in use. From (ii) and (iii), M
is locally Euclidean. In each coordinate neighbourhood Ui , M looks like an open
subset of �m whose element is {x1, . . . , xm}. Note that we do not require that M
be �m globally. We are living on the earth whose surface is S2, which does not
look like �2 globally. However, it looks like an open subset of �2 locally. Who
can tell that we live on the sphere by just looking at a map of London, which, of
course, looks like a part of �2 ?1

1 Strictly speaking the distance between two longitudes in the northern part of the city is slightly

 



If Ui and U j overlap, two coordinate systems are assigned to a point in
Ui ∩ U j . Axiom (iv) asserts that the transition from one coordinate system to
another be smooth (C∞). The map ϕi assigns m coordinate values xµ (1 ≤ µ ≤
m) to a point p ∈ Ui ∩ U j , while ϕ j assigns yν (1 ≤ ν ≤ m) to the same
point and the transition from y to x , xµ = xµ(y), is given by m functions of m
variables. The coordinate transformation functions xµ = xµ(y) are the explicit
form of the map ψ j i = ϕ j ◦ ϕ−1

i . Thus, the differentiability has been defined
in the usual sense of calculus: the coordinate transformation is differentiable if
each function xµ(y) is differentiable with respect to each yν . We may restrict
ourselves to the differentiability up to kth order (Ck). However, this does not
bring about any interesting conclusions. We simply require, instead, that the
coordinate transformations be infinitely differentiable, that is, of class C∞. Now
coordinates have been assigned to M in such a way that if we move over M in
whatever fashion, the coordinates we use vary in a smooth manner.

If the union of two atlases {(Ui , ϕi )} and {(Vj , ψ j )} is again an atlas, these
two atlases are said to be compatible. The compatibility is an equivalence
relation, the equivalence class of which is called the differentiable structure. It is
also said that mutually compatible atlases define the same differentiable structure
on M .

Before we give examples, we briefly comment on manifolds with
boundaries. So far, we have assumed that the coordinate neighbourhood Ui is
homeomorphic to an open set of �m . In some applications, however, this turns
out to be too restrictive and we need to relax this condition. If a topological space
M is covered by a family of open sets {Ui } each of which is homeomorphic to an
open set of H m ≡ {(x1, . . . , xm) ∈ �m |xm ≥ 0}, M is said to be a manifold with
a boundary, see figure 5.3. The set of points which are mapped to points with
xm = 0 is called the boundary of M , denoted by ∂M . The coordinates of ∂M
may be given by m − 1 numbers (x1, . . . , xm−1, 0). Now we have to be careful
when we define the smoothness. The map ψi j : ϕ j (Ui ∩ U j ) → ϕi (Ui ∩ U j )

is defined on an open set of H m in general, and ψi j is said to be smooth if it is
C∞ in an open set of �m which contains ϕ j (Ui ∩U j ). Readers are encouraged to
use their imagination since our definition is in harmony with our intuitive notions
about boundaries. For example, the boundary of the solid ball D3 is the sphere S2

and the boundary of the sphere is an empty set.

5.1.3 Examples

We now give several examples to develop our ideas about manifolds. They are
also of great relevance to physics.

Example 5.1. The Euclidean space �m is the most trivial example, where a single
chart covers the whole space and ϕ may be the identity map.

shorter than that in the southern part and one may suspect that one lives on a curved surface. Of
course, it is the other way around if one lives in a city in the southern hemisphere.

 



Figure 5.3. A manifold with a boundary. The point p is on the boundary.

Example 5.2. Let m = 1 and require that M be connected. There are only two
manifolds possible: a real line � and the circle S1. Let us work out an atlas of S1.
For concreteness take the circle x2 + y1 = 1 in the xy-plane. We need at least
two charts. We may take them as in figure 5.4. Define ϕ−1

1 : (0, 2π)→ S1 by

ϕ−1
1 : θ 
→ (cos θ, sin θ) (5.5a)

whose image is S1 − {(1, 0)}. Define also ψ−1
2 : (−π, π)→ S1 by

ϕ−1
2 : θ 
→ (cos θ, sin θ) (5.5b)

whose image is S1 − {(−1, 0)}. Clearly ϕ−1
1 and ϕ−1

2 are invertible and all the
maps ϕ1, ϕ2, ϕ

−1
1 and ϕ−1

2 are continuous. Thus, ϕ1 and ϕ2 are homeomorphisms.
Verify that the maps ψ12 = ϕ1 ◦ ϕ−1

2 and ψ21 = ϕ2 ◦ ϕ−1
1 are smooth.

Example 5.3. The n-dimensional sphere Sn is a differentiable manifold. It is
realized in �n+1 as

n∑
i=0

(xi )2 = 1. (5.6)

Let us introduce the coordinate neighbourhoods

Ui+ ≡ {(x0, x1, . . . , xn) ∈ Sn |xi > 0} (5.7a)

Ui− ≡ {(x0, x1, . . . , xn) ∈ Sn |xi < 0}. (5.7b)

 



Figure 5.4. Two charts of a circle S1.

Define the coordinate map ϕi+ : Ui+ → �n by

ϕi+(x0, . . . , xn) = (x0, . . . , xi−1, xi+1, . . . , xn) (5.8a)

and ϕi− : Ui− → �n by

ϕi−(x0, . . . , xn) = (x0, . . . , xi−1, xi+1, . . . , xn). (5.8b)

Note that the domains of ϕi+ and ϕi− are different. ϕi± are the projections of the
hemispheres Ui± to the plane xi = 0. The transition functions are easily obtained
from (5.8). Take S2 as an example. The coordinate neighbourhoods are Ux±,Uy±
and Uz±. The transition function ψy−x+ ≡ ϕy− ◦ ϕ−1

x+ is given by

ψy−x+ : (y, z) 
→
(√

1− y2 − z2, z

)
(5.9)

which is infinitely differentiable on Ux+ ∩Uy−.

Exercise 5.1. At the beginning of this chapter, we introduced the stereographic
coordinates on S2. We may equally define the stereographic coordinates projected
from points other than the North Pole. For example, the stereographic coordinates
(U, V ) of a point in S2 − {South Pole} projected from the South Pole and (X,Y )
for a point in S2−{North Pole} projected from the North Pole are shown in figure
5.5. Show that the transition functions between (U, V ) and (X,Y ) are C∞ and
that they define a differentiable structure on M . See also example 8.1.

Example 5.4. The real projective space �Pn is the set of lines through the origin
in �n+1 . If x = (x0, . . . , xn) �= 0, x defines a line through the origin. Note
that y ∈ �n+1 defines the same line as x if there exists a real number a �= 0
such that y = ax . Introduce an equivalence relation ∼ by x ∼ y if there

 



Figure 5.5. Two stereographic coordinate systems on S2. The point P may be projected
from the North Pole N giving (X,Y ) or from the South Pole S giving (U, V ).

exists a ∈ � − {0} such that y = ax . Then �Pn = (�n+1 − {0})/ ∼. The
n + 1 numbers x0, x1, . . . , xn are called the homogeneous coordinates. The
homogeneous coordinates cannot be a good coordinate system, since �Pn is an
n-dimensional manifold (an (n + 1)-dimensional space with a one-dimensional
degree of freedom killed). The charts are defined as follows. First we take the
coordinate neighbourhood Ui as the set of lines with xi �= 0, and then introduce
the inhomogeneous coordinates on Ui by

ξ
j
(i) = x j/xi . (5.10)

The inhomogeneous coordinates

ξ(i) = (ξ0
(i), ξ

1
(i), . . . , ξ

i−1
(i) , ξ

i+1
(i) , . . . , ξ

n
(i))

with ξ i
(i) = 1 omitted, are well defined on Ui since xi �= 0, and furthermore

they are independent of the choice of the representative of the equivalence class
since x j/xi = y j/yi if y = ax . The inhomogeneous coordinate ξ(i) gives the
coordinate map ϕi : Ui → �n , that is

ϕi : (x0, . . . , xn) 
→ (x0/xi , . . . , xi−1/xi , xi+1/xi , . . . , xn/xi )

where xi/xi = 1 is omitted. For x = (x0, x1, . . . , xn) ∈ Ui ∩ U j we assign
two inhomogeneous coordinates, ξ k

(i) = xk/xi and ξ k
( j ) = xk/x j . The coordinate

 



transformation ψi j = ϕi ◦ ϕ−1
j is

ψi j : ξ k
( j ) 
→ ξ k

(i) = (x j/xi )ξ k
( j ). (5.11)

This is a multiplication by x j/xi .
In example 4.12, we defined �Pn as the sphere Sn with antipodal points

identified. This picture is in conformity with the definition here. As a
representative of the equivalence class [x], we may take points |x | = 1 on a line
through the origin. These are points on the unit sphere. Since there are two points
on the intersection of a line with Sn we have to take one of them consistently,
that is nearby lines are represented by nearby points in Sn . This amounts to
taking the hemisphere. Note, however, that the antipodal points on the boundary
(the equator of Sn) are identified by definition, (x0, . . . , xn) ∼ −(x0, . . . , xn).
This ‘hemisphere’ is homeomorphic to the ball Dn with antipodal points on the
boundary Sn−1 identified.

Example 5.5. A straightforward generalization of �Pn is the Grassmann
manifold. An element of �Pn is a one-dimensional subspace in �n+1 . The
Grassmann manifold Gk,n(�) is the set of k-dimensional planes in �n . Note that
G1,n+1(�) is nothing but �Pn . The manifold structure of Gk,n(�) is defined in a
manner similar to that of �Pn .

Let Mk,n(�) be the set of k × n matrices of rank k (k ≤ n). Take A =
(ai j ) ∈ Mk,n(�) and define k vectors ai (1 ≤ i ≤ k) in �n by ai = (ai j ). Since
rank A = k, k vectors ai are linearly independent and span a k-dimensional plane
in �n . Note, however, that there are infinitely many matrices in Mk,n(�) that yield
the same k-plane. Take g ∈ GL(k,�) and consider a matrix Ā = g A ∈ Mk,n(�).
Ā defines the same k-plane as A, since g simply rotates the basis within the k-
plane. Introduce an equivalence relation∼ by Ā ∼ A if there exists g ∈ GL(k,�)
such that Ā = g A. We identify Gk,n(�) with the coset space Mk,n (�)/GL(k,�).

Let us find the charts of Gk,n(�). Take A ∈ Mk,n (�) and let {A1, . . . , Al},
l = (n

k

)
, be the collection of all k × k minors of A. Since rank A = k, there exists

some Aα (1 ≤ α ≤ l) such that det A �= 0. For example, let us assume the minor
A1 made of the first k columns has non-vanishing determinant,

A = (A1, Ã1) (5.12)

where Ã1 is a k × (n − k) matrix. Let us take the representative of the class to
which A belongs to be

A−1
1 · A = (Ik, A−1

1 · Ã1) (5.13)

where Ik is the k × k unit matrix. Note that A−1
1 always exists since det A1 �= 0.

Thus, the real degrees of freedom are given by the entries of the k × (n − k)
matrix A−1

1 · Ã1. We denote this subset of Gk,n(�) by U1. U1 is a coordinate
neighbourhood whose coordinates are given by k(n − k) entries of A−1

1 · Ã1.
Since U1 is homeomorphic to �k(n−k) we find that

dim Gk,n(�) = k(n − k). (5.14)

 



In the case where det Aα �= 0, where Aα is composed of the columns
(i1, i2, . . . , ik), we multiply A−1

α to obtain the representative

column→ i1 i2 . . . ik

A−1
α · A =


. . . 1 . . . 0 . . . . . . 0 . . .

. . . 0 . . . 1 . . . . . . 0 . . .

. . . . . . . . . . . . . . . . . .

. . . 0 . . . 0 . . . . . . 1 . . .

 (5.15)

where the entries not written explicitly form a k × (n− k)matrix. We denote this
subset of Mk,n (�) with det Aα �= 0 by Uα . The entries of the k × (n − k) matrix
are the coordinates of Uα.

The relation between the projective space and the Grassmann manifold is
evident. An element of M1,n+1(�) is a vector A = (x0, x1, . . . , xn). Since the
αth minor Aα of A is a number xα, the condition det Aα �= 0 becomes xα �= 0.
The representative (5.15) is just the inhomogeneous coordinate

(xα)−1(x0, x1, . . . , xα, . . . , xn)

= (x0/xα, x1/xα, . . . , xα/xα = 1, . . . , xn/xα).

Let M be an m-dimensional manifold with an atlas {(Ui , ϕi )} and N be an n-
dimensional manifold with {(Vj , ψ j )}. A product manifold M×N is an (m+n)-
dimensional manifold whose atlas is {(Ui × Vj ), (ϕi , ψ j )}. A point in M × N
is written as (p, q), p ∈ M, q ∈ N , and the coordinate function (ϕi , ψ j ) acts on
(p, q) to yield (ϕi (p), ψ j (p)) ∈ �m+n . The reader should verify that a product
manifold indeed satisfies the axioms of definition 5.1.

Example 5.6. The torus T 2 is a product manifold of two circles, T 2 = S1× S1. If
we denote the polar angle of each circle as θi mod 2π (i = 1, 2), the coordinates
of T 2 are (θ1, θ2). Since each S1 is embedded in �2 , T 2 may be embedded in �4 .
We often imagine T 2 as the surface of a doughnut in �3 , in which case, however,
we inevitably have to introduce bending of the surface. This is an extrinsic feature
brought about by the ‘embedding’. When we say ‘a torus is a flat manifold’, we
refer to the flat surface embedded in �4 . See definition 5.3 for further details.

We may also consider a direct product of n circles,

T n = S1 × S1 × · · · × S1︸ ︷︷ ︸
n

.

Clearly T n is an n-dimensional manifold with the coordinates (θ1, θ2, . . . , θn)

mod2π . This may be regarded as an n-cube whose opposite faces are identified,
see figure 2.4 for n = 2.

5.2 The calculus on manifolds

The significance of differentiable manifolds resides in the fact that we may use
the usual calculus developed in �n . Smoothness of the coordinate transformations
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Figure 5.6. A map f : M → N has a coordinate presentation ψ ◦ f ◦ ϕ−1 : �m → �
n .

ensures that the calculus is independent of the coordinates chosen.

5.2.1 Differentiable maps

Let f : M → N be a map from an m-dimensional manifold M to an n-
dimensional manifold N . A point p ∈ M is mapped to a point f (p) ∈ N , namely
f : p 
→ f (p), see figure 5.6. Take a chart (U, ϕ) on M and (V , ψ) on N , where
p ∈ U and f (p) ∈ V . Then f has the following coordinate presentation:

ψ ◦ f ◦ ϕ−1 : �m → �n . (5.16)

If we write ϕ(p) = {xµ} and ψ( f (p)) = {yα}, ψ ◦ f ◦ ϕ−1 is just the usual
vector-valued function y = ψ ◦ f ◦ ϕ−1(x) of m variables. We sometimes use
(in fact, abuse!) the notation y = f (x) or yα = f α(xµ), when we know which
coordinate systems on M and N are in use. If y = ψ ◦ f ◦ ϕ−1(x), or simply
yα = f α(xµ), is C∞ with respect to each xµ, f is said to be differentiable at
p or at x = ϕ(p). Differentiable maps are also said to be smooth. Note that
we require infinite (C∞) differentiability, in harmony with the smoothness of the
transition functions ψi j .

The differentiability of f is independent of the coordinate system. Consider
two overlapping charts (U1, ϕ1) and (U2, ϕ2). Take a point p ∈ U1 ∩ U2, whose
coordinates by ϕ1 are {xµ1 }, while those by ϕ2 are {xν2 }. When expressed in
terms of {xµ1 }, f takes the form ψ ◦ f ◦ ϕ−1

1 , while in {xν2 }, ψ ◦ f ◦ ϕ−1
2 =

 



ψ ◦ f ◦ ϕ−1
1 (ϕ1 ◦ ϕ−1

2 ). By definition, ψ12 = ϕ1 ◦ ϕ−1
2 is C∞. In the simpler

expressions, they correspond to y = f (x1) and y = f (x1(x2)). It is clear that
if f (x1) is C∞ with respect to xµ1 and x1(x2) is C∞ with respect to xν2 , then
y = f (x1(x2)) is also C∞ with respect to xν2 .

Exercise 5.2. Show that the differentiability of f is also independent of the chart
in N .

Definition 5.2. Let f : M → N be a homeomorphism andψ and ϕ be coordinate
functions as previously defined. If ψ ◦ f ◦ ϕ−1 is invertible (that is, there exists a
map ϕ ◦ f −1 ◦ ψ−1) and both y = ψ ◦ f ◦ ϕ−1(x) and x = ϕ ◦ f −1 ◦ ψ−1(y)
are C∞, f is called a diffeomorphism and M is said to be diffeomorphic to N
and vice versa, denoted by M ≡ N .

Clearly dim M = dim N if M ≡ N . In chapter 2, we noted that
homeomorphisms classify spaces according to whether it is possible to deform
one space into another continuously. Diffeomorphisms classify spaces into
equivalence classes according to whether it is possible to deform one space to
another smoothly. Two diffeomorphic spaces are regarded as the same manifold.
Clearly a diffeomorphism is a homeomorphism. What about the converse? Is
a homeomorphism a diffeomorphism? In the previous section, we defined the
differentiable structure as an equivalence class of atlases. Is it possible for a
topological space to carry many differentiable structures? It is rather difficult
to give examples of ‘diffeomorphically inequivalent homeomorphisms’ since it is
known that this is possible only in higher-dimensional spaces (dim M ≥ 4). It
was believed before 1956 that a topological space admits only one differentiable
structure. However, Milnor (1956) pointed out that S7 admits 28 differentiable
structures. A recent striking discovery in mathematics is that�4 admits an infinite
number of differentiable structures. Interested readers should consult Donaldson
(1983) and Freed and Uhlenbeck (1984). Here we assume that a manifold admits
a unique differentiable structure, for simplicity.

The set of diffeomorphisms f : M → M is a group denoted by Diff(M).
Take a point p in a chart (U, ϕ) such that ϕ(p) = xµ(p). Under f ∈ Diff(M),
p is mapped to f (p) whose coordinates are ϕ( f (p)) = yµ( f (p)) (we have
assumed f (p) ∈ U ). Clearly y is a differentiable function of x ; this is an active
point of view to the coordinate transformation. However, if (U, ϕ) and (V , ψ) are
overlapping charts, we have two coordinate values xµ = ϕ(p) and yµ = ψ(p) for
a point p ∈ U ∩ V . The map x 
→ y is differentiable by the assumed smoothness
of the manifold; this reparametrization is a passive point of view to the coordinate
transformation. We also denote the group of reparametrizations by Diff(M).

Now we look at special classes of mappings, namely curves and functions.
An open curve in an m-dimensional manifold M is a map c : (a, b)→ M where
(a, b) is an open interval such that a < 0 < b. We assume that the curve does
not intersect with itself (figure 5.7). The number a (b) may be −∞ (+∞) and
we have included 0 in the interval for later convenience. If a curve is closed, it is
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Figure 5.7. A curve c in M and its coordinate presentation ϕ ◦ c.

regarded as a map c : S1 → M . In both cases, c is locally a map from an open
interval to M . On a chart (U, ϕ), a curve c(t) has the coordinate presentation
x = ϕ ◦ c : � → �m .

A function f on M is a smooth map from M to �, see figure 5.8. On a chart
(U, ϕ), the coordinate presentation of f is given by f ◦ ϕ−1 : �m → � which is
a real-valued function of m variables. We denote the set of smooth functions on
M by �(M).

5.2.2 Vectors

Now that we have defined maps on a manifold, we are ready to define other
geometrical objects: vectors, dual vectors and tensors. In general, an elementary
picture of a vector as an arrow connecting a point and the origin does not work in
a manifold. [Where is the origin? What is a straight arrow? How do we define a
straight arrow that connects London and Los Angeles on the surface of the Earth?]
On a manifold, a vector is defined to be a tangent vector to a curve in M .

To begin with, let us look at a tangent line to a curve in the xy-plane. If the
curve is differentiable, we may approximate the curve in the vicinity of x0 by

y − y(x0) = a(x − x0) (5.17)

where a = dy/dx |x=x0. The tangent vectors on a manifold M generalize this
tangent line. To define a tangent vector we need a curve c : (a, b) → M and
a function f : M → �, where (a, b) is an open interval containing t = 0, see
figure 5.9. We define the tangent vector at c(0) as a directional derivative of a
function f (c(t)) along the curve c(t) at t = 0. The rate of change of f (c(t)) at
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Figure 5.8. A function f : M → � and its coordinate presentation f ◦ ϕ−1.

t = 0 along the curve is
d f (c(t))

dt

∣∣∣∣
t=0
. (5.18)

In terms of the local coordinate, this becomes

∂ f

∂xµ
dxµ(c(t))

dt

∣∣∣∣
t=0
. (5.19)

[Note the abuse of the notation! The derivative ∂ f/∂xµ really means ∂( f ◦
ϕ−1(x))/∂xµ.] In other words, d f (c(t))/dt at t = 0 is obtained by applying
the differential operator X to f , where

X = Xµ
(
∂

∂xµ

) (
Xµ = dxµ(c(t))

dt

∣∣∣∣
t=0

)
(5.20)

that is,
d f (c(t))

dt

∣∣∣∣
t=0
= Xµ

(
∂ f

∂xµ

)
≡ X [ f ]. (5.21)

Here the last equality defines X [ f ]. It is X = Xµ∂/∂xµ which we now define as
the tangent vector to M at p = c(0) along the direction given by the curve c(t).

Example 5.7. If X is applied to the coordinate functions ϕ(c(t)) = xµ(t), we
have

X [xµ] =
(

dxν

dt

)(
∂xµ

∂xν

)
= dxµ(t)

dt

∣∣∣∣
t=0

 



b R

f

a

0 c

ϕ ο c
f ο ϕ−1

M
X

c(0)
c(t)

x

ϕ

Rm

Figure 5.9. A curve c and a function f define a tangent vector along the curve in terms of
the directional derivative.

which is the µth component of the velocity vector if t is understood as time.

To be more mathematical, we introduce an equivalence class of curves in M .
If two curves c1(t) and c2(t) satisfy

(i) c1(0) = c2(0) = p

(ii)
dxµ(c1(t))

dt

∣∣∣∣
t=0
= dxµ(c2(t))

dt

∣∣∣∣
t=0

c1(t) and c2(t) yield the same differential operator X at p, in which case we define
c1(t) ∼ c2(t). Clearly ∼ is an equivalence relation and defines the equivalence
classes. We identify the tangent vector X with the equivalence class of curves

[c(t)] =
{

c̃(t)

∣∣∣∣̃c(0) = c(0) and
dxµ(̃c(t))

dt

∣∣∣∣
t=0
= dxµ(c(t))

dt

∣∣∣∣
t=0

}
(5.22)

rather than a curve itself.
All the equivalence classes of curves at p ∈ M , namely all the tangent

vectors at p, form a vector space called the tangent space of M at p, denoted
by Tp M . To analyse Tp M , we may use the theory of vector spaces developed in
section 2.2. Evidently, eµ = ∂/∂xµ (1 ≤ µ ≤ m) are the basis vectors of Tp M ,
see (5.20), and dim Tp M = dim M . The basis {eµ} is called the coordinate
basis. If a vector V ∈ Tp M is written as V = V µeµ, the numbers V µ are called
the components of V with respect to eµ. By construction, it is obvious that a
vector X exists without specifying the coordinate, see (5.21). The assignment of

 



the coordinate is simply for our convenience. This coordinate independence of
a vector enables us to find the transformation property of the components of the
vector. Let p ∈ Ui ∩U j and x = ϕi (p), y = ϕ j (p). We have two expressions for
X ∈ Tp M ,

X = Xµ
∂

∂xµ
= X̃µ

∂

∂yµ
.

This shows that Xµ and X̃µ are related as

X̃µ = Xν
∂yµ

∂xν
. (5.23)

Note again that the components of the vector transform in such a way that the
vector itself is left invariant.

The basis of Tp M need not be {eµ}, and we may think of the linear
combinations êi ≡ Ai

µeµ, where A = (Ai
µ) ∈ GL(m,�). The basis {êi } is

known as the non-coordinate basis.

5.2.3 One-forms

Since Tp M is a vector space, there exists a dual vector space to Tp M , whose
element is a linear function from Tp M to �, see section 2.2. The dual space is
called the cotangent space at p, denoted by T ∗p M . An element ω : Tp M → � of
T ∗p M is called a dual vector, cotangent vector or, in the context of differential
forms, a one-form. The simplest example of a one-form is the differential d f of
a function f ∈ �(M). The action of a vector V on f is V [ f ] = Vµ∂ f /∂xµ ∈ �.
Then the action of d f ∈ T ∗p M on V ∈ Tp M is defined by

〈d f, V 〉 ≡ V [ f ] = V µ
∂ f

∂xµ
∈ �. (5.24)

Clearly 〈d f, V 〉 is �-linear in both V and f .
Noting that d f is expressed in terms of the coordinate x = ϕ(p) as

d f = (∂ f/∂xµ)dxµ, it is natural to regard {dxµ} as a basis of T ∗p M . Moreover,
this is a dual basis, since 〈

dxµ,
∂

∂xµ

〉
= ∂xν

∂xµ
= δνµ. (5.25)

An arbitrary one-form ω is written as

ω = ωµ dxµ (5.26)

where the ωµ are the components of ω. Take a vector V = V µ∂/∂xµ and a one-
form ω = ωµdxµ. The inner product 〈 , 〉 : T ∗p M × Tp M → � is defined
by

〈ω, V 〉 = ωµV ν
〈
dxµ,

∂

∂xν

〉
= ωµV νδµν = ωµV µ. (5.27)

 



Note that the inner product is defined between a vector and a dual vector and not
between two vectors or two dual vectors.

Since ω is defined without reference to any coordinate system, for a point
p ∈ Ui ∩U j , we have

ω = ωµdxµ = ω̃ν dyν

where x = ϕi (p) and y = ϕ j (p). From dyν = (∂yν/∂xµ)dxµ we find that

ω̃ν = ωµ ∂xµ

∂yν
. (5.28)

5.2.4 Tensors

A tensor of type (q, r) is a multilinear object which maps q elements of T ∗p M and

r elements of Tp M to a real number. �q
r,p(M) denotes the set of type (q, r) tensors

at p ∈ M . An element of �q
r,p(M) is written in terms of the bases described earlier

as

T = Tµ1...µq
ν1...νr

∂

∂xµ1
. . .

∂

∂xµq
dxν1 . . . dxνr . (5.29)

Clearly this is a linear function from

⊗q T ∗p M ⊗r Tp M

to �. Let Vi = V µi ∂/∂xµ (1 ≤ i ≤ r) and ωi = ωiµdxµ (1 ≤ i ≤ q). The action
of T on them yields a number

T (ω1, . . . , ωq ; V1, . . . , Vr ) = Tµ1...µq
ν1...νrω1µ1 . . . ωqµq V ν1

1 . . .V νr
r .

In the present notation, the inner product is 〈ω, X〉 = ω(X).

5.2.5 Tensor fields

If a vector is assigned smoothly to each point of M , it is called a vector field
over M . In other words, V is a vector field if V [ f ] ∈ �(M) for any f ∈ �(M).
Clearly each component of a vector field is a smooth function from M to �. The
set of the vector fields on M is denoted as �(M). A vector field X at p ∈ M
is denoted by X |p , which is an element of Tp M . Similarly, we define a tensor
field of type (q, r) by a smooth assignment of an element of �q

r,p(M) at each
point p ∈ M . The set of the tensor fields of type (q, r) on M is denoted by
�

q
r (M). For example, �0

1(M) is the set of the dual vector fields, which is also
denoted by �1(M) in the context of differential forms, see section 5.4. Similarly,
�

0
0(M) = �(M) is denoted by �0(M) in the same context.
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Figure 5.10. A map f : M → N induces the differential map f∗ : Tp M → T f (p)N .

5.2.6 Induced maps

A smooth map f : M → N naturally induces a map f∗ called the differential
map (figure 5.10),

f∗ : Tp M → T f (p)N. (5.30)

The explicit form of f∗ is obtained by the definition of a tangent vector as a
directional derivative along a curve. If g ∈ �(N), then g ◦ f ∈ �(M). A vector
V ∈ Tp M acts on g ◦ f to give a number V [g◦ f ]. Now we define f∗V ∈ T f (p)N
by

( f∗V )[g] ≡ V [g ◦ f ] (5.31)

or, in terms of charts (U, ϕ) on M and (V .ψ) on N ,

( f∗V )[g ◦ ψ−1(y)] ≡ V [g ◦ f ◦ ϕ−1(x)] (5.32)

where x = ϕ(p) and y = ψ( f (p)). Let V = V µ∂/∂xµ and f∗V = Wα∂/∂yα .
Then (5.32) yields

Wα ∂

∂yα
[g ◦ ψ−1(y)] = Vµ

∂

∂xµ
[g ◦ f ◦ ϕ−1(x)].

If we take g = yα, we obtain the relation between Wα and Vµ,

Wα = Vµ
∂

∂xµ
yα(x). (5.33)

Note that the matrix (∂yα/∂xµ) is nothing but the Jacobian of the map f :
M → N . The differential map f∗ is naturally extended to tensors of type (q, 0),
f∗ : �q

0,p(M)→ �
q
0, f (p)(N).

Example 5.8. Let (x1, x2) and (y1, y2, y3) be the coordinates in M and N ,
respectively, and let V = a∂/∂x1 + b∂/∂x2 be a tangent vector at (x1, x2).

 



Let f : M → N be a map whose coordinate presentation is y =
(x1, x2,

√
1− (x1)2 − (x2)2). Then

f∗V = V µ
∂yα

∂xµ
∂

∂yα
= a

∂

∂y1
+ b

∂

∂y2
−

(
a

y1

y3
+ b

y2

y3

)
∂

∂y3
.

Exercise 5.3. Let f : M → N and g : N → P . Show that the differential map of
the composite map g ◦ f : M → P is

(g ◦ f )∗ = g∗ ◦ f∗. (5.34)

A map f : M → N also induces a map

f ∗ : T ∗f (p)N → T ∗p M. (5.35)

Note that f∗ goes in the same direction as f , while f ∗ goes backward, hence
the name pullback, see section 2.2. If we take V ∈ Tp M and ω ∈ T ∗f (p)N , the
pullback of ω by f ∗ is defined by

〈 f ∗ω, V 〉 = 〈ω, f∗V 〉. (5.36)

The pullback f ∗ naturally extends to tensors of type (0, r), f ∗ : � 0
r, f (p)(N) →

� 0
r,p(M). The component expression of f ∗ is given by the Jacobian matrix

(∂yα/∂xµ), see exercise 5.4.

Exercise 5.4. Let f : M → N be a smooth map. Show that for ω = ωαdyα ∈
T ∗f (p)N , the induced one-form f ∗ω = ξµ dxµ ∈ T ∗p M has components

ξµ = ωα ∂yα

∂xµ
. (5.37)

Exercise 5.5. Let f and g be as in exercise 5.3. Show that the pullback of the
composite map g ◦ f is

(g ◦ f )∗ = f ∗ ◦ g∗. (5.38)

There is no natural extension of the induced map for a tensor of mixed type.
The extension is only possible if f : M → N is a diffeomorphism, where the
Jacobian of f −1 is also defined.

Exercise 5.6. Let

Tµν
∂

∂xµ
⊗ dxν

be a tensor field of type (1, 1) on M and let f : M → N be a diffeomorphism.
Show that the induced tensor on N is

f∗
(

Tµν
∂

∂xµ
⊗ dxν

)
= Tµν

(
∂yα

∂xµ

)(
∂xν

∂yβ

)
∂

∂yα
⊗ dyβ

where xµ and yα are local coordinates in M and N , respectively.

 



Figure 5.11. (a) An immersion f which is not an embedding. (b) An embedding g and
the submanifold g(S1).

5.2.7 Submanifolds

Before we close this section, we define a submanifold of a manifold. The meaning
of embedding is also clarified here.

Definition 5.3. (Immersion, submanifold, embedding) Let f : M → N be a
smooth map and let dim M ≤ dim N .

(a) The map f is called an immersion of M into N if f∗ : Tp M → T f (p)N
is an injection (one to one), that is rank f∗ = dim M .

(b) The map f is called an embedding if f is an injection and an immersion.
The image f (M) is called a submanifold of N . [In practice, f (M) thus
defined is diffeomorphic to M .]

If f is an immersion, f ∗ maps Tp M isomorphically to an m-dimensional
vector subspace of T f (p)N since rank f∗ = dim M . From theorem 2.1, we also
find ker f∗ = {0}. If f is an embedding, M is diffeomorphic to f (M). Examples
will clarify these rather technical points. Consider a map f : S1 → �2 in figure
5.11(a). It is an immersion since a one-dimensional tangent space of S1 is mapped
by f∗ to a subspace of T f (p)�2 . The image f (S1) is not a submanifold of�2 since
f is not an injection. The map g : S1 → �2 in figure 5.11(b) is an embedding and
g(S1) is a submanifold of �2 . Clearly, an embedding is an immersion although
the converse is not necessarily true. In the previous section, we occasionally
mentioned the embedding of Sn into �n+1 . Now this meaning is clear; if Sn is
embedded by f : Sn → �n+1 then Sn is diffeomorphic to f (Sn).

5.3 Flows and Lie derivatives

Let X be a vector field in M . An integral curve x(t) of X is a curve in M , whose
tangent vector at x(t) is X |x . Given a chart (U, ϕ), this means

dxµ

dt
= Xµ(x(t)) (5.39)

 



where xµ(t) is the µth component of ϕ(x(t)) and X = Xµ∂/∂xµ. Note the abuse
of the notation: x is used to denote a point in M as well as its coordinates. [For
later convenience we assume the point x(0) is included in U .] Put in another
way, finding the integral curve of a vector field X is equivalent to solving the
autonomous system of ordinary differential equations (ODEs) (5.39). The initial
condition xµ0 = xµ(0) corresponds to the coordinates of an integral curve at t = 0.
The existence and uniqueness theorem of ODEs guarantees that there is a unique
solution to (5.39), at least locally, with the initial data xµ0 . It may happen that
the integral curve is defined only on a subset of �, in which case we have to
pay attention so that the parameter t does not exceed the given interval. In the
following we assume that t is maximally extended. It is known that if M is a
compact manifold, the integral curve exists for all t ∈ �.

Let σ(t, x0) be an integral curve of X which passes a point x0 at t = 0 and
denote the coordinate by σµ(t, x0). Equation (5.39) then becomes

d

dt
σµ(t, x0) = Xµ(σ(t, x0)) (5.40a)

with the initial condition
σµ(0, x0) = xµ0 . (5.40b)

The map σ : � × M → M is called a flow generated by X ∈ �(M). A flow
satisfies the rule

σ(t, σµ(s, x0)) = σ(t + s, x0) (5.41)

for any s, t ∈ � such that both sides of (5.41) make sense. This can be seen from
the uniqueness of ODEs. In fact, we note that

d

dt
σµ(t, σµ(s, x0)) = Xµ(σ(t, σµ(s, x0)))

σ (0, σ (s, x0)) = σ(s, x0)

and

d

dt
σµ(t + s, x0) = d

d(t + s)
σµ(t + s, x0) = Xµ(σ(t + s, x0))

σ (0+ s, x0) = σ(s, x0).

Thus, both sides of (5.41) satisfy the same ODE and the same initial condition.
From the uniqueness of the solution, they should be the same. We have obtained
the following theorem.

Theorem 5.1. For any point x ∈ M , there exists a differentiable map σ : �×M →
M such that

(i) σ(0, x) = x ;
(ii) t 
→ σ(t, x) is a solution of (5.40a) and (5.40b); and

 



(iii) σ(t, σµ(s, x)) = σ(t + s, x).

[Note: We denote the initial point by x instead of x0 to emphasize that σ is a map
� × M → M .]

We may imagine a flow as a (steady) stream flow. If a particle is observed at
a point x at t = 0, it will be found at σ(t, x) at later time t .

Example 5.9. Let M = �2 and let X ((x, y)) = −y∂/∂x + x∂/∂y be a vector
field in M . It is easy to verify that

σ(t, (x, y)) = (x cos t − y sin t, x sin t + y cos t)

is a flow generated by X . The flow through (x, y) is a circle whose centre is at
the origin. Clearly, σ(t, (x, y)) = (x, y) if t = 2nπ, n ∈ �. If (x, y) = (0, 0),
the flow stays at (0, 0).

Exercise 5.7. Let M = �2 , and let X = y∂/∂x + x∂/∂y be a vector field in M .
Find the flow generated by X .

5.3.1 One-parameter group of transformations

For fixed t ∈ �, a flow σ(t, x) is a diffeomorphism from M to M , denoted by
σt : M → M . It is important to note that σt is made into a commutative group by
the following rules.

(i) σt (σs(x)) = σt+s(x), that is, σt ◦ σs = σt+s ;
(ii) σ0 = the identity map (= unit element); and
(iii) σ−t = (σt )

−1.

This group is called the one-parameter group of transformations. The
group locally looks like the additive group �, although it may not be isomorphic
to � globally. In fact, in example 5.9, σ2πn+t was the same map as σt and we find
that the one-parameter group is isomorphic to SO(2), the multiplicative group of
2× 2 real matrices of the form(

cos θ − sin θ
sin θ cos θ

)
or U(1), the multiplicative group of complex numbers of unit modulus eiθ .

Under the action of σε , with an infinitesimal ε, we find from (5.40a) and
(5.40b) that a point x whose coordinate is xµ is mapped to

σµε (x) = σµ(ε, x) = xµ + εXµ(x). (5.42)

The vector field X is called, in this context, the infinitesimal generator of the
transformation σt .

 



Given a vector field X , the corresponding flow σ is often referred to as the
exponentiation of X and is denoted by

σµ(t, x) = exp(t X)xµ. (5.43)

The name ‘exponentiation’ is justified as we shall see now. Let us take a parameter
t and evaluate the coordinate of a point which is separated from the initial point
x = σ(0, x) by the parameter distance t along the flow σ . The coordinate
corresponding to the point σ(t, x) is

σµ(t, x) = xµ + t
d

ds
σµ(s, x)

∣∣∣∣
s=0
+ t2

2!
(

d

ds

)2

σµ(s, x)

∣∣∣∣∣
s=0

+ · · ·

=
[

1+ t
d

ds
+ t2

2!
(

d

ds

)2

+ · · ·
]
σµ(s, x)

∣∣∣∣∣
s=0

≡ exp

(
t

d

ds

)
σµ(s, x)

∣∣∣∣
s=0
. (5.44)

The last expression can also be written as σµ(t, x) = exp(t X)xµ, as in (5.43).
The flow σ satisfies the following exponential properties.

(i) σ (0, x) = x = exp(0X)x (5.45a)

(ii)
dσ(t, x)

dt
= X exp(t X)x = d

dt
[exp(t X)x] (5.45b)

(iii) σ (t, σ (s, x)) = σ(t, exp(s X)x) = exp(t X) exp(s X)x

= exp{(t + s)X}x = σ(t + s, x). (5.45c)

5.3.2 Lie derivatives

Let σ(t, x) and τ (t, x) be two flows generated by the vector fields X and Y ,

dσµ(s, x)

ds
=Xµ(σ(s, x)) (5.46a)

dτµ(t, x)

dt
=Yµ(τ(t, x)). (5.46b)

Let us evaluate the change of the vector field Y along σ(s, x). To do this, we have
to compare the vector Y at a point x with that at a nearby point x ′ = σε(x),
see figure 5.12. However, we cannot simply take the difference between the
components of Y at two points since they belong to different tangent spaces
Tp M and Tσε(x)M; the naive difference between vectors at different points is
ill defined. To define a sensible derivative, we first map Y |σε(x) to Tx M by
(σ−ε)∗ : Tσε(x)M → Tx M , after which we take a difference between two vectors
(σ−ε)∗ Y |σε(x) and Y |x , both of which are vectors in Tx M . The Lie derivative of
a vector field Y along the flow σ of X is defined by

�X Y = lim
ε→0

1

ε
[(σ−ε)∗Y |σε(x) − Y |x ]. (5.47)

 



Figure 5.12. To compare a vector Y |x with Y |σε(x), the latter must be transported back to
x by the differential map (σ−ε)∗.

Exercise 5.8. Show that �X Y is also written as

�X Y = lim
ε→0

1

ε
[Y |x − (σε)∗Y |σ−ε(x)]

= lim
ε→0

1

ε
[Y |σε(x) − (σε)∗Y |x ].

Let (U, ϕ) be a chart with the coordinates x and let X = Xµ∂/∂xµ and
Y = Yµ∂/∂xµ be vector fields defined on U . Then σε(x) has the coordinates
xµ + εXµ(x) and

Y |σε(x) = Yµ(xν + εXν (x))eµ|x+εX

	 [Yµ(x)+ εXµ(x)∂νY
µ(x)]eµ|x+εX

where {eµ} = {∂/∂xµ} is the coordinate basis and ∂ν ≡ ∂/∂xν . If we map this
vector defined at σε(x) to x by (σ−ε)∗, we obtain

[Yµ(x)+ εXλ(x)∂λY
µ(x)]∂µ[xν − εXν(x)]eν |x

= [Yµ(x)+ εXλ(x)∂λY
µ(x)][δνµ − ε∂µXν(x)]eν |x

= Yµ(x)eµ|x + ε[Xµ(x)∂µY ν(x)− Yµ(x)∂µXν (x)]eν|x + O(ε2).

(5.48)

From (5.47) and (5.48), we find that

�X Y = (Xµ∂µY ν − Yµ∂µXν)eν . (5.49a)

 



Exercise 5.9. Let X = Xµ∂/∂xµ and Y = Yµ∂/∂xµ be vector fields in M .
Define the Lie bracket [X,Y ] by

[X,Y ] f = X [Y [ f ]] − Y [X [ f ]] (5.50)

where f ∈ �(M). Show that [X,Y ] is a vector field given by

(Xµ∂µY ν − Yµ∂µXν)eν .

This exercise shows that the Lie derivative of Y along X is

�X Y = [X,Y ]. (5.49b)

[Remarks: Note that neither XY nor Y X is a vector field since they are second-
order derivatives. The combination [X,Y ] is, however, a first-order derivative and
indeed a vector field.]

Exercise 5.10. Show that the Lie bracket satisfies

(a) bilinearity

[X, c1Y1 + c2Y2] = c1[X,Y1] + c2[X,Y2]
[c1 X1 + c2 X2,Y ] = c1[X1,Y ] + c2[X2,Y ]

for any constants c1 and c2,
(b) skew-symmetry

[X,Y ] = −[Y X]
(c) the Jacobi identity

[[X,Y ], Z ] + [[Z , X ],Y ] + [[Y, Z ], X ] = 0.

Exercise 5.11. (a) Let X,Y ∈ �(M) and f ∈ �(M). Show that

� f X Y = f [X,Y ] − Y [ f ]X (5.51a)

�X ( f Y ) = f [X,Y ] + X [ f ]Y. (5.51b)

(b) Let X,Y ∈ �(M) and f : M → N . Show that

f∗[X,Y ] = [ f∗X, f∗Y ]. (5.52)

Geometrically, the Lie bracket shows the non-commutativity of two flows.
This is easily observed from the following consideration. Let σ(s, x) and τ (t, x)
be two flows generated by vector fields X and Y , as before, see figure 5.13. If we
move by a small parameter distance ε along the flow σ first, then by δ along τ ,
we shall be at the point whose coordinates are

τµ(δ, σ (ε, x)) 	 τµ(δ, xν + εXν(x))

	 xµ + εXµ(x)+ δYµ(xν + εXν (x))

	 xµ + εXµ(x)+ δYµ(x)+ εδXν (x)∂νY
ν(x).

 



Figure 5.13. A Lie bracket [X,Y ]measures the failure of the closure of the parallelogram.

If, however, we move by δ along τ first, then by ε along σ , we will be at the point

σµ(ε, τ (δ, x)) 	 σµ(ε, xν + δY ν(x))
	 xµ + δYµ(x)+ εXµ(xν + δY ν(x))
	 xµ + δYµ(x)+ εXµ(x)+ εδY ν(x)∂νXµ(x).

The difference between the coordinates of these two points is proportional to the
Lie bracket,

τµ(δ, σ (ε, x))− σµ(ε, τ (δ, x)) = εδ[X,Y ]µ.
The Lie bracket of X and Y measures the failure of the closure of the
parallelogram in figure 5.13. It is easy to see �X Y = [X,Y ] = 0 if and only
if

σ(s, τ (t, x)) = τ (t, σ (s, x)). (5.53)

We may also define the Lie derivative of a one-form ω ∈ �1(M) along
X ∈ �(M) by

�Xω ≡ lim
ε→0

1

ε
[(σε)∗ω|σε(x) − ω|x ] (5.54)

where ω|x ∈ T ∗x M is ω at x . Put ω = ωµdxµ. Repeating a similar analysis as
before, we obtain

(σε)
∗ω|σε(x) = ωµ(x) dxµ + ε[Xν(x)∂νωµ(x)+ ∂µXν(x)ων(x)] dxµ

which leads to
�Xω = (Xν∂νωµ + ∂µXνων) dxµ. (5.55)

Clearly �Xω ∈ T ∗x (M), since it is a difference of two one-forms at the same point
x .

 



The Lie derivative of f ∈ �(M) along a flow σs generated by a vector field
X is

�X f ≡ lim
ε→0

1

ε
[ f (σε(x))− f (x)]

= lim
ε→0

1

ε
[ f (xµ + εXµ(x))− f (xµ)]

= Xµ(x)
∂ f

∂xµ
= X [ f ] (5.56)

which is the usual directional derivative of f along X .
The Lie derivative of a general tensor is obtained from the following

proposition.

Proposition 5.1. The Lie derivative satisfies

�X (t1 + t2) = �X t1 + �X t2 (5.57a)

where t1 and t2 are tensor fields of the same type and

�X (t1 ⊗ t2) = (�X t1)⊗ t2 + t1 ⊗ (�X t2) (5.57b)

where t1 and t2 are tensor fields of arbitrary types.

Proof. (a) is obvious. Rather than giving the general proof of (b), which is full
of indices, we give an example whose extension to more general cases is trivial.
Take Y ∈ �(M) and ω ∈ �1(M) and construct the tensor product Y ⊗ ω. Then
(Y ⊗ ω)|σε(x) is mapped onto a tensor at x by the action of (σ−ε)∗ ⊗ (σε)∗:

[(σ−ε)∗ ⊗ (σε)∗](Y ⊗ ω)|σε(x) = [(σ−ε)∗Y ⊗ (σε)∗ω]|x .
Then there follows (the Leibnitz rule):

�X (Y ⊗ ω) = lim
ε→0

1

ε
[{(σ−ε)∗Y ⊗ (σε)∗ω}|x − (Y ⊗ ω)|x ]

= lim
ε→0

1

ε
[(σ−ε)∗Y ⊗ {(σε)∗ω − ω} + {(σ−ε)∗Y − Y } ⊗ ω]

= Y ⊗ (�Xω)+ (�X Y )⊗ ω.
Extensions to more general cases are obvious. �

This proposition enables us to calculate the Lie derivative of a general tensor
field. For example, let t = tµν dxµ ⊗ eν ∈ � 1

1(M). Proposition 5.1 gives

�X t = X [tµν] dxµ ⊗ eν + tµ
ν(�X dxµ)⊗ eν + tµ

ν dxµ ⊗ (�X eν).

Exercise 5.12. Let t be a tensor field. Show that

�[X,Y ]t = �X�Y t − �Y�X t . (5.58)

 



5.4 Differential forms

Before we define differential forms, we examine the symmetry property of
tensors. The symmetry operation on a tensor ω ∈ � 0

r,p(M) is defined by

Pω(V1, . . . , Vr ) ≡ ω(VP(1), . . . , VP(r)) (5.59)

where Vi ∈ Tp M and P is an element of Sr , the symmetric group of order r .
Take the coordinate basis {eµ} = {∂/∂xµ}. The component of ω in this basis is

ω(eµ1 , eµ2, . . . , eµr ) = ωµ1µ2...µr .

The component of Pω is obtained from (5.59) as

Pω(eµ1 , eµ2 , . . . , eµr ) = ωµP(1)µP(2)...µP(r) .

For a general tensor of type (q, r), the symmetry operations are defined for q
indices and r indices separately.

For ω ∈ �0
r,p(M), the symmetrizer � is defined by

�ω = 1

r !
∑
P∈Sr

Pω (5.60)

while the anti-symmetrizer� is

�ω = 1

r !
∑
P∈Sr

sgn(P)Pω (5.61)

where sgn(P) = +1 for even permutations and −1 for odd permutations. �ω is
totally symmetric (that is, P�ω = �ω for any P ∈ Sr ) and �ω is totally anti-
symmetric (P�ω = sgn(P)�ω).

5.4.1 Definitions

Definition 5.4. A differential form of order r or an r-form is a totally anti-
symmetric tensor of type (0, r).

Let us define the wedge product ∧ of r one-forms by the totally anti-
symmetric tensor product

dxµ1∧dxµ2∧ . . .∧dxµr =
∑
P∈Sr

sgn(P) dxµP(1)∧dxµP(2)∧ . . .∧dxµP(r) . (5.62)

For example,

dxµ ∧ dxν = dxµ ⊗ dxν − dxν ⊗ dxµ

dxλ ∧ dxµ ∧ dxν = dxλ ⊗ dxµ ⊗ dxν + dxν ⊗ dxλ ⊗ dxµ

+ dxµ ⊗ dxν ⊗ dxλ − dxλ ⊗ dxν ⊗ dxµ

− dxν ⊗ dxµ ⊗ dxλ − dxµ ⊗ dxλ ⊗ dxν.

 



It is readily verified that the wedge product satisfies the following.

(i) dxµ1 ∧ . . .∧ dxµr = 0 if some index µ appears at least twice.
(ii) dxµ1 ∧ . . .∧ dxµr = sgn(P) dxµP(1) ∧ . . . ∧ dxµP(r) .
(iii) dxµ1 ∧ . . .∧ dxµr is linear in each dxµ.

If we denote the vector space of r -forms at p ∈ M by �r
p(M), the set of

r -forms (5.62) forms a basis of �r
p(M) and an element ω ∈ �r

p(M) is expanded
as

ω = 1

r !ωµ1µ2...µr dxµ1 ∧ dxµ2 ∧ . . .∧ dxµr (5.63)

where ωµ1µ2...µr are taken totally anti-symmetric, reflecting the anti-symmetry
of the basis. For example, the components of any second-rank tensor ωµν are
decomposed into the symmetric part σµν and the anti-symmetric part αµν :

σµν =ω(µν) ≡ 1
2 (ωµν + ωνµ) (5.64a)

αµν =ω[µν] ≡ 1
2 (ωµν − ωνµ). (5.64b)

Observe that σµν dxµ ∧ dxν = 0, while αµν dxµ ∧ dxν = ωµν dxµ ∧ dxν .
Since there are

(m
r

)
choices of the set (µ1, µ2, . . . , µr ) out of (1, 2, . . . ,m)

in (5.62), the dimension of the vector space �r
p(M) is(

m

r

)
= m!
(m − r)!r ! .

For later convenience we define �0
p(M) = �. Clearly �1

p(M) = T ∗p M . If
r in (5.62) exceeds m, it vanishes identically since some index appears at least
twice in the anti-symmetrized summation. The equality

(m
r

) = ( m
m−r

)
implies

dim�r
p(M) = dim�m−r

p (M). Since �r
p(M) is a vector space, �r

p(M) is
isomorphic to �m−r

p (M) (see section 2.2).

Define the exterior product of a q-form and an r -form ∧ : �q
p(M) ×

�r
p(M) → �

q+r
p (M) by a trivial extension. Let ω ∈ �q

p(M) and ξ ∈ �r
p(M),

for example. The action of the (q + r)-form ω ∧ ξ on q + r vectors is defined by

(ω ∧ ξ)(V1, . . . , Vq+r )

= 1

q!r !
∑

P∈Sq+r

sgn(P)ω(VP(1), . . . , VP(q))ξ(VP(q+1), . . . , VP(q+r))

(5.65)

where Vi ∈ Tp M . If q + r > m, ω ∧ ξ vanishes identically. With this product,
we define an algebra

�∗p(M) ≡ �0
p(M)⊕�1

p(M)⊕ . . .⊕�m
p (M). (5.66)

 



Table 5.1.

r -forms Basis Dimension

�0(M) = �(M) {1} 1
�1(M) = T ∗M {dxµ} m
�2(M) {dxµ1 ∧ dxµ2 } m(m − 1)/2
�3(M) {dxµ1 ∧ dxµ2 ∧ dxµ3 } m(m − 1)(m − 2)/6
..
.

..

.
..
.

�m (M) {dx1 ∧ dx2 ∧ . . . dxm } 1

�∗p(M) is the space of all differential forms at p and is closed under the exterior
product.

Exercise 5.13. Take the Cartesian coordinates (x, y) in �2 . The two-form dx∧dy
is the oriented area element (the vector product in elementary vector algebra).
Show that, in polar coordinates, this becomes rdr ∧ dθ .

Exercise 5.14. Let ξ ∈ �q
p(M), η ∈ �r

p(M) and ω ∈ �s
p(M). Show that

ξ ∧ ξ = 0 if q is odd (5.67a)

ξ ∧ η = (−1)qrη ∧ ξ (5.67b)

(ξ ∧ η) ∧ ω = ξ ∧ (η ∧ ω). (5.67c)

We may assign an r -form smoothly at each point on a manifold M . We
denote the space of smooth r -forms on M by �r (M). We also define �0(M) to
be the algebra of smooth functions, �(M). In summary we have table 5.1.

5.4.2 Exterior derivatives

Definition 5.5. The exterior derivative dr is a map �r (M) → �r+1(M) whose
action on an r -form

ω = 1

r !ωµ1...µr dxµ1 ∧ . . .∧ dxµr

is defined by

drω = 1

r !
(
∂

∂xν
ωµ1...µr

)
dxν ∧ dxµ1 ∧ . . .∧ dxµr . (5.68)

It is common to drop the subscript r and write simply d. The wedge product
automatically anti-symmetrizes the coefficient.

 



Example 5.10. The r -forms in three-dimensional space are:

(i) ω0 = f (x, y, z),
(ii) ω1 = ωx(x, y, z) dx + ωy(x, y, z) dy + ωz(x, y, z) dz,
(iii) ω2 = ωxy(x, y, z) dx ∧ dy+ωyz(x, y, z) dy∧ dz+ωzx(x, y, z) dz ∧ dx
and

(iv) ω3 = ωxyz(x, y, z) dx ∧ dy ∧ dz.

If we define an axial vector αµ by εµνλωνλ, a two-form may be regarded as a
‘vector’. The Levi-Civita symbol εµνλ is defined by εP(1)P(2)P(3) = sgn(P) and
provides the isomorphism between �(M) and �2(M). [Note that both of these
are of dimension three.]

The action of d is

(i) dω0 = ∂ f

∂x
dx + ∂ f

∂y
dy + ∂ f

∂z
dz,

(ii) dω1 =
(
∂ωy

∂x
− ∂ωx

∂y

)
dx ∧ dy +

(
∂ωz

∂y
− ∂ωy

∂z

)
dy ∧ dz

+
(
∂ωx

∂z
− ∂ωz

∂x

)
dz ∧ dx ,

(iii) dω2 =
(
∂ωyz

∂x
+ ∂ωzx

∂y
+ ∂ωxy

∂z

)
dx ∧ dy ∧ dz and

(iv) dω3 = 0.

Hence, the action of d on ω0 is identified with ‘grad’, on ω1 with ‘rot’ and on ω2
with ‘div’ in the usual vector calculus.

Exercise 5.15. Let ξ ∈ �q(M) and ω ∈ �r (M). Show that

d(ξ ∧ ω) = dξ ∧ ω + (−1)qξ ∧ dω. (5.69)

A useful expression for the exterior derivative is obtained as follows. Let us
take X = Xµ∂/∂xµ,Y = Y ν∂/∂xν ∈ �(M) and ω = ωµ dxµ ∈ �1(M). It is
easy to see that the combination

X [ω(Y )] − Y [ω(X)] − ω([X,Y ]) = ∂ωµ

∂xν
(XνYµ − XµY ν)

is equal to dω(X,Y ), and we have the coordinate-free expression

dω (X,Y ) = X [ω(Y )] − Y [ω(X)] − ω([X,Y ]). (5.70)

For an r -form ω ∈ �r (M), this becomes

dω (X1, . . . , Xr+1)

=
r∑

i=1

(−1)i+1 Xiω(X1, . . . , X̂i , . . . , Xr+1)

+
∑
i< j

(−1)i+ jω([Xi , X j ], X1, . . . , X̂i , . . . , X̂ j , . . . , Xr+1) (5.71)

 



where the entry below ˆ has been omitted. As an exercise, the reader should
verify (5.71) explicitly for r = 2.

We now prove an important formula:

d2 = 0 (or dr+1 dr = 0). (5.72)

Take

ω = 1

r !ωµ1...µr dxµ1 ∧ . . . ∧ dxµr ∈ �r (M).

The action of d2 on ω is

d2ω = 1

r !
∂2ωµ1...µr

∂xλ∂xν
dxλ ∧ dxν ∧ dxµ1 ∧ . . . ∧ dxµr .

This vanishes identically since ∂2ωµ1...µr /∂xλ∂xν is symmetric with respect to λ
and ν while dxλ ∧ dxν is anti-symmetric.

Example 5.11. It is known that the electromagnetic potential A = (φ, A) is a
one-form, A = Aµdxµ (see chapter 10). The electromagnetic tensor is defined
by F = dA and has the components

0 −Ex −Ey −Ex

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0

 (5.73)

where

E = −∇φ − ∂

∂x0
A and B = ∇ × A

as usual. Two Maxwell equations, ∇ · B = 0 and ∂B/∂ t = −∇ × E follow from
the identity dF = d(dA) = 0, which is known as the Bianchi identity, while the
other set is the equation of motion derived from the Lagrangian (1.245).

A map f : M → N induces the pullback f ∗ : T ∗f (p)N → T ∗p M and
f ∗ is naturally extended to tensors of type (0, r); see section 5.2. Since an
r -form is a tensor of type (0, r), this applies as well. Let ω ∈ �r (N) and
let f be a map M → N . At each point f (p) ∈ N , f induces the pullback
f ∗ : �r

f (p)N → �r
p M by

( f ∗ω)(X1, . . . , Xr ) ≡ ω( f∗X1, . . . , f∗Xr ) (5.74)

where Xi ∈ Tp M and f∗ is the differential map Tp M → T f (p)N .

Exercise 5.16. Let ξ, ω ∈ �r (N) and let f : M → N . Show that

d ( f ∗ω) = f ∗(dω) (5.75)

f ∗(ξ ∧ ω) = ( f ∗ξ) ∧ ( f ∗ω). (5.76)

 



The exterior derivative dr induces the sequence

0
i−→ �0(M)

d0−→ �1(M)
d1−→ · · · dm−2−→ �m−1(M)

dm−1−→ �m(M)
dm−→ 0 (5.77)

where i is the inclusion map 0 ↪→ �0(M). This sequence is called the de Rham
complex. Since d2 = 0, we have im dr ⊂ ker dr+1. [Take ω ∈ �r (M). Then
drω ∈ im dr and dr+1(drω) = 0 imply drω ∈ ker dr+1.] An element of ker dr is
called a closed r-form, while an element of im dr−1 is called an exact r-form.
Namely, ω ∈ �r (M) is closed if dω = 0 and exact if there exists an (r − 1)-form
ψ such that ω = dψ . The quotient space ker dr/ im dr−1 is called the r th de
Rham cohomology group which is made into the dual space of the homology
group; see chapter 6.

5.4.3 Interior product and Lie derivative of forms

Another important operation is the interior product iX : �r (M) → �r−1(M),
where X ∈ �(M). For ω ∈ �r (M), we define

iXω(X1, . . . , Xr−1) ≡ ω(X, X1, . . . , Xr−1). (5.78)

For X = Xµ∂/∂xµ and ω = (1/r !)ωµ1...µr dxµ1 ∧ . . . ∧ dxµr we have

iXω = 1

(r − 1)!X
νωνµ2...µr dxµ2 ∧ . . . ∧ dxµr

= 1

r !
r∑

s=1

Xµsωµ1...µs ...µr (−1)s−1 dxµ1 ∧ . . . ∧ d̂xµs ∧ . . . ∧ dxµr

(5.79)

where the entry below ˆ has been omitted. For example, let (x, y, z) be the
coordinates of �3 . Then

iex (dx ∧ dy) = dy, iex (dy ∧ dz) = 0, iex (dz ∧ dx) = −dz.

The Lie derivative of a form is most neatly written with the interior product.
Let ω = ωµdxµ be a one-form. Consider the combination

(diX + iX d)ω = d (Xµωµ)+ iX [ 1
2 (∂µων − ∂νωµ) dxµ ∧ dxν]

= (ωµ∂νXµ + Xµ∂νωµ) dxν + Xµ(∂µων − ∂νωµ) dxν

= (ωµ∂νXµ + Xµ∂µων) dxν.

Comparing this with (5.55), we find that

�Xω = (diX + iX d)ω. (5.80)

 



For a general r -form ω = (1/r !)ωµ1...µr dxµ1 ∧ . . .∧ dxµr , we have

�Xω = lim
ε→0

1

ε
((σε)

∗ω|σε(x) − ω|x )

= Xν
1

r !∂νωµ1...µr dxµ1 ∧ . . . ∧ dxµr

+
r∑

s=1

∂µs Xν
1

r !ωµ1...

s
↓
ν...µr dxµ1 ∧ . . . ∧ dxµr . (5.81)

We also have

(diX + iX d)ω

= 1

r !
r∑

s=1

[∂νXµsωµ1...µs ...µr + Xµs ∂νωµ1...µs ...µr ]

× (−1)s−1 dxν ∧ dxµ1 ∧ . . . ∧ d̂xµs ∧ dxµr

+ 1

r ! [X
ν∂νωµ1...µr dxµ1 ∧ . . . ∧ dxµr

+
r∑

s=1

Xµsωµ1...µs ...µr (−1)s dxν ∧ dxµ1 ∧ . . .∧ d̂xµs ∧ . . .∧ dxµr ]

= 1

r !
r∑

s=1

[∂νXµsωµ1...µs ...µr (−1)s−1 dxν ∧ dxµ1 ∧ . . . ∧ d̂xµs ∧ . . . ∧ dxµr

+ 1

r ! X
ν∂νωµ1...µr dxµ1 ∧ . . .∧ dxµr .

If we interchange the roles of µs and ν in the first term of the last expression and
compare it with (5.81), we verify that

(diX + iX d)ω = �Xω (5.82)

for any r -form ω.

Exercise 5.17. Let X,Y ∈ �(M) and ω ∈ �r (M). Show that

i[X,Y ]ω = X (iYω)− Y (iXω). (5.83)

Show also that iX is an anti-derivation,

iX (ω ∧ η) = iXω ∧ η + (−1)rω ∧ iXη (5.84)

and nilpotent,
i2X = 0. (5.85)

Use the nilpotency to prove

�X iXω = iX�Xω. (5.86)

 



Exercise 5.18. Let t ∈ �n
m(M). Show that

(�X t)µ1...µn
ν1...νm

= Xλ∂λt
µ1...µn
ν1...νm

+
n∑

s=1

∂νs Xλtµ1...µn
ν1...λ...νm

−
n∑

s=1

∂λXµs tµ1...λ...µn
ν1...νm

. (5.87)

Example 5.12. Let us reformulate Hamiltonian mechanics (section 1.1) in terms
of differential forms. Let H be a Hamiltonian and (qµ, pµ) be its phase space.
Define a two-form

ω = d pµ ∧ dqµ (5.88)

called the symplectic two-form. If we introduce a one-form

θ = qµ d pµ, (5.89)

the symplectic two-form is expressed as

ω = dθ. (5.90)

Given a function f (q, p) in the phase space, one can define the Hamiltonian
vector field

X f = ∂ f

∂pµ

∂

∂qµ
− ∂ f

∂qµ
∂

∂pµ
. (5.91)

Then it is easy to verify that

iX f ω = −
∂ f

∂pµ
d pµ − ∂ f

∂qµ
dqµ = −d f.

Consider a vector field generated by the Hamiltonian

X H = ∂H

∂pµ

∂

∂qµ
− ∂H

∂qµ
∂

∂pµ
. (5.92)

For the solution (qµ, pµ) to Hamilton’s equation of motion

dqµ

dt
= ∂H

∂pµ

d pµ
dt

= − ∂H

∂qµ
, (5.93)

we also obtain

X H = d pµ
dt

∂

∂pµ

dqµ

dt

∂

∂qµ
= d

dt
. (5.94)

The symplectic two-form ω is left invariant along the flow generated by X H ,

�X Hω = d(iX Hω)+ iX H (dω)

= d(iX Hω) = −d2 H = 0 (5.95)

where use has been made of (5.82). Conversely, if X satisifes �Xω = 0, there
exists a Hamiltonian H such that Hamilton’s equation of motion is satisfied

 



along the flow generated by X . This follows from the previous observation that
�Xω = d(iXω) = 0 and hence by Poincaré’s lemma, there exists a function
H (q, p) such that

iXω = −dH.

The Poisson bracket is cast into a form independent of the special coordinates
chosen with the help of the Hamiltonian vector fields. In fact,

iX f (iXgω) = −iX f (dg) = ∂ f

∂qµ
∂g

∂pµ
− ∂ f

∂qµ
∂g

∂pµ
= [ f, g]PB. (5.96)

5.5 Integration of differential forms

5.5.1 Orientation

An integration of a differential form over a manifold M is defined only when
M is ‘orientable’. So we first define an orientation of a manifold. Let M be
a connected m-dimensional differentiable manifold. At a point p ∈ M , the
tangent space Tp M is spanned by the basis {eµ} = {∂/∂xµ}, where xµ is the
local coordinate on the chart Ui to which p belongs. Let U j be another chart such
that Ui ∩U j �= ∅ with the local coordinates yα. If p ∈ Ui ∩U j , Tp M is spanned
by either {eµ} or {̃eα} = {∂/∂yα}. The basis changes as

ẽα =
(
∂xµ

∂yα

)
eµ. (5.97)

If J = det(∂xµ/∂yα) > 0 on Ui ∩ U j , {eµ} and {̃eα} are said to define the same
orientation on Ui ∩U j and if J < 0, they define the opposite orientation.

Definition 5.6. Let M be a connected manifold covered by {Ui }. The manifold
M is orientable if, for any overlapping charts Ui and U j , there exist local
coordinates {xµ} for Ui and {yα} for U j such that J = det(∂xµ/∂yα) > 0.

If M is non-orientable, J cannot be positive in all intersections of charts.
For example, the Möbius strip in figure 5.14(a) is non-orientable since we have
to choose J to be negative in the intersection B.

If an m-dimensional manifold M is orientable, there exists an m-form ω

which vanishes nowhere. This m-form ω is called a volume element, which
plays the role of a measure when we integrate a function f ∈ �(M) over M .
Two volume elements ω and ω′ are said to be equivalent if there exists a strictly
positive function h ∈ �(M) such that ω = hω′. A negative-definite function
h′ ∈ �(M) gives an inequivalent orientation to M . Thus, any orientable manifold
admits two inequivalent orientations, one of which is called right handed, the
other left handed. Take an m-form

ω = h(p) dx1 ∧ . . . ∧ dxm (5.98)

 



Figure 5.14. (a) The Möbius strip is obtained by twisting the part B′ of the second
strip by π before pasting A with A′ and B with B′. The coordinate change on B is
y1 = x1, y2 = −x2 and the Jacobian is −1. (b) Basis frames on the Möbius strip.

with a positive-definite h(p) on a chart (U, ϕ) whose coordinate is x = ϕ(p).
If M is orientable, we may extend ω throughout M such that the component
h is positive definite on any chart Ui . If M is orientable, this ω is a volume
element. Note that this positivity of h is independent of the choice of coordinates.
In fact, let p ∈ Ui ∩ U j �= ∅ and let xµ and yα be the coordinates of Ui and U j ,
respectively. Then (5.98) becomes

ω = h(p)
∂x1

∂yµ1
dyµ1 ∧ . . . ∧ ∂xm

∂yµm
dyµm = h(p) det

(
∂xµ

∂yν

)
dy1 ∧ . . .∧ dym.

(5.99)
The determinant in (5.99) is the Jacobian of the coordinate transformation and
must be positive by assumed orientability. If M is non-orientable, ω with a
positive-definite component cannot be defined on M . Let us look at figure 5.14
again. If we circumnavigate the strip along the direction shown in the figure,
ω = dx ∧ dy changes the signature dx ∧ dy → −dx ∧ dy when we come back to
the starting point. Hence, ω cannot be defined uniquely on M .

5.5.2 Integration of forms

Now we are ready to define an integration of a function f : M → � over an
orientable manifold M . Take a volume element ω. In a coordinate neighbourhood
Ui with the coordinate x , we define the integration of an m-form f ω by∫

Ui

f ω ≡
∫
ϕ(Ui )

f (ϕ−1
i (x))h(ϕ−1

i (x)) dx1 . . . dxm. (5.100)

 



The RHS is an ordinary multiple integration of a function of m variables. Once
the integral of f over Ui is defined, the integral of f over the whole of M is given
with the help of the ‘partition of unity’ defined now.

Definition 5.7. Take an open covering {Ui } of M such that each point of M is
covered with a finite number of Ui . [If this is always possible, M is called
paracompact, which we assume to be the case.] If a family of differentiable
functions εi (p) satisfies

(i) 0 ≤ εi (p) ≤ 1
(ii) εi(p) = 0 if p /∈ Ui and
(iii) ε1(p)+ ε2(p)+ . . . = 1 for any point p ∈ M

the family {ε(p)} is called a partition of unity subordinate to the covering {Ui }.
From condition (iii), it follows that

f (p) =
∑

i

f (p)εi(p) =
∑

i

fi (p) (5.101)

where fi (p) ≡ f (p)εi (p) vanishes outside Ui by (ii). Hence, given a point
p ∈ M , assumed paracompactness ensures that there are only finite terms in the
summation over i in (5.101). For each fi (p), we may define the integral over Ui

according to (5.100). Finally the integral of f on M is given by∫
M

f ω ≡
∑

i

∫
Ui

fiω. (5.102)

Although a different atlas {(Vi , ψi )} gives different coordinates and a different
partition of unity, the integral defined by (5.102) remains the same.

Example 5.13. Let us take the atlas of S1 defined in example 5.2. Let U1 =
S1 − {(1, 0)}, U2 = S1 − {(−1, 0)}, ε1(θ) = sin2(θ/2) and ε2(θ) = cos2(θ/2).
The reader should verify that {εi(θ)} is a partition of unity subordinate to {Ui }.
Let us integrate a function f = cos2 θ , for example. [Of course we know∫ 2π

0
dθ cos2 θ = π

but let us use the partition of unity.] We have∫
S1

dθ cos2 θ =
∫ 2π

0
dθ sin2 θ

2
cos2 θ +

∫ π

−π
dθ cos2 θ

2
cos2 θ

= 1
2π + 1

2π = π.
So far, we have left h arbitrary provided it is strictly positive. The reader

might be tempted to choose h to he unity. However, as we found in (5.99), h
is multiplied by the Jacobian under the change of coordinates and there is no
canonical way to single out the component h; unity in one coordinate might not
be unity in the other. The situation changes if the manifold is endowed with a
metric, as we will see in chapter 7.

 



5.6 Lie groups and Lie algebras

A Lie group is a manifold on which the group manipulations, product and inverse,
are defined. Lie groups play an extremely important role in the theory of fibre
bundles and also find vast applications in physics. Here we will work out the
geometrical aspects of Lie groups and Lie algebras.

5.6.1 Lie groups

Definition 5.8. A Lie group G is a differentiable manifold which is endowed with
a group structure such that the group operations

(i) · : G × G → G, (g1, g2) 
→ g1 · g2
(ii) −1 : G → G, g 
→ g−1

are differentiable. [Remark: It can be shown that G has a unique analytic structure
with which the product and the inverse operations are written as convergent power
series.]

The unit element of a Lie group is written as e. The dimension of a Lie group
G is defined to be the dimension of G as a manifold. The product symbol may be
omitted and g1 ·g2 is usually written as g1g2. For example, let �∗ ≡ �−{0}. Take
three elements x, y, z ∈ �∗ such that xy = z. Obviously if we multiply a number
close to x by a number close to y, we have a number close to z. Similarly, an
inverse of a number close to x is close to 1/x . In fact, we can differentiate these
maps with respect to the relevant arguments and �∗ is made into a Lie group with
these group operations. If the product is commutative, namely g1g2 = g2g1, we
often use the additive symbol+ instead of the product symbol.

Exercise 5.19.

(a) Show that �+ = {x ∈ �|x > 0} is a Lie group with respect to
multiplication.

(b) Show that � is a Lie group with respect to addition.
(c) Show that �2 is a Lie group with respect to addition defined by (x1, y1)+
(x2, y2) = (x1 + x2, y1 + y2).

Example 5.14. Let S1 be the unit circle on the complex plane,

S1 = {eiθ |θ ∈ � (mod 2π)}.
The group operations defined by eiθeiϕ = ei(θ+ϕ) and (eiθ )−1 = e−iθ are
differentiable and S1 is made into a Lie group, which we call U(1). It is easy
to see that the group operations are the same as those in exercise 5.19(b)modulo
2π .

Of particular interest in physical applications are the matrix groups which
are subgroups of general linear groups GL(n,�) or GL(n, � ). The product of

 



elements is simply the matrix multiplication and the inverse is given by the matrix
inverse. The coordinates of GL(n,�) are given by n2 entries of M = {xi j }.
GL(n,�) is a non-compact manifold of real dimension n2.

Interesting subgroups of GL(n,�) are the orthogonal group O(n), the
special linear group SL(n,�) and the special orthogonal group SO(n):

O(n) = {M ∈ GL(n,�)|M M t = M t M = In} (5.103)

SL(n,�) = {M ∈ GL(n,�)| det M = 1} (5.104)

SO(n) = O(n) ∩ SL(n,�) (5.105)

where t denotes the transpose of a matrix. In special relativity, we are familiar
with the Lorentz group

O(1, 3) = {M ∈ GL(4,�)|MηMt = η}
where η is the Minkowski metric, η = diag(−1, 1, 1, 1). Extension to higher-
dimensional spacetime is trivial.

Exercise 5.20. Show that the group O(1, 3) is non-compact and has four
connected components according to the sign of the determinant and the sign of the
(0, 0) entry. The component that contains the unit matrix is denoted by O↑+(1, 3).

The group GL(n, � ) is the set of non-singular linear transformations in � n ,
which are represented by n × n non-singular matrices with complex entries. The
unitary group U(n), the special linear group SL(n, � ) and the special unitary
group SU(n) are defined by

U(n) = {M ∈ GL(n, � )|M M† = M† M = 1} (5.106)

SL(n, � ) = {M ∈ GL(n, � )| det M = 1} (5.107)

SU(n) = U(n) ∩ SL(n, � ) (5.108)

where † is the Hermitian conjugate.
So far we have just mentioned that the matrix groups are subgroups of a Lie

group GL(n,�) (or GL(n, � )). The following theorem guarantees that they are
Lie subgroups, that is, these subgroups are Lie groups by themselves. We accept
this important (and difficult to prove) theorem without proof.

Theorem 5.2. Every closed subgroup H of a Lie group G is a Lie subgroup.

For example, O(n), SL(n,�) and SO(n) are Lie subgroups of GL(n,�). To
see why SL(n,�) is a closed subgroup, consider a map f : GL(n,�) → �
defined by A 
→ det A. Obviously f is a continuous map and f −1(1) =
SL(n,�). A point {1} is a closed subset of �, hence f −1(1) is closed in GL(n,�).
Then theorem 5.2 states that SL(n,�) is a Lie subgroup. The reader should verify
that O(n) and SO(n) are also Lie subgroups of GL(n,�).

 



Let G be a Lie group and H a Lie subgroup of G. Define an equivalence
relation ∼ by g ∼ g′ if there exists an element h ∈ H such that g′ = gh. An
equivalence class [g] is a set {gh|h ∈ H }. The coset space G/H is a manifold (not
necessarily a Lie group) with dim G/H = dim G−dim H . G/H is a Lie group if
H is a normal subgroup of G, that is, if ghg−1 ∈ H for any g ∈ G and h ∈ H . In
fact, take equivalence classes [g], [g′] ∈ G/H and construct the product [g][g′].
If the group structure is well defined in G/H , the product must be independent
of the choice of the representatives. Let gh and g′h′ be the representatives of [g]
and [g′] respectively. Then ghg′h′ = gg′h′′h′ ∈ [gg′] where the equality follows
since there exists h′′ ∈ H such that hg′ = g′h′′. It is left as an exercise to the
reader to show that [g]−1 is also a well defined operation and [g]−1 = [g−1].

5.6.2 Lie algebras

Definition 5.9. Let a and g be elements of a Lie group G. The right-translation
Ra : G → G and the left-translation La : G → G of g by a are defined by

Ra g =ga (5.109a)

La g =ag. (5.109b)

By definition, Ra and La are diffeomorphisms from G to G. Hence, the
maps La : G → G and Ra : G → G induce La∗ : TgG → TagG and
Ra∗ : TgG → TgaG; see section 5.2. Since these translations give equivalent
theories, we are concerned mainly with the left-translation in the following. The
analysis based on the right-translation can be carried out in a similar manner.

Given a Lie group G, there exists a special class of vector fields characterized
by an invariance under group action. [On the usual manifold there is no canonical
way of discriminating some vector fields from the others.]

Definition 5.10. Let X be a vector field on a Lie group G. X is said to be a left-
invariant vector field if La∗X |g = X |ag.

Exercise 5.21. Verify that a left-invariant vector field X satisfies

La∗X |g = Xµ(g)
∂xν(ag)

∂xµ(g)

∂

∂xν

∣∣∣∣
ag
= Xν(ag)

∂

∂xν

∣∣∣∣
ag

(5.110)

where xµ(g) and xµ(ag) are coordinates of g and ag, respectively.

A vector V ∈ TeG defines a unique left-invariant vector field XV throughout
G by

XV |g = Lg∗V g ∈ G. (5.111)

In fact, we verify from (5.34) that XV |ag = Lag∗V = (La Lg)∗V = La∗Lg∗V =
La∗XV |g . Conversely, a left-invariant vector field X defines a unique vector
V = X |e ∈ TeG. Let us denote the set of left-invariant vector fields on G by

 



�. The map TeG → � defined by V 
→ XV is an isomorphism and it follows
that the set of left-invariant vector fields is a vector space isomorphic to TeG. In
particular, dim � = dim G.

Since � is a set of vector fields, it is a subset of �(G) and the Lie bracket
defined in section 5.3 is also defined on �. We show that � is closed under the
Lie bracket. Take two points g and ag = La g in G. If we apply La∗ to the Lie
bracket [X,Y ] of X,Y ∈ �, we have

La∗[X,Y ]|g = [La∗X |g, La∗Y |g] = [X,Y ]|ag (5.112)

where the left-invariances of X and Y and (5.52) have been used. Thus, [X,Y ] ∈
�, that is � is closed under the Lie bracket.

It is instructive to work out the left-invariant vector field of GL(n,�). The
coordinates of GL(n,�) are given by n2 entries xi j of the matrix. The unit
element is e = In = (δi j ). Let g = {xi j (g)} and a = {xi j (a)} be elements
of GL(n,�). The left-translation is

Lag = ag =
∑

xik(a)xkj (g).

Take a vector V =∑
V ij ∂/∂xi j |e ∈ TeG where the V ij are the entries of V . The

left-invariant vector field generated by V is

XV |g = Lg∗V =
∑

i j klm

V i j ∂

∂xi j

∣∣∣∣
e

xkl(g)xlm(e)
∂

∂xkm

∣∣∣∣
g

=
∑

V ij xkl(g)δl
iδ

m
j

∂

∂xkm

∣∣∣∣
g

=
∑

xki (g)V ij ∂

∂xkj

∣∣∣∣
g
=

∑
(gV )kj ∂

∂xkj

∣∣∣∣
g

(5.113)

where gV is the usual matrix multiplication of g and V . The vector XV |g is often
abbreviated as gV since it gives the components of the vector.

The Lie bracket of XV and XW generated by V = V ij ∂/∂xi j |e and W =
W ij ∂/∂xi j |e is

[XV , XW ]|g =
∑

xki (g)V ij ∂

∂xkj

∣∣∣∣
g

xca(g)W ab ∂

∂xcb

∣∣∣∣
g
− (V ↔ W )

=
∑

xi j (g)[V jkW kl −W jk V kl ] ∂

∂xil

∣∣∣∣
g

=
∑

(g[V ,W ])i j ∂

∂xi j

∣∣∣∣
g
. (5.114)

Clearly, (5.113) and (5.114) remain true for any matrix group and we establish
that

Lg∗V = gV (5.115)

[XV , XW ]|g = Lg∗[V ,W ] = g[V ,W ]. (5.116)

 



Now a Lie algebra is defined as the set of left-invariant vector fields � with
the Lie bracket.

Definition 5.11. The set of left-invariant vector fields � with the Lie bracket
[ , ] : �× �→ � is called the Lie algebra of a Lie group G.

We denote the Lie algebra of a Lie group by the corresponding lower-case
German gothic letter. For example ��(n) is the Lie algebra of SO(n).

Example 5.15.

(a) Take G = � as in exercise 5.19(b). If we define the left translation La by
x 
→ x + a, the left-invariant vector field is given by X = ∂/∂x . In fact,

La∗X

∣∣∣∣
x
= ∂(a + x)

∂x

∂

∂(a + x)
= ∂

∂(x + a)
= X

∣∣∣∣
x+a
.

Clearly this is the only left-invariant vector field on �. We also find that
X = ∂/∂θ is the unique left-invariant vector field on G = SO(2) = {eiθ |0 ≤
θ ≤ 2π}. Thus, the Lie groups � and SO(2) share the common Lie algebra.

(b) Let ��(n,�) be the Lie algebra of GL(n,�) and c : (−ε, ε)→ GL(n,�)
be a curve with c(0) = In . The curve is approximated by c(s) = In + s A +
O(s2) near s = 0, where A is an n × n matrix of real entries. Note that
for small enough s, det c(s) cannot vanish and c(s) is, indeed, in GL(n,�).
The tangent vector to c(s) at In is c′(s)

∣∣
s=0 = A. This shows that ��(n,�)

is the set of n × n matrices. Clearly dim ��(n,�) = n2 = dim GL(n,�).
Subgroups of GL(n,�) are more interesting.

(c) Let us find the Lie algebra ��(n,�) of SL(n,�). Following this
prescription, we approximate a curve through In by c(s) = In+s A+O(s2).
The tangent vector to c(s) at In is c′(s)

∣∣
s=0 = A. Now, for the curve c(s) to

be in SL(n,�), c(s) has to satisfy det c(s) = 1+ strA = 1, namely tr A = 0.
Thus, ��(n,�) is the set of n×n traceless matrices and dim ��(n,�) = n2−1.

(d) Let c(s) = In + s A + O(s2) be a curve in SO(n) through In . Since
c(s) is a curve in SO(n), it satisfies c(s)tc(s) = In . Differentiating this
identity, we obtain c′(s)tc(s) + c(s)tc′(s) = 0. At s = 0, this becomes
At + A = 0. Hence, ��(n) is the set of skew-symmetric matrices. Since
we are interested only in the vicinity of the unit element, the Lie algebra
of O(n) is the same as that of SO(n): �(n) = ��(n). It is easy to see that
dim �(n) = dim ��(n) = n(n − 1)/2.

(e) A similar analysis can be carried out for matrix groups of GL(n, � ).
��(n, � ) is the set of n×n matrices with complex entries and dim ��(n, � ) =
2n2 (the dimension here is a real dimension). ��(n, � ) is the set of traceless
matrices with real dimension 2(n2 − 1). To find �(n), we consider a
curve c(s) = In + s A + O(s2) in U(n). Since c(s)†c(s) = In , we
have c′(s)†c(s) + c(s)†c′(s) = 0. At s = 0, we have A† + A = 0.

 



Hence, �(n) is the set of skew-Hermitian matrices with dim �(n) = n2.
��(n) = �(n) ∩ ��(n) is the set of traceless skew-Hermitian matrices with
dim ��(n) = n2 − 1.

Exercise 5.22. Let

c(s) =
 cos s − sin s 0

sin s cos s 0
0 0 1


be a curve in SO(3). Find the tangent vector to this curve at I3.

5.6.3 The one-parameter subgroup

A vector field X ∈ �(M) generates a flow in M (section 5.3). Here we are
interested in the flow generated by a left-invariant vector field.

Definition 5.12. A curve φ : � → G is called a one-parameter subgroup of G
if it satisfies the condition

φ(t)φ(s) = φ(t + s). (5.117)

It is easy to see that φ(0) = e and φ−1(t) = φ(−t). Note that the curve φ
thus defined is a homomorphism from � to G. Although G may be non-Abelian,
a one-parameter subgroup is an Abelian subgroup: φ(t)φ(s) = φ(t + s) =
φ(s + t) = φ(s)φ(t).

Given a one-parameter subgroup φ : � → G, there exists a vector field X ,
such that

dφµ (t)

dt
= Xµ(φ(t)). (5.118)

We now show that the vector field X is left-invariant. First note that the vector
field d/dt is left-invariant on �, see example 5.15(a). Thus, we have

(Lt )∗
d

dt

∣∣∣∣
0
= d

dt

∣∣∣∣
t
. (5.119)

Next, we apply the induced map φ∗ : Tt� → Tφ(t)G on the vectors d/dt|0 and
d/dt|t ,

φ∗
d

dt

∣∣∣∣
0
= dφµ(t)

dt

∣∣∣∣
0

∂

∂gµ

∣∣∣∣
e
= X |e (5.120a)

φ∗
d

dt

∣∣∣∣
t
= dφµ(t)

dt

∣∣∣∣
t

∂

∂gµ

∣∣∣∣
g
= X |g (5.120b)

where we put φ(t) = g. From (5.119) and (5.120b), we have

(φLt )∗
d

dt

∣∣∣∣
0
= φ∗Lt∗

d

dt

∣∣∣∣
0
= X |g . (5.121a)

 



It follows from the commutativity φLt = Lgφ that φ∗Lt∗ = Lg∗φ∗. Then
(5.121a) becomes

φ∗Lt∗
d

dt

∣∣∣∣
0
= Lg∗φ∗

d

dt

∣∣∣∣
0
= Lg∗X |e. (5.121b)

From (5.121), we conclude that

Lg∗X |e = X |g . (5.122)

Thus, given a flow φ(t), there exists an associated left-invariant vector field
X ∈ �.

Conversely, a left-invariant vector field X defines a one-parameter group of
transformations σ(t, g) such that dσ(t, g)/dt = X and σ(0, g) = g. If we define
φ : � → G by φ(t) ≡ σ(t, e), the curve φ(t) becomes a one-parameter subgroup
of G. To prove this, we have to show φ(s + t) = φ(s)φ(t). By definition, σ
satisfies

d

dt
σ(t, σ (s, e)) = X (σ (t, σ (s, e))). (5.123)

[We have omitted the coordinate indices for notational simplicity. If readers feel
uneasy, they may supplement the indices as in (5.118).] If the parameter s is fixed,
σ̄ (t, φ(s)) ≡ φ(s)φ(t) is a curve � → G at φ(s)φ(0) = φ(s). Clearly σ and σ̄
satisfy the same initial condition,

σ(0, σ (s, e)) = σ̄ (0, φ(s)) = φ(s). (5.124)

σ̄ also satisfies the same differential equation as σ :

d

dt
σ̄ (t, φ(t)) = d

dt
φ(s)φ(t) = (Lφ(s))∗ d

dt
φ(t)

= (Lφ(s))∗X (φ(t))

= X (φ(s)φ(t)) (left-invariance)

= X (σ̄ (t, φ(s))). (5.125)

From the uniqueness theorem of ODEs, we conclude that

φ(s + t) = φ(s)φ(t). (5.126)

We have found that there is a one-to-one correspondence between a one-
parameter subgroup of G and a left-invariant vector field. This correspondence
becomes manifest if we define the exponential map as follows.

Definition 5.13. Let G be a Lie group and V ∈ TeG. The exponential map
exp : TeG → G is defined by

exp V ≡ φV (1) (5.127)

 



where φV is a one-parameter subgroup of G generated by the left-invariant vector
field XV |g = Lg∗V .

Proposition 5.2. Let V ∈ TeG and let t ∈ �. Then

exp(tV ) = φV (t) (5.128)

where φV (t) is a one-parameter subgroup generated by XV |g = Lg∗V .

Proof. Let a �= 0 be a constant. Then φV (at) satisfies

d

dt
φV (at)

∣∣∣∣
t=0
= a

d

dt
φV (t)

∣∣∣∣
t=0
= aV

which shows that φV (at) is a one-parameter subgroup generated by Lg∗aV . The
left-invariant vector field Lg∗aV also generates φaV (t) and, from the uniqueness
of the solution, we find that φV (at) = φaV (t). From definition 5.13, we have

exp(aV ) = φaV (1) = φV (a).

The proof is completed if a is replaced by t . �

For a matrix group, the exponential map is given by the exponential of a
matrix. Take G = GL(n,�) and A ∈ ��(n,�). Let us define a one-parameter
subgroup φA : � → GL(n,�) by

φA(t) = exp(t A) = In + t A + t2

2! A
2 + · · · + tn

n! An + · · · . (5.129)

In fact, φA(t) ∈ GL(n,�) since [φA(t)]−1 = φA(−t) exists. It is also easy to see
φA(t)φA(s) = φ(t + s). Now the exponential map is given by

φA(1) = exp(A) = In + A + 1

2! A
2 + · · · + 1

n! A
n + · · · . (5.130)

The curve g exp(t A) is a flow through g ∈ G. We find that

d

dt
g exp(t A)

∣∣∣∣
t=0
= Lg∗A = X A|g

where X A is a left-invariant vector field generated by A. From (5.115), we find,
for a matrix group G, that

Lg∗A = X A|g = g A. (5.131)

The curve g exp(t A) defines a map σt : G → G by σt (g) ≡ g exp(t A) which is
also expressed as a right-translation,

σt = Rexp(t A). (5.132)

 



5.6.4 Frames and structure equation

Let the set of n vectors {V1, V2, . . . , Vn} be a basis of TeG where n = dim G.
[We assume throughout this book that n is finite.] The basis defines the set of n
linearly independent left-invariant vector fields {X1, X2, . . . , Xn} at each point g
in G by Xµ

∣∣
g = Lg∗Vµ. Note that the set {Xµ} is a frame of a basis defined

throughout G. Since [Xµ, Xν]|g is again an element of � at g, it can be expanded
in terms of {Xµ} as

[Xµ, Xν] = cµν
λXλ (5.133)

where cµνλ are called the structure constants of the Lie group G. If G is a matrix
group, the LHS of (5.133) at g = e is precisely the commutator of matrices Vµ
and Vν ; see (5.116). We show that the cµνλ are, indeed, constants independent of
g. Let cµνλ(e) be the structure constants at the unit element. If Lg∗ is applied to
the Lie bracket, we have

[Xµ, Xν]|g = cµν
λ(e)Xλ|g

which shows the g-independence of the structure constants. In a sense, the
structure constants determine a Lie group completely (Lie’s theorem).

Exercise 5.23. Show that the structure constants satisfy

(a) skew-symmetry
cµν

λ = −cνµ
λ (5.134)

(b) Jacobi identity

cµν
τ cτρ

λ + cρµ
τ cτν

λ + cνρ
τ cτµ

λ = 0. (5.135)

Let us introduce a dual basis to {Xµ} and denote it by {θµ}; 〈θµ, Xν 〉 = δµν .
{θµ} is a basis for the left-invariant one-forms. We will show that the dual basis
satisfies Maurer–Cartan’s structure equation,

dθµ = − 1
2 cνλ

µθν ∧ θλ. (5.136)

This can be seen by making use of (5.70):

dθµ(Xν, Xλ) = Xν[θµ(Xλ)] − Xλ[θµ(Xν)] − θµ([Xν, Xλ])
= Xν[δµλ ] − Xλ[δµν ] − θµ(cνλκXκ) = −cνλ

µ

which proves (5.136).
We define a Lie-algebra-valued one-form θ : TgG → TeG by

θ : X 
→ (Lg−1)∗X = (Lg)
−1∗ X X ∈ Tg G. (5.137)

θ is called the canonical one-form or Maurer–Cartan form on G.

 



Theorem 5.3. (a) The canonical one-form θ is expanded as

θ = Vµ ⊗ θµ (5.138)

where {Vµ} is the basis of TeG and {θµ} the dual basis of T ∗e G.
(b) The canonical one-form θ satisfies

dθ + 1
2 [θ ∧ θ ] = 0 (5.139)

where dθ ≡ Vµ ⊗ dθµ and

[θ ∧ θ ] ≡ [Vµ, Vν] ⊗ θµ ∧ θν. (5.140)

Proof.

(a) Take any vector Y = YµXµ ∈ Tg G, where {Xµ} is the set of frame
vectors generated by {Vµ}; Xµ|g = Lg∗Vµ. From (5.137), we find

θ(Y ) = Yµθ(Xµ) = Yµ(Lg∗)−1[Lg∗Vµ] = YµVµ.

However,

(Vµ ⊗ θµ)(Y ) = Y νVµθ
µ(Xν) = Y νVµδ

µ
ν = YµVµ.

Since Y is arbitrary, we have θ = Vµ ⊗ θµ.
(b) We use the Maurer–Cartan structure equation (5.136):

dθ + 1
2 [θ ∧ θ ] = − 1

2 Vµ ⊗ cνλ
µθν ∧ θλ + 1

2 cνλ
µVµ ⊗ θν ∧ θλ = 0

where the cνλµ are the structure constants of G. �

5.7 The action of Lie groups on manifolds

In physics, a Lie group often appears as the set of transformations acting on a
manifold. For example, SO(3) is the group of rotations in �3 , while the Poincaré
group is the set of transformations acting on the Minkowski spacetime. To study
more general cases, we abstract the action of a Lie group G on a manifold M .
We have already encountered this interaction between a group and geometry. In
section 5.3 we defined a flow in a manifold M as a map σ : � × M → M , in
which � acts as an additive group. We abstract this idea as follows.

5.7.1 Definitions

Definition 5.14. Let G be a Lie group and M be a manifold. The action of G on
M is a differentiable map σ : G × M → M which satisfies the conditions

(i) σ (e, p) = p for any p ∈ M (5.141a)

(ii) σ (g1, σ (g2, p)) = σ(g1g2, p). (5.141b)

 



[Remark: We often use the notation gp instead of σ(g, p). The second condition
in this notation is g1(g2 p) = (g1g2)p.]

Example 5.16. (a) A flow is an action of � on a manifold M . If a flow is
periodic with a period T , it may be regarded as an action of U(1) or SO(2)
on M . Given a periodic flow σ(t, x) with period T , we construct a new action
σ̄ (exp(2π it/T ), x) ≡ σ(t, x) whose group G is U(1).

(b) Let M ∈ GL(n,�) and let x ∈ �n . The action of GL(n,�) on �n is
defined by the usual matrix action on a vector:

σ(M, x) = M · x . (5.142)

The action of the subgroups of GL(n,�) is defined similarly. They may also act
on a smaller space. For example, O(n) acts on Sn−1(r), an (n − 1)-sphere of
radius r ,

σ : O(n)× Sn−1(r)→ Sn−1(r). (5.143)

(c) It is known that SL(2, � ) acts on a four-dimensional Minkowski space
M4 in a special manner. For x = (x0, x1, x2, x3) ∈ M4, define a Hermitian
matrix,

X (x) ≡ xµσµ =
(

x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
(5.144)

where σµ = (I2, σ1, σ2, σ3), σi (i = 1, 2, 3) being the Pauli matrices. Conversely,
given a Hermitian matrix X , a unique vector (xµ) ∈ M4 is defined as

xµ = 1
2 tr(σµX) (5.130)

where tr is over the 2× 2 matrix indices. Thus, there is an isomorphism between
M4 and the set of 2 × 2 Hermitian matrices. It is interesting to note that
det X (x) = (x0)2 − (x1)2 − (x2)2 − (x3)2 = −X tηX = −(Minkowski norm)2.
Accordingly

det X (x) > 0 if x is a timelike vector

= 0 if x is on the light cone

< 0 if x is a spacelike vector.

Take A ∈ SL(2, � ) and define an action of SL(2, � ) on M4 by

σ(A, x) ≡ AX (x)A†. (5.145)

The reader should verify that this action, in fact, satisfies the axioms of definition
5.14. The action of SL(2, � ) on M4 represents the Lorentz transformation
O(1, 3). First we note that the action preserves the Minkowski norm,

detσ(A, x) = det[AX (x)A†] = det X (x)

 



since det A = det A† = 1. Moreover, there is a homomorphism ϕ : SL(2, � ) →
O(1, 3) since

A(B X B†)A† = (AB)X (AB)†.

However, this homomorphism cannot be one to one, since A ∈ SL(2, � ) and −A
give the same element of O(1, 3); see (5.145). We verify (exercise 5.24) that the
following matrix is an explicit form of a rotation about the unit vector n̂ by an
angle θ ,

A = exp

[
−i
θ

2
(n̂ · σ )

]
= cos

θ

2
I2 − i(n̂ · σ ) sin

θ

2
. (5.146a)

The appearance of θ/2 ensures that the homomorphism between SL(2, � ) and the
O(3) subgroup of O(1, 3) is indeed two to one. In fact, rotations about n̂ by θ and
by 2π+θ should be the same O(3) rotation, but A(2π+θ) = −A(θ) in SL(2, � ).
This leads to the existence of spinors. [See Misner et al (1973) and Wald (1984).]
A boost along the direction n̂ with the velocity v = tanh α is given by

A = exp
[α

2
(n̂ · σ )

]
= cosh

α

2
I2 + (n̂ · σ ) sinh

α

2
. (5.146b)

We show that ϕ maps SL(2, � ) onto the proper orthochronous Lorentz group
O↑+(1, 3) = { ∈ O(1, 3)| det = +1,00 > 0}. Take any

A =
(

a b
c d

)
∈ SL(2, � )

and suppose xµ = (1, 0, 0, 0) is mapped to x ′µ. If we write ϕ(A) = , we have

x ′0 = 1

2
tr(AX A†) = 1

2
tr

[(
a b
c d

)(
ā c̄
b̄ d̄

)]
= 1

2
(|a|2 + |b|2 + |c|2 + |d|2) > 0

hence 00 > 0. To show det A = +1, we note that any element of SL(2, � ) may
be written as

A =
(

eiα 0
0 e−iα

)(
cosβ sin β eiγ

− sinβ e−iγ cosβ

)
B

=
(

eiα/2 0
0 eiα/2

)2 (
cos(β/2) sin(β/2)eiγ

− sin(β/2)e−iγ cos(β/2)

)2

B

≡ M2 N2 B2
0

where B ≡ B2
0 is a positive-definite matrix. This shows that ϕ(A) is positive

definite:
detϕ(A) = (detϕ(M))2(detϕ(N))2(detϕ(B0))

2 > 0.

 



Now we have established that ϕ(SL(2, � )) ⊂ O↑+(1, 3). Equations (5.146a) and

(5.146b) show that for any element of O↑+(1, 3), there is a corresponding matrix
A ∈ SL(2, � ), hence ϕ is onto. Thus, we have established that

ϕ(SL(2, � )) = O↑+(1, 3). (5.147)

It can be shown that SL(2, � ) is simply connected and is the universal covering
group SPIN(1, 3) of O↑+(1, 3), see section 4.6.

Exercise 5.24. Verify by explicit calculations that

(a)

A =
(

e−iθ/2 0
0 eiθ/2

)
represents a rotation about the z-axis by θ ;

(b)

A =
(

cosh(α/2)+ sinh(α/2) 0
0 cosh(α/2)− sinh(α/2)

)
represents a boost along the z-axis with the velocity v = tanhα.

Definition 5.15. Let G be a Lie group that acts on a manifold M by σ : G×M →
M . The action σ is said to be

(a) transitive if, for any p1, p2 ∈ M , there exists an element g ∈ G such
that σ(g, p1) = p2;

(b) free if every non-trivial element g �= e of G has no fixed points in M ,
that is, if there exists an element p ∈ M such that σ(g, p) = p, then g must be
the unit element e; and

(c) effective if the unit element e ∈ G is the unique element that defines the
trivial action on M , i.e. if σ(g, p) = p for all p ∈ M , then g must be the unit
element e.

Exercise 5.25. Show that the right translation R : (a, g) 
→ Ra g and left
translation L : (a, g) 
→ La g of a Lie group are free and transitive.

5.7.2 Orbits and isotropy groups

Given a point p ∈ M , the action of G on p takes p to various points in M . The
orbit of p under the action σ is the subset of M defined by

Gp = {σ(g, p)|g ∈ G}. (5.148)

If the action of G on M is transitive, the orbit of any p ∈ M is M itself. Clearly
the action of G on any orbit Gp is transitive.

 



Example 5.17. (a) A flow σ generated by a vector field X = −y∂/∂x + x∂/∂y is
periodic with period 2π , see example 5.9. The action σ : � × �2 → �2 defined
by (t, (x, y))→ σ(t, (x, y)) is not effective since σ(2πn, (x, y)) = (x, y) for all
(x, y) ∈ �2 . For the same reason, this flow is not free either. The orbit through
(x, y) �= (0, 0) is a circle S1 centred at the origin.

(b) The action of O(n) on �n is not transitive since if |x | �= |x ′|, no element
of O(n) takes x to x ′. However, the action of O(n) on Sn−1 is obviously transitive.
The orbit through x is the sphere Sn−1 of radius |x |. Accordingly, given an action
σ : O(n) × �n → �n , the orbits divide �n into mutually disjoint spheres of
different radii. Introduce a relation by x ∼ y if y = σ(g, x) for some g ∈ G. It
is easily verified that∼ is an equivalence relation. The equivalence class [x] is an
orbit through x . The coset space �n /O(n) is [0,∞) since each equivalence class
is parametrized by the radius.

Definition 5.16. Let G be a Lie group that acts on a manifold M . The isotropy
group of p ∈ M is a subgroup of G defined by

H (p) = {g ∈ G|σ(g, p) = p}. (5.149)

H (p) is also called the little group or stabilizer of p.

It is easy to see that H (p) is indeed a subgroup. Let g1, g2 ∈ H (p), then
g1g2 ∈ H (p) since σ(g1g2, p) = σ(g1, σ (g2, p)) = σ(g1, p) = p. Clearly
e ∈ H (p) since σ(e, p) = p by definition. If g ∈ H (p), then g−1 ∈ H (p) since
p = σ(e, p) = σ(g−1g, p) = σ(g−1, σ (g, p)) = σ(g−1, p).

Exercise 5.26. Suppose a Lie group G acts on a manifold M freely. Show that
H (p) = {e} for any p ∈ M .

Theorem 5.4. Let G be a Lie group which acts on a manifold M . Then the
isotropy group H (p) for any p ∈ M is a Lie subgroup.

Proof. For fixed p ∈ M , we define a map ϕp : G → M by ϕp(g) ≡ gp. Then
H (p) is the inverse image ϕ−1

p (p) of a point p, and hence a closed set. The group
properties have been shown already. It follows from theorem 5.2 that H (p) is a
Lie subgroup. �

For example, let M = �3 and G = SO(3) and take a point p = (0, 0, 1) ∈
�3 . The isotropy group H (p) is the set of rotations about the z-axis, which is
isomorphic to SO(2).

Let G be a Lie group and H any subgroup of G. The coset space G/H admits
a differentiable structure and G/H becomes a manifold, called a homogeneous
space. Note that dim G/H = dim G − dim H . Let G be a Lie group which
acts on a manifold M transitively and let H (p) be an isotropy group of p ∈ M .
H (p) is a Lie subgroup and the coset space G/H (p) is a homogeneous space.

 



In fact, if G, H (p) and M satisfy certain technical requirements (for example,
G/H (p) compact) is, it can be shown that G/H (p) is homeomorphic to M , see
example 5.18.

Example 5.18. (a) Let G = SO(3) be a group acting on �3 and H = SO(2) be
the isotropy group of x ∈ �3 . The group SO(3) acts on S2 transitively and we
have SO(3)/SO(2) ∼= S2. What is the geometrical picture of this? Let g′ = gh
where g, g′ ∈ G and h ∈ H . Since H is the set of rotations in a plane, g and
g′ must be rotations about the common axis. Then the equivalence class [g] is
specified by the polar angles (θ, φ). Thus, we again find that G/H = S2. Since
SO(2) is not a normal subgroup of SO(3), S2 does not admit a group structure.

It is easy to generalize this result to higher-dimensional rotation groups and
we have the useful result

SO(n + 1)/SO(n) = Sn . (5.150)

O(n + 1) also acts on Sn transitively and we have

O(n + 1)/O(n) = Sn . (5.151)

Similar relations hold for U(n) and SU(n):

U(n + 1)/U(n) = SU(n + 1)/SU(n) = S2n+1. (5.152)

(b) The group O(n + 1) acts on �Pn transitively from the left. Note, first,
that O(n + 1) acts on �n+1 in the usual manner and preserves the equivalence
relation employed to define �Pn (see example 5.12). In fact, take x, x ′ ∈ �n+1

and g ∈ O(n + 1). If x ∼ x ′ (that is if x ′ = ax for some a ∈ � − {0}), then it
follows that gx ∼ gx ′ (gx ′ = agx). Accordingly, this action of O(n+1) on �n+1

induces the natural action of O(n + 1) on �Pn . Clearly this action is transitive
on �Pn . (Look at two representatives with the same norm.) If we take a point p
in �Pn , which corresponds to a point (1, 0, . . . , 0) ∈ �n+1 , the isotropy group
H (p) is

H (p) =


±1 0 0 . . . 0
0
0
... O(n)
0

 = O(1)× O(n) (5.153)

where O(1) is the set {−1,+1} = �2. Now we find that

O(n + 1)/[O(1)× O(n)] ∼= Sn/�2 ∼= �Pn . (5.154)

(c) This result is easily generalized to the Grassmann manifolds: Gk,n(�) =
O(n)/[O(k) × O(n − k)]. We first show that O(n) acts on Gk,n(�) transitively.

 



Let A be an element of Gk,n(�), then A is a k-dimensional plane in �n . Define an
n×n matrix PA which projects a vector v ∈ �n to the plane A. Let us introduce an
orthonormal basis {e1, . . . , en} in �n and another orthonormal basis { f1, . . . , fk}
in the plane A, where the orthonormality is defined with respect to the Euclidean
metric in �n . In terms of {ei }, fa is expanded as fa =∑

i fai ei and the projected
vector is

PAv = (v f1) f1 + · · · + (v fk ) fk

=
∑
i, j

(vi f1i f1 j + · · · + vi fki fkj )e j =
∑
i,a, j

vi fai fa j e j .

Thus, PA is represented by a matrix

(PA)i j =
∑

fai fa j . (5.155)

Note that P2
A = PA , P t

A = PA and tr PA = k. [The last relation holds since it is
always possible to choose a coordinate system such that

PA = diag(1, 1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
n−k

).

This guarantees that A is, indeed, a k-dimensional plane.] Conversely any matrix
P that satisfies these three conditions determines a unique k-dimensional plane in
�n , that is a unique element of Gk,n(�).

We now show that O(n) acts on Gk,n(�) transitively. Take A ∈ Gk,n(�) and
g ∈ O(n) and construct PB ≡ g PAg−1. The matrix PB determines an element
B ∈ Gk,n(�) since P2

B = PB , P t
B = PB and tr PB = k. Let us denote this

action by B = σ(g, A). Clearly this action is transitive since given a standard
k-dimensional basis of A, { f1, . . . , fk} for example, any k-dimensional basis
{ f̃1, . . . , f̃k} can be reached by an action of O(n) on this basis.

Let us take a special plane C0 which is spanned by the standard basis
{ f1, . . . , fk}. Then an element of the isotropy group H (C0) is of the form

k n − k

M =
(

g1 0
0 g2

)
k

n − k
(5.156)

where g1 ∈ O(k). Since M ∈ O(n), an (n − k) × (n − k) matrix g2 must be an
element of O(n− k). Thus, the isotropy group is isomorphic to O(k)×O(n− k).
Finally we verified that

Gk,n(�) ∼= O(n)/[O(k)× O(n − k)]. (5.157)

The dimension of Gk,n(�) is obtained from the general formula as

dim Gk,n(�) = dim O(n)− dim[O(k)×O(n − k)]
= 1

2 n(n − 1)− [ 1
2 k(k − 1)+ 1

2 (n − k)(n − k − 1)]
= k(n − k) (5.158)

 



in agreement with the result of example 5.5. Equation (5.157) also shows that the
Grassmann manifold is compact.

5.7.3 Induced vector fields

Let G be a Lie group which acts on M as (g, x) 
→ gx . A left-invariant vector
field XV generated by V ∈ TeG naturally induces a vector field in M . Define a
flow in M by

σ(t, x) = exp(tV )x, (5.159)

σ(t, x) is a one-parameter group of transformations, and define a vector field
called the induced vector field denoted by V �,

V �|x = d

dt
exp(tV )x

∣∣∣∣
t=0
. (5.160)

Thus, we have obtained a map � : TeG → �(M) defined by V 
→ V �.

Exercise 5.27. The Lie group SO(2) acts on M = �2 in the usual way. Let

V =
(

0 −1
1 0

)
be an element of ��(2).

(a) Show that

exp(tV ) =
(

cos t − sin t
sin t cos t

)
and find the induced flow through

x =
(

x
y

)
∈ �2 .

(b) Show that V �|x = −y∂/∂x + x∂/∂y.

Example 5.19. Let us take G = SO(3) and M = �3 . The basis vectors of TeG
are generated by rotations about the x, y and z axes. We denote them by Xx , X y

and Xz , respectively (see exercise 5.22),

Xx =
 0 0 0

0 0 −1
0 1 0

 , X y =
 0 0 1

0 0 0
−1 0 0

 , Xz =
 0 −1 0

1 0 0
0 0 0

 .
Repeating a similar analysis to the previous one, we obtain the corresponding
induced vectors,

X�x = −z
∂

∂y
+ y

∂

∂z
, X�y = −x

∂

∂z
+ z

∂

∂x
, X�z = −y

∂

∂x
+ x

∂

∂y
.

 



5.7.4 The adjoint representation

A Lie group G acts on G itself in a special way.

Definition 5.17. Take any a ∈ G and define a homomorphism ada : G → G by
the conjugation,

ada : g 
→ aga−1. (5.161)

This homomorphism is called the adjoint representation of G.

Exercise 5.28. Show that ada is a homomorphism. Define a map σ : G×G → G
by σ(a, g) ≡ ada g. Show that σ(a, g) is an action of G on itself.

Noting that adae = e, we restrict the induced map ada∗ : TgG → Tada gG to
g = e,

Ada : TeG → TeG (5.162)

where Ada ≡ ada∗|TeG . If we identify TeG with the Lie algebra �, we have
obtained a map Ad : G × � → � called the adjoint map of G. Since
ada∗adb∗ = adab∗, it follows that AdaAdb = Adab. Similarly, Ada−1 = Ad−1

a
follows from ada−1∗ada∗|TeG = idTeG .

If G is a matrix group, the adjoint representation becomes a simple matrix
operation. Let g ∈ G and XV ∈ �, and let σV (t) = exp(tV ) be a one-
parameter subgroup generated by V ∈ TeG. Then adg acting on σV (t) yields
g exp(tV )g−1 = exp(tgV g−1). As for Adg we have Adg : V 
→ gV g−1 since

Adg V = d

dt
[adg exp(tV )]

∣∣∣∣
t=0

= d

dt
exp(tgV g−1)

∣∣∣∣
t=0
= gV g−1. (5.163)

Problems

5.1 The Stiefel manifold V (m, r) is the set of orthonormal vectors {ei } (1 ≤ i ≤
r) in �m (r ≤ m). We may express an element A of V (m, r) by an m × r matrix
(e1, . . . , er ). Show that SO(m) acts transitively on V (m, r). Let

A0 ≡


1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . .

0 0 . . . 1
0 0 . . . 0
0 0 . . . 0


be an element of V (m, r). Show that the isotropy group of A0 is SO(m−r). Verify
that V (m, r) = SO(m)/SO(m − r) and dim V (m, r) = [r(r − 1)]/2+ r(m − r).
[Remark: The Stiefel manifold is, in a sense, a generalization of a sphere. Observe
that V (m, 1) = Sm−1.]

 



5.2 Let M be the Minkowski four-spacetime. Define the action of a linear operator
∗ : �r (M)→ �4−r (M) by

r = 0 : ∗1 = −dx0 ∧ dx1 ∧ dx2 ∧ dx3;
r = 1 : ∗dxi = −dx j ∧ dxk ∧ dx0 ∗ dx0 = −dx1 ∧ dx2 ∧ dx3;
r = 2 : ∗dxi ∧ dx j = dxk ∧ dx0 ∗ dxi ∧ dx0 = −dx j ∧ dxk;
r = 3 : ∗dx1 ∧ dx2 ∧ dx3 = −dx0 ∗ dxi ∧ dx j ∧ dx0 = −dxk;
r = 4 : ∗dx0 ∧ dx1 ∧ dx2 ∧ dx3 = 1;

where (i, j, k) is an even permutation of (1, 2, 3). The vector potential A and
the electromagnetic tensor F are defined as in example 5.11. J = Jµdxµ =
ρdx0 + jk dxk is the current one-form.

(a) Write down the equation d ∗ F = ∗J and verify that it reduces to two of the
Maxwell equations ∇ · E = ρ and ∇ × B − ∂E/∂ t = j .

(b) Show that the identity 0 = d(d ∗ F) = d ∗ J reduces to the charge
conservation equation

∂µ Jµ = ∂ρ

∂ t
+∇ · j = 0.

(c) Show that the Lorentz condition ∂µAµ = 0 is expressed as d ∗ A = 0.

 



6

DE RHAM COHOMOLOGY GROUPS

The homology groups of topological spaces have been defined in chapter 3. If
a topological space M is a manifold, we may define the dual of the homology
groups out of differential forms defined on M . The dual groups are called the
de Rham cohomology groups. Besides physicists’ familiarity with differential
forms, cohomology groups have several advantages over homology groups.

We follow closely Nash and Sen (1983) and Flanders (1963). Bott and Tu
(1982) contains more advanced topics.

6.1 Stokes’ theorem

One of the main tools in the study of de Rham cohomology groups is Stokes’
theorem with which most physicists are familiar from electromagnetism. Gauss’
theorem and Stokes’ theorem are treated in a unified manner here.

6.1.1 Preliminary consideration

Let us define an integration of an r -form over an r -simplex in a Euclidean space.
To do this, we need first to define the standard n-simplex σ̄r = (p0 p1 . . . pr ) in
�r where

p0 = (0, 0, . . . , 0)
p1 = (1, 0, . . . , 0)
. . .

pr = (0, 0, . . . , 1)
see figure 6.1. If {xµ} is a coordinate of �r , σ̄r is given by

σ̄r =
{
(x1, . . . , xr ) ∈ �r

∣∣∣∣xµ ≥ 0,
r∑
µ=1

xµ ≤ 1

}
. (6.1)

An r -form ω (the volume element) in �r is written as

ω = a(x) dx1 ∧ dx2 ∧ . . . ∧ dxr .

 



Figure 6.1. The standard 2-simplex σ̄2 = (p0 p1 p2) and the standard 3-simplex
σ̄3 = (p0 p1 p2 p3).

We define the integration of ω over σ̄r by∫
σ̄r

ω ≡
∫
σ̄r

a(x) dx1 dx2 . . . dxr (6.2)

where the RHS is the usual r -fold integration. For example, if r = 2 and
ω = dx ∧ dy, we have∫

σ̄2

ω =
∫
σ̄2

dx dy =
∫ 1

0
dx

∫ 1−x

0
dy = 1

2 .

Next we define an r -chain, an r -cycle and an r -boundary in an m-
dimensional manifold M . Let σr be an r -simplex in �r and let f : σr → M
be a smooth map. [To avoid the subtlety associated with the differentiability of
f at the boundary of σr , f may be defined over an open subset U of �r , which
contains σr .] Here we assume f is not required to have an inverse. For example,
im f may be a point in M . We denote the image of σr in M by sr and call it a
(singular) r-simplex in M . These simplexes are called singular since they do not
provide a triangulation of M and, moreover, geometrical independence of points
makes no sense in a manifold (see section 3.2). If {sr,i } is the set of r -simplexes
in M , we define an r-chain in M by a formal sum of {sr,i } with �-coefficients

c =
∑

i

ai sr,i ai ∈ �. (6.3)

In the following, we are concerned with �-coefficients only and we omit the
explicit quotation of �. The r -chains in M form the chain group Cr (M). Under
f : σr → M , the boundary ∂σr is also mapped to a subset of M . Clearly,
∂sr ≡ f (∂σr ) is a set of (r − 1)-simplexes in M and is called the boundary of

 



sr . ∂sr corresponds to the geometrical boundary of sr with an induced orientation
defined in section 3.3. We have a map

∂ : Cr (M)→ Cr−1(M). (6.4)

The result of section 3.3 tells us that ∂ is nilpotent; ∂2 = 0.
Cycles and boundaries are defined in exactly the same way as in section 3.3

(note, however, that � is replaced by �). If cr is an r-cycle, ∂cr = 0 while if cr

is an r-boundary, there exists an (r + 1)-chain cr+1 such that cr = ∂cr+1. The
boundary group Br (M) is the set of r -boundaries and the cycle group Zr (M)
is the set of r -cycles. There are infinitely many singular simplexes which make
up Cr (M), Br (M) and Zr (M). It follows from ∂2 = 0 that Zr (M) ⊃ Br (M); cf
theorem 3.3. The singular homology group is defined by

Hr(M) ≡ Zr (M)/Br (M). (6.5)

With mild topological assumptions, the singular homology group is isomorphic to
the corresponding simplicial homology group with �-coefficients and we employ
the same symbol to denote both of them.

Now we are ready to define an integration of an r -form ω over an r -chain in
M . We first define an integration of ω on an r -simplex sr of M by∫

sr

ω =
∫
σ̄r

f ∗ω (6.6)

where f : σ̄r → M is a smooth map such that sr = f (σ̄r ). Since f ∗ω is
an r -form in �r , the RHS is the usual r -fold integral. For a general r -chain
c =∑

i ai sr,i ∈ Cr (M), we define∫
c
ω =

∑
i

ai

∫
sr,i

ω. (6.7)

6.1.2 Stokes’ theorem

Theorem 6.1. (Stokes’ theorem) Let ω ∈ �r−1(M) and c ∈ Cr (M). Then∫
c

dω =
∫
∂c
ω. (6.8)

Proof. Since c is a linear combination of r -simplexes, it suffices to prove (6.8) for
an r -simplex sr in M . Let f : σ̄r → M be a map such that f (σ̄r ) = sr . Then∫

sr

dω =
∫
σ̄r

f ∗(dω) =
∫
σ̄r

d( f ∗ω)

where (5.75) has been used. We also have∫
∂sr

ω =
∫
∂σ̄r

f ∗ω.

 



Note that f ∗ω is an (r − 1)-form in �r . Thus, to prove Stokes’ theorem∫
sr

dω =
∫
∂sr

ω (6.9a)

it suffices to prove an alternative formula∫
σ̄r

dψ =
∫
∂σ̄r

ψ (6.9b)

for an (r − 1)-form ψ in �r . The most general form of ψ is

ψ =
∑

aµ(x) dx1 ∧ . . . ∧ dxµ−1 ∧ dxµ+1 ∧ . . . ∧ dxr .

Since an integration is distributive, it suffices to prove (6.9b) for ψ = a(x)dx1 ∧
. . . ∧ dxr−1. We note that

dψ = ∂a

∂xr
dxr ∧ dx1 ∧ . . . ∧ dxr−1 = (−1)r−1 ∂a

∂xr
dx1 ∧ . . . ∧ dxr−1 ∧ dxr .

By direct computation, we find, from (6.2), that∫
σ̄r

dψ = (−1)r−1
∫
σ̄r

∂a

∂xr
dx1 . . . dxr−1 dxr

= (−1)r−1
∫

xµ≥0,
∑r−1
µ=1 xµ≤1

dx1 . . . dxr−1
∫ 1−∑r−1

µ=1 xµ

0

∂a

∂xr
dxr

= (−1)r−1
∫

dx1 . . . dxr−1

×
[

a

(
x1, . . . , xr−1, 1−

r−1∑
µ=1

xµ
)
− a

(
x1, . . . , xr−1, 0

) ]
.

For the boundary of σ̄r , we have

∂σ̄r = (p1, p2, . . . , pr )− (p0, p2, . . . , pr )

+ · · · + (−1)r (p0, p1, . . . , pr−1).

Note that ψ = a(x)dx1 ∧ . . . ∧ dxr−1 vanishes when one of x1, . . . , xr−1 is
constant. Then it follows that ∫

(p0,p2,...,pr )

ψ = 0

since x1 ≡ 0 on (p0, p2, . . . , pr ). In fact, most of the faces of ∂σ̄r do not
contribute to the RHS of (6.9b) and we are left with∫

∂σ̄r

ψ =
∫
(p1,p2,...,pr )

ψ + (−1)r
∫
(p0,p1,...,pr−1)

ψ.

 



Since (p0, p1, . . . , pr−1) is the standard (r − 1)-simplex (xµ ≥ 0,
∑r−1
µ=1 xµ ≤

1), on which xr = 0, the second term is

(−1)r
∫
(p0,p1,...,pr−1)

ψ = (−1)r
∫
σ̄r−1

a(x1, . . . , xr−1, 0) dx1 . . . dxr−1.

The first term is∫
(p1,p2,...,pr )

ψ =
∫
(p1,...,pr−1,p0)

a

(
x1, . . . , xr−1, 1−

r−1∑
µ=1

xµ
)

dx1 . . . dxr−1

= (−1)r−1
∫
σ̄r−1

a

(
x1, . . . , xr−1, 1 −

r−1∑
µ=1

xµ
)

dx1 . . . dxr−1

where the integral domain (p1, . . . , pr ) has been projected along xr to the
(p1, . . . , pr−1, p0)-plane, preserving the orientation. Collecting these results, we
have proved (6.9b). [The reader is advised to verify this proof for m = 3 using
figure 6.1.] �

Exercise 6.1. Let M = �3 andω = a dx+b dy+c dz. Show that Stokes’ theorem
is written as ∫

S
curl ω · dS =

∮
C

ω · dS (Stokes’ theorem) (6.10)

where ω = (a, b, c) and C is the boundary of a surface S. Similarly, for
ψ = 1

2ψµν dxµ ∧ dxν , show that∫
V

div ψ dV =
∮

S
ψ · dS (Gauss’ theorem)

where ψλ = ελµνψµν and S is the boundary of a volume V .

6.2 de Rham cohomology groups

6.2.1 Definitions

Definition 6.1. Let M be an m-dimensional differentiable manifold. The set of
closed r -forms is called the r th cocycle group, denoted Zr (M). The set of exact
r -forms is called the r th coboundary group, denoted Br (M). These are vector
spaces with �-coefficients. It follows from d2 = 0 that Zr (M) ⊃ Br (M).

Exercise 6.2. Show that

(a) if ω ∈ Zr (M) and ψ ∈ Zs(M), then ω ∧ ψ ∈ Zr+s(M);
(b) if ω ∈ Zr (M) and ψ ∈ Bs(M), then ω ∧ ψ ∈ Br+s(M); and

 



(c) if ω ∈ Br (M) and ψ ∈ Bs(M), then ω ∧ ψ ∈ Br+s(M).

Definition 6.2. The r th de Rham cohomology group is defined by

H r(M;�) ≡ Zr (M)/Br (M). (6.11)

If r ≤ −1 or r ≥ m+1, H r(M;�) may be defined to be trivial. In the following,
we omit the explicit quotation of �-coefficients.

Let ω ∈ Zr (M). Then [ω] ∈ H r(M) is the equivalence class {ω′ ∈
Zr (M)|ω′ = ω + dψ,ψ ∈ �r−1(M)}. Two forms which differ by an exact
form are called cohomologous. We will see later that H r(M) is isomorphic to
Hr(M). The following examples will clarify the idea of de Rham cohomology
groups.

Example 6.1. When r = 0, B0(M) has no meaning since there is no (−1)-form.
We define �−1(M) to be empty, hence B0(M) = 0. Then H 0(M) = Z0(M) =
{ f ∈ �0(M) = �(M)|d f = 0}. If M is connected, the condition d f = 0 is
satisfied if and only if f is constant over M . Hence, H 0(M) is isomorphic to the
vector space �,

H 0(M) ∼= �. (6.12)

If M has n connected components, d f = 0 is satisfied if and only if f is constant
on each connected component, hence it is specified by n real numbers,

H 0(M) ∼= � ⊕ � ⊕ · · · ⊕ �︸ ︷︷ ︸
n

. (6.13)

Example 6.2. Let M = �. From example 6.1, we have H 0(�) = �. Let us
find H 1(�) next. Let x be a coordinate of �. Since dim� = 1, any one-form
ω ∈ �1(�) is closed, dω = 0. Let ω = f dx , where f ∈ �(�). Define a function
F(x) by

F(x) =
∫ x

0
f (s) ds ∈ �(�) = �0(�).

Since dF(x)/dx = f (x), ω is an exact form,

ω = f dx = dF(x)

dx
dx = dF.

Thus, any one-form is closed as well as exact. We have established

H 1(�) = {0}. (6.14)

Example 6.3. Let S1 = {eiθ |0 ≤ θ < 2π}. Since S1 is connected, we have
H 0(S1) = �. We compute H 1(S1) next. Let ω = f (θ) dθ ∈ �1(S1). Is it

 



possible to write ω = dF for some F ∈ �(S1)? Let us repeat the analysis of the
previous example. If ω = dF , then F ∈ �(S1) must be given by

F(θ) =
∫ θ

0
f (θ ′) dθ ′.

For F to be defined uniquely on S1, F must satisfy the periodicity F(2π) =
F(0) (=0). Namely F must satisfy

F(2π) =
∫ 2π

0
f (θ ′) dθ ′ = 0.

If we define a map λ : �1(S1)→ � by

λ : ω = f dθ 
→
∫ 2π

0
f (θ ′) dθ ′ (6.15)

then B1(S1) is identified with kerλ. Now we have (theorem 3.1)

H 1(S1) = �1(S1)/ kerλ = im λ = �. (6.16)

This is also obtained from the following consideration. Let ω and ω′ be closed
forms that are not exact. Although ω − ω′ is not exact in general, we can show
that there exists a number a ∈ � such that ω′ − aω is exact. In fact, if we put

a =
∫ 2π

0
ω′

/∫ 2π

0
ω

we have ∫ 2π

0
(ω′ − aω) = 0.

This shows that, given a closed form ω which is not exact, any closed form ω′ is
cohomologous to aω for some a ∈ �. Thus, each cohomology class is specified
by a real number a, hence H 1(S1) = �.

Exercise 6.3. Let M = �2 − {0}. Define a one-form ω by

ω = −y

x2 + y2 dx + x

x2 + y2 dy. (6.17)

(a) Show that ω is closed.
(b) Define a ‘function’ F(x, y) = tan−1(y/x). Show that ω = dF . Is ω
exact?

 



6.2.2 Duality of Hr(M) and Hr(M); de Rham’s theorem

As the name itself suggests, the cohomology group is a dual space of the
homology group. The duality is provided by Stokes’ theorem. We first define
the inner product of an r -form and an r -chain in M . Let M be an m-dimensional
manifold and let Cr (M) be the chain group of M . Take c ∈ Cr (M) and ω ∈
�r (M) where 1 ≤ r ≤ m. Define an inner product ( , ) : Cr (M)×�r (M)→
� by

c, ω 
→ (c, ω) ≡
∫

c
ω. (6.18)

Clearly, (c, ω) is linear in both c and ω and ( , ω) may be regarded as a linear
map acting on c and vice versa,

(c1 + c2, ω) =
∫

c1+c2

ω =
∫

c1

ω +
∫

c2

ω (6.19a)

(c, ω1 + ω2) =
∫

c
(ω1 + ω2) =

∫
c
ω1 +

∫
c
ω2. (6.19b)

Now Stokes’ theorem takes a compact form:

(c, dω) = (∂c, ω). (6.20)

In this sense, the exterior derivative operator d is the adjoint of the boundary
operator ∂ and vice versa.

Exercise 6.4. Let (i) c ∈ Br (M), ω ∈ Zr (M) or (ii) c ∈ Zr (M), ω ∈ Br (M).
Show, in both cases, that (c, ω) = 0.

The inner product ( , ) naturally induces an inner product λ between
the elements of Hr(M) and H r (M). We now show that Hr(M) is the dual
of H r(M). Let [c] ∈ Hr(M) and [ω] ∈ H r(M) and define an inner product
 : Hr(M) × H r(M)→ � by

([c], [ω]) ≡ (c, ω) =
∫

c
ω. (6.21)

This is well defined since (6.21) is independent of the choice of the
representatives. In fact, if we take c + ∂c′, c′ ∈ Cr+1(M), we have, from Stokes’
theorem,

(c + ∂c′, ω) = (c, ω)+ (c′, dω) = (c, ω)
where dω = 0 has been used. Similarly, for ω + dψ , ψ ∈ �r−1(M),

(c, ω + dψ) = (c, ω)+ (∂c, ψ) = (c, ω)
since ∂c = 0. Note that( , [ω]) is a linear map Hr(M)→ �, and([c], ) is
a linear map H r(M)→ �. To prove the duality of Hr (M) and H r(M), we have

 



to show that( , [ω]) has the maximal rank, that is, dim Hr(M) = dim H r (M).
We accept the following theorem due to de Rham without the proof which is
highly non-trivial.

Theorem 6.2. (de Rham’s theorem) If M is a compact manifold, Hr (M) and
H r(M) are finite dimensional. Moreover the map

 : Hr(M)× H r (M)→ �

is bilinear and non-degenerate. Thus, H r(M) is the dual vector space of Hr (M).

A period of a closed r -form ω over a cycle c is defined by (c, ω) = ∫
c ω.

Exercise 6.4 shows that the period vanishes if ω is exact or if c is a boundary. The
following corollary is easily derived from de Rham’s theorem.

Corollary 6.1. Let M be a compact manifold and let k be the r th Betti number
(see section 3.4). Let c1, c2, . . . , ck be properly chosen elements of Zr (M) such
that [ci ] �= [c j ].

(a) A closed r -form ψ is exact if and only if∫
ci

ψ = 0 (1 ≤ i ≤ k). (6.22)

(b) For any set of real numbers b1, b2, . . . , bk there exists a closed r -form ω

such that ∫
ci

ω = bi (1 ≤ i ≤ k). (6.23)

Proof. (a) de Rham’s theorem states that the bilinear form ([c], [ω]) is non-
degenerate. Hence, if ([ci ], ) is regarded as a linear map acting on H r (M),
the kernel consists of the trivial element, the cohomology class of exact forms.
Accordingly,ψ is an exact form.

(b) de Rham’s theorem ensures that corresponding to the homology basis
{[ci ]}, we may choose the dual basis {[ωi ]} of H r(M) such that

([ci ], [ω j ]) =
∫

ci

ω j = δi j . (6.24)

If we define ω ≡∑k
i=1 biωi , the closed r -form ω satisfies∫

ci

ω = bi

as claimed. �

For example. we observe the duality of the following groups.

 



(a) H 0(M) ∼= H0(M) ∼= � ⊕ · · · ⊕ �︸ ︷︷ ︸
n

if M has n connected components.

(b) H 1(S1) ∼= H1(S1) ∼= �.

Since H r(M) is isomorphic to Hr(M), we find that

br(M) ≡ dim H r(M) = dim Hr(M) = br (M) (6.25)

where br (M) is the Betti number of M . The Euler characteristic is now written as

χ(M) =
m∑

r=1

(−1)r br (M). (6.26)

This is quite an interesting formula; the LHS is purely topological while the RHS
is given by an analytic condition (note that dω = 0 is a set of partial differential
equations). We will frequently encounter this interplay between topology and
analysis.

In summary, we have the chain complex C(M) and the de Rham complex
�∗(M),

←− Cr−1(M)
∂r←− Cr (M)

∂r+1←− Cr+1(M)←−
−→ �r−1(M)

dr−→ �r (M)
dr+1−→ �r+1(M)←−

(6.27)

for which the r th homology group is defined by

Hr (M) = Zr (M)/Br (M) = ker ∂r/ im ∂r+1

and the r th de Rham cohomology group is defined by

H r(M) = Zr (M)/Br (M) = ker dr+1/ im dr .

6.3 Poincaré’s lemma

An exact form is always closed but the converse is not necessarily true. However,
the following theorem provides the situation in which the converse is also true.

Theorem 6.3. (Poincaré’s lemma) If a coordinate neighbourhood U of a
manifold M is contractible to a point p0 ∈ M , any closed r -form on U is also
exact.

Proof. We assume U is smoothly contractible to p0, that is, there exists a smooth
map F : U × I → U such that

F(x, 0) = x, F(x, 1) = p0 for x ∈ U.

 



Let us consider an r -form η ∈ �r (U × I ),

η = ai1...ir (x, t) dxi1 ∧ . . .∧ dxir

+ b j1... jr−1(x, t) dt ∧ dx j1 ∧ . . . ∧ dx jr−1 (6.28)

where x is the coordinate of U and t of I . Define a map P : �r (U × I ) →
�r−1(U) by

Pη ≡
(∫ 1

0
ds b j1... jr−1(x, s)

)
dx j1 ∧ . . . ∧ dx jr−1 . (6.29)

Next, define a map ft : U → U × I by ft (x) = (x, t). The pullback of the first
term of (6.28) by f ∗t is an element of �r (U),

f ∗t η = ai1...ir (x, t) dxi1 ∧ . . . ∧ dx ir ∈ �r (U). (6.30)

We now prove the following identity,

d(Pη)+ P(dη) = f1
∗η − f0

∗η. (6.31)

Each term of the LHS is calculated to be

dPη = d

(∫ 1

0
ds b j1... jr−1

)
dx j1 ∧ . . .∧ dx jr−1

=
∫ 1

0
ds

(
∂b j1... jr−1

∂x jr

)
dx jr ∧ dx j1 ∧ . . . ∧ dx jr−1

P dη = P

[(
∂ai1...ir

∂xir+1

)
dxir+1 ∧ dx i1 ∧ . . .∧ dxir

+
(
∂ai1...ir

∂ t

)
dt ∧ dx i1 ∧ . . .∧ dxir

+
(
∂b j1... jr−1

∂x jr

)
dx jr ∧ dt ∧ dx j1 ∧ . . . ∧ dx jr−1

]
=

[ ∫ 1

0
ds

(
∂ai1...ir

∂s

)]
dxi1 ∧ . . . ∧ dx ir

−
[ ∫ 1

0
ds

(
∂b j1... jr−1

∂x jr

)]
dx jr ∧ dx j1 ∧ . . .∧ dx jr−1 .

Collecting these results, we have

d(Pη)+ P(dη) =
[ ∫ 1

0
ds

(
∂ai1...ir

∂s

)]
dxi1 ∧ . . . ∧ dx ir

= [ai1...ir (x, 1)− ai1...ir (x, 0)] dxi1 ∧ . . . ∧ dx ir

= f1
∗η − f0

∗η.

 



Poincaré’s lemma readily follows from (6.31). Let ω be a closed r -form on a
contractible chart U . We will show that ω is written as an exact form,

ω = d(−P F∗ω), (6.32)

F being the smooth contraction map. In fact, if η in (6.31) is replaced by
F∗ω ∈ �r (U × I ) we have

dP F∗ω + P dF∗ω = f1
∗ ◦ F∗ω − f0

∗ ◦ F∗ω
= (F ◦ f1)

∗ω − (F ◦ f0)
∗ω (6.33)

where use has been made of the relation ( f ◦g)∗ = g∗◦ f ∗. Clearly F ◦ f1 : U →
U is a constant map x 
→ p0, hence (F ◦ f1)

∗ = 0. However, F ◦ f0 = idU ,
hence (F ◦ f0)

∗ : �r (U) → �r (U) is the identity map. Thus, the RHS of
(6.33) is simply −ω. The second term of the LHS vanishes since ω is closed;
dF∗ω = F∗ dω = 0, where use has been made of (5.75). Finally, (6.33) becomes
ω = −dP F∗ω, which proves the theorem. �

Any closed form is exact at least locally. The de Rham cohomology group is
regarded as an obstruction to the global exactness of closed forms.

Example 6.4. Since �n is contractible, we have

H r(�n ) = 0 1 ≤ r ≤ n. (6.34)

Note, however, that H 0(�n ) = �.

6.4 Structure of de Rham cohomology groups

de Rham cohomology groups exhibit quite an interesting structure that is very
difficult or even impossible to appreciate with homology groups.

6.4.1 Poincaré duality

Let M be a compact m-dimensional manifold and let ω ∈ H r (M) and η ∈
H m−r (M). Noting that ω ∧ η is a volume element, we define an inner product
〈 , 〉 : H r(M) × H m−r (M)→ � by

〈ω, η〉 ≡
∫

M
ω ∧ η. (6.35)

The inner product is bilinear. Moreover, it is non-singular, that is, if ω �= 0
or η �= 0, 〈ω, η〉 cannot vanish identically. Thus, (6.35) defines the duality of
H r(M) and H m−r (M),

H r(M) ∼= H m−r (M) (6.36)

 



called the Poincaré duality. Accordingly, the Betti numbers have a symmetry

br = bm−r . (6.37)

It follows from (6.37) that the Euler characteristic of an odd-dimensional space
vanishes,

χ(M) =
∑
(−1)rbr = 1

2

{∑
(−1)r br +

∑
(−1)m−r bm−r

}
= 1

2

{∑
(−1)r br −

∑
(−1)−r br

}
= 0. (6.38)

6.4.2 Cohomology rings

Let [ω] ∈ H q(M) and [η] ∈ H r(M). Define a product of [ω] and [η] by

[ω] ∧ [η] ≡ [ω ∧ η]. (6.39)

It follows from exercise 6.2 that ω ∧ η is closed, hence [ω ∧ η] is an element of
H q+r(M). Moreover, [ω ∧ η] is independent of the choice of the representatives
of [ω] and [η]. For example, if we take ω′ = ω + dψ instead of ω, we have

[ω′] ∧ [η] ≡ [(ω + dψ) ∧ η] = [ω ∧ η + d(ψ ∧ η)] = [ω ∧ η].
Thus, the product ∧ : H q(M)× H r(M)→ H q+r(M) is a well-defined map.

The cohomology ring H ∗(M) is defined by the direct sum,

H ∗(M) ≡
m⊕

r=1

H r(M). (6.40)

The product is provided by the exterior product defined earlier,

∧ : H ∗(M)× H ∗(M)→ H ∗(M). (6.41)

The addition is the formal sum of two elements of H ∗(M). One of the
superiorities of cohomology groups over homology groups resides here. Products
of chains are not well defined and homology groups cannot have a ring structure.

6.4.3 The Künneth formula

Let M be a product of two manifolds M = M1 × M2. Let {ωp
i } (1 ≤ i ≤

b p(M1)) be a basis of H p(M1) and {ηp
i } (1 ≤ i ≤ b p(M2)) be that of H p(M2).

Clearly ωp
i ∧ ηr−p

j (1 ≤ p ≤ r) is a closed r -form in M . We show that it is not
exact. If it were exact, it would be written as

ω
p
i ∧ ηr−p

j = d(α p−1 ∧ βr−p + γ p ∧ δr−p−1) (6.42)

 



for some α p−1 ∈ �p−1(M1), βr−p ∈ �r−p(M2), γ p ∈ �p(M1) and δr−p−1 ∈
�r−p−1(M2). [If p = 0, we put α p−1 = 0.] By executing the exterior derivative
in (6.42), we have

ω
p
i ∧ ηr−p

j = dα p−1 ∧ βr−p + (−1)p−1α p−1 ∧ dβr−p

+ dγ p ∧ δr−p−1 + (−1)pγ p ∧ dδr−p−1. (6.43)

By comparing the LHS with the RHS, we find α p−1 = δr−p−1 = 0, hence
ω

p
i ∧ ηr−p

j = 0 in contradiction to our assumption. Thus, ωp
i ∧ ηr−p

j is a non-
trivial element of H r(M). Conversely, any element of H r(M) can be decomposed
into a sum of a product of the elements of H p(M1) and H r−p(M2) for 0 ≤ p ≤ r .
Now we have obtained the Künneth formula

H r(M) =
⊕

p+q=r

[H p(M1)⊗ H q(M2)]. (6.44)

This is rewritten in terms of the Betti numbers as

br (M) =
∑

p+q=r

b p(M1)b
q(M2). (6.45)

The Künneth formula also gives a relation between the cohomology rings of the
respective manifolds,

H ∗(M) =
m∑

r=1

H r(M) =
m∑

r=1

⊕
p+q=r

H p(M1)⊗ H q(M2)

=
∑

p

H p(M1)⊗
∑

q

H q(M2) = H ∗(M1)⊗ H ∗(M2). (6.46)

Exercise 6.5. Let M = M1 × M2. Show that

χ(M) = χ(M1) · χ(M2). (6.47)

Example 6.5. Let T 2 = S1 × S1 be the torus. Since H 0(S1) = � and H 1(S1) =
�, we have

H 0(T 2) = � ⊗ � = � (6.48a)

H 1(T 2) = (� ⊗ �) ⊕ (� ⊗ �) = � ⊕ � (6.48b)

H 2(T 2) = � ⊗ � = �. (6.48c)

Observe the Poincaré duality H 0(T 2) = H 2(T 2). [Remark: � ⊗ � is the tensor
product and should not be confused with the direct product. Clearly the product
of two real numbers is a real number.] Let us parametrize the coordinate of T 2

 



as (θ1, θ2) where θi is the coordinate of S1. The groups H r(T 2) are generated by
the following forms:

r = 0 : ω0 = c0 c0 ∈ �
r = 1 : ω1 = c1 dθ1 + c′1 dθ2 c1, c

′
1 ∈ � (6.49a)

r = 2 : ω2 = c2 dθ1 ∧ dθ2 c2 ∈ �.
Although the one-form dθi looks like an exact form, there is no function θi which
is defined uniquely on S1. Since χ(S1) = 0, we have χ(T 2) = 0.

The de Rham cohomology groups of

T n = S1 × · · · × S1︸ ︷︷ ︸
n

are obtained similarly. H r(T n) is generated by r -forms of the form

dθ i1 ∧ dθ i2 ∧ . . .∧ dθ ir (6.50)

where i1 < i2 < · · · < ir are chosen from 1, . . . , n. Clearly

br = dim H r(T n) =
(

n

r

)
. (6.51)

The Euler characteristic is directly obtained from (6.51) as

χ(T n) =
∑
(−1)r

(
n

r

)
= (1− 1)n = 0. (6.52)

6.4.4 Pullback of de Rham cohomology groups

Let f : M → N be a smooth map. Equation (5.75) shows that the pullback f ∗
maps closed forms to closed forms and exact forms to exact forms. Accordingly,
we may define a pullback of the cohomology groups f ∗ : H r(N)→ H r(M) by

f ∗[ω] = [ f ∗ω] [ω] ∈ H r(N). (6.53)

The pullback f ∗ preserves the ring structure of H ∗(N). In fact, if [ω] ∈ H p(N)
and [η] ∈ H q(N), we find

f ∗([ω] ∧ [η]) = f ∗[ω ∧ η] = [ f ∗(ω ∧ η)]
= [ f ∗ω ∧ f ∗η] = [ f ∗ω] ∧ [ f ∗η]. (6.54)

6.4.5 Homotopy and H1(M)

Let f, g : M → N be smooth maps. We assume f and g are homotopic to each
other, that is, there exists a smooth map F : M × I → N such that F(p, 0) =

 



f (p) and F(p, 1) = g(p). We now prove that f ∗ : H r(N) → H r (M) is equal
to g∗ : H r(N)→ H r(M).

Lemma 6.1. Let f ∗ and g∗ be defined as before. If ω ∈ �r (N) is a closed form,
the difference of the pullback images is exact,

f ∗ω − g∗ω = dψ ψ ∈ �r−1(M). (6.55)

Proof. We first note that

f = F ◦ f0, g = F ◦ f1

where ft : M → M × I (p 
→ (p, t)) has been defined in theorem 6.3. The
LHS of (6.55) is

(F ◦ f0)
∗ω − (F ◦ f1)

∗ω = f ∗0 ◦ F∗ω − f ∗1 ◦ F∗ω
= − [dP(F∗ω)+ P d(F∗ω)] = −dP F∗ω

where (6.33) has been used. This shows that f ∗ω − g∗ω = d(−P F∗ω). �

Now it is easy to see that f ∗ = g∗ as the pullback maps H r (N)→ H r (M).
In fact, from the previous lemma,

[ f ∗ω − g∗ω] = [ f ∗ω] − [g∗ω] = [dψ] = 0.

We have established the following theorem.

Theorem 6.4. Let f, g : M → N be maps which are homotopic to each
other. Then the pullback maps f ∗ and g∗ of the de Rham cohomology groups
H r(N)→ H r(M) are identical.

Let M be a simply connected manifold, namely π1(M) ∼= {0}. Since
H1(M) = π1(M) modulo the commutator subgroup (theorem 4.9), it follows
that H1(M) is also trivial. In terms of the de Rham cohomology group this can be
expressed as follows.

Theorem 6.5. Let M be a simply connected manifold. Then its first de Rham
cohomology group is trivial.

Proof. Let ω be a closed one-form on M . It is clear that if ω = d f , then a function
f must be of the form

f (p) =
∫ p

p0

ω (6.56)

p0 ∈ M being a fixed point.
We first prove that an integral of a closed form along a loop vanishes. Let

α : I → M be a loop at p ∈ M and let cp : I → M (t 
→ p) be a constant

 



loop. Since M is simply connected, there exists a homotopy F(s, t) such that
F(s, 0) = α(s) and F(s, 1) = cp(s). We assume F : I × I → M is smooth.
Define the integral of a one-form ω over α(I ) by∫

α(I )
ω =

∫
S1
α∗ω (6.57)

where we have taken the integral domain in the RHS to be S1 since I = [0, 1] in
the LHS is compactified to S1. From lemma 6.1, we have, for a closed one-form
ω,

α∗ω − c∗pω = dg (6.58)

where g = −P F∗ω. The pullback cpω vanishes since cp is a constant map. Then
(6.57) vanishes since ∂S1 is empty,∫

S1
α∗ω =

∫
S1

dg =
∫
∂S1

g = 0. (6.59)

Let β and γ be two paths connecting p0 and p. According to (6.59), integrals
of ω along β and along γ are identical,∫

β(I )
ω =

∫
γ (I )

ω.

This shows that (6.56) is indeed well defined, hence ω is exact. �

Example 6.6. The n-sphere Sn (n ≥ 2) is simply connected, hence

H 1(Sn) = 0 n ≥ 2. (6.60)

From the Poincaré duality, we find

H 0(Sn) ∼= H n(Sn) = �. (6.61)

It can be shown that

H r(Sn) = 0 1 ≤ r ≤ n − 1. (6.62)

H n(Sn) is generated by the volume element �. Since there are no (n + 1)-forms
on Sn , every n-form is closed. � cannot be exact since if � = dψ , we would
have ∫

Sn
� =

∫
Sn

dψ =
∫
∂Sn
ψ = 0.

The Euler characteristic is

χ(Sn) = 1+ (−1)n =
{

0 n is odd,

2 n is even.
(6.63)

 



Example 6.7. Take S2 embedded in �3 and define

� = sin θ dθ ∧ dφ (6.64)

where (θ, φ) is the usual polar coordinate. Verify that � is closed. We may
formally write � as

� = −d(cos θ) ∧ dφ = −d(cos θ dφ).

Note, however, that � is not exact.

 



7

RIEMANNIAN GEOMETRY

A manifold is a topological space which locally looks like �n . Calculus on a
manifold is assured by the existence of smooth coordinate systems. A manifold
may carry a further structure if it is endowed with a metric tensor, which is
a natural generalization of the inner product between two vectors in �n to an
arbitrary manifold. With this new structure, we define an inner product between
two vectors in a tangent space Tp M . We may also compare a vector at a point
p ∈ M with another vector at a different point p′ ∈ M with the help of the
‘connection’.

There are many books about Riemannian geometry. Those which are
accessible to physicists are Choquet-Bruhat et al (1982), Dodson and Poston
(1977) and Hicks (1965). Lightman et al (1975) and chapter 3 of Wald (1984)
are also recommended.

7.1 Riemannian manifolds and pseudo-Riemannian manifolds

7.1.1 Metric tensors

In elementary geometry, the inner product between two vectors U and V is
defined by U · V = ∑m

i=1 Ui Vi where Ui and Vi are the components of the
vectors in �m . On a manifold, an inner product is defined at each tangent space
Tp M .

Definition 7.1. Let M be a differentiable manifold. A Riemannian metric g on
M is a type (0, 2) tensor field on M which satisfies the following axioms at each
point p ∈ M:

(i) gp(U, V ) = gp(V ,U),
(ii) gp(U,U) ≥ 0, where the equality holds only when U = 0.

Here U, V ∈ Tp M and gp = g|p. In short, gp is a symmetric positive-definite
bilinear form.

A tensor field g of type (0, 2) is a pseudo-Riemannian metric if it satisfies
(i) and

(ii′) if gp(U, V ) = 0 for any U ∈ Tp M , then V = 0.

 



In chapter 5, we have defined the inner product between a vector V ∈ TM

and a dual vector ω ∈ T ∗p M as a map 〈 , 〉 : T ∗p M × Tp M → �. If there
exists a metric g, we define an inner product between two vectors U, V ∈ Tp M
by gp(U, V ). Since gp is a map Tp M ⊗ Tp M → � we may define a linear
map gp(U, ) : Tp M → � by V 
→ gp(U, V ). Then gp(U, ) is identified
with a one-form ωU ∈ T ∗p M . Similarly, ω ∈ T ∗p M induces Vω ∈ Tp M by
〈ω,U〉 = g(Vω,U). Thus, the metric gp gives rise to an isomorphism between
Tp M and T ∗p M .

Let (U, ϕ) be a chart in M and {xµ} the coordinates. Since g ∈ �0
2(M), it is

expanded in terms of dxµ ⊗ dxν as

gp = gµν(p)dxµ ⊗ dxν. (7.1a)

It is easily checked that

gµν(p) = gp

(
∂

∂xµ
,
∂

∂xν

)
= gνµ(p) (p ∈ M). (7.1b)

We usually omit p in gµν unless it may cause confusion. It is common to
regard (gµν) as a matrix whose (µ, ν)th entry is gµν . Since (gµν) has the
maximal rank, it has an inverse denoted by (gµν) according to the tradition:
gµνgνλ = gλνgνµ = δλµ. The determinant det(gµν) is denoted by g. Clearly

det(gµν) = g−1. The isomorphism between Tp M and T ∗p M is now expressed as

ωµ = gµνU
ν, Uµ = gµνων. (7.2)

From (7.1a) and (7.1b) we recover the ‘old-fashioned’ definition of the
metric as an infinitesimal distance squared. Take an infinitesimal displacement
dxµ∂/∂xµ ∈ Tp M and plug it into g to find

ds2 = g

(
dxµ

∂

∂xµ
, dxν

∂

∂xν

)
= dxµ dxν g

(
∂

∂xµ
,
∂

∂xν

)
= gµν dxµ dxν. (7.3)

We also call the quantity ds2 = gµν dxµ dxν a metric, although in a strict sense
the metric is a tensor g = gµν dxµ ⊗ dxν .

Since (gµν) is a symmetric matrix, the eigenvalues are real. If g
is Riemannian, all the eigenvalues are strictly positive and if g is pseudo-
Riemannian, some of them may be negative. If there are i positive and j negative
eigenvalues, the pair (i, j) is called the index of the metric. If j = 1, the metric
is called a Lorentz metric. Once a metric is diagonalized by an appropriate
orthogonal matrix, it is easy to reduce all the diagonal elements to±1 by a suitable
scaling of the basis vectors with positive numbers. If we start with a Riemannian
metric we end up with the Euclidean metric δ = diag(1, . . . , 1) and if we start
with a Lorentz metric, the Minkowski metric η = diag(−1, 1, . . . , 1).

 



If (M, g) is Lorentzian, the elements of Tp M are divided into three classes
as follows,

(i) g(U,U) > 0 −→ U is spacelike,

(ii) g(U,U) = 0 −→ U is lightlike (or null), (7.4)

(iii) g(U,U) < 0 −→ U is timelike.

Exercise 7.1. Diagonalize the metric

(gµν) =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


to show that it reduces to the Minkowski metric. The frame on which the
metric takes this form is known as the light cone frame. Let {e0, e1, e2, e3}
be the basis of the Minkowski frame in which the metric is gµν = ηµν . Show
that {e+, e−, e2, e3} are the basis vectors in the light cone frame, where e± ≡
(e1 ± e0)/

√
2. Let V = (V+, V−, V 2, V 3) be components of a vector V . Find

the components of the corresponding one-form.

If a smooth manifold M admits a Riemannian metric g, the pair (M, g) is
called a Riemannian manifold. If g is a pseudo-Riemannian metric, (M, g)
is called a pseudo-Riemannian manifold. If g is Lorentzian, (M, g) is called
a Lorentz manifold. Lorentz manifolds are of special interest in the theory
of relativity. For example, an m-dimensional Euclidean space (�m , δ) is a
Riemannian manifold and an m-dimensional Minkowski space (�m , η) is a
Lorentz manifold.

7.1.2 Induced metric

Let M be an m-dimensional submanifold of an n-dimensional Riemanian
manifold N with the metric gN . If f : M → N is the embedding which induces
the submanifold structure of M (see section 5.2), the pullback map f ∗ induces
the natural metric gM = f ∗gN on M . The components of gM are given by

gMµν(x) = gNαβ( f (x))
∂ f α

∂xµ
∂ f β

∂xν
(7.5)

where f α denote the coordinates of f (x). For example, consider the metric of the
unit sphere embedded in (�3 , δ). Let (θ, φ) be the polar coordinates of S2 and
define f by the usual inclusion

f : (θ, φ) 
→ (sin θ cosφ, sin θ sin φ, cos θ)

 



from which we obtain the induced metric

gµν dxµ ⊗ dxν = δαβ ∂ f α

∂xµ
∂ f β

∂xν
dxµ ⊗ dxν

= dθ ⊗ dθ + sin2 θ dφ ⊗ dφ. (7.6)

Exercise 7.2. Let f : T 2 → �3 be an embedding of the torus into (�3 , δ) defined
by

f : (θ, φ) 
→ ((R + r cos θ) cosφ, (R + r cos θ) sin φ, r sin θ)

where R > r . Show that the induced metric on T 2 is

g = r2 dθ ⊗ dθ + (R + r cos θ)2 dφ ⊗ dφ. (7.7)

When a manifold N is pseudo-Riemannian, its submanifold f : M → N
need not have a metric f ∗gN . The tensor f ∗gN is a metric only when it has a
fixed index on M .

7.2 Parallel transport, connection and covariant derivative

A vector X is a directional derivative acting on f ∈ �(M) as X : f 
→ X [ f ].
However, there is no directional derivative acting on a tensor field of type (p, q),
which arises naturally from the differentiable structure of M . [Note that the Lie
derivative �V X = [V , X ] is not a directional derivative since it depends on the
derivative of V .] What we need is an extra structure called the connection, which
specifies how tensors are transported along a curve.

7.2.1 Heuristic introduction

We first give a heuristic approach to parallel transport and covariant derivatives.
As we have noted several times, two vectors defined at different points cannot be
compared naively with each other. Let us see how the derivative of a vector field
in a Euclidean space �m is defined. The derivative of a vector field V = V µeµ
with respect to xν has the µth component

∂Vµ

∂xν
= lim
�x→0

V µ(. . . , xν +�xν, . . .)− V µ(. . . , xν, . . .)

�xν
.

The first term in the numerator of the LHS is defined at x +�x = (x1, . . . , xν +
�xν, . . . , xm), while the second term is defined at x = (xµ). To subtract V µ(x)
from Vµ(x + �x), we have to transport V µ(x) to x + �x without change and
compute the difference. This transport of a vector is called a parallel transport.
We have implicitly assumed that V |x parallel transported to x +�x has the same
component V µ(x). However, there is no natural way to parallel transport a vector
in a manifold and we have to specify how it is parallel transported from one point

 



to the other. Let Ṽ |x+�x denote a vector V |x parallel transported to x +�x . We
demand that the components satisfy

Ṽ µ(x +�x)− V µ(x) ∝ �x (7.8a)

�(V µ +Wµ)(x +�x) = Ṽ µ(x +�x)+ W̃µ(x +�x). (7.8b)

These conditions are satisfied if we take

Ṽ µ(x +�x) = V µ(x)− V λ(x)�µνλ(x)�xν. (7.9)

The covariant derivative of V with respect to xν is defined by

lim
�xν→0

V µ(x +�x)− Ṽ µ(x +�x)

�xν
∂

∂xµ
=

(
∂Vµ

∂xν
+ V λ�µνλ

)
∂

∂xµ
. (7.10)

This quantity is a vector at x +�x since it is a difference of two vectors V |x+�x

and Ṽ |x+�x defined at the same point x + �x . There are many distinct rules
of parallel transport possible, one for each choice of �. If the manifold is
endowed with a metric, there exists a preferred choice of �, called the Levi-Civita
connection, see example 7.1 and section 7.4.

Example 7.1. Let us work out a simple example: two-dimensional Euclidean
space (�2 , δ). We define parallel transportation according to the usual sense
in elementary geometry. In the Cartesian coordinate system (x, y), all the
components of � vanish since Ṽ µ(x + �x, y + �y) = Vµ(x, y) for any �x
and �y. Next we take the polar coordinates (r, φ). If (r, φ) 
→ (r cosφ, r sin φ)
is regarded as an embedding, we find the induced metric,

g = dr ⊗ dr + r2 dφ ⊗ dφ. (7.11)

Let V = V r∂/∂r + V φ∂/∂φ be a vector defined at (r, φ). If we parallel transport
this vector to (r + �r, φ), we have a new vector Ṽ = Ṽ r ∂/∂r |(r+�r,φ) +
Ṽ φ ∂/∂φ|(r+�r,φ) (figure 7.1(a)). Note that V r = V cos θ and V φ = V (sin θ/r),
where V = √g(V ,V ) and θ is the angle between V and ∂/∂r . Then we have
Ṽ r = V r and

Ṽ φ = r

r +�r
V φ 	 V φ − �r

r
V φ.

By comparing these components with (7.9), we easily find that

�r
rr = 0 �r

rφ = 0 �φrr = 0 �φrφ = 1

r
. (7.12a)

Similarly, if V is parallel transported to (r, φ +�φ), it becomes

Ṽ = Ṽ r ∂

∂r

∣∣∣∣
(r,φ+�φ)

+ Ṽ φ
∂

∂φ

∣∣∣∣
(r,φ+�φ)

 



Figure 7.1. Ṽ is a vector V parallel transported to (a) (r +�r, φ) and (b) (r, φ +�φ).

where

Ṽ r = V cos(θ −�φ) 	 V cos θ + V sin θ�φ = V r + V φr�φ

and

Ṽ φ = V
sin(θ −�φ)

r
	 V

sin θ

r
− V cos θ

�φ

r
= V φ − V r �φ

r

(figure 7.1(b)). Then we find

�r
φr = 0 �r

φφ = −r �φφr = 1

r
�φφφ = 0. (7.12b)

Note that the � satisfy the symmetry �λµν = �λνµ. It is also implicitly assumed
that the norm of a vector is invariant under parallel transport. A rule of parallel
transport which satisfies these two conditions is called a Levi-Civita connection,
see section 7.4. Our intuitive approach leads us to the formal definition of the
affine connection.

7.2.2 Affine connections

Definition 7.2. An affine connection ∇ is a map ∇ : �(M)×�(M)→ �(M), or
(X,Y ) 
→ ∇X Y which satisfies the following conditions:

∇X (Y + Z) = ∇X Y + ∇X Z (7.13a)

∇(X+Y )Z = ∇X Z + ∇Y Z (7.13b)

∇( f X)Y = f ∇X Y (7.13c)

∇X ( f Y ) = X [ f ]Y + f ∇X Y (7.13d)

 



where f ∈ �(M) and X,Y, Z ∈ �(M).
Take a chart (U, ϕ) with the coordinate x = ϕ(p) on M , and define m3

functions �λνµ called the connection coefficients by

∇νeµ ≡ ∇eν eµ = eλ�
λ
νµ (7.14)

where {eµ} = {∂/∂xµ} is the coordinate basis in Tp M . The connection
coefficients specify how the basis vectors change from point to point. Once the
action of ∇ on the basis vectors is defined, we can calculate the action of ∇ on
any vectors. Let V = V µeµ and W = W νeν be elements of Tp(M). Then

∇V W = Vµ∇eµ(W
νeν) = V µ(eµ[Wµ]eν + W ν∇eµeν)

= Vµ
(
∂Wλ

∂xµ
+W ν�λµν

)
eλ. (7.15)

Note that this definition of the connection coefficient is in agreement with the
previous heuristic result (7.10). By definition, ∇ maps two vectors V and W to a
new vector given by the RHS of (7.15), whose λth component is V µ∇µWλ where

∇µWλ ≡ ∂Wλ

∂xµ
+ �λµνW ν . (7.16)

Note that ∇µWλ is the λth component of a vector ∇µW = ∇µWλeλ and should
not be confused with the covariant derivative of a component Wλ. ∇V W is
independent of the derivative of V , unlike the Lie derivative �V W = [V ,W ].
In this sense, the covariant derivative is a proper generalization of the directional
derivative of functions to tensors.

7.2.3 Parallel transport and geodesics

Given a curve in a manifold M , we may define the parallel transport of a vector
along the curve. Let c : (a, b)→ M be a curve in M . For simplicity, we assume
the image is covered by a single chart (U, ϕ) whose coordinate is x = ϕ(p). Let
X be a vector field defined (at least) along c(t),

X |c(t) = Xµ(c(t))eµ|c(t) (7.17)

where eµ = ∂/∂xµ. If X satisfies the condition

∇V X = 0 for any t ∈ (a, b) (7.18a)

X is said to be parallel transported along c(t) where V = d/dt=
(dxµ (c(t))/dt)eµ|c(t) is the tangent vector to c(t). The condition (7.18a) is
written in terms of the components as

dXµ

dt
+ �µνλ dxν(c(t))

dt
Xλ = 0. (7.18b)

 



If the tangent vector V (t) itself is parallel transported along c(t), namely if

∇V V = 0 (7.19a)

the curve c(t) is called a geodesic. Geodesics are, in a sense, the straightest
possible curves in a Riemannian manifold. In components, the geodesic
equation (7.19a) becomes

d2xµ

dt2 + �µνλ dxν

dt

dxλ

dt
= 0 (7.19b)

where {xµ} are the coordinates of c(t). We might say that (7.19a) is too strong to
be the condition for the straightest possible curve, and instead require a weaker
condition

∇V V = f V (7.20)

where f ∈ �(M). ‘Change of V is parallel to V ’ is also a feature of a straight
line. However, under the reparametrization t → t ′, the component of the tangent
vector changes as

dxµ

dt
→ dt

dt ′
dxµ

dt

and (7.20) reduces to (7.19a) if t ′ satisfies

d2t ′

dt2
= f

dt ′

dt
.

Thus, it is always possible to reparametrize the curve so that the geodesic equation
takes the form (7.19a).

Exercise 7.3. Show that (7.19b) is left invariant under the affine reparametrization
t → at + b (a, b ∈ �).

7.2.4 The covariant derivative of tensor fields

Since ∇X has the meaning of a derivative, it is natural to define the covariant
derivative of f ∈ �(M) by the ordinary directional derivative:

∇X f = X [ f ]. (7.21)

Then (7.13d) looks exactly like the Leibnitz rule,

∇X ( f Y ) = (∇X f )Y + f∇X Y. (7.13d′)

We require that this be true for any product of tensors,

∇X (T1 ⊗ T2) = (∇X T1)⊗ T2 + T1 ⊗ (∇X T2) (7.22)

 



where T1 and T2 are tensor fields of arbitrary types. Equation (7.22) is also true
when some of the indices are contracted. With these requirements, we compute
the covariant derivative of a one-form ω ∈ �1(M). Since 〈ω,Y 〉 ∈ �(M) for
Y ∈ �(M), we should have

X [〈ω,Y 〉] = ∇X [〈ω,Y 〉] = 〈∇Xω,Y 〉 + 〈ω,∇X Y 〉.
Writing down both sides in terms of the components we find

(∇Xω)ν = Xµ∂µων − Xµ�λµνωλ. (7.23)

In particular, for X = eµ, we have

(∇µω)ν = ∂µων − �λµνωλ. (7.24)

For ω = dxν , we obtain (cf (7.14))

∇µ dxν = −�νµλ dxλ. (7.25)

It is easy to generalize these results as

∇ν tλ1...λp
µ1...µq = ∂ν tλ1...λp

µ1...µq + �λ1
νκ t

κλ2...λp
µ1...µq + · · ·

+ �λp
νκ t

λ1...λp−1κ
µ1...µq − �κνµ1 t

λ1...λp
κµ2...µq − · · ·

− �κνµq t
λ1...λp
µ1...µq−1κ . (7.26)

Exercise 7.4. Let g be a metric tensor. Verify that

(∇νg)λµ = ∂νgλµ − �κνλgκµ − �κνµgλκ. (7.27)

7.2.5 The transformation properties of connection coefficients

Introduce another chart (V , ψ) such that U ∩ V �= ∅, whose coordinates are
y = ψ(p). Let {eµ} = {∂/∂xµ} and { fα} = {∂/∂yα} be bases of the respective
coordinates. Denote the connection coefficients with respect to the y-coordinates
by �̃αβγ . The basis vector fα satisfies

∇ fα fβ = �̃γ αβ fγ . (7.28)

If we write fα = (∂xµ/∂yα)eµ, the LHS becomes

∇ fα fβ = ∇ fα

(
∂xµ

∂yβ
eµ

)
= ∂2xµ

∂yα∂yβ
eµ + ∂xλ

∂yα
∂xµ

∂yβ
∇eλeµ

=
(
∂2xν

∂yα∂yβ
+ ∂xλ

∂yα
∂xµ

∂yβ
�νλµ

)
eν .

 



Since the RHS of (7.28) is equal to �̃γ αβ(∂xν/∂yγ )eν , the connection coefficients
must transform as

�̃γ αβ = ∂xλ

∂yα
∂xµ

∂yβ
∂yγ

∂xν
�νλµ + ∂2xν

∂yα∂yβ
∂yγ

∂xν
. (7.29)

The reader should verify that this transformation rule indeed makes∇X Y a vector,
namely

X̃α(̃∂α Ỹ γ + �̃γ αβ Ỹ β) fγ = Xλ(∂λY ν + �νλµY ν)eν.

In the literature, connection coefficients are often defined as objects which
transform as (7.29). From our viewpoint, however, they must transform according
to (7.29) to make ∇X Y independent of the coordinate chosen.

Exercise 7.5. Let � be an arbitrary connection coefficient. Show that �λµν+ tλµν
is another connection coefficient provided that tλµν is a tensor field. Conversely,
suppose �λµν and �̄λµν are connection coefficients. Show that �λµν − �̄λµν is a
component of a tensor of type (1, 2).

7.2.6 The metric connection

So far we have left � arbitrary. Now that our manifold is endowed with a metric,
we may put reasonable restrictions on the possible form of connections. We
demand that the metric gµν be covariantly constant, that is, if two vectors X
and Y are parallel transported along any curve, then the inner product between
them remains constant under parallel transport. [In example 7.1, we have already
assumed this reasonable condition.] Let V be a tangent vector to an arbitrary
curve along which the vectors are parallel transported. Then we have

0 = ∇V [g(X,Y )] = V κ [(∇κg)(X,Y )+ g(∇κX,Y )+ g(X,∇κY )]
= V κXµY ν(∇κg)µν

where we have noted that ∇κ X = ∇κY = 0. Since this is true for any curves and
vectors, we must have

(∇κg)µν = 0 (7.30a)

or, from exercise 7.4,

∂λgµν − �κλµgκν − �κλνgκµ = 0. (7.30b)

If (7.30a) is satisfied, the affine connection ∇ is said to be metric compatible or
simply a metric connection. We will deal with metric connections only. Cyclic
permutations of (λ, µ, ν) yield

∂µgνλ − �κµνgκλ − �κµλgκν = 0 (7.30c)

∂νgλµ − �κνλgκµ − �κνµgκλ = 0. (7.30d)

 



The combination−(7.30b)+ (7.30c)+ (7.30d) yields

−∂λgµν + ∂µgνλ + ∂νgλµ + T κλµgκν + T κλνgκµ − 2�κ(µν)gκλ = 0 (7.31)

where T κλµ ≡ 2�κ [λµ] ≡ �κλµ − �κµλ and �κ (µν) ≡ 1
2 (�

κ
νµ + �κµν). The

tensor T κ λµ is anti-symmetric with respect to the lower indices T κλµ = −T κµλ
and called the torsion tensor, see exercise 7.6. The torsion tensor will be studied
in detail in the next section. Equation (7.31) is solved for �κ (µν) to yield

�κ (µν) =
{
κ

µν

}
+ 1

2

(
Tν
κ
µ + Tµ

κ
ν

)
(7.32)

where
{
κ
µν

}
are the Christoffel symbols defined by{

κ

µν

}
= 1

2
gκλ

(
∂µgνλ + ∂νgµλ − ∂λgµν

)
. (7.33)

Finally, the connection coefficient � is given by

�κµν = �κ (µν) + �κ [µν]
=

{
κ

µν

}
+ 1

2
(Tν

κ
µ + Tµ

κ
ν + T κµν). (7.34)

The second term of the last expression of (7.34) is called the contorsion, denoted
by K κ

µν :

K κ
µν ≡ 1

2 (T
κ
µν + Tµ

κ
ν + Tν

κ
µ). (7.35)

If the torsion tensor vanishes on a manifold M , the metric connection
∇ is called the Levi-Civita connection. Levi-Civita connections are natural
generalizations of the connection defined in the classical geometry of surfaces,
see section 7.4.

Exercise 7.6. Show that T κµν obeys the tensor transformation rule. [Hint: Use
(7.29).] Show also that K κ [µν] = 1

2 T κµν and Kκµν = −Kνµκ where Kκµν =
gκλK λ

µν .

7.3 Curvature and torsion

7.3.1 Definitions

Since � is not a tensor, it cannot have an intrinsic geometrical meaning as
a measure of how much a manifold is curved. For example, the connection
coefficients in example 7.1 vanish if the Cartesian coordinate is employed while
they do not in polar coordinates. As intrinsic objects, we define the torsion tensor

 



T : �(M) ⊗ �(M)→ �(M) and the Riemann curvature tensor (or Riemann
tensor) R : �(M)⊗ �(M)⊗ �(M)→ �(M) by

T (X,Y ) ≡ ∇X Y −∇Y X − [X,Y ] (7.36)

R(X,Y, Z) ≡ ∇X∇Y Z −∇Y∇X Z −∇[X,Y ]Z . (7.37)

It is common to write R(X,Y )Z instead of R(X,Y, Z), so that R looks like an
operator acting on Z . Clearly, they satisfy

T (X,Y ) = −T (Y, X), R(X,Y )Z = −R(Y, X)Z . (7.38)

At first sight, T and R seem to be differential operators and it is not obvious that
they are multilinear objects. We prove the tensorial property of R,

R( f X, gY )h Z = f∇X {g∇Y (h Z)} − g∇Y { f ∇X (h Z)} − f X[g]∇Y (h Z)

+ gY [ f ]∇X (h Z)− f g∇[X,Y ](h Z)

= f g∇X {Y [h]Z + h∇Y Z} − g f ∇Y {X [h]Z + h∇X Z}
− f g[X,Y ][h]Z − f gh∇[X,Y ]Z

= f gh{∇X∇Y Z −∇Y∇X Z −∇[X,Y ]Z}
= f gh R(X,Y )Z .

Now it is easy to see that R satisfies

R(X,Y )Z = XλYµZν R(eλ, eµ)eν (7.39)

which verifies the tensorial property of R. Since R maps three vector fields to a
vector field, it is a tensor field of type (1, 3).

Exercise 7.7. Show that T defined by (7.36) is multilinear,

T (X,Y ) = XµY νT (eµ, eν) (7.40)

and hence a tensor field of type (1, 2).

Since T and R are tensors, their operations on vectors are obtained once their
actions on the basis vectors are known. With respect to the coordinate basis {eµ}
and the dual basis {dxµ}, the components of these tensors are given by

T λµν = 〈dxλ, T (eµ, eν)〉 = 〈dxλ,∇µeν − ∇νeµ〉
= 〈dxλ, �ηµνeη − �ηνµeη〉 = �λµν − �λνµ (7.41)

and

Rκλµν = 〈dxκ , R(eµ, eν)eλ〉 = 〈dxκ ,∇µ∇νeλ −∇ν∇µeλ〉
= 〈dxκ ,∇µ(�ηνλeη)−∇ν(�ηµνeη)〉
= 〈dxκ , (∂µ�

η
νλ)eη + �ηνλ�ξ µηeξ − (∂ν�ηµλ)eη − �ηµλ�ξ νηeξ 〉

= ∂µ�κνλ − ∂ν�κµλ + �ηνλ�κµη − �ηµλ�κνη. (7.42)

We readily find (cf (7.38))

T λµν = −T λνµ Rκλµν = −Rκλνµ. (7.43)

 



Figure 7.2. It is natural to define V parallel transported along a great circle if the angle V
makes with the great circle is kept fixed. If V at p is parallel transported along great circles
C and C ′, the resulting vectors at q point in opposite directions.

Figure 7.3. A vector V0 at p is parallel transported along C and C ′ to yield VC (r) and
VC ′(r) at r . The curvature measures the difference between two vectors.

7.3.2 Geometrical meaning of the Riemann tensor and the torsion tensor

Before we proceed further, we examine the geometrical meaning of these tensors.
We consider the Riemann tensor first. A crucial observation is that if we parallel
transport a vector V at p to q along two different curves C and C ′, the resulting
vectors at q are different in general (figure 7.2). If, however, we parallel transport
a vector in a Euclidean space, where the parallel transport is defined in our
usual sense, the resulting vector does not depend on the path along which it
has been parallel transported. We expect that this non-integrability of parallel
transport characterizes the intrinsic notion of curvature, which does not depend

 



on the special coordinates chosen. Let us take an infinitesimal parallelogram
pqrs whose coordinates are {xµ}, {xµ + εµ}, {xµ + εµ + δµ} and {xµ + δµ}
respectively, εµ and δµ being infinitesimal (figure 7.3). If we parallel transport
a vector V0 ∈ Tp M along C = pqr , we will have a vector VC(r) ∈ Tr M . The
vector V0 parallel transported to q along C is

V µC (q) = V µ0 − V κ0 �
µ
νκ(p)ε

ν.

Then V µC (r) is given by

VµC (r) = VµC (q)− V κC (q)�
µ
νκ(q)δ

ν

= Vµ0 − V κ0 �
µ
νκε

ν − [V κ0 − V ρ0 �
κ
ζρ(p)ε

ζ ]
× [�µνκ(p)+ ∂λ�µνκ(p)ελ]δν

	 Vµ0 − V κ0 �
µ
νκ(p)ε

ν − V κ0 �
µ
νκ(p)δ

ν

− V κ0 [∂λ�µνκ(p)− �ρλκ(p)�µνρ(p)]ελδν

where we have kept terms of up to order two in ε and δ. Similarly, parallel
transport of V0 along C ′ = psr yields another vector VC ′(r) ∈ Tr M , given by

V µC ′(r) 	 V µ0 − V κ0 �
µ
νκ(p)δ

ν − V κ0 �
µ
νκ(p)ε

ν

− V κ0 [∂ν�µλκ(p)− �ρνκ(p)�µλρ(p)]ελδν.
The two vectors at r differ by

VC ′(r)− VC(r) = V κ0 [∂λ�µνκ(p)− ∂ν�µλκ(p)
− �ρλκ(p)�µνρ(p)+ �ρνκ(p)�µλρ(p)]ελδν

= V κ0 Rµκλνε
λδν. (7.44)

We next look at the geometrical meaning of the torsion tensor. Let p ∈ M
be a point whose coordinates are {xµ}. Let X = εµeµ and Y = δµeµ be
infinitesimal vectors in Tp M . If these vectors are regarded as small displacements,
they define two points q and s near p, whose coordinates are {xµ + εµ} and
{xµ + δµ} respectively (figure 7.4). If we parallel transport X along the line ps,
we obtain a vector sr1 whose component is εµ − ελ�µνλδν . The displacement
vector connecting p and r1 is

pr1 = ps + sr1 = δµ + εµ − �µνλελδν.
Similarly, the parallel transport of δµ along pq yields a vector

pr2 = pq + qr2 = εµ + δµ − �µλνελδν.
In general, r1 and r2 do not agree and the difference is

r2r1 = pr2 − pr1 = (�µνλ − �µλν)ελδν = Tµνλε
λδν. (7.45)

 



Figure 7.4. The vector qr2 (sr1) is the vector ps (pq) parallel transported to q (s). In
general, r1 �= r2 and the torsion measures the difference r2r1.

Thus, the torsion tensor measures the failure of the closure of the parallelogram
made up of the small displacement vectors and their parallel transports.

Example 7.2. Suppose we are navigating on the surface of the Earth. We define a
vector to be parallel transported if the angle between the vector and the latitude is
kept fixed during the navigation. [Remarks: This definition of parallel transport
is not the usual one. For example, the geodesic is not a great circle but a straight
line on Mercator’s projection. See example 7.5.] Suppose we navigate along
a small quadrilateral pqrs made up of latitudes and longitudes (figure 7.5(a)).
We parallel transport a vector at p along pqr and psr , separately. According
to our definition of parallel transport, two vectors at r should agree, hence the
curvature tensor vanishes. To find the torsion, we parametrize the points p, q, r
and s as in figure 7.5(b). We find the torsion by evaluating the difference between
pr1 and pr2 as in (7.45). If we parallel transport the vector pq along ps, we
obtain a vector sr1, whose length is R sin θdφ. However, a parallel transport
of the vector ps along pq yields a vector qr2 = qr . Since sr has a length
R sin(θ − dθ) dφ 	 R sin θ dφ − R cos θ dθ dφ, we find that r1r2 has a length
R cos θ dθ dφ. Since r1r2 is parallel to −∂/∂φ, the connection has a torsion
T φθφ , see (7.45). From gφφ = R2 sin2 θ , we find that r1r2 has components
(0,− cot θ dθ dφ). Since the φ-component of r1r2 is equal to T φθφdθdφ, we
obtain T φθφ = − cot θ .

Note that the basis {∂/∂θ, ∂/∂φ} is not well defined at the poles. It is known
that the sphere S2 does not admit two vector fields which are linearly independent
everywhere on S2. Any vector field on S2 must vanish somewhere on S2 and

 



Figure 7.5. (a) If a vector makes an angle α with the longitude at p, this angle is kept fixed
during parallel transport. (b) The vector sr1 (qr2) is the vector pq (ps) parallel transported
to s (q). The torsion does not vanish.

hence cannot be linearly independent of the other vector field there. If an m-
dimensional manifold M admits m vector fields which are linearly independent
everywhere, M is said to be parallelizable. On a parallelizable manifold, we
can use these m vector fields to define a tangent space at each point of M . A
vector Vp ∈ Tp M is defined to be parallel to Vq ∈ Tq M if all the components of
Vp at Tp M are equal to those of Vq at Tq M . Since the vector fields are defined
throughout M , this parallelism should be independent of the path connecting p
and q , hence the Riemann curvature tensor vanishes although the torsion tensor
may not in general. For Sm , this is possible only when m = 1, 3 and 7, which is
closely related to the existence of complex numbers, quaternions and octonions,
respectively. For definiteness, let us consider

S3 =
{
(x1, x2, x3, x4)

∣∣∣∣ 4∑
i=1

(xi)2 = 1

}

embedded in (�4 , δ). Three orthonormal vectors

e1(x) = (−x2, x1,−x4, x3)

e2(x) = (−x3, x4, x1,−x2) (7.46)

e3(x) = (−x4,−x3, x2, x1)

are orthogonal to x = (x1, x2, x3, x4) and linearly independent everywhere
on S3, hence define the tangent space Tx S3. Two vectors V 1(x) and V 2(y)

 



are parallel if V 1(x) = ∑
ci ei (x) and V 2(y) = ∑

ci ei (y). The connection
coefficients are computed from (7.14). Let εe1(x) be a small displacement
under which x = (x1, x2, x3, x4) changes to x′ = x + εe1(x) = {x1 −
εx2, x2 + εx1, x3 − εx4, x4 + εx3}. The difference between the basis vectors
at x and x′ is e2(x′)− e2(x) = (−x3 − εx4, x4 + εx3, x1 − εx2,−x2 − εx1)−
(−x3, x4, x1,−x2) = −εe3(x) = ε�µ12eµ(x), hence �3

12 = −1, �1
12 =

�2
12 = 0. Similarly, �3

21 = 1 hence we find T 3
12 = −2. The reader

should complete the computation of the connection coefficients and verify that
T λµν = −2 (+2) if (λµν) is an even (odd) permutation of (123) and vanishes
otherwise.

Let us see how this parallelizability of S3 is related to the existence of
quaternions. The multiplication rule of quaternions is

(x1, x2, x3, x4) · (y1, y2, y3, y4)

= (x1y1 − x2y2 − x3y3 − x4y4, x1y2 + x2y1 + x3y4 − x4y3,

x1y3 − x2 y4 + x3 y1 + x4 y2, x1y4 + x2y3 − x3y2 + x4y1). (7.47)

S3 may be defined by the set of unit quaternions

S3 = {(x1, x2, x3, x4)|x · x̄ = 1}
where the conjugate of x is defined by x̄ = (x1,−x2,−x3,−x4). According to
(7.46), the tangent space at x0 = (1, 0, 0, 0) is spanned by

e1 = (0, 1, 0, 0) e2 = (0, 0, 1, 0) e3 = (0, 0, 0, 1).
Then the basis vectors (7.46) of the tangent space at x = (x1, x2, x3, x4) are
expressed as the quaternion products

e1(x) = e1 · x e2(x) = e2 · x e3(x) = e3 · x. (7.48)

Because of this algebra, it is always possible to give a set of basis vectors at an
arbitrary point of S3 once it is given at some point, x0 = (1, 0, 0, 0), for example.

By the same token, a Lie group is parallelizable. If the set of basis vectors
{V1, . . . , Vm} at the unit element e of a Lie group G is given, we can always find
a set of basis vectors of TgG by the left translation of {Vµ} (see section 5.6),

{V1, . . . , Vn} Lg∗−→ {X1|g, . . . , Xn |g}. (7.49)

7.3.3 The Ricci tensor and the scalar curvature

From the Riemann curvature tensor, we construct new tensors by contracting the
indices. The Ricci tensor Ric is a type (0, 2) tensor defined by

Ric(X,Y ) ≡ 〈dxµ, R(eµ,Y )X〉 (7.50a)

 



whose component is

Ricµν = Ric(eµ, eν) = Rλµλν. (7.50b)

The scalar curvature� is obtained by further contracting indices,

� ≡ gµνRic(eµ, eν) = gµν Ricµν. (7.51)

7.4 Levi-Civita connections

7.4.1 The fundamental theorem

Among affine connections, there is a special connection called the Levi-Civita
connection, which is a natural generalization of the connection in the classical
differential geometry of surfaces. A connection ∇ is called a symmetric
connection if the torsion tensor vanishes. In the coordinate basis, connection
coefficients of a symmetric connection satisfy

�λµν = �λνµ. (7.52)

Theorem 7.1. (The fundamental theorem of (pseudo-)Riemannian geometry)
On a (pseudo-)Riemannian manifold (M, g), there exists a unique symmetric
connection which is compatible with the metric g. This connection is called the
Levi-Civita connection.

Proof. This follows directly from (7.34). Let ∇ be an arbitrary connection such
that

�̃κµν =
{
κ

µν

}
+ K κ

µν

where
{
κ
µν

}
is the Christoffel symbol and K the contorsion tensor. It was shown

in exercise 7.5 that �κµν ≡ �̃κµν + tκµν is another connection coefficient if t is
a tensor field of type (1, 2). Now we choose tκµν = −K κ

µν so that

�κµν =
{
κ

µν

}
= 1

2
gκλ(∂µgλν + ∂νgλµ − ∂λgµν). (7.53)

By construction, this is symmetric and certainly unique given a metric. �

Exercise 7.8. Let V be a Levi-Civita connection.

(a) Let f ∈ �(M). Show that

∇µ∇ν f = ∇ν∇µ f. (7.54)

(b) Let ω ∈ �1(M). Show that

dω = (∇µω)ν dxµ ∧ dxν. (7.55)

 



Figure 7.6. On a surface M , a vector Vp ∈ Tp M is defined to be parallel to Vq ∈ Tq M if
the projection of Vq onto Tp M is parallel to Vp in our ordinary sense of parallelism in �2.

(c) Let ω ∈ �1(M) and let U ∈ �(M) be the corresponding vector field:
Uµ = gµνων . Show that, for any V ∈ �(M),

g(∇X U, V ) = 〈∇Xω, V 〉. (7.56)

Example 7.3.

(a) The metric on �2 in polar coordinates is g = dr ⊗ dr + r2 dφ ⊗ dφ.
The non-vanishing components of the Levi-Civita connection coefficients
are �φrφ = �φφr = r−1 and �r

φφ = −r . This is in agreement with the
result obtained in example 7.1.

(b) The induced metric on S2 is g = dθ ⊗ dθ + sin2 θ dφ ⊗ dφ. The non-
vanishing components of the Levi-Civita connection are

�θφφ = − cos θ sin θ �φθφ = �φφθ = cot θ. (7.57)

7.4.2 The Levi-Civita connection in the classical geometry of surfaces

In the classical differential geometry of surfaces embedded in �3 , Levi-Civita
defined the parallelism of vectors at the nearby points p and q in the following
sense (figure 7.6). First, take the tangent plane at p and a vector Vp at p, which
lies in the tangent plane. A vector Vq at q is defined to be parallel to Vp if the
projection of Vq to the tangent plane at p is parallel to Vp in our usual sense.
Now take two points q and s near p as in figure 7.7 and parallel transport the
displacement vectors pq along ps and ps along pq . If the parallelism is defined
in the sense of Levi-Civita, the displacement vectors projected to the tangent
plane at p form a closed parallelogram, hence this parallelism has vanishing
torsion. As has been proved in theorem 7.1, there exists a unique connection
which has vanishing torsion, which generalizes the parallelism defined here to
arbitrary manifolds.

 



Figure 7.7. If the parallelism is defined in the sense of Levi-Civita, the torsion vanishes
identically.

7.4.3 Geodesics

When the Levi-Civita connection is employed, we can compute the connection
coefficients, Riemann tensors and many relations involving these by simple
routines. Besides this simplicity, the Levi-Civita connection provides a geodesic
(defined as the straightest possible curve) with another picture, namely the
shortest possible curve connecting two given points. In Newtonian mechanics,
the trajectory of a free particle is the straightest possible as well as the shortest
possible curve, that is, a straight line. Einstein proposed that this property should
be satisfied in general relativity as well; if gravity is understood as a part of the
geometry of spacetime, a freely falling particle should follow the straightest as
well as the shortest possible curve. [Remark: To be precise, the shortest possible
curve is too strong a condition. As we see later, a geodesic defined with respect
to the Levi-Civita connection gives the local extremum of the length of a curve
connecting two points.]

Example 7.4. In a flat manifold (�m , δ) or (�m , η), the Levi-Civita connection
coefficients � vanish identically. Hence, the geodesic equation (7.19b) is easily
solved to yield xµ = Aµt + Bµ, where Aµ and Bµ are constants.

Exercise 7.9. A metric on a cylinder S1 × � is given by g = dφ ⊗ dφ + dz ⊗ dz,
where φ is the polar angle of S1 and z the coordinate of�. Show that the geodesics
given by the Levi-Civita connection are helices.

The equivalence of the straightest possible curve and the local extremum of
the distance is proved as follows. First we parametrize the curve by the distance s
along the curve, xµ = xµ(s). The length of a path c connecting two points p and
q is

I (c) =
∫

c
ds =

∫
c

√
gµνx ′µx ′ν ds (7.58)

where x ′µ = dxµ/ds. Instead of deriving the Euler–Lagrange equation from
(7.58), we will solve a slightly easier problem. Let F ≡ 1

2 gµνx ′µx ′ν and write

 



(7.58) as I (c) = ∫
c L(F)ds. The Euler–Lagrange equation for the original

problem takes the form

d

ds

(
∂L

∂x ′λ

)
− ∂L

∂xλ
= 0. (7.59)

Then F = L2/2 satisfies

d

ds

(
∂F

∂x ′λ

)
− ∂F

∂xλ
= L

[
d

ds

(
∂L

∂x ′λ

)
− ∂L

∂xλ

]
+ ∂L

∂x ′λ
dL

ds
= ∂L

∂x ′λ
dL

ds
. (7.60)

The last expression vanishes since L ≡ 1 along the curve; dL/ds = 0. Now
we have proved that F also satisfies the Euler–Lagrange equation provided that L
does so. We then have

d

ds
(gλµx ′µ)− 1

2

∂gµν
∂xλ

x ′µx ′ν

= ∂gλµ
∂xν

x ′µx ′ν + gλµ
d2xµ

ds2 − 1

2

∂gµν
∂xλ

x ′µx ′ν

= gλµ
d2xµ

ds2
+ 1

2

(
∂gλµ
∂xν

+ ∂gλν
∂xµ

− ∂gµν
∂xλ

)
dxµ

ds

dxν

ds
= 0. (7.61)

If (7.61) is multiplied by gκλ, we reproduce the geodesic equation (7.19b).
Having proved that L and F satisfy the same variational problem, we take

advantage of this to compute the Christoffel symbols. Take S2, for example. F is
given by 1

2 (θ
′2 + sin2 θφ′2) and the Euler–Lagrange equations are

d2θ

ds2
− sin θ cos θ

(
dφ

ds

)2

= 0 (7.62a)

d2φ

ds2 + 2 cot θ
dφ

ds

dθ

ds
= 0. (7.62b)

It is easy to read off the connection coefficients �θφφ = − sin θ cos θ and
�φφθ = �φθφ = cot θ , see (7.57).

Example 7.5. Let us compute the geodesics of S2. Rather than solving the
geodesic equations (7.62) we find the geodesic by minimizing the length of a
curve connecting two points on S2. Without loss of generality, we may assign
coordinates (θ1, φ0) and (θ2, φ0) to these points. Let φ = φ(θ) be a curve
connecting these points. Then the length of the curve is

I (c) =
∫ θ2

θ1

√
1+ sin2

(
dφ

dθ

)2

dθ (7.63)

 



which is minimized when dφ/dθ ≡ 0, that is φ ≡ φ0. Thus, the geodesic is a
great circle (θ, φ0), θ1 ≤ θ ≤ θ2. [Remark: Solving (7.62) is not very difficult.
Let θ = θ(φ) be the equation of the geodesic. Then

dθ

ds
= dθ

dφ

dφ

ds

d2θ

ds2
= d2θ

dφ2

(
dφ

ds

)2

+ dθ

dφ

d2φ

ds2
.

Substituting these into the first equation of (7.62), we obtain

d2θ

dφ2

(
dφ

ds

)2

+ dθ

dφ

d2φ

ds2
− sin θ cos θ

(
dφ

ds

)2

= 0. (7.64)

The second equation of (7.62) and (7.64) yields

d2θ

dφ2
− 2 cot θ

(
dθ

dφ

)2

− sin θ cos θ = 0. (7.65)

If we define f (θ) ≡ cot θ , (7.65) becomes

d2 f

dφ2
+ f = 0

whose general solution is f (θ) = cot θ = A cosφ + B sinφ or

A sin θ cosφ + B sin θ sin φ − cos θ = 0. (7.66)

Equation (7.66) is the equation of a great circle which lies in a plane whose normal
vector is (A, B,−1).]

Example 7.6. Let U be the upper half-plane U ≡ {(x, y)|y > 0} and introduce
the Poincaré metric

g = dx ⊗ dx + dy ⊗ dy

y2
. (7.67)

The geodesic equations are

x ′′ − 2

y
x ′y ′ = 0 (7.68a)

y ′′ − 1

y
[x ′2 + 3y ′2] = 0 (7.68b)

where x ′ ≡ dx/ds etc. The first equation of (7.68) is easily integrated, if divided
by x ′, to yield

x ′

y2
= 1

R
(7.69)

 



Figure 7.8. Geodesics defined by the Poincaré metric in the upper half-plane. The geodesic
has an infinite length.

where R is a constant. Since the parameter s is taken so that the vector (x ′, y ′)
has unit length, it satisfies (x ′2 + y ′2)/y2 = 1. From (7.69), this becomes
y2/R2 + (y′/y)2 = 1 or

ds = dy

y
√

1− y2/R2
= dt

sin t

where we put y = R sin t . Equation (7.69) then becomes

x ′ = y2

R
= R sin2 t .

Now x is solved for t to yield

x =
∫

x ′ ds =
∫

dx

ds

ds

dt
dt

=
∫

R sin t dt = −R cos t + x0.

Finally, we obtain the solution

x = −R cos t + x0 y = R sin t (y > 0) (7.70)

which is a circle with radius R centred at (x0, 0). Maximally extended geodesics
are given by 0 < t < π (figure 7.8) whose length is infinite,

I =
∫

ds =
∫ π−ε

0+ε
ds

dt
dt =

∫ π−ε

0+ε
1

sin t
dt

= − 1

2
log

1+ cos t

1− cos t

∣∣∣∣π−ε
0+ε
−−−−−−→

ε→0
∞.

7.4.4 The normal coordinate system

The subject here is not restricted to Levi-Civita connections but it does take an
especially simple form when the Levi-Civita connection is employed. Let c(t) be

 



a geodesic in (M, g) defined with respect to a connection ∇, which satisfies

c(0) = p,
d

dt

∣∣∣∣
p
= X = Xµeµ ∈ Tp M (7.71)

where {eµ} is the coordinate basis at p. Any geodesic emanating from p is
specified by giving X ∈ Tp M . Take a point q near p. There are many geodesics
which connect p and q . However, there exists a unique geodesic cq such that
cq(1) = q . Let Xq ∈ Tp M be the tangent vector of this geodesic at p. As
long as q is not far from p, q uniquely specifies Xq = Xµq eµ ∈ Tp M and
ϕ : q → Xµq serves as a good coordinate system in the neighbourhood of p.
This coordinate system is called the normal coordinate system based on p with
basis {eµ}. Obviously ϕ(p) = 0. We define a map EXP : Tp M → M by
EXP : Xq 
→ q . By definition, we have

ϕ(EXP Xµq eµ) = Xµq . (7.72)

With respect to this coordinate system, a geodesic c(t) with c(0) = p and
c(1) = q has the coordinate presentation

ϕ(c(t)) = Xµ = Xµq t (7.73)

where Xµq are the normal coordinates of q .
We now show that Levi-Civita connection coefficients vanish in the normal

coordinate system. We write down the geodesic equation in the normal coordinate
system,

0 = d2 Xµ

dt2 + �µνλ(Xκq t)
dXν

dt

dXλ

dt
= �µνλ(Xκq t)Xνq Xλq . (7.74)

Since �µνλ(p)Xνq Xλq = 0 for any Xνq at p for which t = 0, we find �µνλ(p) +
�µλν(p) = 0. Since our connection is symmetric we must have

�µνλ(p) = 0. (7.75)

As a consequence, the covariant derivative of any tensor t in this coordinate
system takes the extremely simple form at p,

∇X t ...... = X [t ...... ]. (7.76)

Equation (7.75) does not imply that �µνλ vanishes at q (�=p). In fact, we
find from (7.42) that

Rκ λµν(p) = ∂µ�κνλ(p)− ∂ν�κµλ(p) (7.77)

hence ∂µ�κνλ(p) �= 0 if Rκλµν(p) �= 0.

 



7.4.5 Riemann curvature tensor with Levi-Civita connection

Let ∇ be the Levi-Civita connection. The components of the Riemann curvature
tensor are given by (7.42) with

�λµν =
{
κ

µν

}
while the torsion tensor vanishes by definition. Many formulae are simplified if
the Levi-Civita connections are employed.

Exercise 7.10.

(a) Let g = dr ⊗ dr + r2(dθ ⊗ dθ + sin2 θ dφ⊗ dφ) be the metric of (�3 , δ),
where 0 ≤ θ ≤ π , 0 ≤ φ < 2π . Show, by direct calculation, that all the
components of the Riemann curvature tensor with respect to the Levi-Civita
connection vanish.

(b) The spatially homogeneous and isotropic universe is described by the
Robertson–Walker metric,

g = −dt⊗dt+a2(t)

(
dr ⊗ dr

1− kr2
+ r2(dθ ⊗ dθ + sin2 θ dφ ⊗ dφ)

)
(7.78)

where k is a constant, which may be chosen to be −1, 0 or +1 by a suitable
rescaling of r and 0 ≤ θ ≤ π , 0 ≤ φ < 2π . If k = +1, r is restricted to
0 ≤ r < 1. Compute the Riemann tensor, the Ricci tensor and the scalar
curvature.

(c) The Schwarzschild metric takes the from

g = −
(

1− 2M

r

)
dt ⊗ dt

+ 1

1− 2M

r

dr ⊗ dr + r2(dθ ⊗ dθ + sin2 θ dφ ⊗ dφ) (7.79)

where 0 < 2M < r , 0 ≤ θ ≤ π , 0 ≤ φ < 2π . Compute the Riemann
tensor, the Ricci tensor and the scalar curvature. [Remark: The metric (7.79)
describes a spacetime of a spherically symmetric object with mass M .]

Exercise 7.11. Let R be the Riemann tensor defined with respect to the Levi-
Civita connection. Show that

Rκλµν = 1

2

(
∂2gκµ
∂xλ∂xν

− ∂2gλµ
∂xκ∂xν

− ∂2gκν
∂xλ∂xµ

+ ∂2gµν
∂xκ∂xµ

)
+ gζη(�

ζ
κµ�

η
λν − �ζ κν�ηλµ)

 



where Rκλµν ≡ gκζ Rζ λµν . Verify the following symmetries,

Rκλµν = −Rκλνµ (cf (7.43)) (7.80a)

Rκλµν = −Rλκµν (7.80b)

Rκλµν = Rµνκλ (7.80c)

Ricµν = Ricνµ. (7.80d)

Theorem 7.2. (Bianchi identities) Let R be the Riemann tensor defined with
respect to the Levi-Civita connection. Then R satisfies the following identities:

R(X,Y )Z + R(Z , X)Y + R(Y, Z)X = 0

(the first Bianchi identity) (7.81a)

(∇X R)(Y, Z)V + (∇Z R)(X,Y )V + (∇Y R)(Z , X)V = 0

(the second Bianchi identity). (7.81b)

Proof. Our proof follows Nomizu (1981). Define the symmetrizor � by
�{ f (X,Y, Z)} = f (X,Y, Z) + f (Z , X,Y ) + f (Y, Z , X). Let us prove the
first Bianchi identity �{R(X,Y )Z} = 0. Covariant differentiation of the identity
T (X,Y ) = ∇X Y −∇Y X − [X,Y ] = 0 with respect to Z yields

0 = ∇Z {∇X Y −∇Y X − [X,Y ]}
= ∇Z∇X Y −∇Z∇Y X − {∇[X,Y ]Z + [Z , [X,Y ]]}

where the torsion-free condition has been used again to derive the second equality.
Symmetrizing this, we have

0 = �{∇Z∇X Y −∇Z∇Y X −∇[X,Y ]Z − [Z , [X,Y ]]}
= �{∇Z∇X Y −∇Z∇Y X −∇[X,Y ]Z} = �{R(X,Y )Z}

where the Jacobi identity �{[X, [Y, Z ]]} = 0 has been used.
The second Bianchi identity becomes �{(∇X R)(Y, Z)}V = 0 where �

symmetrizes (X,Y, Z) only. If the identity R(T (X,Y ), Z)V = R(∇X Y−∇Y X−
[X,Y ], Z)V = 0 is symmetrized, we have

0 = �{R(∇X Y, Z) − R(∇Y X, Z)− R([X,Y ], Z)}V
= �{R(∇Z X,Y )− R(X,∇Z Y )− R([X,Y ], Z)}V . (7.82)

If we note the Leibnitz rule,

∇Z {R(X,Y )V } = (∇Z R)(X,Y )V

+ R(X,Y )∇Z V + R(∇Z X,Y )V + R(X,∇Z Y )V

(7.82) becomes

0 = �{−(∇Z R)(X,Y )+ [∇Z , R(X,Y )] − R([X,Y ], Z)}V .

 



The last two terms vanish if R(X,Y )V = {[∇X ,∇Y ] − ∇[X,Y ]}V is substituted
into them,

�{[∇Z , R(X,Y )] − R([X,Y ], Z)}V
= �{[∇Z , [∇X ,∇Y ]] − [∇Z ,∇[X,Y ]] − [∇[X,Y ],∇Z ] + ∇[[X,Y ],Z ]}V
= 0

where the Jacobi identities �{[∇Z , [∇X ,∇Y ]]} = �{[[X,Y ], Z ]} = 0 have been
used. We finally obtain �{(∇X R)(Y, Z)}V = 0. �

In components, the Bianchi identities are

Rκ λµν + Rκµνλ + Rκ νλµ = 0

(the first Bianchi identity) (7.83a)

(∇κ R)ξ λµν + (∇µR)ξ λνκ + (∇ν R)ξ λκµ = 0

(the second Bianchi identity). (7.83b)

By contracting the indices ξ and µ of the second Bianchi identity, we obtain an
important relation:

(∇κ Ric)λν + (∇µR)µλνκ − (∇ν Ric)λκ = 0. (7.84)

If the indices λ and ν are further contracted, we have ∇µ(�δ − 2Ric)µκ = 0 or

∇µGµν = 0 (7.85)

where Gµν is the Einstein tensor defined by

Gµν = Ricµν − 1
2 gµν�. (7.86)

Historically, when Einstein formulated general relativity, he first equated the Ricci
tensor Ricµν to the energy–momentum tensor Tµν . Later he realized that Tµν

satisfies the covariant conservation equation ∇µTµν = 0 while Ricµν does not.
To avoid this difficulty, he proposed that Gµν should be equated to Tµν . This
new equation is natural in the sense that it can be derived from a scalar action by
variation, see section 7.10.

Exercise 7.12. Let (M, g) be a two-dimensional manifold with g = −dt ⊗ dt +
R2(t)dx ⊗ dx , where R(t) is an arbitrary function of t . Show that the Einstein
tensor vanishes.

The symmetry properties (7.80a)–(7.80c) restrict the number of independent
components of the Riemann tensor. Let m be the dimension of a manifold (M, g).
The anti-symmetry Rκλµν = −Rλκνµ implies that there are N ≡ (m

2

)
independent

choices of the pair (µ, ν). Similarly, from Rκλµν = −Rλκµν , we find there are

 



N independent pairs of (κ, λ). Since Rκλµν is symmetric with respect to the
interchange of the pairs (κ, λ) and (µ, ν), the number of independent choices of
the pairs reduces from N2 to

(N+1
2

) = 1
2 N(N + 1). The first Bianchi identity

Rκλµν + Rκµνλ + Rκνλµ = 0 (7.87)

further reduces the number of independent components. The LHS of (7.87) is
totally anti-symmetric with respect to the interchange of the indices (λ, µ, ν).
Furthermore, the anti-symmetry (7.80b) ensures that it is totally anti-symmetric
in all the indices. If m < 4, (7.87) is trivially satisfied and it imposes no additional
restrictions. If m ≥ 4, (7.87) yields non-trivial constraints only when all the
indices are different. The number of constraints is equal to the number of possible
ways of choosing four different indices out of m indices, namely

(m
4

)
. Noting

that
(m

4

) = m(m − 1)(m − 2)(m − 3)/4! vanishes for m < 4, the number of
independent components of the Riemann tensor is given by

F(m) = 1

2

(
m

2

)[(
m

2

)
+ 1

]
−

(
m

4

)
= 1

12
m2(m2 − 1). (7.88)

F(1) = 0 implies that one-dimensional manifolds are flat. Since F(2) = 1, there
is only one independent component R1212 on a two-dimensional manifold, other
components being either 0 or ±R1212. F(4) = 20 is a well-known fact in general
relativity.

Exercise 7.13. Let (M, g) be a two-dimensional manifold. Show that the
Riemann tensor is written as

Rκλµν = K (gκµgλν − gκνgλµ) (7.89)

where K ∈ �(M). Compute the Ricci tensor to show Ricµν ∝ gµν . Compute the
scalar curvature to show K = �/2.

7.5 Holonomy

Let (M, g) be an m-dimensional Riemannian manifold with an affine connection
∇. The connection naturally defines a transformation group at each tangent space
Tp M as follows.

Definition 7.3. Let p be a point in (M, g) and consider the set of closed loops at
p, {c(t)|0 ≤ t ≤ 1, c(0) = c(1) = p}. Take a vector X ∈ Tp M and parallel
transport X along a curve c(t). After a trip along c(t), we end up with a new
vector Xc ∈ Tp M . Thus, the loop c(t) and the connection ∇ induce a linear
transformation

Pc : Tp M → Tp M. (7.90)

The set of these transformations is denoted by H (p) and is called the holonomy
group at p.

 



We assume that H (p) acts on Tp M from the right, Pc X = Xh (h ∈
H (p)). In components, this becomes Pc X = Xµhµνeν , {eν} being the basis
of Tp M . It is easy to see that H (p) is a group. The product Pc′ Pc corresponds to
parallel transport along c first and then c′. If we write Pd = Pc′ Pc, the loop d is
given by

d(t) =
{

c(2t) 0 ≤ t ≤ 1
2

c′(2t − 1) 1
2 ≤ t ≤ 1.

(7.91)

The unit element corresponds to the constant map cp(t) = p (0 ≤ t ≤ 1) and
the inverse of Pc is given by Pc−1 , where c−1(t) = c(1 − t). Note that H (p) is
a subgroup of GL(m,�), which is the maximal holonomy group possible. H (p)
is trivial if and only if the Riemann tensor vanishes. In particular, if (M, g) is
parallelizable (see example 7.2), we can make H (p) trivial.

If M is (arcwise-)connected, any two points p, q ∈ M are connected by a
curve a. The curve a defines a map τa : Tp M → Tq M by parallel transporting a
vector in Tp M to Tq M along a. Then the holonomy groups H (p) and H (q) are
related by

H (q) = τ−1
a H (p)τa (7.92)

hence H (q) is isomorphic to H (p).
In general, the holonomy group is a subgroup of GL(m,�). If ∇ is a metric

connection, ∇ preserves the length of a vector, gp(Pc(X), Pc(X)) = gp(X, X)
for X ∈ Tp M . Then the holonomy group must be a subgroup of SO(m) if (M, g)
is orientable and Riemannian and SO(m − 1, 1) if it is orientable and Lorentzian.

Example 7.7. We work out the holonomy group of the Levi-Civita connection on
S2 with the metric g = dθ ⊗ dθ + sin2 dφ ⊗ dφ. The non-vanishing connection
coefficients are �θφφ = − sin θ cos θ and �φφθ = �φθφ = cot θ . For simplicity,
we take a vector eθ = ∂/∂θ at a point (θ0, 0) and parallel transport it along a
circle θ = θ0, 0 ≤ φ ≤ 2π . Let X be the vector eθ parallel transported along the
circle. The vector X = Xθ eθ + Xφeφ satisfies

∂φXθ − sin θ0 cos θ0 Xφ = 0 (7.93a)

∂φXφ + cot θ0 Xθ = 0. (7.93b)

Equations (7.93a) and (7.93b) represent the harmonic oscillations. Indeed if we
take a φ-derivative of (7.93a) and use (7.93b), we have

d2 Xθ

dφ2
− sin θ0 cos θ0

dXφ

dφ
= d2 Xθ

dφ2
− cos2 θ0 Xθ = 0. (7.94)

The general solution is Xθ = A cos(C0φ) + B sin(C0φ), where C0 ≡ cos θ0.
Since Xθ = 1 at φ = 0 we have

Xθ = cos(C0φ) Xφ = − sin(C0φ)

sin θ0
.

 



After parallel transport along the circle, we end up with

X (φ = 2π) = cos(2πC0)eθ − sin(2πC0φ)

sin θ0
eφ. (7.95)

Now the vector is rotated by ! = 2π cos θ0, with its magnitude kept fixed. If we
take a point p ∈ S2 and a circle in S2 which passes through p, we can always find
a coordinate system such that the circle is given by θ = θ0 (0 ≤ θ < π) and we
can apply our previous calculation. The rotation angle is −2π ≤ ! < 2π and we
find that the holonomy group at p ∈ S2 is SO(2).

In general, Sm (m ≥ 2) admits the holonomy group SO(m). Product
manifolds admit more restricted holonomy groups. The following example is
taken from Horowitz (1986). Consider six-dimensional manifolds made of the
spheres with standard metrics. Examples are S6, S3 × S3, S2 × S2 × S2, T 6 =
S1 × · · · × S1. Their holonomy groups are:

(i) S6: H (p) = SO(6).
(ii) S3 × S3: H (p) = SO(3)× SO(3).
(iii) S2 × S2 × S2: H (p) = SO(2)× SO(2)× SO(2).
(iv) T 6: H (p) is trivial since the Riemann tensor vanishes.

Exercise 7.14. Show that the holonomy group of the Levi-Civita connection of
the Poincaré metric given in example 7.6 is SO(2).

7.6 Isometries and conformal transformations

7.6.1 Isometries

Definition 7.4. Let (M, g) be a (pseudo-)Riemannian manifold. A diffeomor-
phism f : M → M is an isometry if it preserves the metric

f ∗g f (p) = gp (7.96a)

that is, if g f (p)( f∗X, f∗Y ) = gp(X,Y ) for X,Y ∈ Tp M .

In components, the condition (7.96a) becomes

∂yα

∂xµ
∂yβ

∂xν
gαβ( f (p)) = gµν(p) (7.96b)

where x and y are the coordinates of p and f (p), respectively. The identity map,
the composition of the isometries and the inverse of an isometry are isometries; all
these isometries form a group. Since an isometry preserves the length of a vector,
in particular that of an infinitesimal displacement vector, it may be regarded as a
rigid motion. For example, in �n , the Euclidean group En , that is the set of maps
f : x 
→ Ax + T (A ∈ SO(n), T ∈ �n ), is the isometry group.

 



7.6.2 Conformal transformations

Definition 7.5. Let (M, g) be a (pseudo-)Riemannian manifold. A diffeomor-
phism f : M → M is called a conformal transformation if it preserves the
metric up to a scale,

f ∗g f (p) = e2σ gp σ ∈ �(M) (7.97a)

namely, g f (p)( f∗X, f∗Y ) = e2σ gp(X,Y ) for X,Y ∈ Tp M .

In components, the condition (7.97a) becomes

∂yα

∂xµ
∂yβ

∂xν
gαβ( f (p)) = e2σ(p)gµν(p). (7.97b)

The set of conformal transformations on M is a group, the conformal group
denoted by Conf(M). Let us define the angle θ between two vectors X = Xµ∂µ,
Y = Yµ∂µ ∈ Tp M by

cos θ = gp(X,Y )√
gp(X, X)gp(Y,Y )

= gµνXµY ν√
gζηX ζ XηgκλY κY λ

. (7.98)

If f is a conformal transformation, the angle θ ′ between f∗X and f∗Y is given by

cos θ ′ = e2σ gµνXµY ν√
e2σ gζηX ζ Xη · e2σ gκλY κY λ

= cos θ

hence f preserves the angle. In other words, f changes the scale but not the
shape.

A concept related to conformal transformations is Weyl rescaling. Let g and
ḡ be metrics on a manifold M . ḡ is said to be conformally related to g if

ḡp = e2σ(p)gp. (7.99)

Clearly this is an equivalence relation among the set of metrics on M . The
equivalence class is called the conformal structure. The transformation g →
e2σ g is called a Weyl rescaling. The set of Weyl rescalings on M is a group
denoted by Weyl(M).

Example 7.8. Let w = f (z) be a holomorphic function defined on the complex
plane � . [A C∞-function regarded as a function of z = x + iy and z̄ = x − iy is
holomorphic if ∂z̄ f (z, z̄) = 0.] We write the real part and the imaginary part of the
respective variables as z = x + iy and w = u + iv. The map f : (x, y) 
→ (u, v)
is conformal since

du2 + dv2 =
(
∂u

∂x
dx + ∂u

∂y
dy

)2

+
(
∂v

∂x
dx + ∂v

∂y
dy

)2

=
[(
∂u

∂x

)2

+
(
∂u

∂y

)2
]
(dx2 + dy2) (7.100)

 



where use has been made of the Cauchy–Riemann relations

∂u

∂x
= ∂v

∂y

∂u

∂y
= −∂v

∂x
.

Exercise 7.15. Let f : M → M be a conformal transformation on a Lorentz
manifold (M, g). Show that f∗ : Tp M → T f (p)M preserves the local light cone
structure, namely

f∗ :


timelike vector 
→ timelike vector
null vector 
→ null vector

spacelike vector 
→ spacelike vector.
(7.101)

Let ḡ be a metric on M , which is conformally related to g as ḡ = e2σ(p)g.
Let us compute the Riemann tensor of ḡ. We could simply substitute ḡ into
the defining equation (7.42). However, we follow the elegant coordinate-free
derivation of Nomizu (1981). Let K be the difference of the covariant derivatives
∇̄ with respect to ḡ and ∇ with respect to g,

K (X,Y ) ≡ ∇̄X Y −∇X Y. (7.102)

Proposition 7.1. Let U be a vector field which corresponds to the one-form dσ :
Z [σ ] = 〈dσ , Z〉 = g(U, Z). Then

K (X,Y ) = X [σ ]Y + Y [σ ]X − g(X,Y )U. (7.103)

Proof. It follows from the torsion-free condition that K (X,Y ) = K (Y, X). Since
∇̄X ḡ = ∇X g = 0, we have

X [ḡ(Y, Z)] = ∇̄X [ḡ(Y, Z)] = ḡ(∇̄X , Z)+ ḡ(Y, ∇̄X Z)

and also

X [ḡ(Y, Z)] = ∇X [e2σ g(Y, Z)]
= 2X [σ ]e2σ g(Y, Z)+ e2σ [g(∇X , Z)+ g(Y,∇X Z)].

Taking the difference between these two expressions, we have

g(K (X,Y ), Z)+ g(Y, K (X, Z)) = 2X [σ ]g(Y, Z). (7.104a)

Permutations of (X,Y, Z) yield

g(K (Y, X), Z)+ g(X, K (Y, Z)) = 2Y [σ ]g(X, Z) (7.104b)

g(K (Z , X),Y )+ g(X, K (Z ,Y )) = 2Z [σ ]g(X,Y ). (7.104c)

The combination (7.104a)+ (7.104b)− (7.104c) yields

g(K (X,Y ), Z) = X [σ ]g(Y, Z)+ Y [σ ]g(X, Z)− Z [σ ]g(X,Y ). (7.105)

 



The last term is modified as

Z [σ ]g(X,Y ) = g(U, Z)g(X,Y ) = g(g(Y, X)U, Z).

Substituting this into (7.105), we find

g(K (X,Y )− X [σ ]Y − Y [σ ]X + g(X,Y )U, Z) = 0.

Since this is true for any Z , we have (7.103). �

The component expression for K is

K (eµ, eν) = ∇̄µeν −∇µeν = (�̄λµν − �λµν)eλ
= eµ[σ ]eν + eν[σ ]eµ − g(eµ, eν)g

κλ∂κσeλ

from which it is readily seen that

�̄λµν = �λµν + δλν∂µσ + δλµ∂νσ − gµνgκλ∂κσ. (7.106)

To find the Riemann curvature tensor, we start from the definition,

R̄(X,Y )Z = ∇̄X ∇̄Y Z − ∇̄Y ∇̄X Z − ∇̄[X,Y ]Z
= ∇̄X [∇Y Z + K (Y, Z)] − ∇̄Y [∇X Z + K (X, Z)]
− {∇[X,Y ]Z + K ([X,Y ], Z)}

= ∇X {∇Y Z + K (Y, Z)} + K (X,∇Y Z + K (Y, Z))

−∇Y {∇X Z + K (X, Z)} − K (Y,∇X Z + K (X, Z))

− {∇[X,Y ]Z + K ([X,Y ], Z)}. (7.107)

After a straightforward but tedious calculation, we find that

R̄(X,Y )Z = R(X,Y )Z + 〈∇X dσ, Z〉Y − 〈∇Y dσ, Z〉X
− g(Y, Z)∇X U + Y [σ ]Z [σ ]X
− g(Y, Z)U [σ ]X + X [σ ]g(Y, Z)U

+ g(X, Z)∇Y U − X [σ ]Z [σ ]Y
+ g(X, Z)U [σ ]Y − Y [σ ]g(X, Z)U. (7.108)

Let us define a type (1, 1) tensor field B by

B X ≡ −X [σ ]U +∇X U + 1
2U [σ ]X. (7.109)

Since g(∇Y U, Z) = 〈∇Y dσ, Z〉 (exercise 7.8(c)), (7.108) becomes

R̄(X,Y )Z = R(X,Y )Z − [g(Y, Z)B X − g(B X, Z)Y

+ g(BY, Z)X − g(X, Z)BY ]. (7.110)

 



In components, this becomes

R̄κλµν = Rκ λµν − gνλBµ
κ + gξλBµ

ξ δκν − gξλBν
ξ δκµ + gµλBν

κ

(7.111)

where the components of the tensor B are

Bµ
κ = − ∂µσUκ + (∇µU)κ + 1

2U [σ ]δµκ
= − ∂µσgκλ∂λσ + gκλ(∂µ∂λσ − �ξµλ∂ξσ )+ 1

2 gλξ∂λσ∂ξσδµ
κ .

(7.112)

Note that Bµν ≡ gνλBµλ = Bνµ.
By contracting the indices in (7.111), we obtain

Ricµν = Ricµν − gµνBλ
λ − (m − 2)Bνµ (7.113)

e2σ �̄ = �− 2(m − 1)Bλ
λ (7.114a)

where m = dim M . Equation (7.114a) is also written as

ḡµν�̄ = [�− 2(m − 1)Bλ
λ]gµν. (7.114b)

If we eliminate gµνBλλ and Bµν in R̄κ λµν in favour of Ric and �̄ and separate
barred and unbarred terms, we find a combination which is independent of σ ,

Cκλµν = Rκλµν + 1

m − 2
(Ricκµgλν − Ricλµgκν + Ricλνgκµ − Ricκνgλµ)

+ �

(m − 2)(m − 1)
(gκµgλν − gκνgλµ) (7.115)

where m ≥ 4 (see problem 7.2 for m = 3). The tensor C is called the Weyl
tensor. The reader should verify that Cκλµν = C̄κλµν .

If every point p of a (pseudo-)Riemannian manifold (M, g) has a chart
(U, ϕ) containing p such that gµν = e2σ δµν , then (M, g) is said to be
conformally flat. Since the Weyl tensor vanishes for a flat metric, it also vanishes
for a conformally flat metric. If dim M ≥ 4, then C = 0 is the necessary and
sufficient condition for conformal flatness (Weyl–Schouten). If dim M = 3, the
Weyl tensor vanishes identically; see problem 7.2. If dim M = 2, M is always
conformally flat; see the next example.

Example 7.9. Any two-dimensional Riemannian manifold (M, g) is conformally
flat. Let (x, y) be the original local coordinates with which the metric takes the
form

ds2 = gx x dx2 + 2gxy dx dy + gyy dy2. (7.116)

 



Let g ≡ gx x gyy − g2
xy and write (7.116) as

ds2 =
(√

gx x dx + gxy + i
√

g√
gx x

dy

)(√
gyy dx + gxy − i

√
g√

gx x
dy

)
.

According to the theory of differential equations, there exists an integrating factor
λ(x, y) = λ1(x, y)+ iλ2(x, y) such that

λ

(√
gx x dx + gxy + i

√
g√

gx x
dy

)
= du + i dv (7.117a)

λ̄

(√
gyy dx + gxy − i

√
g√

gx x
dy

)
= du − i dv. (7.117b)

Then ds2 = (du2 + dv2)/|λ|2 and by setting |λ|−2 = e2σ , we have the desired
coordinate system. The coordinates (u, v) are called the isothermal coordinates.
[Remark: If the curve u = a constant is regarded as an isothermal curve, v = a
constant corresponds to the line of heat flow.]

For example, let ds2 = dθ2+sin2 θ dφ2 be the standard metric of S2. Noting
that

d

dθ
log

∣∣∣∣tan
θ

2

∣∣∣∣ = 1

sin θ

we find that f : (θ, φ) 
→ (u, v) defined by u = log | tan 1
2θ | and v = φ yields a

conformally flat metric. In fact,

ds2 = sin2 θ

(
dθ2

sin2 θ
+ dφ2

)
= sin2 θ(du2 + dv2).

If (M, g) is a Lorentz manifold, we have integrating factors λ(x, y) and
µ(x, y) such that

λ

(√
gx x dx + gxy +√−g√

gx x
dy

)
= du + dv (7.118a)

µ

(√
gx x dx + gxy −√−g√

gx x
dy

)
= du − dv. (7.118b)

In terms of the coordinates (u, v) the metric takes the form ds2 = λ−1µ−1(du2−
dv2). The product λµ is either positive definite or negative definite and we may
set 1/|λµ| = e2σ to obtain the form

ds2 = ±e2σ (du2 − dv2). (7.119)

Exercise 7.16. Let (M, g) be a two-dimensional Lorentz manifold with g =
−dt ⊗ dt + t2dx ⊗ dx (the Milne universe). Use the transformation |t| 
→ eη to
show that g is conformally flat. In fact, it is further simplified by (η, x) 
→ (u =
eη sinh x, v = eη cosh x). What is the resulting metric?

 



7.7 Killing vector fields and conformal Killing vector fields

7.7.1 Killing vector fields

Let (M, g) be a Riemannian manifold and X ∈ �(M). If a displacement εX , ε
being infinitesimal, generates an isometry, the vector field X is called a Killing
vector field. The coordinates xµ of a point p ∈ M change to xµ+ εXµ(p) under
this displacement, see (5.42). If f : xµ 
→ xµ + εXµ is an isometry, it satisfies
(7.96b),

∂(xκ + εXκ )

∂xµ
∂(xλ + εXλ)

∂xν
gκλ(x + εX) = gµν(x).

After a simple calculation, we find that gµν and Xµ satisfy the Killing equation

X ξ ∂ξ gµν + ∂µXκgκν + ∂νXλgµλ = 0. (7.120a)

From the definition of the Lie derivative, this is written in a compact form as

(�X g)µν = 0. (7.120b)

Let φt : M → M be a one-parameter group of transformations which generates
the Killing vector field X . Equation (7.120b) then shows that the local geometry
does not change as we move along φt . In this sense, the Killing vector fields
represent the direction of the symmetry of a manifold.

A set of Killing vector fields are defined to be dependent if one of them
is expressed as a linear combination of others with constant coefficients. Thus,
there may be more Killing vector fields than the dimension of the manifold. [The
number of independent symmetries has no direct connection with dim M . The
maximum number, however, has; see example 7.10.]

Exercise 7.17. Let ∇ be the Levi-Civita connection. Show that the Killing
equation is written as

(∇µX)ν + (∇νX)µ = ∂µXν + ∂νXµ − 2�λµνXλ = 0. (7.121)

Exercise 7.18. Find three Killing vector fields of (�2 , δ). Show that two of
them correspond to translations while the third corresponds to a rotation; cf next
example.

Example 7.10. Let us work out the Killing vector fields of the Minkowski
spacetime (�4 , η), for which all the Levi-Civita connection coefficients vanish.
The Killing equation becomes

∂µXν + ∂νXµ = 0. (7.122)

It is easy to see that Xµ is, at most, of the first order in x . The constant solutions

Xµ(i) = δµi (0 ≤ i ≤ 3) (7.123a)

 



correspond to spacetime translations. Next, let Xµ = aµνxµ, aµν being constant.
Equation (7.122) implies that aµν is anti-symmetric with respect to µ↔ ν. Since(4

2

) = 6, there are six independent solutions of this form, three of which

X( j )0 = 0 X( j )m = ε jmnxn (1 ≤ j,m, n ≤ 3) (7.123b)

correspond to spatial rotations about the x j -axis, while the others

X(k)0 = xk X(k)m = −δkm x0 (1 ≤ k,m ≤ 3) (7.123c)

correspond to Lorentz boosts along the xk-axis.
In m-dimensional Minkowski spacetime (m ≥ 2), there are m(m + 1)/2

Killing vector fields, m of which generate translations, (m − 1), boosts and
(m − 1)(m − 2)/2, space rotations. Those spaces (or spacetimes) which admit
m(m + 1)/2 Killing vector fields are called maximally symmetric spaces.

Let X and Y be two Killing vector fields. We easily verify that

(i) a linear combination a X + bY (a, b ∈ �) is a Killing vector field; and
(ii) the Lie bracket [X,Y ] is a Killing vector field.

(i) is obvious from the linearity of the covariant derivative. To prove (ii), we use
(5.58). We have �[X,Y ]g = �X�Y g − �Y�X g = 0, since �X g = �Y g = 0.
Thus, all the Killing vector fields form a Lie algebra of the symmetric operations
on the manifold M; see the next example.

Example 7.11. Let g = dθ ⊗ dθ + sin2 θ dφ ⊗ dφ be the standard metric of S2.
The Killing equations (7.121) are:

∂θ Xθ + ∂θ Xθ = 0 (7.124a)

∂φXφ + ∂φXφ + 2 sin θ cos θXθ = 0 (7.124b)

∂θ Xφ + ∂φXθ − 2 cot θXφ = 0. (7.124c)

It follows from (7.124a) that Xθ is independent of θ : Xθ (θ, φ) = f (φ).
Substituting this into (7.124b), we have

Xφ = −F(φ) sin θ cos θ + g(θ) (7.125)

where F(φ) = ∫ φ f (φ) dφ. Substitution of (7.125) into (7.124c) yields

−F(φ)(cos2 θ − sin2 θ)+ dg

dθ
+ d f

dφ
+ 2 cot θ(F(φ) sin θ cos θ − g(θ)) = 0.

This equation may be separated into

dg

dθ
− 2 cot θg(θ) = −d f

dφ
− F(φ).

 



Since both sides must be separately constant (≡C), we have

dg

dθ
− 2 cot θg(θ) = C (7.126a)

d f

dφ
+ F(φ) = −C. (7.126b)

Equation (7.126a) is solved if we multiply both sides by exp(− ∫
dθ 2 cot θ) =

sin−2 θ to make the LHS a total derivative,

d

dθ

(
g(θ)

sin2 θ

)
= C

sin2 θ
.

The solution is easily found to be

g(θ) = (C1 − C cot θ) sin2 θ.

Differentiating (7.126b) again, we find that f is harmonic,

Xθ (φ) = f (φ) = A sinφ + B cosφ

F(φ) = − A cosφ + B sinφ − C.

Substituting these results into (7.125), we have

Xφ(θ, φ) = − (−A cosφ + B sinφ − C) sin θ cos θ + (C1 − C cot θ) sin2 θ

= (A cosφ − B sin φ) sin θ cos θ + C1 sin2 θ.

A general Killing vector is given by

X = Xθ
∂

∂θ
+ Xφ

∂

∂φ

= A

(
sin φ

∂

∂θ
+ cosφ cot θ

∂

∂φ

)
+ B

(
cosφ

∂

∂θ
− sin φ cot θ

∂

∂φ

)
+ C1

∂

∂φ
. (7.127)

The basis vectors

Lx = − cosφ
∂

∂θ
+ cot θ sin φ

∂

∂φ
(7.128a)

L y = sin φ
∂

∂θ
+ cot θ cosφ

∂

∂φ
(7.128b)

Lz = ∂

∂φ
(7.128c)

generate rotations round the x, y and z axes respectively.

 



These vectors generate the Lie algebra ��(3). This reflects the fact that S2

is the homogeneous space SO(3)/SO(2) and the metric on S2 retains this SO(3)
symmetry (see example 5.18(a)). In general Sn = SO(n + 1)/SO(n) with the
usual metric has dim SO(n + 1) = n(n + 1)/2 Killing vectors and they form
the Lie algebra ��(n + 1). The sphere Sn with the usual metric is a maximally
symmetric space. We may squash Sn so that it has fewer symmetries. For
example, if S2 considered here is squashed along the z-axis it has a rotational
symmetry around the z-axis only and there exists one Killing vector field Lz =
∂/∂φ.

7.7.2 Conformal Killing vector fields

Let (M, g) be a Riemannian manifold and let X ∈ �(M). If an infinitesimal
displacement given by εX generates a conformal transformation, the vector field
X is called a conformal Killing vector field (CKV). Under the displacement
xµ→ xµ + εXµ, this condition is written as

∂(xκ + εXκ)

∂xµ
∂(xλ + εXλ)

∂xν
gκλ(x + εX) = e2σ gµν(x).

Noting that σ ∝ ε, we set σ = εψ/2, where ψ ∈ �(M). Then we find that gµν
and Xµ satisfy

�X gµν = X ξ ∂ξ gµν + ∂µXκgκν + ∂νXλgµλ = ψgµν. (7.129a)

Equation (7.129a) is easily solved for ψ to yield

ψ = X ξ gµν∂ξ gµν + 2∂µXµ

m
(7.129b)

where m = dim M . We verify that

(i) a linear combination of CKVs is a CKV: (�a X+bY g)µν = (aϕ + bψ)gµν
where a, b ∈ �, �X gµν = ϕgµν and �Y gµν = ψgµν ;

(ii) the Lie bracket [X,Y ] of a CKV is again a CKV: �[X,Y ]gµν = (X [ψ] −
Y [ϕ])gµν.

Example 7.12. Let xµ be the coordinates of (�m , δ). The vector

D ≡ xµ
∂

∂xµ
(7.130)

(dilatation vector) is a CKV. In fact,

�Dδµν = ∂µxκδκν + ∂νxλδµλ = 2δµν.

 



7.8 Non-coordinate bases

7.8.1 Definitions

In the coordinate basis, Tp M is spanned by {eµ} = {∂/∂xµ} and T ∗p M by {dxµ}.
If, moreover, M is endowed with a metric g, there may be an alternative choice.
Let us consider the linear combination,

êα = eα
µ ∂

∂xµ
{eαµ} ∈ GL(m,�) (7.131)

where det eαµ > 0. In other words, {êα} is the frame of basis vectors which is
obtained by a GL(m,�)-rotation of the basis {eµ} preserving the orientation. We
require that {êα} be orthonormal with respect to g,

g(êα, êβ) = eα
µeβ

νgµν = δαβ. (7.132a)

If the manifold is Lorentzian, δαβ should be replaced by ηαβ . We easily reverse
(7.132a),

gµν = eαµeβνδαβ (7.132b)

where eαµ is the inverse of eαµ; eαµeαν = δµν , eαµeβµ = δαβ . [We have used
the same symbols for a matrix and its inverse. So long as the indices are written
explicitly it does not cause confusion.] Since a vector V is independent of the
basis chosen, we have V = Vµeµ = V α êα = V αeαµeµ. It follows that

V µ = V αeα
µ V α = eαµVµ. (7.133)

Let us introduce the dual basis {θ̂ α} defined by 〈θ̂ α, êβ 〉 = δαβ . θ̂ α is given
by

θ̂ α = eαµdxµ. (7.134)

In terms of {θ̂ α}, the metric is

g = gµν dxµ ⊗ dxν = δαβ θ̂α ⊗ θ̂ β . (7.135)

The bases {êα} and {θ̂ α} are called the non-coordinate bases. We use κ, λ,
µ, ν, . . . (α, β, γ, δ, . . .) to denote the coordinate (non-coordinate) basis. The
coefficients eαµ are called the vierbeins if the space is four dimensional and
vielbeins if it is many dimensional. The non-coordinate basis has a non-vanishing
Lie bracket. If the {êα} are given by (7.131), they satisfy

[êα, êβ ]|p = cαβ
γ (p)êγ |p (7.136a)

where
cαβ

γ (p) = eγ ν[eαµ∂µeβ
ν − eβ

µ∂µeα
ν](p). (7.136b)

 



Example 7.13. The standard metric on S2 is

g = dθ ⊗ dθ + sin2 θ dφ ⊗ dφ = θ̂1 ⊗ θ̂1 + θ̂2 ⊗ θ̂2 (7.137)

where θ̂1 = dθ and θ̂2 = sin θ dφ. The ‘zweibeins’ are

e1
θ = 1 e1

φ = 0

e2
θ = 0 e2

φ = sin θ.
(7.138)

The non-vanishing components of cαβγ are c12
2 = −c21

2 = − cot θ .

Exercise 7.19. (a) Verify the identities,

δαβ = gµνeαµeβν gµν = δαβeα
µeβ

ν. (7.139)

(b) Let γ α be the Dirac matrices in Minkowski spacetime, which satisfy
{γ α, γ β } = 2ηαβ . Define the curved spacetime counterparts of the Dirac matrices
by γ µ ≡ eαµγ α . Show that

{γ µ, γ ν} = 2gµν. (7.140)

7.8.2 Cartan’s structure equations

In section 7.3 the curvature tensor R and the torsion tensor T have been defined
by

R(X,Y )Z = ∇X∇Y Z − ∇Y∇X Z −∇[X,Y ]Z
T (X,Y ) = ∇X Y −∇Y X − [X,Y ].

Let {êα} be the non-coordinate basis and {θ̂ α} the dual basis. The vector fields
{êα} satisfy [êα, êβ ] = cαβγ êγ . Define the connection coefficients with respect to
the basis {êα} by

∇α êβ ≡ ∇êα êβ = �γ αβ êγ . (7.141)

Let êα = eαµeµ. Then (7.141) becomes eαµ(∂µeβν+eβλ�νµλ)eν = �γ αβeγ νeν ,
from which we find that

�γ αβ = eγ νeα
µ(∂µeβ

ν + eβ
λ�νµλ) = eγ νeα

µ∇µeβ
ν. (7.142)

The components of T and R in this basis are given by

T αβγ = 〈θ̂ α, T (êβ, êγ )〉 = 〈θ̂ α,∇β êγ −∇γ êβ − [êβ, êγ ]〉
= �αβγ − �αγβ − cβγ

α. (7.143)

Rαβγ δ = 〈θ̂ α,∇γ∇δ êβ −∇δ∇γ êβ −∇[êγ ,êδ]êβ〉
= 〈θ̂ α,∇γ (�εδβ êε)−∇δ�εγβ êε)− cγ δ

ε∇ε êβ〉
= êγ [�αδβ ] − êδ[�αγβ ] + �εδβ�αγ ε − �εγβ�αδε − cγ δ

ε�αεβ .

(7.144)

 



We define a matrix-valued one-form {ωαβ} called the connection one-form by

ωαβ ≡ �αγβ θ̂γ . (7.145)

Theorem 7.3. The connection one-form ωαβ satisfies Cartan’s structure
equations,

dθ̂ α + ωαβ ∧ θ̂ β = T α (7.146a)

dωαβ + ωαγ ∧ ωγ β = Rαβ (7.146b)

where we have introduced the torsion two-form T α ≡ 1
2 T αβγ θ̂β ∧ θ̂ γ and the

curvature two-form Rαβ ≡ 1
2 Rαβγ δθ̂ γ ∧ θ̂ δ .

Proof. Let the LHS of (7.146a) act on the basis vectors êγ and êδ,

dθ̂ α(êγ , êδ)+ [〈ωαβ, êγ 〉〈θ̂ β , êδ〉 − 〈θ̂ β , êγ 〉〈ωαβ, êδ〉]
= {êγ [〈θ̂ α, êδ〉] − êδ[〈θ̂ α, êγ 〉] − 〈θ̂ α, [êγ , êδ]〉} + {〈ωαδ, êγ 〉 − 〈ωαγ , êδ〉}
= −cγ δ

α + �αγ δ − �αδγ = T αγ δ

where use has been made of (5.70). The RHS acting on êγ and êδ yields

1
2 T αβε[〈θ̂ β , êγ 〉〈θ̂ ε, êδ〉 − 〈θ̂ ε, êγ 〉〈θ̂ β , êδ〉] = T αγ δ

which verifies (7.146a).
Equation (7.146b) may be proved similarly (exercise). �

Taking the exterior derivative of (7.146a) and (7.146b), we have the Bianchi
identities

dT α + ωαβ ∧ T β = Rαβ ∧ θ̂ β (7.147a)

dRαβ + ωαγ ∧ Rγ β − Rαγ ∧ ωγ β = 0. (7.147b)

These are the non-coordinate basis versions of (7.81a) and (7.81b).

7.8.3 The local frame

In an m-dimensional Riemannian manifold, the metric tensor gµν has m(m+1)/2
degrees of freedom while the vielbein eαµ has m2 degrees of freedom. There are
many non-coordinate bases which yield the same metric, g, each of which is
related to the other by the local orthogonal rotation,

θ̂ α −→ θ̂ ′α(p) = αβ(p)θ̂β(p) (7.148)

at each point p. The vielbein transforms as

eαµ(p) −→ e′αµ(p) = αβ(p)eβµ(p). (7.149)

 



Unlike κ, λ,µ, ν, . . . which transform under coordinate changes, the indices
α, β, γ, . . . transform under the local orthogonal rotation and are inert under
coordinate changes. Since the metric tensor is invariant under the rotation, αβ
satisfies

αβδαδ
δ
γ = δβγ if M is Riemannian (7.150a)

αβηαδ
δ
γ = ηβγ if M is Lorentzian. (7.150b)

This implies that {αβ(p)} ∈ SO(m) if M is Riemannian with dim M = m and
{αβ(p)} ∈ SO(m−1, 1) if M is Lorentzian. The dimension of these Lie groups
is m(m − 1)/2 = m2 − m(m + 1)/2, that is the difference between the degrees
of freedom of eαµ and gµν . Under the local frame rotation αβ(p), the indices
α, β, γ, δ, . . . are rotated while κ, λ,µ, ν, . . . (world indices) are not affected.
Under the rotation (7.148), the basis vector transforms as

êα −→ ê′α = êβ(
−1)βα. (7.151)

Let t = tµνeµ ⊗ dxν be a tensor field of type (1, 1). In the bases {êα}
and {θ̂ α}, we have t = tαβ êα ⊗ θ̂ β , where tαβ = eαµeβν tµν . If the new
frames {ê′α} = {êβ(−1)βα} and {θ̂ ′α} = {αβ θ̂β} are employed, the tensor t
is expressed as

t = t ′αβ ê′α ⊗ θ̂ ′β = t ′αβ êγ (
−1)γ α ⊗βδθ̂ δ

from which we find the transformation rule,

tαβ −→ t ′αβ = αγ tγ δ(
−1)δβ .

To summarize, the upper (lower) non-coordinate indices are rotated by  (−1).
The change from the coordinate basis to the non-coordinate basis is carried out
by multiplications of vielbeins.

From these facts we find the transformation rule of the connection one-form
ωαβ . The torsion two-form transforms as

T α −→ T ′α = dθ̂ ′α + ω′αβ ∧ θ̂ ′β = αβ [dθ̂ β + ωβγ ∧ θ̂ γ ].
Substituting θ̂ ′α = αβ θ̂β into this equation, we find that

ω′αββγ = αδωδγ − dαγ .

Multiplying both sides by −1 from the right, we have

ω′αβ = αγωγ δ(−1)δβ +αγ (d−1)γ β (7.152)

where use has been made of the identity d−1+ d−1 = 0, which is derived
from−1 = Im .

The curvature two-form transforms homogeneously as

Rαβ −→ R′αβ = αγ Rγ δ(
−1)δβ (7.153)

under a local frame rotation.

 



7.8.4 The Levi-Civita connection in a non-coordinate basis

Let∇ be a Levi-Civita connection on (M, g), which is characterized by the metric
compatibility ∇X g = 0, and the vanishing torsion �λµν − �λνµ = 0. It is
interesting to see how these conditions are expressed in the present approach.
The components �λµν and �αβγ are related to each other by (7.142). Let (M, g)
be a Riemannian manifold (if (M, g) is Lorentzian, we simply replace δαβ all
below by ηαβ ). If we define the Ricci rotation coefficient �αβγ by δαδ�δβγ the
metric compatibility is expressed as

�αβγ = δαδeδλeβ
µ∇µeγ

λ = −δαδeγ λeβµ∇µeδλ

= − δγ δeδλeβ
µ∇µeα

λ = −�γβα (7.154)

where ∇µg = 0 has been used. In terms of the connection one-form ωαβ ≡
δαγ ω

γ
β , this becomes

ωαβ = −ωβα. (7.155)

The torsion-free condition is

dθ̂ α + ωαβ ∧ θ̂ β = 0. (7.156)

The reader should verify that (7.156) implies the symmetry of the connection
coefficient �λµν = �λνµ in the coordinate basis. The condition (7.156) enables
us to compute the cαβγ of the basis {êα}. Let us look at the commutation relation

cαβ
γ êγ = [êα, êβ ] = ∇α êβ −∇β êα (7.157)

where the final equality follows from the torsion-free condition. From (7.141),
we find that

cαβ
γ = �γ αβ − �γ βα. (7.158)

Substituting (7.158) into (7.144) we may express the Riemaun curvature tensor in
terms of � only,

Rαβγ δ = êγ [�αδβ ] − êδ[�αγβ] + �εδβ�αγ ε − �εγβ�αδε
− (�εγ δ − �εδγ )�αεβ. (7.159)

Example 7.14. Let us take the sphere S2 of example 7.13. The components of
eαµ are

e1
θ = 1 e1

φ = 0 e2
θ = 0 e2

φ = sin θ. (7.160)

We first note that the metric condition implies ω11 = ω22 = 0, hence ω1
1 =

ω2
2 = 0. Other connection one-forms are obtained from the torsion-free

conditions,

d(dθ)+ ω1
2 ∧ (sin θ dφ) = 0 (7.161a)

d(sin θ dφ)+ ω2
1 ∧ dθ = 0. (7.161b)

 



From the second equation of (7.161), we easily see that ω2
1 = cos θdφ and the

metric condition ω12 = −ω21 implies ω1
2 = − cos θdφ. The Riemann tensor is

also found from Cartan’s structure equation,

ω1
2 ∧ ω2

1 = 1
2 R1

1αβ θ̂
α ∧ θ̂ β (7.162a)

dω1
2 = 1

2 R1
2αβ θ̂

α ∧ θ̂ β (7.162b)

dω2
1 = 1

2 R2
1αβ θ̂

α ∧ θ̂ β (7.162c)

ω2
1 ∧ ω1

2 = 1
2 R2

2αβ θ̂
α ∧ θ̂ β . (7.162d)

The non-vanishing components are R1
212 = −R1

221 = sin θ , R2
112 =

−R2
121 = − sin θ . The transition to the coordinate basis expression is carried

out with the help of eαµ and eαµ. For example,

Rθ φθφ = eα
θeβφeγ θe

δ
φRαβγ δ = 1

sin2 θ
R1

212 = 1

sin θ
.

Example 7.15. The Schwarzschild metric is given by

ds2 = −
(

1− 2M

r

)
dt2 + 1

1− 2M

r

dr2 + r2(dθ2 + sin2 θ dφ2)

= − θ̂0 ⊗ θ̂0 + θ̂1 ⊗ θ̂1 + θ̂2 ⊗ θ̂2 + θ̂3 ⊗ θ̂3 (7.163)

where

θ̂0 =
(

1− 2M

r

)1/2

dt θ̂1 =
(

1− 2M

r

)−1/2

dr

θ̂2 = r dθ θ̂3 = r sin θ dφ.

(7.164)

The parameters run over the range 0 < 2M < r , 0 ≤ θ ≤ π and 0 ≤ φ < 2π .
The metric condition yields ω0

0 = ω1
1 = ω2

2 = ω3
3 = 0 and the torsion-free

conditions are:

d[(1− 2M/r)1/2dt] + ω0
β ∧ θ̂ β = 0 (7.165a)

d[(1− 2M/r)−1/2dr ] + ω1
β ∧ θ̂ β = 0 (7.165b)

d(r dθ)+ ω2
β ∧ θ̂ β = 0 (7.165c)

d(r sin θ dφ)+ ω3
β ∧ θ̂ β = 0. (7.165d)

The non-vanishing components of the connection one-forms are

ω0
1 = ω1

0 = M

r2
dt ω2

1 = −ω1
2 =

(
1− 2M

r

)1/2

dθ

ω3
1 = −ω1

3 =
(

1− 2M

r

)1/2

sin θ dφ ω3
2 = −ω2

3 = cos θ dφ.

(7.166)

 



The curvature two-forms are found from the structure equations to be

R0
1 = R1

0 = 2M

r3 θ̂
0 ∧ θ̂1 R0

2 = R2
0 = −2M

r3 θ̂
0 ∧ θ̂2

R0
3 = R3

0 = −M

r3
θ̂0 ∧ θ̂3 R1

2 = −R2
1 = −M

r3
θ̂1 ∧ θ̂2

R1
3 = −R3

1 = −M

r3
θ̂1 ∧ θ̂3 R2

3 = −R3
2 = 2M

r3
θ̂2 ∧ θ̂3.

(7.167)

7.9 Differential forms and Hodge theory

7.9.1 Invariant volume elements

We have defined the volume element as a non-vanishing m-form on an m-
dimensional orientable manifold M in section 5.5. If M is endowed with a
metric g, there exists a natural volume element which is invariant under coordinate
transformation. Let us define the invariant volume element by

�M ≡
√|g| dx1 ∧ dx2 ∧ . . .∧ dxm (7.168)

where g = det gµν and xµ are the coordinates of the chart (U, ϕ). The m-form
�M is, indeed, invariant under a coordinate change. Let yλ be the coordinates of
another chart (V , ψ) with U ∩ V �= ∅. The invariant volume element is√∣∣∣∣det

(
∂xµ

∂yκ
∂xν

∂yλ
gµν

)∣∣∣∣ dy1 ∧ . . .∧ dym

in terms of the y-coordinates. Noting that dyλ = (∂yλ/∂xµ) dxµ, this becomes∣∣∣∣det

(
∂xµ

∂yκ

)∣∣∣∣√|g| det

(
∂yλ

∂xν

)
dx1 ∧ dx2 ∧ . . .∧ dxm

= ±√|g|dx1 ∧ dx2 ∧ . . .∧ dxm.

If xµ and yκ define the same orientation, det(∂xµ/∂yκ) is strictly positive on
U ∩ V and �M is invariant under the coordinate change.

Exercise 7.20. Let {θ̂ α} = {eαµdxµ} be the non-coordinate basis. Show that the
invariant volume element is written as

�M = |e| dx1 ∧ dx2 ∧ . . . ∧ dxm = θ̂1 ∧ θ̂2 ∧ . . . ∧ θ̂m (7.169)

where e = det eαµ.

Now that we have defined the invariant volume element, it is natural to define
an integration of f ∈ �(M) over M by∫

M
f�M ≡

∫
M

f
√|g| dx1 dx2 . . . dxm . (7.170)

 



Obviously (7.170) is invariant under a change of coordinates. In physics, there
are many objects which are expressed as volume integrals of this type, see
section 7.10.

7.9.2 Duality transformations (Hodge star)

As noted in section 5.4, �r (M) is isomorphic to �m−r (M) on an m-dimensional
manifold M . If M is endowed with a metric g, we can define a natural
isomorphism between them called the Hodge ∗ operation. Define the totally
anti-symmetric tensor ε by

εµ1µ2...µm =


+1 if (µ1µ2 . . . µm) is an even permutation of (12 . . .m)

−1 if (µ1µ2 . . . µm) is an odd permutation of (12 . . .m)

0 otherwise.
(7.171a)

Note that

εµ1µ2...µm = gµ1ν1 gµ2ν2 . . . gµmνmεν1ν2...νm = g−1εµ1µ2...µm . (7.171b)

The Hodge ∗ is a linear map ∗ : �r (M) → �m−r (M) whose action on a basis
vector of �r (M) is defined by

∗ (dxµ1 ∧ dxµ2 ∧ . . . ∧ dxµr )

=
√|g|
(m − r)!ε

µ1µ2...µr
νr+1...νm dxνr+1 ∧ . . . ∧ dxνm . (7.172)

It should be noted that ∗1 is the invariant volume element:

∗1 =
√|g|
m! εµ1µ2...µm dxµ1 ∧ . . . ∧ dxµm = √|g|dx1 ∧ . . . ∧ dxm .

For

ω = 1

r !ωµ1µ2...µr dxµ1 ∧ dxµ2 ∧ . . .∧ dxµr ∈ �r (M)

we have

∗ω =
√|g|

r !(m − r)!ωµ1µ2...µr ε
µ1µ2...µr

νr+1 ...νm dxνr+1 ∧ . . .∧ dxνm . (7.173)

If we take the non-coordinate basis {θα} = {eαµ dxµ}, the ∗ operation
becomes

∗(θ̂α1 ∧ . . .∧ θ̂ αr ) = 1

(m − r)!ε
α1...αr

βr+1...βm θ̂
βr+1 ∧ . . .∧ θ̂ βm (7.174)

where

εα1...αm =


+1 if (α1 . . . αm) is an even permutation of (12 . . .m)

−1 if (α1 . . . αm) is an odd permutation of (12 . . .m)

0 otherwise

(7.175)

 



and the indices are raised by δαβ or ηαβ .

Theorem 7.4.
∗ ∗ ω = (−1)r(m−r)ω. (7.176a)

if (M, g) is Riemannian and

∗ ∗ ω = (−1)1+r(m−r)ω (7.176b)

if Lorentzian.

Proof. It is simpler to prove (7.176a) with a non-coordinate basis. Let

ω = 1

r !ωα1...αr θ̂
α1 ∧ . . . ∧ θ̂ αr .

Repeated applications of ∗ on ω yield

∗ ∗ ω = 1

r !ωα1...αr

1

(m − r)!ε
α1...αr

βr+1...βm

× 1

r !ε
βr+1...βm

γ1...γr θ̂
γ1 ∧ . . .∧ θ̂ γr

= (−1)r(m−r)

r !r !(m − r)!
∑
αβγ

ωα1...αr εα1...αrβr+1...βmεγ1...γrβr+1...βm

× θ̂ γ1 ∧ . . . ∧ θ̂ γr

= (−1)r(m−r)

r ! ωα1...αr θ̂
α1 ∧ . . .∧ θ̂ αr = (−1)r(m−r)ω

where use has been made of the identity∑
βγ

εα1...αrβr+1...βmεγ1...γrβr+1...βm θ̂
γ1 ∧ . . .∧ θ̂ γr = r !(m − r)!θ̂ α1 ∧ . . . ∧ θ̂ αr .

The proof of (7.176b) is left as an exercise to the reader (use det η = −1). �

Thus, we find that (−1)r(m−r) ∗ ∗ (or (−1)1+r(m−r) ∗ ∗) is an identity map
on �r (M). We define the inverse of ∗ by

∗−1 = (−1)r(m−r) ∗ (M, g) is Riemannian (7.177a)

∗−1 = (−1)1+r(m−r) ∗ (M, g) is Lorentzian. (7.177b)

7.9.3 Inner products of r-forms

Take

ω = 1

r !ωµ1...µr dxµ1 ∧ . . . ∧ dxµr

η = 1

r !ηµ1...µr dxµ1 ∧ . . .∧ dxµr .

 



The exterior product ω ∧ ∗η is an m-form:

ω ∧ ∗η = 1

(r !)2ωµ1...µr ην1...νr

√|g|
(m − r)!ε

ν1...νr
µr+1...µm

× dxµ1 ∧ . . . ∧ dxµr ∧ dxµr+1 ∧ . . . ∧ dxµm

= 1

r !
∑
µν

ωµ1...µr η
ν1...νr

1

r !(m − r)!εν1...νrµr+1 ...µm

× εµ1...µrµr+1 ...µm

√|g| dx1 ∧ . . .∧ dxm

= 1

r !ωµ1...µr η
µ1...µr

√|g| dx1 ∧ . . .∧ dxm. (7.178)

This expression shows that the product is symmetric:

ω ∧ ∗η = η ∧ ∗ω. (7.179)

Let {θ̂ α} be the non-coordinate basis and

ω = 1

r !ωα1...αr θ̂
µ1 ∧ . . . ∧ θ̂ αr

η = 1

r !ηα1...αr θ̂
α1 ∧ . . .∧ θ̂ αr .

Equation (7.178) is rewritten as

ω ∧ ∗η = 1

r !ωα1...αr η
α1...αr θ̂1 ∧ . . . ∧ θ̂m . (7.180)

Since α ∧ ∗β is an m-form, its integral over M is well defined. Define the
inner product (ω, η) of two r -forms by

(ω, η) ≡
∫
ω ∧ ∗η

= 1

r !
∫

M
ωµ1...µr η

µ1...µr
√|g| dx1 . . . dxm. (7.181)

Since ω ∧ ∗η = η ∧ ∗ω, the inner product is symmetric,

(ω, η) = (η, ω). (7.182)

If (M, g) is Riemannian, the inner product is positive definite,

(α, α) ≥ 0. (7.183)

where the equality holds only when α = 0. This is not true if (M, g) is Lorentzian.

 



7.9.4 Adjoints of exterior derivatives

Definition 7.6. Let d : �r−1(M) → �r (M) be the exterior derivative operator.
The adjoint exterior derivative operator d† : �r (M)→ �r−1(M) is defined by

d† = (−1)mr+m+1 ∗ d∗ (7.184a)

if (M, g) is Riemannian and

d† = (−1)mr+m ∗ d∗ (7.184b)

if Lorentzian, where m = dim M .

In summary, we have the following diagram (for a Riemannian manifold),

�m−r (M)
(−1)mr+m+1d−−−−−−−−−−→ �m−r+1(M):∗ <∗

�r (M)
d†−−−−−−−−−−→ �r−1(M).

(7.185)

The operator d† is nilpotent since d is: d†2 = ∗d ∗ ∗d∗ ∝ ∗d2∗ = 0.

Theorem 7.5. Let (M, g) be a compact orientable manifold without a boundary
and α ∈ �r (M), β ∈ �r−1(M). Then

(dβ, α) = (β, d†α). (7.186)

Proof. Since both dβ ∧ ∗α and β ∧ ∗d†α are m-forms, their integrals over M are
well defined. Let d act on β ∧ ∗α,

d(β ∧ ∗α) = dβ ∧ ∗α − (−1)rβ ∧ d ∗ α.
Suppose (M, g) is Riemannian. Noting that d ∗ α is an (m − r + 1)-form and
inserting the identity map (−1)(m−r+1)[m−(m−r+1)] ∗ ∗ = (−1)mr+m+r+1 ∗ ∗ in
front of d ∗ α in the second term, we have

d(β ∧ ∗α) = dβ ∧ ∗α − (−1)mr+m+1β ∧ ∗(∗d ∗ α).
Integrating this equation over M , we have∫

M
dβ ∧ ∗α −

∫
M
β ∧ ∗[(−1)mr+m+1 ∗ d ∗ α] =

∫
M

d(β ∧ ∗α)

=
∫
∂M
β ∧ ∗α = 0

where the last equality follows by assumption. This shows that (dβ, α) =
(β, d†α). The reader should check how the proof is modified when (M, g) is
Lorentzian. �

 



7.9.5 The Laplacian, harmonic forms and the Hodge decomposition
theorem

Definition 7.7. The Laplacian� : �r (M)→ �r (M) is defined by

� = (d+ d†)2 = dd† + d†d. (7.187)

As an example, we obtain the explicit form of � : �0(M) → �0(M). Let
f ∈ �(M). Since d† f = 0, we have

� f = d†d f = − ∗ d ∗ (∂µ f dxµ)

= − ∗d

( √|g|
(m − 1)!∂µ f gµλελν2...νm dxν2 ∧ . . . ∧ dxνm

)
= − ∗ 1

(m − 1)!∂ν[
√|g|gλµ∂µ f ]ελν2...νm dxν ∧ dxν2 ∧ . . . ∧ dxνm

= − ∗∂ν[
√|g|gνµ∂µ f ]g−1 dx1 ∧ . . .∧ dxm

= − 1√|g|∂ν[
√|g|gνµ∂µ f ]. (7.188)

Exercise 7.21. Take a one-form ω = ωµ dxµ in the Euclidean space (�m , δ).
Show that

�ω = −
m∑
µ=1

∂2ων

∂xµ∂xµ
dxν.

Example 7.16. In example 5.11, it was shown that half of the Maxwell equations
are reduced to the identity, dF = d2 A = 0, where A = Aµ dxµ is the vector
potential one-form and F = dA is the electromagnetic two-form. Let ρ be the
electric charge density and j the electric current density and form the current one-
form j = ηµν jν dxµ = −ρ dt + j · dx. Then the remaining Maxwell equations
become

d† F = d†dA = j. (7.189a)

The component expression is

∇ · E = ρ ∇ × B − ∂E
∂ t
= j . (7.189b)

The vector potential A has a large number of degrees of freedom and we can
always choose an A which satisfies the Lorentz condition d† A = 0. Then
(7.189a) becomes (dd† + d†d)A = �A = j .

Let (M, g) be a compact Riemannian manifold. The Laplacian � is a
positive operator on M in the sense that

(ω,�ω) = (ω, (d†d+ dd†)ω) = (dω, dω)+ (d†ω, d†ω) ≥ 0 (7.190)

 



where (7.183) has been used. An r -form ω is called harmonic if �ω = 0 and
closed (coclosed) if dω = 0 (d†ω = 0). The following theorem is a direct
consequence of (7.190).

Theorem 7.6. An r -form ω is harmonic if and only if ω is closed and coclosed.

An r -form ω is called coexact if it is written globally as

ωr = d†βr+1 (7.191)

where βr+1 ∈ �r+1(M) [cf a form ωr ∈ �r (M) is exact if ωr = dαr−1,
αr−1 ∈ �r−1(M)]. We denote the set of harmonic r -forms on M by Harmr (M)
and the set of exact r -forms (coexact r -forms) by d�r−1(M) (d†�r+1(M)).
[Note: The set of exact r -forms has been denoted by Br (M) so far.]

Theorem 7.7. (Hodge decomposition theorem) Let (M, g) be a compact
orientable Riemannian manifold without a boundary. Then �r (M) is uniquely
decomposed as

�r (M) = d�r−1(M) ⊕ d†�r+1(M)⊕ Harmr (M). (7.192a)

[That is, any r -form ωr is written globally as

ωr = dαr−1 + d†βr+1 + γr (7.192b)

where αr−1 ∈ �r−1(M), βr+1 ∈ �r+1(M) and γr ∈ Harmr (M).]

If r = 0, we define �−1(M) = {0}. The proof of this theorem requires the
results of the following two easy exercises.

Exercise 7.22. Let (M, g) be as given in theorem 7.7. Show that

(dαr−1, d
†βr+1) = (dαr−1, γr ) = (d†βr+1, γr ) = 0. (7.193)

Show also that if ωr ∈ �r (M) satisfies

(dαr−1, ωr ) = (d†βr+1, ωr ) = (γr , ωr ) = 0 (7.194)

for any dαr−1 ∈ d�r−1(M), d†βr+1 ∈ d†�r+1(M) and γr ∈ Harmr (M), then
ωr = 0.

Exercise 7.23. Suppose ωr ∈ �r (M) is written as ωr = �ψr for some ψr ∈
�r (M). Show that (ωr , γr ) = 0 for any γr ∈ Harmr (M). The proof of the
converse ‘if ωr is orthogonal to any harmonic r -form, then ωr is written as �ψr

for some ψr ∈ �r (M)’ is highly technical and we just state that the operator�−1

(the Green function) is well defined in the present problem and ψr is given by
�−1ωr .

Let P : �r (M) → Harmr (M) be a projection operator to the space of
harmonic r -forms. Take an element ωr ∈ �r (M). Since ωr − Pωr is orthogonal
to Harmr (M), it can be written as �ψr for some ψr ∈ �r (M). Then we have

ωr = d(d†ψr )+ d†(dψr )+ Pωr . (7.195)

This realizes the decomposition of theorem 7.7.

 



7.9.6 Harmonic forms and de Rham cohomology groups

We show that any element of the de Rham cohomology group has a unique
harmonic representative. Let [ωr ] ∈ H r(M). We first show that ωr ∈
Harmr (M) ⊕ d�r−1(M). According to (7.192b), ωr is decomposed as ωr =
γr + dαr−1 + d†βr+1. Since dωr = 0, we have

0 = (dωr , βr+1) = (dd†βr+1, βr+1) = (d†βr+1, d†βr+1).

This is satisfied if and only if d†βr+1 = 0. Hence, ωr = γr+dαr−1. From (7.195)
we have

ωr = Pωr + d(d†ψ) = Pωr + dd†�−1ωr . (7.196a)

γr ≡ Pωr is the harmonic representative of [ωr ]. Let ω̃r be another representative
of [ωr ]: ω̃r−ωr = dηr−1, ηr−1 ∈ �r−1(M). Corresponding to (7.196a), we have

ω̃r = Pω̃r + d(d†�−1ω̃r ) = Pωr + d(. . .) (7.196b)

where the last equality follows since dηr−1 is orthogonal to Harmr (M) and hence
its projection to Harmr (M) vanishes. (7.196a) and (7.196b) show that [ωr ] has a
unique harmonic representative Pωr .

This proof shows that H r(M) ⊂ Harmr (M). Now we prove that H r(M) ⊃
Harmr (M). Since dγr = 0 for any γr ∈ Harmr (M), we find that Zr (M) ⊃
Harmr (M). We also have Br (M) ∩ Harmr (M) = ∅ since Br (M) = d�r−1(M),
see (7.192a). Thus, every element of Harmr (M) is a non-trivial member of
H r(M) and we find that Harmr (M) is a vector subspace of H r(M) and hence
Harmr (M) ⊂ H r(M). We have proved:

Theorem 7.8. (Hodge’s theorem) On a compact orientable Riemannian manifold
(M, g), H r(M) is isomorphic to Harmr (M):

H r(M) ∼= Harmr (M). (7.197)

The isomorphism is provided by identifying [ω] ∈ H r(M) with Pω ∈
Harmr (M).

In particular, we have

dim Harmr (M) = dim H r(M) = br (7.198)

br being the Betti number. The Euler characteristic is given by

χ(M) =
∑
(−1)r br =

∑
(−1)r dim Harmr (M) (7.199)

see theorem 3.7. We note that the LHS is a topological quantity while the RHS is
an analytical quantity given by the eigenvalue problem of the Laplacian�.

 



7.10 Aspects of general relativity

7.10.1 Introduction to general relativity

The general theory of relativity is one of the most beautiful and successful
theories in classical physics. There is no disagreement between the theory
and astrophysical and cosmological observations such as solar system tests,
gravitational radiation from pulsars, gravitational red shifts, the recently
discovered gravitational lens effect and so on. Readers not very familiar with
general relativity may consult Berry (1989) or the primer by Price (1982).

Einstein proposed the following principles to construct the general theory of
relativity

(I) Principle of General Relativity: All laws in physics take the same forms in
any coordinate system.

(II) Principle of Equivalence: There exists a coordinate system in which the
effect of a gravitational field vanishes locally. (An observer in a freely falling
lift does not feel gravity until it crashes.)

Any theory of gravity must reduce to Newton’s theory of gravity in the weak-
field limit. In Newton’s theory, the gravitational potential � satisfies the Poisson
equation

�� = 4πGρ (7.200)

where ρ is the mass density. The Einstein equation generalizes this classical result
so that the principle of general relativity is satisfied.

In general relativity, the gravitational potential is replaced by the components
of the metric tensor. Then, instead of the LHS of (7.200), we have the Einstein
tensor defined by

Gµν ≡ Ricµν − 1
2 gµν�. (7.201)

Similarly, the mass density is replaced by a more general object called the
energy–momentum tensor Tµν . The Einstein equation takes a very similar
form to (7.200):

Gµν = 8πGTµν. (7.202)

The constant 8πG is chosen so that (7.202) reproduces the Newtonian result in
the weak-field limit. The tensor Tµν is obtained from the matter action by the
variational principle. From Noether’s theorem, Tµν must satisfy a conservation
equation of the form ∇µTµν = 0. A similar conservation law holds for Gµν (but
not for Ricµν). We shall see in the next subsection that the LHS of (7.202) is also
obtained from the variational principle.

Exercise 7.24. Consider a metric

g00 = −1− 2�

c2
g0i = 0 gi j = δi j 1 ≤ i, j ≤ 3

 



and Tµν given by T00 = ρc2, T0i = Ti j = 0 which corresponds to dust at
rest. Show that (7.202) reduces to the Poisson equation in the weak-field limit
(�/c2 ' 1).

7.10.2 Einstein–Hilbert action

This and the next example are taken from Weinberg (1972). The general theory
of relativity describes the dynamics of the geometry, that is, the dynamics of
gµν . What is the action principle for this theory? As usual, we require that the
relevant action should be a scalar. Moreover, it should contain the derivatives of
gµν :

∫ √|g| dm x cannot describe the dynamics of the metric. The simplest guess
will be SEH ∝ ∫

�
√|g|dm x . Since � is a scalar and

√|g| dx1 dx2 . . . dxm is
the invariant volume element, SEH is a scalar. In the following, we show that
SEH indeed yields the Einstein equation under the variation with respect to the
metric. Our connection is restricted to the Levi-Civita connection. We first prove
a technical proposition.

Proposition 7.2. Let (M, g) be a (pseudo-)Riemannian manifold. Under the
variation gµν → gµν + δgµν , gµν, g and Ricµν change as

(a) δgµν = −gµκgλνδgκλ (7.203)

(b) δg = ggµνδgµν, δ
√|g| = 1

2

√|g|gµνδgµν (7.204)

(c) δRicµν = ∇κδ�κνµ −∇νδ�κκµ (Palatini identity). (7.205)

Proof. (a) From gκλgλν = δκν , it follows that

0 = δ(gκλgλν) = δgκλgλν + gκλδg
λν.

Multiplying by gµκ we find that δgµν = −gµκgλνδgκλ.
(b) We first note the matrix identity ln(det gµν) = tr(ln gµν). This can be

proved by diagonalizing gµν . Under the variation δgµν , the LHS becomes δg ·g−1

while the RHS yields gµν · δgµν , hence δg = ggµνδgµν. The rest of (7.204) is
easily derived from this.

(c) Let � and �̃ be two connections. The difference δ� ≡ �̃ − � is a tensor
of type (1, 2), see exercise 7.5. In the present case, we take �̃ to be a connection
associated with g + δg and � with g. We will work in the normal coordinate
system in which � ≡ 0 (of course ∂� �= 0 in general); see section 7.4. We find

δRicµν = ∂κδ�κνµ − ∂νδ�κκµ = ∇κδ�κνµ −∇ν�κκµ.
[The reader should verify the second equality.] Since both sides are tensors, this
is valid in any coordinate system. �

We define the Einstein–Hilbert action by

SEH ≡ 1

16πG

∫
�
√−g d4x . (7.206)

 



The constant factor 1/16πG is introduced to reproduce the Newtonian limit when
matter is added; see (7.214). We prove that δSEH = 0 leads to the vacuum Einstein
equation. Under the variation g → g + δg such that δg → 0 as |x | → 0, the
integrand changes as

δ(�
√−g) = δ(gµνRicµν

√−g)

= δgµνRicµν
√−g + gµνδRicµν

√−g +�δ(√−g)

= − gµκgλνδgκλRicµν
√−g

+ gµν(∇κδ�κνµ − ∇ν�κκµ)√−g + 1
2�
√−ggµνδgµν.

We note that the second term is a total divergence,

∇κ(gµνδ�κνµ√−g)− ∇ν(gµνδ�κκµ√−g)

= ∂κ(gµνδ�κµν√−g)− ∂ν(gµνδ�κκµ√−g)

and hence does not contribute to the variation. From the remaining terms we have

δSEH = 1

16πG

∫ (
−Ricµν + 1

2
�gµν

)
δgµν

√−g d4x . (7.207)

If we require that δSEH = 0 under any variation δg, we obtain the vacuum Einstein
equation,

Gµν = Ricµν − 1
2 gµν� = 0 (7.208)

where the symmetric tensor G is called the Einstein tensor.
So far we have considered the gravitational field only. Suppose there exists

matter described by an action

SM ≡
∫
�(φ)

√−g d4x (7.209)

where �(φ) is the Lagrangian density of the theory. Typical examples are the real
scalar field and the Maxwell fields,

SS ≡ − 1
2

∫
[gµν∂µφ∂νφ + m2φ2]√−g d4x (7.210a)

SED ≡ − 1
4

∫
Fµν Fµν

√−g d4x (7.210b)

where Fµν = ∂µAν − ∂ν Aµ = ∇µAν − ∇ν Aµ. If the matter action changes by
δSM under δg, the energy–momentum tensor Tµν is defined by

δSM = 1
2

∫
Tµνδgµν

√−g d4x . (7.211)

 



Since δgµν is symmetric, Tµν is also taken to be so. For example, Tµν of a real
scalar field is given by

Tµν(x) = 2
1√−g

δ

δgµν(x)
SS

= ∂µφ∂νφ − 1
2 gµν(g

κλ∂κφ∂λφ + m2φ2). (7.212)

Suppose we have a gravitational field coupled with a matter field whose
action is SM. Now our action principle is

δ(SEH + SM) = 0 (7.213)

under g → g + δg. From (7.207) and (7.211), we obtain the Einstein equation

Gµν = 8πGTµν. (7.214)

Exercise 7.25. We may add an extra scalar to the scalar curvature without spoiling
the invariance of the action. For example, we can add a constant called the
cosmological constant,

S̃EH = 1

16πG

∫
M
(�+)√−g d4x . (7.215)

Write down the vacuum Einstein equation. Other possible scalars may be such
terms as�2, RicµνRicµν or Rκλµν Rκλµν .

7.10.3 Spinors in curved spacetime

For concreteness, we consider a Dirac spinor ψ in a four-dimensional Lorentz
manifold M . The vierbein eαµ defined by

gµν = eαµeβνηαβ (7.216)

defines an orthonormal frame {θ̂ α = eαµdxµ} at each point p ∈ M . As noted
before, α, β, γ, . . . are the local orthonormal indices while µ, ν, λ, . . . are the
coordinate indices. With respect to this frame, the Dirac matrices γ α = eαµγ µ

satisfy {γ α, γ β} = 2ηαβ . Under a local Lorentz transformation αβ(p), the
Dirac spinor transforms as

ψ(p)→ ρ()ψ(p) ψ̄(p)→ ψ̄(p)ρ()−1 (7.217)

where ψ̄ ≡ ψ†γ 0 and ρ() is the spinor representation of . To construct an
invariant action, we seek a covariant derivative ∇αψ which is a local Lorentz
vector and transforms as a spinor,

∇αψ → ρ()α
β∇βψ. (7.218)

 



If we find such a ∇αψ , an invariant Lagrangian may be given by

� = ψ̄ (
iγ α∇α + m

)
ψ (7.219)

m being the mass of ψ . We note that eαµ∂µψ transforms under(p) as

eα
µ∂µψ → α

βeβ
µ∂µρ()ψ = αηeβ

µ[ρ()∂µψ + ∂µρ()ψ]. (7.220)

Suppose ∇α is of the form

∇αψ = eα
µ[∂µ +�µ]ψ. (7.221)

From (7.218) and (7.220), we find that �µ satisfies

�µ → ρ()�µρ()
−1 − ∂µρ()ρ()−1. (7.222)

To find the explicit form of �µ, we consider an infinitesimal local Lorentz
transformationαβ(p) = δαβ + εαβ(p). The Dirac spinor transforms as

ψ → exp[ 1
2 iεαβ�αβ ]ψ 	 [1+ 1

2 iεαβ�αβ ]ψ (7.223)

where �αβ ≡ 1
4 i

[
γα, γβ

]
is the spinor representation of the generators of the

Lorentz transformation. �αβ satisfies the �(1, 3) Lie algebra

i[�αβ,�γ δ] = ηγβ�αδ − ηγα�βδ + ηδβ�γα − ηδα�γβ. (7.224)

Under the same Lorentz transformation,�µ transforms as

�µ→ (1+ 1
2 iεαβ�αβ)�µ(1− 1

2 iεγ δ�γ δ)− 1
2 i∂µεαβ�αβ(1− 1

2 iεγ δ�γ δ)

= �µ + 1
2 iεαβ [�αβ,�µ] − 1

2 i∂µεαβ�αβ. (7.225)

We recall that the connection one-form ωαβ transforms under an infinitesimal
Lorentz transformation as (see (7.152))

ωαβ → ωαβ + εαγ ωγ β − ωαγ εγ β − dεαβ (7.226a)

or in components,

�αµβ → �αµβ + εαγ �γ µβ − �αµγ εγ β − ∂µεαβ. (7.226b)

From (7.224), (7.225) and (7.226b), we find that the combination

�µ ≡ 1
2 i�αµ

β
�αβ = 1

2 ieαν∇µeβν�αβ (7.227)

satisfies the transformation property (7.222). In fact,

1
2 i�αµ

β
�αβ → 1

2 i(�αµ
β + εαγ �γ µβ − �αµγ εγβ − ∂µεαβ)�αβ

= 1
2 i�αµ

β
�αβ + 1

2 i(εαγ �
γ
µ
β
�αβ − �αµγ εγβ�αβ)

− 1
2 i∂µεαβ�αβ

= 1
2 i�αµ

β
�αβ + 1

2 iεαβ [�αβ, 1
2 i�γ µ

δ
�γ δ] − 1

2 i∂µεαβ�αβ .

 



We finally obtain the Lagrangian which is a scalar both under coordinate
changes and local Lorentz rotations,

� ≡ ψ̄[iγ αeα
µ(∂µ + 1

2 i�βµ
γ
�βγ )+ m]ψ (7.228)

and the scalar action

Sψ ≡
∫

M
d4x

√−gψ̄[iγ αeα
µ(∂µ + 1

2 i�βµ
γ
�βγ )+ m]ψ. (7.229a)

If ψ is coupled to the gauge field �, the action is given by

Sψ =
∫

M
d4x

√−gψ̄[iγ αeα
µ(∂µ +�µ + 1

2 i�βµ
γ
�βγ )+ m]ψ. (7.229b)

It is interesting to note that the spin connection term vanishes if dim M = 2.
To see this, we rewrite (7.229a) as

Sψ = 1
2

∫
M

d2x
√−gψ̄[iγ µ←→∂µ + 1

2 i�βµ
γ {iγ µ,�βγ } + m]ψ (7.229a′)

where γ µ = γ αeαµ and we have added total derivatives to the Lagrangian to
make it Hermitian. The non-vanishing components of� are�01 ∝ [γ0, γ1] ∝ γ3,
where γ3 is the two-dimensional analogue of γ5. Since {γ µ, γ3} = 0, the spin
connection term drops out from Sψ .

7.11 Bosonic string theory

Quantum field theory (QFT) is occasionally called particle physics since it deals
with the dynamics of particles. As far as high-energy processes whose typical
energy is much smaller than the Planck energy (∼1019 GeV) are concerned there
is no objection to this viewpoint. However, once we try to quantize gravity in
this framework, there exists an impenetrable barrier. We do not know how to
renormalize the ultraviolet divergences that are ubiquitous in the QFT of gravity.
In the early 1980s, physicists tried to construct a consistent theory of gravity
by introducing supersymmetry. In spite of a partial improvement, the resulting
supergravity could not tame the ultraviolet behaviour completely.

In the late 1960s and early 1970s, the dual resonance model was extensively
studied as a candidate for a model of hadrons. In this, particles are replaced
by one-dimensional objects called strings. Unfortunately, it turned out that
the theory contained tachyons (imaginary mass particles) and spin-2 particles
and, moreover, it is consistent only in 26-dimensional spacetime! Due to
these difficulties, the theory was abandoned and taken over by quantum
chromodynamics (QCD). However, a small number of people noticed that the
theory must contain the graviton and they thought it could be a candidate for the
quantum theory of gravity.

 



Figure 7.9. The trajectories of an open string (a) and a closed string (b). Slices of the
trajectories at fixed parameter τ0 are also shown.

Nowadays, supersymmetry has been built into string theory to form the
superstring theory, which is free of tachyons and consistent in ten-dimensional
spacetime. There are several candidates for consistent superstring theories. It is
sometimes suggested that complete mathematical consistency will single out a
unique theory of everything (TOE).

In this book, we study the elementary aspects of bosonic string theory in the
final chapter. We also study some mathematical tools relevant for superstrings.
The classical review is that of Scherk (1975). We give more references in
chapter 14.

7.11.1 The string action

The trajectory of a particle in a D-dimensional Minkowski spacetime is given by
the set of D functions Xµ(τ), 1 ≤ µ ≤ D, where τ parametrizes the trajectory.
A string is a one-dimensional object and its configuration is parametrized by two
numbers (σ, τ ), σ being spacelike and τ timelike. Its position in D-dimensional
Minkowski spacetime is given by Xµ(σ, τ ), see figure 7.9. The parameter σ can
be normalized as σ ∈ [0, π]. A string may be open or closed. We now seek an
action that governs the dynamics of strings.

We first note that the action of a relativistic particle is the length of the world
line,

S ≡ m
∫ sf

si

ds = m
∫ τf

τi

dτ (−Ẋµ Ẋµ)
1/2 (7.230)

where Ẋµ ≡ dXµ/dτ . For some purposes, it is convenient to take another
expression,

S = − 1
2

∫
dτ
√

g(g−1 Ẋµ Ẋµ − m2) (7.231)

 



where the auxiliary variable g ≡ gττ is regarded as a metric.

Exercise 7.26. Write down the Euler–Lagrange equations derived from (7.231).
Eliminate g from (7.231) making use of the equation of motion to reproduce
(7.230).

What is the advantage of (7.231) over (7.230)? We first note that (7.231)
makes sense even when m2 = 0, while (7.230) vanishes in this case. Second,
(7.231) is quadratic in X while the X -dependence of (7.230) is rather complicated.

Nambu (1970) proposed an action describing the strings, which is
proportional to the area of the world sheet, the surface spanned by the trajectory
of a string. Clearly this is a generalization of the length of the world line of a
particle. He proposed the Nambu action,

S = − 1

2πα′

∫ π

0
dσ

∫ τf

τi

dτ [− det(∂αXµ∂βXµ)]1/2 (7.232)

where ξ0 = τ, ξ1 = σ and ∂αXµ ≡ ∂Xµ/∂ξα . The parameter τi (τf) is the
initial (final) value of the parameter τ while α′ is a parameter corresponding to
the inverse string tension (the Regge slope).

Exercise 7.27. The action S is required to have no dimension. We take σ and τ to
be dimensionless. Show that the dimension of α′ is [length]2.

Although the action provides a nice geometrical picture, it is not quadratic
in X and it turned out that the quantization of the theory was rather difficult. Let
us seek an equivalent action which is easier to quantize. We proceed analogously
to the case of point particles. A quadratic action for strings is called the Polyakov
action (Polyakov 1981) and is given by

S = − 1

4πα′

∫ π

0
dσ

∫ τf

τi

dτ
√−ggαβ∂αXµ∂βXµ (7.233)

where g = det gαβ and gαβ = (g−1)αβ . If the string is open, the trajectory is
a sheet while if it is closed, it is a tube, see figure 7.9. It is shown here that the
action (7.233) agrees with (7.232) upon eliminating g. It should be noted though
that this is true only for the Lagrangian. There is no guarantee that this remains
true at the quantum level. It has been shown that the quantum theory based on the
respective Lagrangians agrees only for D = 26. The action (7.233) is invariant
under

(i) local reparametrization of the world sheet

τ → τ ′(τ, σ ) σ → σ ′(τ, σ ) (7.234a)

(ii) Weyl rescaling
gαβ → g′αβ ≡ eφ(σ,τ )gαβ (7.234b)

 



(iii) global Poincaré invariance

Xµ → Xµ′ ≡ µνXν + aµ  ∈ SO(D− 1, 1) a ∈ �D . (7.234c)

These symmetries will be worked out later.

Exercise 7.28. Taking advantage of symmetries (i) and (iii), it is always possible
to choose gαβ in the form gαβ = ηαβ . Write down the equation of motion for Xµ

to show that it obeys the equation

ηαβ∂α∂βXµ = 0. (7.235)

7.11.2 Symmetries of the Polyakov strings

The bosonic string theory is defined on a two-dimensional Lorentz manifold
(M, g). The embedding f : M → �D is defined by ξα 
→ Xµ where
{ξα} = (τ, σ ) are the local coordinates of M . We assume the physical spacetime
is Minkowskian (�D , η) for simplicity. The Polyakov action

S = − 1
2

∫
d2ξ

√−ggαβ∂αXµ∂βXνηµν (7.236)

is left invariant under the coordinate reparametrization Diff(M) since the volume
element

√−gd2ξ is invariant and gαβ∂αXµ∂β Xµ is a scalar.
Now we are ready to derive the equation of motion. Our variational

parameters are the embedding Xµ and the geometry gαβ . Under the variation
δXµ, we have the Euler–Lagrange equation

∂α(
√−ggαβ∂βXµ) = 0. (7.237a)

Under the variation δgαβ , the integrand of S changes as

δ(
√−ggαβ∂αXµ∂βXµ) = δ√−ggαβ∂αXµ∂βXµ +√−gδgαβ∂αXµ∂βXµ

= − 1
2

√−ggγ δδg
γ δgαβ∂αXµ∂βXµ

+√−gδgαβ∂αXµ∂βXµ

where proposition 7.2 has been used. Since this should vanish for any variation
δgαβ , we should have

Tαβ = ∂αXµ∂βXµ − 1
2 gαβ(g

γ δ∂γ Xµ∂δXµ) = 0. (7.237b)

This is solved for gαβ to yield

gαβ = ∂αXµ∂βXνηµν (7.238)

showing that the induced metric (the RHS) agrees with gαβ . Substituting (7.238)
into (7.236) to eliminate gαβ , we recover the Nambu action,

S = − 1
2

∫
d2ξ

√
− det(∂αXµ∂β Xµ). (7.239)

 



By construction, the action S is invariant under local reparametrization of
M , {ξα} → {ξ ′α(ξ)}. In addition to this, the action has extra invariances. Under
the global Poincaré transformation in D-dimensional spacetime,

Xµ → X ′µ ≡ µνXν + aµ (7.240)

the action S transforms as

S → − 1
2

∫
d2ξ

√−ggαβ∂α(
µ
κXκ + aµ)∂β(

ν
λXλ + aν)ηµν

= − 1
2

∫
d2ξ

√−ggαβ∂αXκ∂βXλ(µκ
ν
ληµν).

From µκ
ν
ληµν = ηκλ, we find that S is invariant under global Poincaré

transformations. The action S is also invariant under the Weyl rescaling,
gαβ(τ, σ )→ e2σ(τ,σ )gα,β(τ, σ ) keeping (τ, σ ) fixed. In fact, S transforms as

S → − 1
2

∫
d2ξ

√
−e4σ ge−2σ gαβ∂αXµ∂βXνηµν

and hence is left invariant. Note that the Weyl rescaling invariance exists only
when M is two dimensional, making strings prominent among other extended
objccts such as membranes.

Since dim M = 2, we can always parametrize the world sheet by the
isothermal coordinate (example 7.9) so that

gαβ = e2σ(τ,σ )ηαβ. (7.241)

Then the Weyl rescaling invariance allows us to choose the standard metric ηαβ
on the world sheet. The metric gαβ has three independent components while the
reparametrization has two degrees of freedom and the Weyl scaling invariance
has one. Thus, so long as we are dealing with strings, we can choose the standard
metric ηαβ .

We end our analysis of Polyakov strings here. Polyakov strings will be
quantized in the most elegant manner in chapter 14.

Exercise 7.29. Let (M, g) and (N, h) be Riemannian manifolds. Take a chart U
of M in which the metric g takes the form

g = gµν(x) dxµ ⊗ dxν.

Take a chart V of N on which h takes the form

h = Gαβ(φ)dφα ⊗ dφβ.

A map φ : M → N defined by x 
→ φ(x) is called a harmonic map if it satisfies

1√
g
∂µ[√ggµν∂νφ

α] + �αβγ ∂µφα∂νφβgµν = 0. (7.242)

 



Show that this equation is obtained by the variation of the action

S ≡ 1
2

∫
dm x

√
ggµν∂µφ

α∂νφ
βhαβ(φ) (7.243)

with respect to φ. Applications of harmonic maps to physics are found in Misner
(1978) and Sánchez (1988). Mathematical aspects have been reviewed in Eells
and Lemaire (1968).

Problems

7.1 Let ∇ be a general connection for which the torsion tensor does not vanish.
Show that the first Bianchi identity becomes

�{R(X,Y )Z} = �{T (X, [Y, Z ])} +�{∇X [T (Y, Z)]}
where � is the symmetrizer defined in theorem 7.2. Show also that the second
Bianchi identity is given by

�{(∇X R)(Y, Z)}V = �{R(X, T (Y, Z))}V
where � symmetrizes X , Y and Z only.

7.2 Let (M, g) be a conformally flat three-dimensional manifold. Show that the
Weyl–Schouten tensor defined by

Cλµν ≡ ∇ν Ricλµ −∇µRicλν − 1
4 (gλµ∂ν�− gλν∂µ�)

vanishes. It is known that Cλµν = 0 is the necessary and sufficient condition for
conformal flatness if dim M = 3.

7.3 Consider a metric

g = −dt ⊗ dt + dr ⊗ dr + (1− 4µ2)r2 dφ ⊗ dφ + dz ⊗ dz

where 0 < µ < 1/2 and µ �= 1/4. Introduce a new variable

φ̃ ≡ (1− 4µ)φ

and show that the metric g reduces to the Minkowski metric. Does this mean that
g describes Minkowski spacetime? Compute the Riemann curvature tensor and
show that there is a stringlike singularity at r = 0. This singularity is conical (the
spacetime is flat except along the line). This metric models the spacetime of a
cosmic string.

 



8

COMPLEX MANIFOLDS

A differentiable manifold is a topological space which admits differentiable
structures. Here we introduce another structure which has relevance in physics.
In elementary complex analysis, the partial derivatives are required to satisfy the
Cauchy–Riemann relations. We talk not only of the differentiability but also of
the analyticity of a function in this case. A complex manifold admits a complex
structure in which each coordinate neighbourhood is homeomorphic to � m and
the transition from one coordinate system to the other is analytic.

The reader may consult Chern (1979), Goldberg (1962) or Greene (1987)
for further details. Griffiths and Harris (1978), chapter 0 is a concise survey of
the present topics. For applications to physics, see Horowitz (1986) and Candelas
(1988).

8.1 Complex manifolds

To begin with, we define a holomorphic (or analytic) map on � m . A complex-
valued function f : � m → � is holomorphic if f = f1 + i f2 satisfies the
Cauchy–Riemann relations for each zµ = xµ + i yµ,

∂ f1

∂xµ
= ∂ f2

∂yµ
∂ f2

∂xµ
= − ∂ f1

∂yµ
. (8.1)

A map ( f 1, . . . , f n) : � m → � n is called holomorphic if each function f λ

(1 ≤ λ ≤ n) is holomorphic.

8.1.1 Definitions

Definition 8.1. M is a complex manifold if the following axioms hold,

(i) M is a topological space.
(ii) M is provided with a family of pairs {(Ui , ϕi )}.
(iii) {Ui } is a family of open sets which covers M . The map ϕi is a
homeomorphism from Ui to an open subset U of � m . [Hence, M is even
dimensional.]

(iv) Given Ui and U j such that Ui ∩ U j �= ∅, the map ψ j i = ϕ j ◦ ϕ−1
i from

ϕi (Ui ∩U j ) to ϕ j (Ui ∩U j ) is holomorphic.

 



The number m is called the complex dimension of M and is denoted as
dim� M = m. The real dimension 2m is denoted either by dim� M or simply
by dim M . Let zµ = ϕi (p) and wν = ϕ j (p) be the (complex) coordinates of
a point p ∈ Ui ∩ U j in the charts (Ui , ϕi ) and (U j , ϕ j ), respectively. Axiom
(iv) asserts that the function wν = uν + ivν (1 ≤ ν ≤ m) is holomorphic in
zµ = xµ + iyµ, namely

∂uν

∂xν
= ∂vν

∂yν
∂uν

∂yν
= −∂v

ν

∂xν
1 ≤ µ, ν ≤ m.

These axioms ensure that calculus on complex manifolds can be carried out
independently of the special coordinates chosen. For example, � m is the simplest
complex manifold. A single chart covers the whole space and ϕ is the identity
map.

Let {(Ui , ϕi )} and {(Vj , ψ j )} be atlases of M . If the union of two atlases is
again an atlas which satisfies the axioms of definition 8.1, they are said to define
the same complex structure. A complex manifold may carry a number of complex
structures (see example 8.2).

8.1.2 Examples

Example 8.1. In exercise 5.1, it was shown that the stereographic coordinates of
a point P(x, y, z) ∈ S2 − {North Pole} projected from the North Pole are

(X,Y ) =
(

x

1− z
,

y

1− z

)
while those of a point P(x, y, z) ∈ S2 − {South Pole} projected from the South
Pole are

(U, V ) =
(

x

1+ z
,
−y

1+ z

)
.

[Note the orientation of (U, V ) in figure 5.5.] Let us define complex coordinates

Z = X + iY, Z = X − iY, W = U + iV , W = U − iV .

W is a holomorphic function of Z ,

W = x − iy

1+ z
= 1− z

1+ z
(X − iY ) = X − iY

X2 + Y 2
= 1

Z
.

Thus, S2 is a complex manifold which is identified with the Riemann sphere
� ∪ {∞}.

Example 8.2. Take a complex plane � and define a lattice L(ω1, ω2) ≡ {ω1m +
ω2n|m, n ∈ �} where ω1 and ω2 are two non-vanishing complex numbers such

 



Figure 8.1. Two complex numbers ω1 and ω2 define a lattice L(ω1, ω2) in the complex
plane. � /L(ω1 , ω2) is homeomorphic to the torus (the shaded area).

that ω2/ω1 /∈ �; see figure 8.1. Without loss of generality, we may take
Im(ω2/ω1) > 0. The manifold � /L(ω1 , ω2) is obtained by identifying the points
z1, z2 ∈ � such that z1 − z2 = ω1m + ω2n for some m, n ∈ �. Since the
opposite sides of the shaded area of figure 8.1 are identified, � /L(ω1 , ω2) is
homeomorphic to the torus T 2. The complex structure of � naturally induces
that of � /L(ω1 , ω2). We say that the pair (ω1, ω2) defines a complex structure on
T 2. There are many pairs (ω1, ω2) which give the same complex structure on T 2.

When do pairs (ω1, ω2) and (ω′1, ω
′
2) (Im(ω2/ω1) > 0, Im(ω′2/ω

′
1) > 0)

define the same complex structure? We first note that two lattices L(ω1, ω2) and
L(ω′1, ω′2) coincide if and only if there exists a matrix1(

a b
c d

)
∈ PSL(2,�)≡ SL(2,�)/�2

such that (
ω′1
ω′2

)
=

(
a b
c d

)(
ω1
ω2

)
. (8.2)

This statement is proved as follows.
Suppose(

ω′1
ω′2

)
=

(
a b
c d

)(
ω1
ω2

)
where

(
a b
c d

)
∈ SL(2,�).

1 The group SL(2,�) has been defined in (2.4). Two matrices A and −A are identified in PSL(2,�).

 



Since ω′1, ω′2 ∈ L(ω1, ω2), we find L(ω′1, ω′2) ⊂ L(ω1, ω2). From(
ω1
ω2

)
=

(
d −b
−c a

)(
ω′1
ω′2

)
we also find L(ω1, ω2) ⊂ L(ω′1, ω

′
2). Thus, L(ω1, ω2) = L(ω′1, ω

′
2). Conversely,

if L(ω1, ω2) = L(ω′1, ω′2), ω′1 and ω′2 are lattice points of L(ω1, ω2) and can be
written as ω′1 = dω1 + cω2 and ω′2 = bω1 + aω2 where a, b, c, d ∈ �. Also
ω1 and ω2 may be expressed as ω1 = d ′ω′1 + c′ω′2 and ω2 = b′ω′1 + a′ω′2 where
a′, b′, c′, d ′ ∈ �. Then we have(

ω1
ω2

)
=

(
a′ b′
c′ d ′

)(
ω′1
ω′2

)
=

(
a′ b′
c′ d ′

)(
a b
c d

)(
ω1
ω2

)
from which we find (

a′ b′
c′ d ′

)(
a b
c d

)
=

(
1 0
0 1

)
.

Equating the determinants of both sides, we have (a′d ′ − b′c′)(ad − bc) = 1. All
the entries being integers, this is possible only when ad − bc = ±1. Since

Im

(
ω′2
ω′1

)
= Im

(
bω1 + aω2

dω1 + cω2

)
= ad − bc

|c(ω2/ω1)+ d|2 Im

(
ω′2
ω′1

)
> 0

we must have ad − bc > 0, that is,(
a b
c d

)
∈ SL(2,�).

In fact, it is clear that (
a b
c d

)
∈ SL(2,�)

defines the same lattice as

−
(

a b
c d

)
and we have to identify those matrices of SL(2,�) which differ only by their
overall signature. Thus, two lattices agree if they are related by PSL(2,�) ≡
SL(2,�)/�2.

Assume that there exists a one-to-one holomorphic map h of � /L(ω1 , ω2)

onto � /L(ω̃1 , ω̃2) where Im(ω2/ω1) > 0, Im(ω̃2/ω̃1) > 0. Let p : � →
� /L(ω1 , ω2) and p̃ : � → � /L(ω̃1 , ω̃2) be the natural projections. For example,
p maps a point in � to an equivalent point in � /L(ω1 , ω2). Choose the origin 0
and define h∗(0) to be a point such that p̃ ◦ h∗(0) = h ◦ p(0) (figure 8.2),

�
h∗−−−−−−−−−−→ �<p < p̃

� /L(ω1 , ω2)
h−−−−−−−−−−→ � /L(ω̃1 , ω̃2).

(8.3)

 



Figure 8.2. A holomorphic bijection h : � /L(ω1 , ω2) → � /L(ω̃1 , ω̃2) and the natural
projections p : � → � /L(ω1 , ω2), p̃ : � → � /L(ω̃1 , ω̃2) define a holomorphic bijection
h∗ : � → � .

Then by analytic continuation from the origin, we obtain a one-to-one
holomorphic map h∗ of � onto itself satisfying

p̃ ◦ h∗(z) = h ◦ p(z) for all z ∈ � (8.4)

so that the diagram (8.3) commutes. It is known that a one-to-one holomorphic
map of � onto itself must be of the form z → h∗(z) = az + b, where a, b ∈ �
and a �= 0. We then have h∗(ω1) − h∗(0) = aω1 and h∗(ω2) − h∗(0) = aω2.
For h to be well defined as a map of � /L(ω1 , ω2) onto � /L(ω̃1 , ω̃2), we must
have aω1, aω2 ∈ L(ω̃1, ω̃2), see figure 8.2. By changing the roles of (ω1, ω2)

and (ω′1, ω′2), we have ãω̃1, ãω̃1 ∈ L(ω1, ω2) where ã �= 0 is a complex number.
Hence, we conclude that if � /L(ω1 , ω2), � /L(ω̃1 , ω̃2) have the same complex
structure, there must be a matrix M ∈ SL(2,�) and a complex number λ (=ã−1)

such that (
ω̃1
ω̃2

)
= λM

(
ω1
ω2

)
. (8.5)

Conversely, we verify that (ω1, ω2) and (ω′1, ω′2) related by (8.5) define the same
complex structure. In fact,(

ω1
ω2

)
and M

(
ω1
ω2

)

 



Figure 8.3. The quotient space H/PSL(2,�).

define the same lattice (modulo translation) and we may take h∗ : � → � to be
z 
→ z + b. L(ω1, ω2) and L(λω1, λω2) also define the same complex structure.
We take, in this case, h∗ : z 
→ λz + b.

We have shown that the complex structure on T 2 is defined by a pair of
complex numbers (ω1, ω2) modulo a constant factor and PSL(2,�). To get rid of
the constant factor, we introduce the modular parameter τ ≡ ω2/ω1 ∈ H ≡ {z ∈
� | Im z > 0}, to specify the complex structure of T 2. Without loss of generality,
we take 1 and τ to be the generators of a lattice. Note, however, that not all of
τ ∈ H are independent modular parameters. As was shown previously, τ and
τ ′ = (aτ + b)/(cτ + d) define the same complex structure if(

a b
c d

)
∈ PSL(2,�).

The quotient space H/PSL(2,�) is shown in figure 8.3, the derivation of which
can be found in Koblitz (1984) p 100, and Gunning (1962) p 4.

The change τ → τ ′ is called the modular transformation and is generated
by τ → τ + 1 and τ → −1/τ . The transformation τ → τ + 1 generates a
Dehn twist along the meridian m as follows (figure 8.4(a)). (i) First, cut a torus
along m. (ii) Then take one of the lips of the cut and rotate it by 2π with the other
lip kept fixed. (iii) Then glue the lips together again. The other transformation
τ → −1/τ corresponds to changing the roles of the longitude l and the meridian
m (figure 8.4(b)).

Example 8.3. The complex projective space � Pn is defined similarly to �Pn ;
see example 5.4. The ntuple z = (z0, . . . , zn) ∈ � n+1 determines a complex
line through the origin provided that z �= 0. Define an equivalence relation

 



Figure 8.4. (a) Dehn twists generate modular transformations. (b) τ → −1/τ changes
the roles of l and m.

by z ∼ w if there exists a complex number a �= 0 such that w = az.
Then � Pn ≡ (� n+1 − {0})/ ∼. The (n + 1) numbers z0, z1, . . . , zn are
called the homogeneous coordinates, which is denoted by [z0, z1, . . . , zn]where
(z0, . . . , zn) is identified with (λz0, . . . , λzn) (λ �= 0). A chart Uµ is a subset of
� n+1 −{0} such that zµ �= 0. In a chart Uµ, the inhomogeneous coordinates are
defined by ξν(µ) = zν/zµ (ν �= µ). In Uµ∩Uν �= ∅, the coordinate transformation
ψµν : � n → � n is

ξλ(ν) 
→ ξλ(µ) =
zν

zµ
ξλ(ν). (8.6)

Accordingly,ψµν is a multiplication by zν/zµ, which is, of course, holomorphic.

Example 8.4. The complex Grassmann manifolds Gk,n(� ) are defined similarly
to the real Grassmann manifolds; see example 5.5. Gk,n(� ) is the set of complex
k-dimensional subspaces of � n . Note that � Pn = G1,n+1(� ).

Let Mk,n (� ) be the set of k × n matrices of rank k (k ≤ n). Take
A, B ∈ Mk,n(� ) and define an equivalence relation by A ∼ B if there exists
g ∈ GL(k, � ) such that B = g A. We identify Gk,n(� ) with Mk,n (� )/GL(k, � ).
Let {A1, . . . , Al} be the collection of all the k × k minors of A ∈ Mk,n (� ). We
define the chart Uα to be a subset of Gk,n(� ) such that det Aα �= 0. The k(n − k)
coordinates on Uα are given by the non-trivial entries of the matrix A−1

α A. See
example 5.5 for details.

 



Example 8.5. The common zeros of a set of homogeneous polynomials are a
compact submanifold of � Pn called an algebraic variety. For example, let
P(z0, . . . , zn) be a homogeneous polynomial of degree d . If a �= 0 is a complex
number, P satisfies

P(az0, . . . , azn) = ad P(z0, . . . , zn).

This shows that the zeros of P are defined on � Pn ; if P(z0, . . . , zn) = 0 then
P([z0, . . . , zn]) = 0. For definiteness, consider

P(z0, z1, z2) = (z0)2 + (z1)2 + (z2)2

and define N by

N = {[z0, z1, z2] ∈ � P2 |P(z0, z1, z2) = 0}. (8.7)

We define Uµ as in example 8.3. In N ∩U0, we have

[ξ1
(0)]2 + [ξ2

(0)]2 + 1 = 0

where ξµ(0) = zµ/z0 (note that z0 �= 0). Consider a holomorphic change of

coordinates (ξ1
(0), ξ

2
(0)) 
→ (η1 = ξ1

(0), η
2 = [ξ1

(0)]2 + [ξ2
(0)]2 + 1). Note that

∂(η1, η2)/∂(ξ1
(0), ξ

2
(0)) �= 0 unless ξ2

(0) = z2 = 0. Then N∩U0∩U2 = {(η1, η2) ∈
� 2 |η2 = 0} is clearly a one-dimensional submanifold of � 2 . If ξ2

(0) = z2 = 0, we

have (ξ1
(0), ξ

2
(0)) 
→ (ζ 1 = [ξ1

(0)]2 + [ξ2
(0)]2 + 1, ζ 2 = ξ2

(0)) for which the Jacobian

does not vanish unless ξ1
(0) = z1 = 0. Then N ∩U0 ∩U1 = {(ζ 1, ζ 2) ∈ � 2 |ζ 1 =

0} is a one-dimensional submanifold of � 2 . On N ∩U0 ∩U1 ∩U2, the coordinate
change η1 
→ ζ 2 is a multiplication by z2/z1 and is, hence, holomorphic. In this
way, we may define a one-dimensional compact submanifold N of � P2 .

A complex manifold is a differentiable manifold. For example, � m is
regarded as �2m by the identification zµ = xµ + iyµ, xµ, yµ ∈ �. Similarly,
any chart U of a complex manifold has coordinates (z1, . . . , zm) which may be
understood as real coordinates (x1, y1, . . . , xm, ym). The analytic property of the
coordinate transformation functions ensures that they are differentiable when the
manifold is regarded as a 2m-dimensional differentiable manifold.

8.2 Calculus on complex manifolds

8.2.1 Holomorphic maps

Let f : M → N , M and N being complex manifolds with dim� M = m and
dim� N = n. Take a point p in a chart (U, ϕ) of M . Let (V , ψ) be a chart of N
such that f (p) ∈ V . If we write {zµ} = ϕ(p) and {wν} = ψ( f (p)), we have a
map ψ ◦ f ◦ ϕ−1 : � m → � n . If each function wν (1 ≤ ν ≤ n) is a holomorphic

 



function of zµ, f is called a holomorphic map. This definition is independent
of the special coordinates chosen. In fact, let (U ′, ϕ′) be another chart such that
U ∩U ′ �= ∅ and z′µ = x ′λ+ iy ′λ be the coordinates. Take a point p ∈ U ∩U ′. If
wν = uν + ivν is a holomorphic function with respect to z, then

∂uν

∂x ′λ
= ∂uν

∂xµ
∂xµ

∂x ′λ
+ ∂uν

∂yµ
∂yµ

∂y ′λ
= ∂vν

∂yµ
∂yµ

∂y ′λ
+ ∂vν

∂xµ
∂xµ

∂y ′λ
= ∂vν

∂y ′λ
.

We also find ∂uν/∂y ′λ = −∂vν/∂x ′λ. Thus, wν is holomorphic with respect to
z′ too. It can be shown that the holomorphic property is also independent of the
choice of chart in N .

Let M and N be complex manifolds. We say M is biholomorphic to
N if there exists a diffeomorphism f : M → N which is also holomorphic
(then f −1 : N → M is automatically holomorphic). The map f is called a
biholomorphism.

A holomorphic function is a holomorphic map f : M → � . There is
a striking theorem; any holomorphic function on a compact complex manifold
is constant. This is a generalization of the maximum principle of elementary
complex analysis, see Wells (1980). The set of holomorphic functions on M
is denoted by �(M). Similarly, �(U) is the set of holomorphic functions on
U ⊂ M .

8.2.2 Complexifications

Let M be a differentiable manifold with dim� M = m. If f : M → � is
decomposed as f = g + ih where g, h ∈ �(M), then f is a complex-valued
smooth function. The set of complex-valued smooth functions on M is called the
complexification of �(M), denoted by �(M)� . A complexified function does
not satisfy the Cauchy–Riemann relation in general. For f = g + ih ∈ �(M)� ,
the complex conjugate of f is f ≡ g − ih. f is real if and only if f = f .

Before we consider the complexification of Tp M , we define the
complexification V � of a general vector space V with dim� V = m. An element
of V � takes the form X + iY where X,Y ∈ V . The vector space V � becomes
a complex vector space of complex dimension m if the addition and the scalar
multiplication by a complex number a + ib are defined by

(X1 + iY1)+ (X2 + iY2) = (X1 + X2)+ i(Y1 + Y2)

(a + ib)(X + iY ) = (a X − bY )+ i(bX + aY )

V is a vector subspace of V � since X ∈ V and X + i0 ∈ V � may be identified.
Vectors in V are said to be real. The complex conjugate of Z = X + iY is
Z = X − iY . A vector Z is real if Z = Z .

A linear operator A on V is extended to act on V � as

A(X + iY ) = A(X)+ iA(Y ). (8.8)

 



If A → � is a linear function (A ∈ V ∗), its extension is a complex-valued
linear function on V � , A : V � → � . In general, any tensor defined on V
and V ∗ is extended so that it is defined on V � and (V ∗)� . An extended tensor is
complexified as t = t1 + it2, where t1 and t2 are tensors of the same type. The
conjugate of t is t ≡ t1 − it2. If t = t , the tensor is said to be real. For example
A : V � → � is real if A(X + iY ) = A(X − iY ).

Let {ek} be a basis of V . If the basis vectors are regarded as complex
vectors, the same basis {ek} becomes a basis of V � . To see this, let X = Xkek ,
Y = Y kek ∈ V . Then Z = X + iY is uniquely expressed as (Xk + iY k)ek . We
find dim� V = dim� V � .

Now we are ready to complexify the tangent space Tp M . If V is replaced by
Tp M , we have the complexification Tp M� of Tp M , whose element is expressed
as Z = X + iY (X,Y ∈ Tp M). The vector Z acts on a function f = f1 + i f2 ∈
�(M)� as

Z [ f ] = X [ f1 + i f2] + iY [ f1 + i f2]
= X [ f1] − Y [ f2] + i{X [ f2] + Y [ f1]}. (8.9)

The dual vector space T ∗p M is complexified if ω, η ∈ T ∗p M are combined as

ζ = ω + iη. The set of complexified dual vectors is denoted by (T ∗p M)� .

Any tensor t is extended so that it is defined on Tp M� and (T ∗p M)� and then
complexified.

Exercise 8.1. Show that (T ∗p M)� = (Tp M� )∗. From now on, we denote the

complexified dual vector space simply by T ∗p M� .

Given smooth vector fields X,Y ∈ �(M), we define a complex vector field
Z = X + iY . Clearly Z |p ∈ Tp M� . The set of complex vector fields is the
complexification of �(M) and is denoted by �(M)� . The conjugate vector field
of Z = X + iY is Z = X − iY . Z = Z if Z ∈ �(M), hence �(M)� ⊃ �(M).
The Lie bracket of Z = X + iY , W = U + iV ∈ �(M)� is

[X + iY,U + iV ] = {[X,U ] − [Y, V ]} + i{[X, V ] + [Y,U ]}. (8.10)

The complexification of a tensor field of type (p, q) is defined in an obvious
manner. If ω, η ∈ �1(M), ξ ≡ ω + iη ∈ �1(M)� is a complexified one-form.

8.2.3 Almost complex structure

Since a complex manifold is also a differentiable manifold, we may use the
framework developed in chapter 5. We then put appropriate constraints on
the results. Let us look at the tangent space of a complex manifold M with
dim� M = m. The tangent space Tp M is spanned by 2m vectors{

∂

∂x1
, . . . ,

∂

∂xm
; ∂
∂y1

, . . . ,
∂

∂ym

}
(8.11)

 



where zµ = xµ + iyµ are the coordinates of p in a chart (U, ϕ). With the same
coordinates, T ∗p M is spanned by{

dx1, . . . , dxm; dy1, . . . , dym
}
. (8.12)

Let us define 2m vectors

∂

∂zµ
≡ 1

2

{
∂

∂xµ
− i

∂

∂yµ

}
(8.13a)

∂

∂zµ
≡ 1

2

{
∂

∂xµ
+ i

∂

∂yµ

}
(8.13b)

where 1 ≤ µ ≤ m. Clearly they form a basis of the 2m-dimensional (complex)
vector space Tp M� . Note that ∂/∂zµ = ∂/∂zµ. Correspondingly, 2m one-forms

dzµ ≡ dxµ + i dyµ dzµ ≡ dxµ − i dyµ (8.14)

form the basis of T ∗p M� . They are dual to (8.13),

〈dzµ, ∂/∂zν〉 = 〈dzµ, ∂/∂zν〉 = 0 (8.15a)

〈dzµ, ∂/∂zν〉 = 〈dzµ, ∂/∂zν〉 = δµν. (8.15b)

Let M be a complex manifold and define a linear map Jp : Tp M → Tp M
by

Jp

(
∂

∂xµ

)
= ∂

∂yµ
Jp

(
∂

∂yµ

)
= − ∂

∂xµ
(8.16)

Jp is a real tensor of type (1, 1). Note that

J 2
p = −idTp M . (8.17)

Roughly speaking, Jp corresponds to the multiplication by ±i. The action of Jp

is independent of the chart. In fact, let (U, ϕ) and (V , ψ) be overlapping charts
with ϕ(p) = zµ = xµ + iyµ and ψ(p) = wµ = uµ + ivµ. On U ∩ V , the
functions zµ = zµ(w) satisfy the Cauchy–Riemann relations. Then we find

Jp

(
∂

∂uµ

)
= Jp

(
∂xν

∂uµ
∂

∂xν
+ ∂yν

∂uµ
∂

∂yν

)
= ∂yν

∂vµ

∂

∂yν
+ ∂xν

∂vµ

∂

∂xν
= ∂

∂vµ
.

We also find that Jp∂/∂v
µ = −∂/∂uµ. Accordingly, Jp takes the form

Jp =
(

0 −Im

Im 0

)
(8.18)

with respect to the basis (8.11), where Im is the m × m unit matrix. Since all
the components of Jp are constant at any point, we may define a smooth tensor
field J whose components at p are (8.18). The tensor field J is called the almost

 



complex structure of a complex manifold M . Note that any 2m-dimensional
manifold locally admits a tensor field J which squares to −I2m . However, J may
be patched across charts and defined globally only on a complex manifold. The
tensor J completely specifies the complex structure.

The almost complex structure Jp is extended so that it may be defined on
Tp M� ,

Jp(X + iY ) ≡ Jp X + iJpY. (8.19)

It follows from (8.16) that

Jp∂/∂zµ = i∂/∂zµ Jp∂/∂zµ = −i∂/∂zµ. (8.20)

Thus, we have an expression for Jp in (anti-)holomorphic bases,

Jp = i dzµ ⊗ ∂

∂zµ
− i dzµ ⊗ ∂

∂zµ
(8.21)

whose components are given by

Jp =
(

iIm 0
0 −iIm

)
. (8.22)

Let Z ∈ Tp M� be a vector of the form Z = Zµ∂/∂zµ. Then Z is an eigenvector
of Jp; Jp Z = iZ . Similarly, Z = Zµ∂/∂zµ satisfies Jp Z = −iZ . In this way
Tp M� of a complex manifold is separated into two disjoint vector spaces,

Tp M� = Tp M+ ⊕ Tp M− (8.23)

where
Tp M± = {Z ∈ Tp M� |Jp Z = ±iZ}. (8.24)

We define the projection operators	± : Tp M� → Tp M± by

	± ≡ 1
2 (I2m ∓ iJp). (8.25)

In fact, Jp	
±Z = 1

2 (Jp ∓ iJ 2
p)Z = ±i	±Z for any Z ∈ Tp M� . Hence,

Z± ≡ 	±Z ∈ Tp M±. (8.26)

Now Z ∈ Tp M� is uniquely decomposed as Z = Z+ + Z− (Z± ∈ Tp M±).
Tp M+ is spanned by {∂/∂zµ} and Tp M− by {∂/∂zµ}. Z ∈ Tp M+ is called a
holomorphic vector while Z ∈ Tp M− is called an anti-holomorphic vector.
We readily verify that

Tp M− = Tp M+ = {Z |Z ∈ Tp M+}. (8.27)

Note that

dim� Tp M+ = dim� Tp M− = 1
2 dim� Tp M� = 1

2 dim� M.

 



Exercise 8.2. Let (U, ϕ) and (V , ψ) be overlapping charts on a complex manifold
M and let zµ = ϕ(p) and wµ = ψ(p). Verify that X = Xµ∂/∂zµ, expressed
in the coordinates wµ, contains a holomorphic basis

{
∂/∂wµ

}
only. Thus, the

separation of Tp M� into Tp M± is independent of charts (note that J is defined
independently of charts).

Given a complexified vector field Z ∈ �(M)� , we obtain a new vector field
J Z ∈ �(M)� defined at each point of M by J Z |p = Jp · Z |p . The vector field
Z is naturally separated as

Z = Z+ + Z− Z± = 	±Z (8.28)

where Z± = 	±Z . The vector field Z+ (Z−) is called a holomorphic (anti-
holomorphic) vector field. Accordingly, once J is given,�(M)� is decomposed
uniquely as

�(M)� = �(M)+ ⊕�(M)−. (8.29)

Z = Z+ + Z− ∈ �(M)� is real if and only if Z+ = Z−.

Exercise 8.3. Let X,Y ∈ �(M)+. Show that [X,Y ] ∈ �(M)+. [If X,Y ∈
�(M)−, then [X,Y ] ∈ �(M)−.]

8.3 Complex differential forms

On a complex manifold, we define complex differential forms by which we will
discuss such topological properties as cohomology groups.

8.3.1 Complexification of real differential forms

Let M be a differentiable manifold with dim� M = m. Take two q-forms
ω, η ∈ �q

p(M) at p and define a complex q-form ζ = ω + iη. We denote the
vector space of complex q-forms at p by �q

p(M)� . Clearly �q
p(M) ⊂ �q

p(M)� .
The conjugate of ζ is ζ = ω − iη. A complex q-form ζ is real if ζ = ζ .

Exercise 8.4. Let ω ∈ �q
p(M)� . Show that

ω(V1, . . . , Vq) = ω(V 1, . . . , V q) Vi ∈ Tp M� . (8.30)

Show also that ω + η = ω+η, λω = λω and ω = ω, where ω, η ∈ �q
p(M)� and

λ ∈ � .

A complex q-form α defined on a differentiable manifold M is a smooth
assignment of an element of�q

p(M)� . The set of complex q-forms is denoted by
�q(M)� . A complex q-form ζ is uniquely decomposed as ζ = ω + iη, where
ω, η ∈ �q(M).

 



The exterior product of ζ = ω + iη and ξ = ϕ + iψ is defined by

ζ ∧ ξ = (ω + iη) ∧ (ϕ + iψ)

= (ω ∧ ϕ − η ∧ ψ)+ i(ω ∧ ψ + η ∧ ϕ). (8.31)

The exterior derivative d acts on ζ = ω + iη as

dζ = dω + i dη. (8.32)

d is a real operator: dζ = dω − i dη = dζ .

Exercise 8.5. Let ω ∈ �q(M)� and ξ ∈ �r (M)� . Show that

ω ∧ ξ = (−1)qrξ ∧ ω (8.33)

d(ω ∧ ξ) = dω ∧ ξ + (−1)qω ∧ dξ. (8.34)

8.3.2 Differential forms on complex manifolds

Now we restrict ourselves to complex manifolds in which we have the
decompositions Tp M� = Tp M+ ⊕ Tp M− and �(M)� = �(M)+ ⊕ �(M)−.

Definition 8.2. Let M be a complex manifold with dim� M = m. Let ω ∈
�

q
p(M)� (q ≤ 2m) and r, s be positive integers such that r + s = q . Let Vi ∈

Tp M� (1 ≤ i ≤ q) be vectors in either Tp M+ or Tp M−. If ω(V1, . . . , Vq) = 0
unless r of the Vi are in Tp M+ and s of the Vi are in Tp M−, ω is said to be of
bidegree (r, s) or simply an (r, s)-form. The set of (r, s)-forms at p is denoted by
�

r,s
p (M). If an (r, s)-form is assigned smoothly at each point of M , we have an

(r, s)-form defined over M . The set of (r, s)-forms over M is denoted by�r,s(M).

Take a chart (U, ϕ) with the complex coordinates ϕ(p) = zµ. We take the
bases (8.13) for the tangent spaces Tp M±. The dual bases are given by (8.14).
Note that dzµ is of bidegree (1, 0) since 〈dzµ, ∂/∂zν〉 = 0 and dzµ is of bidegree
(0, 1). With these bases, a form ω of bidegree (r, s) is written as

ω = 1

r ! s!ωµ1...µr ν1...νs dzµ1 ∧ . . . ∧ dzµr ∧ dzν1 ∧ . . . ∧ dzνs . (8.35)

The set {dzµ1 ∧ . . . ∧ dzµr ∧ dzν1 ∧ . . . ∧ dzνs } is the basis of �r,s
p (M). The

components are totally anti-symmetric in the µ and ν separately. Let zµ and wµ

be two overlapping coordinates. The reader should verify that an (r, s)-form in
the zµ coordinate system is also an (r, s)-form in the wν system.

Proposition 8.1. Let M be a complex manifold of dim� M = m and ω and ξ be
complex differential forms on M .

(a) If ω ∈ �q,r (M) then ω ∈ �r,q (M).
(b) If ω ∈ �q,r (M) and ξ ∈ �q ′,r ′(M), then ω ∧ ξ ∈ �q+q ′,r+r ′ (M).

 



(c) A complex q-form ω is uniquely written as

ω =
∑

r+s=q

ω(r,s) (8.36a)

where ω(r,s) ∈ �r,s(M). Thus, we have the decomposition

�q(M)� =
⊕

r+s=q

�r,s(M). (8.36b)

The proof is easy and is left to the reader. Now any q-form ω is decomposed
as

ω =
∑

r+s=q

ω(r,s)

=
∑

r+s=q

1

r !s!ωµ1...µr ν1...νs dzµ1 ∧ . . .∧ dzµr ∧ dzν1 ∧ . . .∧ dzνs

(8.37)

where

ωµ1...µr ν1...νs = ω
(
∂

∂zµ1
, . . . ,

∂

∂zµr
,
∂

∂zν1
, . . . ,

∂

∂zνs

)
. (8.38)

Exercise 8.6. Let dim� M = m. Verify that

dim��
r,s
p (M) =


(

m

r

)(
m

s

)
if 0 ≤ r, s ≤ m

0 otherwise.

Show also that dim��
q
p(M)� =∑

r+s=q dim��
r,s
p (M) =

(2m
q

)
.

8.3.3 Dolbeault operators

Let us compute the exterior derivative of an (r , s)-form ω. From (8.35), we find

dω = 1

r !s!
(
∂

∂zλ
ωµ1...µr ν1...νs dzλ + ∂

∂zλ
ωµ1...µr ν1...νs dzλ

)
× dzµ1 ∧ . . .∧ dzµr ∧ dzν1 ∧ . . .∧ dzνs . (8.39)

dω is a mixture of an (r + 1, s)-form and an (r, s + 1)-form. We separate the
action of d according to its destinations,

d = ∂ + ∂ (8.40)

 



where ∂ : �r,s(M)→ �r+1,s(M) and ∂ : �r,s(M)→ �r,s+1(M). For example,
if ω = ωµνdzµ ∧ dzν , its exterior derivatives are

∂ω = ∂ωµν

∂zλ
dzλ ∧ dzµ ∧ dzν

∂ω = ∂ωµν

∂zλ
dzλ ∧ dzµ ∧ dzν = −∂ωµν

∂zλ
dzµ ∧ dzλ ∧ dzν .

The operators ∂ and ∂ are called the Dolbeault operators.
If ω is a general q-form given by (8.37), the actions of ∂ and ∂ on ω are

defined by
∂ω =

∑
r+s=q

∂ω(r,s) ∂ω =
∑

r+s=q

∂ω(r,s). (8.41)

Theorem 8.1. Let M be a complex manifold and let ω ∈ �q(M)� and ξ ∈
�p(M)� . Then

∂∂ω = (∂∂ + ∂∂)ω = ∂∂ω = 0 (8.42a)

∂ω = ∂ω, ∂ω = ∂ω (8.42b)

∂(ω ∧ ξ) = ∂ω ∧ ξ + (−1)qω ∧ ∂ξ (8.42c)

∂(ω ∧ ξ) = ∂ω ∧ ξ + (−1)qω ∧ ∂ξ. (8.42d)

Proof. It is sufficient to prove them when ω is of bidegree (r, s).

(a) Since d = ∂ + ∂ , we have

0 = d2ω = (∂ + ∂)(∂ + ∂)ω = ∂∂ω + (∂∂ + ∂∂)ω + ∂ ∂ω.
The three terms of the RHS are of bidegrees (r + 2, s), (r + 1, s + 1)
and (r, s + 2) respectively. From proposition 8.1(c), each term must vanish
separately.

(b) Since dω = dω, we have

∂ω + ∂ω = dω = (∂ + ∂)ω = ∂ω + ∂ω.

Noting that ∂ω and ∂ω are of bidegree (s + 1, r) and ∂ω and ∂ω are of

(s, r + 1), we conclude that ∂ω = ∂ω and ∂ω = ∂ω.
(c) We assume ω is of bidegree (r, s) and ξ of (r ′, s′). Equation (8.42c) is
proved by separating d (ω ∧ ξ) = dω ∧ ξ + (−1)qω ∧ dξ , into forms of
bidegrees (r + r ′ + 1, s + s′) and (r + r ′, s + s′ + 1). �

Definition 8.3. Let M be a complex manifold. If ω ∈ �r,0(M) satisifies ∂ω = 0,
the r -form ω is called a holomorphic r-form.

 



Let us look at a holomorphic 0-form f ∈ �(U)� on a chart (U, ϕ). The
condition ∂ f = 0 becomes

∂ f

∂zλ
= 0 1 ≤ λ ≤ m = dim� M. (8.43)

A holomorphic 0-form is just a holomorphic function, f ∈ �(U)� . Let ω ∈
�r,0(M), where 1 ≤ r ≤ m = dim� M . On a chart (U, ϕ), we have

ω = 1

r !ωµ1...µr dzµ1 ∧ . . .∧ dzµr . (8.44)

Then ∂ω = 0 if and only if
∂

∂zλ
ωµ1...µr = 0

namely if ωµ1...µr are holomorphic functions on U .
Let dim� M = m. The sequence of � -linear maps

�r,0(M)
∂−→ �r,1(M)

∂−→ · · ·
· · · ∂−→ �r,m−1(M)

∂−→ �r,m(M) (8.45)

is called the Dolbeault complex. Note that ∂
2 = 0. The set of ∂-closed (r, s)-

forms (those ω ∈ �r,s(M) such that ∂ω = 0) is called the (r, s)-cocycle and is
denoted by Zr,s

∂
(M). The set of ∂-exact (r, s)-forms (those ω ∈ �r,s(M) such

that ω = ∂η for some η ∈ �r,s−1(M)) is called the (r, s)-coboundary and is
denoted by Br,s

∂
(M). The complex vector space

H r,s
∂
(M) ≡ Zr,s

∂
(M)/Br,s

∂
(M) (8.46)

is called the (r, s)th ∂-cohomology group, see section 8.6.

8.4 Hermitian manifolds and Hermitian differential geometry

Let M be a complex manifold with dim� M = m and let g be a Riemannian
metric of M as a differentiable manifold. Take Z = X+iY,W = U+iV ∈ Tp M�

and extend g so that

gp(Z ,W ) = gp(X,U)− gp(Y, V )+ i[gp(X, V )+ gp(Y,U)]. (8.47)

The components of g with respect to the bases (8.13) are

gµν(p) = gp(∂/∂zµ, ∂/∂zν) (8.48a)

gµν(p) = gp(∂/∂zµ, ∂/∂zν) (8.48b)

gµν(p) = gp(∂/∂zµ, ∂/∂zν) (8.48c)

gµν(p) = gp(∂/∂zµ, ∂/∂zν). (8.48d)

 



We easily verify that

gµν = gνµ, gµν = gνµ, gµν = gνµ, gµν = gµν, gµν = gµν.
(8.49)

8.4.1 The Hermitian metric

If a Riemannian metric g of a complex manifold M satisfies

gp(Jp X, JpY ) = gp(X,Y ) (8.50)

at each point p ∈ M and for any X,Y ∈ Tp M , g is said to be a Hermitian metric.
The pair (M, g) is called a Hermitian manifold. The vector Jp X is orthogonal
to X with respect to a Hermitian metric,

gp(Jp X, X) = gp(J
2
p X, Jp X) = −gp(Jp X, X) = 0. (8.51)

Theorem 8.2. A complex manifold always admits a Hermitian metric.

Proof. Let g be any Riemannian metric of a complex manifold M . Define a new
metric ĝ by

ĝp(X,Y ) ≡ 1
2 [gp(X,Y )+ gp(Jp X, JpY )]. (8.52)

Clearly ĝp(Jp X, JpY ) = ĝp(X,Y ). Moreover, ĝ is positive definite provided
that g is. Hence, ĝ is a Hermitian metric on M . �

Let g be a Hermitian metric on a complex manifold M . From (8.50), we find
that

gµν = g

(
∂

∂zµ
,
∂

∂zν

)
= g

(
J
∂

∂zµ
, J

∂

∂zν

)
= −g

(
∂

∂zµ
,
∂

∂zν

)
= −gµν

hence gµν = 0. We also find that gµν = 0. Thus, the Hermitian metric g takes
the form

g = gµνdzµ ⊗ dzν + gµνdzµ ⊗ dzν. (8.53)

[Remark: Take X,Y ∈ Tp M+. Define an inner product h p in Tp M+ by

h p(X,Y ) ≡ gp(X,Y ). (8.54)

It is easy to see that h p is a positive-definite Hermitian form in Tp M+. In fact,

h(X,Y ) = g(X,Y ) = g(X ,Y ) = h(Y, X)

and h(X, X) = g(X, X) = g(X1, X1)+ g(X2, X2) ≥ 0 for X = X1 + iX2. This
is why a metric g satisfying (8.50) is called Hermitian.]

 



8.4.2 Kähler form

Let (M, g) be a Hermitian manifold. Define a tensor field � whose action on
X,Y ∈ Tp M is

�p(X,Y ) = gp(Jp X,Y ) X,Y ∈ Tp M. (8.55)

Note that � is anti-symmetric, �(X,Y ) = g(J X,Y ) = g(J 2 X, JY ) =
−g(JY, X) = −�(Y, X). Hence, � defines a two-form called the Kähler form
of a Hermitian metric g. Observe that � is invariant under the action of J ,

�(J X, JY ) = g(J 2 X, JY ) = g(J 3X, J 2Y ) = �(X,Y ). (8.56)

If the domain is extended from Tp M to Tp M� , � is a two-form of bidegree
(1, 1). Indeed, for the metric (8.53), it is found that

�

(
∂

∂zµ
,
∂

∂zν

)
= g

(
J
∂

∂zµ
,
∂

∂zν

)
= igµν = 0.

We also have

�

(
∂

∂zµ
,
∂

∂zν

)
= 0, �

(
∂

∂zµ
,
∂

∂zν

)
= igµν = −�

(
∂

∂zν
,
∂

∂zµ

)
.

Thus, the components of � are

�µν = �µν = 0 �µν = −�νµ = igµν. (8.57)

We may write

� = igµν dzµ ⊗ dzν − igνµ dzν ⊗ dzµ = igµν dzµ ∧ dzν. (8.58)

� is also written as
� = −Jµν dzµ ∧ dzν (8.59)

where Jµν = gµλ Jλν = −igµν . � is a real form;

� = −igµν dzµ ∧ dzν = igνµ dzν ∧ dzµ = �. (8.60)

Making use of the Kähler form, we show that any Hermitian manifold, and
hence any complex manifold, is orientable. We first note that we may choose an
orthonormal basis {ê1, J ê1, . . . , êm, J êm}. In fact, if g(ê1, ê1) = 1, it follows
that g(J ê1, J ê1) = g(ê1, ê1) = 1 and g(ê1, J ê1) = −g(J ê1, ê1) = 0. Thus ê1
and J ê1 form an orthonormal basis of a two-dimensional subspace. Now take ê2
which is orthonormal to ê1 and J ê1 and form the subspace {ê2, J ê2}. Repeating
this procedure we obtain an orthonormal basis {ê1, J ê1, . . . , êm, J êm}.
Lemma 8.1. Let � be the Kähler form of a Hermitian manifold with dim� M =
m. Then

� ∧ . . . ∧�︸ ︷︷ ︸
m

is a nowhere vanishing 2m-form.

 



Proof. For the previous orthonormal basis, we have

�(êi , J ê j ) = g(J êi , J ê j ) = δi j �(êi , ê j ) = �(J êi , J ê j ) = 0.

Then it follows that

� ∧ . . .∧�︸ ︷︷ ︸
m

(ê1, J ê1, . . . , êm, J êm)

=
∑

P

�(êP(1), J êP(1)) . . .�(êP(m), J êP(m))

= m!�(ê1, J ê1) . . .�(êm, J êm) = m!
where P is an element of the permutation group of m objects. This shows that
� ∧ . . .∧� cannot vanish at any point. �

Since the real 2m-form�∧ . . .∧� vanishes nowhere, it serves as a volume
element. Thus, we obtain the following theorem.

Theorem 8.3. A complex manifold is orientable.

8.4.3 Covariant derivatives

Let (M, g) be a Hermitian manifold. We define a connection which is compatible
with the complex structure. It is natural to assume that a holomorphic vector
V ∈ Tp M+ parallel transported to another point q is, again, a holomorphic vector
Ṽ (q) ∈ Tq M+. We show later that the almost complex structure is covariantly
conserved under this requirement. Let {zµ} and {zµ+�zµ} be the coordinates of
p and q , respectively, and let V = V µ∂/∂zµ|p and Ṽ (q) = Ṽ µ(z+�z)∂/∂zµ|q .
We assume that (cf (7.9))

Ṽ µ(z +�z) = V µ(z)− V λ(z)�µνλ(z)�zν. (8.61)

Then the basis vectors satisfy (cf (7.14))

∇µ ∂

∂zν
= �λµν(z) ∂

∂zλ
. (8.62a)

Since ∂/∂zµ is a conjugate vector field of ∂/∂zµ, we have

∇µ ∂

∂zν
= �λµν ∂

∂zλ
(8.62b)

where �λµν = �λµν . �λµν and �λµν are the only non-vanishing components of
the connection coefficients. Note that ∇µ∂/∂zν = ∇µ∂/∂zν = 0. For the dual
basis, non-vanishing covariant derivatives are

∇µ dzν = −�νµλ dzλ ∇µ dzν = −�νµλ zλ. (8.63)

 



The covariant derivative of X+ = Xµ∂/∂zµ ∈ �(M)+ is

∇µX+ = (∂µXλ + Xν�λµν)
∂

∂zλ
(8.64)

where ∂µ ≡ ∂/∂zµ. For X− = Xµ∂/∂zµ ∈ �(M)−, we have

∇µX− = ∂µXλ
∂

∂zλ
(8.65)

since �λµν = �λµν = 0. As far as anti-holomorphic vectors are concerned, ∇µ
works as the ordinary derivative ∂µ. Similarly, we have

∇µX+ = ∂µXλ
∂

∂zλ
(8.66)

∇µX− = (∂µXλ + Xν�λµ ν)
∂

∂zλ
. (8.67)

It is easy to generalize this to an arbitrary tensor field. For example, if t =
tµνλ dzµ ⊗ dxν ⊗ ∂/∂zλ, we have

(∇κ t)µν
λ = ∂κ tµν

λ − tξν
λ�ξ κµ − tµξ

λ�ξ κν

(∇κ t)µν
λ = ∂κ tµν

λ + tµν
ξ�λκξ .

We require the metric compatibility as in section 7.2. We demand that
∇κgµν = ∇κgµν = 0. In components, we have

∂κgµν − gλν�
λ
κµ = 0 ∂κgµν − gµλ�

λ
κ µ = 0. (8.68)

The connection coefficients are easily read off:

�λκµ = gνλ∂κgµν �λκ ν = gλµ∂κgµν (8.69)

where {gνλ} is the inverse matrix of gµν ; gµλgλν = δµν , gνλgλµ = δνµ. A metric-
compatible connection for which �(mixed indices) = 0 is called the Hermitian
connection. By construction, this is unique and given by (8.69).

Theorem 8.4. The almost complex structure J is covariantly constant with respect
to the Hermitian connection,

(∇κ J )ν
µ = (∇κ J )ν

µ = (∇κ J )ν
µ = (∇κ J )ν

µ = 0. (8.70)

Proof. We prove the first equality. From (8.22), we find

(∇κ J )ν
µ = ∂κ iδνµ − iδξµ�ξ κν + iδνξ�µκξ = 0.

Other equalities follow from similar calculations. �

 



8.4.4 Torsion and curvature

The torsion tensor T and the Riemann curvature tensor R are defined by

T (X,Y ) = ∇X Y −∇Y X − [X,Y ] (8.71)

R(X,Y )Z = ∇X∇Y Z −∇Y∇X Z −∇[X,Y ]Z . (8.72)

We find that

T

(
∂

∂zµ
,
∂

∂zν

)
= (�λµν − �λνµ) ∂

∂zλ

T

(
∂

∂zµ
,
∂

∂zν

)
= T

(
∂

∂zµ
,
∂

∂zν

)
= 0

T

(
∂

∂zµ
,
∂

∂zν

)
= (�λµν − �λνµ) ∂

∂zλ
.

The non-vanishing components are

T λµν = �λµν − �λνµ = gξλ(∂µgνξ − ∂νgµξ ) (8.73a)

T λµν =�λµν − �λνµ = gλξ
(
∂µgνξ − ∂νgµξ

)
. (8.73b)

As for the Riemann tensor, we find, for example, that

Rκ λµν = ∂µ�κνλ − ∂ν�κµλ + �ηνλ�κµη − �ηµλ�κνη.
If (8.69) is substituted, we find that

Rκλµν = ∂µgξκ∂νgλξ + gξκ∂µ∂νgλξ − ∂νgξκ∂µgλξ − gξκ∂µ∂νgλξ

+ gξη∂νgλξg
ζκ∂µgηζ − gξη∂µgλξgζκ∂νgηζ = 0

where use has been made of the identity gζκ∂µgηζ = −gηζ ∂µgζκ etc. In general,
we find that

Rκ λAB = RκλAB = R A
Bκλ = R A

Bκλ = 0 (8.74)

where A and B are any (holomorphic or anti-holomorphic) indices. As a result,
we are left only with the components Rκ λµν , Rκ λµν , Rκ λµν and Rκ λµν . Note that
we have a trivial symmetry Rκ λµν = −Rκλνµ. So the independent components
are reduced to Rκ λµν and Rκλµν = Rκ λµν . We find that

Rκ λµν = ∂µ�κνλ = ∂µ(gξκ∂νgλξ ) (8.75a)

Rκ λµν = ∂µ�κνλ = ∂µ(gκξ ∂νgξλ). (8.75b)

 



Exercise 8.7. Show that

Rκλµν ≡ gκξ Rξ λµν = ∂µ∂νgλκ − gηξ ∂µgκξ ∂νgλη (8.76a)

Rκλµν ≡ gκξ Rξ λµν = ∂µ∂νgλκ − gηξ ∂µgκξ ∂νgλη (8.76b)

Rκλµν ≡ gκξ Rξ λµν = −Rκλνµ (8.76c)

Rκλµν ≡ gκξ Rξ λµν = −Rκλνµ. (8.76d)

Verify the symmetries

Rκλµν = −Rλκµν Rκλµν = −Rλκµν. (8.77)

Let us contract the indices of the Riemann tensor as

�µν ≡ Rκ κµν = −∂ν(gκξ ∂µgκξ ) = −∂ν∂µ log G (8.78)

where G ≡ det(gµν) = √
g. To obtain the last equality, we used an identity

δG = Ggµνδgµν ; see (7.204). We define the Ricci form by

� ≡ i�µν dzµ ∧ dzν = i∂∂ log G. (8.79)

� is a real form; � = −i∂∂ log G = −i∂∂ log G = �. From the identity
∂∂ = − 1

2 d (∂ − ∂), we find � is closed; d� ∝ d2 (∂ − ∂) log G = 0. However,
this does not imply that� is exact. In fact, G is not a scalar and (∂−∂) log G is not
defined globally. � defines a non-trivial element c1(M) ≡ [�/2π] ∈ H 2(M;�)
called the first Chern class. We discuss this further in section 11.2.

Proposition 8.2. The first Chern class c1(M) is invariant under a smooth change
of the metric g → g + δg.

Proof. It follows from (7.204) that δ log G = gµνδgµν. Then

δ� = δi∂∂ log G = i∂∂gµνδgµν = − 1
2 d (∂ − ∂)igµνδgµν.

Since gµνδgµν is a scalar, ω ≡ − 1
2 (∂ − ∂)gµνδgµν is a well-defined one-form on

M . Thus, δ� = dω is an exact two-form and [�] = [�+ δ�], namely c1(M) is
left invariant under g → g + δg. �

8.5 Kähler manifolds and Kähler differential geometry

8.5.1 Definitions

Definition 8.4. A Kähler manifold is a Hermitian manifold (M, g) whose Kähler
form � is closed: d� = 0. The metric g is called the Kähler metric of M .
[Warning: Not all complex manifolds admit Kähler metrics.]

 



Theorem 8.5. A Hermitian manifold (M, g) is a Kähler manifold if and only if
the almost complex structure J satisfies

∇µ J = 0 (8.80)

where ∇µ is the Levi-Civita connection associated with g.

Proof. We first note that for any r -form ω, dω is written as

dω = ∇ω ≡ 1

r !∇µων1...νr dxµ ∧ dxν1 ∧ . . . ∧ dxνr . (8.81)

[For example,

∇� = 1
2∇λ�µνdxλ ∧ dxµ ∧ dxν

= 1
2 (∂λ�µν − �κλµ�κν − �κλν�µκ) dxλ ∧ dxµ ∧ dxν

= 1
2∂λ�µνdxλ ∧ dxµ ∧ dxν = d�

since � is symmetric.] Now we prove that ∇µ J = 0 if and only if ∇µ� = 0. We
verify the following equalities:

(∇Z�)(X,Y ) = ∇Z [�(X,Y )] −�(∇Z X,Y )−�(X,∇Z Y )

= ∇Z [g(J X,Y )] − g(J∇Z X,Y )− g(J X,∇ZY )

= (∇Z g)(J X,Y )+ g(∇Z J X,Y )− g(J∇Z X,Y )

= g(∇Z J X − J∇Z X,Y ) = g((∇Z J )X,Y )

where ∇Z g = 0 has been used. Since this is true for any X,Y, Z , it follows that
∇Z� = 0 if and only if ∇Z J = 0. �

Theorems 8.4 and 8.5 show that the Riemann structure is compatible with
the Hermitian structure in the Kähler manifold.

Let g be a Kähler metric. Since d� = 0, we have

(∂ + ∂)igµν dzµ ∧ dzν

= i∂λgµν dzλ ∧ dzµ ∧ dzν + i∂λgµν dzλ ∧ dzµ ∧ dzν

= 1
2 i(∂λgµν − ∂µgλν) dzλ ∧ dzµ ∧ dzν

+ 1
2 i(∂λgµν − ∂νgµλ) dzλ ∧ dzµ ∧ dzν = 0

from which we find

∂gµν
∂zλ

= ∂gλν
∂zµ

∂gµν
∂zλ

= ∂gµλ
∂zν

. (8.82)

 



Suppose that a Hermitian metric g is given on a chart Ui by

gµν = ∂µ∂ν
i (8.83)

where 
i ∈ �(Ui). Clearly this metric satisfies the condition (8.82), hence it is
Kähler. Conversely, it can be shown that any Kähler metric is locally expressed
as (8.83). The function 
i is called the Kähler potential of a Kähler metric. It
follows that � = i∂∂
i on Ui .

Let (Ui , ϕi ) and (U j , ϕ j ) be overlapping charts. On Ui ∩U j , we have

∂

∂zµ
∂

∂zν

i dzµ ⊗ dzν = ∂

∂wα

∂

∂wβ

 j dwα ⊗ dwβ

where z = ϕi (p) and w = ϕ j (p). It then follows that

∂wα

∂zµ
∂wβ

∂zν
∂

∂wα

∂

∂wβ

 j = ∂

∂zµ
∂

∂zν

i . (8.84)

This is satisfied if and only if 
 j (w,w) = 
i (z, z) + φi j (z)+ ψi j (z) where φi j

(ψi j ) is holomorphic (anti-holomorphic) in z.

Exercise 8.8. Let M be a compact Kähler manifold without a boundary. Show
that

�m ≡ � ∧ . . . ∧�︸ ︷︷ ︸
m

is closed but not exact where m = dim� M [Hint: Use Stokes’ theorem.] Thus,
the 2mth Betti number cannot vanish, b2m ≥ 1. We will see later that b2p ≥ 1 for
1 ≤ p ≤ m.

Example 8.6. Let M = � m = {(z1, . . . , zm)}. � m is identified with �2m by the
identification zµ→ xµ + iyµ. Let δ be the Euclidean metric of �2m ,

δ

(
∂

∂xµ
,
∂

∂xν

)
= δ

(
∂

∂yµ
,
∂

∂yν

)
= δµν

δ

(
∂

∂xµ
,
∂

∂yν

)
= 0.

(8.85a)

Noting that J∂/∂xµ = ∂/∂yµ and J∂/∂yµ = −∂/∂xµ, we find that δ is a
Hermitian metric. In complex coordinates, we have

δ

(
∂

∂zµ
,
∂

∂zν

)
= δ

(
∂

∂zµ
,
∂

∂zν

)
= 0

δ

(
∂

∂zµ
,
∂

∂zν

)
= δ

(
∂

∂zµ
,
∂

∂zν

)
= 1

2
δµν.

(8.85b)

 



The Kähler form is given by

� = i

2

m∑
µ=1

dzµ ∧ dzµ = i

2

m∑
µ=1

dxµ ∧ dyµ. (8.86)

Clearly, d� = 0 and we find that the Euclidean metric δ of �2m is a Kähler metric
of � m . The Kähler potential is


 = 1
2

∑
zµzµ. (8.87)

The Kähler manifold � m is called the complex Euclid space.

Example 8.7. Any orientable complex manifold M with dim� M = 1 is Kähler.
Take a Hermitian metric g whose Kähler form is �. Since� is a real two-form, a
three-form d� has to vanish on M . One-dimensional compact orientable complex
manifolds are known as Riemann surfaces.

Example 8.8. A complex projective space � Pm is a Kähler manifold. Let
(Uα, ϕα) be a chart whose inhomogeneous coordinates are ϕα(p) = ξν(α), ν �= α
(see example 8.3). It is convenient to introduce a tidier notation {ζ ν(α)|1 ≤ ν ≤
m} by

ξν(α) = ζ ν(α) (ν ≤ α − 1) ξν+1
(α) = ζ ν(α) (ν ≥ α). (8.88)

{ζ ν(α)} is just a renaming of {ξν(α)}. Define a positive-definite function


α(p) ≡
m∑
ν=1

|ζ ν(α)(p)|2 + 1 =
m+1∑
ν=1

∣∣∣∣ zν

zα

∣∣∣∣2 . (8.89)

At a point p ∈ Uα ∩Uβ , 
α(p) and 
β(p) are related as


α(p) =
∣∣∣∣ zβ

zα

∣∣∣∣2
β(p). (8.90)

Then it follows that

log
α = log
β + log
zβ

zα
+ log

zβ

zα
. (8.91)

Since zβ/zα is a holomorphic function, we have ∂ log zβ/zα = 0. Also

∂ log zβ/zα = ∂ log zβ/zα = 0.

Then it follows that
∂∂ log
α = ∂∂ log
β . (8.92)

 



A closed two-form� is locally defined by

� ≡ i∂∂ log
α. (8.93)

There exists a Hermitian metric whose Kähler form is �. Take X,Y ∈
Tp� Pn and define g : Tp� Pn ⊗ Tp� Pn → � by g(X,Y ) = �(X, JY ). To
prove that g is a Hermitian metric, we have to show that g satisfies (8.50) and is
positive definite. The Hermiticity is obvious since g(J X, JY ) = −�(J X,Y ) =
�(Y, J X) = g(X,Y ). Next, we show that g is positive definite. On a chart
(Uα, ϕα), we obtain

� = i
∂2 log


∂ζµ∂ζ
ν dζµ ∧ dζ

ν
(8.94)

where we have dropped the subscript (α) to simplify the notation. If we substitute
the expression (8.89) for 
 on Uα, we have

� = i
∑
µ,ν

δµν(
∑ |ζ λ|2 + 1)− ζµζ ν
(
∑ |ζ λ|2 + 1)2

dζµ ∧ dζ
ν
. (8.95)

Let X be a real vector, X = Xµ∂/∂ζµ + X
µ
∂/∂ζ

µ
and J X = iXµ∂/∂ζµ −

iX
µ
∂/∂ζ

µ
. Then

g(X, X) = �(X, J X) = 2
∑
µ,ν

δµν(
∑ |ζ λ|2 + 1)− ζµζ ν
(
∑ |ζ λ|2 + 1)2

XµX
ν

= 2

[∑
µ

|Xµ|2
(∑

λ

|ζ λ|2 + 1

)
−

∣∣∣∣∑
µ

Xµζµ
∣∣∣∣2](∑

λ

|ζ λ|2 + 1

)−2

.

From the Schwarz inequality
∑
µ

|Xµ|2 ·
∑
λ

|ζ λ|2 ≥
∑
µ

|Xµζµ|2, we find the

metric g is positive definite. This metric is called the Fubini–Study metric of
� Pn .

A few useful facts are:

(a) S2 is the only sphere which admits a complex structure. Since S2 	 � P1 , it
is a Kähler manifold.

(b) A product of two odd-dimensional spheres S2m+1 × S2n+1 always admits a
complex structure. This complex structure does not admit a Kähler metric.

(c) Any complex submanifold of a Kähler manifold is Kähler.

8.5.2 Kähler geometry

A Kähler metric g is characterized by (8.82):

∂gµν
∂zλ

= ∂gλν
∂zµ

∂gµν
∂zλ

= ∂gµλ
∂zν

.

 



This ensures that the Kähler metric is torsion free:

T λµν = gξλ(∂µgνξ − ∂νgµξ ) = 0 (8.96a)

T λµν = gλξ (∂µgνξ − ∂νgµξ ) = 0. (8.96b)

In this sense, the Kähler metric defines a connection which is very similar to the
Levi-Civita connection. Now the Riemann tensor has an extra symmetry

Rκ λµν = −∂ν(gξκ∂µgλξ ) = −∂ν(gξκ∂λgµξ ) = Rκµλν (8.97)

as well as those obtained from (8.97) by known symmetry operations,

Rκ λµν = Rκµλν, Rκλµν = Rκ νµλ, Rκ λµν = Rκνµλ. (8.98)

The Ricci form � is defined as before,

� = −i∂ν∂µ log G dzµ ∧ dzν .

Because of (8.97), the components of the Ricci form agree with Ricµν ; �µν ≡
Rκ κµν = Rκµκν = Ricµν . If Ric = � = 0, the Kähler metric is said to be Ricci
flat.

Theorem 8.6. Let (M, g) be a Kähler manifold. If M admits a Ricci flat metric h,
then its first Chern class must vanish.

Proof. By assumption, � = 0 for the metric h. As was shown in the previous
section, �(g) − �(h) = �(g) = dω. Hence, c1(M) computed from g agrees
with that computed from h and hence vanishes. �

A compact Kähler manifold with vanishing first Chern class is called a
Calabi–Yau manifold. Calabi (1957) conjectured that if c1(M) = 0, the Kähler
manifold M admits a Ricci-flat metric. This is proved by Yau (1977). Calabi–Yau
manifolds with dim� M = 3 have been proposed as candidates for superstring
compactification (see Horowitz (1986) and Candelas (1988)).

8.5.3 The holonomy group of Kähler manifolds

Before we close this section, we briefly look at the holonomy groups of Kähler
manifolds. Let (M, g) be a Hermitian manifold with dim� M = m. Take a
vector X ∈ Tp M+ and parallel transport it along a loop c at p. Then we end up
with a vector X ′ ∈ Tp M+ where X

′µ = Xµhνµ. Note that ∇ does not mix the
holomorphic indices with anti-holomorphic indices, hence X ′ has no components
in Tp M−. Moreover, ∇ preserves the length of a vector. These facts tell us that
(hµν(c)) is contained in U(m) ⊂ O(2m).

Theorem 8.7. If g is the Ricci-flat metric of an m-dimensional Calabi–Yau
maifold M , the holonomy group is contained in SU(m).

 



Figure 8.5. X ∈ Tp M+ is parallel transported along pqrs and comes back as a vector
X ′ ∈ Tp M+.

Proof. Our proof is sketchy. If X = Xµ∂/∂zµ ∈ Tp M+ is parallel transported
along the small parallelogram in figure 8.5 back to p, we have X ′ ∈ Tp M+ whose
components are (cf (7.44))

X
′µ = Xµ + Xν Rµνκλε

κδ
λ

(8.99)

from which we find
hµ
ν = δµν + Rνµκλε

κδ
λ
. (8.100)

U(m) is decomposed as U(m) = SU(m)×U(1) in the vicinity of the unit element.
In particular, the Lie algebra �(m) = Te(U(m)) is separated into

�(m) = ��(m)⊕ �(1). (8.101)

��(m) is the traceless part of �(m) while �(1) contains the trace. Since the present
metric is Ricci flat, the �(1) part vanishes,

Rκ κµνε
µδ
ν = �µνε

µδ
ν = 0.

This shows that the holonomy group is contained in SU(m). [Remark: Strictly
speaking, we have only shown that the restricted holonomy group is contained in
SU(m). This statement remains true even when M is multiply connected.] �

8.6 Harmonic forms and ∂-cohomology groups

The (r, s)th ∂-cohomology group is defined by

H r,s
∂
(M) ≡ Zr,s

∂
(M)/Br,s

∂
(M). (8.102)
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An element [ω] ∈ H r,s
∂
(M) is an equivalence class of ∂-closed forms of bidegree

(r, s) which differ from ω by a ∂-exact form,

[ω] = {η ∈ �r,s(M)|∂̄η = 0, ω − η = ∂ψ,ψ ∈ �r,s−1(M)}. (8.103)

Clearly H r,s
∂
(M) is a complex vector space. Similarly to the de Rham

cohomology groups, the ∂-cohomology groups of � m are trivial, that is, all the
closed (r, s)-forms are exact. The ∂-cohomology groups measure the topological
non-triviality of a complex manifold M .

8.6.1 The adjoint operators ∂† and ∂
†

Let M be a Hermitian manifold with dim� M = m. Define the inner product
between α, β ∈ �r,s(M) (0 ≤ r, s ≤ m) by

(α, β) ≡
∫

M
α ∧ ∗β (8.104)

where ∗ : �r,s(M)→ �m−r,m−s(M) is the Hodge ∗ defined by

∗β ≡ ∗β = ∗β (8.105)

where ∗β is computed according to (7.173) extended to �r+s(M)� . [Remark: ∗
maps an (r, s)-form to an (m− s,m− r)-form since it acts on a basis of �r,s(M),
up to an irrelevant factor, as

∗ dzµ1 ∧ . . . ∧ dzµr ∧ dzν1 ∧ . . . ∧ dzνs ∼ εµ1...µr
µr+1...µmε

ν1...νs
νs+1...νm

× dzµr+1 ∧ . . .∧ dzµm ∧ dzνs+1 ∧ . . . ∧ dzνm .

Note that the above ε-symbols are the only non-vanishing components in a
Hermitian manifold. Now it follows that ∗ : �r,s(M)→ �m−r,m−s(M).]

We define the adjoint operators ∂† and ∂
†

of ∂ and ∂ by

(α, ∂β) = (∂†α, β) (α, ∂β) = (∂†
α, β). (8.106)

The operators ∂† and ∂
†

change the bidegrees as ∂† : �r,s(M) → �r−1,s(M)

and ∂
† : �r,s(M) → �r,s−1(M). Clearly d† = ∂† + ∂†

. Noting that a
complex manifold M is even dimensional as a differentiable manifold, we have
(see (7.184a))

d† = − ∗ d ∗ . (8.107)

Proposition 8.3.

∂† = − ∗ ∂∗, ∂
† = − ∗ ∂ ∗ . (8.108)

 



Proof. Let ω ∈ �r−1,s(M) and ψ ∈ �r,s(M). If we note that ω ∧ ∗ψ ∈
�m−1,m(M) and hence ∂(ω ∧ ∗ψ) = 0, we find that

d (ω ∧ ∗ψ) = ∂(ω ∧ ∗ψ) = ∂ω ∧ ∗ψ + (−1)r+s−1ω ∧ ∂(∗ψ)
= ∂ω ∧ ∗ψ + (−1)r+s−1ω ∧ (−1)r+s+1∗ ∗∂(∗ψ)
= ∂ω ∧ ∗ψ + ω ∧ ∗∗∂∗ψ (8.109)

where use has been made of the facts ∂∗ψ ∈ �2m−r−s−1(M), ∗∗β = ∗ ∗ β and
(7.176a). If (8.109) is integrated over a compact complex manifold M with no
boundary, we have

0 = (∂ω,ψ) + (ω, ∗∂∗ψ).
The second term is

(ω, ∗∂∗ψ) = (ω, ∗∂ ∗ ψ) = (ω, ∗∂ ∗ ψ).
We finally find 0 = (∂ω,ψ) + (ω, ∗∂ ∗ ψ), namely ∂† = − ∗ ∂∗. The other

formula ∂
† = − ∗ ∂∗ follows similarly. �

As a corollary of proposition 8.3, we have

(∂†)2 = (∂†
)2 = 0. (8.110)

8.6.2 Laplacians and the Hodge theorem

Besides the usual Laplacian� = (dd†+d†d), we define other Laplacians�∂ and
�∂ on a Hermitian manifold,

�∂ ≡ (∂ + ∂†)2 = ∂∂† + ∂†∂ (8.111a)

�∂ ≡ (∂ + ∂†
)2 = ∂∂† + ∂†

∂. (8.111b)

An (r, s)-form ω which satisfies �∂ω = 0 (�∂ω = 0) is said to be ∂-harmonic

(∂-harmonic). If �∂ω = 0 (�∂ω = 0), ω satisfies ∂ω = ∂†ω = 0 (∂ω = ∂†
ω =

0).
We have the complex version of the Hodge decomposition. Let Harmr,s

∂
(M)

be the set of ∂-harmonic (r, s)-forms,

Harmr,s
∂
(M) ≡ {ω ∈ �r,s(M)|�∂ω = 0}. (8.112)

Theorem 8.8. (Hodge’s theorem) �r,s(M) has a unique orthogonal decomposi-
tion:

�r,s(M) = ∂�r,s−1(M)⊕ ∂†
�r,s+1(M)⊕ Harmr,s

∂
(M) (8.113a)
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namely an (r, s)-form ω is uniquely expressed as

ω = ∂α + ∂†
β + γ (8.113b)

where α ∈ �r,s−1(M), β ∈ �r,s+1(M) and γ ∈ Harmr,s
∂
(M).

The proof is found in lecture 22, Schwartz (1986), for example. If ω is ∂-

closed, we have ∂ω = ∂ ∂
†
β = 0. Then 0 = 〈β, ∂ ∂†

β〉 = 〈∂†
β, ∂

†
β〉 ≥ 0

implies ∂
†
β = 0. Thus, any closed (r, s)-form ω is written as ω = γ + ∂α,

α ∈ �r,s−1(M). This shows that H r,s
∂
(M) ⊂ Harmr,s

∂
(M). Note also that

Harmr,s
∂
(M) ⊂ Zr,s

∂
(M) since ∂γ = 0 for γ ∈ Harmr,s

∂
(M). Moreover,

Harmr,s
∂
(M) ∩ Br,s

∂
(M) = ∅ since Br,s

∂
(M) = ∂�r,s−1(M) is orthogonal to

Harmr,s
∂
(M). Then it follows that Harmr,s

∂
(M) ∼= H r,s

∂
(M). If P : �r,s(M) →

Harmr,s
∂
(M) denotes the projection operator to a harmonic (r, s)-form, [ω] ∈

H r,s
∂
(M) has a unique harmonic representative Pω ∈ Harmr,s

∂
(M).

8.6.3 Laplacians on a Kähler manifold

In a general Hermitian manifold, there exist no particular relationships among
the Laplacians �, �∂ and �∂ . However, if M is a Kähler manifold, they are
essentially the same. [Note that the Levi-Civita connection is compatible with the
Hermitian connection in a Kähler manifold.]

Theorem 8.9. Let M be a Kähler manifold. Then

� = 2�∂ = 2�∂. (8.114)

The proof requires some technicalities and we simply refer to Schwartz
(1986) and Goldberg (1962). This theorem puts constraints on the cohomology

groups of a Kähler manifold M . A form ω which satisfies ∂ω = ∂
†
ω = 0

also satisfies ∂ω = ∂†ω = 0. Let ω be a holomorphic p-form; ∂ω = 0.

Since ω contains no dzµ in its expansion, we have ∂
†
ω = 0, hence �∂ω =

(∂ ∂
† + ∂†

∂)ω = 0. According to theorem 8.9, we then have�ω = 0, that is any
holomorphic form is automatically harmonic with respect to the Kähler metric.
Conversely �ω = 0 implies ∂ω = 0, hence every harmonic form of bidegree
(p, 0) is holomorphic.

8.6.4 The Hodge numbers of Kähler manifolds

The complex dimension of H r,s
∂
(M) is called the Hodge number br,s . The

cohomology groups of a complex manifold are summarized by the Hodge

 



diamond,

bm,m

bm,m−1 bm−1,m

. . .

bm,0 bm−1,1 . . . b1,m−1 b0,m

. . .

b1,0 b0,1

b0,0


. (8.115)

These (m + 1)2 Hodge numbers are far from independent as we shall see later.

Theorem 8.10. Let M be a Kähler manifold with dim� M = m. Then the Hodge
numbers satisfy

(a) br,s = bs,r (8.116)

(b) br,s = bm−r,m−s . (8.117)

Proof. (a) If ω ∈ �r,s(M) is harmonic, it satisfies �∂ω = �∂ω = 0. Then the
(s, r)-form ω is also harmonic, �∂ω = 0 since �∂ω = �∂ω = �∂ω = 0 (note
that �∂ = �∂). Thus, for any harmonic form of bidegree (r, s), there exists a
harmonic form of bidegree (s, r) and vice versa. Thus, it follows that br,s = bs,r .
(b) Let ω ∈ �r,s(M) and ψ ∈ H m−r,m−s

∂
(M). Then ω ∧ ψ is a volume element

and it can be shown (Schwartz 1986) that
∫

M ω ∧ ψ defines a non-singular
map H r,s

∂
(M) × H m−r,m−s

∂
(M) → � , hence the duality between H r,s

∂
(M) and

H m−r,m−s
∂

(M). This shows that H r,s
∂
(M) is isomorphic to H m−r,m−s

∂
(M) as a

vector space and it follows that dim� H r,s
∂
(M) = dim� H m−r,m−s

∂
(M) hence

br,s = bm−r,m−s . �

Accordingly, the Hodge diamond of a Kähler manifold is symmetric about
the vertical and horizontal lines. These symmetries reduce the number of
independent Hodge numbers to ( 1

2 m + 1)2 if m is even and 1
4 (m + 1)(m + 3)

if m is odd.
In a general Hermitian manifold, there are no direct relations between the

Betti numbers and the Hodge numbers. If M is a Kähler manifold, however,
theorem 8.11 establishes close relationships between them.

Theorem 8.11. Let M be a Kähler manifold with dim� M = m and ∂M = ∅.
Then the Betti numbers b p (1 ≤ p ≤ 2m) satisfy the following conditions;

(a) b p =
∑

r+s=p

br,s (8.118)

(b) b2p−1 is even (1 ≤ p ≤ m) (8.119)

(c) b2p ≥ 1 (1 ≤ p ≤ m) (8.120)

 



Proof. (a) H r,s
∂
(M) is a complex vector space spanned by �∂ -harmonic (r, s)-

forms, H r,s
∂
(M) = {[ω]|ω ∈ �r,s(M),�∂ω = 0}. Note also that, H p(M)

is a real vector space spanned by �-harmonic p-forms, H p(M) = {[ω]|ω ∈
�p(M),�ω = 0}. Then the complexification of H p(M) is H p(M)� = {[ω]|ω ∈
�p(M)� ,�ω = 0}. Since M is Kähler, any form ω which satisfies�∂ω = 0 also
satsifies �ω = 0 and vice versa. Since

�p(M)� = ⊕r+s=p�
r,s(M)

we find that
H p(M)� = ⊕r+s=p H r,s(M).

Noting that dim� H p(M) = dim� H p(M)� , we obtain b p =∑
r+s=p br,s .

(b) From (a) and (8.116), it follows that

b2p−1 =
∑

r+s=2p−1

br,s = 2
∑

r+s=2p−1
r>s

br,s .

Thus, b2p−1 must be even.
(c) The crucial observation is that the Kähler form � is a closed real two-

form, d� = 0, and the real 2p-form

�p = � ∧ . . . ∧�︸ ︷︷ ︸
p

is also closed, d�p = 0. We show that �p is not exact. Suppose �p = dη for
some η ∈ �2p−1(M). Then �m = �m−p ∧�p = d (�m−p ∧ η). It follows from
Stokes’ theorem that∫

M
�m =

∫
M

d(�m−p ∧ η) =
∫
∂M
�m−p ∧ η = 0.

Since the LHS is the volume of M , this is in contradiction. Thus, there is at least
one non-trivial element of H 2p(M) and we have proved that b2p ≥ 1. �

If a Kähler manifold is Ricci flat, there exists an extra relationship among
the Hodge numbers, which further reduces the independent Hodge numbers, see
Horowitz (1986) and Candelas (1988).

8.7 Almost complex manifolds

This and the next sections deal with spaces which are closely related to complex
manifolds. These are somewhat specialized topics and may be omitted on a first
reading.

 



8.7.1 Definitions

There are some differentiable manifolds which carry a similar structure to
complex manifolds. To study these manifolds, we somewhat relax the condition
(8.16) and require a weaker condition here.

Definition 8.5. Let M be a differentiable manifold. The pair (M, J ), or simply
M , is called an almost complex manifold if there exists a tensor field J of type
(1, 1) such that at each point p of M , J 2

p = −idTp M . The tensor field J is also
called the almost complex structure.

Since J 2
p = −idTp M , Jp has eigenvalues ±i. If there are m + i, then there

must be an equal number of −i, hence Jp is a 2m × 2m matrix and J 2
p = −I2m .

Thus, M is an even-dimensional manifold. Note that not all even-dimensional
manifolds are almost complex manifolds. For example, S4 is not an almost
complex manifold (Steenrod 1951). Note also that we now require a weaker
condition J 2

p = −I2m . Of course, the tensor Jp defined by (8.16) satisfies

J 2
p = −I2m , hence a complex manifold is an almost complex manifold. There

are almost complex manifolds which are not complex manifolds. For example, it
is known that S6 admits an almost complex structure, although it is not a complex
manifold (Fröhlicher 1955).

Let us complexify a tangent space of an almost complex manifold (M, J ).
Given a linear transformation Jp at Tp M such that J 2

p = −I2m , we extend Jp to a

� -linear map defined on Tp M� . Jp defined on Tp M� also satisfies J 2
p = −I2m ,

J 2
p(X + iY ) = J 2

p X + iJ 2
pY = −X + i(−Y ) = −(X + iY )

where X,Y ∈ Tp M . Let us divide Tp M� into two disjoint vector subspaces,
according to the eigenvalue of Jp ,

Tp M� = Tp M+ ⊕ Tp M− (8.121)

where
Tp M± = {Z ∈ Tp M� |Jp Z = ±iZ}. (8.122)

Any vector V ∈ Tp M� is written as V = W1 + W 2, where W1,W2 ∈ Tp M+.
Note that JpV = iW1 − iW 2. At this stage the reader might have noticed that we
can follow the classification scheme of vectors and vector fields developed for the
complex manifolds in section 8.2. In fact, the only difference is that on a complex
manifold the almost complex structure is explicitly given by (8.18), while on
an almost complex manifold, it is required to satisfy the less strict condition
J 2

p = −I2m . To classify the complexified tangent spaces and complexified vector

spaces, we only need the latter condition. Accordingly, we separate Tp M� into
Tp M± and �(M)� into �(M)±, although there does not necessarily exist a basis

 



of Tp M+ of the form {∂/∂zµ}. For example, we may still define the projection
operators

	± ≡ 1
2 (idTp M ∓ iJp) : Tp M� → Tp M±. (8.123)

We call a vector in Tp M+ (Tp M−) a holomorphic (anti-holomorphic) vector and
a vector field in �(M)+ (�(M)−) a holomorphic (anti-holomorphic) vector field.

Definition 8.6. Let (M, J ) be an almost complex manifold. lf the Lie bracket of
any holomorphic vector fields X,Y ∈ �+(M) is again a holomorphic vector field,
[X,Y ] ∈ �+(M), the almost complex structure J is said to be integrable.

Let (M, J ) be an almost complex manifold. Define the Nijenhuis tensor
field N : �(M)× �(M)→ �(M) by

N(X,Y ) ≡ [X,Y ] + J [J X,Y ] + J [X, JY ] − [J X, JY ]. (8.124)

Given a basis {eµ = ∂/∂xµ} and the dual basis {dxµ}, the almost complex
structure is expressed as J = Jµν dxµ ⊗ ∂/∂xν . The component expression
of N is

N(X,Y ) = (Xν∂νYµ − Y ν∂νXµ)eµ

+ Jλ
µ{JκνXκ∂νY

λ − Y ν∂ν(Jκ
λXκ )}eµ

+ Jλ
µ{Xν∂ν(JκλY κ )− Jκ

νY κ∂νXλ}eµ
− {JκνXκ∂ν(Jλ

µY λ)− Jκ
νY κ∂ν(Jλ

µXλ)}eµ
= XκY ν[−Jλ

µ(∂ν Jκ
λ)+ Jλ

µ(∂κ Jν
λ)

− Jκ
λ(∂λ Jν

µ)+ Jν
λ(∂λ Jκ

µ)]eµ. (8.125)

Thus, N is indeed linear in X and Y and hence a tensor. If J is a complex
structure, J is given by (8.18) and the Nijenhuis tensor field trivially vanishes.

Theorem 8.12. An almost complex structure J on a manifold M is integrable if
and only if N(A, B) = 0 for any A, B ∈ �(M).

Proof. Let Z = X + iY , W = U + iV ∈ �(M)� . We extend the Nijenhuis tensor
field so that its action on vector fields in �(M)� is given by

N(Z ,W ) = [Z ,W ] + J [J Z ,W ] + J [Z , J W ] − [J Z , J W ]
= {N(X,U) − N(Y, V )} + i{N(X, V )+ N(Y,U)}. (8.126)

Suppose that N(A, B) = 0 for any A, B ∈ �(M). From (8.126), it turns
out that N(Z ,W ) = 0 for Z ,W ∈ �� (M). Let Z ,W ∈ �+(M) ⊂ �(M)� .
Since J Z = iZ and J W = iW , we have N(Z ,W ) = 2{[Z ,W ] + iJ [Z ,W ]}. By
assumption, N(Z ,W ) = 0 and we find [Z ,W ] = −iJ [Z ,W ] or J [Z ,W ] =

 



i[Z ,W ], that is, [Z ,W ] ∈ �+(M). Thus, the almost complex structure is
integrable.

Conversely, suppose that J is integrable. Since �� (M) is a direct sum of
�+(M) and �−(M), we can separate Z ,W ∈ �� (M) as Z = Z+ + Z− and
W = W+ + W−. Then

N(Z ,W ) = N(Z+,W+)+ N(Z+,W−)+ N(Z−,W+)+ N(Z−,W−).

Since J Z± = ±iZ± and J W± = ±iW±, it is easy to see that N(Z+,W−) =
N(Z−,W+) = 0. We also have

N(Z+,W+) = [Z+,W+] + J [iZ+,W+] + J [Z+, iW+] − [iZ+, iW+]
= 2[Z+,W+] − 2[Z+,W+] = 0

since J [Z+,W+] = i[Z+,W+]. Similarly, N(Z−,W−) vanishes and we have
shown that N(Z ,W ) = 0 for any Z ,W ∈ �� (M). In particular, it should vanish
for Z ,W ∈ �(M). �

If M is a complex manifold, the complex structure J is a constant tensor
field and the Nijenhuis tensor field vanishes. What about the converse? We now
state an important (and difficult to prove) theorem.

Theorem 8.13. (Newlander and Nirenberg 1957) Let (M, J ) be a 2m-dimensional
almost complex manifold. If J is integrable, the manifold M is a complex
manifold with the almost complex structure J .

In summary we have:

Integrable almost
complex structure

= Vanishing Nijenhuis
tensor field

= Complex manifold.

8.8 Orbifolds

Let M be a manifold and let G be a discrete group which acts on M . Then the
quotient space � ≡ M/G is called an orbifold. As we will see later there are
fixed points in M , which do not transform under the action of G. These points
are singular and the orbifold is not a manifold in general. Thus, even though we
start with a simple manifold M , the orbifold M/G may have quite a complicated
topology.

8.8.1 One-dimensional examples

To obtain a concrete idea, let us consider a simple example. Take M = �2 which
is to be identified with the complex plane � . Let us take G = �3 and identify
the points z, e2π i/3z and e4π i/3z. The orbifold M/G consists of a third of the

 



Figure 8.6. The orbifold � /�3 is a third of the complex plane. The edges of the orbifold
are identified as shown in the figure. V becomes a vector Ṽ after parallel transportation
along C . The angle between V and Ṽ is 2π/3.

complex plane and after the identification of the edges we end up with a cone,
see figure 8.6. It is interesting to see what the holonomy group of this orbifold
is. We use the flat connection induced by the Euclidean metric of � . Then, after
the parallel transport of a vector V along the loop C (this is indeed a loop!), we
obtain a vector Ṽ which is different from V after the identification. Observe that
the angle between V and Ṽ is 2π/3. It is easy to verify that the holomony group
is �3. Since the holonomy is trivial for the loop C0 which does not encircle the
origin, we find that the curvature is singular at the origin (recall that the curvature
measures the non-triviality of the holonomy, see section 7.3). In general the fixed
points (the origin in the present case) are singular points of the curvature. Note,
however, that � /�3 is a manifold since it has an open covering homeomorphic to
�2 .

A less trivial example is obtained by taking the torus as the manifold. We
identify the points z and z + m + neiπ/3 (m, n ∈ �) in the complex plane; see
figure 8.7(a). If we identify the edges of the parallelogram OPQR, we have the
torus T 2. Let �3 act on T 2 as α : z 
→ e2π i/3z. We find that there are three
inequivalent fixed points z = (n/√3)eπ i/6 where n = 0, 1 and 2. This orbifold
� = � /�3 consists of two triangles surrounding a hollow; see figure 8.7(b). If
the flat connection induced by the flat metric of the torus is employed to define the
parallel transport of vectors, we find that the holonomy around each fixed point is
�3.

 



Figure 8.7. Under the action of �3, points of the torus T 2 are identified. The shaded area
is the orbifold � = T 2/�3. If the edges of the orbifold are identified, we end up with the
object in figure 8.7(b), which is homeomorphic to the sphere S2.

Figure 8.8. The conical singularity. The origin does not look like �n or � n .

8.8.2 Three-dimensional examples

Orbifolds with three complex dimensions have been proposed as candidates for
superstring compactification. The detailed treatment of this subject is outside the
scope of this book and the reader should consult Dixson et al (1985, 1986) and
Green et al (1987).

Let T = � 3/L be a three-dimensional complex torus, where L is a lattice
in � 3 . For definiteness, let (z1, z2, z3) be the coordinates of � 3 and identify zi

and zi + m + neπ i/3. Under this identification, T is identified with a product of
three tori, T = T1 × T2 × T3. T admits, as before, the action of �3 defined

 



by α : zi 
→ e2π i/3zi . If each zi takes one of the values 0, (1/
√

3)eiπ/6,
(2/
√

3)eπ i/6, the action of α leaves the point (zi ) invariant. Thus, there are
33 = 27 fixed points in the orbifold. In the present case, the fixed point is a
conical singularity (figure 8.8) and the orbifold cannot be a manifold. [Remarks:
The appearance of the conical singularity can be understood more easily from a
simpler example. Let (x, y) ∈ � 2 and let �2 act on � 2 as (x, y) 
→ ±(x, y).
Then the orbifold � = � 2/�2 has a conical singularity at the origin. In fact, let
[(x, y)] → (x2, xy, y2) ≡ (X,Y, Z) be an embedding of � in � 3 . Note that X,Y
and Z satisfy a relation Y 2 = X Z . If X,Y and Z are thought of as real variables,
this is simply the equation of a cone.]

 



9

FIBRE BUNDLES

A manifold is a topological space which looks locally like �m , but not necessarily
so globally. By introducing a chart, we give a local Euclidean structure to a
manifold, which enables us to use the conventional calculus of several variables.
A fibre bundle is, so to speak, a topological space which looks locally like a direct
product of two topological spaces. Many theories in physics, such as general
relativity and gauge theories, are described naturally in terms of fibre bundles.

Relevant references are Choquet-Bruhat et al (1982), Eguchi et al (1980) and
Nash and Sen (1983). A complete analysis is found in Kobayashi and Nomizu
(1963, 1969) and Steenrod (1951).

9.1 Tangent bundles

For clarification, we begin our exposition with a motivating example. A tangent
bundle T M over an m-dimensional manifold M is a collection of all the tangent
spaces of M:

T M ≡
⋃
p∈M

Tp M. (9.1)

The manifold M over which T M is defined is called the base space. Let {Ui } be
an open covering of M . If xµ = ϕi (p) is the coordinate on Ui , an element of

T Ui ≡
⋃

p∈Ui

Tp M

is specified by a point p ∈ M and a vector V = Vµ(p)(∂/∂xµ)|p ∈ Tp M .
Noting that Ui is homeomorphic to an open subset ϕ(Ui ) of �m and each
Tp M is homeomorphic to �m , we find that T Ui is identified with a direct
product �m × �m (figure 9.1). If (p, V ) ∈ T Ui , the identification is given by
(p, V ) 
→ (xµ(p), V µ(p)). T Ui is a 2m-dimensional differentiable manifold.
What is more, T Ui is decomposed into a direct product Ui × �m . If we pick up
a point u of T Ui , we can systematically decompose the information u contains
into a point p ∈ M and a vector V ∈ Tp M . Thus, we are naturally led to the
concept of projection π : T Ui → Ui (figure 9.1). For any point u ∈ T Ui , π(u)
is a point p ∈ Ui at which the vector is defined. The information about the vector

 



Figure 9.1. A local piece T Ui 	 �
m × �

m of a tangent bundle T M . The projection π
projects a vector V ∈ Tp M to p.

is completely lost under the projection. Observe that π−1(p) = Tp M . In the
context of the theory of fibre bundles, Tp M is called the fibre at p.

It is obvious by construction that if M = �m , the tangent bundle itself is
expressed as a direct product �m × �m . However, this is not always the case
and the non-trivial structure of the tangent bundle measures the topological non-
triviality of M . To see this, we have to look not only at a single chart Ui but also
at other charts. Let U j be a chart such that Ui ∩ U j �= ∅ and let yµ = ψ(p) be
the coordinates on U j . Take a vector V ∈ Tp M where p ∈ Ui ∩ U j . V has two
coordinate presentations,

V = Vµ
∂

∂xµ

∣∣∣∣
p
= Ṽ µ

∂

∂yµ

∣∣∣∣
p
. (9.2)

It is easy to see that they are related as

Ṽ ν = ∂yν

∂xµ
(p)Vµ. (9.3)

For {xµ} and {yν} to be good coordinate systems, the matrix (Gνµ) ≡ (∂yν/∂xµ)
must be non-singular: (Gνµ) ∈ GL(m,�). Thus, fibre coordinates are rotated
by an element of GL(m,�) whenever we change the coordinates. The group
GL(m,�) is called the structure group of T M . In this way fibres are
interwoven together to form a tangent bundle, which consequently may have quite
a complicated topological structure.

We note en passant that the projection π can be defined globally on M . It
is obvious that π(u) = p does not depend on a special coordinate chosen. Thus,
π : T M → M is defined globally with no reference to local charts.

 



Let X ∈ �(M) be a vector field on M . X assigns a vector X |p ∈ Tp M
at each point p ∈ M . From our viewpoint, X is looked upon as a smooth map
M → T M . This map is not utterly arbitrary since a point p must be mapped to
a point u ∈ T M such that π(u) = p. We define a section (or a cross section)
of T M as a smooth map s : M → T M such that π ◦ s = idM . If a section
si : Ui → T Ui is defined only on a chart Ui , it is called a local section.

9.2 Fibre bundles

The tangent bundle in the previous section is an example of a more general
framework called a fibre bundle. Definitions are now in order.

9.2.1 Definitions

Definition 9.1. A (differentiable) fibre bundle (E, π,M, F,G) consists of the
following elements:

(i) A differentiable manifold E called the total space.
(ii) A differentiable manifold M called the base space.
(iii) A differentiable manifold F called the fibre (or typical fibre).
(iv) A surjection π : E → M called the projection. The inverse image
π−1(p) = Fp ∼= F is called the fibre at p.

(v) A Lie group G called the structure group, which acts on F on the left.
(vi) A set of open covering {Ui } of M with a diffeomorphism φi : Ui × F →
π−1(Ui ) such that π ◦ φi (p, f ) = p. The map φi is called the local
trivialization since φ−1

i maps π−1(Ui ) onto the direct product Ui × F .
(vii) If we write φi (p, f ) = φi,p( f ), the map φi,p : F → Fp is a
diffeomorphism. On Ui ∩ U j �= ∅, we require that ti j (p) ≡ φ−1

i,p ◦ φ j,p :
F → F be an element of G. Then φi and φ j are related by a smooth map
ti j : Ui ∩U j → G as (figure 9.2)

φ j (p, f ) = φi (p, ti j (p) f ). (9.4)

The maps ti j are called the transition functions.

[Remarks: We often use a shorthand notation E
π−→ M or simply E to denote a

fibre bundle (E, π,M, F,G).
Strictly speaking, the definition of a fibre bundle should be independent of

the special covering {Ui } of M . In the mathematical literature, this definition
is employed to define a coordinate bundle (E, π,M, F,G, {Ui }, {φi }). Two
coordinate bundles (E, π,M, F,G, {Ui }, {φi }) and (E, π,M, F,G, {Vi }, {ψi })
are said to be equivalent if (E, π,M, F,G, {Ui } ∪ {Vj }, {φi } ∪ {ψ j }) is again a
coordinate bundle. A fibre bundle is defined as an equivalence class of coordinate
bundles. In practical applications in physics, however, we always employ a certain

 



Figure 9.2. On the overlap Ui ∩U j , two elements fi , f j ∈ F are assigned to u ∈ π−1(p),
p ∈ Ui ∩U j . They are related by ti j (p) as fi = ti j (p) f j .

definite covering and make no distinction between a coordinate bundle and a fibre
bundle.]

We need to clarify several points. Let us take a chart Ui of the base space M .
π−1(Ui ) is a direct product diffeomorphic to Ui × F , φ−1

i : π−1(Ui )→ Ui × F
being the diffeomorphism. If Ui ∩ U j �= ∅, we have two maps φi and φ j on
Ui ∩ U j . Let us take a point u such that π(u) = p ∈ Ui ∩ U j . We then assign
two elements of F , one by φ−1

i and the other by φ−1
j ,

φ−1
i (u) = (p, fi ), φ−1

j (u) = (p, f j ) (9.5)

see figure 9.2. There exists a map ti j : Ui ∩ U j → G which relates fi and f j as
fi = ti j (p) f j . This is also written as (9.4).

We require that the transition functions satisfy the following consistency
conditions:

tii (p) = identity map (p ∈ Ui ) (9.6a)

ti j (p) = t j i(p)
−1 (p ∈ Ui ∩U j ) (9.6b)

ti j (p) · t j k(p) = tik(p) (p ∈ Ui ∩U j ∩Uk). (9.6c)

Unless these conditions are satisfied, local pieces of a fibre bundle cannot be glued
together consistently. If all the transition functions can be taken to be identity
maps, the fibre bundle is called a trivial bundle. A trivial bundle is a direct
product M × F .

 



Given a fibre bundle E
π−→ M , the possible set of transition functions is

obviously far from unique. Let {Ui } be a covering of M and {φi } and {φ̃i } be two
sets of local trivializations giving rise to the same fibre bundle. The transition
functions of respective local trivializations are

ti j (p) = φ−1
i,p ◦ φ j,p (9.7a)

t̃i j (p) = φ̃−1
i,p ◦ φ̃ j,p. (9.7b)

Define a map gi (p) : F → F at each point p ∈ M by

gi(p) ≡ φ−1
i,p ◦ φ̃i,p . (9.8)

We require that gi (p) be a homeomorphism which belongs to G. This
requirement must certainly be fulfilled if {φi } and {φ̃i } describe the same fibre
bundle. It is easily seen from (9.7) and (9.8) that

t̃i j (p) = gi(p)
−1 ◦ ti j (p) ◦ g j (p). (9.9)

In the practical situations which we shall encounter later, ti j are the gauge
transformations required for pasting local charts together, while gi corresponds
to the gauge degrees of freedom within a chart Ui . If the bundle is trivial, we may
put all the transition functions to be identity maps. Then the most general form of
the transition functions is

ti j (p) = gi(p)
−1g j (p). (9.10)

Let E
π−→ M be a fibre bundle. A section (or a cross section) s : M → E

is a smooth map which satisfies π ◦ s = idM . Clearly, s(p) = s|p is an element of
Fp = π−1(p). The set of sections on M is denoted by �(M, F). If U ⊂ M , we
may talk of a local section which is defined only on U . �(U, F) denotes the set of
local sections on U . For example, �(M, T M) is identified with the set of vector
fields �(M). It should be noted that not all fibre bundles admit global sections.

Example 9.1. Let E be a fibre bundle E
π−→ S1 with a typical fibre F = [−1, 1].

Let U1 = (0, 2π) and U2 = (−π, π) be an open covering of S1 and let
A = (0, π) and B = (π, 2π) be the intersection U1 ∩ U2, see figure 9.3. The
local trivializations φ1 and φ2 are given by

φ−1
1 (u) = (θ, t), φ−1

2 (u) = (θ, t)
for θ ∈ A and t ∈ F . The transition function t12(θ), θ ∈ A, is the identity map
t12(θ) : t 
→ t . We have two choices on B;

(I) φ−1
1 (u) = (θ, t), φ−1

2 (u) = (θ, t)
(II) φ−1

1 (u) = (θ, t), φ−1
2 (u) = (θ,−t)

 



Figure 9.3. The base space S1 and two charts U1 and U2 over which the fibre bundle is
trivial.

Figure 9.4. Two fibre bundles over S1: (a) is the cylinder which is a trivial bundle S1× I ;
(b) is the Möbius strip.

For case (I), we find that t12(θ) is the identity map and two pieces of the local
bundles are glued together to form a cylinder (figure 9.4(a)). For case (II), we
have t12(θ) : t 
→ −t , θ ∈ B , and obtain the Möbius strip (figure 9.4(b)). Thus, a
cylinder has the trivial structure group G = {e} where e is the identity map of F
onto F while the Möbius strip has G = {e, g} where g : t 
→ −t . Since g2 = e,
we find G ∼= �2. A cylinder is a trivial bundle S1 × F , while the Möbius strip is
not. [Remark: The group �2 is not a Lie group. This is the only occasion we use
a discrete group for the structure group.]

9.2.2 Reconstruction of fibre bundles

What is the minimal information required to construct a fibre bundle? We now
show that for given M , {Ui }, ti j (p), F and G, we can reconstruct the fibre bundle
(E, π,M, F,G). This amounts to finding a unique π, E and φi from given data.
Let us define

X ≡
⋃

i

Ui × F. (9.11)

Introduce an equivalence relation ∼ between (p, f ) ∈ Ui × F and (q, f ′) ∈
U j × F by (p, f ) ∼ (q, f ′) if and only if p = q and f ′ = ti j (p) f . A fibre

 



Figure 9.5. A bundle map f̄ : E ′ → E induces a map f : M ′ → M .

bundle E is then defined as
E = X/ ∼ . (9.12)

Denote an element of E by [(p, f )]. The projection is given by

π : [(p, f )] 
→ p. (9.13)

The local trivialization φi : Ui × F → π−1(Ui ) is given by

φi : (p, f ) 
→ [(p, f )]. (9.14)

The reader should verify that E, π and {φi } thus defined satisfy all the axioms of
fibre bundles. Thus, the given data reconstruct a fibre bundle E uniquely.

This procedure may be employed to construct a new fibre bundle from an old
one. Let (E, π,M, F,G) be a fibre bundle. Associated with this bundle is a new
bundle whose base space is M , transition function ti j (p), structure group G and
fibre F ′ on which G acts. Examples of associated bundles will be given later.

9.2.3 Bundle maps

Let E
π−→ M and E ′ π ′−→ M ′ be fibre bundles. A smooth map f̄ : E ′ → E

is called a bundle map if it maps each fibre F ′p of E ′ onto Fq of E . Then f̄
naturally induces a smooth map f : M ′ → M such that f (p) = q (figure 9.5).
Observe that the diagram

E ′ f̄−→ E<π ′ <π
M ′ f−→ M

 u
f̄−→ f̄ (u)<π ′ <π

p
f−→ q

 (9.15)

commutes. [Caution: A smooth map f̄ : E ′ → E is not necessarily a bundle
map. It may map u, v ∈ F ′p of E ′ to f̄ (u) and f̄ (v) on different fibres of E so

that π( f̄ (u)) �= π( f̄ (v)).]

 



Figure 9.6. Given a fibre bundle E
π−→ M , a map f : N → M defines a pullback bundle

f ∗E over N .

9.2.4 Equivalent bundles

Two bundles E ′ π ′−→ M and E
π−→ M are equivalent if there exists a bundle map

f̄ : E ′ → E such that f : M → M is the identity map and f̄ is a diffeomorphism:

E ′ f̄−→ E<π ′ <π
M

idM−→ M.

(9.16)

This definition of equivalent bundles is in harmony with that given in the remarks
following definition 9.1.

9.2.5 Pullback bundles

Let E
π−→ M be a fibre bundle with typical fibre F . If a map f : N → M is

given, the pair (E, f ) defines a new fibre bundle over N with the same fibre F
(figure 9.6). Let f ∗E be a subspace of N × E , which consists of points (p, u)
such that f (p) = π(u). f ∗E ≡ {(p, u) ∈ N × E | f (p) = π(u)} is called the
pullback of E by f . The fibre Fp of f ∗E is just a copy of the fibre F f (p) of E . If

we define f ∗E
π1−→ N by π1 : (p, u) 
→ p and f ∗E

π2−→ E by (p, u) 
→ u, the
pullback f ∗E may be endowed with the structure of a fibre bundle and we obtain
the following bundle map,

f ∗E
π2−→ E<π1

<π
N

f−→ M


(p, u)

π2−→ u<π1

<π
p

f−→ f (p)

 . (9.17)

 



Figure 9.7. The transition function t∗i j of the pullback bundle f ∗E is a pullback of the
transition function ti j of E .

The commutativity of the diagram follows since π(π2(p, u)) = π(u) = f (p) =
f (π1(p, u)) for (p, u) ∈ f ∗E . In particular, if N = M and f = idM , then two
fibre bundles f ∗E and E are equivalent.

Let {Ui } be a covering of M and {φi } be local trivializations. { f −1(Ui )}
defines a covering of N such that f ∗E is locally trivial. Take u ∈ E such
that π(u) = f (p) ∈ Ui for some p ∈ N . If φ−1

i (u) = ( f (p), fi ) we find
ψ−1

i (p, u) = (p, fi ) where ψi is the local trivialization of f ∗E . The transition
function ti j at f (p) ∈ Ui ∩ U j maps f j to fi = ti j ( f (p)) f j . The corresponding
transition function t∗i j of f ∗E at p ∈ f −1(Ui )∩ f −1(U j ) also maps f j to fi ; see
figure 9.7. This shows that

t∗i j (p) = ti j ( f (p)). (9.18)

Example 9.2. Let M and N be differentiable manifolds with dim M = dim N =
m. Let f : N → M be a smooth map. The map f induces a map π2 : T N → T M
such that the following diagram commutes:

T N
π2−→ T M<π1

<π
N

f−→ M.

(9.19)

Let W = W ν∂/∂yν be a vector of Tp N and V = Vµ∂/∂xµ be the corresponding
vector of T f (p)M . If T N is a pullback bundle f ∗(T M), π2 maps Tp N to T f (p)M
diffeomorphically. This is possible if and only if π2 has the maximal rank m at

 



each point of T N . Let ϕ( f (p)) = ( f 1(y), . . . , f m(y)) be the coordinates of
f (p) in a chart (U, ϕ) of M , where y = ϕ(p) are the coordinates of p in a chart
(V , ψ) of N . The maximal rank condition is given by det(∂ f µ(y)/∂yν) �= 0 for
any p ∈ N .

9.2.6 Homotopy axiom

Let f and g be maps from M ′ to M . They are said to be homotopic if there
exists a smooth map F : M ′ × [0, 1] → M such that F(p, 0) = f (p) and
F(p, 1) = g(p) for any p ∈ M ′, see section 4.2.

Theorem 9.1. Let E
π−→ M be a fibre bundle with fibre F and let f and g be

homotopic maps from N to M . Then f ∗E and g∗E are equivalent bundles over
N .

The proof is found in Steenrod (1951). Let M be a manifold which is
contractible to a point. Then there exists a homotopy F : M × I → M such
that

F(p, 0) = p F(p, 1) = p0

where p0 ∈ M is a fixed point. Let E
π−→ M be a fibre bundle over M and

consider pullback bundles h∗0 E and h∗1 E , where ht (p) ≡ F(p, t). The fibre
bundle h∗1 E is a pullback of a fibre bundle {p0} × F and hence is a trivial bundle:
h∗1 E 	 M × F . However, h∗0 E = E since h0 is the identity map. According to
theorem 9.1, h∗0 E = E is equivalent to h∗1 E = M×F , hence E is a trivial bundle.
For example, the tangent bundle T�m is trivial. We have obtained the following
corollary.

Corollary 9.1. Let E
π−→ M be a fibre bundle. E is trivial if M is contractible to

a point.

9.3 Vector bundles

9.3.1 Definitions and examples

A vector bundle E
π−→ M is a fibre bundle whose fibre is a vector space. Let

F be �k and M be an m-dimensional manifold. It is common to call k the
fibre dimension and denote it by dim E , although the total space E is m + k
dimensional. The transition functions belong to GL(k,�), since it maps a vector
space onto another vector space of the same dimension isomorphically. If F is a
complex vector space � k , the structure group is GL(k, � ).

Example 9.3. A tangent bundle T M over an m-dimensional manifold M is a
vector bundle whose typical fibre is �m , see section 9.1. Let u be a point in
T M such that π(u) = p ∈ Ui ∩ U j , where {Ui } covers M . Let xµ = ϕi (p)

 



(yµ = ϕ j (p)) be the coordinate system of Ui (U j ). The vector V corresponding
to u is expressed as V = Vµ∂/∂xµ|p = Ṽ µ∂/∂yµ|p . The local trivializations are

φ−1
i (u) = (p, {Vµ}) φ−1

j (u) = (p, {Ṽ µ}). (9.20)

The fibre coordinates {V µ} and {Ṽ µ} are related as

Vµ = Gµν(p)Ṽ
ν (9.21)

where {Gµν(p)} = {(∂xµ/∂yν)p} ∈ GL(m,�). Hence, a tangent bundle
is (T M, π,M,�m ,GL(m,�)). Sections of T M are the vector fields on M;
�(M) = �(M, T M).

For concreteness let us work out T S2. Let the pair UN ≡ S2 − {South Pole}
and US ≡ S2 − {North Pole} be an open covering of S2. Let (X,Y ) and (U, V )
be the respective stereographic coordinates (example 8.1). They are related as

U = X/(X2 + Y 2) V = −Y/(X2 + Y 2). (9.22)

Take u ∈ T S2 such that π(u) = p ∈ UN ∩ US. Let φN and φS be the respective
local trivializations such that φ−1

N (u) = (p, VµN ) and φ−1
S (u) = (p, V µS ). The

transition function is

tSN(p) = ∂(U, V )

∂(X,Y )
= 1

r2

( − cos 2θ − sin 2θ
sin 2θ − cos 2θ

)
(9.23)

where we have put X = r cos θ and Y = r sin θ . The transition of the components
of the tangent vectors consists of a rotation of {Vµi } by an angle 2θ followed by a
rescaling. The reader should verify that tNS(p) = tSN(p)−1.

Example 9.4. Let M be an m-dimensional manifold embedded in �m+k . Let
Np M be the vector space which is normal to Tp M in �m+k , that is, U · V = 0
with respect to the Euclidean metric in �m+k for any U ∈ Np M and V ∈ Tp M .
The vector space Np M is isomorphic to �k . The normal bundle

N M ≡
⋃
p∈M

Np M

is a vector bundle with the typical fibre �k .
Consider the sphere S2 embedded in �3 . The normal bundle N S2 is

imagined as S2 whose surface is pierced perpendicularly by straight lines. N S2 is
a trivial bundle S2 × �.

A vector bundle whose fibre is one-dimensional (F = � or � ) is called a
line bundle. A cylinder S1×� is a trivial �-line bundle. A Möbius strip is also a
real line bundle. The structure group GL(1,�) = �−{0} or GL(1, � ) = � −{0}
is Abelian.

 



In the following, we often consider the canonical line bundle L. Recall that
an element p of � Pn is a complex line in � n+1 through the origin (example 8.3).
The fibre π−1(p) of L is defined to be the line in � n+1 which belongs to p. More
formally, let I n+1 ≡ � Pn × � n+1 be a trivial bundle over � Pn . If we write an
element of I n+1 as (p, v), p ∈ � Pn , v ∈ � n+1 , L is defined by

L ≡ {(p, v) ∈ I n+1|v = ap, a ∈ � }.
The projection is (p, v)

π→ p.

Example 9.5. The (trivial) complex line bundle L = �3 × � is associated with
the non-relativistic quantum mechanics defined on �3 . The wavefunctionψ(x) is
simply a section of L.

Let us consider a wavefunction ψ(x) in the field of a magnetic monopole
studied in section 1.9. When a monopole is at the origin, ψ(x) is defined on
�3 − {0} and we have a complex line bundle over �3 − {0}. If we are interested
only in the wavefunction on S2 surrounding the monopole, we have a complex
line bundle over S2. Note that S2 is a deformation retract of �3 − {0}.

9.3.2 Frames

On a tangent bundle T M , each fibre has a natural basis {∂/∂xµ} given by the
coordinate system xµ on a chart Ui . We may also employ the orthonormal basis
{êα} if M is endowed with a metric. ∂/∂xµ or {êα} is a vector field on Ui and the
set {∂/∂xµ} or {êα} forms linearly independent vector fields over Ui . It is always
possible to choose m linearly independent tangent vectors over Ui but it is not
necessarily the case throughout M . By definition, the components of the basis
vectors are

∂/∂xµ = (0, . . . , 0, 1, 0, . . . , 0)
µ

or
êα = (0, . . . , 0, 1, 0, . . . , 0).

α

These vectors define a (local) frame over Ui , see later.
Let E

π→ M be a vector bundle whose fibre is �k (or � k ). On a chart
Ui , the piece π−1(Ui ) is trivial, π−1(Ui ) ∼= Ui × �k , and we may choose k
linearly independent sections {e1(p), . . . , ek(p)} over Ui . These sections are said
to define a frame over Ui . Given a frame over Ui , we have a natural map Fp → F
(=�k or � k ) given by

V = V αeα(p) 
−→ {V α} ∈ F. (9.24)

The local trivialization is

φ−1
i (V ) = (p, {V α(p)}). (9.25)

 



By definition, we have

φi (p, {0, . . . , 0, 1, 0, . . . , 0})
α

= eα(p). (9.26)

Let Ui ∩ U j �= ∅ and consider the change of frames. We have a frame
{e1(p), . . . , ek(p)} on Ui and {ẽ1(p), . . . , ẽk(p)} on U j , where p ∈ Ui ∩ U j . A
vector ẽβ(p) is expressed as

ẽβ(p) = eα(p)G(p)
α
β (9.27)

where G(p)αβ ∈ GL(k,�) or GL(k, � ). Any vector V ∈ π−1(p) is expressed as

V = V αeα(p) = Ṽ α ẽα(p). (9.28)

From (9.27) and (9.28) we find that

Ṽ β = G−1(p)βαV α (9.29)

where G−1(p)βαG(p)αγ = G(p)βαG−1(p)αγ = δβγ . Thus, we find that the
transition function t j i(p) is given by a matrix G−1(p).

9.3.3 Cotangent bundles and dual bundles

The cotangent bundle T ∗M ≡ ⋃
p∈M T ∗p M is defined similarly to the tangent

bundle. On a chart Ui whose coordinates are xµ, the basis of T ∗p M is taken to be

{dx1, . . . , dxm}, which is dual to {∂/∂xµ}. Let yµ be the coordinates of U j such
that Ui ∩U j �= ∅. For p ∈ Ui ∩U j , we have the transformation,

dyµ = dxν
(
∂yµ

∂xν

)
p
. (9.30)

A one-form ω is expressed, in both coordinate systems, as

ω = ωµ dxµ = ω̃µ dyµ

from which we find that
ω̃µ = Gµ

ν(p)ων (9.31)

where Gµν(p) ≡ (∂xν/∂yµ)p corresponds to the transition function t j i(p). Note
that �(M, T ∗M) = �1(M).

This cotangent bundle is easily extended to more general cases. Given a
vector bundle E

π→ M with the fibre F , we may define its dual bundle E∗ π→ M .
The fibre F∗ of E∗ is the set of linear maps of F to � (or � ). Given a general basis
{eα(p)} of Fp , we define the dual basis {θα(p)} of F∗p by 〈θα(p), eβ(p)〉 = δαβ .

 



9.3.4 Sections of vector bundles

Let s and s′ be sections of a vector bundle E
π→ M . The vector addition and the

scalar multiplication are pointwisely defined as

(s + s′)(p) = s(p)+ s′(p) (9.32a)

( f s)(p) = f (p)s(p) (9.32b)

where p ∈ M and f ∈ �(M). The null vector 0 of each fibre is left invariant
under GL(k,�) (or GL(k, � )) and plays a distinguished role. Any vector bundle
E admits a global section called the null section s0 ∈ �(M, E) such that
φ−1

i (s0(p)) = (p, 0) in any local trivialization.
For example, let us consider sections of the canonical line bundle L over

� Pn . Let ξν(µ) be the inhomogeneous coordinates and {zν} be the homogeneous
coordinates on Uµ. The local section sµ over Uµ is of the form

sµ = {ξ0
(µ), . . . , 1, . . . , ξ

n
(µ)} ∈ � n+1 .

The transition from one coordinate system to the other is carried out by a scalar
multiplication: sν = (zµ/zν)sµ. Let L∗ be the dual bundle of L. Corresponding
to sµ, we may choose a dual section s∗µ such that s∗µ(sµ) = 1. From this, we find
that the transition function of s∗µ is a multiplication by zν/zµ, s∗ν = (zν/zµ)s∗µ.

A fibre metric hµν(p) is also defined pointwisely. Let s and s′ be sections
over Ui . The inner product between s and s′ at p is defined by

(s, s′)p = hµν(p)s
µ(p)s′ν(p) (9.33a)

if the fibre is �k . If the fibre is � k we define

(s, s′)p = hµν(p)sµ(p)s
′ν(p). (9.33b)

We have more about this subject in section 10.4.

9.3.5 The product bundle and Whitney sum bundle

Let E
π→ M and E ′ π

′→ M ′ be vector bundles with fibres F and F ′ respectively.
The product bundle

E × E ′ π×π ′−−−−→ M × M ′ (9.34)

is a fibre bundle whose typical fibre is F ⊕ F ′. [A vector in F ⊕ F ′ is written as(
V
W

)
where V ∈ F and W ∈ F ′.

Vector addition and scalar multiplication are defined by(
V
W

)
+

(
V ′
W ′

)
=

(
V + V ′
W +W ′

)

 



and

λ

(
V
W

)
=

(
λV
λW

)
.

Let {eα} and { fβ} be bases of F and F ′ respectively. Then {eα} ∪ { fβ} is a basis
of F ⊕ F ′ and we find that dim(F ⊕ F ′) = dim F + dim F ′.] If π(u) = p and
π ′(u′) = p′ the projection π × π ′ acts on (u, u′) ∈ E × E ′ as

π × π ′(u, u′) = (p, p′). (9.35)

The fibre at (p, p′) is Fp ⊕ F ′p′ . For example, if M = M1 × M2, we have
T M = T M1 × T M2.

Let E
π→ M and E ′ π ′→ M be vector bundles with fibres F and F ′

respectively. The Whitney sum bundle E ⊕ E ′ is a pullback bundle of E × E ′
by f : M → M × M defined by f (p) = (p, p),

E ⊕ E ′ π2−→ E × E ′<π1

<π×π ′
M

f−→ M × M.

(9.36)

Thus, E⊕E ′ = {(u, u′) ∈ E×E ′|π×π ′(u, u′) = (p, p)}. The fibre of a Whitney
sum bundle is F ⊕ F ′. (π × π ′)−1(p) is isomorphic to π−1(p) ⊕ π ′−1(p) =
Fp ⊕ F ′p . In short, E ⊕ E ′ is a bundle over M whose fibre at p is Fp ⊕ F ′p . Let

{Ui } be an open covering of M and {t E
i j } and {t E ′

i j } be the transition functions
of E and E ′ respectively. Then the transition function Ti j of E ⊕ E ′ is a
(dim F + dim F ′)× (dim F + dim F ′) matrix

Ti j (p) =
(

t E
i j (p) 0

0 t E ′
i j (p)

)
(9.37)

which acts on F ⊕ F ′ on the left.

Example 9.6. Let E = T S2 and E ′ = N S2 defined in �3 . Take u ∈ T S2 and
v ∈ N S2 whose local trivializations are φ−1

i (u) = (p, V ) and ψ−1
i (v) = (q,W ),

respectively, where p, q ∈ S2, V ∈ �2 and W ∈ �. If (u, v) is a point of the
product bundle E × E ′, we have a trivialization�i, j = φi × ψ j such that

�−1
i, j (u, v) = (p, q; V ,W ). (9.38a)

If, however, (u, v) ∈ E⊕ E ′, u and v satisfy the stronger condition π(u) = π ′(v)
(=p, say). Thus, we have

�−1
i (u, v) = (p; V ,W ). (9.38b)

The Whitney sum T S2 ⊕ N S2, S2 being embedded in �3 , is a trivial bundle over
S2, whose fibre is isomorphic to �3 .

 



9.3.6 Tensor product bundles

Let E
π−→ M and E ′ π ′−→ M be vector bundles over M . The tensor product

bundle E ⊗ E ′ is obtained by assigning the tensor product of fibres Fp ⊗ F ′p to
each point p ∈ M . If {eα} and { fβ} are bases of F and F ′, F ⊗ F ′ is spanned by
{eα ⊗ fβ} and, hence, dim(E ⊗ E ′) = dim E × dim E ′.

Let
⊗r E ≡ E ⊗ · · · ⊗ E be the tensor product bundle of r E . If {eα} is the

basis of the fibre F of E , the fibre of
⊗r E is spanned by {eα1 ⊗ · · ·⊗ eαr }. If we

define ∧ by
eα ∧ eβ ≡ eα ⊗ eβ − eβ ⊗ eα (9.39)

we have a bundle ∧r (E) of totally anti-symmetric tensors spanned by {eα1 ∧
. . . ∧ eαr }. In particular, �r (M), the space of r -forms on M , is identified with
�(M,r (T ∗M)).

Exercise 9.1. Let E1, E2 and E3 be vector bundles over M . Show that ⊗ is
distributive:

E1 ⊗ (E2 ⊕ E3) = (E1 ⊗ E2)⊕ (E1 ⊗ E3). (9.40)

Express the transition functions of E1 ⊗ (E2 ⊕ F3) in terms of those of E1, E2
and E3.

9.4 Principal bundles

9.4.1 Definitions

A principal bundle has a fibre F which is identical to the structure group G. A
principal bundle P

π−→ M is also denoted by P(M,G) and is often called a G
bundle over M .

The transition function acts on the fibre on the left as before. In addition, we
may also define the action of G on F on the right. Let φi : Ui × G → π−1(Ui )

be the local trivialization given by φ−1
i (u) = (p, gi), where u ∈ π−1(Ui ) and

p = π(u). The right action of G on π−1(Ui ) is defined by φ−1
i (ua) = (p, gia),

that is (figure 9.8),
ua = φi (p, gi a) (9.41)

for any a ∈ G and u ∈ π−1(p). Since the right action commutes with the
left action, this definition is independent of the local trivializations. In fact, if
p ∈ Ui ∩U j ,

ua = φ j (p, g j a) = φ j (p, t j i (p)gia) = φi (p, gi a).

Thus, the right multiplication is defined without reference to the local
trivializations. This is denoted by P × G → P or (u, a) 
→ ua. Note that
π(ua) = π(u). The right action of G on π−1(p) is transitive since G acts on G
transitively on the right and Fp = π−1(p) is diffeomorphic to G. Thus, for any

 



Figure 9.8. The right action of G on P.

u1, u2 ∈ π−1(p) there exists an element a of G such that u1 = u2a. Then, if
π(u) = p, we can construct the whole fibre as π−1(p) = {ua|a ∈ G}. The action
is also free; if ua = u for some u ∈ P , a must be the unit element e of G. In fact,
if u = φi (p, gi ), we have φi (p, gia) = φi (p, gi)a = ua = u = φi (p, gi). Since
φi is bijective, we must have gia = gi , that is, a = e.

Given a section s1(p) over Ui , we define a preferred local trivialization
φi : Ui × G → π−1(Ui ) as follows. For u ∈ π−1(p), p ∈ Ui , there is a unique
element gu ∈ G such that u = si (p)gu . Then we define φi by φ−1

i (u) = (p, gu).
In this local trivialization, the section si (p) is expressed as

si (p) = φi (p, e). (9.42)

This local trivialization is called the canonical local trivialization. By definition
φi (p, g) = φi (p, e)g = si (p)g. If p ∈ Ui ∩U j , two sections si (p) and s j (p) are
related by the transition function ti j (p) as follows

si (p) = φi (p, e) = φ j (p, t j i (p)e) = φ j (p, t j i(p))

= φ j (p, e)t j i(p) = s j (p)t j i(p). (9.43)

Example 9.7. Let P be a principal bundle with fibre U(1) = S1 and the base
space S2. This principal bundle represents the topological setting of the magnetic
monopole (section 1.9). Let {UN,US} be an open covering of S2, UN (US) being
the northern (southern) hemisphere. If we parametrize S2 by the usual polar
angles, we have

UN = {(θ, φ)|0 ≤ θ ≤ π/2+ ε, 0 ≤ φ < 2π}
US = {(θ, φ)|π/2− ε ≤ θ ≤ π, 0 ≤ φ < 2π}.

 



The intersection UN ∩ US is a strip which is essentially the equator. Let φN and
φS be the local trivializations such that

φ−1
N (u) = (p, eiαN) φ−1

S (u) = (p, eiαS) (9.44)

where p = π(u). Take a transition function tNS(p) of the form einφ where n
must be an integer so that tNS(p) may be uniquely defined on the equator. Since
tNS maps the equator S1 to U(1), this integer characterizes the homotopy group
π1(U(1)) = �. The fibre coordinates αN and αS are related on the equator as

eiαN = einφeiαS . (9.45)

If n = 0, the transition function is the unit element of U(1) and we have a
trivial bundle P0 = S2 × S1. If n �= 0, the U(1)-bundle Pn is twisted. It is
remarkable that the topological structure of a fibre bundle is characterized by an
integer. The integer characterizes how two local sections are pasted together at
the equator. Accordingly, the integer corresponds to the element of the homotopy
group π1(U(1)) = �.

Since U(1) is Abelian, the right action and the left action are equivalent.
Under the right action g = ei, we have

φ−1
N (ug) = (p, ei(αN+)) (9.46a)

φ−1
S (ug) = (p, ei(αS+)). (9.46b)

The right action corresponds to the U(1)-gauge transformation.

Example 9.8. If we identify all the infinite points of the Euclidean space �m , the
one-point compactification Sm = �m ∪ {∞} is obtained. If a trivial G bundle is
defined over �m we shall have a new G bundle over Sm after compactification,
which is not necessarily trivial. Let P be an SU(2) bundle over S4 obtained from
�4 by one-point compactification. This principal bundle represents an SU(2)
instanton (section 1.10). Introduce an open covering {UN,US} of S4,

UN = {(x, y, z, t)|x2 + y2 + z2 + t2 ≤ R2 + ε}
US = {(x, y, z, t)|R2 − ε ≤ x2 + y2 + z2 + t2}

where R is a positive constant and ε is an infinitesimal positive number. The
thin intersection UN ∩ US is essentially S3. Let tNS(p) be the transition function
defined at p ∈ UN ∩ US. Since tNS maps S3 to SU(2), it is classified by
π3(SU(2)) = �. The integer characterizing the bundle is called the instanton
number. If tNS(p) is taken to be the unit element e ∈ SU(2), we have a trivial
bundle P0 = S3×SU(2), which corresponds to the homotopy class 0. Non-trivial
bundles are obtained as follows. We first note that SU(2) ∼= S3 (example 4.12).
An element A ∈ SU(2) is written as

A =
(

u v

−v̄ ū

)

 



where |u|2 + |v|2 = 1. Separating u and v as u = t + iz and v = y + ix , we
find t2 + x2 + y2 + z2 = 1. Thus SU(2) is regarded as the unit sphere S3 and
π3(SU(2)) ∼= π3(S3) ∼= � classifies maps from S3 to SU(2) ∼= S3. The identity
map f : S3 → S3 ∼= SU(2) is

f (x, y, z, t) 
→
(

t + iz y + ix
−y + ix t − iz

)
= t I2 + i(xσx + yσy + zσz) (9.47)

where I2 is the 2 × 2 unit matrix and the σµ are the Pauli matrices. Let us take
a point p = (x, y, z, t) ∈ UN ∩ US. If R = (x2 + y2 + z2 + t2)1/2 denotes the
radial distance of p, the vector (x/R, y/R, z/R, t/R) has unit length. We assign
an element of SU(2) to the point p as

tNS(p) = 1

R

(
t I2 + i

∑
i

x iσi

)
. (9.48)

Let φN and φS be the local trivializations,

φ−1
N (u) = (p, gN) φ−1

S (u) = (p, gS) (9.49)

where p = π(u) and gN, gS ∈ SU(2). On UN ∩US, we have

gN = 1

R

(
t I2 + i

∑
i

x iσi

)
gS. (9.50)

While (t, x) scans S3 once, tNS(p) sweeps SU(2) once, hence this bundle
corresponds to the homotopy class 1 of π3(SU(2)). It is not difficult to see that
the transition function corresponding to the homotopy class n is given by

tNS(p) = 1

Rn

(
t1+ i

∑
i

x iσi

)n

. (9.51)

To continue our study of monopoles and instantons, we have to introduce
connections (the gauge potentials) on the fibre bundle. We will come back to
these topics in the next chapter.

Example 9.9. Hopf has shown that S3 is a U(1) bundle over S2. The unit three-
sphere embedded in �4 is expressed as

(x1)2 + (x2)2 + (x3)2 + (x4)2 = 1.

If we introduce z0 = x1 + ix2 and z1 = x3 + ix4, this becomes

|z0|2 + |z1|2 = 1. (9.52)

 



Figure 9.9. Stereographic coordinates of the sphere S2. (X,Y ) is defined with respect to
the projection from the North Pole while (U, V ) with respect to the projection from the
South Pole.

Let us parametrize S2 as

(ξ1)2 + (ξ2)2 + (ξ3)2 = 1.

The Hopf map π : S3 → S2 is defined by

ξ1 = 2(x1x3 + x2x4) (9.53a)

ξ2 = 2(x2x3 − x1x4) (9.53b)

ξ3 = (x1)2 + (x2)2 − (x3)2 − (x4)2. (9.53c)

It is easily verified that π maps S3 to S2 since

(ξ1)2 + (ξ2)2 + (ξ3)2 = [(x1)2 + (x2)2 + (x3)2 + (x4)2]2 = 1.

Let (X,Y ) be the stereographic projection coordinates of a point in the
southern hemisphere US of S2 from the North Pole. If we take a complex plane
which contains the equator of S2, Z = X + iY is within the circle of unit radius.
We found in example 8.1 that (figure 9.9)

Z = ξ1 + iξ2

1− ξ3 = x1 + ix2

x3 + ix4 =
z0

z1 (ξ ∈ US). (9.54a)

Observe that Z is invariant under

(z0, z1) 
→ (λz0, λz1)

where λ ∈ U(1). Since |λ| = 1, the point (λz0, λz1) is also in S3. The
stereographic coordinates (U, V ) of the northern hemisphere UN projected from
the South Pole are given by

W = U + iV = ξ1 − iξ2

1+ ξ3
= x3 + ix4

x1 + ix2
= z1

z0
(ξ ∈ UN). (9.54b)

 



Note that Z = 1/W on the equator UN ∩US.
The fibre bundle structure is given as follows. We first define the local

trivializations, φ−1
S : π−1(US)→ US × U(1) by

(z0, z1) 
→ (z0/z1, z1/|z1|) (9.55a)

and φ−1
N : π−1(UN)→ UN ×U(1) by

(z0, z1) 
→ (z1/z0, z0/|z0|). (9.55b)

Observe that these local trivializations are well defined on each chart. For
example, z0 �= 0 on UN, hence both z1/z0 = U + iV and z0/ |z0| are non-
singular. On the equator, ξ3 = 0, we have |z0| = |z1| = 1/

√
2. Accordingly, the

local trivializations on the equator are

φ−1
S : (z0, z1) 
→ (z0/z1,

√
2z1) (9.56a)

and
φ−1

N : (z0, z1) 
→ (z1/z0,
√

2z0). (9.56b)

The transition function on the equator is

tNS(ξ) =
√

2z0

√
2z1

= ξ1 + iξ2 ∈ U(1). (9.57)

If we circumnavigate the equator, tNS(ξ) traverses the unit circle in the complex
plane once, hence the U(1) bundle S3 π−→ S2 is characterized by the homotopy
class 1 of π1(U(1)) = �. Trautman (1977), Minami (1979) and Ryder (1980)
have pointed out that a magnetic monopole of unit strength is described by the
Hopf map S3 π−→ S2.

The Hopf map can be understood from a slightly different point of view. We
regard S3 as a complex one-sphere

S1
�
= {(z0, z1) ∈ � 2 ||z0|2 + |z1|2 = 1}.

Define a map π : S1
�
→ � P1 by

(z0, z1) 
→ [(z0, z1)] = {λ(z0, z1)|λ ∈ � − {0}}. (9.58)

Under this map, points of S3 of the form λ(z0, z1), |λ| = 1 are mapped to a single
point of � P1 = S2. This is the Hopf map π : S3 → S2 obtained earlier. This
is easily generalized to the case of the quaternion � . The quaternion algebra is
defined by the product table,

i2 = j2 = k2 = −1 i j = − j i = k

j k = −k j = i ki = −i k = j .

 



An arbitrary element of � is written as

q = t + ix + j y + kz.

Clearly the unit quaternion |q| = (t2 + x2 + y2 + z2)1/2 = 1 represents S3 ∼=
SU(2). The quaternion one-sphere is given by

S1
�
= {(q0, q1) ∈ � 2 ||q0|2 + |q1|2 = 1} (9.59)

which represents S7. The Hopf map, in this case, takes the form

π : S1
�
→ � P1 (9.60)

where � P1 is the quaternion projective space whose element is

[(q0, q1)] = {η(q0, q1) ∈ � 2 |η ∈ � − {0}}. (9.61)

Points of S7 with |η| = 1 are mapped under this map to a single point of
� P1 = S4 and we have the Hopf map

π : S7 → S4. (9.62)

The fibre is the unit quaternion S3 = SU(2). The transition function defined by
the Hopf map belongs to the class 1 of π3(SU(2)) ∼= �. An instanton of unit
strength is described in terms of this Hopf map.

Octonions define a Hopf map π : S15 → S8. This differs from other Hopf
maps in that the fibre S7 is not really a group. So far we have not found an
application of this map in physics.1

Example 9.10. Let H be a closed Lie subgroup of a Lie group G. We show
that G is a principal bundle with fibre H and base space M = G/H . Define
the right action of H on G by g 
→ ga, g ∈ G, a ∈ H . The right action is
differentiable since G is a Lie group. Define the projection π : G → M = G/H
by the map π : g 
→ [g] = {gh|h ∈ H }. Clearly, g, ga ∈ G are mapped to
the same point [g] hence π(g) = π(ga) (=[g]). To define local trivializations,
we need to define a map fi : G → H on each chart Ui . Let s be a local
section over Ui and g ∈ π−1([g]). Define fi by fi (g) = s([g])−1g. Since
s([g]) is a section at [g], it is expressed as ga for some a ∈ H and accordingly,
s([g])−1g = a−1g−1g = a−1 ∈ H . Then we define the local trivialization
φi : Ui × H → G by

φ−1
i (g) = ([g], fi (g)). (9.63)

It is easy to see that fi (ga) = fi (g)a (a ∈ H ) hence φ−1
i (ga) = (p, fi (g)a) is

satisfied. Useful examples are (see example 5.18)

O(n)/O(n − 1) = SO(n)/SO(n − 1) = Sn−1 (9.64)

U(n)/U(n − 1) = SU(n)/SU(n − 1) = S2n−1. (9.65)

1 Octonions are also known as Cayley numbers. The set of octonions is a vector space over � but
not a field. The product is neither commutative nor associative. See John C Baez, The Octonions
math.RA/0105155 for a recent review.

 



9.4.2 Associated bundles

Given a principal fibre bundle P(M,G), we may construct an associated fibre
bundle as follows. Let G act on a manifold F on the left. Define an action of
g ∈ G on P × F by

(u, f )→ (ug, g−1 f ) (9.66)

where u ∈ P and f ∈ F . Then the associated fibre bundle (E, π,M,G, F, P)
is an equivalence class P × F/G in which two points (u, f ) and (ug, g−1 f ) are
identified.

Let us consider the case in which F is a k-dimensional vector space V . Let ρ
be the k-dimensional representation of G. The associated vector bundle P×ρ V
is defined by identifying the points (u, v) and (ug, ρ(g)−1v) of P × V , where
u ∈ P, g ∈ G and v ∈ V . For example, associated with P(M,GL(k,�)) is a
vector bundle over M with fibre �k . The fibre bundle structure of an associated
vector bundle E = P ×ρ V is given as follows. The projection πE : E → M is
defined by πE (u, v) = π(u). This projection is well defined since π(u) = π(ug)
implies πE (ug, ρ(g)−1v) = π(ug) = πE (u, v). The local trivialization is given
by ψi : Ui × V → π−1

E (Ui ). The transition function of E is given by ρ(ti j (p))
where ti j (p) is that of P .

Conversely a vector bundle naturally induces a principal bundle associated
with it. Let E

π−→ M be a vector bundle with dim E = k (i.e. the fibre is
�k or � k ). Then E induces a principal bundle P(E) ≡ P(M,G) over M
by employing the same transition functions. The structure group G is either
GL(k,�) or GL(k, � ). Explicit construction of P(E) is carried out following
the reconstruction process described in section 9.1.

Example 9.11. Associated with a tangent bundle T M over an m-dimensional
manifold M is a principal bundle called the frame bundle L M ≡ ⋃

p∈M L p M
where L p M is the set of frames at p. We introduce coordinates xµ on a chart Ui .
The bundle Tp M has a natural basis {∂/∂xµ} on Ui . A frame u = {X1, . . . , Xm}
at p is expressed as

Xα = Xµα∂/∂xµ|p 1 ≤ α ≤ m (9.67)

where (Xµα) is an element GL(m,�) so that {Xα} are linearly independent. We
define the local trivialization φi : Ui × GL(m,�) → π−1(Ui ) by φ−1

i (u) =
(p, (Xµα)). The bundle structure of L M is defined as follows.

(i) If u = {X1, . . . , Xm} is a frame at p, we define πL : L M → M by
πL(u) = p.

(ii) The action of a = (ai
j ) ∈ GL(m,�) on the frame u = {X1, . . . , Xm} is

given by (u, a) 
→ ua, where ua is a new frame at p, defined by

Yβ = Xαaαβ. (9.68)

 



Conversely, given any frames {Xα} and {Yβ} there exists an element of
GL(m,�) such that (9.68) is satisfied. Thus, GL(m,�) acts on L M
transitively.

(iii) Let Ui and U j be overlapping charts with the coordinates xµ and yµ,
respectively. For p ∈ Ui ∩U j , we have

Xα = Xµα∂/∂xµ|p = X̃µα∂/∂yµ|p (9.69)

where (Xµα), (X̃
µ
α ) ∈ GL(m,�). Since Xµα = (∂xµ/∂yν)p X̃µα , we find

the transition function t L
i j (p) to be

t L
i j (p) = ((∂xµ/∂yν)p) ∈ GL(m,�). (9.70)

Accordingly, given T M , we have constructed a frame bundle L M with the
same transition functions.

In general relativity, the right action corresponds to the local Lorentz
transformation while the left action corresponds to the general coordinate
transformation. It turns out that the frame bundle is the most natural framework in
which to incorporate these transformations. If {Xα} is normalized by introducing
a metric, the matrix (Xµα) becomes the vierbein and the structure group reduces
to O(m); see section 7.8.

Example 9.12. A spinor field on M is a section of a spin bundle which we now
define. Since GL(k,�) has no spinor representation, we need to introduce an
orthonormal frame bundle whose structure group is SO(k). As we mentioned in
example 4.12, SPIN(k) is the universal covering group of SO(k). [To define a spin
bundle, we have to check whether the SO(k) bundle lifts to a SPIN(k) bundle over
M . The obstruction to this lifting is discussed in section 11.6.]

To be specific, let us consider a spin bundle associated with the four-
dimensional Lorentz frame bundle L M , where M is a four-dimensional Lorentz
manifold. We are interested in a frame with a definite spacetime orientation as
well as a time orientation. The structure group is then reduced to

O+↑ (3, 1) ≡ { ∈ O(3, 1)| det = +1,0
0 > 0}. (9.71)

The universal covering group of O+↑ (3, 1) is SL(2, � ), see example 5.16(c). The

homomorphism ϕ : SL(2, � ) → O+↑ (3, 1) is a 2 : 1 map with kerϕ = {I2,−I2}.
The Weyl spinor is a section of the fibre bundle (W, π,M, � 2 ,SL(2, � )). The
Dirac spinor is a section of

(D, π,M, � 4 ,SL(2, � ) ⊕ SL(2, � )). (9.72)

A section of W is a (1/2, 0) representation of O+↑ (3, 1) and a section of

(W̄ , π,M, � 2 ,SL(2, � )) is a (0, 1/2) representation, see Ramond (1989) for
example. A Dirac spinor belongs to (1/2, 0)⊕ (0, 1/2).

The general structure of the spin bundle will be worked out in section 11.6.

 



9.4.3 Triviality of bundles

A fibre bundle is trivial if it is expressed as a direct product of the base space and
the fibre. The following theorem gives the condition under which a fibre bundle
is trivial.

Theorem 9.2. A principal bundle is trivial if and only if it admits a global section.

Proof. Let (P, π,M,G) be a principal bundle over M and let s ∈ �(M, P)
be a global section. This section may be used to show that there exists a
homeomorphism between P and M × G. If a is an element of G, the product
s(p)a belongs to the fibre at p. Since the right action is transitive and free, any
element u ∈ P is uniquely written as s(p)a for some p ∈ M and a ∈ G. Define
a map� : P → M × G by

� : s(p)a 
→ (p, a). (9.73)

It is easily verified that � is indeed a homeomorphism and we have shown that P
is a trivial bundle M × G.

Conversely, suppose P ∼= M × G. Let φ : M × G → P be a trivialization.
Take a fixed element g ∈ G. Then sg : M → P defined by sg(p) = φ(p, g) is a
global section. �

Is there a corresponding theorem for vector bundles? We know that any
vector bundle admits a global null section. Thus, we cannot simply replace P by
E in theorem 9.2. Let us consider the associated principal bundle P(E) of E .
By definition, E and P(E) share the same set of transition functions. Since the
twisting of a bundle is described purely by the transition functions, we obtain the
following corollary.

Corollary 9.2. A vector bundle E is trivial if and only if its associated principal
bundle P(E) admits a global section.

Problems

9.1 Let L be the real line bundle over S1 (i.e. L is either the cylinder S1 × � or
the Möbius strip). Show that the Whitney sum L ⊕ L is a trivial bundle. Sketch
L ⊕ L to confirm the result.

9.2 Let �n be the volume element of Sn normalized as
∫

Sn �n = 1. Let
f : S2n−1 → Sn be a smooth map and consider the pullback f ∗�n .

(a) Show that f ∗�n is closed and written as dωn−1, where ωn−1 is an (n − 1)-
form on S2n−1.

(b) Show that the Hopf invariant

H ( f ) ≡
∫

S2n−1
ωn−1 ∧ dωn−1

 



is independent of the choice of ωn−1.
(c) Show that if f is homotopic to g, then H ( f ) = H (g).
(d) Show that H ( f ) = 0 if n is odd. [Hint: Use ωn−1 ∧ dωn−1 = 1

2 d(ωn−1 ∧
ωn−1).]

(e) Compute the Hopf invariant of the map π : S3 → S2 defined in example 9.9.

 



10

CONNECTIONS ON FIBRE BUNDLES

In chapter 7 we introduced connections in Riemannian manifolds which enable us
to compare vectors in different tangent spaces. In the present chapter connections
on fibre bundles are defined in an abstract though geometrical way.

We first define a connection on a principal bundle. Our abstract definition
is realized concretely by introducing the connection one-form whose local form
is well known to physicists as a gauge potential. The Yang–Mills field strength
is defined as the curvature associated with the connection. A connection on a
principal bundle naturally defines a covariant derivative in the associated vector
bundle. We reproduce the results obtained in chapter 7, applying our approach to
tangent bundles. We conclude this chapter with a few applications of connections
to physics: to gauge field theories and Berry’s phase. We follow the line of
Choquet-Bruhat et al (1982), Kobayashi (1984) and Nomizu (1981). Details will
be found in the classic books by Kobayashi and Nomizu (1963, 1969). See also
Daniel and Viallet (1980) for a quick review.

10.1 Connections on principal bundles

There are several equivalent definitions of a connection on a principal bundle.
Our approach is based on the separation of tangent space Tu P into ‘vertical’
and ‘horizontal’ subspaces. Although this approach seems to be abstract, it is
advantageous compared with other approaches in that it clarifies the geometrical
pictures involved and is defined independently of special local trivializations.
Connections are also defined as �-valued one-forms which satisfy certain axioms.
These definitions are shown to be equivalent.

We briefly summarize the basic facts on Lie groups and Lie algebras, since
we shall make extensive use of these (see section 5.6 for details). Let G be a
Lie group. The left action Lg and the right action Rg are defined by Lgh = gh
and Rgh = hg for g, h ∈ G. Lg induces a map Lg∗ : Th(G) → Tgh(G). A
left-invariant vector field X satisfies Lg∗X |h = X |gh . Left-invariant vector fields
form a Lie algebra of G, denoted by �. Since X ∈ � is specified by its value at the
unit element e, and vice versa, there exists a vector space isomorphism � ∼= TeG.
The Lie algebra � is closed under the Lie bracket, [Tα, Tβ ] = fαβγ Tγ where {Tα}
is the set of generators of �. fαβγ are called the structure constants. The adjoint
action ad : G → G is defined by adgh ≡ ghg−1. The tangent map of adg is

 



called the adjoint map and is denoted by Adg : Th(G)→ Tghg−1(G). If restricted

to Te(G) 	 �, Adg maps � onto itself; Adg : �→ � as A 
→ g Ag−1, A ∈ �.

10.1.1 Definitions

Let u be an element of a principal bundle P(M,G) and let G p be the fibre at
p = π(u). The vertical subspace Vu P is a subspace of Tu P which is tangent to
G p at u. [Warning: Tu P is the tangent space of P and should not be confused
with the tangent space Tp M of M .] Let us see how Vu P is constructed. Take an
element A of �. By the right action

Rexp(t A)u = u exp(t A)

a curve through u is defined in P . Since π(u) = π(u exp(t A)) = p, this curve
lies within G p . Define a vector A# ∈ Tu P by

A# f (u) = d

dt
f (u exp(t A))|t=0 (10.1)

where f : P → � is an arbitrary smooth function. The vector A# is tangent to
P at u, hence A# ∈ Vu P . In this way we define a vector A# at each point of P
and construct a vector field A#, called the fundamental vector field generated
by A. There is a vector space isomorphism � : � → Vu P given by A 
→ A#.
The horizontal subspace Hu P is a complement of Vu P in Tu P and is uniquely
specified if a connection is defined in P .

Exercise 10.1.

(a) Show that π∗X = 0 for X ∈ Vu P .
(b) Show that � preserves the Lie algebra structure:

[A#, B#] = [A, B]#. (10.2)

Definition 10.1. Let P(M,G) be a principal bundle. A connection on P is a
unique separation of the tangent space Tu P into the vertical subspace Vu P and
the horizontal subspace Hu P such that

(i) Tu P = Hu P ⊕ Vu P .
(ii) A smooth vector field X on P is separated into smooth vector fields
X H ∈ Hu P and X V ∈ Vu P as X = X H + X V .

(iii) Hug P = Rg∗Hu P for arbitrary u ∈ P and g ∈ G; see figure 10.1.

The condition (iii) states that horizontal subspaces Hu P and Hug P on
the same fibre are related by a linear map Rg∗ induced by the right action.
Accordingly, a subspace Hu P at u generates all the horizontal subspaces on the
same fibre. This condition ensures that if a point u is parallel transported, so is its
constant multiple ug, g ∈ G; see later. At this point, the reader might feel rather

 



Figure 10.1. The horizontal subspace Hug P is obtained from Hu P by the right action.

uneasy about our definition of a connection. At first sight, this definition seems
to have nothing to do with the gauge potential or the field strength. We clarify
these points after we introduce the connection one-form on P . We again stress
that our definition, which is based on the separation Tu P = Vu P⊕Hu P , is purely
geometrical and is defined independently of any extra information. Although the
connection becomes more tractable in the following, the geometrical picture and
its intrinsic nature are generally obscured.

10.1.2 The connection one-form

In practical computations, we need to separate Tu P into Vu P and Hu P in a
systematic way. This can be achieved by introducing a Lie-algebra-valued one-
form ω ∈ �⊗ T ∗P called the connection one-form.

Definition 10.2. A connection one-formω ∈ �⊗T ∗P is a projection of Tu P onto
the vertical component Vu P 	 �. The projection property is summarized by the
following requirements,

(i) ω(A#) = A A ∈ � (10.3a)

(ii) R∗gω = Adg−1ω (10.3b)

that is, for X ∈ Tu P ,

R∗gωug(X) = ωug(Rg∗X) = g−1ωu(X)g. (10.3b′)

Define the horizontal subspace Hu P by the kernel of ω,

Hu P ≡ {X ∈ Tu P|ω(X) = 0}. (10.4)

 



To show that this definition is consistent with definition 10.1, we prove the
following proposition.

Proposition 10.1. The horizontal subspaces (10.4) satisfy

Rg∗Hu P = Hug P. (10.5)

Proof. Fix a point u ∈ P and define Hu P by (10.4). Take X ∈ Hu P and construct
Rg∗X ∈ Tug P . We find

ω(Rg∗X) = R∗gω(X) = g−1ω(X)g = 0

since ω(X) = 0. Accordingly, Rg∗X ∈ Hug P . We note that Rg∗ is an invertible
linear map. Hence, any vector Y ∈ Hug P is expressed as Y = Rg∗X for some
X ∈ Hu P . This proves (10.5). �

We have shown that the definition of the connection one-formω is equivalent
to that of the connection, since ω separates Tu P into Hu P⊕Vu P in harmony with
the axioms of definition 10.1. The connection one-form ω defined here is known
as the Ehresmann connection in the literature.

10.1.3 The local connection form and gauge potential

Let {Ui } be an open covering of M and let σi be a local section defined on each
Ui . It is convenient to introduce a Lie-algebra-valued one-form�i on Ui , by

�i ≡ σ ∗i ω ∈ �⊗�1(Ui ). (10.6)

Conversely, given a Lie-algebra-valued one-form�i , on Ui , we can reconstruct a
connection one-form ω whose pullback by σ ∗i is �i .

Theorem 10.1. Given a �-valued one-form�i on Ui and a local section σi : Ui →
π−1(Ui ), there exists a connection one-form ω such that �i = σ ∗i ω.

Proof. Let us define a �-valued one-form ω on P by

ωi ≡ g−1
i π∗�i gi + g−1

i dP gi (10.7)

where dP is the exterior derivative on P and gi is the canonical local
trivialization defined by φ−1

i (u) = (p, gi) for u = σi (p)gi . We first show
that σ ∗i ωi = �i . For X ∈ Tp M , we have

σ ∗i ωi (X) = ωi (σi∗X) = π∗�i (σi∗X)+ dP gi(σi∗X)

= �i (π∗σi∗X)+ dP gi(σi∗X)

 



Figure 10.2. The canonical local trivialization defined by the local section σi over Ui .

where we have noted that σi∗X ∈ Tσi P and gi = e at σi , see figure 10.2. We
further note that π∗σi∗ = idTp(M) and dP gi (σi∗X) = 0 since g ≡ e along σi∗X .
Thus, we have obtained σ ∗i ωi (X) = �i (X).

Next we show that ωi satisfies the axioms of a connection one-form given in
definition 10.2.

(i) Let X = A# ∈ Vu P, A ∈ �. It follows from exercise 10.1(a) that
π∗X = 0. Now we have

ωi (A
#) = g−1

i dP gi (A
#) = gi(u)

−1 dg (u exp(t A))

dt

∣∣∣∣
t=0

= gi (u)
−1gi (u)

d exp(t A)

dt

∣∣∣∣
t=0
= A.

(ii) Take X ∈ Tu P and h ∈ G. We have

R∗hωi (X) = ωi (Rh∗X) = g−1
iuh�i (π∗Rh∗X)giuh + g−1

iuh dP giuh (Rh∗X).

Since giuh = giuh and π∗Rh∗X = π∗X (note that πRh = π), we have

R∗hωi (X) = h−1g−1
iu �i (π∗X)giuh + h−1g−1

iu dP giu (X)h

= h−1ωi (X)h

where we have noted that

g−1
iuh dP giuh (Rh∗X) = g−1

iuh
d

dt
giγ (t)h

∣∣∣∣
t=0

= h−1g−1
iu

d

dt
giγ (t)

∣∣∣∣
t=0

h = h−1g−1
iu dP giu (X)h.

 



Here γ (t) is a curve through u = γ (0), whose tangent vector at u is X .
Hence, the �-valued one-form ωi defined by (10.7) indeed satisfies �i =

σ ∗i ωi and the axioms of a connection one-form. �

For ω to be defined uniquely on P , i.e. for the separation Tu P = Hu P⊕Vu P
to be unique, we must have ωi = ω j on Ui ∩ U j . A unique one-form ω is then
defined throughout P by ω|Ui = ωi . To fulfil this condition, the local forms �i

have to satisfy a peculiar transformation property similar to that of the Christoffel
symbols. We first prove a technical lemma.

Lemma 10.1. Let P(M,G) be a principal bundle and σi (σ j ) be a local section
over Ui (U j ) such that Ui ∩ U j �= ∅. For X ∈ Tp M (p ∈ Ui ∩ U j ), σi∗X and
σ j∗X satisfy

σ j∗X = Rti j ∗(σi∗X)+ (t−1
i j dti j (X))

# (10.8)

where ti j : Ui ∩U j → G is the transition function.

Proof. Take a curve γ : [0, 1] → M such that γ (0) = p and γ̇ (0) = X . Since
σi (p) and σ j (p) are related by the transition function as σ j (p) = σi (p)ti j (p)
(see (9.43)), we have

σ j∗X = d

dt
σ j (γ (t))

∣∣∣∣
t=0
= d

dt
{σi (t)ti j (t)}

∣∣∣∣
t=0

= d

dt
σi (t) · ti j (p)+ σi (p) · d

dt
ti j (t)

∣∣∣∣
t=0

= Rti j ∗(σi∗X)+ σ j (p)ti j (p)
−1 d

dt
ti j (t)

∣∣∣∣
t=0

where σi (t) stands for σi (γ (t)) and we have assumed that G is a matrix group for
which Rg∗X = Xg. We note that

ti j (p)
−1 dti j (X) = ti j (p)

−1 d

dt
ti j (t)

∣∣∣∣
t=0

= d

dt
[ti j (p)

−1ti j (t)]
∣∣∣∣
t=0
∈ Te(G) ∼= �.

[Note that ti j (p)−1ti j (γ (t)) = e at t = 0.] This shows that the second term of
σ j∗X represents the vector field (t−1

i j dti j (X))# at σ j (p). �

The compatibility condition is easily obtained by applying the connection
one-form ω on (10.8). We find that

σ ∗j ω(X) = R∗ti j
ω(σi∗X)+ t−1

i j dti j (X)

= t−1
i j ω(σi∗X)ti j + t−1

i j dti j (X)

 



where the axioms of definition 10.2 have been used. Since this is true for any
X ∈ Tp M , this equation reduces to

� j = t−1
i j �i ti j + t−1

i j dti j . (10.9)

This is the compatibility condition we have been seeking.
Conversely, given an open covering {Ui }, the local sections {σi } and the

local forms {�i } which satisfy (10.9), we may construct the �-valued one-form ω
over P . Since a non-trivial principal bundle does not admit a global section, the
pullback �i = σ ∗i ω exists locally but not necessarily globally. In gauge theories,
�i is identified with the gauge potential (Yang–Mills potential). As we have
seen in the monopole case, the monopole field B = gr/r3 does not admit a
single gauge potential and we require at least two �i to describe this U(1) bundle
over S2.

Exercise 10.2. Let P(M,G) be a principal bundle over M and let U be a chart of
M . Take local sections σ1 and σ2 over U such that σ2(p) = σ1(p)g(p). Show
that the corresponding local forms �1 and �2 are related as

�2 =g−1
�1g + g−1 dg. (10.10a)

In components, this becomes

�2µ = g−1(p)�1µ(p)g(p)+ g−1(p)∂µg(p) (10.10b)

which is simply the gauge transformation defined in section 1.8.

Example 10.1. Let P be a U(1) bundle over M . Take overlapping charts Ui and
U j . Let �i (� j ) be a local connection form on Ui (U j ). The transition function
ti j : Ui ∩U j → U(1) is given by

ti j (p) = exp[i(p)] (p) ∈ �. (10.11)

�i and � j are related as

� j (p) =ti j (p)
−1
�i (p)ti j (p)+ ti j (p)

−1 dti j (p)

=�i (p)+ id(p). (10.12a)

In components, we have the familiar expression

� jµ = �iµ + i∂µ. (10.12b)

Our connection �µ differs from the standard vector potential Aµ by the Lie
algebra factor: �µ = iAµ.

Here we note again that ω is defined globally over the bundle P(M,G).
Although there are many connection one-forms on P(M,G), they share the same
global information about the bundle. In contrast, an individual local piece (gauge
potential) �i is associated with the trivial bundle π−1(Ui ) and cannot have any
global information on P . It is ω or, equivalently, the total of {�i } satisfying
the compatibility condition (10.9), which carries the global information about the
bundle.

 



10.1.4 Horizontal lift and parallel transport

Parallel transport of a vector has been defined in chapter 7 as transport without
change. Parallel transport of an element of a principal bundle along a curve in M
is provided by the ‘horizontal lift’ of the curve.

Definition 10.3. Let P(M,G) be a G bundle and let γ : [0, 1] → M be a curve
in M . A curve γ̃ : [0, 1] → P is said to be a horizontal lift of γ if π ◦ γ̃ = γ
and the tangent vector to γ̃ (t) always belongs to Hγ̃ (t)P .

Let X̃ be a tangent vector to γ̃ . Then it satisfies ω(X̃ ) = 0 by definition.
This condition is an ordinary differential equation (ODE) and the fundamental
theorem of ODEs guarantees the local existence and uniqueness of the horizontal
lift.

Theorem 10.2. Let γ : [0, 1] → M be a curve in M and let u0 ∈ π−1(γ (0)).
Then there exists a unique horizontal lift γ̃ (t) in P such that γ̃ (0) = u0.

Let us construct such a curve γ̃ . Let Ui be a chart which contains γ and
take a section σi over Ui . If there exists a horizontal lift γ̃ , it may be expressed
as γ̃ (t) = σi (γ (t))gi (t), where gi(t) stands for gi(γ (t)) ∈ G. Without loss of
generality, we may take a section such that σi (γ (0)) = γ̃ (0), that is gi(0) = e.
Let X be a tangent vector to γ (t) at γ (0). Then X̃ = γ̃∗X is tangent to γ̃ at
u0 = γ̃ (0). Since the tangent vector X̃ is horizontal, it satisfies ω(X̃ ) = 0. A
slight modification of lemma 10.1 yields

X̃ = gi(t)
−1σi∗Xgi (t)+ [gi(t)

−1 dgi (X)]#.
By applying ω on this equation, we find

0 = ω(X̃ ) = gi (t)
−1ω(σi∗X)gi (t)+ gi(t)

−1 dgi(t)

dt
.

Multiplying on the left by gi(t), we have

dgi(t)

dt
=− ω(σi∗X)gi (t). (10.13a)

The fundamental theorem of ODEs guarantees the existence and uniqueness of
the solution of (10.13a).

Since ω(σi∗X) = σ ∗i ω(X) = �i (X), (10.13a) is expressed in a local form
as

dgi(t)

dt
= −�i (X)gi (t) (10.13b)

whose formal solution with gi(0) = e is

gi(γ (t)) = � exp

(
−

∫ t

0
�iµ

dxµ

dt
dt

)
= � exp

(
−

∫ γ (t)

γ (0)
�iµ(γ (t)) dxµ

)
(10.14)

 



where � is a path-ordering operator along γ (t).1 The horizontal lift is expressed
as γ̃ (t) = σi (γ (t))gi (γ (t)).

Corollary 10.1. Let γ̃ ′ be another horizontal lift of γ , such that γ̃ ′(0) = γ (0)g.
Then γ̃ ′(t) = γ̃ (t)g for all t ∈ [0, 1].
Proof. We first note that the horizontal subspace is right invariant, Rg∗Hu P =
Hug P . Let γ̃ be a horizontal lift of γ . Then γ̃g : t 
→ γ̃ (t)g is also a horizontal
lift of γ (t) since its tangent vector belongs to Hγ̃g P . From theorem 10.2 we find
γ̃ ′ is the unique horizontal lift which starts at γ̃ (0)g. �

Example 10.2. Let us consider the bundle P(M,�) ∼= M × � where M =
�2 − {0}. Let φ : ((x, y), f ) 
→ u ∈ P be a local trivialization, where (x, y) are
the coordinates of M while f is that of the additive group �. Let

ω = ydx − xdy

x2 + y2 + d f

be a connection one-form. It is easily verified that ω satisfies the axioms of
the connection one-form. In fact, for A# = A∂/∂ f , A ∈ � being an element
of the Lie algebra of additive group, we have ω(A#) = A. Furthermore,
Rg∗ω = ω = g−1ωg, since � is Abelian. Let γ : [0, 1] → M be a
curve t 
→ (cos 2π t, sin 2π t). Let us work out a horizontal lift which starts at
((1, 0), 0). Let

X = d

dt
≡ dx

dt

∂

∂x
+ dy

dt

∂

∂y
+ d f

dt

∂

∂ f

be tangent to γ̃ (t). For X to be horizontal, it must satisfy

0 = ω(X) = dx

dt

y

r2 −
dy

dt

x

r2 +
d f

dt
= −2π + d f

dt
.

The solution is easily found to be f = 2π t + constant. We finally find the
horizontal lift γ̃ passing through ((1, 0), 0),

γ̃ (t) = ((cos 2π t, sin 2π t), 2π t) (10.15)

which is a helix over the unit circle.
Under the group action (right or left does not matter), f translates to

f + g, g ∈ �. The shifted horizontal lift is

γ̃g(t) = ((cos 2π t, sin 2π t), 2π t + g). (10.16)
1 �iµ(γ (t)) and �iν (γ (s)) do not commute in general and the exponential in (10.14) is not well
defined as it is. Let A(t) and B(t) be t-dependent matrices. Then the action of � is

�[A(t)B(s)] =
{

A(t)B(s) (t > s)

B(s)A(t) (s > t).

Generalization to products of more matrices should be obvious.

 



Figure 10.3. A curve γ (t) in M and its horizontal lifts γ̃ (t) and γ̃ (t)g.

Let γ : [0, 1] → M be a curve. Take a point u0 ∈ π−1(γ (0)). There is
a unique horizontal lift γ̃ (t) of γ (t) through u0, and hence a unique point u1 =
γ̃ (1) ∈ π−1(γ (1)), see figure 10.3. The point u1 is called the parallel transport
of u0 along the curve γ . This defines a map �(γ̃ ) : π−1(γ (0)) → π−1(γ (1))
such that u0 
→ u1. If the local form (10.14) is employed, we have

u1 = σi (1)� exp

(
−

∫ 1

0
�iµ

dxµ (γ (t))

dt
dt

)
. (10.17)

Corollary 10.1 ensures that �(γ̃ ) commutes with the right action Rg . First
note that Rg�(γ̃ )(u0) = u1g and �(γ̃ )Rg(u0) = �(γ̃ )(u0g). Observe that γ̃ (t)g
is a horizontal lift through u0g and u1g. From the uniqueness of the horizontal
lift through u0g, we have u1g = �(γ̃ )(u0g), that is Rg�(γ̃ )(u0) = �(γ̃ )Rg(u0).
Since this is true for any u0 ∈ π−1(γ (0)), we have

Rg�(γ̃ ) = �(γ̃ )Rg. (10.18)

Exercise 10.3. Let γ̃ be a horizontal lift of γ : [0, 1] → M . Consider a map
�(γ̃−1) : π−1(γ (1))→ π−1(γ (0)) where γ̃−1(t) = γ̃ (1− t). Show that

�(γ̃−1) = �(γ̃ )−1. (10.19)

 



Consider two curves α : [0, 1] → M and β : [0, 1] → M such that
α(1) = β(0). Define the product α ∗ β by

α ∗ β =
{
α(2t) 0 ≤ t ≤ 1

2

β(2t − 1) 1
2 ≤ t ≤ 1.

Let �(α̃) : π−1(α(0)) → π−1(α(1)) and �(β̃) : π−1(β(0)) → π−1(β(1)).
Show that

�(�α ∗ β) = �(β̃) ◦ �(α̃). (10.20)

Exercise 10.4. Let us write u ∼ v, if u, v ∈ P are on the same horizontal lift.
Show that ∼ is an equivalence relation.

10.2 Holonomy

10.2.1 Definitions

Let P(M,G) be a principal bundle and let γ : [0, 1] → M be a curve whose
horizontal lift through u0 ∈ π−1(γ (0)) is γ̃ . In the last section, we defined
a map �(γ̃ ) : π−1(γ (0)) → π−1(γ (1)) which maps a point u0 = γ̃ (0) to
u1 = γ̃ (1). Let us consider two curves α, β : [0, 1] → M with α(0) = β(0) = p0
and α(1) = β(1) = p1. Take horizontal lifts α̃ and β̃ of α and β such that
α̃(0) = β̃(0) = u0. Then α̃(1) is not necessarily equal to β̃(1). This shows that if
we consider a loop γ : [0, 1] → M at p = γ (0) = γ (1), we have γ̃ (0) �= γ̃ (1) in
general. A loop γ defines a transformation τγ : π−1(p)→ π−1(p) on the fibre.
This transformation is compatible with the right action of the group,

τγ (ug) = τγ (u)g (10.21)

which follows immediately from (10.18). We note that τγ depends not only on
the loop γ but also on the connection.

Example 10.3. Consider an �-bundle over M = �2 − {0}. The connection
one-form ω and the loop γ in example 10.2 define a map τγ : π−1((1, 0)) →
π−1((1, 0)) given by g 
→ g + 2π , g ∈ �.

Take a point u ∈ P with π(u) = p and consider the set of loops Cp(M) at
p; Cp(M) ≡ {γ : [0, 1] → M|γ (0) = γ (1) = p}. The set of elements

�u ≡ {g ∈ G|τγ (u) = ug, γ ∈ Cp(M)} (10.22)

is a subgroup of the structure group G and is called the holonomy group at u. The
group property of �u is easily derived from exercise 10.3. If α, β and γ = α ∗ β
are loops at p, we have τγ = τβ ◦ τα , hence

τγ (u) = τβ ◦ τα(u) = τβ(ugα) = τβ(u)gα = ugβgα

 



where τα(u) = ugα etc. This shows that

gγ = gβgα. (10.23)

The constant loop c : [0, 1] 
→ p defines the identity transformation
τc : u 
→ u. The inverse loop γ−1 of γ induces the inverse transformation
τγ−1 = τ−1

γ , hence gγ−1 = g−1
γ .

Exercise 10.5. (a) Let τα(u) = ugα. Show that

τα(ug) = ug(adg gα) = ug(g−1gαg). (10.24)

Verify that
�ua ∼= a−1�ua. (10.25)

(b) Let u, u′ ∈ P be points on the same horizontal lift γ̃ . Show that
�u ∼= �u′ .

(c) Suppose that M is connected. Show that all �u are isomorphic to each
other.

Exercise 10.6. Let �i = �iµ dxµ be a gauge potential over Ui and γ a loop in
Ui . Let τγ (u) = ugγ , u ∈ P, gγ ∈ G. Use (10.14) to show that

gγ = � exp

(
−

∮
γ

�iµ dxµ
)
. (10.26)

Let C0
p(M) denote the set of loops at p, which are homotopic to the constant

loop at p. The group

�0
u ≡ {g ∈ G|τγ (u) = ug, γ ∈ C0

p(M)} (10.27)

is called the restricted holonomy group.

10.3 Curvature

10.3.1 Covariant derivatives in principal bundles

We defined the exterior derivative d : �r (M) → �r+1(M) in chapter 5. An
r -form η is a real-valued form acting on vectors,

η : T M ∧ . . .∧ T M → �.

We will generalize this operation so that we can differentiate a vector-valued r -
form φ ∈ �r (P)⊗ V ,

φ : T P ∧ . . . ∧ T P → V

where V is a vector space of dimension k. The most general form of φ is
φ =∑k

α=1 φ
α ⊗ eα , {eα} being a basis of V and φα ∈ �r (P).

 



A connection ω on a principal bundle P(M,G) separates Tu P into Hu P ⊕
Vu P . Accordingly, a vector X ∈ Tu P is decomposed as X = X H + X V where
X H ∈ Hu P and X V ∈ Vu P .

Definition 10.4. Let φ ∈ �r (P) ⊗ V and X1, . . . , Xr+1 ∈ Tu P . The covariant
derivative of φ is defined by

Dφ(X1, . . . , Xr+1) ≡ dP φ(X
H
1 , . . . , X H

r+1) (10.28)

where dP φ ≡ dP φ
α ⊗ eα .

10.3.2 Curvature

Definition 10.5. The curvature two-form � is the covariant derivative of the
connection one-form ω,

� ≡ Dω ∈ �2(P)⊗ �. (10.29)

Proposition 10.2. The curvature two-form satisfies (cf (10.3b))

R∗a� = a−1�a a ∈ G. (10.30)

Proof. We first note that (Ra∗X)H = Ra∗(X H ) (Ra∗ preserves the horizontal
subspaces) and dP R∗a = R∗a dP , see (5.75). By definition we find

R∗a�(X,Y ) = �(Ra∗X, Ra∗Y ) = dPω ((Ra∗X)H , (Ra∗Y )H )

= dPω (Ra∗X H , Ra∗Y H ) = R∗a dPω (X
H ,Y H )

= dP R∗aω (X H ,Y H )

= dP (a
−1ωa)(X H ,Y H ) = a−1dPω (X

H ,Y H )a

= a−1�(X,Y )a

where we noted that a is a constant element and hence dPa = 0. �

Take a �-valued p-form ζ = ζ α ⊗ Tα and a �-valued q-form η = ηα ⊗ Tα
where ζ α ∈ �p(P), ηα ∈ �q(P), and {Tα} is a basis of �. Define the commutator
of ζ and η by

[ζ, η] ≡ ζ ∧ η − (−1)pqη ∧ ζ
= TαTβζ

α ∧ ηβ − (−1)pq TβTαη
β ∧ ζ α

= [Tα, Tβ ] ⊗ ζ α ∧ ηβ = fαβ
γ Tγ ⊗ ζ α ∧ ηβ. (10.31)

If we put ζ = η in (10.31), when p and q are odd, we have

[ζ, ζ ] = 2ζ ∧ ζ = fαβ
γ Tγ ⊗ ζ α ∧ ζ β.

Lemma 10.2. Let X ∈ Hu P and Y ∈ Vu P . Then [X,Y ] ∈ Hu P .

 



Proof. Let Y be a vector field generated by g(t), then

�Y X = [Y, X ] = lim
t→0

t−1(Rg(t)∗X − X).

Since a connection satisfies Rg∗Hu P = Hug P , the vector Rg(t)∗X is horizontal
and so is [Y, X ]. �

Theorem 10.3. Let X,Y ∈ Tu P . Then � and ω satisfy Cartan’s structure
equation

�(X,Y ) =dPω (X,Y )+ [ω(X), ω(Y )] (10.32a)

which is also written as
� = dPω + ω ∧ ω. (10.32b)

Proof. We consider the following three cases separately:
(i) Let X,Y ∈ Hu P . Then ω(X) = ω(Y ) = 0 by definition. From definition

10.5, we have �(X,Y ) = dPω (X H ,Y H ) = dPω (X,Y ), since X = X H and
= Y H .

(ii) Let X ∈ Hu P and Y ∈ Vu P . Since Y H = 0, we have �(X,Y ) = 0. We
also have ω(X) = 0. Thus, we need to prove dPω (X,Y ) = 0. From (5.70), we
obtain

dPω (X,Y ) = Xω(Y )− Yω(X) − ω([X,Y ]) = Xω(Y )− ω([X,Y ]).
Since Y ∈ Vu P , there is an element V ∈ � such that Y = V #. Then ω(Y ) = V is
constant, hence Xω(Y ) = X · V = 0. From lemma 10.2, we have [X,Y ] ∈ Hu P
so that ω([X,Y ]) = 0 and we find dPω (X,Y ) = 0.

(iii) For X,Y ∈ Vu P , we have �(X,Y ) = 0. We find that, in this case,

dPω (X,Y ) = Xω(Y ) − Yω(X)− ω([X,Y ]) = −ω([X,Y ]).
We note that X and Y are closed under the Lie bracket, [X,Y ] ∈ Vu P , see exercise
10.1(b). Then there exists A ∈ � such that

ω([X,Y ]) = A

where A# = [X,Y ]. Let B# = X and C# = Y . Then [ω(X), ω(Y )] = [B,C] =
A since [B,C]# = [B#,C#]. Thus, we have shown that

0 = dPω (X,Y )+ ω([X,Y ]) = dPω (X,Y )+ [ω(X), ω(Y )].
Since� is linear and skew symmetric, these three cases are sufficient to show

that (10.32) is true for any vectors.
To derive (10.32b) from (10.32a), we note that

[ω,ω](X,Y ) = [Tα, Tβ ]ωα ∧ ωβ(X,Y )
= [Tα, Tβ ][ωα(X)ωβ(Y )− ωβ(X)ωα(Y )]
= [ω(X), ω(Y )] − [ω(Y ), ω(X)] = 2[ω(X), ω(Y )].

Hence, �(X,Y ) = (dPω + 1
2 [ω,ω])(X,Y ) = (dPω + ω ∧ ω)(X,Y ). �

 



10.3.3 Geometrical meaning of the curvature and the Ambrose–Singer
theorem

We have shown in chapter 7 that the Riemann curvature tensor expresses the non-
commutativity of the parallel transport of vectors. There is a similar interpretation
of curvature on principal bundles. We first show that �(X,Y ) yields the vertical
component of the Lie bracket [X,Y ] of horizontal vectors X,Y ∈ Hu P . It follows
from ω(X) = ω(Y ) = 0 that

dPω (X,Y ) = Xω(Y ) − Yω(X)− ω([X,Y ]) = −ω([X,Y ]).

Since X H = X , Y H = Y , we have

�(X,Y ) = dPω (X,Y ) = −ω([X,Y ]). (10.33)

Let us consider a coordinate system {xµ} on a chart U . Let V = ∂/∂x1 and
W = ∂/∂x2. Take an infinitesimal parallelogram γ whose corners are O =
{0, 0, . . . , 0}, P = {ε, 0, . . . , 0}, Q = {ε, δ, 0, . . . , 0} and R = {0, δ, 0, . . . , 0}.
Consider the horizontal lift γ̃ of γ . Let X,Y ∈ Hu P such that π∗X = εV and
π∗Y = δW . Then

π∗([X,Y ]H ) = εδ[V ,W ] = εδ
[
∂

∂x1 ,
∂

∂x2

]
= 0 (10.34)

that is [X,Y ] is vertical. This consideration shows that the horizontal lift γ̃ of
a loop γ fails to close. This failure is proportional to the vertical vector [X,Y ]
connecting the initial point and the final point on the same fibre. The curvature
measures this distance,

�(X,Y ) = −ω([X,Y ]) = A (10.35)

where A is an element of � such that [X,Y ] = A#.
Since the discrepancy between the initial and final points of the horizontal

lift of a closed curve is simply the holonomy, we expect that the holonomy group
is expressed in terms of the curvature.

Theorem 10.4. (Ambrose–Singer theorem) Let P(M,G) be a G bundle over a
connected manifold M . The Lie algebra � of the holonomy group �u0 of a point
u0 ∈ P agrees with the subalgebra of � spanned by the elements of the form

�u(X,Y ) X,Y ∈ Hu P (10.36)

where a ∈ P is a point on the same horizontal lift as u0. [See Choquet-Bruhat et
al (1982) for the proof.]

 



10.3.4 Local form of the curvature

The local form � of the curvature� is defined by

� ≡ σ ∗� (10.37)

where σ is a local section defined on a chart U of M (cf� = σ ∗ω). � is expressed
in terms of the gauge potential � as

� = d�+ � ∧� (10.38a)

where d is the exterior derivative on M . The action of � on the vectors of T M is
given by

�(X,Y ) = d� (X,Y )+ [�(X),�(Y )]. (10.38b)

To prove (10.38a) we note that � = σ ∗ω, σ ∗ dPω = dσ ∗ω and σ ∗(ζ ∧ η) =
σ ∗ζ ∧ σ ∗η. From Cartan’s structure equation, we find

� = σ ∗(dPω + ω ∧ ω) = dσ ∗ω + σ ∗ω ∧ σ ∗ω = d�+� ∧�.

Next, we find the component expression of� on a chart U whose coordinates
are xµ = ϕ(p). Let � = �µ dxµ be the gauge potential. If we write
� = 1

2�µν dxµ ∧ dxν, a direct computation yields

�µν = ∂µ�ν − ∂ν�µ + [�µ,�ν]. (10.39)

� is also called the curvature two-form and is identified with the (Yang–Mills)
field strength. To avoid confusion, we call � the curvature and � the (Yang–
Mills) field strength. Since �µ and �µν are �-valued functions, they can be
expanded in terms of the basis {Tα} of � as

�µ = Aµ
αTα �µν = Fµν

αTα. (10.40)

The basis vectors satisfy the usual commutation relations [Tα, Tβ ] = fαβγ Tγ . We
then obtain the well-known expression

Fµν
α = ∂µAν

α − ∂ν Aµ
α + fβγ

αAµ
β Aν

γ . (10.41)

Theorem 10.5. Let Ui and U j be overlapping charts of M and let �i and � j be
field strengths on the respective charts. On Ui ∩U j , they satisfy the compatibility
condition,

� j = Adt−1
i j
�i = t−1

i j �i ti j (10.42)

where ti j is the transition function on Ui ∩U j .

 



Proof. Introduce the corresponding gauge potentials �i and � j ,

�i = d�i +�i ∧�i � j = d� j +� j ∧� j .

Substituting � j = t−1
i j �i ti j + t−1

i j dti j into � j , we verify that

� j = d (t−1
i j �i ti j + t−1

i j dti j )

+ (t−1
i j �i ti j + t−1

i j dti j ) ∧ (t−1
i j �i ti j + t−1

i j dti j )

= [−t−1
i j dti j ∧ t−1

i j �i ti j + t−1
i j d�i ti j

− t−1
i j �i ∧ dti j − t−1

i j dti j t−1
i j ∧ dti j ]

+ [t−1
i j �i ∧�i ti j + t−1

i j �i ∧ dti j

+ t−1
i j dti j t−1

i j ∧�i ti j + t−1
i j dti j ∧ t−1

i j dti j ]
= t−1

i j (d�i +�i ∧�i )ti j = t−1
i j �i ti j

where use has been made of the identity dt−1 = −t−1 dt t−1. �

Exercise 10.7. The gauge potential� is called a pure gauge if� is written locally
as � = g−1 dg. Show that the field strength � vanishes for a pure gauge �. [It
can be shown that the converse is also true. If � = 0 on a chart U , the gauge
potential may be expressed locally as � = g−1 dg.]

10.3.5 The Bianchi identity

Since ω and � are �-valued, we expand them in terms of the basis {Tα} of � as
ω = ωαTα, � = �αTα. Then (10.32b) becomes

�α = dPω
α + fβγ

αωβ ∧ ωγ . (10.43)

Exterior differentiation of (10.43) yields

dP�
α = fβγ

α dPω
β ∧ ωγ + fβγ

αωβ ∧ dPω
γ . (10.44)

If we note that ω(X) = 0 for a horizontal vector X , we find

D�(X,Y, Z) = dP� (X
H ,Y H , Z H ) = 0

where X,Y, Z ∈ Tu P . Thus, we have proved the Bianchi identity

D� = 0. (10.45)

Let us find the local form of the Bianchi identity. Operating with σ ∗ on
(10.44), we find that σ ∗ dP� = d · σ ∗� = d� for the LHS and

σ ∗(dPω ∧ ω − ω ∧ dPω) = dσ ∗ω ∧ σ ∗ω − σ ∗ω ∧ dσ ∗ω
= d� ∧�−� ∧ d� = � ∧�−� ∧ �

 



for the RHS. Thus, we have obtained that

�� = d�+� ∧ �− � ∧� = d�+ [�,�] = 0 (10.46)

where the action of� on a �-valued p-form η on M is defined by

�η ≡ dη + [�, η]. (10.47)

Note that �� = d� for G = U(1).

10.4 The covariant derivative on associated vector bundles

A connection one-form ω on a principal bundle P(M,G) enables us to define the
covariant derivative in associated bundles of P in a natural way.

10.4.1 The covariant derivative on associated bundles

In physics, we often need to differentiate sections of a vector bundle which is
associated with a certain principal bundle. For example, a charged scalar field in
QED is regarded as a section of a complex line bundle associated with a U(1)
bundle P(M,U(1)). Differentiating sections covariantly is very important in
constructing gauge-invariant actions.

Let P(M,G) be a G bundle with the projection πP . Let us take a chart Ui of
M and a section σi over Ui . We take the canonical trivialization φi (p, e) = σi (p).
Let γ̃ be a horizontal lift of a curve γ : [0, 1] → Ui . We denote γ (0) = p0
and γ̃ (0) = u0. Associated with P is a vector bundle E = P ×ρ V with the
projection πE , see section 9.4. Let X ∈ Tp M be a tangent vector to γ (t) at p0.
Let s ∈ �(M, E) be a section, or a vector field, on M . Write an element of E as
[(u, v)] = {(ug, ρ(g)−1v|u ∈ P, v ∈ V , g ∈ G}. Taking a representative of the
equivalence class amounts to fixing the gauge. We choose the following form,

s(p) = [(σi (p), ξ(p))] (10.48)

as a representative.
Now we define the parallel transport of a vector in E along a curve γ in M .

Of course, a naive guess ‘ξ is parallel transported if ξ(γ (t)) is constant along γ (t)’
does not make sense since this statement depends on the choice of the section
σi (p). We define a vector to be parallel transported if it is constant with respect to
a horizontal lift γ̃ of γ in P . In other words, a section s(γ (t)) = [(γ̃ (t), η(γ (t)))]
is parallel transported if η is constant along γ (t). This definition is intrinsic since
if γ̃ ′(t) is another horizontal lift of γ , then it can be written as γ̃ ′(t) = γ̃ (t)a,
a ∈ G and we have (we omit ρ to simplify the notation)

[(γ̃ (t), η(t))] = [(γ̃ ′(t)a−1, η(t))] = [(γ̃ ′(t), a−1η(t))]
where η(t) stands for η(γ (t)). Hence, if η(t) is constant along γ (t), so is its
constant multiple a−1η(t).

 



Now the definition of covariant derivative is in order. Let s(p) be a section
of E . Along a curve γ : [0, 1] → M we have s(t) = [(γ̃ (t), η(t))], where γ̃ (t) is
an arbitrary horizontal lift of γ (t). The covariant derivative of s(t) along γ (t) at
p0 = γ (0) is defined by

∇X s ≡
[(
γ̃ (0),

d

dt
η(γ (t))

∣∣∣∣
t=0

)]
(10.49)

where X is the tangent vector to γ (t) at p0. For the covariant derivative to be
really intrinsic, it should not depend on the extra information, that is the special
horizontal lift. Let γ̃ ′(t) = γ̃ (t)a (a ∈ G) be another horizontal lift of γ . If γ̃ ′(t)
is chosen to be the horizontal lift, we have a representative [(γ̃ ′(t), a−1η(t))].
The covariant derivative is now given by[(

γ̃ ′(0),
d

dt
{a−1η(t)}

∣∣∣∣
t=0

)]
=

[(
γ̃ ′(0)a−1,

d

dt
η(t)

∣∣∣∣
t=0

)]
which agrees with (10.49). Hence, ∇X s depends only on the tangent vector X
and the sections s ∈ �(M, E) and not on the horizontal lift γ̃ (t). Our definition
depends only on a curve γ and a connection and not on local trivializations. The
local form of the covariant derivative is useful in practical computations and will
be given later.

So far we have defined the covariant derivative at a point p0 = γ (0). It
is clear that if X is a vector field, ∇X maps a section s to a new section ∇X s,
hence ∇X is regarded as a map �(M, E) → �(M, E). To be more precise, take
X ∈ �(M) whose value at p is X p ∈ Tp M . There is a curve γ (t) such that
γ (0) = p and its tangent at p is X p . Then any horizontal lift γ̃ (t) of γ enables
us to compute the covariant derivative ∇X s|p ≡ ∇X p s. We also define a map
∇ : �(M, E)→ �(M, E) ⊗�1(M) by

∇s(X) ≡ ∇X s X ∈ �(M) s ∈ �(M, E). (10.50)

Exercise 10.8. Show that

∇X (a1s1 + a2s2) = a1∇X s1 + a2∇X s2 (10.51a)

∇(a1s1 + a2s2) = a1∇s1 + a2∇s2 (10.51b)

∇(a1 X1+a2 X2)s = a1∇X1 s + a2∇X2s (10.51c)

∇X ( f s) = X [ f ]s + f∇X s (10.51d)

∇( f s) = (d f )s + f ∇s (10.51e)

∇ f X s = f ∇X s (10.51f)

where ai ∈ �, s, s′ ∈ �(M, E) and f ∈ �(M).

 



10.4.2 A local expression for the covariant derivative

In practical computations it is convenient to have a local coordinate representation
of the covariant derivative. Let P(M,G) be a G bundle and E = P ×ρ G be an
associate vector bundle. Take a local section σi ∈ �(Ui , P) and employ the
canonical trivialization σi (p) = φi (p, e). Let γ : [0, 1] → M be a curve in Ui

and γ̃ its horizontal lift, which is written as

γ̃ (t) = σi (t)gi (t) (10.52)

where gi(t) ≡ gi (γ (t)) ∈ G. Take a section eα(p) ≡ [(σi (p), eα0)] of E , where
eα0 is the αth basis vector of V ; (eα0)β = (δα)β . We have

eα(t) = [(γ̃ (t)gi (t)
−1, eα

0)] = [(γ̃ (t), gi (t)
−1eα

0)]. (10.53)

Note that gi (t)−1 acts on eα0 to compensate for the change of basis along γ . The
covariant derivative of eα is then given by

∇X eα =
[(
γ̃ (0),

d

dt
{gi(t)

−1eα
0}

∣∣∣∣
t=0

)]
=

[(
γ̃ (0),−gi(t)

−1
{

d

dt
gi(t)

}
gi (t)

−1eα
0
∣∣∣∣
t=0

)]
= [(γ̃ (0)gi(0)−1,�i (X)eα

0)] (10.54)

where (10.13b) has been used. From (10.54) we find the local expression,

∇X eα = [(σi (0),�i (X)eα
0)]. (10.55)

Let �i = �iµ dxµ = �iµ
α
β dxµ where �iµ

α
β ≡ �iµ

γ (Tγ )αβ . The second
entry of (10.55) is

�i (X)eα
0 = dxµ

dt
eβ

0
�iµ

β
γ δα

γ = dxµ

dt
�iµ

β
αeβ

0.

Substituting this into (10.55), we finally have

∇X eα =
[(
σi (0),

dxµ

dt
�iµ

β
αeβ

0
)]
= dxµ

dt
�iµ

β
αeβ (10.56a)

or
∇eα = �i

β
αeβ. (10.56b)

In particular, for a coordinate curve xµ, we have

∇∂/∂xµeα = �iµ
β
αeβ. (10.57)

It is remarkable that a connection� on a principal bundle P completely specifies
the covariant derivative on an associated bundle E (modulo representations).

 



Exercise 10.9. Let s(p) = [(σi (p), ξi (p))] = ξiα(p)eα be a general section of E ,
where ξi (p) = ξiα(p)eα0. Use the results of exercise 10.8 to verify that

∇X s =
[(
σi (0),

dξi
dt
+�i (X)ξi

∣∣∣∣
t=0

)]
= dxµ

dt

{
∂ξi

α

∂xµ
+ �iµ

α
βξi

β

}
eα.

(10.58)

By construction, the covariant derivative is independent of the local
trivialization. This is also observed from the local form of ∇X s. Let σi (p) and
σ j (p) be local sections on overlapping charts Ui and U j . On Ui ∩ U j , we have
σ j (p) = σi (p)ti j (p). In the i -trivialization, the covariant derivative is

∇X s =
[(
σi (0),

dξi
dt
+ �i (X)ξi

∣∣∣∣
t=0

)]
=

[(
σ j (0) · t−1

i j ,
d

dt
(ti j ξ j )+�i (X)ti j ξ j

∣∣∣∣
t=0

)]
=

[(
σ j (0),

dξ j

dt
+� j (X)ξ j

∣∣∣∣
t=0

)]
(10.59)

where use has been made of the condition (10.9). The last line of (10.59) is ∇X s
expressed in the j -trivialization.

We have found that the covariant derivative defined by (10.49) is independent
of the horizontal lift as well as the local section. The gauge potential �i

transforms under the change of local trivialization so that ∇X s is a well-defined
section of E . In this sense, ∇X is the most natural derivative on an associated
vector bundle, which is compatible with the connection on the principal bundle
P .

Example 10.4. Let us recover the results obtained in section 7.2. Let F M be a
frame bundle over M and let T M be its associated bundle. We note F M =
P(M,GL(m,�)) and T M = F M×ρ �m , where m = dim M and ρ is the m×m
matrix representation of GL(m,�). Elements of ��(m,�) are m × m matrices.
Let us rewrite the local connection form �i as �αµβ dxµ. We then find that

∇∂/∂xµeα = [(σi (0), �µeα
0)] = �βµαeβ (10.60)

which should be compared with (7.14). For a general section (vector field),
s(p) =[(σi (p), Xi (p))] = Xi

α(p)eα, we find

∇∂/∂xµs =
(
∂

∂xµ
Xi
α + �αµβXβ

)
eα (10.61)

which reproduces the result of section 7.2. It is evident that the roles played by the
indices α, β and µ in �αµβ are very different in their characters; µ is the �1(M)
index while α and β are the ��(m,�) indices.

 



Example 10.5. Let us consider the U(1) gauge field coupled to a complex scalar
field φ. The relevant fibre bundles are the U(1) bundle P(M,U(1)) and the
associated bundle E = P×ρ � where ρ is the natural identification of an element
of U(1) with a complex number. The local expression for ω is �i = �iµ dxµ,
where �iµ = �i (∂/∂xµ) is the vector potential of Maxwell’s theory. Let γ be
a curve in M with tangent vector X at γ (0). Take a local section σi and express
a horizontal lift γ̃ of γ as γ̃ (t) = σi (t)eiϕ(t). If 1 ∈ � is taken to be the basis
vector, the basis section is

e = [(σi (p), 1)].
Let φ(p) = [(σi (p),�(p))] = �(p)e (� : M → � ) be a section of E , which
is identified with a complex scalar field. With respect to γ̃ (t), the section is given
by

φ(t) = �(t)[(γ̃ (t),U(t)−1)] (10.62)

where U(t) = eiϕ(t). The covariant derivative of φ along γ is

∇Xφ = d�

dt
[(γ̃ (0),U(0)−1)] +�(0)[(γ̃ (0),U(0)−1

�i (X) · 1)]

=
(

d�

dt
+ �iµ�

dxµ

dt

)
e = Xµ

(
∂�

∂xµ
+�iµ�

)
e. (10.63)

Example 10.6. Let us consider the SU(2) Yang–Mills theory on M . The relevant
bundles are the SU(2) bundle P(M,SU(2)) and its associated bundle E =
P ×ρ � 2 , where we have taken the two-dimensional representation. The gauge
potential on a chart Ui is

�i = �iµ dxµ = Aiµ
α
(σα

2i

)
dxµ (10.64)

where σα/2i are generators of SU(2), σα being the Pauli matrices. Let eα0

(α = 1, 2) be basis vectors of � 2 and consider sections

eα(p) ≡ [(σi (p), eα
0)] (10.65)

where σi (p) defines a canonical trivialization of P over Ui . Let φ(p) =
[(σi (p),�α(p)eα0)] be a section of E over M . Along a horizontal lift γ̃ (t) =
σi (p)U(t), U(t) ∈ SU(2), we have

φ(t) = [(γ̃ (t),U(t)−1�α(t)eα
0)]. (10.66)

The covariant derivative of φ along X = d/dt is

∇Xφ =
[(
γ̃ (0),U(0)−1 d�α(0)

dt
eα

0
)]

+ [(γ̃ (0),U(0)−1
�i (X)

α
β�

β(0)eα
0)]

= Xµ
(
∂�α

∂xµ
+ �iµ

α
β�

β

)
eα (10.67)

 



where (10.13b) has been used to obtain the last equality.

Exercise 10.10. Let us consider an associated adjoint bundle E� = P×Ad�where
the action of G on � is the adjoint action V → AdgV = g−1V g, V ∈ � and
g ∈ G. Take a local section σi ∈ �(Ui , P) such that γ̃ (t) = σi (t)g(t). Take a
section s(p) = [(σi (p), V (p))] on E�, where V (p) = V α(p)Tα, {Tα} being the
basis of �. Define the covariant derivative�X s by

�X s ≡
[(
γ̃ (0),

d

dt
{Adg(t)−1 V (t)}

∣∣∣∣
t=0

)]
. (10.68a)

Show that

�X s =
[(
σi (0),

dV (t)

dt
+ [�i (X), V (t)]

∣∣∣∣
t=0

)]
= Xµ

(
∂V α

∂xµ
+ fβγ

α
�iµ

βV γ
)
[(σi (0), Tα)]. (10.68b)

10.4.3 Curvature rederived

The covariant derivative ∇X s defines an operator ∇ : �(M, E) → �(M, E ⊗
�1(M)) by (10.50). More generally, the action of ∇ on a vector-valued p-form
s ⊗ η, η ∈ �p(M), is defined by

∇(s ⊗ η) ≡ (∇s) ∧ η + s ⊗ dη. (10.69)

Let Ui be a chart of M and σi a section of P over Ui . We take the canonical local
trivialization over Ui . We now prove

∇∇eα = eβ ⊗ �i
β
α (10.70)

where eα = [(σi , eα0)] ∈ �(Ui , E). In fact, by straightforward computation, we
find

∇∇eα = ∇(eβ ⊗�i
β
α) = ∇eβ ∧�i

β
α + eβ ⊗ d�i

β
α

= eβ ⊗ (d�i
β
α +�i

β
γ ∧�i

γ
α) = eβ ⊗ �i

β
α.

Exercise 10.11. Let s(p) = ξα(p)eα(p) be a section of E . Show that

∇∇s = eα ⊗ �i
α
βξ
β . (10.71)

10.4.4 A connection which preserves the inner product

Let E
π−→ M be a vector bundle with a positive-definite symmetric inner product

whose action is defined at each point p ∈ M by

gp : π−1(p)⊗ π−1(p)→ �. (10.72)

 



Then g is said to define a Riemannian structure on E . A connection ∇ is called
a metric connection if it preserves the inner product,

d [g(s, s′)] = g(∇s, s′)+ g(s,∇s′). (10.73)

In particular, if we take s = eα, s′ = eβ and set g(eα, eβ) = gαβ , we find

dgαβ = �i
γ
αgγβ +�i

γ
βgαγ . (10.74)

This should be compared with (7.30b). If E = T M and, moreover, the torsion-
free condition is imposed, our connection reduces to the Levi-Civita connection
of the Riemannian geometry.

Given an inner product, we may take an orthonormal frame {êα} such that
g(êα, êβ) = δαβ . The structure group G is taken to be O(k), k being the dimension
of the fibre. The Lie algebra �(k) is a vector space of skew symmetric matrices
and the connection one-form ω satisfies

ωαβ = −ωβα. (10.75)

Theorem 10.6. Let E be a vector bundle with inner product g and let ∇ be the
covariant derivative associated with the orthonormal frame. Then ∇ is a metric
connection.

Proof. Since g is bilinear, it suffices to show that

d[g(s, s′)] = g(∇s, s′)+ g(s,∇s′)

for s = f êα and s′ = f ′êβ where f, f ′ ∈ �(M). In fact, the LHS is
d[g( f êα, f ′êβ)] = d[ f f ′δαβ ] = d ( f f ′)δαβ while the RHS is

g(∇ f êα, f ′êβ)+ g( f êα,∇ f ′êβ)
= g(d f êα + f êγ ω

γ
α, f ′êβ)+ g( f êα, d f ′ êβ + f ′êγ ωγ β)

= d f f ′ δαβ + f f ′ωγ αδγβ + f d f ′ δαβ + f f ′ωγ βδαγ
= d( f f ′) δαβ

where (10.75) has been used to obtain the final equality. �

10.4.5 Holomorphic vector bundles and Hermitian inner products

Definition 10.6. Let E and M be complex manifolds and π : E → M a
holomorphic surjection. The manifold E is a holomorphic vector bundle if the
following axioms are fulfilled.

(i) The typical fibre is � k and the structure group is GL(k, � ).
(ii) The local trivialization φi : Ui × � k → π−1(Ui ) is a biholomorphism.

 



(iii) The transition function ti j : Ui ∩U j → G = GL(k, � ) is a holomorphic
map.

For example, let M be a complex manifold with dim� M = m. The
holomorphic tangent bundle T M+ ≡ ⋃

p∈M Tp M+ is a holomorphic vector
bundle. The typical fibre is � m and the local basis is {∂/∂zµ}.

Let h be an inner product on a holomorphic vector bundle whose action at
p ∈ M is h p : π−1(p) × π−1(p) → � . The most natural inner product is a
Hermitian structure which satisfies:

(i) h p(u, av + bw) = ah p(u, v)+ bh p(u, w), for u, v,w ∈ π−1(p), a, b ∈ � ;
(ii) h p(u, v) = h p(v, u), u, v ∈ π−1(p);
(iii) h p(u, u) ≥ 0, h p(u, u) = 0 if and only if u = φi (p, 0); and
(iv) h(s1, s2) ∈ �(M)� for s1, s2 ∈ �(M, E).

A set of sections {ê1, . . . , êk} is a unitary frame if

h(êi , ê j ) = δi j . (10.76)

The unitary frame bundle L M is not a holomorphic vector bundle since the
structure group U(m) is not a complex manifold.

Given a Hermitian structure h, we define a connection which is compatible
with h. The Hermitian connection ∇ is a linear map �(M, E) → �(M, E ⊗
T ∗M� ) which satisfies:

(i) ∇( f s) = (d f )s + f∇s, f ∈ �(M)� , s ∈ �(M, E);
(ii) d [h(s1, s2)] = h(∇s1, s2)+ h(s1,∇s2); and
(iii) according to the destination, we separate the action of ∇ as ∇s = Ds + D̄s,

Ds (D̄s) being a (1, 0)-form ((0, 1)-form) valued section. We demand that
D̄ = ∂̄ .

It can be shown that given E and a Hermitian metric h, there exists a unique
Hermitian connection∇. The curvature is defined from the Hermitian connection.
Let {ê1, . . . , êk} be a unitary frame and define the local connection form �βα by

∇ êα = êβ�
β
α. (10.77)

The field strength is defined by

� ≡ d�+� ∧�. (10.78)

We verify that
∇∇ êα = ∇(êβ�βα) = êβ�

β
α. (10.79)

We prove that both � and � are skew Hermitian:

�̄βα +�αβ = h(∇ êα, êβ)+ h(êα,∇ êβ) = dh (êα, êβ) = dδαβ = 0

�
β
α + �̄αβ = d�βα + �βγ ∧�γ α + d�̄αβ + �̄αγ ∧ �̄γ α

= d (�βα −�βα)+�βγ ∧�γ α +�γ α ∧�αγ = 0.

 



Thus, we have shown that

�
α
β = −�̄βα �

β
α = −�̄αβ. (10.80)

Next we show that � is a (1, 1)-form. Let {êα} be a unitary frame. � cannot
have a component of bidegree-(0, 2) since

êβ�
β
α = ∇∇ êα = (D+ ∂̄)(D+ ∂̄)êα = DDêα + (D∂̄ + ∂̄D)êα.

It follows from �βα = −�̄αβ that �̄ has no component of bidegree-(0, 2), and,
hence, � has no component of bidegree-(2, 0) either. Thus �βα is a two-form of
bidegree-(1, 1).

10.5 Gauge theories

As we have remarked several times, a gauge potential can be regarded as a local
expression for a connection in a principal bundle. The Yang–Mills field strength is
then identified with the local form of the curvature associated with the connection.
We summarize here the relevant aspects of gauge theories from the geometrical
viewpoint.

10.5.1 U(1) gauge theory

Maxwell’s theory of electromagnetism is described by the U(1) gauge group. U(1)
is Abelian and one dimensional, hence we omit all the group indices α, β, . . .
and put the structure constants fαβγ = 0. Suppose the base space M is a four-
dimensional Minkowski spacetime. From corollary 9.1, we find that the U(1)
bundle P is trivial, namely P = �4 × U(1) and a single local trivialization over
M is required. The gauge potential is simply

� = �µ dxµ. (10.81)

Our gauge potential� differs from the usual vector potential A by the Lie algebra
factor i: �µ = iAµ. The field strength is

� =d�. (10.82a)

In components, we have

�µν = ∂�ν/∂xµ − ∂�µ/∂xν. (10.82b)

� satisfies the Bianchi identity,

d� =� ∧�−� ∧ � = 0. (10.83a)

This should be expected from the outset since � is exact, � = d�; and hence
closed, d� = d2� = 0. In components, we have

∂λ�µν + ∂ν�λµ + ∂µ�νλ = 0. (10.83b)

 



If we identify the components �µν ≡ iFµν with the electric field E and the
magnetic field B as

Ei = Fi0, Bi = 1
2εi j k Fjk (i, j, k = 1, 2, 3) (10.84)

(10.83b) reduces to two of Maxwell’s equations,

∇ × E + ∂B
∂ t
= 0 ∇ · B = 0. (10.83c)

These equations are geometrical rather than dynamical. To find the dynamics, we
have to specify the action. The Maxwell action �M[�] is a functional of � and
is given by

�M[�] ≡ 1
4

∫
�4
�µν�

µν d4x = − 1
4

∫
�4

FµνFµν d4x . (10.85a)

Exercise 10.12. (a) Let ∗�µν ≡ 1
2�

κλεκλµν be the dual of �µν. Show that

�M[�] = − 1
4

∫
�4
� ∧ ∗�. (10.85b)

(b) Use (10.84) to show that

− 1
4 FµνFµν = 1

2 (E
2 − B2). (10.86)

Show also that
Fµν ∗ Fµν = B · E. (10.87)

By the variation of �M[�] with respect to �µ, we obtain the equation of
motion,

∂µ�
µν = 0. (10.88a)

We find this equation is reduced to the second set of Maxwell’s equations (in the
vacuum):

∇ · E = 0 ∇ × B − ∂E
∂ t
= 0. (10.88b)

10.5.2 The Dirac magnetic monopole

We have studied Maxwell’s theory of electromagnetism defined on �4 . The
triviality of the base space makes the U(1) bundle trivial. Poincaré’s lemma
ensures that the field strength � is globally exact: � = d�. It is interesting to
extend our analysis to U(1) bundles over a non-trivial base space. We assume
everything is independent of time for simplicity.

 



The Dirac monopole is defined in �3 with the origin O removed. �3 − {0}
and S2 are of the same homotopy type and the relevant bundle is a U(1) bundle
P(S2,U(1)). S2 is covered by two charts

UN ≡ {(θ, φ)|0 ≤ θ ≤ 1
2π + ε} US ≡ {(θ, φ)| 12π − ε ≤ θ ≤ π}

where θ and φ are polar coordinates. Let ω be an Ehresmann connection on P .
Take a local section σN (σS) on UN (US) and define the local gauge potentials

�N = σ ∗Nω �S = σ ∗Sω.
We take �N and �S to be of the Wu–Yang form (section 1.9),

�N = ig(1− cos θ) dφ �S = −ig(1+ cos θ) dφ (10.89)

where g is the strength of the monopole.
Let tNS be the transition function defined on the equator UN ∩ US. tNS

defines a map from S1 (equator) to U(1) (structure group), which is classified
by π1(U(1)) = �, see example 9.7. Let us write

tNS(φ) = exp[iϕ(φ)] (ϕ : S1 → �). (10.90)

The gauge potentials�N and �S are related on UN ∩US by

�N = t−1
NS�StNS + t−1

NS dtNS = �S + idϕ. (10.91)

For the gauge potentials (10.89), we find

dϕ = −i(�N −�S) = 2g dφ.

While φ runs from 0 to 2π around the equator, ϕ(φ) takes the range

�ϕ ≡
∫

dϕ =
∫ 2π

0
2g dφ = 4πg. (10.92)

For tNS to be defined uniquely,�ϕ must be a multiple of 2π ,

�ϕ/2π = 2g ∈ � (10.93)

which is the quantization condition of the magnetic monopole. The integer 2g
represents the homotopy class to which this bundle belongs. This number is also
obtained by considering FN = dAN and FS = dAS (�N = iFN etc). The total
flux � is

� =
∫

S2
B · dS =

∫
UN

dAN +
∫

US

dAS

=
∫

S1
AN −

∫
S1

AS = 2g
∫ 2π

0
dφ = 4πg. (10.94)

Thus, the curvature, that is the pair of the field strengths dAN and dAS,
characterizes the twisting of the bundle. We discuss this further in chapter 11.

 



Figure 10.4. The Aharonov–Bohm experiment. B = 0 outside the solenoid.

10.5.3 The Aharonov–Bohm effect

In the elementary study of electromagnetism, the electric and magnetic fields (that
is Fµν) are of central interest. The vector potential A and the scalar potential
φ = A0 are considered to be of secondary importance. In quantum mechanics,
however, there are a variety of situations in which Fµν are not sufficient to
describe the phenomena and the use of Aµ = (A, A0) is essential. One of these
examples is the Aharonov–Bohm effect.

The Aharonov–Bohm (AB) experiment is schematically described in figure
10.4. A beam of electrons with charge e is incoming from the far left and forms
an interference pattern on the screen C. A solenoid of infinite length is placed in
the middle of the beam. A shield S prevents electrons from penetrating into the
solenoid. Accordingly, the electrons do not feel the magnetic field at all. What
about the gauge field Aµ?

For simplicity, we make the radius of the solenoid infinitesimally small,
keeping the total flux � = ∫

S B · dS fixed. It is easy to verify that

A(r) =
(
− y�

2πr2
,

x�

2πr2
, 0

)
A0 = 0 (10.95)

satisfies
∫
(∇ × A) · dS = � and ∇ × A = 0 for r �= 0. The vector potential

does not vanish outside the solenoid. Classically, the solenoid cannot have any
influence on electrons since the Lorentz force e(v × B) vanishes on the path of
the beam.

 



In quantum mechanics, the Hamiltonian H of this system is

� = − 1

2m

(
∂

∂xµ
− ieAµ

)2

+ V (r) (10.96)

where V (r) represents the effect of the experimental apparatus. Semiclassically,
we can distinguish between the paths γI and γII in figure 10.4. We write the
wavefunction corresponding to γI (γII) as ψI (ψII) when A = 0. If A �= 0, the
wavefunction is given by the gauge-transformed form,

ψ A
i (r) ≡ exp

(
ie

∫ r

P
A(r ′) · dr ′

)
ψi (r) (i = I, II) (10.97)

where P is a reference point far from the apparatus. Let us consider a
superposition ψ A

I + ψ A
II of wavefunctions ψ A

I and ψ A
II such that ψ A

I (P) =
ψ A

II (P). Its amplitude at a point Q on the screen is

ψ A
I (Q)+ ψ A

II (Q) = exp

(
ie

∫
γI

A(r ′) · dr ′
)
ψI(Q)

+ exp

(
ie

∫
γII

A(r ′) · dr ′
)
ψII(Q)

= exp

(
ie

∫
γII

A · dr ′
)[

exp

(
ie

∮
γ

A · dr ′
)
ψI(Q)+ ψII(Q)

]
(10.98)

where γ ≡ γI − γII. It is evident that even though B = 0 at the points in
space through which the electrons travel, the wavefunction depends on the vector
potential A. From Stokes’ theorem, we find that∮

γ

A · dr ′ =
∫

S
(∇ × A) · dS =

∫
S

B · dS = � (10.99)

where S is a surface bounded by γ . From this and (10.98), we find the interference
pattern should be the same for two values of the fluxes �a and �b if

e(�a −�b) = 2πn n ∈ �. (10.100)

What is the geometry underlying the Aharonov–Bohm effect? Since the
problem is essentially two dimensional, we consider a region M = �2 − {0},
where the solenoid is assumed to be at the origin. The relevant bundles are the
principal bundle P(M,U(1)) and its associated bundle E = P ×ρ � , where U(1)
acts on � in an obvious way. The bundle E is a complex line bundle over M ,
whose section is a wavefunction ψ .

Let us define a Lie-algebra-valued one-form � = iA = iAµ dxµ. The
covariant derivative associated with this local connection is � = d + �, where

 



� is given by (10.95). Since d� = � = 0, this connection is locally flat. Let
us consider the unit circle S1 which encloses the solenoid at the origin. We
parametrize S1 as eiθ (0 ≤ θ ≤ 2π) and write the connection on S1 as

� = i
�

2π
dθ. (10.101)

This is obtained from (10.95) by putting r = 1. We require that the wavefunction
ψ be parallel transported along S1 with respect to this local connection, namely

�ψ(θ) =
(

d+ i
�

2π
dθ

)
ψ(θ) = 0. (10.102)

The solution of (10.102) is easily found to be

ψ(θ) = e−i�θ/2π . (10.103)

Taking this section ψ amounts to neglecting the velocity of the electrons. The
holonomy � : π−1(θ = 0)→ π−1(θ = 2π) = π−1(θ = 0) is found to be

� : ψ(0) 
−→ e−i�ψ(0). (10.104)

In an experiment, a toroidal permalloy (20% Fe and 80% Ni) has been used
to eliminate the edge effects (Tonomura et al 1983). The dimensions of the
permalloy are several microns and it is coated with gold to prevent electrons from
penetrating into the magnetic field.

10.5.4 Yang–Mills theory

Let us consider SU(2) gauge theory defined on �4 . The bundle which describes
this gauge theory is P(�4 ,SU(2)). Since �4 is contractible, there is just a single
gauge potential

� = Aµ
αTα dxµ (10.105)

where Tα ≡ σα/2i generate the algebra ��(2),

[Tα, Tβ ] = εαβγ Tγ .

The field strength is

� ≡ d�+� ∧� = 1
2�µν dxµ ∧ dxν (10.106a)

where
�µν = ∂µ�ν − ∂ν�µ + [�µ,�ν] = Fµν

αTα (10.106b)

Fµν
α = ∂µAνα − ∂ν Aµα + εαβγ Aµβ Aνγ . (10.106c)

The Bianchi identity is
�� = d�+ [�,�] = 0. (10.107)

 



The Yang–Mills action is

�YM[�] ≡ − 1
4

∫
M

tr(�µν�
µν) = 1

2

∫
M

tr(� ∧ ∗�). (10.108)

The variation with respect to �µ yields

�µ�
µν = 0 or � ∗ � = 0. (10.109)

10.5.5 Instantons

A path integral is well defined only on a space with a Euclidean metric. To
evaluate this integral, it is important to find the local minima of the Euclidean
action and compute the quantum fluctuations around them. Let us consider the
SU(2) gauge theory on a four-dimensional Euclidean space �4 . The local minima
of this theory are known as instantons (or pseudoparticles, Belavin et al (1975)),
see section 1.10. It is easy to verify that the Euclidean action is

�E
YM[�] = 1

4

∫
M

tr(�µν�µν) = − 1
2

∫
M

tr(� ∧ ∗�) (10.110)

where the Hodge ∗ is taken with respect to the Euclidean metric. As has been
shown in section 1.10 the field strength corresponding to instantons is self-dual
(anti-self-dual),

�µν = ± ∗ �µν. (10.111)

The action of a self-dual (anti-self-dual) field configuration is

�E
YM[�] = − 1

2

∫
M

tr(� ∧ ∗�) = ∓ 1
2

∫
M

tr(� ∧ �). (10.112)

Let us consider the topological properties of an instanton. We require that

�µ(x)→ g(x)−1∂µg(x) as |x | → L (10.113)

for the action to be finite, where L is an arbitrary positive number. Since |x | = L
is the sphere S3, (10.113) defines a map g : S3 → SU(2) which is classified
by π3(SU(2)) ∼= �. How is this reflected upon the transition function? We
compactify �4 by adding the infinity. We suppose the South Pole of S4 represents
the points at infinity and the North Pole the origin. Under this compactification,
we separate �4 into two pieces and identify them with the southern hemisphere
US and the northern hemisphere UN of S4 as

UN ={x ∈ �4 ||x | ≤ L + ε} (10.114a)

US ={x ∈ �4 ||x | ≥ L − ε} (10.114b)

see figure 10.5. We assume there is no ‘twist’ of the gauge potential on US and
choose

�S(x) ≡ 0 x ∈ US. (10.115)

 



Figure 10.5. One-point compactification of �4 to S4.

Then all the topological information about the bundle is contained in �N(x) or
the transition function tNS(x) on the ‘equator’ S3 (=UN ∩US). Since�S = 0, we
have, for x ∈ UN ∩US,

�N = t−1
NS�StNS + t−1

NS dtNS = t−1
NS dtNS. (10.116)

Thus, g(x) in (10.113) is identified with the transition function tNS(x) and
classifying the maps g : S3 → SU(2) amounts to classifying the transition
functions according to π3(SU(2)) = �; see example 9.11.

We now compute the degree of a map g : S3 → SU(2) following Coleman
(1979). First note that SU(2) 	 S3 since

t4 I2 + t iσi ∈ SU(2)↔ t2 + (t4)2 = 1.

Thus, maps g : S3 → SU(2) are classified according to π3(SU(2)) ∼= π3(S3) ∼=
�. We easily find the following.

(a) The constant map

g0 : x ∈ S3 
→ e ∈ SU(2) (10.117a)

belongs to the class 0 (i.e. no winding) of π3(SU(2)).
(b) The identity map (this is, in fact, the identity map S3 → S3)

g1 : x 
→ 1

r
[x4 I2 + xiσi ], r2 = x2 + (x4)2 (10.117b)

defines the class 1 of π3(SU(2)). The explicit form of the gauge potential
corresponding to this homotopy class is given in section 1.10.

(c) The map
gn ≡ (g1)

n : x 
→ r−n[x4 I2 + xiσi ]n (10.117c)

defines the class n of π3(SU(2)).

We recall that the strength (charge) of a magnetic monopole is given by the
integral of the field strength � = d� over the sphere S2. We expect that a similar

 



relation exists for the instanton number. Since instantons are defined over S4, we
have to find a four-form to be integrated over S4. A natural four-form is �∧�. In
the following, we shall omit the exterior product symbol when this does not cause
confusion (�2 stands for � ∧ �). Observe that tr�2 is closed,

d tr�2 = tr[d��+ � d�]
= tr{−[�,�]�− �[�,�]} = 0 (10.118)

where use has been made of the Bianchi identity d�+ [�,�] = 0. [Remarks: In
the present case, (10.118) seems to be trivial since any four-form on S4 is closed.
Note, however, that (10.118) remains true even on higher-dimensional manifolds.]
By Poincaré’s lemma, the closed form tr�2 is locally exact,

tr�2 = dK (10.119)

where K is a local three-form. Thus, tr�2 is an element of the de Rham
cohomology group H 4(S4). Later tr�2 is identified with the second Chern
character and K its Chern–Simons form, see chapter 11.

Lemma 10.3. The three-form K in (10.119) is given by

K = tr[� d�+ 2
3�

3]. (10.120)

Proof. A straightforward computation yields

dK = tr[(d�)2 + 2
3 (d��

2 −� d��+�2 d�)]
= tr[(�−�2)(�−�2)

+ 2
3 {(�−�2)�2 −�(�−�2)�+�2(�−�2)}]

= tr[�2 −�2
�− ��2 +�4 + 2

3 (��
2 −���+ �2

�−�4)]
where use has been made of the identity d� = �−�2. Now we note that

tr�4 = 0 tr��� = − tr�2
� = − tr��2.

For example, we have

tr��� = 1
2 tr�κ�λµ�ν dxκ ∧ dxλ ∧ dxµ ∧ dxν

= − 1
2 tr�ν�κ�λµ dxν ∧ dxκ ∧ dxλ ∧ dxµ = − tr�2

�

where the cyclicity of the trace and the anti-commutativity of dxµ have been used.
Then dK becomes

dK = tr[�2 −�2
�− ��2 + 2

3 {��2 + 1
2 (��

2 + �2
�)+�2

�}]
= tr�2

as has been claimed. �

Lemma 10.4. Let � be the gauge potential of an instanton. Then it follows that∫
S4

tr�2 = − 1
3

∫
S3

tr�3. (10.121)

 



Proof. From Stokes’ theorem, we find that∫
UN

tr�2 =
∫

UN

dK =
∫

S3
K

where UN is defined by (10.114) and S3 = ∂UN. Since � = 0 on S3, we obtain

K = tr[�d�+ 2
3�

3] = tr[�(�−�2)+ 2
3�

3] = − 1
3 tr�3

on S3, from which we find that∫
UN

tr�2 =
∫

S4
tr�2 = − 1

3

∫
S3

tr�3

where we have added
∫

US
tr�2 = 0 since �S ≡ 0. �

Note that tr�2 is invariant under the gauge transformation,

tr�2 → tr[g−1
�

2g] = tr�2.

Thus, it is reasonable to assume that tr�2 indeed contains a certain amount
of topological information about the bundle, which is independent of particular
connections. Let us consider the gauge fields (10.117a−c) given before. We find:

(a) For g0(x) ≡ e, we have � = 0 on S3. Since the bundle is trivial we may
take � = 0 throughout S4. Then � = 0, hence∫

S4
tr�2 = − 1

3

∫
S3

tr�3 = 0. (10.122)

Note that this relation is true for any gauge potential which is obtained from
� = 0 by smooth gauge transformations, that is for any gauge potential of
the form �(x) = g(x)−1 dg (x), x ∈ S4.

(b) Next consider a gauge potential whose value on S3 is given by (10.117b) as

� = 1

r
(x4 − ixkσk) d

(
1

r
(x4 + ixlσl)

)
. (10.123)

A considerable simplification is achieved if we note that the integrand tr�3

should not depend on the point on S3 at which it is evaluated since g1 maps
S3 onto SU(2) ∼= S3 in a uniform way. So we may evaluate it at the North
Pole (x4 = 1, x = 0) of the unit sphere. We then find � = iσk dxk and

tr�3 = i3 tr[σiσ jσk] dxi ∧ dx j ∧ dxk

= 2εi j k dxi ∧ dx j ∧ dxk = 12 dx1 ∧ dx2 ∧ dx3. (10.124)

 



Next we note that (x1, x2, x3) is a good coordinate system on each
hemisphere of S3 and ω ≡ dx1 ∧ dx2 ∧ dx3 is a volume element at the
North Pole. We find∫

S3
tr�3 = 12

∫
S3
ω = 12(2π2) = 24π2

where 2π2 is the area of the unit sphere S3. We finally obtain

− 1

8π2

∫
S4

tr�2 = 1

24π2

∫
S3

tr�3 = 1. (10.125)

(c) Next we consider the map gn : S3 → SU(2) given by (10.117c). We
show that g2 = g1g1 has a winding number 2. We divide S3 into the
northern hemisphere U (3)

N and the southern hemisphere U (3)
S . Given a map

g1 : S3 → SU(2), it is always possible to transform g1 smoothly to g1N

which has the winding number one and g1N(x) = e for x ∈ U (3)
S . All the

variation takes place on U (3)
N . Similarly, g1 may be deformed to g1S with the

same winding number and g1S(x) = e for x ∈ U (3)
N . Under this deformation,

g2 becomes

g2(x)→ g′2(x) =
{

g1N(x) x ∈ U (3)
N

g1S(x) x ∈ U (3)
S .

For �(x) = g′2(x)−1 dg′2 (x) (x ∈ S3), we have

1

24π3

∫
S3

tr�3 = 1

24π2

(∫
U (3)

N

tr(g−1
1N dg1N)

3 +
∫

U (3)
S

tr(g−1
1S dg1S)

3

)
= 1+ 1 = 2. (10.126)

Repeating the same procedure we find for �(x) = g−1
n dgn that

− 1

8π2

∫
S4

tr�2 = 1

24π2

∫
S3

tr�3 = n. (10.127)

Collecting these results we establish the following theorem.

Theorem 10.7. The degree of mapping g : S3 → SU(2) is given by

n = 1

24π2

∫
S3

tr(g−1 dg)3 = 1

2

∫
S4

tr

(
i�

2π

)2

. (10.128)

10.6 Berry’s phase

In quantum mechanics, we define a wavefunction up to the phase. In most
cases, the phase is neglected as an irrelevant factor. Berry (1984) pointed out
that if the system undergoes an adiabatic change, the phase may have observable
consequences.

 



10.6.1 Derivation of Berry’s phase

Let H (R) be a Hamiltonian which depends on some parameters collectively
written as R. Suppose R changes adiabatically as a function of time, R = R(t).
The Schrödinger equation is

H (R(t))|ψ(t)〉 = i
d

dt
|ψ(t)〉. (10.129)

We assume the system at t = 0 is in the nth eigenstate, |ψ(0)〉 = |n, R(0)〉 where

H (R(0))|n, R(0)〉 = En(R(0))|n, R(0)〉. (10.130)

What about the state |ψ(t)〉 at later time t > 0? We assume the system is always
in the nth state, i.e. no level crossing takes place (adiabatic assumption).

Exercise 10.13. A naive guess of |ψ(t)〉 is

|ψ(t)〉 = exp

[
− i

∫ t

0
ds En(R(s))

]
|n, R(t)〉 (10.131)

where the normalized state |n, R(t)〉 satisfies

H (R(t))|n, R(t)〉 = En(R(t))|n, R(t)〉. (10.132)

Show that (10.131) is not a solution of (10.129).

Since (10.131) does not satisfy the Schrödinger equation, we have to try
other possibilities. Let us introduce an extra-phase ηn(t) in the wavefunction:

|ψ(t)〉 = exp

[
iη(t)− i

∫ t

0
En(R(s)) ds

]
|n, R(t)〉. (10.133)

Inserting (10.133) into the Schrödinger equation (10.129), we find

H (R(t))|ψ(t)〉 = En(R(t))|ψ(t)〉
for the LHS (see (10.132)) and

i
d

dt
|ψ(t)〉 =

[
−dηn(t)

dt
+ En(R(t))

]
|ψ(t)〉

+ exp

[
iηn(t)− i

∫
En(R(s)) ds

]
i

d

dt
|n, R(t)〉

for the RHS. Equating these, it is found that ηn(t) satisifes

dηn(t)

dt
= i〈n, R(t)| d

dt
|n, R(t)〉. (10.134)

 



By integrating (10.134), we obtain

ηn(t) = i
∫ t

0
〈n, R(s)| d

ds
|n, R(s)〉ds

= i
∫ R(t)

R(0)
〈n, R|∇R|n, R〉dR (10.135)

where ∇R stands for the gradient in R-space. Note that ηn(t) is real since

2 Re〈n, R(s)| d

ds
|n, R(s)〉

= 〈n, R(s)| d

ds
|n, R(s)〉 +

(
d

ds
〈n, R(s)|

)
|n, R(s)〉

= d

ds
〈n, R(s)|n, R(s)〉 = 0.

Suppose the system executes a closed loop in R-space; R(0) = R(T ) for some
T > 0. We then have

ηn(T ) = i
∫ T

0
〈n, R(s)| d

ds
|n, R(s)〉ds

= i
∫ R(T )

R(0)
〈n, R|∇R|n, R〉dR. (10.136)

Since R(T ) = R(0), the last expression seems to vanish. However, the integrand
is not necessarily a total derivative and ηn(T )may fail to vanish. The phase ηn(T )
is called Berry’s phase (Berry 1984).

It was Simon (1983) who first recognized the deep geometrical meaning
underlying Berry’s phase. He observed that the origin of Berry’s phase is
attributed to the holonomy in the parameter space. We shall work out this point
of view following Berry (1984), Simon (1983), Aitchison (1987) and Zumino
(1987).

10.6.2 Berry’s phase, Berry’s connection and Berry’s curvature

Let M be a manifold describing the parameter space and let R = (R1, . . . , Rk)

be the local coordinate. At each point R of M , we consider the normalized nth
eigenstate of the Hamiltonian H (R). Since a quantum state |n; R〉 cannot be
distinguished from eiφ|n; R〉, a physical state is expressed by an equivalence class

[|R〉] ≡ {g|R〉|g ∈ U(1)} (10.137)

where we omit the index n since we are interested only in the nth eigenvector
(figure 10.6). At each point R of M , we have a U(l) degree of freedom and we
have a U(l) bundle P(M,U(1)) over the parameter space M . The projection is
given by π(g|R〉) = R.

 



Figure 10.6. The fibre of a quantum mechanical system which depends on adiabatic
parameters R.

Fixing the phase of |R〉 at each point R ∈ M amounts to choosing a section.
Let σ(R) = |R〉 be a local section over a chart U of M . The canonical local
trivialization is given by

φ−1(|R〉) = (R, e). (10.138)

The ‘right’ action yields

φ−1(|R〉 · g) = (R, e)g = (R, g). (10.139)

Now that the bundle structure is defined, we provide it with a connection.
Let us define Berry’s connection by

� = �µ dRµ ≡ 〈R|(d |R〉) = −(d〈R|)|R〉 (10.140)

where d = (∂/∂Rµ)dRµ is the exterior derivative in R-space. Note that � is
anti-Hermitian since

0 = d(〈R|R〉) = (d〈R|)|R〉 + 〈R|d|R〉 = 〈R|d|R〉∗ + 〈R|d|R〉.
To see (10.140) is indeed a local form of a connection, we have to check the
compatibility condition. Let Ui and U j be overlapping charts of M and let
σi (R) = |R〉i and σ j (R) = |R〉 j be the respective local sections. They are
related by the transition function as |R〉 j = |R〉i ti j (R). We then find that

� j (R) = j 〈R|d|R〉 j = ti j (R)−1
i 〈R|[d|R〉i ti j (R)+ |R〉dti j (R)]

= �i (R)+ ti j (R)−1dti j (R). (10.141)

The set of one-forms {�i } satisfying (10.141) defines an Ehresmann connection
on P(M,U(1)).

 



The field strength � of � is called Berry’s curvature and is given by

� = d� = (d〈R|) ∧ (d|R〉) =
(
∂〈R|
∂Rµ

)(
∂|R〉
∂Rν

)
dRµ ∧ dRν. (10.142)

After an example from atomic physics, we shall clarify how this geometrical
structure is reflected in Berry’s phase.

Example 10.7. Let us consider a quantum mechanical system which contains
‘fast’ degrees of freedom r and ‘slow’ degrees of freedom R. For example, we
may imagine an electron moving under the potential of slowly vibrating ions.
Suppose the Hamiltonian is given by

H = p2

2m
+ P2

2M
+ V (r; R) (10.143)

where p(P) is the momentum canonical conjugate to r(R). As a first
approximation, we may consider the slow degrees of freedom are ‘frozen’ at some
value R and consider an instantaneous sub-Hamiltonian

h(R) = p2

2m
+ V (r; R) (10.144)

and the eigenvalue problem

h(R)|R〉 = εn(R)|R〉 (10.145)

where |R〉 stands for the nth eigenvector |n; R〉 of the ‘fast’ degrees of freedom.
We assume that the eigenvalue is isolated and non-degenerate. Berry’s connection
is �(R) = 〈R|d|R〉, while the curvature is � = (d〈R|) ∧ (d|R〉).

It is interesting to see how the fast degrees of freedom affect the slow degrees
of freedom. We assume the total wavefunction is written in the form

 (r; R) = �(R)|R〉 (10.146)

and find the ‘effective’ Schrödinger equation which �(R), the wavefunction
of the ‘slow’ degrees of freedom, satisfies. The eigenvalue problem of the
Hamiltonian (10.143) is

H (r; R) = − 1

2M
[∇2

R�(R)|R〉 + 2∇R�(R) · ∇R|R〉 +�(R)∇2
R|R〉]

−�(R) 1

2m
∇2

r |R〉 +�(R)V (r; R)|R〉
= En(R)�(R)|R〉.

If we multiply 〈R| on the left and use the Schrödinger equation (10.145), this
equation becomes

− 1

2M
[∇2

R�(R)+ 2∇R�(R) · 〈R|∇R|R〉 +�(R)(〈R|∇R|R〉)2]
+ εn(R)�(R) = En(R)�(R) (10.147)

 



where we have employed the Born–Oppenheimer approximation, in which all the
matrix elements except the diagonal ones are neglected,

〈n; R|∇R|n′; R〉 = 0 n′ �= n. (10.148)

Now the effective Hamiltonian for |�(R)〉 is given by

Heff(n) ≡ − 1

2M

(
∂

∂Rµ
+�µ(R)

)2

+ εn(R) (10.149)

where �µ is a component of Berry’s connection,

�µ(R) = 〈R| ∂
∂Rµ

|R〉. (10.150)

It is remarkable that the fast degrees of freedom have induced a vector potential
coupled to the slow degrees of freedom. Note also that the eigenvalue εn(R)
behaves as a potential energy in Heff. This ‘spontaneous creation’ of the gauge
symmetry reflects the phase degree of freedom of the wavefunction |R〉.

The Schrödinger equation describing the adiabatic change is

H (R(t))|R(t), t〉 =i
d

dt
|R(t), t〉 (10.151a)

where we note that |R(t), t〉 has an explicit t-dependence as well as an implicit
one through R(t). Berry assumes that

|R(t), t〉 = exp

(
− i

∫ t

0
En(t) dt

)
eiη(t)|R(t)〉 (10.152a)

where |R〉 is an instantaneous normalized eigenstate of H (R),

�(R)|R〉 = En(R)|R〉 〈R|R〉 = 1. (10.153)

The first exponential is the ordinary dynamical phase while the second one is
Berry’s phase. It is convenient for our purpose to define an operator

�(R) ≡ H (R)− En(R) (10.154)

to dispose of the dynamical phase. The state |R〉 is the zero-energy eigenstate of
�(R): �(R)|R〉 = 0. The solution of the modified Schrödinger equation,

�(R)|R(t), t〉 = i
d

dt
|R(t), t〉 (10.151b)

is then given by
|R(t), t〉 = eiη(t)|R(t)〉. (10.152b)

 



We found in (10.136) that η is given by

η(t) = i
∫ t

0
ds

dRµ

ds
〈R(s)| ∂

∂Rµ
|R(s)〉 = i

∫ R(t)

R(0)
〈R|d|R〉. (10.155)

We show that Berry’s phase is a holonomy associated with the connection
(10.140) on P(M,U(1)). Take a section σ(R) = |R〉 over a chart U of M . Let
R : [0, 1] → M be a loop in U .2 We write a horizontal lift of R(t) with respect
to the connection (10.140) as

R̃(t) = σ(R(t))g(R(t)) (10.156)

where g(R(0)) is taken to be the unit element of U(1). The group element g(t)
satisfies (10.13b),

dg(t)

dt
g(t)−1 = −�

(
d

dt

)
= −〈R(t)| d

dt
|R(t)〉 (10.157)

where g(t) stands for g(R(t)). From g(t) = exp(iη(t)), we obtain

i
dη(t)

dt
= −〈R(t)| d

dt
|R(t)〉

which is easily integrated to yield

η(1) = i
∫ 1

0
〈R(s)| d

ds
|R(s)〉 ds = i

∮
〈R|d|R〉. (10.158)

Let us note that R(0) = R(1), hence |R(0)〉 = |R(1)〉. Then exp[iη(1)] is
regarded as a holonomy (figure 10.7)

R̃(1) = exp

(
−

∮
〈R|d|R〉

)
· |R(0)〉. (10.159a)

Exercise 10.14. Let S be a surface in M , which is bounded by the loop R(t).
Show that

R̃(1) = exp

(
−

∮
S
�

)
· |R(0)〉 (10.159b)

where � is given by (10.142).

Example 10.8. Let us consider a spin- 1
2 particle in a magnetic field with the

Hamiltonian

H (R) = R · σ =
(

R3 R1 − iR2
R1 + iR2 −R3

)
. (10.160)

2 We shall be a little sloppy in our notation.

 



Figure 10.7. If the parameter changes adiabatically along a loop R(t), the state with initial
condition |R(0)〉 becomes |R̃(1)〉which is different from |R(0)〉 in general. The difference
is the holonomy and is identified with Berry’s phase.

The parameter R corresponds to the applied magnetic field. This is a two-level
system taking eigenvalues ±|R|. Let us consider the eigenvalue R = +|R|.
According to the prescription just described, we introduce a Hamiltonian�(R) ≡
H (R)− |R| and consider the zero-energy eigenstate of�(R) given by

|R〉N = [2R(R + R3)]−1/2
(

R + R3
R1 + iR2

)
. (10.161)

The gauge potential is obtained after a straightforward but tedious calculation as

�N = N〈R|d|R〉N = −i
R2 dR1 − R1 dR2

2R(R + R3)
. (10.162)

The field strength is

� = d� = i

2

R1 dR2 ∧ dR3 + R2 dR3 ∧ dR1 + R3 dR1 ∧ dR2

R3
. (10.163)

So far we have assumed that the state |R〉 is isolated. However, this
assumption breaks down if R = 0, in which case two eigenstates are degenerate.
Surprisingly, this singularity behaves like a magnetic monopole in R-space. To
see this, we introduce polar coordinates θ and φ in R-space,

R1 = R sin θ cosφ R2 = R sin θ sin φ R3 = R cos θ.

 



The state (10.161) is expressed as

|R〉N =
(

cos(θ/2)
eiφ sin(θ/2)

)
. (10.164)

This state is singular at θ = π , reflecting that |R〉N is not defined for R3 = −R.
Consider another eigenvector

|R〉S ≡ e−iφ|R〉N =
(

e−iφ cos(θ/2)
sin(θ/2)

)
= [2R(R − R3)]−1/2

(
R1 − iR2
R − R3

)
(10.165)

with the same eigenvalue. This eigenvector is singular at θ = 0, that is at
R3 = R. Corresponding to these vectors, we have Berry’s gauge potentials in
polar coordinates,

�N =1
2 i(1− cos θ) dφ θ �= π (10.166a)

�S =− 1
2 i(1+ cos θ) dφ θ �= 0. (10.166b)

They are related by the gauge transformation,

�S = �N − idφ = �N + eiφ de−iφ (10.167)

where g(π/2, φ) = exp(−iφ) is identified with the transition function tNS.
Equation (10.166) is simply the vector potential of the Wu–Yang monopole of
strength − 1

2 , see sections 1.9 and 10.5. The total flux of the monopole is
� = 4π(− 1

2) = −2π .
The analogy between the present problem and the magnetic monopole is

evident by now. If we fix the amplitude R of the magnetic field, the restricted
parameter space is S2. At each point R of S2, the state has a phase degree
of freedom. Thus, we are dealing with a U(1) bundle P(S2,U(1)), which also
describes a magnetic monopole. For each choice of the parameters R, we have
a fibre corresponding to the nth eigenstate |n; R〉. The fibre at R consists of the
equivalence class [|R〉] defined by (10.137). The projection π maps a state to
the parameter on which it is defined: π : eiα|R〉 → R ∈ S2. As we have seen,
this bundle is non-trivial since it cannot be described by a single connection. The
non-triviality of the bundle implies the existence of a monopole at the origin. Note
that R = 0 (that is, B = 0) is a singular point at which all the eigenvalues are
degenerate.

Next we turn to the problem of holonomy. Take a standard point R(0)
on S2 and choose a vector |R(0)〉. We choose a loop R(t) on S2 and execute
a parallel transportation of |R(0)〉 along R(t), after which it comes back as
a vector exp[iη(1)]|R(0)〉. The additional phase η represents the holonomy

 



π−1(R) → π−1(R) and corresponds to Berry’s phase. From (10.158), η(1)
is given by

η(1) = i
∮

R
� = i

∫
S
� (10.168)

where � = d� is the field strength and S is the surface bounded by the loop R(t).
It follows from (10.168) that Berry’s phase η(1) represents the ‘magnetic flux’
through the area S.

Exercise 10.15. Use (10.165) to show that

�S = i

2

R2 dR1 − R1 dR2

R(R − R3)
. (10.169)

Show also that

dφ = − R2 dR1 − R1 dR2

(R + R3)(R − R3)
. (10.170)

Observe that dφ is singular at R3 = ±R.

Problems

10.1 Consider a two-dimensional plane M with coordinate R and a wavefunction
ψ which depends on R adiabatically as ψ = ψ(r, R). Let R : [0, 1] → M
be a loop in M and suppose ψ(r, R(1)) = −ψ(r, R(0)), that is the phase of ψ
changes by π after an adiabatic change along the loop. Show that there is a point
within the loop at which the adiabatic assumption breaks down. See Longuet-
Higgins (1975).

 



11

CHARACTERISTIC CLASSES

Given a fibre F , a structure group G and a base space M , we may construct
many fibre bundles over M , depending on the choice of the transition functions.
Natural questions we may ask ourselves are how many bundles there are over M
with given F and G, and how much they differ from a trivial bundle M × F . For
example, we observed in section 10.5 that an SU(2) bundle over S4 is classified
by the homotopy group π3(SU(2)) ∼= �. The number n ∈ � tells us how the
transition functions twist the local pieces of the bundle when glued together.
We have also observed that this homotopy group is evaluated by integrating
tr�2 ∈ H 4(S4) over S4, see theorem 10.7.

Characteristic classes are subsets of the cohomology classes of the base
space and measure the non-triviality or twisting of a bundle. In this sense, they
are obstructions which prevent a bundle from being a trivial bundle. Most of the
characteristic classes are given by the de Rham cohomology classes. Besides their
importance in classifications of fibre bundles, characteristic classes play central
roles in index theorems.

Here we follow Alvalez-Gaumé and Ginsparg (1984), Eguchi et al (1980),
Gilkey (1995) and Wells (1980). See Bott and Tu (1982), Milnor and Stasheff
(1974) for more mathematical expositions.

11.1 Invariant polynomials and the Chern–Weil homomorphism

We give here a brief summary of the de Rham cohomology group (see chapter 6
for details). Let M be an m-dimensional manifold. An r -form ω ∈ �r (M) is
closed if dω = 0 and exact if ω = dη for some η ∈ �r−1(M). The set of closed r -
forms is denoted by Zr (M) and the set of exact r -forms by Br (M). Since d2 = 0,
it follows that Zr (M) ⊃ Br (M). We define the r th de Rham cohomology group
H r(M) by

H r(M) ≡ Zr (M)/Br (M).

In H r(M), two closed r -forms ω1 and ω2 are identified if ω1−ω2 = dη for some
η ∈ �r−1(M). Let M be an m-dimensional manifold. The formal sum

H ∗(M) ≡ H 0(M)⊕ H 1(M)⊕ · · · ⊕ H m(M)

is the cohomology ring with the product ∧ : H ∗(M) × H ∗(M) → H ∗(M)
induced by ∧ : H p(M) × H q(M) → H p+q(M). Let f : M → N be a

 



smooth map. The pullback f ∗ : �r (N) → �r (M) naturally induces a linear
map f ∗ : H r(N) → H r(M) since f ∗ commutes with the exterior derivative:
f ∗ dω = d f ∗ω. The pullback f ∗ preserves the algebraic structure of the
cohomology ring since f ∗(ω ∧ η) = f ∗ω ∧ f ∗η.

11.1.1 Invariant polynomials

Let M(k, � ) be the set of complex k × k matrices. Let Sr (M(k, � )) denote
the vector space of symmetric r -linear � -valued functions on M(k, � ). In other
words, a map

P̃ : r⊗ M(k, � ) → �

is an element of Sr (M(k, � )) if it satisfies, in addition to linearity in each entry,
the symmetry

P̃(a1, . . . , ai , . . . , a j , . . . , ar )

= P̃(a1, . . . , a j , . . . , ai , . . . , ar ) 1 ≤ i, j ≤ r (11.1)

where ap ∈ GL(k, � ). Let

S∗(M(k, � )) ≡ ∞⊕
r=0

Sr (M(k, � ))

denote the formal sum of symmetric multilinear � -valued functions. We define a
product of P̃ ∈ S p(M(k, � )) and Q̃ ∈ Sq(M(k, � )) by

P̃ Q̃(X1, . . . , X p+q )

= 1

(p + q)!
∑

P

P̃(X P(1), . . . , X P(p))Q̃(X P(p+1), . . . , X P(p+q)) (11.2)

where P is the permutation of (1, . . . , p + q). S∗(M(k, � )) is an algebra with
this multiplication.

Let G be a matrix group and � its Lie algebra. In practice, we take
G = GL(k, � ),U(k) or SU(k). The Lie algebra � is a subspace of M(k, � )
and we may consider the restrictions Sr (�) and S∗(�) ≡⊕

r≥0 Sr (�). P̃ ∈ Sr (�)

is said to be invariant if, for any g ∈ G and Ai ∈ �, P̃ satisfies

P̃(Adg A1, . . . ,Adg Ar ) = P̃(A1, . . . , Ar ) (11.3)

where Adg Ai = g−1 Ai g. For example,

P̃(A1, A2, . . . , Ar ) = str(A1, A2, . . . , Ar )

≡ 1

r !
∑

P

tr(AP(1), AP(2), . . . , AP(r)) (11.4)

 



is symmetric, r -linear and invariant, where ‘str’ stands for the symmetrized trace
and is defined by the last equality. The set of G-invariant members of Sr (�) is
denoted by I r (G). Note that �1 = �2 does not necessarily imply I r (G1) =
I r (G2). The product defined by (11.2) naturally induces a multiplication

I p(G)⊗ I q (G)→ I p+q (G). (11.5)

The sum I ∗(G) ≡⊗
r≥0 I r (G) is an algebra with this product.

Take P̃ ∈ I r (G). The shorthand notation for the diagonal combination is

P(A) ≡ P̃(A, A, . . . , A︸ ︷︷ ︸
r

) A ∈ �. (11.6)

Clearly, P is a polynomial of degree r and called an invariant polynomial. P is
also Ad G-invariant,

P(Adg A) = P(g−1 Ag) = P(A) A ∈ �, g ∈ G. (11.7)

For example, tr(Ar ) is an invariant polynomial obtained from (11.4). In general,
an invariant polynomial may be written in terms of a sum of products of Pr ≡
tr(Ar ).

Conversely, any invariant polynomial P defines an invariant and symmetric
r -linear form P̃ by expanding P(t1 A1 + · · · + tr Ar ) as a polynomial in ti . Then
1/r ! times the coefficient of t1t2 · · · tr is invariant and symmetric by construction
and is called the polarization of P . Take P(A) ≡ tr(A3), for example. Following
the previous prescription, we expand tr(t1 A1 + t2 A2 + t3 A3)

3 in powers of t1, t2
and t3. The coefficient of t1t2t3 is

tr(A1 A2 A3 + A1 A3 A2 + A2 A1 A3 + A2 A3 A1 + A3 A1 A2 + A3 A2 A1)

= 3 tr(A1 A2 A3 + A2 A1 A3)

where the cyclicity of the trace has been used. The polarization is

P̃(A1, A2, A3) = 1
2 tr(A1 A2 A3 + A2 A1 A3) = str(A1, A2, A3).

In the previous chapter, we introduced the local gauge potential� = �µ dxµ

and the field strength � = 1
2�µν dxµ ∧ dxν on a principal bundle. We have

shown that these geometrical objects describe the associated vector bundles as
well. Since the set of connections {�i } describes the twisting of a fibre bundle,
the non-triviality of a principal bundle is equally shared by its associated bundle.
In fact, if (10.57) is employed as a definition of the local connection in a vector
bundle, it can be defined even without reference to the principal bundle with which
it is originally associated. Later, we encounter situations in which use of vector
bundles is essential (the Whitney sum bundle, the splitting principle and so on).

 



Let P(M, � ) be a principal bundle. We extend the domain of invariant
polynomials from � to �-valued p-forms on M . For Aiηi (Ai ∈ �, η ∈
�pi (M); 1 ≤ i ≤ r), we define

P̃(A1η1, . . . , Arηr ) ≡ η1 ∧ . . .∧ ηr P̃(A1, . . . , Ar ). (11.8)

For example, corresponding to (11.4), we have

str(A1η1, . . . , Arηr ) = η1 ∧ . . . ∧ ηr str(A1, . . . , Ar ).

The diagonal combination is

P(Aη) ≡ η ∧ . . . ∧ η︸ ︷︷ ︸
r

P(A). (11.9)

The action P̃ or P on general elements is given by the r -linearity. In particular,
we are interested in the invariant polynomial of the form P(�) in the following.
The importance of invariant polynomials resides in the following fundamental
theorem.

Theorem 11.1. (Chern–Weil theorem) Let P be an invariant polynomial. Then
P(�) satisfies

(a) dP(�) = 0.
(b) Let � and �′ be curvature two-forms corresponding to different
connections� and �′. Then the difference P(�′)− P(�) is exact.

Proof. (a) It is sufficient to prove that dP(�) = 0 for an invariant polynomial
Pr (�) which is homogeneous of degree r , since any invariant polynomial can be
decomposed into homogeneous polynomials. First consider the identity,

P̃r (g
−1
t X1gt , . . . , g−1

t Xr gt ) = P̃r (X1, . . . , Xr )

where gt ≡ exp(t X) and X, Xi ∈ �. By putting t = 0 after differentiation with
respect to t , we obtain

r∑
i=1

P̃r (X1, . . . , [Xi , X ], . . . , Xr ) = 0. (11.10)

Next, let A be a �-valued p-form and �i be a �-valued pi -form (1 ≤ i ≤ r).
Without loss of generality, we may take A = Xη and�i = Xiηi where X, Xi ∈ �
and η (ηi ) is a p-form (pi -form). Define

[�i , A] ≡ ηi ∧ η[Xi , X ]
= Xi X (ηi ∧ η)− (−1)ppi X Xi (η ∧ ηi ). (11.11)

 



Let us note that

P̃r (�1, . . . , [�i , A], . . . , �r )

= η1 ∧ . . . ∧ ηi ∧ η ∧ . . .∧ ηr P̃r (X1, . . . , Xi X, . . . , Xr )

− (−1)p·piη1 ∧ . . .∧ η ∧ ηi ∧ . . .
. . . ∧ ηr P̃r (X1, . . . , X Xi , . . . , Xr )

= η ∧ η1 ∧ . . .∧ ηr (−1)p(p1+···+pi )

× P̃r (X1, . . . , [Xi , X ], . . . , Xr ).

From this and (11.10), we find

r∑
i=1

(−1)p(p1+···+pi ) P̃r (�1, . . . , [�i , A], . . . , �r ) = 0. (11.12)

Next, consider the derivative,

dP̃r (�1, . . . , �r ) = d(η1 ∧ . . .∧ ηr )P̃r (X1, . . . , Xr )

=
r∑

i=1

(−1)(p1+···+pi−1)(η1 ∧ . . . ∧ dηi ∧ . . . ∧ ηr )

× P̃r (X1, . . . , Xi , . . . , Xr )

=
r∑

i=1

(−1)(p1+···+pi−1) P̃r (�1, . . . , d�i , . . . , �r ). (11.13)

Let A = � and �i = � in (11.12) and (11.13) for which p = 1 and pi = 2. By
adding 0 of the form (11.12) to (11.13) we have

dP̃r (�, . . . ,�)

=
r∑

i=1

[P̃r (�, . . . , d�, . . . ,�)+ P̃r (�, . . . , [�,�], . . . ,�)]

=
r∑

i=1

P̃r (�, . . . ,��, . . . ,�) = 0 (11.14)

since �� = d�+ [�,�] = 0 (the Bianchi identity). We have proved

dPr (�) = dP̃r (�, . . . ,�) = 0.

(b) Let � and �′ be two connections on E and let � and �′ be the respective
field strengths. Define an interpolating gauge potential �t , by

�t ≡ �+ tθ θ ≡ (�′ −�) 0 ≤ t ≤ 1 (11.15)

 



so that �0 = � and �1 = �′. The corresponding field strength is

�t ≡ d�t +�t ∧�t = �+ t�θ + t2θ2 (11.16)

where �θ = dθ + [�, θ ] = dθ +� ∧ θ + θ ∧�. We first note that

Pr (�
′)− Pr (�) = Pr (�1)− Pr (�0) =

∫ 1

0
dt

d

dt
Pr (�t)

= r
∫ 1

0
dt P̃r

(
d

dt
�t,�t , . . . ,�t

)
. (11.17)

From (11.16), we find that

d

dt
Pr (�t) = r P̃r (�θ + 2tθ2,�t , . . . ,�t)

= r P̃r (�θ,�t , . . . ,�t)+ 2r t P̃r (θ
2,�t , . . . ,�t). (11.18)

Note also that

��t = d�t + [�,�t ] = −[�t ,�t] + [�,�t] = t[�t , θ ]
where use has been made of the Bianchi identity �t�t = d�t + [�t ,�t ] = 0. [�
is the covariant derivative with respect to � while �t is that with respect to �t .]
It then follows that

d[P̃r (θ,�t , . . . ,�t)]
= P̃r (dθ,�t, . . . ,�t)− (r − 1)P̃r (θ, d�t, . . . ,�t)

= P̃r (�θ,�t , . . . ,�t)− (r − 1)P̃r (θ,��t , . . . ,�t)

= P̃r (�θ,�t , . . . ,�t)− (r − 1)t P̃r (θ, [�t, θ ],�t, . . . ,�t) (11.19)

where we have added a 0 of the form (11.12) to change d to �. If we take
�1 = A = θ,�2 = · · · = �m = �t in (11.12), we have

2P̃r (θ
2,�t , . . . ,�t)+ (r − 1)P̃r (θ, [�t, θ ],�t , . . . ,�t) = 0.

From (11.18), (11.19) and the previous identity, we obtain

d

dt
Pr (�t) = rd[P̃r (θ,�t, . . . ,�t)].

We finally find that

Pr (�
′)− Pr (�) = d

[
r
∫ 1

0
P̃r (�

′ −�,�t, . . . ,�t) dt

]
. (11.20)

This shows that Pr (�
′) differs from Pr (�) by an exact form. �

 



We define the transgression T Pr (�
′,�) of Pr by

T Pr (�
′,�) ≡ r

∫ 1

0
dt P̃r (�

′ −�,�t , . . . ,�t) (11.21)

where P̃r is the polarization of Pr . Transgressions will play an important role
when we discuss Chern–Simons forms in section 11.5. Let dim M = m. Since
Pm(�

′) differs from Pm(�) by an exact form, their integrals over a manifold M
without a boundary should be the same:∫

M
Pm(�

′)−
∫

M
Pm(�) =

∫
M

dT Pm (�
′,�) =

∫
∂M

Pm(�
′,�) = 0. (11.22)

As has been proved, an invariant polynomial is closed and, in general, non-
trivial. Accordingly, it defines a cohomology class of M . Theorem 11.1(b)
ensures that this cohomology class is independent of the gauge potential chosen.
The cohomology class thus defined is called the characteristic class. The
characteristic class defined by an invariant polynomial P is denoted by χE (P)
where E is a fibre bundle on which connections and curvatures are defined.
[Remark: Since a principal bundle and its associated bundles share the same
gauge potentials and field strengths, the Chern–Weil theorem applies equally to
both bundles. Accordingly, E can be either a principal bundle or a vector bundle.]

Theorem 11.2. Let P be an invariant polynomial in I ∗(G) and E be a fibre bundle
over M with structure group G.

(a) The map
χE : I ∗(G)→ H ∗(M) (11.23)

defined by P → χE (P) is a homomorphism (Weil homomorphism).
(b) Let f : N → M be a differentiable map. For the pullback bundle f ∗E of
E , we have the so-called naturality

χ f ∗E = f ∗χE . (11.24)

Proof. (a) Take Pr ∈ I r (G) and Ps ∈ I s(G). If we write � = �αTα , we have

(Pr Ps)(�) = �α1 ∧ . . . ∧ �αr ∧ �β1 ∧ . . . ∧ �βs

× 1

(r + s)! P̃r (Tα1, . . . , Tαr )P̃n(Tβ1, . . . , Tβs )

= Pr (�)∧ Ps(�).

Then (a) follows since Pr (�), Ps(�) ∈ H ∗(M).
(b) Let� be a gauge potential of E and � = d�+�∧�. It is easy to verify

that the pullback f ∗� is a connection in f ∗E . In fact, let �i and � j be local
connections in overlapping charts Ui and U j of M . If ti j is a transition function

 



on Ui ∩ U j , the transition function on f ∗E is given by f ∗ti j = ti j ◦ f . The
pullback f ∗�i and f ∗� j are related as

f ∗� j = f ∗(t−1
i j �i ti j + t−1

i j dti j )

= ( f ∗t−1
i j )( f ∗�i )( f ∗ti j )+ ( f ∗t−1

i j )(d f ∗ti j ).

This shows that f ∗� is, indeed, a local connection on f ∗E . The corresponding
field strength on f ∗E is

d( f ∗�i )+ f ∗�i ∧ f ∗�i = f ∗[d�i +�i ∧�i ] = f ∗�i .

Hence, f ∗P(�i) = P( f ∗�i), that is f ∗χE (P) = χ f ∗E (P). �

Corollary 11.1. Characteristic classes of a trivial bundle are trivial.

Proof. Let E
π−→ M be a trivial bundle. Since E is trivial, there exists a map

f : M → {p} such that E = f ∗E0 where E0 −→ {p} is a bundle over a
point p. All the de Rham cohomology groups of a point are trivial and so are the
characteristic classes. Theorem 11.2(b) ensures that the characteristic classes χE

(= f ∗χE0) of E are also trivial. �

11.2 Chern classes

11.2.1 Definitions

Let E
π−→ M be a complex vector bundle whose fibre is � k . The structure group

G is a subgroup of GL(k, � ), and the gauge potential � and the field strength �
take their values in �. Define the total Chern class by

c(�) ≡ det

(
I + i�

2π

)
. (11.25)

Since � is a two-form, c(�) is a direct sum of forms of even degrees,

c(�) = 1+ c1(�)+ c2(�)+ · · · (11.26)

where c j (�) ∈ �2 j (M) is called the j th Chern class. In an m-dimensional
manifold M , the Chern class c j (�) with 2 j > m vanishes trivially. Irrespective
of dim M , the series terminates at ck(�) = det(i�/2π) and c j (�) = 0 for j > k.
Since c j (�) is closed, it defines an element [c j (�)] of H 2 j(M).

Example 11.1. Let F be a complex vector bundle with fibre � 2 over M , where
G = SU(2) and dim M = 4. If we write the field � = �α(σα/2i), �α =
1
2�

α
µν dxµ ∧ dxν, we have

c(�) = det

(
I + i

2π
�
α(σα/2i)

)

 



= det

(
1+ (i/2π)(�3/2i) (i/2π)(�1 − i�2)/2i
(i/2π)(�1 + i�2)/2i 1− (i/2π)(�3/2i)

)
= 1+ 1

4

(
i

2π

)2 (
�

3 ∧ �3 + �1 ∧ �1 + �2 ∧ �2
)
. (11.27)

Individual Chern classes are

c0(�) = 1

c1(�) = 0

c2(�) =
(

i

2π

)2 ∑ �α ∧ �α
4

= det

(
i�

2π

)
.

(11.28)

Higher Chern classes vanish identically.

For general fibre bundles, it is rather cumbersome to compute the Chern
classes by expanding the determinant and it is desirable to find a formula which
yields them more easily. This is done by diagonalizing the curvature form.
The matrix form � is diagonalized by an appropriate matrix g ∈ GL(k, � ) as
g−1(i�/2π)g = diag(x1, . . . , xk), where xi is a two-form. This diagonal matrix
will be denoted by A. For example, if G = SU(k), the generators are chosen to be
anti-Hermitian and a Hermitian matrix i�/2π can be diagonalized by g ∈ SU(k).
We have

det(I + A) = det[diag(1+ x1, 1+ x2, . . . , 1+ xk)]

=
k∏

j=1

(1+ x j )

= 1+ (x1 + · · · + xk)+ (x1x2 + · · · + xk−1xk)

+ · · · + (x1x2 + · · · + xk)

= 1+ tr A + 1
2 {(tr A)2 − tr A2} + · · · + det A. (11.29)

Observe that each term of (11.29) is an elementary symmetric function of {x j },
S0(x j ) ≡ 1

S1(x j ) ≡
k∑

j=1

x j

S2(x j ) ≡
∑
i< j

xi x j

...

Sk(x j ) ≡ x1x2 . . . xk .

(11.30)

 



Since det(I + A) is an invariant polynomial, we have P(�) = P(g�g−1) =
P(2π A/i), see (11.7). Accordingly, we have, for general �,

c0(�) = 1

c1(�) = tr A = tr

(
g

i�

2π
g−1

)
= i

2π
tr�

c2(�) = 1
2 [(tr�)2 − tr�2] = 1

2 (i/2π)
2[tr� ∧ tr�− tr(� ∧ �)]

...

ck(�) = det A = (i/2π)k det�.

(11.31)

Example 11.1 is easily verified from (11.31). [Note that the Pauli matrices (in
general, any element of the Lie algebra ��(n) of SU(n)) are traceless, tr σα = 0.]

11.2.2 Properties of Chern classes

We will deal with several vector bundles in the following. We often denote the
Chern class of a vector bundle E by c(E). If the specification of the curvature is
required, we write c(�E).

Theorem 11.3. Let E
π−→ M be a vector bundle with G = GL(k, � ) and

F = � k .

(a) (Naturality) Let f : N → M be a smooth map. Then

c( f ∗E) = f ∗c(E). (11.32)

(b) Let F
π ′−→ M be another vector bundle with F = � l and G = GL(l, � ).

The total Chern class of a Whitney sum bundle E ⊕ F is

c(E ⊕ F) = c(E) ∧ c(F). (11.33)

Proof.

(a) The naturality follows directly from theorem 11.2(a). Since the curvature
of f ∗E is � f ∗E = f ∗�E , the total Chern class of f ∗E is

c( f ∗E) = det

(
I + i

2π
� f ∗E

)
= det

(
I + i

2π
f ∗�E

)
= f ∗ det

(
I + i

2π
�E

)
= f ∗c(E).

(b) Let us consider the Chern polynomial of a matrix

A =
(

B 0
0 C

)
.

 



[Note that the curvature of a Whitney sum bundle is block diagonal: �E⊕F =
diag(�E ,�F).] We find that

det

(
I + iA

2π

)
= det

(
I + iB

2π 0
0 I + iC

2π

)
= det

(
I + iB

2π

)
det

(
I + iC

2π

)
= c(B)c(C).

This relation remains true when B and C are replaced by�E and�F , namely

c(�E⊕F) = c(�E) ∧ c(�F)

which proves (11.33). �

Exercise 11.1. (a) Let E be a trivial bundle. Use corollary 11.1 to show that

c(E) = 1. (11.34)

(b) Let E be a vector bundle such that E = E1 ⊕ E2 where E1 is a vector
bundle of dimension k1 and E2 is a trivial vector bundle of dimension k2. Show
that

ci (E) = 0 k1 + 1 ≤ i ≤ k1 + k2. (11.35)

11.2.3 Splitting principle

Let E be a Whitney sum of n complex line bundles,

E = L1 ⊕ L2 ⊕ · · · ⊕ Ln. (11.36)

From (11.33), we have

c(E) = c(L1)c(L2) . . . c(Ln) (11.37)

where the product is the exterior product of differential forms. Since cr (L) = 0
for r ≥ 2, we write

c(Li ) = 1+ c1(Li ) ≡ 1+ xi . (11.38)

Then (11.37) becomes

c(E) =
n∏

i=1

(1+ xi ). (11.39)

Comparing this with (11.29), we find that the Chern class of an n-dimensional
vector bundle E is identical with that of the Whitney sum of n complex line
bundles. Although E is not a Whitney sum of complex line bundles in general,
as far as the Chern classes are concerned, we may pretend that this is the case.
This is called the splitting principle and we accept this fact without proof. The
general proof is found in Shanahan (1978) and Hirzebruch (1966), for example.

 



Intuitively speaking, if the curvature � is diagonalized, the complex vector
space on which g acts splits into k independent pieces: � k → � ⊕ · · · ⊕ � . An
eigenvalue xi is a curvature in each complex line bundle. Since diagonalizable
matrices are dense in M(n, � ), any matrix may be approximated by a diagonal
one as closely as we wish. Hence, the splitting principle applies to any matrix. As
an exercise, the reader may prove (11.33) using the splitting principle.

11.2.4 Universal bundles and classifying spaces

By now the reader must have some acquaintance with characteristic classes.
Before we close this section, we examine these from a slightly different point of
view emphasizing their role in the classification of fibre bundles. Let E

π−→ M
be a vector bundle with fibre � k . It is known that we can always find a bundle

Ē
π ′−→ M such that

E ⊕ Ē ∼= M × � n (11.40)

for some n ≥ k. The fibre Fp of E at p ∈ M is a k-plane lying in � n . Let Gk,n(� )
be the Grassmann manifold defined in example 8.4. The manifold Gk,n(� ) is
the set of k-planes in � n . Similarly to the canonical line bundle, we define the
canonical k-plane bundle Lk,n(� ) over Gk,n(� ) with the fibre � k . Consider a
map f : M → Gk,n(� ) which maps a point p to the k-plane Fp in � n .

Theorem 11.4. Let M be a manifold with dim M = m and let E
π−→ M be a

complex vector bundle with the fibre � k . Then there exists a natural number N
such that for n > N ,

(a) there exists a map f : M → Gk,n(� ) such that

E ∼= f ∗Lk,n(� ) (11.41)

(b) f ∗Lk,n(� ) ∼= g∗Lk,n(� ) if and only if f, g : M → Gk,n(� ) are
homotopic.

The proof is found in Chern (1979). For example, if E
π−→ M is a complex

line bundle, then there exists a bundle Ē
π ′−→ M such that E ⊕ Ē ∼= M × � n and

a map f : M → G1,n(� ) ∼= � Pn−1 such that E = f ∗L, L being the canonical
line bundle over � Pn−1 . Moreover, if f ∼ g, then f ∗L is equivalent to g∗L.
Theorem 11.4 shows that the classification of vector bundles reduces to that of
the homotopy classes of the maps M → Gk,n(� ).

It is convenient to define the classifying space Gk(� ). Regarding a k-plane
in � n as that in � n+1 , we have natural inclusions.

Gk,k(� ) ↪→ Gk,k+1(� ) ↪→ · · · ↪→ Gk(� ) (11.42)

 



where

Gk(� ) ≡
∞⋃

n=k

Gk,n(� ). (11.43)

Correspondingly, we have the universal bundle Lk → Gk(� ) whose fibre is
� k . For any complex vector bundle E

π−→ M with fibre � k , there exists a map
f : M → Gk(� ) such that E = f ∗Lk(� ).

Let E
π−→ M be a vector bundle. A characteristic class χ is defined as a

map χ : E → χ(E) ∈ H ∗(M) such that

χ( f ∗E) = f ∗χ(E) (naturality) (11.44a)

χ(E) = χ(E ′) if E is equivalent to E ′. (11.44b)

The map f ∗ on the LHS of (11.44a) is a pullback of the bundle while f ∗ on
the RHS is that of the cohomology class. Since the homotopy class [ f ] of
f : M → Gk(� ) uniquely defines the pullback

f ∗ : H ∗(Gk)→ H ∗(M) (11.45)

an element χ(E) = f ∗χ(Gk) proves to be useful in classifying complex vector
bundles over M with dim E = k. For each choice of χ(Gk), there exists a
characteristic class in E .

The Chern class c(E) is also defined axiomatically by

(i) c( f ∗E) = f ∗c(E) (naturality) (11.46a)

(ii) c(E) = c0(E)⊕ c1(E)⊕ · · · ⊕ ck(E)

ci (E) ∈ H 2i(M); ci (E) = 0 i > k (11.46b)

(iii) c(E ⊕ F) = c(E)c(E) (Whitney sum) (11.46c)

(iv) c(L) = 1+ x (normalization) (11.46d)

L being the canonical line bundle over � Pn . It can be shown that these axioms
uniquely define the Chern class as (11.25).

11.3 Chern characters

11.3.1 Definitions

Among the characteristic classes, the Chern characters are of special importance
due to their appearance in the Atiyah–Singer index theorem. The total Chern
character is defined by

ch(�) ≡ tr exp

(
i�

2π

)
=

∑
j=1

1

j ! tr

(
i�

2π

)j

. (11.47)

 



The j th Chern character ch j (�) is

ch j (�) ≡ 1

j ! tr

(
i�

2π

)j

. (11.48)

lf 2 j > m = dim M , ch j (�) vanishes, hence ch(�) is a polynomial of finite order.
Let us diagonalize � as

i�

2π
→ g−1

(
i�

2π

)
g = A ≡ diag(x1, . . . , xk) g ∈ GL(k, � ).

The total Chern character is expressed as

tr[exp(A)] =
k∑

j=1

exp(x j ). (11.49)

In terms of the elementary symmetric functions Sr (x j ), the total Chern character
becomes

k∑
j=1

exp(x j ) =
k∑

j=1

(
1+ x j + 1

2!x
2
j +

1

3! x
3
j + · · ·

)

= k + S1(x j )+ 1

2! [S1(x j )
2 − 2S2(x j )] + · · · . (11.50)

Accordingly, each Chern character is expressed in terms of the Chern classes as

ch0(�) = k (11.51a)

ch1(�) = c1(�) (11.51b)

ch2(�) = 1
2 [c1(�)

2 − 2c2(�)] (11.51c)

...

where k is the fibre dimension of the bundle.

Example 11.2. Let P be a U(1) bundle over S2. If �N and �S are the local
connections on UN and US defined in section 10.5, the field strength is given by
�i = d�i (i = N, S). We have

ch(�) = 1+ i�

2π
(11.52)

where we have noted that �n = 0 (n ≥ 2) on S2. This bundle describes the
magnetic monopole. The magnetic charge 2g given by (10.94) is an integer
expressed in terms of the Chern character as

N = i

2π

∫
S2
� =

∫
S2

ch1(�). (11.53)

 



Let P be an SU(2) bundle over S4. The total Chern class of P is given by
(11.27). The total Chern character is

ch(�) = 2+ tr

(
i�

2π

)
+ 1

2
tr

(
i�

2π

)2

. (11.54)

Ch(�) terminates at ch2(�) since �n = 0 for n ≥ 3. Moreover, tr� = 0 for
G = SU(2), n ≥ 2. As we found in section 10.5, the instanton number is given
by

1

2

∫
S4

tr

(
i�

2π

)2

=
∫

S4
ch2(�). (11.55)

In both cases, ch j measures how the bundle is twisted when local pieces are
patched together.

Example 11.3. Let P be a U(1) bundle over a 2m-dimensional manifold M . The
mth Chern character is

1

m! tr

(
i�

2π

)m

= 1

m!
(

i

2π

)m [
1

2
�µν dxµ ∧ dxν

]m

= 1

m!
(

i

4π

)m

�µ1ν1 . . .�µmνm dxµ1 ∧ dxν1 ∧ . . .∧ dxµm ∧ dxνm

=
(

i

4π

)m

εµ1ν1...µmνm�µ1ν1 . . .�µmνm dx1 ∧ . . .∧ dx2m

which describes the U(1) anomaly in 2m-dimensional space, see chapter 13.

Example 11.4. Let L be a complex line bundle. It then follows that

ch(L) = tr exp

(
i�

2π

)
= ex = 1+ x x ≡ i�

2π
. (11.56)

For example, let L
π−→ � P1 be the canonical line bundle over � P1 = S2. The

Fubini–Study metric yields the curvature

� = −∂∂̄ ln(1+ |z|2) = − dz ∧ dz̄

(1+ zz̄)2
(11.57)

see example 8.8. In real coordinates z = x + iy = r exp(iθ), we have

� = 2i
dx ∧ dy

(1+ x2 + y2)2
= 2i

r dr ∧ dθ

(1+ r2)2
. (11.58)

From ch(�) = 1+ tr(i�/2π), we have

ch1(�) = − 1

π

r dr ∧ dθ

(1+ r2)2
. (11.59)

Ch1(L), the integral of ch1(�) over S2 is an integer,

Ch1(L) = − 1

π

∫
r drdθ

(1+ r2)2
= −

∫ ∞

1
t−2 dt = −1. (11.60)

 



11.3.2 Properties of the Chern characters

Theorem 11.5. (a) (Naturality) Let E
π−→ M be a vector bundle with F =

� k . Let f : N → M be a smooth map. Then

ch( f ∗E) = f ∗ch(E). (11.61)

(b) Let E and F be vector bundles over a manifold M . The Chern characters
of E ⊗ F and E ⊕ F are given by

ch(E ⊗ F) = ch(E) ∧ ch(F) (11.62a)

ch(E ⊕ F) = ch(E)⊕ ch(F). (11.62b)

Proof. (a) follows from theorem 11.2(a).
(b) These results are immediate from the definition of the ch-polynomial.

Let

ch(A) =
∑ 1

j ! tr

(
iA

2π

)j

be a polynomial of a matrix A. Suppose A is a tensor product of B and C ,
A = B ⊗ C = B ⊗ I + I ⊗ C (note that �E⊗F = �E ⊗ I + I ⊗ �F ). Then we
find that

ch(B ⊗ C) =
∑

j

1

j !
(

i

2π

)j

tr(B ⊗ I + I ⊗ C) j

=
∑

j

1

j !
(

i

2π

)j j∑
m=1

(
j

m

)
tr(Bm) tr(C j−m)

=
∑

m

1

m! tr

(
iB

2π

)m ∑
n

1

n! tr

(
iC

2π

)n

= ch(B)ch(C).

Equation (11.62a) is proved if B is replaced by �E and C by �F .
If A is block diagonal,

A =
(

B 0
0 C

)
= B ⊕ C

we have

ch(B ⊕ C) =
∑ 1

j !
(

i

2π

)j

tr(B ⊕ C) j

=
∑ 1

j !
(

1

2π

)j

[tr(B j )+ tr(C j )] = ch(B)+ ch(C).

This relation remains true when A, B and C are replaced by �E⊕F ,�E and �F

respectively. �

 



Let us see how the splitting principle works in this case. Let L j (1 ≤ j ≤ k)
be complex line bundles. From (11.62b) we have, for E = L1 ⊕ L2 ⊕ · · · ⊕ Lk ,

ch(E) = ch(L1)⊕ ch(L2)⊕ · · · ⊕ ch(Lk). (11.63)

Since ch(Li ) = exp(xi ), we find

ch(E) =
k∏

j=1

exp(x j ) (11.64)

which is simply (11.50). Hence, the Chern character of a general vector bundle E
is given by that of a Whitney sum of k complex line bundles. The characteristic
classes themselves cannot differentiate between two vector bundles of the same
base space and the same fibre dimension. What is important is their integral over
the base space.

11.3.3 Todd classes

Another useful characteristic class associated with a complex vector bundle is the
Todd class defined by

Td(�) =
∏

j

x j

1− e−x j
(11.65)

where the splitting principle is understood. If expanded in powers of x j , Td(�)
becomes

Td (�) =
∏

j

(
1+ 1

2
x j +

∑
k≥1

(−1)k−1 Bk

(2k)!x
2k
j

)
= 1+ 1

2

∑
j

x j + 1
12

∑
j

x2
j + 1

4

∑
j<k

x j xk + · · ·

= 1+ 1
2 c1(�)+ 1

12 [c1(�)
2 + c2(�)] + · · · (11.66)

where the Bk are the Bernoulli numbers

B1 = 1
6 B2 = 1

30 B3 = 1
42 B4 = 1

30 B5 = 5
66 . . . .

The first few terms of (11.66) are:

Td0(�) = 1 (11.67a)

Td1(�) = 1
2 c1 (11.67b)

Td2(�) = 1
12 (c

2
1 + c2) (11.67c)

Td3(�) = 1
24 c1c2 (11.67d)

Td4(�) = 1
720 (−c4

1 + 4c2
1c2 + 3c2

2 + c1c3 − c4) (11.67e)

Td5(�) = 1
1440(−c3

1c2 + 3c1c2
2 + c2

1c3 − c1c4) (11.67f)

 



where ci stands for ci (�).

Exercise 11.2. Let E and F be complex vector bundles over M . Show that

Td(E ⊕ F) = Td(E) ∧ Td(F). (11.68)

11.4 Pontrjagin and Euler classes

In the present section we will be concerned with the characteristic classes
associated with a real vector bundle.

11.4.1 Pontrjagin classes

Let E be a real vector bundle over an m-dimensional manifold M with dim� E =
k. If E is endowed with the fibre metric, we may introduce orthonormal frames
at each fibre. The structure group may be reduced to O(k) from GL(k,�). Since
the generators of �(k) are skew symmetric, the field strength � of E is also skew
symmetric. A skew-symmetric matrix A is not diagonalizable by an element of a
subgroup of GL(k,�). It is, however, reducible to block diagonal form as

A →


0 λ1 0
−λ1 0

0 λ2
−λ2 0

0
. . .



→


iλ1

−iλ1 0
iλ2

−iλ2

0
. . .

 (11.69)

where the second diagonalization is achieved only by an element of GL(k, � ). If
k is odd, the last diagonal element is set to zero. For example, the generator of
�(3) = ��(3) generating rotations around the z-axis is

Tz =
 0 1 0
−1 0 0
0 0 0

 .
The total Pontrjagin class is defined by

p(�) ≡ det

(
I + �

2π

)
. (11.70)

 



From the skew symmetry �t = −�, it follows that

det

(
I + �

2π

)
= det

(
I + �t

2π

)
= det

(
I − �

2π

)
.

Therefore, p(�) is an even function in �. The expansion of p(�) is

p(�) = 1+ p1(�)+ p2(�)+ · · · (11.71)

where p j (�) is a polynomial of order 2 j and is an element of H 4 j (M;�). We
note that p j (�) = 0 for either 2 j > k = dim E or 4 j > dim M .1

Let us diagonalize �/2π as

�

2π
→ A ≡


−ix1

ix1 0
−ix2

0 ix2
. . .

 (11.72)

where xk ≡ −λk/2π , λk being the eigenvalues of �. The sign has been chosen
to simplify the Euler class defined here. The generating function of p(�) is given
by

p(�) = det(I + A) =
[k/2]∏
i=1

(1+ x2
i ) (11.73)

where

[k/2] =→
{

k/2 if k is even

(k − 1)/2 if k is odd.

In (11.73) only even powers appear, reflecting the skew symmetry. Each
Pontrjagin class is computed from (11.73) as

p j (�) =
[k/2]∑

i1<i2<...<i j

x2
i1 x2

i2 . . . x
2
i j
. (11.74)

To write p j (�) in terms of the curvature two-form �/2π , we first note that

tr

(
�

2π

)2 j

= tr A2 j = 2(−1) j
[k/2]∑
i=1

x2 j
i .

1 Although pm(�) = 0, pm(B) need not vanish for a matrix B . pm will be used to define the Euler
class later.

 



It then follows that

p1(�) =
∑

i

x2
i = −

1

2

(
1

2π

)2

tr�2 (11.75a)

p2(�) =
∑
i< j

x2
i x2

j =
1

2

[(∑
i

x2
i

)2

−
∑

i

x4
i

]

= 1

8

(
1

2π

)4

[(tr�2)2 − 2 tr�4] (11.75b)

p3(�) =
∑

i< j<k

x2
i x2

j x2
k

= 1

48

(
1

2π

)6

[−(tr�2)3 + 6 tr�2 tr�4 − 8 tr�6] (11.75c)

p4(�) =
∑

i< j<k<l

x2
i x2

j x2
k x2

l

= 1

384

(
1

2π

)8

[(tr�2)4 − 12(tr�2)2 tr�4 + 32 tr�2 tr�6

+ 12(tr�4)2 − 48 tr�8] (11.75d)

...

p[k/2](�) = x2
1 x2

2 . . . x
2[k/2] =

(
1

2π

)k

det�. (11.75e)

The reader should verify that

p(E ⊕ F) = p(E) ∧ p(F). (11.76)

It is easy to guess that the Pontrjagin classes are written in terms of Chern
classes. Since Chern classes are defined only for complex vector bundles, we must
complexify the fibre of E so that complex numbers make sense. The resulting
vector bundle is denoted by E� . Let A be a skew-symmetric real matrix. We find
that

det(I + iA) = det


1+ x1 0

1− x1
1+ x2

0 1− x2
. . .


=

[k/2]∏
i=1

(1− x2
i ) = 1− p1(A)+ p2(A)− · · ·

 



from which it follows that

p j (E) = (−1) j c2 j (E
� ). (11.77)

Example 11.5. Let M be a four-dimensional Riemannian manifold. When the
orthonormal frame {êα} is employed, the structure group of the tangent bundle
T M may be reduced to O(4). Let � = 1

2�αβθ
α ∧ θβ be the curvature two-form

(� should not be confused with the scalar curvature). For the tangent bundle, it is
common to write p(M) instead of p(�). We have

det

(
I + �

2π

)
= 1− 1

8π2
tr�2 + 1

128π4
[(tr�2)2 − 2 tr�4]. (11.78)

Each Pontrjagin class is given by

p0(M) = 1 (11.79a)

p1(M) = − 1

8π2
tr�2 = − 1

8π2
�αβ�βα (11.79b)

p2(M) = 1

128π4
[(tr�2)2 − 2 tr�4] =

(
1

2π

)4

det�. (11.79c)

Although p2(M) vanishes as a differential form, we need it in the next subsection
to compute the Euler class.

11.4.2 Euler classes

Let M be a 2l-dimensional orientable Riemannian manifold and let T M be the
tangent bundle of M . We denote the curvature by �. It is always possible to
reduce the structure group of T M down to SO(2l) by employing an orthonormal
frame. The Euler class e of M is defined by the square root of the 4l-form pl ,

e(A)e(A) = pl(A). (11.80)

Both sides should be understood as functions of a 2l × 2l matrix A and not of
the curvature�, since p1(�) vanishes identically. However, e(M) ≡ e(�) thus
defined is a 2l-form and, indeed, gives a volume element of M . If M is an odd-
dimensional manifold we define e(M) = 0, see later.

Example 11.6. Let M = S2 and consider the tangent bundle T S2. From example
7.14, we find the curvature two-form,

�θφ = −�φθ = sin2 θ
dθ ∧ dφ

sin θ
= sin θ dθ ∧ dφ

where we have noted that gθθ = sin2 θ . Although p1(S2) = 0 as a differential
form, we compute it to find the Euler form. We have

p1(S
2) = − 1

8π2
tr�2 = − 1

8π2
[�θφ�φθ +�φθ�θφ]

=
(

1

2π
sin θ dθ ∧ dφ

)2

 



from which we read off

e(S2) = 1

2π
sin θ dθ ∧ dφ. (11.81)

It is interesting to note that∫
S2

e(S2) = 1

2π

∫ 2π

0
dφ

∫ π

0
dθ sin θ = 2 (11.82)

which is the Euler characteristic of S2, see section 2.4. This is not just a
coincidence. Let us take another convincing example, a torus T 2. Since T 2 admits
a flat connection, the curvature vanishes identically. It then follows that e(T 2) ≡ 0
and χ(T 2) = 0. These are special cases of the Gauss–Bonnet theorem,∫

M
e(M) = χ(M) (11.83)

for a compact orientable manifold M . If M is odd dimensional both e and χ
vanish, see (6.39).

In general, the determinant of a 2l×2l skew-symmetric matrix A is a square
of a polynomial called the Pfaffian Pf(A), 2

det A = Pf(A)2. (11.84)

We show that the Pfaffian is given by

Pf(A) = (−1)l

2ll!
∑

P

sgn(P)AP(1)P(2)AP(3)P(4) . . . AP(2l−1)P(2l) (11.85)

where the phase has been chosen for later convenience. We first note that a skew-
symmetric matrix A can be block diagonalized by an element of O(2l) as

St AS =  =



0 λ1
−λ1 0 0

0 λ2
−λ2 0

. . .

0 0 λl

−λl 0


. (11.86)

It is easy to see that

det A = det =
l∏

i=1

λ2
i .

2 See proposition 1.3. The definition here differs in phase from that in section 1.5. It turns out to be
convenient to choose the present phase convention in the definition of the Euler class.

 



To compute Pf(), we note that the non-vanishing terms in (11.85) are of the
form A12 A34 . . . A2l−1,2l . Moreover, there are 2l ways of changing the suffices as
Aij → A ji , such as

A12 A34 . . . A2l−1,2l → A21 A34 . . . A2l−1,2l

and l! permutations of the pairs of indices, for example,

A12 A34 . . . A2l−1,2l → A34 A12 . . . A2l−1,2l .

Hence, we have

Pf() = (−1)l A12 A34 . . . A2l−1,2l = (−1)l
l∏

i=1

λi .

Thus, we conclude that a block diagonal matrix  satisfies

det = Pf()2.

To show that (11.84) is true for any skew-symmetric matrices (not necessarily
block diagonal) we use the following lemma,3

Pf(X t AX) = Pf(A) det X. (11.87)

If St AS =  for S ∈ O(2l), we have A = SSt, hence

Pf(SSt) = Pf() det S = (−1)l
l∏

i=1

λi det S.

We finally find det A = Pf(A)2 for a skew-symmetric matrix A.
Note that Pf(A) is SO(2l) invariant but changes sign under an improper

rotation S (det S = −1) of O(2l).

Exercise 11.3. Show that the determinant of an odd-dimensional skew-symmetric
matrix vanishes. This is why we put e(M) = 0 for an odd-dimensional manifold.

The Euler class is defined in terms of the curvature� as

e(M) = Pf(�/2π)

= (−1)l

(4π)ll!
∑

P

sgn(P)�P(1)P(2) . . .�P(2l−1)P(2l). (11.88)

3 Since det(X t AX) = (det X)2 det A, we have Pf(X t AX) = ±Pf(A) det X . Here the plus sign should
be chosen since Pf(I t AI ) = Pf(A).

 



The generating function is obtained by taking x j = −λi/2π ,

e(x) = x1x2 . . . xl =
l∏

i=1

xi . (11.89)

The phase (−1)l has been chosen to simplify the RHS.

Example 11.7. Let M be a four-dimensional orientable manifold. The structure
group of T M is SO(4), see example 11.5. The Euler class is obtained from (11.88)
as

e(M) = 1

2(4π)2
εi j kl�i j ∧�kl . (11.90)

This is in agreement with the result of example 11.5. The relevant Pontrjagin class
is

p2(M) = 1

128π4
[(tr�2)2 − 2 tr�4] = x2

1 x2
2 .

Since e(M) = x1x2, we have p2(M) = e(M)∧ e(M). This is written as a matrix
identity,

1

128π4
[(tr A2)2 − 2 tr A4] =

(
1

2(4π)4
εi j kl Ai j Akl

)2

.

11.4.3 Hirzebruch L-polynomial and Â-genus

The Hirzebruch L-polynomial is defined by

L(x) =
k∏

j=1

x j

tanh x j

=
k∏

j=1

(
1+

∑
n≥1

(−1)n−1 22n

(2n)! Bnx2n
j

)
(11.91)

where the Bn are Bernoulli numbers, see (11.66). The function L(x) is even in x j

and can be written in terms of the Pontrjagin classes,

L(�) = 1+ 1
3 p1+ 1

45 (−p2
1+ 7 p2)+ 1

945 (2 p3
1− 13 p1 p2+ 62 p3)+ · · · (11.92)

where p j stands for p j (�). From the splitting principle, we find that

L(E ⊕ F) = L(E) ∧ L(F). (11.93)

The Â (A-roof) genus Â(�) is defined by

Â(�) =
k∏

j=1

x j/2

sinh(x j/2)

=
k∏

j=1

(
1+

∑
n≥1

(−1)n
(22n − 2)

(2n)! Bnx2n
j

)
. (11.94)

 



This is an even function of x j and can be expanded in p j . Â is also called the
Dirac genus by physicists. It satisfies

Â(E ⊕ F) = Â(E) ∧ Â(F). (11.95)

Â is written in terms of the Pontrjagin classes as

Â(�) = 1− 1
24 p1 + 1

5760(7 p2
1 − 4 p2)

+ 1
967 680(−31 p3

1 + 44 p1 p2 − 16 p3)+ · · · . (11.96)

Example 11.8. Let M be a compact connected and orientable four-dimensional
manifold. Let us consider the symmetric bilinear form σ : H 2(M;�) ×
H 2(M;�) → � defined by

σ([α], [β]) =
∫

M
α ∧ β. (11.97)

σ is a b2 × b2 symmetric matrix where b2 = dim H 2(M;�) is the Betti number.
Clearly σ is non-degenerate since σ([α], [β]) = 0 for any [α] ∈ H 2(M;�)
implies [β] = 0. Let p (q) be the number of positive (negative) eigenvalues of σ .
The Hirzebruch signature of M is

τ (M) ≡ p − q. (11.98)

According to the Hirzebruch signature theorem (see section 12.5), this number
is also given in terms of the L-polynomial as

τ (M) =
∫

M
L1(M) = 1

3

∫
M

p1(M). (11.99)

11.5 Chern–Simons forms

11.5.1 Definition

Let Pj (�) be an arbitrary 2 j -form characteristic class. Since Pj (�) is closed, it
can be written locally as an exact form by Poincaré’s lemma. Let us write

Pj (�) = dQ2 j−1(�,�) (11.100)

where Q2 j−1(�,�) ∈ �⊗�2 j−1(M). [Warning: This cannot be true globally. If
Pj = dQ2 j−1 globally on a manifold M without boundary, we would have∫

M
Pm/2 =

∫
M

dQm−1 =
∫
∂M

Qm−1 = 0

where m = dim M .] The 2 j − 1 from Q2 j−1(�,�) is called the Chern–Simons
form of Pj (�). From the proof of theorem 11.2(b), we find that Q is given by the
transgression of Pj ,

Q2 j−1(�,�) = T Pj (�, 0) = j
∫ 1

0
P̃j (�,�t , . . . ,�t) dt (11.101)

 



where P̃j is the polarization of Pj , � = d�+�2 and we set �′ = �′ = 0. Since
Q2 j−1 depends on � and �, we explicitly quote the �-dependence. Of course,
�′ can be put equal to zero only on a local chart over which the bundle is trivial.

Suppose M is an even-dimensional manifold (dim M = m = 2l) such that
∂M �= ∅. Then it follows from Stokes’ theorem that∫

M
Pl(�) =

∫
M

dQm−1(�,�) =
∫
∂M

Qm−1(�,�). (11.102)

The LHS takes its value in integers, and so does the RHS. Thus Qm−1 is a
characteristic class in its own right and it describes the topology of the boundary
∂M .

11.5.2 The Chern–Simons form of the Chern character

As an example, let us work out the Chern–Simons form of a Chern character
ch j (�). The connection�t which interpolates between 0 and � is

�t = t� (11.103)

the corresponding curvature being

�t = t d�+ t2
�

2 = t�+ (t2 − t)�2. (11.104)

We find from (11.21) that

Q2 j−1(�,�) = 1

( j − 1)!
(

i

2π

)j ∫ 1

0
dt str(�,� j−1

t ). (11.105)

For example,

Q1(�,�) = i

2π

∫ 1

0
dt tr� = i

2π
tr� (11.106a)

Q3(�,�) =
(

i

2π

)2 ∫ 1

0
dt str(�, td�+ t2

�
2)

= 1

2

(
i

2π

)2

tr

(
�d�+ 2

3
�

3
)
. (11.106b)

Q5(�,�) = 1

2

(
i

2π

)3 ∫ 1

0
dt str[�, (td�+ t2

�
2)2]

= 1

6

(
i

2π

)3

tr

[
�(d�)2 + 3

2
�

3d�+ 3

5
�

5
]
. (11.106c)

Exercise 11.4. Let � be the field strength of the SU(2) gauge theory. Write down
the component expression of the identity ch2(�) = dQ3(�,�) to verify that (cf
lemma 10.3)

tr[εκλµν�κλ�µν] = ∂κ [2εκλµν tr(�λ∂µ�ν + 2
3�λ�µ�ν)]. (11.107)

 



11.5.3 Cartan’s homotopy operator and applications

For later purposes, we define Cartan’s homotopy formula following Zumino
(1985) and Alvarez-Gaumé and Ginsparg (1985). Let

�t = �0 + t (�1 −�0) �t = d�t +�2
t (11.108)

as before. Define an operator lt by

lt�t = 0 lt�t = δt (�1 −�0). (11.109)

We require that lt be an anti-derivative,

lt (ηpωq ) = (ltηp)ωq + (−1)pηp(ltωq) (11.110)

for ηp ∈ �p(M) and ωq ∈ �q(M). We verify that

(dlt + lt d)�t = lt (�t − �2
t ) = δt (�1 −�0) = δt ∂�t

∂ t

and

(dlt + lt d)�t = d[δt (�1 − �0)] + lt [�t�t −�t�t + �t�t ]
= δt[d(�1 −�0)+ �t (�1 −�0)+ (�1 −�0)�t ]
= δt�t (�1 − �0) = δt ∂�t

∂ t

where we have used the Bianchi identity �t�t = 0. This shows that for any
polynomial S(�,�) of � and �, we obtain

(dlt + lt d)S(�t ,�t) = δt ∂
∂ t

S(�t ,�t). (11.111)

On the RHS, S should be a polynomial of � and � only and not of d� or
d�: if S does contain them, d� should be replaced by � − �2 and d� by
�� − [�,�] = −[�,�]. Integrating (11.111) over [0, 1], we obtain Cartan’s
homotopy formula

S(�1,�1)− S(�0,�0) = (dk01 + k01d)S(�t ,�t) (11.112)

where the homotopy operator k01 is defined by

k01S(�t ,�t) ≡
∫ 1

0
δt lt S(�t ,�t). (11.113)

To operate k01 on S(�,�), we first replace � and � by �t and �t , respectively,
then operate lt on S(�t ,�t) and integrate over t .

 



Example 11.9. Let us compute the Chern–Simons form of the Chern character
using the homotopy formula. Let S(�,�) = ch j+1(�) and �1 = �, �0 = 0.
Since d ch j+1(�) = 0, we have

ch j+1(�) = (dk01 + k01d)ch j+1(�t) = d[k01ch j+1(�t)].
Thus, k01ch j+1(�) is identified with the Chern–Simons form Q2 j+1(�,�). We
find that

k01ch j+1(�t) = 1

( j + 1)!k01 tr

(
i�

2π

)j+1

= 1

( j + 1)!
(

i

2π

)j+1 ∫ 1

0
δt lt tr(� j+1

t )

= 1

j !
(

i

2π

)j+1 ∫ 1

0
δt str(�,� j

t ) (11.114)

in agreement with (11.105).

Although a characteristic class is gauge invariant, the Chern–Simons form
need not be so. As an application of Cartan’s homotopy formula, we compute the
change in Q2 j+1(�,�) under � → �g = g−1(� + d)g, � → �g = g−1�g.
Consider the interpolating families �g

t and �g
t defined by

�
g
t ≡ tg−1

�g + g−1dg (11.115a)

�
g
t ≡ d�g

t + (�g
t )

2 = g−1
�t g (11.115b)

where �t ≡ t� + (t2 − t)�2. Note that �g
0 = g−1dg, �g

1 = �g , �g
0 = 0 and

�
g
1 = �g. Equation (11.112) yields

Q2 j+1(�
g,�g)− Q2 j+1(g

−1dg, 0) = (dk01 + k01d)Q2 j+1(�
g
t ,�

g
t ). (11.116)

For example, let Q2 j+1 be the Chern–Simons form of the Chern character
ch j+1(�). Since dQ2 j+1(�

g
t ,�

g
t ) = ch j+1(�

g
t ) = ch j+1(�t), we have

k01 dQ2 j+1(�
g
t ,�

g
t ) = k01ch j+1(�

g
t )

= k01ch j+1(�t) = Q2 j+1(�,�) (11.117)

where the result of example 11.9 has been used to obtain the final equality.
Collecting these results, we write (11.116) as

Q2 j+1(�
g,�g)− Q2 j+1(�,�) = Q2 j+1(g

−1dg, 0)+ dα2 j (11.118)

where α2 j is a 2 j -form defined by

α2 j (�,�, v) ≡ k01 Q2 j+1(�
g
t ,�

g
t )

= k01 Q2 j+1(�t + v,�t) (11.119)

 



where v ≡ dg · g−1. [Note that Q2 j+1(�,�) = Q2 j+1(g�g−1, g�g−1).] The
first term on the RHS of (11.118) is

Q2 j+1(g
−1dg, 0) = 1

j !
(

i

2π

)j+1 ∫ 1

0
δt tr[g−1dg{(t2 − t)(g−1dg)2} j ]

= 1

j !
(

i

2π

)j+1

tr[(g−1dg)2 j+1]
∫ 1

0
δt (t2 − t) j

= (−1) j j !
(2 j + 1)!

(
i

2π

)j+1

tr[(g−1dg)2 j+1] (11.120)

where we have noted that �t = (t2 − t)(g−1dg)2 and∫ 1

0
δt (t2 − t) j = (−1) j B( j + 1, j + 1) = (−1) j ( j !)2

(2 j + 1)!
B being the beta function. The 2 j + 1 form Q2 j+1(gdg, 0) is closed and, hence,
locally exact: dQ2 j+1(g−1dg, 0) = ch j+1(0) = 0.

As for α2 j we have, for example,

α2 = 1

2

(
i

2π

)2 ∫ 1

0
lt tr[(�t + v)�t − 1

3 (�t + v)3]

= 1

2

(
i

2π

)2 ∫ 1

0
δt tr(−t�2 − v�)

= − 1

2

(
i

2π

)2

tr(v�) (11.121)

where we have noted that

tr�2 = dxµ ∧ dxν tr(�µ�ν) = −dxν ∧ dxµ tr(�ν�µ) = 0.

Example 11.10. In three-dimensional spacetime, a gauge theory may have a
gauge-invariant mass term given by the Chern–Simons three-form (Jackiw and
Templeton 1981, Deser et al 1982a, b). Since the Chern–Simons form changes
by a locally exact form under a gauge transformation, the action remains invariant.
We restrict ourselves to the U(1) gauge theory for simplicity. Consider the
Lagrangian (we put � = iA, � = iF)

� = − 1
4 Fµν Fµν + 1

4 mελµνFλµAν (11.122)

where Fµν = ∂µAν−∂ν Aµ. Note that the second term is the Chern–Simons form
of the second Chern character F2 (modulo a constant factor) of the U(1) bundle.
The field equation is

∂µFµν + m ∗ Fν = 0 (11.123)

 



where
∗Fµ = 1

2ε
µκλFκλ Fµν = εµνλ ∗ Fλ.

The Bianchi identity
∂µ ∗ Fµ = 0 (11.124)

follows from (11.123) as a consequence of the skew symmetry of Fµν . It is easy
to verify that the field equation is invariant under a gauge transformation,

Aµ→ Aµ + ∂µθ (11.125)

while the Lagrangian changes by a total derivative,

�→− 1
4 Fµν Fµν + 1

4 mελµνFλµ(Aν + ∂νθ) = �+ 1
2 m∂ν(∗Fνθ). (11.126)

Equation (11.106b) shows that the last term on the RHS is identified with

Q3(A
θ , Fθ )− Q3(A, F) ∼ (A + dθ) dA− A dA ∼ d(θdA).

If we assume that F falls off at large spacetime distances, this term does not
contribute to the action:∫

d3x�→
∫

d3x�+ m

2

∫
d3x∂ν(∗Fνθ) =

∫
d3x�. (11.127)

Let us show that (11.122) describes a massive field. We first write (11.123)
as

εµνα∂µ ∗ Fα = −m ∗ Fν.

Multiplying εκλν on both sides, we have

∂λ ∗ Fκ − ∂κ ∗ Fλ = −m Fκλ.

Taking the ∂λ-derivative and using (11.124), we find that

(∂λ∂λ + m2) ∗ Fκ = 0 (11.128)

which shows that ∗Fκ is a massive vector field of mass m.

11.6 Stiefel–Whitney classes

The last example of the characteristic classes is the Stiefel–Whitney class. In
contrast to the rest of the characteristic classes, the Stiefel–Whitney class cannot
be expressed in terms of the curvature of the bundle. The Stiefel–Whitney class
is important in physics since it tells us whether a manifold admits a spin or not.
Let us start with a brief review of a spin bundle.

 



11.6.1 Spin bundles

Let T M
π−→ M be a tangent bundle with dim M = m. The bundle T M is

assumed to have a fibre metric and the structure group G is taken to be O(m). If,
furthermore, M is orientable, G can be reduced down to SO(m). Let L M be the
frame bundle associated with T M . Let ti j be the transition function of L M which
satisfies the consistency condition (9.6)

ti j t j ktki = I tii = I.

A spin structure on M is defined by the transition function t̃i j ∈ SPIN(m) such
that

ϕ(t̃i j ) = ti j t̃i j t̃ j k t̃ki = I t̃ii = I (11.129)

where ϕ is the double covering SPIN(m)→ SO(m). The set of t̃i j defines a spin
bundle PS(M) over M and M is said to admit a spin structure (of course, M
may admit many spin structures depending on the choice of t̃i j ).

It is interesting to note that not all manifolds admit spin structures. Non-
admittance of spin structures is measured by the second Stiefel–Whitney class
which takes values in the Čech cohomology group H 2(M;�2).

11.6.2 Čech cohomology groups

Let �2 be the multiplicative group {−1,+1}. A Čech r-cochain is a function
f (i0, i1, . . . , ir ) ∈ �2, defined on Ui0 ∩ Ui1 ∩ . . . ∩ Uir �= ∅, which is totally
symmetric under an arbitrary permutation P ,

f (i P(0), . . . , i P(r)) = f (i0, . . . , ir ).

Let Cr (M,�2) be the multiplicative group of Čech r -cochains. We define the
coboundary operator δ : Cr (M;�2)→ Cr+1(M;�2) by

(δ f )(i0, . . . , ir+1) =
r+1∏
j=0

f (i0, . . . , î j , . . . , ir+1) (11.130)

where the variable below the ˆ is omitted. For example,

(δ f0)(i0, i1) = f0(i1) f0(i0) f0 ∈ C0(M;�2)

(δ f1)(i0, i1, i2) = f1(i1, i2) f1(i0, i2) f1(i0, i1) f1 ∈ C1(M;�2).

Since we employ the multiplicative notation, the unit element of Cr (M;�2) is
denoted by 1. We verify that δ is nilpotent:

(δ2 f )(i0, . . . , ir+2) =
r+1∏

j,k=1

f (i0, . . . , î j , . . . , îk, . . . , ir+2) = 1

 



since −1 always appears an even number of times in the middle
expression (for example if f (i0, . . . , î j , . . . , îk, . . . , ir+2) = −1, we have
f (i0, . . . , îk, . . . , î j , . . . , ir+2) = −1 from the symmetry of f ). Thus, we have
proved, for any Čech r -cochain f , that

δ2 f = 1. (11.131)

The cocycle group Zr (M;�2) and the coboundary group Br (M;�2) are
defined by

Zr (M;�2) = { f ∈ Cr (M;�2)|δ f = 1} (11.132)

Br (M;�2) = { f ∈ Cr (M;�2)| f = δ f ′, f ′ ∈ Cr−1(M;�2). (11.133)

Now the r th Čech cohomology group H r(M;�2) is defined by

H r(M;�2) = kerδr/imδr−1 = Zr (M;�2)/Br (M;�2). (11.134)

11.6.3 Stiefel–Whitney classes

The Stiefel–Whitney class wr is a characteristic class which takes its values in
H r(M;�2). Let T M

π−→ M be a tangent bundle with a Riemannian metric. The
structure group is O(m), m = dim M . We assume {Ui } is a simple open covering
of M , which means that the intersection of any number of charts is either empty
or contractible. Let {eiα} (1 ≤ α ≤ m) be a local orthonormal frame of T M over
Ui . We have eiα = ti j e jα where ti j : Ui ∩U j → O(m) is the transition function.
Define the Čech 1-cochain f (i, j) by

f (i, j) ≡ det(ti j ) = ±1. (11.135)

This is, indeed, an element of C1(M;�2) since f (i, j) = f ( j, i). From the
cocycle condition ti j t j ktki = I , we verify that

δ f (i, j, k) = det(ti j ) det(t j k) det(tki )

= det(ti j t j k tki ) = 1. (11.136)

Hence, f ∈ Z1(M,�2) and it defines an element [ f ] of H 1(M;�2). Now we
show that this element is independent of the local frame chosen. Let {ēiα} be
another frame over Ui such that ēiα = hi eiα , hi ∈ O(m). From ēiα = t̄i j ē jα, we
find t̄i j = hi ti j h−1

j . If we define the 0-cochain f0 by f0(i) ≡ det hi , we find that

f̃ (i, j) = det(hi ti j h−1
j ) = det(hi ) det(h j ) det(ti j )

= δ f0(i, j) f (i, j)

where use has been made of the identity det h−1
j = det h j for h j ∈ O(m). Thus,

f changes by an exact amount and still defines the same cohomology class [ f ].4
4 Note that the multiplicative notation is being used.

 



This special element w1(M) ≡ [ f ] ∈ H 1(M;�2) is called the first Stiefel–
Whitney class.

Theorem 11.6. Let T M
π−→ M be a tangent bundle with fibre metric. M is

orientable if and only if w1(M) is trivial.

Proof. If M is orientable, the structure group may be reduced to SO(m) and
f (i, j) = det(ti j ) = 1, and hence w1(M) = 1, the unit element of �2.
Conversely, if w1(M) is trivial, f is a coboundary; f = δ f0. Since f0(i) = ±1,
we can always choose hi ∈ O(m) such that det(hi ) = f0(i) for each i . If
we define the new frame ēiα = hi eiα , we have transition functions t̃i j such
that det(t̃i j ) = 1 for any overlapping pair (i, j) and M is orientable. [Suppose
f (i, j) = det ti j = −1 for some pair (i, j). Then we may take f0(i) = −1 and
f0( j) = +1, hence det t̃i j = − det ti j = +1.] �

Theorem 11.6 shows that the first Stiefel–Whitney class is an obstruction to
the orientability. Next we define the second Stiefel–Whitney class. Suppose M
is an m-dimensional orientable manifold and T M is its tangent bundle. For the
transition function ti j ∈ SO(m), we consider a ‘lifting’ t̃i j ∈ SPIN(m) such that

ϕ(t̃i j ) = ti j t̃ j i = t̃−1
i j (11.137)

where ϕ : SPIN(m)→ SO(m) is the 2 : 1 homomorphism (note that we have an
option ti j ↔ t̃i j or −t̃i j ). This lifting always exists locally. Since

ϕ(t̃i j t̃ j k t̃ki ) = ti j t j k tki = I

we have t̃i j t̃ j k t̃ki ∈ kerϕ = {±I }. For t̃i j to define a spin bundle over M , they
must satisfy the cocycle condition,

t̃i j t̃ j k t̃ki = I. (11.138)

Define the Čech 2-cochain f : Ui ∩U j ∩Uk → �2 by

t̃i j t̃ j k t̃ki = f (i, j, k)I. (11.139)

It is easy to see that f is symmetric and closed. Thus, f defines an element
w2(M) ∈ H 2(M,�2) called the second Stiefel–Whitney class. It can be shown
that w2(M) is independent of the local frame chosen.

Exercise 11.5. Suppose we take another lift −t̃i j of ti j . Show that f changes by
an exact amount under this change. Accordingly, [ f ] is independent of the lift.
[Hint: Show that f (i, j, k) → f (i, j.k)δ f1(i, j, k) where f1(i, j) denotes the
sign of ±t̃i j .]

Theorem 11.7. Let T M be the tangent bundle over an orientable manifold M .
There exists a spin bundle over M if and only if w2(M) is trivial.

 



Proof. Suppose there exists a spin bundle over M . Then we define a set of
transition functions t̃i j such that t̃i j t̃ j k t̃ki = I over any overlapping charts Ui ,U j

and Uk , hence w2(M) is trivial. Conversely, suppose w2(M) is trivial, namely

f (i, j, k) = δ f1(i, j, k) = f1( j, k) f1(i, k) f1(k, i)

f1 being a 1-cochain. We consider the 1-cochain f1(i, j) defined in exercise 11.5.
If we choose new transition functions t̃ ′i j ≡ t̃i j f1(i, j), we have

t̃ ′i j t̃ ′j k t̃ ′ki = [δ f1(i, j, k)]2 = I

and, hence, {t̃ ′i j } defines a spin bundle over M . �

We outline some useful results:

(a)

w1(� Pm ) = 1 w2(� Pm ) =
{

1 m odd

x m even
(11.140)

x being the generator of H 2(� Pm ;�2).
(b)

w1(S
m) = w2(S

m) = 1 (11.141)

(c)
w1(�g) = w2(�g) = 1 (11.142)

�g being the Riemann surface of genus g.
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INDEX THEOREMS

In physics, we often consider a differential operator defined on a manifold M .
Typical examples will be the Laplacian, the d’Alembertian and the Dirac operator.
From the mathematical point of view, these operators are regarded as maps of
sections

D : �(M, E)→ �(M, F)

where E and F are vector bundles over M . For example, the Dirac operator is a
map F(M, E)→ F(M, E), E being a spin bundle over M . If inner products are
defined on E and F , it is possible to define the adjoint of D,

D† : �(M, F)→ �(M, E).

Since it is a differential operator, D carries analytic information on the
spectrum and its degeneracy. In what follows, we are interested in the zero
eigenvectors of D and D†,

ker D ≡ {s ∈ �(M, E)|Ds = 0}
ker D† ≡ {s ∈ �(M, F)|D†s = 0}.

The analytical index is defined by

ind D = dim ker D − dim ker D†.

Surprisingly, this analytic quantity is a topological invariant expressed in terms of
an integral of an appropriate characteristic class over M , which provides purely
topological information on M . This interplay between analysis and topology is
the main ingredient of the index theorem.

Our exposition follows Eguchi et al (1980), Gilkey (1984), Shanahan (1978),
Kulkarni (1975) and Booss and Bleecker (1985). The reader should consult these
references for details. Alvarez (1985) contains a brief summary of this subject
along with applications to anomalies and strings.

12.1 Elliptic operators and Fredholm operators

In the following, we will be concerned with differential operators defined on
vector bundles over a compact manifold M without a boundary. We exclusively
deal with a nice class of differential operators called the Fredholm operators.

 



12.1.1 Elliptic operators

Let E and F be complex vector bundles over a manifold M . A differential
operator D is a linear map

D : �(M, E)→ �(M, F). (12.1)

Take a chart U of M over which E and F are trivial. We denote the local
coordinates of U as xµ. We introduce the following multi-index notation,

M ≡ (µ1, µ2, . . . , µm) µ j ∈ �, µ j ≥ 0

|M| ≡ µ1 + µ2 + · · · + µm

DM = ∂ |M |

∂x M
≡ ∂µ1+···+µm

∂(x1)µ1 . . . ∂(xm)µm
.

If dim E = k and dim F = k′, the most general form of D is

[Ds(x)]α =
∑
|M |≤N
1≤a≤k

AMα
a(x)DM sa(x) 1 ≤ α ≤ k′ (12.2)

where s(x) is a section of E . Note that x denotes a point whose coordinates are
xµ. This slight abuse simplifies the notation. AM ≡ (AM )αa is a k × k ′ matrix
which may depend on the position x . The positive integer N in (12.2) is called
the order of D. We are interested in the case in which N = 1 (the Dirac operator)
and N = 2 (the Laplacian). For example, if F is a spin bundle over M , the Dirac
operator D ≡ iγ µ∂µ +m : �(M, E)→ �(M, E) acts on a section ψ(x) of E as

[Dψ(x)]α = i(γ µ)αβ∂µψ
β(x)+ mψα(x).

The symbol of D is a k × k′ matrix

σ(D, ξ) ≡
∑
|M |=N

AMα
a(x)ξM (12.3)

where ξ is a real m-tuple ξ = (ξ1, . . . , ξm). The symbol is also defined
independently of the coordinates as follows. Let E

π−→ M be a vector bundle
and let p ∈ M, ξ ∈ T ∗p M and s ∈ π−1

E (p). Take a section s̃ ∈ �(M, E) such that
s̃(p) = s and a function f ∈ �(M) such that f (p) = 0 and d f (p) = ξ ∈ T ∗p M .
Then the symbol may be defined by

σ(D, ξ)s = 1

N ! D( f N s̃)|p. (12.4)

The factor f N automatically picks up the N th-order term due to the condition
f (p) = 0. Equation (12.4) yields the same symbol as (12.3).

 



If the matrix σ(D, ξ) is invertible for each x ∈ M and each ξ ∈ �m − {0},
the operator D is said to be elliptic. Clearly this definition makes sense only when
k = k′. It should be noted that the symbol for a composite operator D = D1 ◦ D2
is a composite of the symbols, namely σ(D, ξ) = σ(D1, ξ)σ (D2, ξ). This shows
that composites of elliptic operators are also elliptic. In general, powers and roots
of elliptic operators are elliptic.

Example 12.1. Let xµ be the natural coordinates in �m . If E and F are real line
bundles over �m , the Laplacian� : �(�m , E)→ �(�m , F) is defined by

� ≡ ∂2

∂(x1)2
+ · · · + ∂2

∂(xm)2
. (12.5)

According to (12.3), the symbol is

σ(�, ξ) =
∑
µ

(ξµ)
2.

This is in agreement with the result obtained from (12.4),

σ(�, ξ)s = 1

2
�( f 2s̃)|p = 1

2

∑ ∂2

∂(xµ)2
( f 2s̃)|p

= 1

2

(
f 2�s̃ + 2 f� f s̃ + 2 f

∑ ∂ f

∂xµ
∂ s̃

∂xµ
+ 2

∑ ∂ f

∂xµ
∂ f

∂xµ
s̃

)∣∣∣∣
p

=
∑
(ξµ)

2s.

This symbol is clearly invertible for ξ �= 0, and hence� is elliptic.
However, the d’Alembertian

� ≡ ∂2

∂(x1)2
+ · · · + ∂2

∂(xm−1)2
− ∂2

∂(xm)2
(12.6)

is not elliptic since the symbol

σ(�, ξ) = (ξ1)2 + · · · + (ξm−1)2 − (ξm)2

vanishes everywhere on the light cone,

(ξm)2 = (ξ1)2 + · · · + (ξm−1)2.

Exercise 12.1. Let M = �2 and consider a differential operator D of order two.
The symbol of D is of the form

σ(D, ξ) = A11ξ
1ξ1 + 2A12ξ

1ξ2 + A22ξ
2ξ2.

Show that D is elliptic if and only if σ(D, ξ) = 1 is an ellipse in ξ -space.

 



12.1.2 Fredholm operators

Let D : �(M, E)→ �(M, F) be an elliptic operator. The kernel of D is the set
of null eigenvectors

ker D ≡ {s ∈ �(M, E)|Ds = 0}. (12.7)

Suppose E and F are endowed with fibre metrics, which will be denoted 〈 , 〉E
and 〈 , 〉F , respectively. The adjoint D† : �(M, F)→ �(M, E) of D is defined
by

〈s′, Ds〉F ≡ 〈D†s′, s〉E (12.8)

where s ∈ �(M, E) and s′ ∈ �(M, F). We define the cokernel of D by

coker D ≡ �(M, F)/imD. (12.9)

Among elliptic operators we are interested in a class of operators whose
kernels and cokernels are finite dimensional. An elliptic operator D which
satisfies this condition is called a Fredholm operator. The analytical index

ind D ≡ dim ker D − dim coker D (12.10)

is well defined for a Fredholm operator. Henceforth, we will be concerned only
with Fredholm operators. It is known from the general theory of operators that
elliptic operators on a compact manifold are Fredholm operators. Theorem 12.1
shows that ind D is also expressed as

ind D = dim ker D − dim ker D†. (12.11)

Theorem 12.1. Let D : �(M, E)→ �(M, F) be a Fredholm operator. Then

coker D ∼= ker D† ≡ {s ∈ �(M, F)|D†s = 0}. (12.12)

Proof. Let [s] ∈ coker D be given by

[s] = {s′ ∈ �(M, F)|s′ = s + Du, u ∈ �(M, E)}.
We show that there is a surjection ker D† → coker D, namely any [s] ∈ coker D
has a representative s0 ∈ ker D†. Define s0 by

s0 ≡ s − D
1

D† D
D†s. (12.13)

We find s0 ∈ ker D† since D†s0 = D†s − D† D(D† D)−1 D†s = D†s − D†s =
0. Next, let s0, s′0 ∈ ker D† and s0 �= s′0. We show that [s0] �= [s′0] in
�(M, F)/ im D. If [s0] = [s′0], there is an element u ∈ �(M, E) such that
s0 − s′0 = Du. Then 0 = 〈u, D†(s0 − s′0)〉E = 〈u, D† Du〉E = 〈Du, Du〉F ≥ 0,
hence Du = 0, which contradicts our assumption s0 �= s′0. Thus, the map
s0 
→ [s] is a bijection and we have established that coker D ∼= ker D†. �

 



12.1.3 Elliptic complexes

Consider a sequence of Fredholm operators,

· · · → �(M, Ei−1)
Di−1−→ �(M, Ei )

Di−→ �(M, Ei+1)
Di+1−→ · · · (12.14)

where {Ei } is a sequence of vector bundles over a compact manifold M . The
sequence (Ei , Di ) is called an elliptic complex if Di is nilpotent (that is
Di ◦Di−1 = 0) for any i . The reader may refer to �(M, Ei ) = �i(M) and Di = d
(exterior derivative) for example. The adjoint of Di : �(M, Ei ) → �(M, Ei+1)

is denoted by
D†

i : �(M, Ei+1)→ �(M, Ei ).

The Laplacian�i : �(M, Ei )→ �(M, Ei ) is

�i ≡ Di−1 D†
i−1 + D†

i Di . (12.15)

The Hodge decomposition also applies to the present case,

si = Di−1si−1 + D†
i si+1 + hi (12.16)

where si±1 ∈ �(M, Ei±1) and hi is in the kernel of �i , �i hi = 0.
Analogously to the de Rham cohomology groups, we define

H i(E, D) ≡ ker Di/imDi−1. (12.17)

As in the case of the de Rham theory, it can be shown that H i(E, D) is isomorphic
to the kernel of �i . Accordingly, we have

dim H i(E, D) = dim Harmi (E, D) (12.18)

where Harmi (E, D) is a vector space spanned by {hi }. The index of this elliptic
complex is defined by

ind D ≡
m∑

i=0

(−1)i dim H i(E, D) =
m∑

i=0

(−1)i dim ker�i . (12.19)

The index thus defined generalizes the Euler characteristic, see example 12.2.

How is this related to (12.10)? Consider the complex �(M, E)
D→ �(M, F).

We may formally add zero on both sides,

0
i
↪→ �(M, E)

D→ �(M, F)
ϕ→ 0 (12.20)

where i is the inclusion. The index according to (12.19) is

dim ker D − {dim�(M, F) − dim imD} = dim ker D − dim cokerD

 



where we have noted that dim im i = 0, kerϕ = �(M, F) and coker D =
kerϕ/ im D. Thus, (12.19) yields the same index as (12.10).

It is often convenient to work with a two-term elliptic complex which has the
same index as the original elliptic complex (E, D). This rolling up is carried out
by defining

E+ ≡ ⊕
r

E2r , E− ≡ ⊕
r

E2r+1 (12.21)

which are called the even bundle and the odd bundle, respectively.
Correspondingly we consider the operators

A ≡ ⊕
r
(D2r + D†

2r−1), A† ≡ ⊕
r
(D2r+1 + D†

2r ). (12.22)

We readily verify that A : �(M, E+) → �(M, E−) and A† : �(M, E−) →
�(M, E+). From A and A†, we construct the two Laplacians

�+ ≡ A† A = ⊕
r,s
(D2r+1 + D†

2r )(D2s + D†
2s−1)

= ⊕
r
(D2r−1 D†

2r−1 + D†
2r D2r ) = ⊕

r
�2r (12.23a)

�− ≡ AA† = ⊕
r
�2r+1. (12.23b)

Then we have

ind(E±, A) = dim ker�+ − dim ker�−
=

∑
(−1)r dim ker�r = ind(E, D). (12.24)

Example 12.2. Let us consider the de Rham complex �(M) over a compact
manifold M without a boundary,

0
i→ �0(M)

d→ �1(M)
d→ · · · d→ �m(M)

d→ 0 (12.25)

where m = dim M and d stands for dr : �r (M)→ �r+1(M). H r(E, D) defined
by (12.25) agrees with the de Rham cohomology group Hr(M,�). The index is
identified with the Euler characteristic,

ind(�∗(M), d) =
m∑

r=0

(−1)r dim H r(M;�) = χ(M). (12.26)

We found in chapter 7 that br ≡ dim H r(M.�) agrees with the number of linearly
independent harmonic r -forms: dim H r(M,�) = dim Harmr (M) = dim ker�r ,
where �r is the Laplacian

�r = (d+ d†)2 = dr−1d†
r−1 + d†

r dr (12.27)

 



d†
r : �r+1(M)→ �r (M) being the adjoint of dr . Now we find that

χ(M) =
m∑

r=0

(−1)r dim ker�r . (12.28)

This relation is very interesting since the LHS is a purely topological quantity
which can be computed by triangulating M , for example, while the RHS is given
by the solution of an analytic equation �r u = 0. We noted in example 11.6 that
χ(M) is given by integrating the Euler class over M: χ(M) = ∫

M e(T M). Now
(12.28) reads

m∑
r=1

(−1)r dim ker�r =
∫

M
e(T M). (12.29)

This is a typical form of the index theorem. The RHS is an analytic index while
the LHS is a topological index given by the integral of certain characteristic
classes. In section 12.3, we derive (12.29) from the Atiyah–Singer index theorem.

The two-term complex is given by

�+(M) ≡ ⊕
r
�2r(M) �−(M) ≡ ⊕

r
�2r+1(M). (12.30)

The corresponding operators are

A ≡ ⊕
r
(d2r + d†

2r−1) A† ≡ ⊕
r
(d2r−1 + d†

2r ). (12.31)

It is left as an exercise to the reader to show that

ind(�±(M), A) = dim ker A+ − dim ker A− = χ(M). (12.32)

12.2 The Atiyah–Singer index theorem

12.2.1 Statement of the theorem

Theorem 12.2. (Atiyah–Singer index theorem) Let (E, D) be an elliptic
complex over an m-dimensional compact manifold M without a boundary. The
index of this complex is given by

ind(E, D) = (−1)m(m+1)/2
∫

M
ch

(
⊕
r
(−1)r Er

)Td(T M� )

e(T M)

∣∣∣∣
vol
. (12.33)

In the integrand of the RHS, only m-forms are picked up, so that the integration
makes sense. [Remarks: The division by e(T M) can really be carried out at the
formal level. If m is an odd integer, the index vanishes identically, see below.
Original references are Atiyah and Singer (1968a, b), Atiyah and Segal (1968).]

The proof of theorem 12.2 is found in Shanahan (1978), Palais (1965) and
Gilkey (1984). The proof found there is based on either K -theory or the heat

 



kernel formalism. In section 13.2, we give a proof of the simplest version of the
Atiyah–Singer (AS) index theorem for a spin complex. Recently physicists have
found another proof of the theorem making use of supersymmetry. This proof is
outlined in sections 12.9 and 12.10. Interested readers should consult Alvarez-
Gaumé (1983) and Friedan and Windey (1984, 1985) for further details.

The following corollary is a direct consequence of theorem 12.2.

Corollary 12.1. Let �(M, E)
D→ �(M, F) be a two-term elliptic complex. The

index of D is given by

ind D = dim ker D − dim ker D†

= (−1)m(m+1)/2
∫

M
(chE − chF)

Td(T M� )

e(T M)

∣∣∣∣
vol
. (12.34)

12.3 The de Rham complex

Let M be an m-dimensional compact orientable manifold with no boundary. By
now we are familiar with the de Rham complex,

· · · d→ �r−1(M)�
d→ �r (M)�

d→ �r+1(M)�
d→ · · · (12.35)

where �r (M)� = �(M,∧r T ∗M� ). We complexified the forms so that we may
apply the AS index theorem. The exterior derivative satisfies d2 = 0. To show
that (12.35) is an elliptic complex, we have to show that d is elliptic. To find the
symbol for d, we note that

σ(d, ξ)ω = d( f s̃)|p = d f ∧ s̃ + f ds̃|p = ξ ∧ ω
where p ∈ M, ω ∈ �r

p(M)
� , f (p) = 0, d f (p) = ξ, s̃ ∈ �r (M)� and

s̃(p) = ω; see (12.4). We find

σ(d, ξ) = ξ ∧ . (12.36)

This defines a map �r (M)� → �r+1(M)� and is non-singular if ξ �= 0.
Thus, we have proved that d : �r (M)� → �r+1(M)� is elliptic and, hence,
(12.35) is an elliptic complex. Note, however, that the operator d : �k(M) →
�k+1(M) is not Fredholm since ker d is infinite dimensional. To apply the index
theorem to this complex, we have to consider the de Rham cohomology group
H r(M) instead. The operator d is certainly Fredholm on this space.

Let us find the index theorem for this complex. We note that
dim� H r(M; � ) = dim� H r(M;�). Hence, the analytical index is

ind d =
m∑

r=0

(−1)r dim� H r(M; � )

=
∑
(−1)r dim� H r(M;�) = χ(M) (12.37)

 



where χ(M) is the Euler characteristic of M . Suppose M is even dimensional,
m = 2l. The RHS of (12.33) gives the topological index

(−1)l(2l+1)
∫

M
ch

( m⊕
r=0
(−1)r ∧r T ∗M�

)Td(T M� )

e(T M)

∣∣∣∣
vol
. (12.38)

The splitting principle yields

ch
( m⊕

r=0
(−1)r ∧r T ∗M�

)
= 1− ch(T ∗M� )+ ch(∧2T ∗M� )+ · · · + (−1)mch(∧m T ∗M� )

= 1−
m∑

i=1

e−xi (T M� )+
∑
i< j

e−xi e−x j (T M� )+ · · ·

+ (−1)me−x1e−x2 . . . e−xm (T M� )

=
m∏

i=1

(1− e−xi )(T M� )

where we have noted that xi (T ∗M� ) = −xi (T M� ). [Let L be a complex line
bundle and L∗ be its dual bundle. L ⊗ L∗ is a bundle whose section is a map
� → � at each fibre of L. L ⊗ L∗ has a global section which vanishes nowhere
(the identity map, for example) from which we can show L⊗L∗ is a trivial bundle.
We have c1(L⊗L∗) = c1(L)+c1(L∗) = 0, hence x(L∗) = −x(L). The splitting
principle yields xi (T ∗M� ) = −xi (T M� ).] We also have

Td(T M� ) =
m∏

i=1

xi

1− e−xi
(T M� )

e(T M) =
l∏

i=1

xi (T M� ).

Substituting these in (12.38), we have

ind d =
∫

M
(−1)l(2l+1)(−1)l

( l∏
i=1

xi (T M� )

)
=

∫
M

e(T M). (12.39)

If m is odd, it can be shown that (Shanahan (1978), p22)

ind d = 0 (12.40)

which is in harmony with the fact that e(T M) = 0 if dim M is odd. In any case,
the index theorem for the de Rham complex is

χ(M) =
∫

M
e(T M). (12.41)

 



Example 12.3. Let M be a two-dimensional orientable manifold without
boundary. Equation (12.41) reads

χ(M) = 1

4π

∫
M
εαβ�αβ = 1

2π

∫
M
�12 (12.42a)

which is the celebrated Gauss–Bonnet theorem. For dim M = 4, it reads as

χ(M) = 1

32π2

∫
M
εαβγ δ�αβ ∧�γ δ. (12.42b)

12.4 The Dolbeault complex

We recall some elementary facts about complex manifolds (see chapter 8 for
details). Let M be a compact complex manifold of complex dimension m without
a boundary. Let zµ = xµ + iyµ be the local coordinates and z̄µ = xµ − iyµ

their complex conjugates. T M+ denotes the tangent bundle spanned by {∂/∂zµ}
and T M− = T M+ the complex conjugate bundle spanned by {∂/∂ z̄µ}. The
dual of T M+ is denoted by T ∗M+ and spanned by {dzµ} while that of T M− is
T ∗M− = T ∗M+ spanned by {dz̄µ}. The space�r (M)� of complexified r -forms
is decomposed as

�r (M)� = ⊕
p+q=r

�p,q(M)

where �p,q(M) is the space of the (p, q)-forms, which is spanned by a basis of
the form

dzµ1 ∧ . . . ∧ dzµp ∧ dz̄ν1 ∧ . . .∧ dz̄νq .

The exterior derivative is decomposed as d ≡ ∂ + ∂̄ where

∂ = dzµ ∧ ∂/∂zµ ∂̄ = dz̄µ ∧ ∂/∂ z̄µ.

They satisfy ∂∂̄ + ∂̄∂ = ∂2 = ∂̄2 = 0. We have the sequences

· · · ∂̄→ �p,q(M)
∂̄→ �p,q+1(M)

∂̄→ · · · (12.43a)

· · · ∂→ �p,q(M)
∂→ �p+1,q(M)

∂→ · · · . (12.43b)

We are interested in the first sequence with p = 0,

· · · ∂̄→ �0,q(M)
∂̄→ �0,q+1(M)

∂̄→ · · · . (12.44)

This sequence is called the Dolbeault complex.
To show that (12.44) is an elliptic complex, we compute the symbol for ∂̄.

Let ξ = ξ0,1 + ξ1,0 be a real one-form at p ∈ M , where ξ0,1 ∈ �0,1
p (M) and

ξ1,0 = ξ0,1 ∈ �1,0
p (M).

 



Take an anti-holomorphic r -form ω ∈ �0,r (M). We find

σ(∂̄, ξ)ω = ∂̄( f s̃) = ∂̄ f ∧ s̃ + f ∂̄ s̃|p = ξ0,1 ∧ ω
where f (p) = 0, ∂̄ f (p) = ξ0,1, s̃ ∈ �0,r (M) and s̃(p) = ω. We have

σ(∂̄, ξ) = ξ0,1 ∧ . (12.45)

From a similar argument to that given in the previous section, it follows that the
symbol (12.45) is elliptic. Thus, the Dolbeault complex (12.44) is an elliptic
complex.

The AS index theorem takes the form

ind ∂̄ =
∫

M
ch

(∑
r

(−1)r ∧r T ∗M−
)

Td(T M� )

e(T M)

∣∣∣∣
vol
. (12.46)

The LHS is computed as follows. We first note that

ker ∂̄r/im∂̄r−1 = H 0,r(M)

where H 0,r(M) is the ∂̄-cohomology group. Then the LHS is

ind ∂̄ =
n∑

r=0

(−1)r b0,r (12.47)

where b0,r ≡ dim� H 0,r(M) is the Hodge number. This index is called the
arithmetic genus of M .

Simplification of the topological index can be carried out as in the case of
the de Rham complex. We refer the reader to Shanahan (1978) for the technical
details. We have

n∑
r=1

(−1)r b0,r =
∫

M
Td(T M+) (12.48)

where Td(T M+) is the Todd class of T M+.

12.4.1 The twisted Dolbeault complex and the Hirzebruch–Riemann–Roch
theorem

In the Dolbeault complex, we may replace�0,r(M) by the tensor product bundles
�0,r (M)⊗ V , where V is a holomorphic vector bundle over M ,

· · · ∂̄V→ �0,r−1(M)⊗ V
∂̄V→ �0,r (M)⊗ V

∂̄V→ · · · . (12.49)

The AS index theorem of this complex reduces to the Hirzebruch–Riemann–
Roch theorem,

ind ∂̄V =
∫

M
Td(T M+)ch(V ). (12.50)

 



For example, if m = dim� M = 1, we have

ind ∂̄V = 1
2 dim V

∫
M

c1(T M+)+
∫

M
c1(V )

= (2− g) dim V +
∫

M

i�

2π
(12.51)

since it can be shown that∫
M

c1(T M+) =
∫

M
e(T M) = 2− g

g being the genus of M .

12.5 The signature complex

12.5.1 The Hirzebruch signature

Let M be a compact orientable manifold of even dimension, m = 2l. Let [ω] and
[η] be the elements of the ‘middle’ cohomology group H l(M;�). We consider a
bilinear form H l(M;�) × H l(M;�) → � defined by

σ([ω], [η]) ≡
∫

M
ω ∧ η (12.52)

cf example 11.8. This definition is independent of the representatives of [ω] and
[η]. The form σ is symmetric if l is even (m ≡ 0 mod 4) and anti-symmetric if
l is odd (m ≡ 2 mod 4). Poincaré duality shows that the bilinear form σ has the
maximal rank bl = dim H l(M;�) and is, hence, non-degenerate. If l ≡ 2k is
even, the symmetric form σ has real eigenvalues, b+ of which are positive and b−
of which are negative (b+ + b− = bl). The Hirzebruch signature is defined by

τ (M) ≡ b+ − b−. (12.53)

If l is odd, τ (M) is defined to vanish (an anti-symmetric form has pure imaginary
eigenvalues). In the following, we set l = 2k.

The Hodge ∗ satisfies ∗2 = 1 when acting on a 2k-form in a 4k-dimensional
manifold M and hence ∗ has eigenvalues ±1. Let Harm2k(M) be the set of
harmonic 2k-forms on M . We note that Harm2k(M) ∼= H 2k(M;�) and each
element of H 2k(M;�) has a unique harmonic representative. Harm2k(M) is
separated into disjoint subspaces,

Harm2k(M) = Harm2k+ (M)⊕ Harm2k− (M) (12.54)

according to the eigenvalue of ∗. This separation block diagonalizes the bilinear
form σ . In fact, for ω± ∈ Harm2k± (M),

σ(ω+, ω+) =
∫

M
ω+ ∧ ω+ =

∫
M
ω+ ∧ ∗ω+ = (ω+, ω+) > 0

 



where (ω+, ω+) is the standard positive-definite inner product defined by (7.181).
We also find

σ(ω−, ω−) = −
∫

M
ω− ∧ ∗ω− = −(ω−, ω−) < 0

σ(ω+, ω−) = −
∫

M
ω+ ∧ ∗ω− = −

∫
M
ω− ∧ ∗ω+ = −σ(ω+, ω−) = 0

where we have noted that α ∧ ∗β = β ∧ ∗α for any forms α and β. Hence,
σ is block diagonal with respect to Harm2k+ (M) ⊕ Harm2k− (M) and, moreover,
b± = dim� Harm2k± (M). Now τ (M) is expressed as

τ (M) = dim Harm2k+ (M)− dim Harm2k− (M). (12.55)

Exercise 12.2. Let dim M = 4k. Show that

τ (M) = χ(M) mod 2. (12.56)

[Hint: Use the Poincaré duality to show that χ(M) = b2k mod 2.]

12.5.2 The signature complex and the Hirzebruch signature theorem

Let M be an m-dimensional compact Riemannian manifold without a boundary
and let g be the given metric. Consider an operator

� ≡ d+ d†. (12.57)

� is a square root of the Laplacian: �2 = dd† + d†d = �. To show that �
is elliptic, it suffices to verify that � is elliptic since the symbol of a product of
operators is the product of symbols. Let us compute the symbol of �. As for d,
we have σ(d, ξ)ω = ξ ∧ω. As for d†, it can be shown that (Palais 1965, pp77–8)

σ(d†, ξ) = −iξ . (12.58)

Here iξ : �r
p(M)→ �r−1

p (M) is an interior product defined by (cf. (5.79))

iξ (dxµ1 ∧ . . . ∧ dxµr )

≡
r∑

j=1

(−1) j+1gµ jµξµ dxµ1 ∧ . . . ∧ dx̂µ j ∧ . . .∧ dxµr

where the one-form under ˆ is omitted and we put ξ = ξµ dxµ. Now the symbol
of the Laplacian is obtained from (12.58) as

σ(�, ξ)ω = σ(dd† + d†d, ξ)ω = −[ξ ∧ iξ (ω)+ iξ (ξ ∧ ω)]
= − iξ (ξ) ∧ ω = −‖ξ‖2ω

 



where ω is an arbitrary r -form and the norm ‖ ‖ is taken with respect to the given
Riemannian metric. Finally, we obtain

σ(�, ξ) = −‖ξ‖2. (12.59)

Thus, the Laplacian� is elliptic and so is � = d+ d†.
Since the Laplacian� = �2 is self-dual on�∗(M), the index of� vanishes

trivially. It is also observed that � = �† on �∗(M) and, hence, ind� = 0.
To construct a non-trivial index theorem, we have to find a complex on which
� �= �†.

Exercise 12.3. Consider the restriction �e of � to even forms, �e : �e(M)� →
�o(M)� where �e(M)� ≡ ⊕�2i (M)� and �o(M)� ≡ ⊕�2i+1(M)� . The
adjoint of �e is �o ≡ �e† : �o(M)C → �e(M)C. Show that

ind�e = dim ker�e − dim ker�o = χ(M).
[Hint: Prove ker�e = ⊕Harm2i (M) and ker�o = ⊕Harm2i+1(M). This
complex, although non-trivial, does not yield anything new.]

If dim M = m = 2l, we have ∗ ∗ η = (−1)rη for η ∈ �r (M)� . We define
an operator π : �r (M)� → �m−r (M)� by

π ≡ ir(r−1)+l ∗ . (12.60)

Observe that π is a ‘square root’ of (−1)r ∗ ∗ = 1. In fact, for ω ∈ �r (M)� ,

π2ω = ir(r−1)+lπ(∗ω) = ir(r−1)+l+(2l−r)(2l−r−1)+l ∗ ∗ω
= i2r2 ∗ ∗ω = (−1)r ∗ ∗ω = ω (12.61)

where we have noted that r ≡ r2 mod 2. We easily verify (exercise) that

{π,�} = π�+�π = 0. (12.62)

Let π act on �∗(M)� = ⊕�r (M)� . Since π2 = 1, the eigenvalues of π are ±1.
Then we have a decomposition of�∗(M)� into the±1 eigenspaces�±(M) of π
as

�∗(M)� = �+(M) ⊕�−(M). (12.63)

Since � anti-commutes with π , the restriction of � to �+(M) defines an elliptic
complex called the signature complex,

�+ : �+(M)→ �−(M) (12.64)

where �+ ≡ �|�+(M). The index of the signature complex is

ind�+ = dim ker�+ − dim ker�−
= dim Harm(M)+ − dim Harm(M)− (12.65)

 



where�− ≡ �
†
+ : �−(M)→ �+(M) and Harm(M)± ≡ {ω ∈ �±(M)|�±ω =

0}. On the RHS of (12.65), all the contributions except those from the harmonic
l-forms cancel out. To see this, we separate ker�+ and ker�− as

ker�± = Harml(M)± ⊕
∑

0≤r<l

[Harmr (M)± ⊕ Harmm−r (M)±]

where Harmr (M)± ≡ Harm(M)± ∩ �r (M). If ω ∈ Harmr (M), we have
ω±πω ∈ Harmr (M)±⊕Harmm−r (M)±. Then a map ω+πω→ ω−πω defines
an isomorphism between Harmr (M)+ ⊕ Harmm−r (M)+ and Harmr (M)− ⊕
Harmm−r (M)−. Now the index simplifies as

ind�+ = dim Harm2k(M)+ − dim Harm2k(M)− (12.66)

where we put l = 2k as before (the index vanishes if l is odd). It is important to
note that Harm2k(M)± = Harm2k± (M) since π = ∗ in Harm2k(M), see (12.54).
Now the index (12.66) reduces to the Hirzebruch signature,

ind�+ = τ (M). (12.67)

The derivation of the topological index is rather technical and we simply
quote the result from Shanahan (1978). Let∧±T ∗M� be the subspace of∧T ∗M�

such that �±(M) = �(M,∧±T ∗M� ). Then we have

topological index = (−1)l
∫

M
ch(∧+T ∗M� −∧−T ∗M� )

Td(T M� )

e(T M)

∣∣∣∣∣
vol

= 2l
∫

M

l∏
i=1

xi/2

tanh xi/2

∣∣∣∣
vol
=

∫
M

l∏
i=1

xi

tanh xi

∣∣∣∣
vol

where the last equality is true only for the 2l-forms in the expansion and xi =
xi (T M� ). Now we have obtained the Hirzebruch signature theorem

τ (M) =
∫

M
L(T M)|vol (12.68)

where L is the Hirzebruch L-polynomial defined by (11.91). Since L is even in
xi , τ (M) vanishes if m = 2 mod 4. For example, τ (M) = 0 for m = 2. If m = 4,
we have

τ (M) =
∫

M

1

3
p1(T M) = − 1

24π2

∫
tr�2. (12.69)

As in the case of the Dolbeault complex, we may twist the signature complex,
see Eguchi et al (1980), for example.

12.6 Spin complexes

The final example of classical complexes is the spin complex. This complex is
very important in physics since it describes Dirac fields interacting with gauge
fields and/or gravitational fields.

 



12.6.1 Dirac operator

Let us consider a spin bundle S(M) over an m-dimensional orientable manifold
M . We shall denote the set of sections of this bundle by �(M) = �(M, S(M)).
We assume that m = 2l is an even integer. The spin group SPIN(m) is generated
by m Dirac matrices {γ α}, which satisfy

γ α† = γ α (12.70a)

{γ α, γ β } = 2δαβ. (12.70b)

Throughout this chapter we assume that the metric has the Euclidean signature.
The Clifford algebra is generated by

1; γ α; γ α1γ α2 (α1 < α2); . . . ;
γ α1 . . . γ αk (α1 < . . . < αk); . . . ; γ 1 . . . γ 2l .

The last generator is of particular importance and we define

γm+1 ≡ ilγ 1 . . . γm . (12.71)

Our convention is such that (γm+1)2 = I and (γm+1)† = γm+1. It can be shown
from the general theory of the Clifford algebra that the γ x are represented by
2l × 2l matrices with complex entries. It is convenient to take a representation of
{γ x} such that γm+1 is diagonal,

γm+1 =
(

1 0
0 −1

)
(12.72)

where 1 here is the 2l−1 × 2l−1 unit matrix.

Example 12.4. For m = 2, we take

γ 0 = σ2 γ 1 = σ1 γ 3 = iγ 0γ 1 = σ3

σα being the Pauli matrices,

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
.

For m = 4, we may take

γ β =
(

0 iαβ

−iᾱβ 0

)
αβ = (I2,−iσ ), ᾱβ = (I2, iσ )

γ 5 = −γ 0γ 1γ 2γ 3 =
(

I2 0
0 −I2

)
.

 



A Dirac spinor ψ ∈ �(M) is an irreducible representation of the Clifford
algebra but not that of SPIN(2l). Irreducible representations of SPIN(2l) are
obtained by separating �(M) according to the eigenvalues of γm+1. Since
(γm+1)2 = I , the eigenvalues of γm+1, called the chirality, must be ±1. Then
�(M) is separated into two eigenspaces

�(M) = �+(M)⊕�−(M) (12.73)

where γm+1ψ± = ±ψ± for ψ± ∈ �±(M). The projection operators 	± onto
�± are given by

	+ ≡ 1

2
(I + γm+1) =

(
1 0
0 0

)
(12.74a)

	− ≡ 1

2
(I − γm+1) =

(
0 0
0 1

)
. (12.74b)

Thus, we may write1

ψ+ =
(
ψ+
0

)
∈ �+(M), ψ− =

(
0
ψ−

)
∈ �−(M). (12.75)

The reader should verify that 	+ + 	− = 1, (	±)2 = 	±,	+	− =
0,	±ψ± = ψ± and 	±ψ∓ = 0.

The Dirac operator in a curved space is given by (section 7.10)

i /∇ψ ≡ iγ µ∇∂/∂xµψ = iγ µ(∂µ + ωµ)ψ (12.76)

where ωµ = 1
2 iωµαβ�αβ is the spin connection and γ µ = γ αeαµ. Let us prove

that i /∇ is elliptic. Let f be a function defined near p ∈ M such that f (p) = 0
and iγ µ∂µ f (p) = iγ µξµ ≡ i/ξ . 2 Take a section ψ̃ ∈ �(M) such that ψ̃(p) = ψ .
From (12.4), we have

σ(i /∇, ξ)ψ = i /∇( f ψ̃)|p = (i /∇ f )ψ̃ |p = i/ξψ

which shows that
σ(i /∇, /ξ) = i/ξ . (12.77)

If we note that /ξ/ξ = ξαξβγ
αγ β = ξµξµ, we find that (12.77) is invertible for

i/ξ �= 0, hence i /∇ is an elliptic operator.
It can be shown that {γ α} is taken in the form

γ β =
(

0 iαβ
−iᾱβ 0

)
α†
β = ᾱβ (12.78)

1 Note the minor abuse of the notation.
2 For a vector A = Aµeµ, �A denotes γµAµ.

 



see example 12.4 for m = 2 and 4. Then (12.76) becomes

i /∇ =
(

0 D†

D 0

)
(12.79)

where

D ≡ ᾱβeβ
µ(∂µ + ωµ) D† ≡ −αβeβ

µ(∂µ + ωµ). (12.80)

Hence, D† is, indeed, the adjoint of D (note that ∂µ + ωµ is anti-Hermitian). For(
ψ+
0

)
∈ �+(M)

we have

i /∇
(
ψ+
0

)
=

(
0 D†

D 0

)(
ψ+
0

)
=

(
0

Dψ+
)

while for (
0
ψ−

)
∈ �−(M)

we have

i /∇
(

0
ψ−

)
=

(
D†ψ−

0

)
.

Hence, D = i /∇	+ : �+(M) → �−(M) and D† = i /∇	− : �−(M) →
�+(M). Now we have a two-term complex

�+(M)
D−→
←−

D†

�−(M) (12.81)

called the spin complex. The analytical index of this complex is

ind D = dim ker D − dim ker D† = ν+ − ν− (12.82)

where ν+ (ν−) is the number of zero-energy modes of chirality+ (−).
Let us apply the AS index theorem to this case. Without getting into the

details of the Clifford algebra and the spin complex, we simply write down the
result. The AS index theorem for the spin complex (12.81) is

ν+ − ν− =
∫

M
ch(�+(M)−�−(M)) Td(T M� )

e(T M)

∣∣∣∣∣
vol

=
∫

M
Â(T M)|vol (12.83)

where Â is the Dirac genus defined by (11.94). Since Â contains only 4 j -forms,
ν+−ν− vanishes unless m = 0 mod 4. Of course, this does not necessarily imply
ν+ = ν− = 0. The proof of (12.83) will be given later in sections 12.9 and 12.10.

 



12.6.2 Twisted spin complexes

In physics, a spinor field may belong to a representation of a group G. For
example, the quark field in QCD belongs to the 3 of SU(3). A spinor which
belongs to a representation of G is a section of the product bundle S(M) ⊗
E , where E is an associated vector bundle of P(M,G) in an appropriate
representation. The Dirac operator DE : �+(M) ⊗ E → �(M)− ⊗ E in this
case is

DE = iγ αeα
µ(∂µ + ωµ +�µ)�+ (12.84)

where�µ is the gauge potential on E . The AS index theorem for this twisted spin
complex is

ν+ − ν− =
∫

M
Â(T M)ch(E)|vol. (12.85)

For dim M = 2, we have

ν+ − ν− =
∫

M
ch1(E) = i

2π

∫
M

tr� (12.86)

while for dim M = 4,

ν+ − ν− =
∫

M
[ch2(E)+ Â1(T M)ch0(E)]

= −1

8π2

∫
M

tr�2 + dim E

192π2

∫
M

tr�2. (12.87)

Example 12.5. Let
M = T 2l = S1 × · · · × S1︸ ︷︷ ︸

2l times

.

Then we find

Â(T M) = Â
( 2l⊕

1
T S1

)
=

2l∏
1

Â(T S1) = 1.

We also have Â(T S2l) = 1. Accordingly, the index of these bundles is

ν+ − ν− =
∫

M
ch(E)|vol. (12.88)

Example 12.6. Let us consider the monopole bundle P(S2,U(1)). If � is the
local gauge potential, the field strength is � = d�. The index theorem is

ν+ − ν− = i

2π

∫
S2
� = − 1

2π

∫
S2

F (12.89)

where � = iF . As was shown in section 10.5, the RHS represents the winding
number π1(U(1)) = � and analytical information (the LHS) is now expressed in
a topological way (the RHS).

 



Let P(S4,SU(2)) be the instanton bundle. Expression (12.88) reads as

ν+ − ν− =
∫

S4
ch2(�) = −1

8π2

∫
S4

tr�2. (12.90)

The RHS represents the instanton number k ∈ π3(SU(2)) = �. Note that k > 0
if � = ∗� while k < 0 if � = − ∗ �. It can be shown that ν− = 0 (ν+ = 0)
if k > 0 (k < 0), see Jackiw and Rebbi (1977). For example, let � be self-dual.
Suppose ψ− ∈ ker D† = ker DD†. From (12.80), we find that

DD†ψ− = [(∂µ +�µ)2 + 2iσ̄µν�µν]ψ− = 0

where σ̄µν ≡ (1/4i)(αµᾱν − ανσ̄µ). It is easily verified that σ̄ µν is anti-self-dual
(σ̄ µν = −∗ σ̄ νµ) and hence σ̄µν�µν = 0. Since (∂µ+�µ)2 is a positive-definite
operator, it has no normalizable bound states. This verifies that ker D† = ∅.

12.7 The heat kernel and generalized ζ -functions

As we mentioned in section 12.2, there are several methods of proving the AS
index theorem. The heat kernel is relatively accessible to physicists and it also
has many applications to other problems in physics. The generalized ζ -function
is related to the heat kernel and also has relevance in physics.

12.7.1 The heat kernel and index theorem

Let E be a complex vector bundle over an m-dimensional compact manifold M .
Let � : �(M, E) → �(M, E) be an elliptic operator with eigenvectors |n〉 such
that

�|n〉 = λn |n〉. (12.91)

We denote the set of eigenvalues of � by Spec�. We assume that � is non-
negative, i.e. all the eigenvalues are non-negative. Suppose there are n0 modes
|0, i〉, 1 ≤ i ≤ n0 with vanishing eigenvalue. In other words,

dim ker� = n0. (12.92)

These modes are called the zero modes. Define the heat kernel h(t) by

h(t) ≡ e−t�. (12.93)

It is convenient to represent h(t) in the coordinate basis as

h(x, y; t) ≡ 〈x |h(t)|y〉 = 〈x |
∑

n

e−t�|n〉〈n|y〉

=
∑

n

e−tλn 〈x |n〉〈n|y〉. (12.94)
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Multiple eigenstates should be counted as many times as they appear. We assume
〈x |n〉 is orthonormal:

∫ 〈n|x〉〈x |m〉dx = δmn . The convergence of (12.93) for
t > 0 is guaranteed since � is non-negative. Taking the limit t →∞, we have

lim
t→∞ h(x, y; t) =

n0∑
i=1

〈x |0, i〉〈0, i |y〉 (12.95)

where the summation is over the zero modes |0, i〉 only. Thus, h = e−t� tends to
be the projection operator onto the space of zero modes as

e−t� t→∞−→
n0∑

i=1

|0, i〉〈0, i |. (12.96)

Define

h̃(t) ≡
∫

h(x, x; t) dx =
∑

n

e−tλn . (12.97)

Then it follows from (12.95) that

n0 = lim
t→∞ h̃(t). (12.98)

It is easy to verify that h satisfies the heat equation,(
∂

∂ t
+�x

)
h(x, y; t) = 0. (12.99)

If � is the conventional Laplacian, (12.99) reduces to the ordinary heat equation.
The initial condition is

h(x, y; 0) =
∑

n

〈x |n〉〈n|y〉 = δ(x − y) (12.100)

where the last equality follows from the completeness of the eigenvectors.

Exercise 12.4. Let u(x, t) be a solution of (12.99) such that u(x, 0) = u(x). Show
that

u(x, t) =
∫

h(x, y; t)u(y) dy. (12.101)

[Hint: First verify that (12.101) satisfies the initial condition, next that it is a
solution of the heat equation.]

It is known that the solution of (12.99) has an asymptotic expansion for
t → ε given by

h(x, x; ε) =
∑

i

ai (x)ε
i (12.102)

 



see Gilkey (1984). Similarly, h(t) has an expansion

h̃(ε) ≡
∑

i

aiε
i (12.103)

where ai =
∫

ai (x)dx .
Let E and F be complex vector bundles over M and D : �(M, E) →

�(M, F) be an elliptic operator. We define two Laplacians

�E ≡ D† D : �(M, E)→ �(M, E) (12.104a)

�F ≡ DD† : �(M, F)→ �(M, F). (12.104b)

It is important to note that they have the same non-vanishing eigenvalues
including the degeneracy. To see this, let �E |λ〉 = λ|λ〉. Then there is a vector
D|λ〉 ∈ �(M, F) such that

�F (D|λ〉) = DD† D|λ〉 = D�E |λ〉 = λ(D|λ〉).
Note that D|λ〉 �= 0 since ker�E = ker D. Conversely, if |µ) ∈ �(M, F)
satisfies �F |µ) = µ|µ), then D†|µ) ∈ �(M, E) is an eigenvector of �E with
the same eigenvalue µ. Thus, we have found the symmetry3

Spec′�E = Spec′�F (12.105)

where the prime denotes that the zero eigenmodes are omitted.
Define two heat kernels hE and hF by

hE (x, y, t) =
∑

e−λn 〈x |n〉〈n|y〉 (12.106a)

hF (x, y, t) =
∑

e−µm 〈x |m)(m|y〉. (12.106b)

We have

lim
t→∞ h̃E (t) = dim ker�E = dim ker D (12.107a)

lim
t→∞ h̃F (t) = dim ker�F = dim ker D†. (12.107b)

What is more interesting is the index of D. Since ker D = ker�E and ker D† =
ker�F , we have

ind D = dim ker D − dim ker D† = dim ker�E − dim ker�F

= lim
t→∞[h̃E (t)− h̃F (t)] = h̃E (t)− h̃F (t). (12.108)

The final equality follows since the t-dependent part of h̃E (t)− h̃F (t) cancels out
by the symmetry (12.105). We expand h̃E (t) and h̃F (t) as

h̃E (t) =
∑

aE
i t i h̃F (t) =

∑
aF

i t i .

3 This is a kind of ‘supersymmetry’, see section 12.10.
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Picking up t-independent terms, we have

ind D = aE
0 − aF

0 =
∫

dx [aE
0 (x)− aF

0 (x)] dx (12.109)

where aE,F
0 (x) are defined in (12.102).

In general, aE,F
0 (x) are local invariants written in terms of curvature two-

forms. In section 13.2, we use the heat kernel to prove the index theorem

ind D = ν+ − ν− =
∫

M
ch(�)|vol

for the twisted spin complex over a manifold with Â(T M) = 1.

Exercise 12.5. Let D, D†,�E and �F be as before. Show that

I (s) ≡ tr

[
s

�E + s
− s

�F + s

]
Re s > 0 (12.110)

is independent of s. Show also that I (s) = ind D.

12.7.2 Spectral ζ -functions

Let E and F be vector bundles over M . Define a new function

ζE (x, y; s) ≡
∑′〈x |n〉〈n|y〉λ−s

n Re s > 0 (12.111)

where �E |n〉 = λn |n〉 and the prime denotes the omission of the zero modes
(λn = 0). A function ζF (x, y; s) may similarly be defined for �F . The functions
hE and ζE are related by the Mellin transformation. To see this, we recall the
definition of the �-function,

�(s) ≡
∫ ∞

0
ts−1e−t dt = λs

∫ ∞

0
ts−1e−λt dt

where λ is taken to be strictly positive. From this we find

�(s)ζ(x, y; s) =
∑

n

′ ∫ ∞

0
ts−1e−λnt 〈x |n〉〈n|y〉dt

=
∫ ∞

0
ts−1

[
h(x, y; t)−

∑
i

〈x |0, i〉〈0, i |y〉
]

dt . (12.112)

We also note that

ζ�(s) ≡
∫

M
ζ(x, x; s) dx =

∑
n

′
λ−s

n (12.113)

 



is the spectral ζ -function defined in (1.158).

Exercise 12.6. Verify that

�−s f (x) =
∫
ζ(x, y; s) f (y) dy (12.114)

where the general power of an operator may be defined in the sense of an
eigenvalue, namely we put �−s |n〉 = λ−s

n |n〉. Re s is assumed to be sufficiently
large so that (12.114) is well defined. [Hint: Use the completeness of the
eigenvectors.]

Example 12.7. The following example is taken from Kulkarni (1975). Let M =
S1 = {eiθ } and E = F = a trivial line bundle over S1 (a cylinder). Take an
operator� ≡ −∂2/∂θ2. From the eigenvalue equation,

−∂
2einθ

∂θ2
= n2einθ n ∈ �

we find that
λn = n2 〈θ |n〉 = (2π)−1/2einθ .

The heat kernel is

h(θ1, θ2; t) =
∑

e−n2t 〈θ1|n〉〈n|θ2〉

= 1

2π

(
1+

∑′
e−n2t ein(θ1−θ2)

)
(12.115)

while

ζ(θ1, θ2; s) =
∑′

n−2s〈θ1|n〉〈n|θ2〉

= 1

2π

∑′
n−2sein(θ1−θ2). (12.116)

We easily verify that h̃(t) = 1+∑′ e−n2t satisfies

1+ 2
∫ ∞

1
e−x2t dx < h̃(t) < 1+ 2

∫ ∞

0
e−x2t dx .

We then find from these inequalities that∫ +∞

−∞
e−x2t dx − 1 < h̃(t) <

∫ +∞

−∞
e−x2t dx + 1

or by putting the value ∫
e−x2t dx = √π t−1/2

 



we find √
π t−1/2 − 1 < h̃(t) <

√
π t−1/2 + 1.

This shows that
lim

t→0+
h̃(t) ∼ √π t−1/2. (12.117)

In general, the asymptotic series starts with t− dim M/2.

12.8 The Atiyah–Patodi–Singer index theorem

So far we have been concerned with index theorems defined on a compact
manifold without a boundary. In practical situations in physics, we often need
to find an index of an operator defined over a base space M with a boundary.
The extensions of the AS index theorem to these cases are discussed here. Our
argument is restricted to the spin bundle over M since this is the only situation we
shall be concerned with in chapter 13.

12.8.1 η-invariant and spectral flow

Let i /∇ be a Hermitian Dirac operator defined on an odd-dimensional manifold M ,
dim M = 2l + 1. Since i /∇ is Hermitian, the eigenvalues λk are real. We define
the η-invariant of i /∇ by the spectral asymmetry of i /∇,

η ≡
∑
λk>0

1−
∑
λk<0

1. (12.118)

This is not well defined and requires a proper regularization. For example, we
may define η by lims→0 η(s) where

η(s) ≡
∑

k

′
sgn(λk)|λk |−2s Re s > 0. (12.119)

It can be shown that, under proper boundary conditions, η(s) has no pole at s = 0.

Exercise 12.7. Use the Mellin transformation

1

2
�

(
s + 1

2

)
a−(s+1)/2 =

∫ ∞

0
dx xse−ax2

a > 0

to verify that

η(s) = 2

�( 1
2 (s + 1))

∫ ∞

0
dx xs tr i /∇e−x2(i /∇)2 . (12.120)

Suppose a Dirac field is interacting with an external gauge potential �t , t ∈
[0, 1]. The Dirac operator i /∇(�t ) has a t-dependent eigenvalue problem. If
an eigenvalue of i/∇(�t ) crosses zero, the η-invariant jumps by ±2. This jump

 



Figure 12.1. Whenever an eigenvalue λ crosses zero (a), the η-invariant jumps by ±2 (b).
The sign depends on the way in which λ crosses zero.

denotes the spectral flow from λ � 0 modes to λ � 0 modes; if η jumps by
+2 (−2), there is a flow of a state from λ < 0 to λ > 0 (λ > 0 to λ < 0), see
figure 12.1. In addition to the discontinuous change associated with the spectral
flow, i /∇ also has a continuous variation ηc. We have

η(t = 1)− η(t = 0) =
∫ 1

0
dt

dηc

dt
+ 2× (spectral flow). (12.121)

12.8.2 The Atiyah–Patodi–Singer (APS) index theorem

Let us consider a (2l + 2)-dimensional Dirac operator

iD̂2l+2 = iσ1
∂

∂ t
+ σ2 ⊗ i /∇(�t ) =

(
0 D

D† 0

)
(12.122a)

where
D = i∂t − /∇(�t ) D† = i∂t + /∇(�t ). (12.122b)

[Remark: The positions of D and D† are reversed since

γ 2l+3 =
( −1 0

0 1

)
for our choice of γ -matrices; cf (12.79).]

Theorem 12.3. (Atiyah–Patodi–Singer theorem) Let M be an odd-dimensional
manifold and i /∇(�t ) a Dirac operator on M interacting with an external gauge
field �t . Then,

ind D = dim ker D − dim ker D†

=
∫

M×I
Â(�)ch(�)|vol − 1

2 [η(i /∇(�1))− η(i /∇(�0))].
(12.123)

 



The general argument shows that the continuous part ηc of the η-invariant
satisfies ∫ 1

0
dt

dηc

dt
= 2

∫
M×I

Â(�)ch(�)|vol. (12.124)

Then the RHS of (12.123) is simply the spectral flow

−1

2
[η(t = 1)− η(t = 0)] + 1

2

∫ 1

0
dt

dηc

dt
= −spectral flow.

Thus, we find another expression for the APS index theorem,

ind iD̂2l+2 = −spectral flow. (12.125)

The proof of the APS index theorem in its most general form is found in Atiyah et
al (1975a, b, 1976). The physicists’ proof is found in Alvarez-Gaumé et al (1985).
We use the APS index theorem to study the odd-dimensional parity anomaly in
section 13.6.

Example 12.8. To see why the spectral flow appears in the index theorem, we
consider an example taken from Atiyah (1985). Let M = S1 and θ be its
coordinate. Consider a Hermitian operator

i∇t ≡ i

(
∂

∂θ
− it

)
= i∂θ + t t ∈ �. (12.126)

The term −it is thought of as a U(1) gauge potential. The eigenvector and the
eigenvalue of i∇t are

ψn,t (θ) = 1√
2π

e−inθ (n ∈ �) λn(t) = n + t .

Since Spec i∇t = Spec i∇t+1, the family of operators i∇t is periodic in t with the
period 1, see figure 12.2. This periodicity manifests itself in the gauge equivalence
of i∇t and i∇t+1:

i∇t+1 = eiθ i∇t e−iθ .

There is precisely unit spectral flow from λ < 0 to λ > 0 at t = 0 while t changes
from −ε to 1 − ε, ε being a small positive number. From i∇t , we construct a
two-dimensional Dirac operator

i /D2 ≡ iσ1 ⊗ ∂

∂ t
+ σ2 ⊗ i∇t =

(
0 D

D† 0

)
(12.127a)

where
D ≡ i∂t + ∂θ − it D† ≡ i∂t − ∂θ + it . (12.127b)

These operators act on functions which satisfy the boundary conditions

φ(θ + 2π, t) = φ(θ, t) φ(θ, t + 1) = eiθφ(θ, t). (12.128)

 



Figure 12.2. Time evolution of the eigenvalues of i∇t . Spec i∇t has period 1. The i th
eigenvalue crosses zero at t = 0 and, hence, there is a unit spectral flow.

Let φ0 ∈ ker D†. We have a Fourier expansion

φ0(θ, t) =
∑

an(t)e
−inθ .

It follows from D†φ0 = 0 that

a′n(t)+ (n + t)an(t) = 0

which is easily solved to yield

an(t) = cn exp

(
− (n + t)2

2

)
.

The boundary conditions (12.128) require that

∑
n

cn exp

(
− (n + t + 1)2

2

)
e−inθ =

∑
n

cn exp

(
− (n + t)2

2

)
e−i(n−1)θ

from which we find that cn is independent of n. Thus, ker D† is one dimensional
and is spanned by the theta function,

φ0(θ, t) =
∑

exp

(
− (n + t)2

2
− inθ

)
. (12.129)

 



Suppose φ̃0(θ, t) ∈ ker D. If we put φ̃0(θ, t) =∑
bn(t)e−inθ , bn(t) satisfies

b′n(t)− (n + t)bn(t) = 0.

The solution of this equation is

bn(t) = bn(0) exp
(n + t)2

2

and, hence, φ̃0 cannot be normalized. This shows that

ind D = dim ker D − dim ker D† = −1

which agrees with −(spectral flow).

12.9 Supersymmetric quantum mechanics

We present, in the next section, the physicists’ proof of the index theorem in
its simplest setting. The proof is heavily based on path integral formulation of
supersymmetric quantum mechanics (SUSYQM), which will be outlined in the
present section.

We have studied the path integral quantization of bosons and fermions.
If these particles are combined together, there appears a new symmetry called
supersymmetry. We will introduce a special class of SUSYQM later, which
turns out to be crucial in the proof of an index theorem.

This and the next sections may be read separately from the previous sections.
The necessary tools are supplied to make these sections self-contained. Our
exposition follows Alvarez (1995) and Nakahara (1998). Original references are
Alvarez-Gaumé L (1983) and Friedan and Windey (1984, 1985).

12.9.1 Clifford algebra and fermions

We restrict ourselves to a particle moving in �3 to start with. More general
settings will be studied later. Let {ψi } = {ψ1, ψ2, ψ3} be real Grassmann
variables, where i = 1, 2, 3 labels the coordinate index. They satisfy the algebra

{ψi , ψ j } = 0

Let us consider the Lagrangian

L = i

2
ψi ψ̇i − i

2
εi j k Biψ jψk (12.130)

where Bi is a real number. The canonical conjugate momentum for ψi is

πi ≡ ∂L

∂ψ̇i
= − i

2
ψi .

 



Then the Hamiltonian is

H = −ψ̇i
i

2
ψi − L = i

2
εi j k Biψ jψk . (12.131)

The Poincaré one-form of this system is

θ = i

2
ψi dψi . (12.132)

The corresponding symplectic two-form is

ω = dθ = i

2
dψi ∧ dψi (12.133)

from which we obtain the Poisson bracket

[ψ j , iψk ]PB = iδ j k. (12.134)

Quantization of the system is achieved by replacing this Poisson bracket by the
anti-commutation relation

{ψ j , ψk} = δ j k . (12.135)

This anti-commutation relation is called the Clifford algebra in �3 . Let σi be the
i th component of the Pauli matrices. It is easily verified from the observation

{σ j , σk} = 2δ j k

that ψi = σi/
√

2 is the two-dimensional representation of the Clifford algebra.
It is known that the finite-dimensional irreducible representation of the Clifford
algebra is unique (modulo conjugate transformations). Thus, the Hilbert space of
this system turns out to be� = � 2 . The Hamiltonian is rewritten in terms of the
Pauli matrices as

H = − 1
2 B · σ . (12.136)

This Hamiltonian is known as the Pauli Hamiltonian and describes a spin in a
magnetic field.

Similarly, the Clifford algebra defined in �2n and �2n+1 acts on the Hilbert
space� = � 2n

.

12.9.2 Supersymmetric quantum mechanics in flat space

The Pauli Hamiltonian is made only of the spin coordinatesψi and is independent
of the space coordinate xk . Accordingly, it cannot describe a travelling spin. Now
the Hamiltonian is modified so that the spin may move around the space. This can
be realized by adding a kinetic term to the Hamiltonian. Let us consider a spin in
�d and put B = 0 to obtain the Hamiltonian

L = 1

2
ẋk ẋk + i

2
ψkψ̇k . (12.137)

 



The coefficients of this Lagrangian have been chosen so that the system has a
supersymmetry defined later. The canonically conjugate momenta are pk = ẋk

and πk = −iψk/2, from which we obtain the Poisson brackets of the system

[x j , xk]PB = [p j , pk]PB = 0 [x j , pk]PB = [ψ j , ψk ]PB = δ j k .

It is easy to derive (anti)commutation relations from these Poisson brackets. The
canonical (anti)commutation relations are

[x j , xk] = [p j , pk] = 0 [x j , pk] = {ψ j , ψk} = δ j k. (12.138)

The Hamiltonian is

H = ẋ j p j − ψ̇ j
i

2
ψ j − L = 1

2
p2 = −1

2
� (12.139)

where� =∑d
k=1 ∂

2
k is the d-dimensional Laplacian. The Hilbert space on which

H acts is L2(�d ) ⊗ � 2n
, where L2(�d ) stands for the set of square-integrable

functions in �d and n ≡ [d/2] is the integer part of d/2.
Variation of the Lagrangian yields

δL = ẋ j
d

dt
δx j + i

2
δψ j ψ̇ j + i

2
ψ j

d

dt
δψ j .

Let us verify that the Lagrangian is invariant under the following supersymmetry
transformation

δx j = iεψ j δψ j = −ε ẋ j (12.140)

where ε is an ‘infinitesimal’ real Grassmann constant. In fact,

δL = iẋ jεψ̇ j − i

2
ε ẋ j ψ̇ j − i

2
ψ jε ẍ j

= iẋ jεψ̇ j − i

2
ε ẋ j ψ̇ j − i

2

d

dt
(ψ jε ẋ j )+ i

2
ψ̇ j ε ẋ j

= − i

2

d

dt
(ψ j ε ẋ j ) (12.141)

and the action S = ∫
Ldt is left invariant. The corresponding charge (the

generator) is called the supercharge and defined through the Noether’s theorem
as4

εQ ≡ iεp jψ j = iεψ j p j = iεψ j ẋ j . (12.142)

Exercise 12.8. Show that

δx j = [x j , εQ] (12.143)

δψ j = {ψ j , εQ}. (12.144)
4 Note that the mass of the particle is set to unity and hence we have p j = ẋ j .

 



These equations show that Q is the generator of SUSY transformations.

Let us take d = 2n to be an even integer and quantize the system in the
following. We introduce the matrix representation ψ j = γ j/

√
2, which is the

generalization of the two-dimensional representation introduced in the previous
subsection. Here γ j are the d-dimensional Dirac matrices that satisfy the Clifford
algebra

{γ j , γk} = 2δi j . (12.145)

The Hamiltonian acts on the Hilbert space

� = L2(�
2n )⊗ � 2n

.

The supercharge takes the form, upon diagonalizing the coordinate,

Q = iψ j p j = 1√
2
γ j

∂

∂x j
. (12.146)

The operator

/∂ ≡ γ j
∂

∂x j
(12.147)

is nothing but the Dirac operator in Euclidean space �2n and plays an important
role in the proof of the index theorem.

The hypercharge Q transforms in an interesting way under an SUSY
transformation (12.140)

δQ = i(δψ j )ẋ j + iψ j
d

dt
δx j = i(−ε ẋ j )ẋ j + iψ j (iεψ̇ j )

= − iε ẋ j ẋ j + εψ j ψ̇ j = −2iε

(
1

2
ẋ j ẋ j + i

2
ψ j ψ̇ j

)
= − 2iεL . (12.148)

Namely, the variation of the supercharge under an infinitesimal SUSY
transformation is the Lagrangian!

We next consider the relation between the supercharge and the Hamiltonian
of the system. Let us consider successive SUSY transformations with Grassmann
parameters ε1 and ε2. If a transformation with ε1 is applied first and then ε2 next,
we obtain

x j
ε1→ x j + iε1ψ j

ε2→ x j + i(ε1 + ε2)ψ j − iε1ε2 ẋ j

ψ j
ε1→ ψ j − ε1 ẋ j

ε2→ ψ j − (ε1 + ε2)ẋ j − iε1ε2ψ̇ j

while if the order of the SUSY transformations is reversed,

x j → x j + i(ε1 + ε2)ψ j − iε2ε1 ẋ j

ψ j → ψ j − (ε1 + ε2)ẋ j − iε2ε1ψ̇ j .

 



We find, from these results, the commutation relation of the SUSY variations:

[δε2, δε1] = δε2δε1 − δε1δε2 = −2iε1ε2
∂

∂ t
. (12.149)

The observation that the commutation relation of two SUSY transformations
is a time derivative, i.e. the Hamiltonian, suggests that the anti-commutation
relation of the supercharge, the generator of the SUSY transformation, also yields
the Hamiltonian. In fact,

{Q, Q} = 2Q2 = 2(ip jψ j )(ipkψk)

= −p j pk(ψ jψk + ψkψ j ) = −p j pkδ j k

= − 2H.

After all, the SUSY algebra reduces to

Q2 = −H. (12.150)

Since Q is anti-Hermitian, the Hamiltonian is a Hermite operator with non-
negative spectrum.

In summary, we proved in equations (12.148) and (12.141) that

δQ = −2iεL δL = 1

2
ε

dQ

dt
. (12.151)

If these equations are compared with the SUSY transformations (12.140) of
the coordinates x j and ψ j , we readily notice that the roles played by bosonic
quantities (x j and L) and the fermionic quantities (ψ j and Q) are interchanged.
Note that the variation of the supercharge Q in (12.151) is always a time derivative
of the Lagrangian L. This observation is crucial in constructing a SUSY-invariant
Lagrangian out of a supercharge Q.

12.9.3 Supersymmetric quantum mechanics in a general manifold

Let M be a Riemannian manifold with dim M = 2n. The Riemannian metric is

ds2 = gµν dxµ dxν

and the inner product of two vectors X and Y with respect to this metric is denoted
as

〈X,Y 〉 = gµνXµY ν .

The vector ψµ(t) belongs to T Mx(t) at each instant of time t . Therefore,
ψµ(t) obeys the ordinary transformation rule for a vector under the coordinate
transformation xµ→ x ′µ = x ′µ(xν):

ψµ → ψ ′µ = ∂x ′µ

∂xν
ψν. (12.152)

 



Then, under the SUSY transformation δ ≡ δε , the coordinates transform as

δx ′µ = ∂x ′µ

∂xν
δxν = ∂x ′µ

∂xν
iεψν = iεψ ′µ

and

δψ ′µ = ∂2x ′µ

∂xν∂xλ
δxλψν + ∂x ′µ

∂xν
δψν

= ∂2x ′µ

∂xν∂xλ
iεψλψν + ∂x ′µ

∂xν
(−iε ẋν) = −ε ẋ ′µ

where the anti-commutativity of Grassmann numbers has been used to obtain the
last equality. These transformation rules show that the SUSY transformation is
covariant under the coordinate transformation xµ→ x ′µ.

The supercharge Q introduced in the previous subsection should be
generalized on the manifold M as

Q = i〈ẋ, ψ〉 = igµν(x)ẋµψν. (12.153)

The SUSY-invariant Lagrangian on M is constructed from the SUSY variation of
this Q as

δQ = i∂λgµνδx
λ ẋµψν + igµνδẋµψν + igµν ẋµδψν

= i∂λgµν iεψ
λ ẋµψν + igµν(iεψ̇

µ)ψν + igµν ẋµ(−ε ẋν)

= −2iε

[
1

2
gµν ẋµ ẋν + i

2
gµνψ

νψ̇µ

− i

2
ẋµ

1

2

(
∂λgµν − ∂νgµλ − ∂µgλν

)
ψλψν

]
= −2iε

(
1

2
gµν ẋµ ẋν + i

2
gµνψ

νψ̇µ + i

2
ẋµgλρ�

ρ
µνψ

λψν
)

where
�νλµ = 1

2 gνρ
(
∂λgρµ + ∂µgλρ − ∂ρgλν

)
is the Christoffel symbol associated with the Levi-Civita connection. Note the
symmetry �λµν = �λνµ. By comparing this δQ with (12.151), we read off the
Lagrangian,

L = 1

2
gµν(x)ẋ

µ ẋν + i

2
gµν(x)ψ

µ

(
dψν

dt
+ ẋλ�νλκ(x)ψ

κ

)
= 1

2
〈ẋ, ẋ〉 + i

2

〈
ψ,

Dψ

Dt

〉
. (12.154)

Here Dψ/Dt is the covariant derivative of ψ along the curve x(t).

 



Exercise 12.9. Show that the SUSY variation of the Lagrangian is proportional to
the time derivative of the supercharge,

δL = 1

2
ε

dQ

dt
. (12.155)

The quantum version of the supercharge is

Q ∼ gµν pµγ ν (12.156)

that is the Dirac operator /∂ on M .
Let us define some symbols that will be employed in the next section. The

connection one-form is
�µν = dxλ �µλν (12.157)

while the Riemann curvature two-form is

�µν = d�µν + �µσ ∧ �σν. (12.158)

The Riemann curvature two-form is expanded in terms of dxρ ∧ dxσ to yield

�µν = 1
2 Rµνρσ dxρ ∧ dxσ (12.159)

the component of which is the ordinary Riemann curvature tensor. This
component is also written in terms of the connection ∇µ as

Rκλµν =
〈
dxκ,∇µ∇ν ∂

∂xλ
−∇ν∇µ ∂

∂xλ

〉
= ∂µ�κνλ − ∂ν�κµλ + �ηνλ�κµη − �ηµλ�κνη. (12.160)

12.10 Supersymmetric proof of index theorem

The proof of the index theorem in its simplest setting will be given in the present
section by making use of the supersymmetric quantum mechanics developed in
the previous section.

12.10.1 The index

Let us consider vector bundles E±
π−→ M , E = E+⊕E− and let� be an elliptic

differential operator acting as

� : �(M, E+)→ �(M, E−).

It is possible, by using the fibre norm, to define the adjoint of � as

�† : �(M, E−)→ �(M, E+).

 



Assuming that � is Fredholm, the index

Ind� = dim ker� − dim ker�† (12.161)

is well defined.

Theorem 12.4. The number ind� is invariant under a ‘small’ deformation of �.

Proof. Note, first, that ��† and �†� are non-negative and, hence, it follows that

ker� = ker�†� ker�† = ker��†.

Let {φn} be the orthonormal set of eigensections of �†� : �(M, E+) →
�(M, E+):

(�†�)φn = λnφn .

Define ψn ≡ �φn/
√
λn for λn > 0, namely φn ∈ (ker�)⊥. Then we find that

ψn is an eigensection with the same eigenvalue λn , namely ψn ∈ (ker�†)⊥ since

(��†)ψn = �(�†�φn)/
√
λn = λn�φn/

√
λn = λnψn .

Note also that {ψn} is an orthonormal eigensection,

〈ψn |ψm〉 = 1√
λnλm

〈φn |�†�|φm〉 = λm√
λnλm

δnm = δnm .

Thus, it follows that there is a natural isomorphism between (ker�)⊥ and
(ker�†)⊥. Note, however, that there exists no such isomorphism between ker�
and ker�†. Suppose N states in ker� obtain non-vanishing eigenvalues as a
result of a small perturbation of the operator � and dim ker� decreases by N .
Then it follows from this observation that the same number of states must also
leave ker�†. Otherwise (ker�)⊥ is no longer isomorphic to (ker�†)⊥. Similary,
if dim ker� increases by N , dim ker�† must also increase by N to keep the
pairing properties of (ker�)⊥ and (ker�†)⊥. Therefore, ind� is invariant under
small perturbations of�. �

Theorem 12.5. Let � be a Fredholm differential operator. Then its index is given
by

ind� = Tr e−β�†� − Tr e−β��†
(12.162)

where β > 0 is a real constant. In fact, the index is independent of β.

 



Proof. The traces in (12.162) are over {φn} and {ψn}, respectively. Let {φ0
i }

and {ψ0
i } be orthonormal eigensections of ker� and ker�†, respectively, and

1 ≤ i ≤ dim ker� and 1 ≤ j ≤ dim ker�†. Then it follows that

Tr e−β�†� − Tr e−β��†

=
∑
λn �=0

〈φn |e−β�†�|φn〉 −
∑
λn �=0

〈ψn |e−β��†|ψn〉

+
∑

i

〈φ0
i |φ0

i 〉 −
∑

j

〈ψ0
j |ψ0

j 〉

=
∑
λn �=0

e−βλn (〈φn |φn〉 − 〈ψn |ψn〉)+
∑

i

1−
∑

j

1

= dim ker� − dim ker�†

= ind�.

Since the summations over i and j are independent of β, ind� thus defined is
independent of β. �

The trace that appears in theorem 12.5 is identified with the heat kernel.
Let E = E+ ⊕ E− and define a differential operator acting on E by5 (cf
equation (12.79))

iQ ≡
(

0 �†

� 0

)
: E → E . (12.163)

Moreover, define a ‘Hamiltonian’ and a matrix � by

H = (iQ)2 =
(
�†� 0

0 ��†

)
� =

(
1 0
0 −1

)
. (12.164)

Since Q thus defined is anti-Hermitian, the operator H is Hermite and non-
negative. The index of � is rewritten in a compact form by making use of �
as

ind� = Tr�e−βH . (12.165)

Let M be a spin manifold, for which the second Stiefel–Whitney class
w2(M) is trivial. Accordingly, the SO(k) principal bundle over M may be lifted
to the SPIN(k) principal bundle as

SO(k) → SPIN(k).
↓ π
M

Let E = �(M) be this spin bundle. Then, associated with �(M) is a Clifford
algebra {γ µ, γ ν} = 2δµν . Let us define the chirality operator

γ2n+1 ≡ inγ1γ2 . . . γ2n. (12.166)
5 The operator Q will be identified with the supercharge later.

 



It follows from γ 2
2n+1 = 1 that the eigenvalues of γ2n+1 are restricted to be ±1,

which we call chirality.

Exercise 12.10. Use the Clifford algebra to show that

γ 2
2n+1 = 1 {γµ, γ2n+1} = 0.

The set of sections�(M,�) for an even k is not an irreducible representation
of SPIN(k) but can be decomposed into two subspaces according to the chirality
as

�(M,�) = �(M,�+)⊕ �(M,�−) (12.167)

where ψ± ∈ �(M,�±) satisfy γ2n+1ψ± = ±ψ±. We assign the fermion
number F = 0 to sections in �(M,�+) while F = 1 for those in �(M,�−).
Then the � defined in (12.164) can be written as

� = (−1)F . (12.168)

It is clear that the operator Q flips the chirality and hence {Q, �} = 0.
Let Q be the Dirac operator on M and let � = γ2n+1. In fact, it follows from

exercise 12.11 that {Q, γ2n+1} = 0 and γ2n+1 is identified with (−1)F . When �
is diagonalized as in (12.164), the chirality eigensections are expressed as6

ψ+ =
(
ψ+
0

)
ψ− =

(
0
ψ−

)
. (12.169)

It should be then clear that� : �(M,�+)→ �(M,�−) and�† : �(M,�−)→
�(M,�+) are identified with D and D†, respectively, in (12.79). Accordingly,
the index of the Dirac operator is defined as

ind Q = dim ker D − dim ker D†. (12.170)

Physicists often call the sections in ker D and ker D† zero modes. Then, the
index of the Dirac operator is the difference between the number of positive and
negative chirality zero modes. This index has a path integral expression as we see
in the next subsection.

12.10.2 Path integral and index theorem

Let us consider a Dirac operator Q on a 2n-dimensional spin manifold M . We
employ Euclidean time (t → −it) from now on.

Let H = (iQ)2 = 1
2 gµν pµ pν be the Hamiltonian corresonding to Q. Then

the index of the Dirac operator has a path integral expression

ind Q = Tr�e−βH = Tr(−1)F e−βH

=
∫

PBC
�x �ψ e−

∫ β
0 dt L (12.171)

6 Note the slight abuse of notations. The symbols ψ± have been used to denote sections in �(M, S)
as well as those in �(M, �±).

 



where the Lagrangian L has been introduced in (12.154),

L = 1

2
gµν(x)ẋ

µ ẋν + 1

2
gµν(x)ψ

µDψν

Dt
(12.172)

and PBC stands for the boundary condition in which the path integral is over
functions satisfying a periodic boundary condition over [0, β]. The factor (−1)F

disappears if the anti-periodic boundary condition for the fermionic variables is
changed into a periodic one. This can be seen from the following observation. In
the path integral formalism, the trace with (−1)F is (see section 1.5)

tr(−1)F e−βH =
∑

n

〈n|(−1)F e−βH |n〉

=
∫

dθ∗ dθ〈−θ |(−1)F e−βH |θ〉e−θ∗θ (12.173)

where F = c†c is the Fermion number operator. By noting that

|θ〉 = |0〉 + |1〉θ (−1)F |θ〉 = |0〉 − |1〉θ = | − θ〉
this integral is cast into the form∫

dθ∗ dθ〈θ |e−βH |θ〉e−θ∗θ . (12.174)

Thus, by eliminating (−1)F , we have to change the boundary condition to a
periodic one.

This path integral is evaluated in the rest of this section to show that it reduces
to a topological index obtained from the Dirac Â-genus.

The SUSY transformation in Euclidean time is obtained by the replacement
t →−it in (12.140) as

δxµ = iεψµ δψµ = −iε ẋµ.

As was shown in the previous subsection, the index is independent of β and,
hence, we may consider the limit β ↓ 0 in computing the trace. By rescaling the
time parameter as t = βs, we cast the action into the form∫ β

0
dt

[
1

2
gµν(x)ẋ

µ ẋν + 1

2
gµν(x)ψ

µDψν

Dt

]
=

∫ 1

0
ds

[
1

β

1

2
gµν(x)

dxµ

ds

dxν

ds
+ 1

2
gµν(x)ψ

µDψν

Ds

]
. (12.175)

Thus, any path with ẋ �= 0 has an exponentially small contribution to the path
integral in the limit β ↓ 0. Accordingly, the contributions to the path integral
come only from paths x(t) = constant in this limit. Clearly, these paths satisfy
the periodic boundary condition.

 



The periodic boundary condition forces us to take the set of loops in
M , which we will denote as L(M), as the configuration space of the bosonic
coordinates. To apply the saddle point method to the evaluation of the path
integral, we have to find the set � of the extrema of the action, namely the
solutions of the classical Euler–Lagrange equations

−gλµ(x)
Dẋµ

Dt
+ 1

2
Rµνλρψ

µψν ẋρ = 0 (12.176)

Dψµ

Dt
= dψµ

dt
+ ẋλ�µλνψ

ν = 0. (12.177)

It is instructive to outline the derivation of these equations since the anti-
commutativity of Grassmann numbers and the symmetries of the Riemann tensor
are fully utilized. The Euler–Lagrange equation for ψµ is

0 = ∂L

∂ψρ
− d

dt

(
∂L

∂ψ̇ρ

)
= 1

2
gρν

Dψν

Dt
− 1

2
gκνψ

κ ẋλ�νλρ +
1

2

d

dt

(
gρνψ

ν
)

= 1

2

[
gρν

Dψν

Dt
− gκν ẋλ�νλρψ

κ + (
∂λgρν

)
ẋλψν + gρνψ̇

ν

]
.

By multiplying both sides by gµρ and summing over ρ, we have

0 = Dψµ

Dt
− gµρgκν ẋλ�νλρψ

κ + gµρ
(
∂λgρν

)
ẋλψν + ψ̇µ

= Dψµ

Dt
+ ψ̇µ + ẋλ

[
gµρ

(
∂λgρν

)− gµρgνκ�
κ
λρ

]
ψν = 2

Dψµ

Dt

which proves (12.177). Here, use has been made of the identity

gµρ[(∂λgρν)− 1
2 (∂λgνρ + ∂ρgνλ − ∂νgλρ)]

= gµρ 1
2

(
∂λgρν + ∂νgλρ − ∂ρgνλ

) = �µνλ
in the square brackets in the second line above.

Let us prove the equation of motion for xµ next. We find

∂L

∂xµ
− d

dt

(
∂L

∂ ẋµ

)
= 1

2
(∂µgαβ)ẋ

α ẋβ + 1

2
(∂µgαβ)ψ

α Dψβ

Dt
+ 1

2
gαβψ

α ẋλ∂µ�
β
λκψ

κ

− d

dt

(
gµν ẋν + 1

2
gαβψ

α�βµκψ
κ

)
= −[gµν ẍν + 1

2 (∂λgµν + ∂νgµλ − ∂µgνλ)ẋ
ν ẋλ]

 



+ 1
2 [gαβ∂µ�βλκ − ∂λgαβ�

β
µκ − gαβ∂λ�

β
µκ ]ψαψκ ẋλ

+ 1
2 gαβ ẋλ�αλγ ψ

γ �βµκψ
κ + 1

2 gαβψ
α�βµκ ẋλ�κλνψ

ν

= −gµν
Dẋν

Dt
+ 1

2
[gαβ∂µ�βλκ − gαβ∂λ�

β
µκ − ∂λgαβ�

β
µκ

+ gγβ�
γ
λα�

β
µκ + gαβ�

β
µγ �

γ
λκ ]ψαψκ ẋλ

= −gµν
Dẋν

Dt
+ 1

2
(∂µ�

β
λκ − ∂λ�βµκ + �βµκ�γλκ)ψαψκ ẋλ

+ 1
2 (gγβ�

γ
λα − ∂λgαβ)�

β
µκψ

αψκ ẋλ.

The last term of the last line of this equation is written as

[gγβ 1
2 gγ ν(∂λgνα + ∂αgνλ − ∂νgλα)− ∂λgαβ ]�βµνψαψκ ẋλ

= − 1
2 (∂λgαβ + ∂βgλα − ∂αgλβ)�

β
µνψ

αψκ ẋλ

= −�αλβ�βµκψαψκ ẋλ

= −gαβ�
β
λβ�

β
µκψ

αψκ ẋλ

from which we obtain

0 = −gµν
Dẋν

Dt
+ 1

2
(∂µ�

β
λκ − ∂λ�βµκ + �βµγ �γλκ − �βλγ �γµκ)ψαψκ ẋλ

= −gµν
Dẋν

Dt
+ 1

2
Rακµλψ

αψκ ẋλ.

Equation (12.176) follows by renaming dummy indices.
Let us come back to the study of the solutions of the equations of motion

(12.176) and (12.177). Clearly, the pair x = constant and ψ = constant is one of
solutions. Therefore, x p : t 
→ p ∈ M is always contained in the solutions, which
may be written as M ⊂�. Equation (12.176) reduces to the geodesic equation
when ψ = 0 but not necessarily so in general. When the fundamental group
π1(M) is non-trivial, there exist non-contractible geodesics in general. Their
contributions to the path integral, however, vanish exponentially as exp(−c/β)
as β ↓ 0 and, hence, are negligible.

Before we proceed to the proof of the index theorem, we need to explain the
saddle point method. Let us start with a simple example. Consider the integral

Z =
∫ ∞

−∞
dx√
2π h̄

e− f (x)/h̄.

The function f (x) is assumed to have only one minimum at x = x0 and that
f (x) → ∞ as x → ±∞. Let us consider the asymmptotic expansion of the
integral Z when the limit h̄ → 0 is taken. Put x = x0 +

√
h̄ y and expand f (x) at

x0. Taking f ′(x0) = 0 into account, we obtain the expansion

f (x) = f (x0)+ 1

2! h̄ y2 f ′′(x0)+ 1

3! h̄
3/2y3 f (3)(x0)+ 1

4! h̄
2y4 f (4)(x0)+ · · · .

 



If this expansion is substituted into Z , we have

Z = e− f (x0)/h̄
∫ ∞

−∞
dy√
2π

× exp

[
−1

2
y2 f ′′(x0)−

(
1

3! h̄
1/2y3 f (3)(x0)+ 1

4! h̄ y4 f (4)(x0)+ · · ·
)]
.

Let us define the moment of y by

〈yn〉 =

∫
dy√
2π

yne−y2 f ′′(x0)/2∫
dy√
2π

e−y2 f ′′(x0)/2
.

Then we finally obtain the expansion of Z as

Z = e− f (x0)/h̄√
f ′′(x0)

〈
exp

[
− 1

3! h̄
1/2y3 f (3)(x0)− 1

4! h̄ y4 f (4)(x0) · · ·
]〉
.

One might think that one will get terms of order O(h̄1/2) if 〈· · · 〉 is expanded.
However, this is not the case since 〈y3〉 = 0 and one has 〈· · · 〉 = 1 + O(h̄) in
reality. In the proof of the following index theorem, the parameter h̄ is replaced
by β. The index is, however, independent of β and we conclude that terms of
order O(β) vanish and, hence, we need to take only the extrema of the action and
the second-order fluctuations thereof into account.

Exercise 12.11. Use the previous expansion to prove the Staring formula

n! 	 √2πne−nnn (12.178)

for n ) 1.

Let us come back to SUSYQM. We take the second-order fluctuation around
the solutions of the classical equations of motion in evaluating Z . The principal
contribution to the path integral comes from the solution x = x0 and ψ = ψ0. We
employ the Riemann normal coordinate based at x = x0 to make our life easier.
This is to take a coordinate system in which the metric tensor satisfies conditions7

gµν(x0) = δµν ∂

∂xλ
gµν(x0) = 0.

Thus, we have g ≡ det g = 1. We define the fluctuations in this coordinate system
as

xµ(t) = xµ0 + ξµ(t)
ψµ(t) = ψµ0 + ηµ(t).

7 Of course, this choice does not imply that the Riemann tensor vanishes in general.

 



Note here that dxµ = dξµ, dψµ = dηµ. The second-order expansion of the
action is now written as

S2 =
∫ β

0
dt

[
1

2

dξµ

dt

dξµ

dt
+ 1

2
ηµ

dηµ

dt
+ 1

2
�̃µν(x0)ξ

µ dξν

dt

]
(12.179)

where we have put
�̃µν(x0) = 1

2 Rµνρσ (x0)ψ
ρ
0 ψ

σ
0 .

Needless to say, the zeroth-order action S0 = S(x0, ψ0) vanishes identically.
Let us evaluate the index

ind Q =
∫
�ξ�ηe−S2 (12.180)

using the second-order action S2. Here we have taken the translational invariance
of the path integral measure �x�ψ = �ξ�η. Taking the periodic boundary
condition of ξ, η into account, their Fourier expansions are given by

ξµ = 1√
β

∞∑
n=−∞

ξµn e2π int/β

ηµ = 1√
β

∞∑
n=−∞

ηµn e2π int/β .

The fluctuation operator for ξ in S2 is

−δµν d2

dt2
+ �̃µν d

dt

while that for η is

δµν
d

dt
.

We have to consider the zero modes ξµ0 and ηµ0 , for which n = 0, separately in
the following Gaussian integrals.8 Taking these into account, we write

ind Q = �
∫ d∏
µ=1

dξµ0√
2π

dηµ0

[
DetPBC

′
(
δµν

d

dt

)]1/2

×
[

DetPBC
′
(
−δµν d2

dt2 + �̃µν(x0)
d

dt

)]−1/2

= �
∫ d∏
µ=1

dξµ0√
2π

dηµ0

[
DetPBC

′
(
−δµν d

dt
+ �̃µν(x0)

)]−1/2

(12.181)

8 The integrations over ξ0 and η0 are equivalent with those over x0 and ψ0.

 



where ′ indicates that the zero modes are omitted while � is the normalization
factor, which takes care of the ambiguities associated with the ordering of
Grassmann numbers. Let us evaluate this factor now.

Since ind Q is independent of β, we put β = 1 for simplicity. We also
simplify our calculation by choosing the metric to be gµν = δµν . Then the
fermion and boson parts separate completely. The fermionic part is evaluated,
by noting Hfermion = 0, to yield

Tr γ2n+1 =
∫

PBC
�ψe−

1
2

∫ 1
0 ψ ·ψ̇ dt

= � f Det′PBC(δµν∂t )
1/2

∫
dψ1

0 · · · dψ2n
0 ,

where ψµ0 is the zero mode. The determinant is evaluated as follows. First, note
that the argument in section 1.5 shows that the determinant is, in fact,

Det′PBC (∂t + ω) = lim
ε→0

Det′ ((1− εω)∂t + ω)

where we have introduced the harmonic oscillator frequency ω, which will be set
to zero at the end of the calculation. The ‘partition function’ is

tr(−1)F e−βH = 2 sinh(βω/2)

= eβω/2 Det′PBC ((1− εω)∂t + ω) . (12.182)

Therefore, the determinant in the limit ω→ 0 is

Det′PBC (∂t ) = lim
ω→0

e−βω/22 sinh(βω/2) = 1. (12.183)

Thus, we finally obtained

Tr γ2n+1 = � f

∫
dψ1

0 . . . dψ
2n
0 . (12.184)

We insert
γ2n+1 = inγ 1

0 . . . γ
2n
0 = (2i)nψ1

0 . . . ψ
2n
0

further in the trace. Since Tr γ 2
2n+1 = Tr I = 2n , we obtain

Tr γ 2
2n+1 = 2n = � f

∫
dψ1

0 . . . dψ
2n
0 (2i)nψ1

0 . . . ψ
2n
0 = � f (−2i)n

which leads to
� f = in.

Next, we evaluate the normalization factor �b of the boson part. If we employ
imaginary time in (1.101) to obtain 〈x, 1|x, 0〉 = (2π)−1/2, we have∫

�xµe−
1
2

∫ 1
0 ẋµ 2 = �b

1

Det1/2(−δµν∂2
t )

∫ 2n∏
µ=1

dxµ√
2π

= (2π)−n
∫ 2n∏
µ=1

dxµ.

 



The determinant is evaluated using the ζ -function regularization as in section 1.4.
The eigenvalue of −d2/dt2 with the periodic boundary condition is λn =
(2nπ/β)2 and then

Det′PBC

(
− d2

dt2

)
=

∏
n∈�,n �=0

(
2πn

β

)2

.

The spectral ζ -function is

ζ−d2/dt2(s) =
∞∑

n∈�,n �=0

[(
2nπ

β

)2
]−s

= 2

(
β

2π

)2s

ζ(2s)

from which we find

ζ ′−d2/dt2(0) = 4 log(β/2π)e2s log(β/2π)ζ(2s)+ 4e2s log(β/2π)ζ ′(2s)|s=0

= 4[log(β/2π)ζ(0)+ ζ ′(0)] = −2 logβ.

Therefore, the determinant is

Det′PBC

(
− d2

dt2

)
= exp[−ζ ′−d2/dt2(0)] = β2. (12.185)

By putting β = 1, we find Det′PBC

(−d2/dt2
) = 1. Thus, we have obtained the

normalization factor
�b = 1.

Putting these results together, we have shown that � = � f�b = in .
Accordingly, the index is expressed as

ind Q = in
∫ d∏
µ=1

dξµ0√
2π

dηµ0

[
DetPBC

′
(
−δµν d

dt
+ �̃µν(x0)

)]−1/2

. (12.186)

Let us evaluate the functional determinant in (12.186). Since the Fermi
variables are contained only in �̃µν(x0) and this is Grassmann-even, we pretend
this part is a commuting number for the time being. The anti-symmetry of the
Riemann tensor implies that �̃µν(x0) satisfies �̃µν = −�̃νµ. Therefore, it is
possible, in an even-dimensional manifold M , to block-diagonalize �̃µν in the
form

�̃µν =


0 y1
−y1 0

. . .

0 yn

−yn 0

 . (12.187)

 



Let us concentrate on the first block. The operator

−δµν d

dt
+ �̃µν(x0)

is real and, hence, the eigenvalues are made of complex conjugate pairs. Let us
express the determinant of this block in terms of the product of these complex
eigenvalues. We find

det ′

 − d

dt
y1

−y1 − d

dt

 = Det′
(

d2

dt2 + y2
1

)
=

∏
n �=0

(
y2

1 − (2πn/β)2
)

=
∏

n≥1

(
2πn

β

)2 ∏
n≥1

[
1−

(
y1β

2πn

)2
]2

=
(

sinβy1/2

y1/2

)2

. (12.188)

Now the index is expressed as

ind Q = in
∫ 2n∏
µ=1

dξµ0√
2π

dηµ0

n∏
j=1

y j/2

sinβy j/2
. (12.189)

The product with respect to j is written as

1

βd/2
det

(
β�̃/2

sin β�̃/2

)1/2

.

Note that any Taylor expansion with respect to �̃ terminates at finite order since
�̃p = 0 for p > d/2.

We have evaluated the contributions of the second-order fluctuations around
a particular pair x0, ψ0 so far. Now we need to take the contributions coming
from all the solutions to the classical equations of motion into account. We have
noted before that the set � of the solutions of the equations of motion contains
the constant solution (x0, ψ0) as a subset and that the contributions from non-
constant solutions are exponentially small as β ↓ 0. Therefore, we neglect all
periodic solutions except for constant solutions. If we note the expansion

xµ = xµ0 +
1√
β
ξ
µ
0 + · · ·

we find that the integral over x0 is equivalent with that over ξ0/
√
β, namely

dxµ0 = dξµ0 /
√
β. This argument is also applied to the Grassmannian zero mode

 



and we find dψµ0 =
√
βdηµ0 . In summary, the index is now written as

ind Q = in
∫ 2n∏
µ=1

dxµ0√
2π

dψµ0
1

βd/2 det

(
β�̃/2

sinβ�̃/2

)1/2

. (12.190)

We make the following change of variables to erase the apparent β-dependence
of the index,

ψ
µ
0 =

χ
µ
0√

2πβ
, dψµ0 =

√
2πβ dχµ0 .

Substituting

β�̃µν = 1

2π

1

2
�µνρσ χ

ρ
0 χ

σ
0

into the integrand, we obtain

ind Q = in
∫ 2n∏
µ=1

dxµ0 dχµ0 det


1

2

1

2π

1

2
�µνρσ (x0)χ

ρ

0 χ
σ
0

sin
1

2

1

2π

1

2
�µνρσ (x0)χ

ρ
0 χ

σ
0


1/2

. (12.191)

This is the Atiyah–Singer index theorem for the Dirac operator.
Let us rewrite the previous theorem in a more familiar form. Note that only

terms of order 2n in χ in the integrand yield non-vanishing contributions upon
integration over

∏
dχµ0 . Note also that

∏
dxµ0 is just an ordinary volume element.

Then define the curvature two-form

�µν = 1
2 Rµνρσ dxρ ∧ dxσ . (12.192)

Then note that �/ sin� is even in � and, hence, the integral is non-vanishing
only when n is even, that is only when d is a multiple of four. If this is the case,
the factor in takes only ±1 and we can formally replace the integrand as

in
�

sin�
→ �

sinh�
.

The reader should verify the first few terms. Then the index is now written in the
well-known form as

ind Q =
∫

M
det


1

2

1

2π
�

sinh
1

2

1

2π
�


1/2

.

We, moreover, define the Â-genus. Since � is anti-symmetric, it can be block-

 



diagonalized as

1

2π
�µν =


0 x1
−x1 0

. . .

0 xn

−xn 0

 .

Then define the Â-genus of M by

Â(M) =
n∏

j=1

x j/2

sinh x j/2
(12.193)

where the RHS is defined by its formal expansion with respect to x j .
In summary, we have proved the Atiyah–Singer index theorem in the

simplest setting (the spin complex).

Theorem 12.6. (Index theorem for a spin complex) The index of a Dirac
operator defined in M is

ind Q =
∫

M
Â(M). (12.194)

Problems

12.1 In the text, we dealt only with compact manifolds. The extension of the AS
index theorem to non-compact manifolds is the Callias–Bott–Seely index theorem
(Callias 1978, Bott and Seely 1978). Here we consider the simplest case studied
by Hirayama (1983). Consider a pair of operators

L ≡ 1

i

d

dx
− iW (x) L† ≡ 1

i

d

dx
+ iW (x)

where W (+∞) = µ and W (−∞) = λ.

(a) Show that Spec′ L† L = Spec′ L L†, where the prime indicates that the zero
eigenvalues are omitted.

(b) Show that

J (z) ≡ tr

(
z

L† L + z
− z

L L† + z

)
= 1

2

(
µ

(µ2 + z)1/2
− λ

(λ2 + z)1/2

)
.

 



13

ANOMALIES IN GAUGE FIELD THEORIES

In particle physics, symmetry principles are some of the most important
concepts in model building. Symmetries play crucial roles for the theory to be
renormalizable and unitary. The Lagrangian must be chosen so that it fulfils
the observed symmetry. Note, however, that the symmetry of the Lagrangian is
classical. There is no warranty that symmetry of the Lagrangian may be elevated
to a quantum symmetry, i.e., the symmetry of the effective action. If the classical
symmetry of the Lagrangian cannot be maintained in the process of quantization,
the theory is said to have an anomaly. There are many types of anomaly: the chiral
anomaly, gauge anomaly, gravitational anomaly, supersymmetry anomaly and so
on. Each adjective refers to the symmetry under consideration. In the present
chapter we look at the geometrical and topological structures of the anomalies
appearing in gauge theories.

We follow closely Alvarez-Gaumé (1986), Alvarez-Gaumé and Ginsparg
(1985) and Sumitani (1985). See Rennie (1990) and Bartlmann (1996) for a
complete analysis of the subject. Mickelsson (1989) and Nash (1991) have a
section on anomalies from a more mathematical point of view.

13.1 Introduction

Before we introduce topological and geometrical methods to anomalies, we give
a brief survey of the subject here. Let ψ be a massless Dirac field in four-
dimensional space interacting with an external gauge field �µ = AµαTα, where
{Tα} is the set of anti-Hermitian generators of the gauge group G which is
compact and semisimple (SU(N), for example). The theory is described by the
Lagrangian

� = iψ̄γ µ(∂µ − �µ)ψ. (13.1)

The Lagrangian is invariant under the usual (local) gauge transformation

ψ(x)→ g−1ψ(x) �µ(x)→ g−1[�µ(x)+ ∂µ]g. (13.2)

It also has a global symmetry,

ψ(x)→ eiγ5αψ(x) ψ̄(x)→ ψ̄(x)eiγ5α (13.3)

 



called the chiral symmetry. The chiral current j5 derived from this symmetry is

jµ5 ≡ ψ̄γ µγ5ψ. (13.4)

In general, whether the symmetry of a Lagrangian is retained under quantization
is not a trivial question. In fact, it has been shown that the chiral symmetry of �
is destroyed at the quantum level. Adler (1969) and Bell and Jackiw (1969) have
shown by computing the triangle diagram with an external axial current and two
external vector currents that the naive conservation law ∂µ jµ5 = 0 is violated,

∂µ jµ5 =
1

16π2
εκλµν tr�κλ�µν

= 1

4π2 tr

[
εκλµν∂κ

(
�λ∂µ�ν + 2

3
�λ�µ�ν

)]
(13.5)

where tr is a trace over the group indices. The current jµ5 which appears in (13.5)
has no group index, and, hence, (13.5) is called the Abelian anomaly.

It is interesting to study the behaviour of a current which carries the group
index. Consider a Weyl fermion ψ which couples with an external gauge
field. The non-Abelian gauge current of the theory also satisfies an anomalous
conservation law which defines the non-Abelian anomaly. The action is given
by

� ≡ ψ†(i /∇)�+ψ �± = 1
2 (I ± γ 5). (13.6)

The Lagrangian has the gauge symmetry

�µ→ g−1(�µ + ∂µ)g ψ → g−1ψ. (13.7)

The corresponding non-Abelian current is

jµα ≡ ψ†γ µT α�+ψ. (13.8)

It has been shown by Bardeen (1969) and Gross and Jackiw (1972) that, up to the
one-loop level, the current is not conserved,

(�µ jµδ )
α = 1

24π2
tr

[
T α∂κε

κλµν

(
�λ∂µ�ν + 1

2
�λ�µ�ν

)]
. (13.9)

At first sight, the RHSs of (13.5) and (13.9) look very similar. However, the
difference between the normalization and the numerical factors of 2

3 and 1
2 have

a deep topological origin. We shall see later that the Abelian anomaly in (2l + 2)
dimensions and the non-Abelian anomaly in 2l dimensions are closely related but
in an unexpected manner.

 



13.2 Abelian anomalies

Henceforth, we work in an even-dimensional manifold M (dim M = m = 2l)
with a Euclidean signature. Four-dimensional results will readily be obtained by
putting m = 4. We assume our system is non-chiral, namely, the gauge field
couples to the right and the left components in the same way. Our convention is

γ µ† = γ µ {γ µ, γ ν} = 2δµν γm+1 = (i)lγ 1 . . . γm

γm+1† = γm+1 (γm+1)2 = +I.

The Lie group generators {Tα} satisfy

T †
α = −Tα [Tα, Tβ ] = fαβ

γ Tγ tr(T αT β) = − 1
2δ
αβ.

13.2.1 Fujikawa’s method

Among several methods of deriving anomalies, Fujikawa’s way (Fujikawa 1979,
1980, 1986) reveals the topological and geometrical nature of the problem most
directly. This method is equivalent to the heat kernel proof of the relevant index
theorem.

Let ψ be a massless Dirac field interacting with an external non-Abelian
gauge field �µ. The effective action W [�] is given by

e−W [�] =
∫
�ψ�ψ̄e−

∫
dx ψ̄ i /∇ψ (13.10)

where i /∇ = iγ µ∇µ = iγ µ(∂µ + ωµ + �µ), with ωµ = 1
2ωµαβ�

αβ being the
spin connection of the background space. We compactify the space in such a
way that the geometry (the spin connection) plays no role. For example, this
can be achieved by compactifying �4 to S4 = �4 ∪ {∞}, for which the Dirac
genus Â(T M) is trivial; see example 12.5. If this is the case, the spin connection
is irrelevant and may be dropped from i /∇. The classical action

∫
dxψ̄i /∇ψ is

invariant with respect to the chiral rotation,

ψ → eiγm+1αψ ψ̄ → ψ̄eiγm+1α. (13.11)

We expand ψ and ψ̄ as

ψ =
∑

i

aiψi ψ̄ =
∑

i

b̄iψ
†

i (13.12)

where ai and b̄i are anti-commuting Grassmann variables,

{ai , a j } = 0 {b̄i , b̄ j } = 0 {ai , b̄ j } = 0

and ψi is an eigenvector of the Dirac operator

i /∇ψi = λiψi . (13.13)

 



Since i /∇ is Hermitian, λi is real. Since M is compact, ψi can be normalized as

〈ψi |ψ j 〉 =
∫

dxψ†
i (x)ψ j (x) = δi j .

Now the path integrals over ψ and ψ̄ are replaced by those over ai and b̄i .
Consider an infinitesimal chiral transformation,

ψ(x)→ ψ(x)+ iα(x)γm+1ψ(x) (13.14a)

ψ̄(x)→ ψ̄(x)+ iψ̄(x)α(x)γm+1. (13.14b)

As usual, we take α = α(x) to be x-dependent. Under this change, the classical
action transforms as∫

dx ψ̄ i /∇ψ →
∫

dx (ψ̄ + iψ̄αγm+1)i /∇(ψ + iαγm+1ψ)

=
∫

dx ψ̄ i /∇ψ + i
∫

dx [αψ̄γm+1i /∇ψ + ψ̄i /∇(αγm+1ψ)]

=
∫

dx ψ̄ i /∇ψ −
∫

dx [αψ̄γm+1γ µ(∂µ +�µ)ψ
+ ψ̄γ µ(∂µ +�µ)(αγm+1ψ)]

=
∫

dx ψ̄ i /∇ψ +
∫

dx α(x)∂µ jµm+1(x) (13.15)

where we have used the anti-commutation relations {γ µ, γm+1} = 0 and

jµm+1(x) ≡ ψ̄(x)γ µγm+1ψ(x) (13.16)

is the chiral current. This is the higher-dimensional analogue of jµ5 defined
previously. If (13.15) were the only change caused by (13.14), naive application
of the Ward–Takahashi relation would imply the conservation of the axial current
∂µ jµm+1 = 0. In quantum theory, however, we have an additional change, namely
the change of the path integral measure. Define the chiral-rotated fields by

ψ ′ = ψ + iαγm+1ψ =
∑

a′iψi (13.17a)

ψ̄ ′ = ψ̄ + iψ̄αγm+1 =
∑

b̄′iψ
†
i . (13.17b)

Now the measure changes as∫ ∏
i

dai db̄i →
∫ ∏

i

da′i db̄′i . (13.18)

From the orthonormality of {ψi }, we find that

a′i =〈ψi |ψ ′〉 = 〈ψi |(1+ iαγm+1)ψ〉
=

∑
j

〈ψi |(1+ iαγm+1)ψ j 〉a j ≡
∑

j

Ci j a j (13.19a)

 



where

Cij = 〈ψi |(1+ iαγm+1)ψ j 〉 = δi j + iα〈ψi |γm+1ψ j 〉. (13.20)

The measure in terms of the new variables is∏
da′j = [det Cij ]−1

∏
dai = exp(− tr ln Cij )

∏
dai

= exp[− tr ln(I + iα〈ψi |γm+1ψ j 〉)]
∏

dai

≈ exp(− tr iα〈ψi |γm+1ψ j 〉)
∏

dai

= exp

(
− iα

∑
i

〈ψi |γm+1ψi 〉
)∏

dai (13.21)

where the inverse of the determinant appears since ai and a′i are Grassmann
variables, see Berezin (1966).1 As for b̄i → b̄′i , we have

b̄′i =
∑

j

b̄ j 〈ψ j |(1+ iαγm+1)|ψi 〉 =
∑

j

C j i b̄ j . (13.19b)

The Jacobian for the change b̄i → b̄′i agrees with (13.21). Thus, the measure
transforms under the chiral rotation (13.17) as∏

i

dai db̄i →
∏

i

da′i db̄′i exp

(
− 2i

∫
dx α(x)

∑
ψ†

n (x)γ
m+1ψn(x)

)
.

(13.22)
Now the effective action has two expressions:

e−W [�] =
∫ ∏

i

dai db̄i exp

(
−

∫
dx ψ̄ i /∇ψ

)
=

∫ ∏
i

da′i db̄′i exp

(
−

∫
dx ψ̄ i /∇ψ −

∫
dx α(x)∂µ jµm+1(x)

− 2i
∫

dx α(x)A(x)
)

(13.23)

where
A(x) ≡

∑
i

ψ†
i (x)γ

m+1ψi (x). (13.24)

Since α(x) is arbitrary, we have

∂µ jµm+1(x) = −2iA(x). (13.25)

1 See section 1.5. For example, we have
∫

a da = ∫
ca d(ca) = 1, c ∈ � and a being a real

Grassmann number. This shows that d(ca) = da/c.

 



Thus, naive conservation of an axial current does not hold in quantum theory.
This non-conservation of the current jµm+1 is called the Abelian anomaly (or
chiral anomaly or axial anomaly).

How is this related to the topology? Let us look at the Jacobian (13.22)
and assume that α(x) is independent of x .2 The integral in (13.22) is not well
defined and must be regularized. We introduce the Gaussian cut-off (heat kernel
regularization) as∫

dx A(x) =
∫

dx
∑

i

ψ†
i (x)γ

m+1ψi (x) exp[−(λi/M)2]|M→∞

=
∑
〈ψi |γm+1 exp[−(i /∇/M)2]|ψi 〉|M→∞. (13.26)

In (13.26), 1/M2 corresponds to the ‘time’ parameter t in the previous chapter
and M →∞ implies t → ε. Let |ψi 〉 be an eigenstate of i /∇ with non-vanishing
eigenvalue λi . Among the eigenstates, there exists a state |ψi 〉χ ≡ γm+1|ψ〉 with
eigenvalue−λi :

i /∇|ψi 〉χ = i /∇γm+1|ψi 〉 = −γm+1i /∇|ψi 〉
= − λiγ

m+1|ψi 〉 = −λi |ψi 〉χ
where use has been made of the anti-commutation relation {γm+1, i /∇} = 0. Since
i /∇ is a Hermitian operator, eigenvectors which belong to different eigenvalues are
orthogonal, hence 〈ψi |ψi 〉χ = 〈ψi |γm+1|ψi 〉 = 0. This shows that

〈ψi |γm+1 exp[−(i /∇/M)2]|ψi 〉 = 〈ψi |γm+1|ψi 〉 exp[−(λi/M)2] = 0.

Thus, the contribution to the RHS of (13.26) comes only from the zero-energy
modes. Let |0, i〉 be the zero-energy modes of i/∇, (1 ≤ i ≤ n0). They are
not in an irreducible representation of the spin algebra and should be classified
according to the eigenvalue of γm+1. We write

γm+1|0, i〉± = ±|0, i〉±. (13.27)

Then, (13.26) becomes∫
dx A(x) =

∑
〈ψi |γm+1 exp[−(i /∇/M)2]|ψi 〉|M→∞

=
∑

+
i

〈0, i |0, i〉+ −
∑

−
i

〈0, i |0, i〉−

= ν+ − ν− = ind i /∇+ (13.28)

where ν+ (ν−) is the number of zero-energy modes with positive (negative)
chirality (ν+ + ν− = n0) and i /∇+ is defined by

i /∇ =
(

0 i /∇−
i /∇+ 0

)
i /∇− = (i /∇+)†.

2 We are looking at the zero-momentum Ward–Takahashi relation.

 



The Atiyah–Singer index theorem now comes into the problem.
To show that (13.28), indeed, represents an integral of the relevant Chern

character, we first note that

(i /∇)2 = − γ µγ ν∇µ∇ν = −{δµν + 1
2 [γ µ, γ ν]} 1

2 [{∇µ,∇ν} + �µν]
= − ∇µ∇µ − 1

4 [γ µ, γ ν]�µν (13.29)

where use has been made of the relation [∇µ,∇ν ] = �µν. Then

A(x) =
∑

i

〈ψi |x〉〈x |γm+1 exp[(∇2+ 1
4 [γ µ, γ ν]�µν)/M2]|ψi 〉|M→∞. (13.30)

Let us take m = 4 for definiteness. We introduce the plane wave basis as

〈x |ψi 〉 =
∫

d4k

(2π)4
〈x |k〉〈k|ψi 〉.

Then (13.30) becomes

A(x) =
∫

dk

(2π)4

∫
dk ′

(2π)4
∑

i

〈ψi |k ′〉〈k ′|x〉

× γm+1 exp[(∇2 + 1
4 [γ µ, γ ν]�µν)/M2]〈x |k〉〈k|ψi 〉

∣∣∣∣ M→∞
y→x

=
∫

dk

(2π)4
tr γm+1 exp[(−k2 + 1

4 [γ µ, γ ν]�µν)/M2]M→∞ (13.31)

where use has been made of the completeness property∑
i

〈k|ψi 〉〈ψi |k ′〉 = (2π)4δ4(k − k ′).

In (13.31), we have replaced ∇2 by the symbol −k2 since the residual terms
containing � do not survive in the limit M → ∞. If we put k̃µ ≡ kµ/M ,
(13.31) becomes

A(x) = tr[γ 5 exp( 1
4 [γ µ, γ ν]�µν/M2)]M4

∫
dk̃

(2π)4
exp(−k̃2).

We expand the first exponential and use

tr γ 5 = tr γ 5γ µγ ν = 0 tr γ 5γ κγ λγ µγ ν = −4εκλµν∫
dk̃ exp(−k̃2) = π2

 



to obtain

A(x) = 1

2
tr

[
γ 5 1

42
{[γ µ, γ ν]�µν}2

]
1

16π2

= −1

32π2
tr εκλµν�κλ(x)�µν(x). (13.32)

Note that the higher-order terms in the expansion of the exponential vanish in the
limit M →∞. The anomalous conservation law (13.25) now becomes

∂µ jµ5 =
1

16π2
tr εκλµν�κλ�µν

= 1

4π2
tr[εκλµν∂κ(�λ∂µ�ν + 2

3�λ�µ�ν)]. (13.33)

This is regarded as a local version of the AS index theorem. Let us write (13.33)
in terms of the field strength � = 1

2�µν dxµ ∧ dxν . We easily verify that

ν+ − ν− =
∫

M
dx ∂µ jµm+1 =

∫
M

ch2(�). (13.34)

This is the index theorem for a twisted spinor complex with trivial background
geometry ( Â(T M) = 1).

For dim M = m = 2l, we have the following identity:

ν+ − ν− =
∫

M
dx ∂µ jµm+1 =

∫
M

chl(�) =
∫

M

1

l! tr

(
i�

2π

)l

. (13.35)

13.3 Non-Abelian anomalies

In the last section we considered the chiral current which is a gauge singlet (no
gauge indices). Now we turn to the study of the gauge current jµα where α is the
gauge index. Here we consider a chiral theory in which the gauge field � couples
only to the left-handed Weyl fermion ψ . Suppose ψ transforms in a complex
representation r of the gauge group G. For example, suppose ψ belongs to a 3 of
SU(3). The effective action Wr [�] is given by

e−Wr [�] =
∫
�ψ�ψ̄ exp

(
−

∫
dxψ̄i /∇+ψ

)
(13.36)

where
i /∇+ = iγ µ(∂µ +�µ)�+ �± = 1

2 (1± γm+1). (13.37)

The gauge current is
jµα = iψ̄γ µTα�+ψ. (13.38)

 



Let v = vαTα be an infinitesimal gauge transformation parameter, g = 1 − v
under which we have

�µ → (1+ v)(�µ + d)(1− v) = �µ −�µv (13.39)

where �µv ≡ ∂µv + [�µ, v] is the covariant derivative for a field in the adjoint
representation. The effective action transforms as

Wr [�] → Wr [�−�v]
= Wr [�] −

∫
dx tr

(
�v

δ

δ�
Wr [�]

)
= Wr [�] −

∫
dx tr(∂µvα + fαβγ Aµ

βvγ )
δ

δAµα
Wr [�]

= Wr [�] +
∫

dx tr

(
vα�

δ

δ�
Wr [�]α

)
. (13.40)

Since
δ

δAµα
Wr [�] = 〈iψ̄γ µTα

1
2 (1+ γm+1)ψ〉� = 〈 jµα〉

we obtain

Wr [�−�v] −Wr [�] =
∫

dx tr(vα�µ〈 jµ〉α). (13.41)

We are naively tempted to regard (13.36) as det(i /∇) = ∏
λ′i , λi being the

‘eigenvalue’ of i /∇. A subtlety arises here: i/∇+ maps sections of S+ ⊗ E to those
of S− ⊗ E , where E is the vector bundle associated with the G bundle and S±
are spin bundles with chirality ±. Accordingly, the equation i /∇+ψ = λψ is
meaningless. To avoid this difficulty, we formally introduce a Dirac spinor ψ and
define

e−Wr [�] =
∫
�ψ�ψ̄ exp

(
−

∫
dx ψ̄ iD̂ψ

)
(13.42)

where iD̂ is defined by

iD̂ ≡ iγ µ(∂µ + i�µ�+) =
(

0 i/∂−
i /∇+ 0

)
(13.43)

where we have diagonalized γm+1. In (13.43), the gauge field � couples only
to the positive chirality field. Now the eigenvalue problem iD̂ψi = λiψi is well
defined. Note that iD̂ is not Hermitian and λi is a complex number in general.
Moreover, we need to introduce right and left eigenfunctions separately by

iD̂ψi = λiψi (13.44a)

χ†
i (i

←
D̂) = λiχ

†
i (iD̂)†χi = λ̄iχi . (13.44b)

 



Since
∫
χ

†
i ψ j dx = 0 for i �= j , we may choose an orthonormal basis,∫

χ†
iψ j dx = δi j . (13.45)

It should be noted that the eigenvalue λi is not gauge invariant. This follows from
the observation that

g(iD̂(�g))g−1 = giγ µ[∂µ + g−1(�µ + ∂µ)g�+]g−1

= iD̂(�)− i/∂gg−1 + i/∂gg−1
�+ �= iD̂(�). (13.46)

If the equality were to hold in (13.46), g−1ψi would satisfy iD̂(�g)g−1ψi =
λi g−1ψi when iD̂(�)ψi = λiψi . Then Spec iD̂(�) would be gauge invariant.
Although individual eigenvalues are not gauge invariant, the absolute value of the
product of eigenvalues of iD̂ is gauge invariant. In fact,

det(iD̂) det((iD̂)†) = det(iD̂(iD̂)†)

= det

(
(i/∂−)(i/∂+) 0

0 (i /∇+)(i /∇−)
)

= det(i/∂−i/∂+) det(i /∇+i /∇−) (13.47)

where i/∂+ = (i/∂−)† and i /∇− = (i /∇+)†. This is simply the Dirac determinant
(up to an irrelevant factor det(i/∂−i/∂+)),

[det(i /∇)]2 = det

(
i /∇−i /∇+ 0

0 i /∇+i /∇−
)
= [det(i /∇+i /∇−)]2 (13.48)

where i /∇ is given by

i /∇ =
(

0 i /∇−
i /∇+ 0

)
. (13.49)

The Dirac determinant is gauge invariant, hence so is | det(iD̂)|. It then follows
that Re Wr [�] is gauge invariant since

exp(−Wr [�]) exp(−Wr [�]) = det(iD̂) det((iD̂)†) ∝ det(i /∇+i /∇−)
is gauge invariant. Therefore, only the imaginary part of Wr [�], that is the phase
of det(iD̂), may gain an anomalous variation under gauge transformations.

The anomaly may be computed by evaluating the Jacobian as before. The
functional measure is taken to be

∏
i dai db̄i . We consider an infinitesimal gauge

transformation,

�→ �−�v ψ → ψ + vψ+ ψ̄ → ψ̄ − ψ̄−v (13.50)

where the gauge transformation rotates the positive chirality parts only. The
Jacobian factor is ∫

dx tr v(x)
∑

n

(n|x〉γm+1〈x |n〉 (13.51)

 



where 〈x |n〉 = ψn(x) and (n|x〉 = χ
†
n (x) (note that (n| is not the Hermitian

conjugate of |n〉). This integral is ill defined and must be regularized. As before,
we employ the Gaussian regulator,∫

dx lim
M→∞
x→y

tr v(x)
∑

n

(n|y〉γm+1〈x |e−(iD̂)2/M2 |n〉

=
∫

dx lim
M→∞
x→y

tr v(x)γm+1e−(iD̂x )
2/M2

δ(x − y) (13.52)

where use has been made of the completeness relation∑
n

|n〉(n| = I. (13.53)

It follows from (13.41) and (13.52) that∫
dx vα�µ

(
δ

δAµα
Wr [�]

)
=

∫
dx lim

M→∞
x→y

tr[vγm+1e−(iD̂x)
2/M2

δ(x − y)].

(13.54)
In the present case Wr really changes under (13.50). The trace may be written as

tr[vγm+1e−(iD̂x)
2/M2] = tr[v(�+ − �−)e−(i �∂−i �∇+)−(i �∇−i �∂+)/M2]

= tr[vP+e(i �∂i �∇)/M2] − tr[vP−e(i �∇i �∂)/M2]. (13.55)

(13.55) can be evaluated in the plane wave basis, which is straightforward but
tedious (see Gross and Jackiw (1972), for example). We derive the non-Abelian
anomaly from a topological viewpoint in the next section. For m = 4, the
anomalous variation is

Wr [�−�v] −Wr [�] =
∫

dx vα�µ〈 jµ〉α

= 1

24π2

∫
dx tr{vαTαε

κλµν∂κ [�λ∂µ�ν + 1
2�λ�µ�ν]}

= 1

24π2

∫
tr{vd[�d�+ 1

2�
3]}. (13.56)

The anomalous divergence of the gauge current is

�µ〈 jµ〉α = 1

24π2
tr{Tαεκλµν∂κ [�λ∂µ�ν + 1

2�λ�µ�ν]}. (13.57)

This should be compared with (13.33). There are two differences between these
results: the two-thirds in front of �3 is replaced by a half and the overall factor is
different.

 



13.4 The Wess–Zumino consistency conditions

13.4.1 The Becchi–Rouet–Stora operator and the Faddeev–Popov ghost

Let W [�] be the effective action of the Weyl fermion in the complex
representation r of the gauge group G.3 In the previous section, we observed that
the change of W [�] under an infinitesimal gauge transformation δv� = −�v is
given by

δvW [�] = −
∫
(�µv)

α δ

δ�µ
α W [�] =

∫
vα�µ〈 jµ〉α. (13.58)

Following Stora (1984) and Zumino (1985) we introduce the BRS operator
� and the Faddeev–Popov ghost ω. Let�m(G) be the set of maps from Sm to G.4

In addition to the ordinary exterior derivative d, we introduce another exterior
derivative � on �m(G) which we call the Becchi–Rouet–Stora (BRS) operator.
In general, � is defined on an infinite-dimensional space but we may also consider
the restriction of � to a finite-dimensional compact subspace of �m(G), such as
Sn , parametrized by λα . Then � may be written as � ≡ dλα∂/∂λα . We require
that d and � be anti-derivatives,

d2 = �2 = d�+ �d = 0. (13.59)

If we define� ≡ d+ �, � is clearly nilpotent,

�2 = d2 + d�+ �d+ �2 = 0. (13.60)

Under the action of g = g(x, λα), � transforms as

�→ A ≡ g−1(�+ d)g. (13.61)

Note that � is independent of λ while A depends on λ through g. Define the
Faddeev–Popov (FP) ghost by

ω ≡ g−1
�g. (13.62)

The actions of � on A and ω are found to be

�A =�[g−1(�+ d)g] = −g−1
�g A− g−1

��g + g−1
�(dg)

=− ωA− (A− g−1 dg)ω − g−1 d(�g)

=− ωA− Aω − dω ≡ −�Aω (13.63a)

�ω =− g−1
�gg−1

�g = −ω2. (13.63b)

3 We drop the representation index r to simplify the expression.
4 The set �m(G) should not be confused with �m(M), the set of m-forms on M. The distinction
should be clear from the context.

 



It is easy to verify that � is nilpotent on A and ω and, hence, on any polynomial
of A and ω as it should be; see exercise 13.1. Define the field strength of A by

F ≡ dA+ A2 = g−1
�g. (13.64)

We also define

� ≡ g−1(�+�)g = A+ g−1
�g = A+ ω (13.65a)

	 ≡ �� + � 2 = g−1
�g = F (13.65b)

where (13.65b) follows since � = d�+ �2 = ��+ �2 (note that �� = 0). It
is found from theorem 10.1 that � is an Ehresmann connection on the principal
bundle and 	 its associated curvature two-form.

The existence of a non-Abelian anomaly implies that W [A] does not vanish
under the action of the BRS operator � (ω roughly corresponds to v; see (13.39)
and (13.63a)),

�W [A] = G[ω, A]. (13.66)

Since W [A] is independent of ω, � acts through A only. Before we write down
the Wess–Zumino consistency condition for the non-Abelian anomaly, we stop
here and consider the physical meaning of the BRS operator and the FP ghost.

Exercise 13.1. Verify from (13.63) that the actions of � on A and ω are nilpotent,

�
2 A = 0 �

2ω = 0. (13.67)

13.4.2 The BRS operator, FP ghost and moduli space

To find the physical meaning of � and ω, we need to examine the topology of
the gauge fields (Atiyah and Jones 1978, Singer 1985, Sumitani 1985). Let 	
be the space of all gauge potential configurations on Sm . For definiteness, we
take m = 4 but the generalization to arbitrary m is obvious. The topology
of 	 is trivial since, for any gauge potential configurations �1 and �2, the
combination t�1 + (1 − t)�2 (0 ≤ t ≤ 1) is again a gauge potential on S4.
Note, however, that 	 does not describe the physical configuration space of the
gauge theory. We have to identify those field configurations which are connected
by G-gauge transformations. Let 
 be the space of all gauge transformations on
S4 (
 = �4(G) in our previous notation). Then the physical configuration space
must be identified with 	/
, called the moduli space of the gauge theory. We
have seen in section 10.5 that the gauge field configuration on S4 is classified by
the transition function g : S3 → G, S3 being the equator of S4. In the present
case, 	/
 is classified by the transition function on the equator S3 → G and,
hence,

	/
 	 �3(G). (13.68)

Thus, each connected component of 	/
 is labelled by the instanton number k.
This component is denoted by �4

k(G).

 



Figure 13.1. The BRS operator � is the restriction of δ along the fibre.

We note that the space 	 has a natural projection π : 	 → 	/
 and can
be made into a fibre bundle whose fibre is 
, see figure 13.1. Let a ∈ 	 be a
representative of the class [a] ∈ 	/
 and let

�(x) = g−1(x)(a(x)+ d)g(x) (13.69)

be an element of 	 in [a]. We denote the exterior derivative operator in 	 by
δ, which is a functional variation and should not be confused with the usual
derivative d; see Leinaas and Olaussen (1982). If δ is applied on (13.69), we
find that

δ� = − g−1δg�+ g−1δag − g−1aδg − g−1d (δg)

= g−1δag − d (g−1δg)− g−1δg�− �g−1δg

= g−1δag −��(g−1δg) (13.70)

where�� = d+ [�, ]. The first term of (13.70) represents the derivative of �
along 	/
 while the second represents that along the fibre; see figure 13.1. The
BRS transformation � is obtained by restricting the variation δ along the fibre,

�� ≡ δ�|fibre = −��ω (13.71a)

where the FP ghost ω is g−1�g ≡ g−1δg
∣∣
fibre. We also find that

�ω = δω|fibre = −g−1
�gg−1

�g = −ω2 (13.71b)

which reproduces (13.63a).

 



13.4.3 The Wess–Zumino conditions

Exercise 13.1 shows that � is nilpotent on any polynomial f of � and ω,

�
2 f (ω, A) = 0. (13.72)

The nilpotency is required by the interpretation of � as an exterior derivative
operator. In particular, we should have

�G[ω, A] = �2W [A] = 0. (13.73)

This condition is called the Wess–Zumino consistency condition (WZ
condition) and can be used to determine the non-Abelian anomaly (Wess and
Zumino 1971, Stora 1984, Zumino 1985, Zumino et al 1984). If the anomaly G is
mathematically well defined, G should satisfy the WZ condition. This condition
is so strong that once the first term of G[ω, A] is given, the anomaly is completely
pinned down.

13.4.4 Descent equations and solutions of WZ conditions

Stora (1984) and Zumino (1985) constructed the solution of WZ conditions as
follows. The Abelian anomaly in (2l + 2)-dimensional space is given by

chl+1(F) = 1

(l + 1)! tr

(
iF
2π

)l+1

(13.74)

where F = dA + A2, A = g−1(� + d)g as before. Let Q2l+1(A, F) be the
Chern–Simons form of chl+1(F),

chl+1(F) = dQ2l+1(A, F). (13.75)

Since the algebraic structure of the triplet (�, � , 	) is exactly the same as that of
(d, A, F), we also have

chl+1(	) = �Q2l+1(� , 	) = �Q2l+1(A+ ω, F) (13.76)

where we have noted that � = A+ ω and 	 = F. If we expand Q2l+1(� , 	) =
Q2l+1(A+ ω, F) in powers of ω, we have

Q2l+1(� , 	) = Q0
2l+1(A, F)+ Q1

2l(ω, A, F)+ Q2
2l−1(ω, A, F)

+ · · · + Q2l+1
0 (ω, A, F) (13.77)

where Qs
r is sth order in ω and r + s = 2l + 1.

We now note that chl+1(	) = chl+1(F) since 	 = F = g−1�g. In terms of
the Chern–Simons forms, this can be expressed as

�Q2l+1(� , 	) = dQ2l+1(A, F). (13.78)

 



Substituting (13.77) into (13.78), we have

(d+ �)[Q0
2l+1(A, F)+ Q1

2l(ω, A, F)

+ · · · + Q2l+1
0 (ω, A, F)] = dQ0

2l+1(A, F). (13.79)

If we collect terms of the same order in ω, we have the ‘descent equations’

�Q0
2l+1(A, F)+ dQ1

2l(ω, A, F) = 0 (13.80a)

�Q1
2l(ω, A, F)+ dQ2

2l−1(ω, A, F) = 0 (13.80b)

...

�Q2l
1 (ω, A, F)+ dQ2l+1

0 (ω, A, F) = 0 (13.80c)

�Q2l+1
0 (ω, A, F) = 0. (13.80d)

Note here that � increases the degree of ω by one, see (13.63). Let us look at the
2l-form Q1

2l(ω, A, F). If we put

G[ω, A, F] ≡
∫

M
Q1

2l(ω, A, F) (13.81)

G[ω, A, F] satisfies the WZ condition,

�G[ω, A, F] =
∫

M
�Q1

2l(ω, A, F) = −
∫

M
dQ2

2l−1(ω, A, F)

= −
∫
∂M

Q2
2l−1(ω, A, F) = 0

where we have assumed that M has no boundary and use has been made
of (13.80b). This shows that once Q1

2l(ω, A, F) is obtained, the anomaly
G[ω, A, F] is easily found.

Proposition 13.1. Q1
2l defined here is given by

Q1
2l(ω,�,�) =

(
i

2π

)l+1 1

(l − 1)!
∫ 1

0
δt (1− t) str[ωd(��l−1

t )]. (13.82)

[Note: In the proof, we tentatively drop the normalization factor (i/2π)l+1 to
simplify the expressions. This factor will be recovered at the very end.]

Proof. We start with (11.105),

Q2l+1(�+ ω,�) = 1

l!
∫ 1

0
δt tr[(�+ ω)�̂l

t]

 



where

�̂t ≡ t�+ (t2 − t)(�+ ω)2
= �t + (t2 − t){�, ω} + (t2 − t)ω2

�t ≡ d (t�)+ (t�)2.
If we substitute �̂t into Q2l+1 and collect terms of first order in ω, we have:

1

l!
∫ 1

0
δt tr[ω�l

t + (t2 − t)(�[�, ω]�l−1
t +��t[�, ω]�l−2

t

+ · · · + ��l−1
t [�, ω])]

= 1

l!
∫
δt str[ω�l

t + (t2 − t)�(�l−1
t [�, ω]]

+ �l−2
t [�, ω]�t + · · · )]

= 1

l!
∫
δt str[ω�l

t + (t2 − t)l�[�, v]�l−1
t ]

= 1

l!
∫
δt str[ω�l

t + l(t2 − t)([�,�]ω�l−1
t + �ω[�,�l−1

t ])]

= 1

l!
∫
δt str[ω{�l

t + l(t − 1)(t[�,�]�l−1
t −�[�t ,�

l−1
t ])}]

where str is the symmetrized trace defined by (11.8). Now we use

�t�
l−1
t ≡ d�l−1

t + [�t ,�
l−1
t ] = 0

∂�t

∂ t
= d�+ t[�,�]

to change the final line of the previous equation to

1

l!
∫
δt str

[
ω

{
�

l
t + l(t − 1)

[(
∂�t

∂ t
− d�

)
�

l−1
t +�d�l−1

t

]}]
= 1

l!
∫
δt str

[
ω

{
�

l
t + l(1− t)d(��l−1

t )+ (t − 1)
∂�l

t

∂ t

}]
.

Integrating by parts, we find that

Q1
2l(ω,�,�) =

1

(l − 1)!
∫
δt (1− t) str[ωd(��l−1

t )].

If we recover the normalization, we finally have

Q1
2l(ω,�,�) =

(
i

2π

)l+1 1

(l − 1)!
∫ 1

0
δt (1− t) str[ωd(��l−1

t )]. �

 



For m = 2l = 2 and m = 4, we have

Q1
2(ω, A, F) =

(
i

2π

)2

tr(ωdA) (13.83a)

Q1
4(ω, A, F) = 1

6

(
i

2π

)3

str(ωd(AdA+ 1
2 A3)). (13.83b)

These results are also verified by direct computations. Up to the normalization
factor, (13.83b) yields the non-Abelian anomaly in four-dimensional space; see
(13.56).

Sumitani (1984) pointed out that the approach to the non-Abelian anomalies
here is ad hoc and does not clarify the following points:

(1) The WZ condition (13.73) does not fix the normalization of the anomaly and,
moreover, the uniqueness of the solution is far from trivial.

(2) It is not clear why we should start from the Abelian anomaly in (m + 2)-
dimensional space.

To answer these questions we need to develop a more elaborate index
theorem called the family index theorem; see Atiyah and Singer (1984), Singer
(1985) and Sumitani (1984, 1985). In the next section, we outline the physicists’
approach to this problem, closely following the work of Alvarez-Gaumé and
Ginsparg (1984).

13.5 Abelian anomalies versus non-Abelian anomalies

Let us consider an m-dimensional Euclidean space (m = 2l) which is
compactified to Sm = �m ∪ {∞} and let G be a semisimple gauge group which
is simply connected (like SU(N) for which π1(SU(N)) is trivial). Consider a
one-parameter family of gauge transformations g(θ, x) (0 ≤ θ ≤ 2π) such that

g(0, x) = g(2π, x) = e. (13.84)

Without loss of generality, we may normalize g so that g(θ, x0) = e at a point
x0 ∈ Sm . The map g : S1×Sm → G is classified according to the homotopy class
πm+1(G). To see this we define the smash product X ∧ Y of topological spaces
X and Y by the direct product X × Y with X ∨ Y ≡ (x0 × X) ∪ (X × y0) shrunk
to a point. From figure 13.2, we easily find that S1 ∧ Sm = Sm ∧ S1 = Sm+1.5

Repeated applications of this yield

Sm ∧ Sn = Sm+n . (13.85)

In the case which interests us, the conditions (13.84) make the direct product
S1 × Sm look topologically like S1 ∧ Sm = Sm+1. Thus, g is regarded as a map
5 The readers may convince themselves by explicitly drawing S1 ∧ S1 = S2.

 



Figure 13.2. The smash product S1 ∧ Sm 	 Sm+1.

from Sm+1 to G and is classified by πm+1(G). Since we have a one-parameter
family in the space 
 = �m(G), we also have πm+1(G) = π1(
). In practice,
we take G = SU(N) for which we have

πm+1(SU(N)) = � N ≥ 1
2 m + 1. (13.86)

Now we take a ‘reference’ gauge field � in the zero instanton sector �m
0 (G) for

which we may assume, without loss of generality, that the Dirac operator (13.49)
has no zero modes. Consider a one-parameter family of gauge potentials

�
g(θ)(x) ≡ g−1(θ, x)(�(x)+ d)g(θ, x) (13.87)

where θ parametrizes S1. In section 13.3, we observed that | det iD̂| is gauge
invariant (see (13.47)) and only the phase of det iD̂ may gain an anomalous
variation under a gauge transformation. This, in particular, implies that det iD̂
does not vanish for any θ . We write

exp{−Wr [�g(θ)]} = det iD̂(�g(θ)) = [det i /∇(�)]1/2 exp[iw(�, θ)] (13.88)

where i /∇ is the Dirac operator (13.49) and exp[iw(�, θ)] is the anomalous phase
associated with the gauge transformation (13.87). Next we consider a two-
parameter family of gauge fields �t,θ (0 ≤ t ≤ 1) which interpolates between
� = 0 and �g(θ),

�
t,θ ≡ t�g(θ) (0 ≤ t ≤ 1). (13.89)

The parameter space specified by (t, θ) is considered to be a two-dimensional unit
disc D2 with polar coordinates (t, θ). On the boundary of the disc, ∂D2 = S1,
the modulus of det iD̂(�1,θ ) is a non-vanishing constant. The phase eiw(�,θ) now
defines a map S1 (=∂D2) → S1 (=U(1)); see figure 13.3. As we move around

 



Figure 13.3. The phase of the effective action W [�g(θ)] defines a map S1 → U(1) by
θ 
→ eiw(�,θ). On the disc, there are points {pi } at which det iD̂(�t,θ ) vanishes. The
winding number of the map S1 → U(1) is obtained by summing a winding number along
Ci .

the boundary of the disc, the phase winds around the unit circle. The winding
number of this map is an integer

� = 1

2π

∫ 2π

0

∂w(�, θ)

∂θ
dθ. (13.90)

We find below that� is derived from the Abelian anomaly in (m+2) dimensions.

Exercise 13.2. Show that

W [�g(2π)] − W [�g(0)] = −2π i�. (13.91)

Since g(2π) = g(0), (13.91) may be regarded as a Berry phase.

13.5.1 m dimensions versus m + 2 dimensions

We recall that our reference gauge field � supports no zero modes of the operator
iD̂(�). Since | det iD̂(�g(θ))| = | det iD̂(�)| �= 0, the operator iD̂(�g(θ)) does
not admit zero modes either. Of course, iD̂(�t,θ ) may have zero modes since
�t,θ is not obtained from � by a gauge transformation in general. Suppose it
has a zero mode at pi = (ti , θi ). We assume they are isolated points. Since
det iD̂(�t,θ ) is a regularized product of eigenvalues, it vanishes at pi . The
phase of det iD̂(�t,θ )may be homotopically non-trivial only around these points.
Moreover, the winding number at pi is determined by the eigenvalue which
vanishes at pi . For example, if λn(t, θ) vanishes at pi it should be of the form

λn(t, θ) = f (t, θ)eiwi (t,θ) (13.92)

 



Figure 13.4.

where f (ti , θi ) = 0. The winding number at pi is

mi = 1

2π

∫
Ci

d

ds
wi (t, θ) ds (13.93)

where Ci is a small contour surrounding pi , see figure 13.3. Continuously
deforming the loop S1 = ∂D2 into a sum of small circles Ci enclosing pi , we
find that the total winding number is

� = 1

2π

∫
S1

dθ
∂

∂θ
w(�, θ) =

∑
mi . (13.94)

Now we show that the winding number � is related to the index theorem
in (m + 2)-dimensional space (m = 2l): � = ind i /∇m+2 where i /∇m+2 is
the Dirac operator on S2 × Sm defined later. Let us consider a gauge theory
defined on D2× Sm whose coordinates are (t, θ, x). To avoid the boundary term,
we add another piece, D2 × Sm , with coordinates (s, θ, x), to form a manifold
S2× Sm without a boundary; see figure 13.4. We call the patch (t, θ) the northern
hemisphere UN and (s, θ) the southern hemisphere US. On the equator S1 of S2,
we have t = s = 1. We choose the following local gauge potentials

�N(t, θ, x) = �t,θ + g−1 dθg (t, θ) ∈ UN (13.95a)

�S(s, θ, x) = � (s, θ) ∈ US (13.95b)

where � is the reference gauge field introduced previously. To elevate �N =
�Nµ dxµ and �S = �Sµ dxµ to the globally defined connection on the G bundle
over S2 × Sm we define the (m + 2)-dimensional gauge potentials

� N (t, θ, x) = (�t ,�θ ,�µ) = (0, 0,�Nµ) (13.96a)

� S (s, θ, x) = (�s ,�θ ,�µ) = (0, 0,�Sµ). (13.96b)

 



On the equator (t = s = 1), we have � N = g−1(� S+�)g, where� = d+dθ+dt

(note that dt g = 0). Thus, � = {� N , � S } defines a global connection on S2× Sm .
Consider a Dirac operator i /∇m+2 which couples to � . The index theorem for
i /∇m+2 is given by

ind i /∇m+2 = �+ −�− =
∫

S2×Sm
chl+1(	) (13.97)

where 	 = �� + � 2 and �+ (�−) is the number of + (−) chirality zero modes
of i /∇m+2 (chirality is defined in an (m + 2)-space).

Alvarez-Gaumé and Ginsparg (1984) have shown, using an adiabatic
perturbative computation, that each winding number mi must be ±1. Moreover,
the Dirac operator i /∇m+2 has a zero mode at pi = (ti , θi ) with (m + 2)-
dimensional chirality χ = mi = ±1. Then the total winding number � = ∑

mi

is given by the index�+ −�−. Now we have

ind i /∇m+2 =
∫

S2×Sm
chl+1(	) = 1

2π

∫ 2π

0
dθ
∂w(�, θ)

∂θ
. (13.98)

We easily find the non-Abelian anomaly from (13.98) including the
normalization. Since chl+1(	) = dQm+1(� , 	), we have∫

S2×Sm
chl+1(	) =

∫
D2×Sm

chl+1(	N )+
∫

D2×Sm
chl+1(	S )

=
∫

S1×Sm
[Qm+1(� N , 	N )|t=1 − Qm+1(� S , 	S )|s=1].

(13.99)

From (11.118), we find that

Qm+1(� N , 	N )|t=1 − Qm+1(� S , 	S )|s=1

= Qm+1(g
−1�g, 0)+�αm

= (−1)l
(

i

2π

)l+1 l!
(m + 1)! tr(g−1�g)m+1 +�αm . (13.100)

The index theorem is now given by

ind i /∇m+2 = (−1)l
(

i

2π

)l+1 l!
(m + 1)!

∫
S1×Sm

tr(g−1�g)m+1. (13.101)

Theorem 10.7 states that
∫

S3 tr(g−1dg)3 yields the winding number of the map
g : S3 → SU(2). In the same manner, (13.101) represents the winding number of
the map g : Sm+1 → G and is classified by πm+1(G) (note that S1∧Sm = Sm+1).

Finally, we show that the non-Abelian anomaly should be identified with
Q1

m . We first note that ∫
S1×Sm

Qm+1(� S , 	S ) = 0

 



since the integrand is independent of dθ and, thus, cannot be a volume element of
S1 × Sm . Then we have

ind i /∇m+2 =
∫

S1×Sm
Qm+1(�

g(θ) + ω,�g(θ)) (13.102)

where ω = g−1 dθg and �g(θ) = d�g(θ) + (�g(θ))2 = g(θ)−1�g(θ).
If the integrand in (13.102) is expanded in ω, only the term linear in dθ
contributes to the integral. This term Q1

m(ω,�
g(θ),�g(θ)) is proportional to

dθ ∧ (volume element in Sm) and, hence, is a volume element of S1 × Sm . We
now have

δωW [�] =
∫

Sm
trω�µ

δW [�]
δ�µ

= idθ w(θ,�) = 2π i
∫

Sm
Q1

m(ω,�
g(θ),�g(θ)). (13.103)

The explicit form of Q1
m is given by (13.82). For m = 4, we find that∫

trω�µ
δW [�]
δ�µ

= 2π i
∫

S4
Q1

4(ω,�
g(θ),�g(θ))

= 1

24π2

∫
S4

trω d

[
�

g(θ) d�g(θ) + 1

2
(�g(θ))3

]
. (13.104)

Putting θ = 0 (g = e), we reproduce the anomalous divergence

�µ〈 jµ〉α = 1

24π2 tr Tαε
κλµν∂κ

[
�λ∂µ�ν + 1

2
�λ�µ�ν

]
(13.105)

which is in agreement with (13.56). The present method guarantees that the
WZ condition yields the correct result. Moreover, it reproduces the anomalous
divergence including the normalization which cannot be fixed by the WZ
condition alone.

13.6 The parity anomaly in odd-dimensional spaces

So far, we have been working in even-dimensional spaces. One of the reasons
for this is that SO(2l + 1) has real or pseudo-real spinor representations but no
complex representations, hence no gauge anomaly is expected. However, we
can show that gauge theories in odd-dimensional spaces have a different kind
of anomaly called the ‘parity anomaly’, in which the parity symmetry of the
classical action is not maintained through quantization. It should be noted that
the parity anomaly in 2l + 1 dimensions is related to the Abelian anomaly in
2l + 2 dimensions as was pointed out by Alvarez-Gaumé et al (1985).

 



13.6.1 The parity anomaly

Let M be a (2l + 1)-dimensional Riemannian manifold. We distinguish one
dimension from the others; that is we assume that M is of the form � ×	 or
S1×	, where	 is a 2l-dimensional compact manifold without a boundary. We
denote the coordinate of � or S1 by t while that of	 is denoted by x . The index
0 denotes the component in t-space while µ denotes that in x-space. For example,
the components of the γ -matrices are {γ 0, γ µ (1 ≤ µ ≤ 2l)}.

Define the ‘parity’ operation P by

�0(t, x)→ �
P
0(t, x) = −�0(−t, x)

�µ(t, x)→ �
P
µ(t, x) = �µ(−t, x)

ψ(t, x)→ ψP(t, x) = iγ0ψ(−t, x)

ψ̄(t, x)→ ψ̄P(t, x) = iψ̄(−t, x)γ0.

The classical action is invariant under the parity operation,∫
dt dx ψ̄ i /∇ψ →−

∫
dt dx ψ̄(−t, x)γ 0i[γ 0(∂0 − �0(−t, x))

+ γ µ(∂µ +�µ(−t, x))]γ 0ψ(−t, x)

=
∫

dt dx ψ̄(t, x)i[γ 0(∂0 +�0(t, x))

+ γ µ(∂µ +�µ(t, x))]ψ(t, x)

where we put t → −t in the final line. Let us see whether this invariance is
observed by the effective action. The effective action is given by the regularized
product of the eigenvalues of i /∇ . We employ the Pauli–Villars regularization to
regulate the product, that is

�reg ≡ χ̄ i /∇χ + iMχ̄χ (13.106)

is added to the original Lagrangian. The Pauli–Villars regulator χ is a spinor
which obeys bosonic statistics and the limit M → ∞ is understood. The
regularized determinant is

e−W [�] = det i /∇
det(i /∇ + iM)

=
∏

i

λi

λi + iM
(13.107)

where we noted that χ is bosonic. Here λi is the i th eigenvalue of i /∇; i /∇ψi =
λiψi . Under the parity operation, eigenvalues change sign,

i[γ 0(∂0 − �0(−t, x))+ γ i (∂i +�i (−t, x))]iγ 0ψi (−t, x)

= iγ 0[γ 0(−∂τ −�0(τ, x))− γ i (∂i +�i (τ, x))]iψ(τ, x)

= −λi iγ 0ψi (τ, x)

 



where τ = −t . This shows that the effective action W [�] transforms under the
parity operation P as

W [�] → W [�P] = − ln
∏ −λi

−λi + iM
= W [�] (13.108)

where the bar denotes complex conjugation. (13.108) shows that the imaginary
part of W is identified with the parity-violating part

W [�] −W [�P] = 2 Im W [�]. (13.109)

Im W [�] is given by the η-invariant defined in section 12.8. In fact,

Im W [�] = lim
M→∞ Im

(
−

∑
i

ln
λi

λi + iM

)
= lim

M→∞
∑

i

tan−1(M/λi )

= π

2

(∑
λ>0

1−
∑
λ<0

1

)
= π

2
η. (13.110)

Thus, the Pauli–Villars regulator gives a regularized form for the η-invariant. We
finally have

Im W [�] = π

2
η = π

2
lim
s→0

∑
i

′
sgnλi |λi |−2s (13.111)

where the prime indicates the omission of zero modes.

13.6.2 The dimensional ladder: 4–3–2

It is remarkable that the parity anomaly (13.110) is closely related to the chiral
anomaly in a (2l + 2)-dimensional space (Alvarez-Gaumé et al 1985). Following
Forte (1987), we look at the dimensional ladder,

four-dimensional Abelian anomaly

↓
three-dimensional parity anomaly (13.112)

↓
two-dimensional non-Abelian anomaly.

We take M4 = S2 × S2 as a four-dimensional space. The Abelian anomaly
is given by the index

ind i /∇4 = �+ −�− =
∫

S2×S2
∂µ jµ5 =

∫
S2×S2

ch2(	). (13.113)

As before, �+ (�−) is the number of positive (negative) chirality zero modes.
Let Q3 be the Chern–Simons form of ch2(	); ch2(	) = dQ3(� , 	). Then

 



� ≡ �+ −�− is given by

� =
∫

S2×S2
ch2(	) =

∫
UN×S2

dQ3(� N , 	N )+
∫

US×S2
dQ3(� S , 	S )

=
∫

S1×S2
[Q3(� N , 	N )− dQ3(� S , 	S )]

= 1

24π2

∫
S1×S2

tr(g−1dg)3 (13.114)

where g is the gauge transformation connecting � N and � S ; � N = g−1(� S +
d + dθ )g. In the previous section, we have shown that � also represents the
non-Abelian anomaly

� = 1

2π

∫ 2π

0
dθ
∂w(�, θ)

∂θ
(13.115a)

where w is defined by

det iD̂(�g(θ)) = eiw(�,θ) det iD̂(�). (13.115b)

Here � is the reference gauge potential and

�
g(θ) = g−1(x, θ)(�+ d)g(x, θ) iD̂ = /∂+ ���+.

Next, we show that � is also related to the parity anomaly in three-
dimensional space. Let i /∇3 be a three-dimensional Dirac operator and define
a four-dimensional Dirac operator by

i /D4[�] ≡ iσ1 ⊗ I
∂

∂ t
+ σ2 ⊗ i /∇3[�t ] (13.116)

where �t is a one-parameter family of gauge potentials interpolating�0 = �t=0
and �1 = �t=1. The Atiyah–Patodi–Singer index theorem (section 12.8) is

ind i /D4 = −
∫

S2×S1×I
ch2(�)+ 1

2 [η(t = 1)− η(t = 0)] (13.117)

where we have noted that the Dirac genus Â is trivial on S2 × S1 × I . Suppose
�0 and �1 are related by a gauge transformation,

�1 = g−1(�0 + d)g (13.118a)

and consider an interpolating potential

�t ≡ t�1 + (1− t)�0. (13.118b)

 



Since the spectrum of i /∇3 is gauge invariant, in particular Spec i /∇3(�0) =
Spec i /∇3(�1), the η-invariant is also gauge invariant.6 Then η(t = 0) = η(t = 1)
and the APS index theorem (13.117) yields

spectral flow = ind i /D4(�t )

=
∫

S2×S2
ch2(�) =

∫
S1×S2

[Q3(�1,�1)− Q3(�0,�0)]

=
∫

S1×S2
Q3(g

−1 dg, 0) = �. (13.119)

Thus, the spectral flow of the three-dimensional theory is given by the index�.
In summary, the map g : S2× S1 → G is understood in three different ways:

(1) g is a transition function at the boundary of two patches of a G bundle over
S2 × S2. It yields the index � of the four-dimensional Abelian anomaly.

(2) Suppose �0 and �1 = g−1(�0 + d)g are gauge potentials on S2 × S1.
The gauge transformation function g measures the spectral flow � between
Spe i /∇3(�0) and Spe i /∇3(�1).

(3) g : S2 × S1 → G induces a map S1 → 
, the winding number� of which
is identified with the non-Abelian anomaly in two-dimensional space.

Thus, we have obtained the ‘dimensional ladder’ 4–3–2. The extension to higher
dimensions is obvious.

6 Note that there is no gauge anomaly in odd-dimensional spaces.

 



14

BOSONIC STRING THEORY

In the present chapter, we study the one-loop amplitude of bosonic string
theory. Our example is the simplest one: closed, oriented bosonic strings in 26-
dimensional Euclidean space.1 The action is the Polyakov action

S = 1

2π

∫
�g

d2ξ
√
γ γ αβ∂αXµ∂βXµ − λ

4π

∫
�g

d2ξ
√
γ� (14.1)

where �g is a Riemann surface with genus g. The second term is proportional
to the Euler characteristic χ = 2 − 2g and, hence, determines the relative ratio
of multi-loop amplitudes; the g-loop amplitude is proportional to exp(−λg). We
have not written down the possible counter terms explicitly.

In the following sections, we work out the path integral formalism of bosonic
strings. We first develop the necessary mathematical tools, namely differential
geometry on Riemann surfaces. Then the path integral expression for the vacuum
amplitude is written down. As an example, we compute the one-loop vacuum
amplitude. Our exposition is based on D’Hoker and Phong (1986), Polchinski
(1986) and Moore and Nelson (1986). There are many surveys of these topics,
for example, Alvarez-Gaumé and Nelson (1986), Bagger (1987), D’Hoker and
Phong (1988) and Weinberg (1988).

14.1 Differential geometry on Riemann surfaces

Riemann surfaces are real two-dimensional manifolds without boundary. In our
study of topology and geometry, we referred to them in various places. Here
we summarize the basic facts on Riemann surfaces, which will make this chapter
self-contained. We also introduce several new aspects of Riemann surfaces, which
provide enough background for the study of bosonic string amplitudes.

14.1.1 Metric and complex structure

Let �g be a Riemann surface of genus g. It was shown in example 7.9 that we
may introduce, in any chart U , the isothermal coordinates (ξ1, ξ2) in which the
metric is conformally flat:

g = e2σ(ξ)(dξ1 ⊗ dξ1 + dξ2 ⊗ dξ2). (14.2)
1 The reason for D = 26 will be clarified in section 14.2.

 



Introduce the complex coordinates

z = ξ1 + iξ2 z̄ = ξ1 − iξ2. (14.3)

Forms and vectors are spanned by

dz = dξ1 + id ξ2 dz̄ = dξ1 − id ξ2 (14.4a)

∂z = 1

2

(
∂

∂ξ1 − i
∂

∂ξ2

)
∂z̄ = 1

2

(
∂

∂ξ1 + i
∂

∂ξ2

)
. (14.4b)

In terms of the complex coordinates, the metric takes the form

g = 1
2 e2σ(z,z̄)[dz ⊗ dz̄ + dz̄ ⊗ dz]. (14.5)

The components of g are

gzz̄ = gz̄z = 1
2 e2σ gzz = gz̄z̄ = 0 (14.6a)

gzz̄ = gz̄z = 2e−2σ gzz = gz̄z̄ = 0. (14.6b)

Let V be another chart of �g such that U ∩ V �= ∅. Let (w, w̄) be the
complex coordinates in V . The metric in V is

g = e2σ ′(w,w̄) dw ⊗ dw̄. (14.7)

The two expressions (14.5) and (14.7) should agree on U ∩ V ,

e2σ(z,z̄) dz ⊗ dz̄ = e2σ ′(w,w̄) dw ⊗ dw̄.

Since

dw ⊗ dw̄ = [(∂w/∂z) dz + (∂w/∂ z̄)dz̄] ⊗ [(∂w̄/∂z) dz + (∂w̄/∂ z̄)dz̄]
∝ dz ⊗ dz̄

we must have ∂w/∂ z̄ = ∂w̄/∂z = 0. [Another possibility, ∂w/∂z = ∂w̄/∂ z̄ = 0
is ruled out if (z, z̄) and (w, w̄) define the same orientation.] Thus, it follows that

w = w(z) w̄ = w̄(z̄) (14.8)

which verifies that �g is a complex manifold. We also have

e2σ(z,z̄) = e2σ ′(w,w̄)|∂w/∂z|2. (14.9)

14.1.2 Vectors, forms and tensors

Let M = �g . The components of vector fields V z∂/∂z ∈ T M+ and V z̄∂/∂ z̄ ∈
T M− transform as

Vw = (∂w/∂z)V z V w̄ = (∂w̄/∂ z̄)V z̄ . (14.10)

 



The components of differential forms wz dz ∈ �1,0(M) and wz̄ dz̄ ∈ �0,1(M)
transform as

ωw = (∂w/∂z)−1ωz ωw̄ = (∂w̄/∂ z̄)−1ωz̄ . (14.11)

These are identified with sections of the holomorphic (anti-holomorphic) line
bundles over M = �g , for which the transition functions are holomorphic (anti-
holomorphic). The metric provides a natural isomorphism between T M+ and
�0,1(M) through

ωz̄ = gz̄z V z, V z = gzz̄ωz̄ . (14.12)

Similarly, T M− is isomorphic to ω1,0(M):

ωz = gzz̄V z̄, V z̄ = gz̄zωz . (14.13)

In general, given an arbitrary tensor, the metric allows us to trade all the z̄-indices
for z-indices. It is easy to see that

T

q1︷︸︸︷
z...z

q2︷︸︸︷
z̄...z̄

z...z︸︷︷︸
p1

z̄...z̄︸︷︷︸
p2

→ T

q1+p2︷︸︸︷
z...z

z...z︸︷︷︸
p1+q2

= (gzz̄)
q2(gzz̄)p2 T

q1︷︸︸︷
z...z

q2︷︸︸︷
z̄...z̄

z...z︸︷︷︸
p1

z̄...z̄︸︷︷︸
p2

. (14.14)

This correspondence is an isomorphism. For example, observe that

Tzz̄
z̄ → gzz̄gzz̄Tzz̄

z̄ = Tz
z

z .

Thus, it is only necessary to consider tensors with pure z-indices. For these
tensors, we assign the helicity. Since T has z-indices only, it transforms under
z → w as

T →
(
∂w

∂z

)n

T (14.15)

where n ∈ � is given by the number of upper z-indices minus the number of lower
z-indices. For example,

T zz
z → Twww =

(
∂w

∂z

)
T zz

z .

All that matters is the difference between the number of upper indices and the
number of lower indices. The tensor T z

z is left invariant under z → w and is
regarded as a scalar. The number n is called the helicity. The set of helicity-n
tensors is denoted by �n:

�
n ≡ {T

q︷︸︸︷
z...z

z...z︸︷︷︸
p

|q − p = n}. (14.16)

The helicity characterizes the irreducible representation of U(1) = SO(2).

 



So far we have assumed n is an integer. It can be shown that n = 1
2

corresponds to the spinor field on �g . In fact, the existence of spinors on the
Riemann surfaces is guaranteed by the triviality of the second Stiefel–Whitney
class of�g . The set �1 is identified with the holomorphic line bundle K over�g .
Then �1/2 is the square root of K : S2+ = K = �1 where S+ is the positive-
chirality spin bundle. Similarly, we have �−1 = K̄ = S2− where S− is the
negative-chirality spin bundle.2

Example 14.1. In real indices, the helicity±1 vectors are given by V 1±iV 2. This
follows since

V 1 ∂

∂ξ1
+ V 2 ∂

∂ξ2
= (V 1 + iV 2)∂z + (V 1 − iV 2)∂z̄ .

We put V z = V 1 + iV 2 and V z̄ = V 1 − iV 2 	 Vz . The helicity ±2 tensors are
T 11 ± iT 22, where T is a symmetric traceless tensor of rank two. In fact, we find

T 11
(
∂

∂ξ1
⊗ ∂

∂ξ1
− ∂

∂ξ2
⊗ ∂

∂ξ2

)
+ T 12

(
∂

∂ξ1
⊗ ∂

∂ξ2
+ ∂

∂ξ2
⊗ ∂

∂ξ1

)
= 2(T 11 + iT 12)∂z ⊗ ∂z + 2(T 11 − iT 12)∂z̄ ⊗ ∂z̄ .

Clearly T zz = 2(T 1 + iT 12) has helicity +2 and T z̄z̄ = 2(T 11 − iT 12) has
helicity −2 (note that gzz̄gzz̄T z̄z̄ = Tzz).

14.1.3 Covariant derivatives

The only non-vanishing Christoffel symbols of �g are (see (8.69))

�z
zz = gzz̄∂z gzz̄ = 2∂zσ � z̄

z̄z̄ = gz̄z∂z̄ gz̄z = 2∂z̄σ. (14.17)

For tensors in �n, we define two kinds of covariant derivative: ∇z
(n) : �n → �n+1

and ∇(n)z : �n → �n−1. Let

T

q︷︸︸︷
z...z

z...z︸︷︷︸
p

∈ �n (q − p = n).

We define

∇z
(n)T

z...z
z...z = gzz̄∇z̄ T z...z

z...z

= gzz̄[∂z̄ + (q − p)�z
z̄z]T z...z

z...z

= gzz̄∂z̄T z...z
z...z (14.18a)

∇(n)z T z...z
z...z = ∇z T z...z

z...z

= [∂z + (q − p)�z
zz]T z...z

z...z

= (∂z + 2n∂zσ)T
z...z

z...z . (14.18b)

2 We use S±, instead of �±, to denote the spin bundles. The symbol �± is reserved for Laplacians.

 



In (14.18b), 2n∂zσ acts like a gauge potential �. We also define covariant
derivatives with respect to z̄,

∇ z̄
(n) = gz̄z∇(n)z , ∇(n)z̄ = gz̄z∇z

(n). (14.19)

The curvature two-form of K and the scalar curvature associated with the
Christoffel symbols are

� = Rz
zzz̄ dz ∧ dz̄ = −∂z̄(2∂zσ) dz ∧ dz̄

= −2∂z∂z̄σ dz ∧ dz̄ (14.20a)

� = gz̄z Ricz̄z + gzz̄ Riczz̄ = −8e−2σ ∂z∂z̄σ. (14.20b)

Exercise 14.1. Verify that

∇z
(n) = 2e−2σ ∂z̄ ∇(n)z = e−2nσ ∂ze2nσ (14.21a)

∇ z̄
(n) = 2e−2(n+1)σ ∂ze2nσ ∇(n)z̄ = ∂z̄ . (14.21b)

∇z
(n) and ∇(n)z are mutual adjoints with respect to a properly defined inner

product. Let T,U ∈ �n. We require that the inner product be invariant under a
holomorphic change of the coordinate z → w. Since

gzz̄ → |dw/dz|−2gzz̄ d2z
√

g → d2w
√

g

T̄ → (dw/dz)n T̄ U → (dw/dz)nU.

We find the combination

(T,U) ≡
∫

d2z
√

g(gzz̄)
n T̄ U (14.22)

is invariant under holomorphic coordinate transformations. Take T ∈ �n and
U ∈ �n+1. We find that

(U,∇z
(n)T ) =

∫
d2z e2σ2−n−1e2(n+1)σ Ū2e−2σ ∂z̄ T

= − 2−n
∫

d2z T ∂z̄[e(2n+1)σ Ū ] (partial integration)

= − 2−n
∫

d2z T e(2n+1)σ [∂zU + (2n + 1)(∂zσ)U ]

= −
∫

d2z
√

g(gzz̄)n[∇(n+1)
z U ]T̄ = (−∇(n+1)

z U, T ).

This shows that

(∇z
(n))

† = −∇(n+1)
z . (14.23a)

 



Exercise 14.2. Show that
(∇(n)z )† = −∇z

(n−1). (14.23b)

We define two kinds of Laplacian�±(n) : �n → �n±1 → �n by

�+(n) ≡ −∇(n+1)
z ∇z

(n) = −2e−2σ [∂z∂z̄ + 2n(∂zσ)∂z̄] (14.24a)

�−(n) ≡ −∇z
(n−1)∇(n)z = −2e−2σ [∂z∂z̄ + 2n(∂zσ)∂z̄ + 2n(∂z∂z̄σ)]. (14.24b)

Then it follows that

�+(n) −�−(n) = 4ne−2σ (∂z∂z̄σ) = − 1
2 n�. (14.25)

This shows, in particular, that

�+(0) = �−(0) (≡ �(0)). (14.26)

14.1.4 The Riemann–Roch theorem

Here we derive a version of the Riemann–Roch theorem from the Atiyah–Singer
index theorem following D’Hoker and Phong (1988).

Theorem 14.1. (Riemann–Roch theorem) Let�g be a Riemann surface of genus

g. Then the index of the operator ∇(n)z is

dim� ker∇(n)z − dim� ker∇z
(n−1) = (2n − 1)(g − 1). (14.27)

Proof. We use the heat kernel to evaluate the index. We first note that ker∇(n)z =
ker�−(n) and ker∇z

(n−1) = ker�+(n−1) (see (14.24)). The heat kernel 
+n of �+(n)
satisfies (

∂

∂ t
+�+(n)

)

+n (z, w; t) =

(
∂

∂ t
+�− Vn

)

+n (z, w; t) = 0

where � ≡ −2∂z∂z̄ is the flat-space Laplacian and

Vn ≡ �−�+(n) = (1− e−2σ )�+ 4ne−2σ ∂zσ∂z̄ .

The Laplacian� also defines a heat kernel by(
∂

∂ t
+�

)
K (z, w; t) = 0

which is easily solved to yield

K (z, w; t) = 1

4π t
e−|z−w|2/2t .

 



The perturbative computation and iteration yield


+n (z, z′; t) = K (z, z′; t)

+
∫ t

0
ds

∫
dw K (z, w; t − s)Vn(w)


+
n (w, z′; s)

= K (z, z′; t)+
∫

ds
∫

dw K (z, w; t − s)Vn(w)K (w, z′; s)

+
∫

ds
∫

ds′
∫

dv
∫

dw K (z, v; t − s)Vn(v)

× K (v,w; s − s′)Vn(w)K (w, z′; s′)
+ · · · .

We are particularly interested in
+n (z, z; t), t being small,


+n (z, z; t) = 1

4π t
+

∫ t

0
ds

∫
dw K (z, w; t − s)Vn(w)K (w, z; s)+�(t).

(14.28)
If we take a coordinate system in which σ = 0 at z, we have

σ(w) 	 0+ ∂zσ(w − z)+ ∂z̄σ(w̄ − z̄)

+ 1
2 [∂2

z σ(w − z)2 + ∂2
z̄ σ(w̄ − z̄)2 + 2∂z∂z̄σ |w − z|2] + · · · .

Due to rotational symmetry in two-dimensional space, only those terms with
one z-derivative and one z̄-derivative survive in the integral in (14.28). Terms
proportional to ∂zσ∂z̄σ cancel between the second and third terms in the
expansion and we are left with terms proportional to ∂z∂z̄σ . Now we have to
evaluate∫ t

0
ds

∫
d2w K (z, w; t − s)

× [2∂z∂z̄σ |w̄ − z̄|2�w + 4n(w̄ − z̄)∂z∂z̄σ∂w̄]K (w, z; s).

From the identities∫
d2w K (z, w; t − s)|w − z|2�wK (w, z; s)

= 1

16π2s2(t − s)

∫
d2w|w|2 exp

(
− t

2s(t − s)
|w|2

)
− 1

32π2s3(t − s)

∫
d2w|w|4 exp

(
− t

2s(t − s)
|w|2

)
= (t − s)(2s − t)

2π t3

 



and ∫
d2w K (z, w; t − s)(z̄ − w̄)∂w̄K (w, z; s)

= 1

32π2s2(t − s)

∫
d2w exp

(
− t

2s(t − s)
|w|2

)
= t − s

4π t2

we find that


+n (z, z; t) = 1

4π t
+ 1+ 3n

12π
�σ +�(t). (14.29a)

We also have the diagonal part of the heat kernel
−n for �−(n),


−n (z, z; t) = 1

4π t
+ 1− 3n

12π
�σ +�(t). (14.29b)

From (14.29) and (14.20b), we obtain

ind∇(n)z =
∫

d2z

(
1− 3n

12π
− 1+ 3(n − 1)

12π

)
�σ = 1− 2n

8π

∫
d2x �

= − 2n − 1

2
χ(�g) = (2n − 1)(g − 1)

where

χ = 1

4π

∫
d2x � = 2− 2g

is the Euler characteristic of �g .

14.2 Quantum theory of bosonic strings

Now we are ready to introduce Polyakov’s formulation of bosonic strings, which
is based on the path integral over geometries. Since the string action contains an
enormous symmetry, we have to pay special attention to counting independent
geometries once and only once. This is achieved by the Faddeev–Popov trick.
Our argument will be restricted to the simplest case, namely closed orientable
bosonic strings; the theory is defined on Riemann surfaces.

14.2.1 Vacuum amplitude of Polyakov strings

According to the general prescription of the path integral formalism, the partition
function (vacuum-to-vacuum amplitude) of the string theory is given by

Z =
∞∑

g=0

Zg =
∞∑

g=0

∫
�X�γ e−S[X,γ ] (14.30)

 



Figure 14.1. The total vacuum amplitude is given by summing over g-loop amplitudes.

see figure 14.1. To avoid confusion, we denote the genus by g and the metric by
γ . The sum over genera amounts to the sum over the topologies. Zg is the g-loop
amplitude and is obtained by integrating over all metrics γ and all embeddings X .
As we shall see later, the measure �X�γ is not well defined and we need some
modifications. The string action S[X, γ ] is taken to be

S[X, γ ] ≡ 1

2

∫
d2ξ

√
γ γ αβ∂αXµ∂βXµ + λ

4π

∫
d2ξ

√
γ�. (14.31)

The first term is the Polyakov action. The second term is proportional to the Euler
characteristic

χ = 1

4π

∫
d2 ξ

√
γ� = 2− 2g

and serves as the string coupling constant; the amplitude of a loop with genus g is
suppressed by the factor e−2λg . Since this term is a topological invariant, it does
not affect the dynamics of the string. We are interested in Riemann surfaces of a
fixed genus g and drop this term. The first term of the action has the following
symmetries (section 7.11):

(A) Diff(�g), the group of diffeomorphisms f : �g → �g . Let ξα → ξ
′α(ξ) be

the coordinate expression for f . The new metric is the pullback of the old
one whose coordinate component expression is

γαβ → f ∗γαβ = ∂ξγ

∂ξ
′α
∂ξδ

∂ξ
′β γγ δ. (14.32)

The embedding also gets transformed as

Xµ → f ∗Xµ = Xµ f. (14.33)

The invariance of the classical action takes the form

S[X, γ ] = S[ f ∗X, f ∗γ ]. (14.34)

(B) Weyl(�g), the group of two-dimensional Weyl rescalings

γαβ → γ̂αβ ≡ eφγαβ (14.35)

 



Figure 14.2. An element of � ×�g is obtained by the action of Diff(�g) ∗Weyl(�g) on
an element (X, γ ) in the gauge slice.

where φ ∈ �(�g). The conformal invariance of S takes the form

S[X, γ ] = S[X, γ̂ ]. (14.36)

The symmetries (A) and (B) must be preserved under quantization, otherwise
the theory has anomalies.

According to the standard Faddeev–Popov formalism, the degrees of
freedom corresponding to these symmetries have to be omitted when we define
Zg . For example, the string geometry specified by the pairs (X1, γ1) and
(X2, γ2) should not be counted independently if they are related by an element of
Diff(�g). Similarly, (X, γ ) and (X, eφγ ) should not be counted as independent
configurations. Unless special attention is paid, we would count the same
configurations infinitely many times, which leads to disastrous divergences. It
turns out that the space of all the geometries (X, γ ) can be separated into
equivalence classes (the gauge slice), any two points of which cannot be
connected by these symmetries, see figure 14.2.

To be more mathematical, let  be the space of all the embeddings X :
�g → �D and let �g be the space of all the metrics defined on �g . Naively,
the path integral is defined over  ×�g . Because of the symmetries (A) and
(B), however, the integral should be restricted to the quotient space ( ×�g)/G
where G = Diff(�g) ∗Weyl(�g) is the gauge group.3 The action of ( f, eφ) on
(X, γ ) ∈  ×�g is

( f, eφ)(X, γ ) = ( f ∗X, eφ f ∗γ ). (14.37)

The quotient �g/G is called the moduli space of �g and is denoted by
Mod(�g). We are also interested in the subgroup Diff0(�g) of Diff(�g), which
3 Here ∗ denotes the semi-direct product. Note that Diff(�g) ∩Weyl(�g) �= ∅. We shall come back
to this point later.

 



Figure 14.3. The mapping class group (MCG) is generated by Dehn twists around ai , bi
and ci (1 ≤ i ≤ g).

is a connected component of the identity map. The quotient space Teich(�g) ≡
�g/Diff0(�g) ∗Weyl(�g) is called the Teichmüller space of �g . The general
theory of Riemann surfaces shows that Teich(�g) is a finite-dimensional universal
covering space of Mod(�g). Explicitly, we have

dim� Teich(�g) =


0 g = 0

2 g = 1

6g − 6 g ≥ 2.

(14.38)

The group Diff(�g)/Diff0(�g) is known as the modular group (MG) or the
mapping class group (MCG). The MCG is generated by the Dehn twists defined
in example 8.2. For the torus with genus g, the MCG is generated by 3g−1 Dehn
twists around ai , bi and ci in figure 14.3. Unfortunately, these 3g−1 Dehn twists
are not the minimal set of the generators. The general form of MCG for g ≥ 2 is
not well understood.

From these arguments, the meaningful partition function turns out to be

Zg ≡
∫
�×�g

�X�γ

V (Diff ∗Weyl)
e−S[X,γ ] (14.39)

where V (Diff ∗Weyl) is the (infinite) volume of the space of Diff(�g)∗Weyl(�g)

and takes care of the infinite overcounting of the same geometry. The order (the
number of elements) of MCG is denoted by |MCG|. Clearly,

V (Diff ∗Weyl) = |MCG|V (Diff0 ∗Weyl). (14.40)

14.2.2 Measures of integration

We have to define a sensible measure to carry out the integration (14.39) so that
the physical degrees of freedom and the gauge degrees of freedom are separated.
This separation of degrees of freedom requires the Jacobian,

�γ�X → J (� physical)(� gauge). (14.41)

 



To find this Jacobian, we note that the Jacobian on a manifold M agrees with that
on T M . To see this, let xµ (yµ) be a coordinate of a chart U (V ) of M such that
U ∩ V �= ∅. The Jacobian of the coordinate change is J = det(∂yµ/∂xν). Take
V ∈ Tp M . In components, we have V = uµ∂/∂xµ = vµ∂/∂yµ, where

vµ = uν(∂yµ/∂xν). (14.42)

{uµ} and {vµ} are fibre coordinates of Tp M . The Jacobian Ĵ associated with this
coordinate change is

Ĵ = det(∂vµ/∂uν) = det(∂yµ/∂xν) = J. (14.43)

This shows that the Jacobian at p ∈ M is the same as that on Tp M . The Jacobian
Ĵ depends on p but not on the vector itself, since J depends only on p.

Example 14.2. Let (x, y) and (r, θ) be coordinates of �2 , where x = r cos θ and
y = r sin θ . The Jacobian of the coordinate change is

J = det
∂(x, y)

∂(r, θ)
= r.

Let us take

V = vx∂/∂x + vy∂/∂y = vr∂/∂r + vθ ∂/∂θ ∈ Tp R2.

(vx , vy) and (vr , vθ ) serve as fibre coordinates of Tp�2 . Since

vx = vr ∂x/∂r + vθ ∂x/∂θ vy = vr∂y/∂r + vθ ∂y/∂θ

the associated Jacobian Ĵ is easily calculated to be

Ĵ = det[∂(vx , vy)/∂(vr , vθ )] =
∣∣∣∣ ∂x/∂r ∂x/∂θ
∂y/∂r ∂y/∂θ

∣∣∣∣ = J.

Let us derive this Jacobian in an indirect but suggestive way. We normalize
the measure d2v as4

1 =
∫

d2v exp(− 1
2‖v‖2) =

∫
dvx dvy exp[− 1

2 (v
2
x + v2

y)].

We also have ‖v2‖2 = v2
r + r2v2

θ . Noting that the Jacobian is independent of vr

and vθ , we have

1 = J
∫

dvr dvθ exp[− 1
2 (v

2
r + r2v2

θ )] = Jr−1

4 This normalization of the measure differs by a constant factor from the conventional one.

 



from which we find J = r . We use this procedure to find the functional measure
of string theory.5

This analysis enables us to write

�δγ�δX = J�δ(physical)�δ(gauge) (14.44)

where δγ (δX) is a small variation of the metric γ (the embedding X ) and is
regarded as an element of Tγ (�g) (TX). The meaning of the RHS becomes
clear in a moment.

Consider the diffeomorphism generated by an infinitesimal vector field δv
on�g . Since δv is infinitesimal, it belongs to Diff0(�g) rather than the full group
Diff(�g). The changes of the metric and the embedding under δv are (see (7.120))

δDγαβ = (�δvγ )αβ = ∇αδvβ +∇βδvα δD X = δvα∂αX. (14.45)

The changes of γ and X under an infinitesimal Weyl rescaling eδφ are

δWγαβ = δφγαβ δW X = 0. (14.46)

These changes belong to unphysical (gauge) degrees of freedom. In general, a
small change of metric is given by

δγαβ = δWγαβ + δDγαβ + (physical change)

= δφγαβ +∇αδvβ +∇βδvα + δt i ∂

∂ t i
γαβ(t) (14.47)

where the last term is called the Teichmüller deformation of the metric, which
can neither be described by a diffeomorphism nor by a Weyl rescaling. As
mentioned before, {i} is a finite set, 1 ≤ i ≤ n = dim� Teich(�g). It is
convenient for later purposes to separate δγ into a traceless part and a part with a
non-zero trace. We write

δγαβ = δφ̄γαβ + (P1δv)αβ + δt i Tiαβ(t) (14.48)

where Tiαβ is the traceless part of the Teichmüller deformation,

Tiαβ ≡ ∂γαβ

∂ t i
− 1

2
γαβγ

γ δ ∂γγ δ

∂ t i
. (14.49)

The operator P1 is defined by

(P1δv)αβ ≡ ∇αδvβ +∇βδvα − γαβ(∇γ δvγ ) (14.50)

and picks up the traceless part of δDγαβ while δφ̄ is defined by

δφ̄ = δφ +
(
∇γ δvγ + trace part of δt

∂γ

∂ t

)
(14.51)

5 It should be kept in mind that we introduce the tangent space only to obtain the Jacobian. The
tangent space itself has no physical relevance.

 



where we do not need the explicit form in the parentheses.
As for the embeddings, we consider the quotient /Diff(�g). An arbitrary

embedding X is obtained by the action of Diff(�g) on some X̃ ∈ /Diff(�g).
Then a small change of the embedding is expressed as

δX = δvα∂α X̃ + δ X̃ (14.52)

where the first term represents the change of X generated by δv while the second
is not associated with diffeomorphisms. Now the measure should look like

�δγ�δX = J dnt �δv�δφ�δ X̃ . (14.53)

To define the measure, we need to specify a metric on the tangent space, see
example 14.2. We restrict ourselves to the so called ultralocal metric which is
quadratic and depends on γαβ but not on ∂γαβ . Define a metric for symmetric
second-rank tensors by

‖δh‖2
γ =

∫
d2ξ

√
γ (Gαβγ δ + uγ αβγ γ δ)δhαβδhγ δ (14.54a)

where u > 0 is an arbitrary constant and

Gαβγ δ ≡ γ αγ γ βδ + γ αδγ βγ − γ αβγ γ δ. (14.55)

It is readily verified that G is the projection operator to the traceless part
(tr Gαβγ δδhγ δ = γαβGαβγ δδhγ δ = 0) while uγ αβγ γ δ is that to the trace part.
In a finite-dimensional manifold, a metric defines a natural volume element. In
the present case, however, the measure cannot be defined explicitly and we have
to define it implicitly in terms of the Gaussian integral (see example 14.2),∫

�δh exp(− 1
2 ||δh||2γ ) = 1. (14.56a)

Similarly, the metrics for a scalar δφ, a vector δv and a map δXµ are defined by

‖δφ‖2
γ =

∫
d2ξ

√
γ δφ2 (14.54b)

‖δv‖2
γ =

∫
d2ξ

√
γ γαβδv

αδvβ (14.54c)

‖δX‖2
γ =

∫
d2ξ

√
γ δXµδXµ. (14.54d)

With these metrics, the measures are defined by∫
�δφ exp(− 1

2 ||δφ||2γ ) = 1 (14.56b)∫
�δv exp(− 1

2 ||δv||2γ ) = 1 (14.56c)∫
�δX exp(− 1

2 ||δX ||2γ ) = 1. (14.56d)

 



Exercise 14.3. Show that ‖δγ ‖2
γ and ‖δX‖2

γ are invariant under Diff(�g) but not
under Weyl(�g). This is the possible origin of conformal anomalies, see (14.84).

Before we proceed further, we need to clarify the overlap between Diff0(�g)

and Weyl(�g). Suppose δv ∈ ker P1, that is,

P1δv = ∇αδvβ +∇βδvα − γαβ(∇γ δvγ ) = 0. (14.57)

We find, for such δv, that δDγαβ = (∇γ δvγ )γαβ . A vector δv ∈ ker P1
is identified with the conformal Killing vector (CKV), see section 7.7. It is
important to note that δD and δW yield the same metric deformations if δφ is taken
to be ∇γ δvγ . Thus, the set of the CKVs is identified with the overlap between
Diff0(�g) and Weyl(�g). Let there be k independent CKVs on �g and denote
these by �αs (1 ≤ s ≤ k). It is known from the theory of Riemann surfaces that

k =


6 g = 0

2 g = 1

0 g ≥ 2.

(14.58)

We separate δv into a part generated by the CKV, and its orthogonal complement,
which we write as

δvα = δṽα + δas�αs . (14.59)

The tangent vector δX is also decomposed as

δX = δ X̃ + δṽα∂α X̃µ + δas�αs ∂α X̃µ. (14.60)

The functional measures now become

�δγ�δX → J dnδ t�δφ�δṽ dkδ a�δ X̃ (14.61)

where we noted that the t- and a-parameters are finite dimensional.
Let Diff⊥0 (�g) be the subspace of Diff0(�g), which is orthogonal to the

CKV. We have
V (Diff0) = V (Diff⊥0 ) · V (CKV) (14.62)

V (Diff0 ∗Weyl) = V (Diff⊥0 )V (Weyl)

= V (Diff0)V (Weyl)/V (CKV). (14.63)

Take a slice γ̂ (t) of �g . The slice is parametrized by n Teichmüller
parameters. Any metric γ̃ related to γ̂ by G = Diff(�g) ∗Weyl(�g) is written as

γ̃ = f ∗(eφγ̂ ) f ∈ Diff(�g), eφ ∈ Weyl(�g). (14.64)

We express a small deformation δγ̃ at γ̃ as a pullback of a deformation δγ at
γ ≡ eδφγ̂ : δγ̃ = f ∗(δγ ). Note that δγ is a small diffeomorphism at the origin

 



of Diff0(�g) and, hence, can be described by a vector field δv. As was shown
in exercise 14.3, Diff(�g) is the isometry of the relevant vector spaces. It then
follows that

‖δγ̃ ‖2
γ̃ = ‖ f ∗(δγ )‖2

f ∗γ = ‖δγ ‖2
γ γ = eφγ̂ . (14.65)

At the point γ , we decompose δγ as

δγαβ = δφγαβ + (P1δṽ)αβ + δt i Tiαβ (14.66)

where δφ has been redefined so that it includes the trace parts of the Teichmüller
deformation and ∇αδvβ +∇βδvα , see (14.51).

Exercise 14.4. Show that Tiαβ at γ is related to T̂iαβ at γ̂ as

Tiαβ = eφ T̂iαβ . (14.67)

Now we are ready to give the explicit form of the measure. We first find the
Jacobian associated with the change�δv→ �δṽdkδa. We have

1 =
∫
�δv exp(− 1

2‖δv‖2
γ )

= J
∫
�δṽ dkδ a exp(− 1

2‖δṽ‖2
γ − 1

2‖δas�s‖2
γ )

= J [det(�s ,�r )]−1/2 (14.68a)

where

(�s,�r ) =
∫

d2 ξ
√
γ γαβ�

α
s�

β
r . (14.68b)

[Remark: Although the matrix element (14.68b) is defined for γ = eφγ̂ , we can
show that it is independent of eφ . To see this, let us take a CKV �̂αs of the metric
γ̂ ; ∇̂α�̂sβ + ∇̂β�̂sα = γ̂αβ∇̂�̂γs , where ∇̂ is the covariant derivative with respect

to γ̂ and �̂sα ≡ γ̂αβ�̂βs . A simple calculation shows that�sα = γαβ�̂βs = eφ�̂sα

satisfies

∇α�sβ +∇β�sα = eφ(∇̂α�̂sβ + ∇̂β�̂sα + γ̂αβ�γs ∂γ φ)
= eφγ̂αβ(∇̂γ�γs +�γs ∂γ φ) = γαβ∇γ�γs

∇ being the covariant derivative with respect to γ . Thus, �αs = �̂αs is a CKV
of the metric γ = eφγ̂ and the CKV are taken to be φ independent.] Equation
(14.68a) shows that

�δv = [det(�r ,�s)]1/2�δṽ dkδ a. (14.69)

Now the total measure is written as

J [det(�r ,�s)]1/2 dnt �δφ�δṽ dkδ a�δ X̃ (14.70)

 



where J takes care of the rest of the variable changes.
The Jacobian J is now obtained from (14.60), (14.66), (14.70) and the

definition of the measures (14.56). We have

1 =
∫
�δγ�δX exp(− 1

2 ||δγ ||2γ − 1
2 ||δX ||2γ )

= J det1/2(�,�)
∫

dnδ t�δṽ�δφ dkδ a�δ X̃

× exp

[
− 1

2

∥∥∥∥δφγαβ + (P1δṽ)αβ + δt i ∂γαβ

∂ t i

∥∥∥∥2

− 1

2
‖δ X̃ + δṽα∂α X̃ + δas�αs ∂α X̃‖2

]
= J det1/2(�,�)

∫
dnδ t�δṽ . . . exp(− 1

2‖MV ‖2) (14.71)

where

V =


δt
δφ

δṽ

δa
δ X̃

 M =
(
∂γ /∂ t γ P1 0 0

0 0 ∂ X̃ � · ∂ X̃ 1

)
≡

(
A 0
C B

)
.

(14.72)
The matrix in the exponent of (14.71) is

M† M =
(

A† C†

0 B†

)(
A 0
C B

)
=

(
A† A + C†C C† B

B†C B† B

)
=

(
I ∗
0 B† B

)(
A† A 0
∗∗ I

)
(14.73)

where ∗ and ∗∗ are irrelevant. The last expression has been obtained from the
identity, (

A B
C D

)
=

(
I B
0 D

)(
A − B D−1C 0

D−1C I

)
.

The Gaussian integrals in (14.71) are readily evaluated to yield

1 = J det1/2(�,�) det−1/2(M† M)

= J det1/2(�,�)[det(A† A) det(B† B)]−1/2. (14.74)

To compute det1/2(A† A), we need to evaluate ‖δγ ‖2
γ . We have

||δγ ||2γ =
∫

d2ξ
√
γ (Gαβγ δ + uγ αβγ γ δ)

× [δφγαβ + (P1δṽ)αβ + δt i Tiαβ ][δφγγ δ + (P1δṽ)γ δ + δt j Tjγ δ]
= 4u‖δφ‖2

γ + ‖P1δṽ‖2 + δt iδt j (Ti , Tj )+ 2δt i (P1δṽ, Ti ).

(14.75)

 



In general, Ti is not orthogonal to P1δv. To separate Ti into parts orthogonal to
P1δv and parallel to P1δv, we need to define the adjoint P†

1 of P1. P1 is an elliptic
operator which takes a vector field into a traceless symmetric tensor field. Thus,
P†

1 maps symmetric traceless tensors to vectors. For a symmetric traceless tensor
δh, we have

(P1δv, δh) =
∫

d2ξ
√
γGαβγ δ(P1δv)αβδhγ δ

=
∫

d2ξ
√
γ (∇αδvβ +∇βδvα)δhαβ

=
∫

d2ξ
√
γ δvα(−2∇β)δhαβ ≡ (δv, P†

1 δh)

where the inner product in the last expression is defined by (14.54c). Thus, it
follows that

(P†
1 δh)α = −2∇βδhαβ. (14.76)

Suppose δh is orthogonal to P1δv. From the previous discussion, we have
(P1δv, δh) = (δv, P†

1 δh) = 0. Since δv is arbitrary, δh must be an element

of ker P†
1 , see figure 14.4. Now Ti may be separated as

Ti = 	0Ti + 	⊥Ti (14.77a)

where the projection operators 	0 and 	⊥ are defined by

	0 ≡ 1− P1
1

P†
1 P1

P†
1 	⊥ ≡ P1

1

P†
1 P1

P†
1 . (14.77b)

It is easy to verify that 	0 + 	1 = 1, 	0	⊥ = 0, P†
1 	0 = 0, P†

1	⊥ =
P†

1 , 	0Ti = Ti and 	⊥Ti = 0 for Ti ∈ kerP†
1 etc. Thus (14.77a) is an orthogonal

decomposition of Ti . We write 	⊥Ti = P1ui , where

ui = 1

P†
1 P1

P†
1 Ti .

Let {ψr } (1 ≤ r ≤ n) be a real basis of ker P†
1 , which is not necessarily

orthonormal. Then Ti can be expanded as (figure 14.5)

Ti =
∑

r

ψr Qri + P1ui . (14.78)

Taking an inner product between Ti and ψr , we find that

Qri =
∑

s

[(ψ,ψ)−1]rs(ψs , Ti ). (14.79)

 



Figure 14.4. The map P1 and its adjoint P†
1 .

Figure 14.5. {Ti } spans the deformation tangent to the gauge slice while {ψr } spans ker P†
1 .

Finally, δγ is decomposed into mutually orthogonal pieces as

δγ = δφγ + P1(δṽ + δt i ui )+ δt iψr Qri . (14.80a)

Correspondingly, the space of the metric deformation {δγ } separates into the
direct sum

{δγ } = {conf} ⊕ {im P1} ⊕ {ker P†
1 }. (14.80b)

 



Substituting (14.80a) into (14.75), we obtain

||δγ ||2 = 4u||δφ||2 + ||P1δv̄||2
+ δt iδt j (Ti , ψr )γ [(ψ,ψ)−1

γ ]rs(ψs, Tj )γ (14.81)

where δv̄ ≡ δṽ + δt i ui and the inverse in the last term refers to the inverse of the
matrix (ars) = ((ψr , ψs)). If we put �t

1 = (δt, δφ, δv̄), we find that

det−1/2(A† A) =
∫

dnδ t�δφ�δv̄ exp(− 1
2�

t
1 A† A�1)

=
∫
�δφ exp(−2u||δφ||2)

∫
�δv̄ exp(− 1

2 ||P1v̄||2)

×
∫

dnδ t exp{− 1
2δt

i (Ti , ψr )[(ψ,ψ)−1]rs(ψs , Tj )δt
j }

∝ (det P†
1 P1)

−1/2

(
det(T, ψ)2

det(ψ,ψ)

)−1/2

. (14.82)

Collecting the results (14.71) and (14.82), we have

1 = J det1/2(�,�) det−1/2 B† B det−1/2 P†
1 P1

(
det(T, ψ)2

det(ψ,ψ)

)−1/2

.

The g-loop partition function is then given by

Zg =
∫

dnt �v̄�φ det X̃

V (Diff ∗Weyl)
det1/2 B† B det−1/2(�,�)

×
(

det P†
1 P1

det(T, ψ)2

det(ψ,ψ)

)1/2

e−S . (14.83)

The integral over a (the CKV) has been omitted since it is already included in the
φ-integration. Naively, the integral over v̄ yields V (Diff⊥0 ) and that over φ yields
V (Weyl). However, as exercise 14.3 shows, the measures �X and �γ depend
on the conformal factor. Polyakov (1981) has shown that, under the conformal
transformation γ → e2φγ , the measures transform as

�X → exp

(
D

24π2

∫
d2ξ

√
γ (γ αβ∂αφ∂βφ +�φ)

)
�X (14.84a)

�γ → exp

( −26

24π2

∫
d2ξ

√
γ (γ αβ∂αφ∂βφ +�φ)

)
�γ. (14.84b)

Thus, the measure �X�γ is conformally invariant if and only if D = 26. This
number 26 is called the critical dimension. Henceforth, we always assume that

 



D = 26. Now (14.83) simplifies as

Zg = 1

|MCG|
∫

dnt � X̃ det1/2 B† B det−1/2(�,�)

×
(

det P†
1 P1

det(T, ψ)2

det(ψ,ψ)

)1/2

e−S . (14.85)

We perform the X -integration to eliminate det1/2 B† B . We have

1 =
∫
�δX exp(− 1

2 ||δX ||2)

= J
∫
�δ X̃ dkδ a exp(− 1

2 ||δ X̃ + δas�αs ∂α X̃ ||2)

= J
∫
�δ X̃ exp(− 1

2 ||δ X̃ ||2)
∫

dkδ a exp(− 1
2 ||δas�αs ∂α X̃ ||2)

= J det−1/2(B† B)

and hence det1/2(B† B) is identified with the Jacobian of the transformation
X → (X̃ , a). Thus, it follows that∫

� X̃ det1/2 B† Be−S =
∫

�X

V (CKV)
e−S (14.86)

where V (CKV) = ∫
dka is the volume of the CKV.

The integration over X is readily carried out. Let us write∫
�

�Xe−S =
∫
�

�X exp[− 1
2 (X,�X)] (14.87a)

where

� = − 1√
γ
∂α
√
γ γ αβ∂β (14.87b)

is the Laplacian acting on 0-forms, see (7.188). We write down the explicit form
of the path integral (14.87a). Let ψn be the eigenfunction of �,

�ψn = λnψn λn ∈ [0,∞) (14.88)

where ψn are normalized as

(ψn, ψm) =
∫

d2ξ
√
γψnψm = δnm .

The eigenvalue λ is non-negative since � is positive definite. Let us expand Xµ

in ψn as

Xµ =
∞∑

n=0

aµn ψn = Xµ0 + X
′µ aµn ∈ R (14.89)

 



where Xµ0 = aµ0 ψ0 is the zero eigenfunction of � and X
′µ are the remaining

degrees of freedom. Correspondingly, the path integral (14.87a) is written as∫
�X exp[− 1

2 (X,�X)] =
∫ ∏

n,µ

daµn exp

(
− 1

2

∑
n,µ

λn(a
µ
n )

2
)

=
∫ ∏

µ

daµ0

∫ ∏
n �=0

∏
µ

daµn exp

(
− 1

2

∑
n,µ

λn(a
µ
n )

2
)

=
(∫ ∏

µ

daµ0

)
(det′�)−13 (14.90)

where the prime indicates that the zero mode is omitted. To integrate over the
zero mode, we note that the normalized eigenvector ψ0 is given by6

ψ0 =
(

1∫
d2 ξ

√
γ

)1/2

. (14.91)

From Xµ0 = aµ0 ψ0, we have∫ ∏
µ

daµ0 =
∫ ∏

µ

dXµ0 (ψ0)
−26 = V

(
1∫

d2 ξ
√
γ

)−13

(14.92)

where V = ∫ ∏
dXµ0 is the spacetime volume. Collecting the results (14.90) and

(14.92), we find that ∫
�Xe−S =

(
det′�∫
d2 ξ

√
γ

)−13

(14.93)

where we have dropped V and other irrelevant constants.
Finally, we have obtained the expression for the g-loop partition function

Zg =
∫

Mod

dnt

V (CKV)

det(T, ψ)

det1/2(ψ,ψ) det1/2(�,�)

× [det′ P†
1 P1]1/2

(
det′�∫
d2ξ

√
γ

)−13

(14.94)

where we have noted that

1

|MCG|
∫

Teich
dnt =

∫
Mod

dnt . (14.95)

If g ≥ 2, the Riemann surfaces have no CKV and (14.95) reduces to

Zg =
∫

Mod
dnt

det(T, ψ)

det1/2(ψ,ψ)
(det′ P†

1 P1)
1/2

(
det′�∫
d2ξ

√
γ

)−13

. (14.96)

6 Since ψ0 satisfies �ψ0 = 0, it is a harmonic function. Any harmonic function on a Riemann
surface must be a constant by the maximum principle.

 



14.2.3 Complex tensor calculus and string measure

Since any Riemann surface admits complex structures, we may take advantage of
this fact to compute string amplitudes. Many beautiful aspects of string theory
are revealed only when these complex structures are explicitly taken into account.
Here we rewrite the partition function in the language of complex differential
geometry.

We first fix the gauge in�g by choosing the isothermal coordinate system

γ = 1
2 e2σ [dz ⊗ dz̄ + dz̄ ⊗ dz]

where γzz̄ = γz̄z = 1
2 exp 2σ .7 Then the deformation of γ under a

diffeomorphism generated by δv is (cf (14.45))

δDγzz = 2∇(−1)
z δvz

δDγzz̄ = ∇zδvz̄ +∇z̄δvz = γz̄z(∇(1)z δvz +∇z
(−1)δvz).

(14.97)

Similarly, δWγ generated by an infinitesimal conformal change is (cf (14.46))

δWγzz̄ = δφγzz̄ δWγzz = 0. (14.98)

To see the action of the operator P1 on vectors, we take δvz ∈ �1 and
δvz ∈ �−1. From (14.50), we find that

(P1δv)
zz = 2∇z

(1)δv
z ∈ �2 (14.99a)

(P1δv)zz = 2∇(−1)
z δvz ∈ �−2. (14.99b)

This shows that P1 is a map:

P1 =
(
∇z
(1) 0

0 ∇(−1)
z

)
: �1⊕ �−1 → �

2 ⊕ �−2. (14.100)

Similarly, P†
1 maps traceless symmetric tensors to vectors. For δhzz ∈ �2 and

δhzz ∈ �−2, we have

(P†
1 δh)

z = ∇(2)z δhzz ∈ �1 (14.101a)

(P†
1 δh)z = ∇z

(−2)δhzz ∈ �−1. (14.101b)

Thus, P†
1 is a map:

P†
1 =

(
∇(2)z 0

0 ∇z
(−2)

)
: �2⊕ �−2 → �

1⊕ �−1. (14.102)

7 In fact, the gauge is not uniquely fixed with this choice. We will invoke the uniformization theorem
later to fix the gauge completely.

 



The product P†
1 P1 is

P†
1 P1 =

(
∇(2)z ∇z

(1) 0

0 ∇z
(−2)∇(−1)

z

)
: �1⊕ �−1 → �

1⊕ �−1. (14.103)

Accordingly, the determinant in (14.96) becomes

(det′ P†
1 P1)

1/2 = (det′ ∇(2)z ∇z
(1) det′ ∇z

(−2)∇(−1)
z )1/2

= (det′�+(1)�
−
(−1))

1/2 (14.104)

where �±(n) are the Laplacians. We show that the spectrum of �+(1) is the same as

that of �−(−1). Take an eigenfunction δvz of�+(1),

�+(1)δv
z = −2e−4σ ∂ze2σ ∂z̄δv

z = λδzz (14.105)

where (14.21a) has been used. The eigenvalue λ is a non-negative real number
(note�±(n) are positive-definite Hermitian operators). Then we find

�−(−1)(γzz̄δvz) = − e−2σ ∂z̄e2σ ∂zδvz = −e−2σ ∂ze2σ ∂z̄δvz

= − γzz̄2e−4σ ∂ze2σ ∂z̄δvz = λγzz̄δvz (14.106)

which shows that γzz̄δvz is an eigenfunction of �−(−1) with the same eigenvalue

λ. It is easy to see that the converse is also true, see exercise 14.5. Thus, �+(1)
and �−(−1) share the same eigenvalues and det′�+(1) = det′�−(−1). Now (14.104)
becomes

(det′ P†
1 P1)

1/2 = det′�−(−1) = det′�+(1). (14.107)

Exercise 14.5. Let δvz be an eigenvector of �−(−1) with an eigenvalue λ. Show

that γ zz̄δvz is an eigenvector of �+(1) with the same eigenvalue.

The physical change of the metric is the Teichmüller deformation δτ iµi ,
where τ i (µi ) is the complex counterpart of t i (Ti ). From our experience, we
know that the relevant part of the Teichmüller deformation is symmetric and
traceless in the real basis. In the complex basis, this amounts to µizz̄ = µi z̄z = 0.
Accordingly, the general variation of the metric is given by

δγzz = ∇(−1)
z δṽz + δτ iµizz (14.108a)

δγzz̄ = δφγzz̄ (14.108b)

where we have redefined δφ so that it includes the variation of δγzz̄ due to δv
(note that δDγzz̄ ∝ γzz̄). In (14.108a), δṽ does not contain the CKV, that is,
δṽ ∈ (ker∇(−1)

z )⊥.

 



To carry out the orthogonal decomposition of {δγ }, we need to define the
inner products in various spaces. The most natural choices are

‖δγzz‖2 =
∫

d2z
√
γ δγzzδγ

zz (14.109a)

‖δγzz̄‖2 =
∫

d2z
√
γ δγzz̄δγ

zz̄ (14.109b)

and

‖δvz‖2 =
∫

d2z
√
γ γzz̄δvzδvz . (14.109c)

Note that δγzzdz ⊗ dz and δγzz̄dz ⊗ dz̄ are different tensors; we have to specify
the inner product separately.

Following the argument in the previous subsection, we introduce the
orthogonal decomposition,

δγzz = ∇(−1)
z δṽz + δτ iµizz = ∇(−1)

z δv̄z + δτ iφizz (14.110)

where δv̄ = δṽ + (projection of δτ iµizz into {im∇(−1)
z }). The orthogonality of

∇(−1)
z δv̄z and φizz implies

0 = (∇(−1)
z δvz, φizz) =

∫
d2z
√
γ δvz(−∇z

(−2)φizz)

where we have noted that ∇(−1)†
z = −∇z

(−2). Thus, we find that (figure 14.6)

φizz ∈ ker∇z
(−2). (14.111)

The explicit form of ∇z
(−2) shows that ∂z̄φizz = 0, that is ker∇z

(−2) is the set
of holomorphic tensors of helicity −2. The tensor φi = φizz dz ⊗ dz is called the
quadratic differential while µi = µizzdz ⊗ dz is the Beltrami differential, see
figure 14.7. In practical computations, it is often convenient to specify the gauge
slice by the Beltrami differential, see later. Now we have established that

{ker P†
1 } = {Quadratic differential} = {ker∇z

(−2)}. (14.112)

The Riemann–Roch theorem (14.27) takes the form

dim� ker∇(−1)
z − dim� ker∇z

(−2) = 3− 3g. (14.113)

Now we have separated {δγ } into mutually orthogonal pieces

{δγ } = {conf} ⊕ {im∇(−1)
z } ⊕ {ker∇z

(−2)} + cc (14.114)

which should be compared with (14.80b). The measure becomes

�δγ�δX → J dnδτ�δv̄�δφ�δ X̃ dkδa (14.115)

 



Figure 14.6. The map ∇(−)z and its adjoint ∇z
(−2).

Figure 14.7. The Beltrami differential {µi } spans the deformation tangent to the gauge
slice while {φi } spans ker∇z

(−2).

where n and k are the complex dimensions of the Teichmüller space and the CKV,
respectively. The Jacobian is obtained by repeating the argument in the previous
subsection and we find that

Zg =
∫
�γ�X

1

V (Diff*Weyl)
e−S

=
∫

Mod
dnτ �X

det′�+(1)
V (CKV)

| det(µ, φ)|2
det(φ, φ) det(�,�)

e−S . (14.116)

Since we are integrating over complex variables, the power of a half in (14.96)

 



does not appear in (14.116). The X -integration yields

Zg =
∫

Mod

dnτ

V (CKV)

| det(µ, φ)|2
det(φ, φ) det(�,�)

× det′�+(1)
(

det′�∫
d2 z
√
γ

)−13

. (14.117)

14.2.4 Moduli spaces of Riemann surfaces

The spaces Mod(�g) and Teich(�g) have been defined as

Mod(�g) ≡�g/Diff(�g) Teich(�g) ≡�g/Diff0(�g).

They are related through MCG ≡ Diff(�g)/Diff0(�g) as Mod(�g) =
Teich(�g)/MCG. We look at these objects more closely here. We first note:

g dim� CKV CKV dim� Teich(�g) MCG
0 3 SL(2,C) 0 SL(2, R)
1 1 U(1)×U(1) 1 SL(2, Z)
≥2 0 empty 3g − 3 ?

(14.118)

[Remark: MCG for g≥2 can be expressed by 3g − 1 Dehn twists which are,
however, not minimal.] From (14.118), we immediately conclude that Z0 = 0
since the Teichmüller space is a single point and the volume of SL(2, � ) is infinite.
Of course, this does not imply that the three amplitudes with vertex operators
vanish. In general, Mod(�g) is topologically non-trivial although Teich(�g) is.
Teich(�g) is a universal covering space of Mod(�g) and the topological non-
triviality comes from MCG.

In actual computations, the uniformization theorem is very useful. In the
previous subsection, we first chose the Beltrami differential µi , then changed the
basis to φi ∈ ker P†

1 . Our initial choice µi is motivated by the uniformization
theorem.

Theorem 14.2. (Uniformization theorem) Let �g be a torus with genus g. Then
it is conformally related to the constant-curvature Riemann surface, which is given
by the following:

g Riemann surface Metric sign�
0 � ∪ {∞} ds2 = dz ⊗ dz̄/(1+ zz̄)2 +
1 � /L ds2 = dz ⊗ dz̄ 0
≥2 H/G ds2 = dz ⊗ dz̄/(Im z)2 −

(14.119)

where L is a lattice in � (see example 8.2), H the upper half-plane and G ⊂
SL(2,�) is called the Fuchsian group. The metric for g ≥ 2 is the Poincaré
metric, see example 7.6.

 



The proof of this theorem is found in Farkas and Kra (1980), for example.
Thanks to this theorem, we may always take constant-curvature metrics to form
the gauge slice in �g . This corresponds to a special choice of the Beltrami
differential µi . This slice defines the Weil–Petersson measure:∫

dnτ
| det(µ, φ)|2

det(φ, φ)
=

∫
d(Weil–Petersson) (14.120)

see D’Hoker and Phong (1986).

Exercise 14.6. Compute the scalar curvature of the metrics given in (14.119).
Verify that they are independent of z and z̄.

14.3 One-loop amplitudes

As an illustration of the formalism developed in the previous section, we compute
the one-loop vacuum-to-vacuum amplitude of the closed orientable bosonic string
theory. Since dim� Teich(�1) = 1 and dim� ker∇(−1)

z = 1, we have

Z1 =
∫

Mod

dτ

V (CKV)

|(µ, φ)|2
(φ, φ) · (�,�) det′�+(1)

(
det′�∫
d2 ξ

√
γ

)−13

. (14.121)

To evaluate (14.121) we need to take several steps.

14.3.1 Moduli spaces, CKV, Beltrami and quadratic differentials

In example 8.2, we have shown that the complex structure, namely the conformal
structure, of the torus is specified by a complex parameter τ (Im τ > 0). Figure
8.3 shows the moduli space

Mod(�g) =�1/G = Teich(�g)/SL(2,�)= H/SL(2,�)

where H is the upper half-plane.
Take the torus Tτ specified by the Teichmüller parameter τ = τ1+ iτ2 (τ2 >

0). As a representative, we take a torus in figure 14.8. The metric in � naturally
induces a flat metric (as guaranteed by the uniformization theorem)

γ = 1
2 [dz ⊗ dz̄ + dz̄ ⊗ dz]. (14.122)

The CKV are globally defined holomorphic vectors. We take � = α∂/∂z as
the normalized basis of the CKV. The condition (�,�) = 1 yields

∫
d2 z|α|2 =

τ2|α|2 = 1, that is α = τ
−1/2
2 (we have dropped the phase). The vector �

generates translations in the complex plane,

z → z′ = z + τ−1/2
2 (v1 + iv2). (14.123)

 



Figure 14.8. The parallelogram whose complex structure is parametrized by τ .

We must note, however, that the translation is defined modulo the lattice;
τ
−1/2
2 (v1 + iv2) and τ−1/2

2 (v1 + iv2) + (m + τn) yield the identical translation.

This forces τ−1/2
2 (v1 + iv2) to lie within the parallelogram of figure 14.8. Since

τ2 =
∫

d2z = τ−1
2

∫
d2v

V (CKV) is found to be

V (CKV) =
∫

d2v = τ 2
2 . (14.124)

Our next task is to evaluate the Weil–Petersson measure. On the torus there
is one quadratic differential φ. Since φ ∈ �−2 is a globally defined holomorphic
differential, it must be of the form,

φ = a dz ⊗ dz a ∈ � . (14.125)

To find the Beltrami differential, we evaluate the change of the metric under
a small variation of τ . For this purpose, it is convenient to introduce the ξα-
coordinate system in figure 14.8. The point A corresponds to (1, 0) and B to
(0, 1). Accordingly, we have z = ξ1 + τξ2. Under a small change δτ of the
Teichmüller parameter, we have, up to a conformal factor,

|dz|2 → |dξ1 + (τ + δτ )dξ2|2 = |dz + δτdξ2|2

=
∣∣∣∣dz + dτ

dz − dz̄

2iτ2

∣∣∣∣2 = ∣∣∣∣dz + δτ id z̄

2τ2

∣∣∣∣ .
Comparing this with (14.110), we find that

µzz = i/2τ2. (14.126)

 



Here (δτ )µ is the complex conjugate of (δτ )µ in (14.110). Of course, this is a
reparametrization of the Teichmüller space and does not affect the results. If the
reader feels awkward with this, s/he may choose τ̄ as the Teichmüller parameter.
From (14.125) and (14.126), we have, up to irrelevant constants,

(µ, φ) =
∫

d2z µzzφzz = i

2τ2
aτ2 ∝ a

(φ, φ) =
∫

d2z φzzφzz = a2τ2.

Finally, we have obtained
|(µ, φ)|2
(φ, φ)

= τ−1
2 . (14.127)

14.3.2 The evaluation of determinants

We first consider det′ P†
1 P1 = det′�+(1). Since we take a flat metric, the Laplacian

takes quite a simple form,

�+(1) = −2∂z∂z̄ = � (14.128)

where � is the Laplacian defined by (14.87b). Since∫
d2ξ

√
γ =

∫
d2z = τ2

the amplitude (14.121) reduces to

Z1 =
∫

Mod

dτ

τ 2
2

det′�
τ2

(
det′�
τ2

)−13

(14.129)

↑ ↑ ↑
V (CKV) W-P

∫
d2z

where we have used (14.124) and (14.127). We have factorized the integrand so
that the modular invariance is manifest, see exercise 14.7.

Let us compute the spectrum of �. It is convenient to express the Laplacian
in ξα-coordinates. From

ξ1 = i(τ̄ z − τ z̄)/2τ2 ξ2 = (z − z̄)/2iτ2 (14.130)

we readily find that

� = − 1

2τ 2
2

[|τ |2(∂1)
2 − 2τ1∂1∂2 + (∂2)

2] (14.131)

where ∂1 = ∂/∂ξ1 etc. The eigenfunction satisfying the periodic boundary
condition on the torus is

ψm,n(ξ) = exp[2π i(nξ1 + mξ2)] (m, n) ∈ �2. (14.132)

 



Substituting this into (14.131), we find the eigenvalue

λm,n = 2π2

τ 2
2

(m − τn)(m − τ̄n). (14.133)

The determinant is expressed as an infinite product:

det′� =
∏
m,n

′ 2π2

τ 2
2

|m + τn|2 (14.134)

the product being taken for all integers (m, n) �= (0, 0).
Clearly det′� is ill defined and needs to be regularized. Let us introduce the

Eisenstein series (Siegel 1980, Lang 1987) defined by

E(τ, s) ≡
∑
m,n

′ τ s
2

|m + τn|2s
(14.135)

the summation being taken for all integers (m, n) �= (0, 0). This series converges
for Re s > 1 and can be analytically continued to the complex s-plane. The series
E(τ, s) has a simple pole at s = 1 where we have a Laurent expansion,

E(τ, s) = π

s − 1
+ 2π[γ − ln 2− ln(

√
τ2|η(τ)|2)] +�(s − 1). (14.136)

This expression is known as the Kronecker first limit formula and is essential
for our purposes. In (14.136), γ = 0.57721 . . . is Euler’s constant and η(τ) is the
Dedekind η-function

η(τ) ≡ eiπτ/12
∏
n>1

(1− e2iπnτ ). (14.137)

Neglecting constant factors, we have

det′�
τ2

= exp

(
− ln τ2 +

∑′
ln
|m + τn|2

τ 2
2

)

= exp

(
− ln τ2 − ∂

∂s
[τ s

2 E(τ, s)]
∣∣∣∣
s=0

)
= exp{− ln τ2[1+ E(τ, 0)] − E ′(τ, 0)}. (14.138)

To evaluate the exponent, we note the functional equation,

π−s�(s)E(τ, s) = π−(1−s)�(1− s)E(τ, 1− s). (14.139)

Taking the limit s → 0 in (14.139), we have

s E(τ, 1 − s) = π1−2s �(1 + s)

�(1 − s)
E(τ, s)

= π(1− 2s lnπ + · · · ) (1− γ s + · · · )
(1+ γ s + · · · ) [E(τ, 0)+ E ′(τ, 0)s + · · · ]

= πE(τ, 0)+ [−2(lnπ + γ )E(τ, 0)+ E ′(τ, 0)]πs + · · · .

 



From (14.136), we also have

s E(τ, 1 − s) = −π + 2πs[γ − ln 2− ln(
√
τ2|η(τ)|2)] + · · · .

Equating the coefficients of s0 and s1, we find that

E(τ, 0) = −1 (14.140a)

E ′(τ, 0) = −2[ln 2π + ln(
√
τ2|η(τ)|2)]. (14.140b)

Substituting (14.140) into (14.138), we obtain

det′�
τ2

= exp[−E ′(τ, 0)] = τ2|η(τ)|4. (14.141)

Finally, it follows from (14.129) and (14.141) that

Z1 =
∫

Mod

dτ

τ 2
2

τ−12
2 |η(τ)|−48. (14.142)

A neat form of Z1 is obtained if we define the discriminant

�(τ) ≡ (2π)12η(τ)24. (14.143)

Up to an irrelevant constant, the one-loop amplitude is

Z1 =
∫

Mod

dτ

τ 2
2

τ−12
2 |�(τ)|−2. (14.144)

�(τ) is known as the cusp form of weight 12, implying

�

(
aτ + b

cτ + d

)
= (cτ + d)12�(τ) (14.145)

and c(0) = 0, where the c(n) are the Fourier coefficients,

�(τ) =
∑
n≥0

c(n)e2πniτ . (14.146)

Higher genus amplitudes are given by the cusp forms of other weights, see Belavin
and Knizhnik (1986), Moore (1986), Gilbert (1986) and Morozov (1987).

Exercise 14.7. Show that

η(τ + 1) = eπ i/12η(τ) η(−1/τ) = (−iτ )1/2η(τ) (14.147)

where the branch is chosen so that
√

z > 0 if z > 0. Use this result to show
that dτ/τ 2

2 and τ−12
2 |η(τ)|−48 are independently invariant under τ → τ + 1 and

τ →−1/τ .
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