MATH 231A

Solutions to PS 15

7.8/\#2 This matrix has just one eigenvalue $\lambda=0$ of multiplicity two, and this eigenvalue is deficient because it yields just one linearly independent eigenvector $\boldsymbol{\xi}=(1,2)$. Thus, one solution of the system $\mathbf{x}^{\prime}=A \mathbf{x}$ is

$$
\mathbf{x}^{(1)}(t)=e^{0 \cdot t}\binom{1}{2}=\binom{1}{2}
$$

We need to find a second solution of the form $\mathbf{x}^{(2)}(t)=e^{0 \cdot t}(\boldsymbol{\eta}+t \boldsymbol{\xi})=\boldsymbol{\eta}+t \boldsymbol{\xi}$, where $(A-0 I) \boldsymbol{\eta}=$ $A \boldsymbol{\eta}=\boldsymbol{\xi}$. That is,

$$
\begin{aligned}
& \left.\begin{array}{l}
4 \eta_{1}-2 \eta_{2}=1 \\
8 \eta_{1}-4 \eta_{2}=2
\end{array}\right\} \quad \Rightarrow \quad 4 \eta_{1}-2 \eta_{2}=1 \quad \text { (same equation) } \\
& \Rightarrow \quad \eta_{2}=2 \eta_{1}-\frac{1}{2} .
\end{aligned}
$$

Taking $\eta_{1}=\alpha$ (free), we have infinitely many such vectors $\boldsymbol{\eta}$, all of the form

$$
\boldsymbol{\eta}=\left(\alpha, 2 \alpha-\frac{1}{2}\right)=\alpha(1,2)+\left(0,-\frac{1}{2}\right)
$$

We only need one such $\boldsymbol{\eta}$, which will be result of choosing a particular value for β. The easiest thing is to take $\beta=0$, which I will do in all future problems. To illustrate that any β is allowable, I will take $\beta=1$ in this case, yielding $\boldsymbol{\eta}=(1,3 / 2)$. Thus, the general solution is

$$
\mathbf{x}(t)=c_{1}\binom{1}{2}+c_{2}\left[\binom{1}{3 / 2}+t\binom{1}{2}\right]
$$

Any particular solution with $c_{2}=0$, will remain (constantly) $c_{1}(1,2)$ - that is, if a solution begins along the line through the origin in the direction of $(1,2)$, then it forever stays right where it started. (This line consists of only equilibrium points.) Solutions with $c_{2} \neq 0$ (i.e., which do not start on the abovementioned line) do vary with time. However, all vary in precisely the same fashion moving
 in the direction of $(1,2)$ if $c_{2}>0$ and in the opposite direction if $c_{2}<0$. Those with a larger (in magnitude) choice of c_{2} will move faster than those with a smaller c_{2}. Thus, we get solution trajectories that appear as below (longer arrows correspond to faster-moving trajectories).
7.8/\#3 This matrix has the repeated eigenvalue $\lambda=-1$, also deficient in that it yields just one linearly independent eigenvector $\boldsymbol{\xi}=(2,1)$. The system of equations for $\boldsymbol{\eta}$ (what the book calls a generalized eigenvector) $(A+I) \boldsymbol{\eta}=\boldsymbol{\xi}$ can be written out as

$$
\left.\begin{array}{lll}
-\frac{1}{2} \eta_{1}+\eta_{2}=2 \\
-\frac{1}{4} \eta_{1}+\frac{1}{2} \eta_{2}=1
\end{array}\right\} \quad \Rightarrow \quad-\frac{1}{2} \eta_{1}+\eta_{2}=2 \quad \text { (same equation) }
$$

Taking η_{2} to be free, and setting it equal to zero, we get $\boldsymbol{\eta}=(-4,0)$. Thus, the general solution is

$$
\mathbf{x}(t)=c_{1} e^{-t}\binom{2}{1}+c_{2} e^{-t}\left[\binom{0}{-4}+t\binom{2}{1}\right]
$$

From this general solution, we see that all solutions are attracted to the origin as $t \rightarrow \infty$. In particular, those solutions that begin on the line through the origin in the direction $(2,1)$ (i.e., those solutions for which $c_{2}=0$), go straight along that line towards the origin (though they will take forever to get there). The solutions that start off this line (those which correspond to a nonzero c_{2}) have more interesting behavior. As $t \rightarrow \infty$, both parts of $\mathbf{x}^{(2)}$ become negligible. However, the term

$$
c_{2} e^{-t}\binom{0}{-4} \quad \text { dies off faster than } \quad c_{2} t e^{-t}\binom{2}{1} .
$$

Thus, such solutions asymptotically approach the previously-mentioned line as $t \rightarrow \infty$. If we follow such trajectories backward in time rather than forward (i.e., let $t \rightarrow-\infty$), then both terms of $\mathbf{x}^{(2)}$ grow exponentially. Nevertheless, $c_{2} t^{e}-t(2,1)$ still dominates the other term, and though such trajectories do not approach our previous line asymptotically as $t \rightarrow-\infty$, they do become more and more parallel to it.

7.8/\#6 This matrix has two eigenvalues: $\lambda=2$ with its associated eigenvector ($1,1,1$), and $\lambda=-1$ (multiplicity 2) with two linearly independent eigenvectors $(-1,0,1)$ and $(-1,1,0)$ (so $\lambda=-1$ is not a deficient eigenvalue). Thus, the general solution is

$$
\mathbf{x}(t)=c_{1} e^{2 t}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+c_{2} e^{-t}\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)+c_{3} e^{-t}\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right) .
$$

7.8/\#7 This matrix has the repeated eigenvalue $\lambda=-3$, but is deficient, having just the one (representative) linearly independent eigenvector $(1,1)$. There is, then, the need to find a solution of the form $e^{-3 t}(\boldsymbol{\eta}+t(1,1))$. We seek $\boldsymbol{\eta}$ by solving $(A+3 I) \boldsymbol{\eta}=(1,1)$:

$$
\left.\begin{array}{l}
4 \eta_{1}-4 \eta_{2}=1 \\
4 \eta_{1}-4 \eta_{2}=1
\end{array}\right\} \quad \Rightarrow \quad \eta_{1}=\eta 2+\frac{1}{4}
$$

Taking η_{2} (free) to be zero, we have $\boldsymbol{\eta}=(1 / 4,0)$. Thus, the general solution is

$$
\begin{aligned}
\mathbf{x}(t) & =c_{1} e^{-3 t}\binom{1}{1}+c_{2} e^{-3 t}\left[\binom{1 / 4}{0}+t\binom{1}{1}\right] \\
& =e^{-3 t}\binom{c_{1}+c_{2}(t+1 / 4)}{c_{1}+c_{2} t} .
\end{aligned}
$$

At time $t=0$, we need this vector to be $(3,2)$, and so we solve

$$
\binom{c_{1}+(1 / 4) c_{2}}{c_{1}}=\binom{3}{2}
$$

getting $c_{1}=2$ and $c_{2}=4$. Thus, the IVP has solution

$$
\mathbf{x}(t)=e^{-3 t}\binom{2+4(t+1 / 4)}{2+4 t}=e^{-3 t}\binom{3+4 t}{2+4 t}
$$

Mathematica's ParametricPlot[] command may be used to draw the solution's trajectory in the phase plane ($x_{1} x_{2}$-plane $)$; see left below. The graph on the right is that of $x_{1}(t)=$ $e^{-3 t}(3+4 t)$.

7.8/\#17(d) The third solution's form has already been suggested in the problem:

$$
\mathbf{x}^{(3)}(t)=e^{2 t}\left(\boldsymbol{\zeta}+t \boldsymbol{\eta}+\frac{t^{2}}{2} \boldsymbol{\xi}\right)
$$

We will not assume, at the outset, anything in particular about $\boldsymbol{\xi}$ or $\boldsymbol{\eta}$ (that is, we are not assuming that $\boldsymbol{\xi}$ solves $(A+2 I) \boldsymbol{\xi}=\mathbf{0}$ nor that $\boldsymbol{\eta}$ solves $(A+2 I) \boldsymbol{\eta}=\boldsymbol{\xi})$. What we do assume is that $x^{(3)}$ solves $\mathbf{x}^{\prime}=A \mathbf{x}$. This means that, $\frac{d}{d t} \mathbf{x}^{(3)}=A \mathbf{x}^{(3)}$, or

$$
e^{2 t}\left(2 \boldsymbol{\zeta}+2 t \boldsymbol{\eta}+\boldsymbol{\eta}+t^{2} \boldsymbol{\xi}+t \boldsymbol{\xi}\right)=e^{2 t}\left(A \boldsymbol{\zeta}+t A \boldsymbol{\eta}+\frac{t^{2}}{2} A \boldsymbol{\xi}\right)
$$

Dividing through by $e^{2 t}$ and grouping some terms, we have

$$
(A-2 I) \boldsymbol{\zeta}+t(A-2 I) \boldsymbol{\eta}+\frac{t^{2}}{2}(A-2 I) \boldsymbol{\xi}=\boldsymbol{\eta}+t \boldsymbol{\xi}
$$

an equation which must hold for all t. Because of this, the coefficients of the t^{2} terms must match, as well as those of the t and constant terms. That is,

$$
(A-2 I) \boldsymbol{\xi}=\mathbf{0}, \quad(A-2 I) \boldsymbol{\eta}=\boldsymbol{\xi}, \quad \text { and } \quad(A-2 I) \boldsymbol{\zeta}=\boldsymbol{\eta}
$$

So, though we did not presume it to be the case, $\boldsymbol{\xi}$ and $\boldsymbol{\eta}$ do solve the usual eigenvector and generalized eigenvector equations, while $\boldsymbol{\zeta}$ solves a similar equation as the one that $\boldsymbol{\eta}$ solves, only with right-hand side η instead of $\boldsymbol{\xi}$.

* The given matrix has the triple eigenvalue $\lambda=-5$, whose only linearly independent eigenvector is $(-3,1,2)$. Thus we must solve $(A+5 I) \boldsymbol{\eta}=(-3,1,2)$ for $\boldsymbol{\eta}$, and then solve $(A+5 I) \boldsymbol{\zeta}=\boldsymbol{\eta}$ for ζ. The first of these, using Gaussian elimination, is

$$
\left(\begin{array}{ccc|c}
-2 & 4 & -5 & -3 \\
-1 & -3 & 0 & 1 \\
3 & -1 & 5 & 2
\end{array}\right) \quad \begin{gathered}
\mathbf{r}_{1} \leftrightarrow \mathbf{r}_{2} \\
\sim
\end{gathered}\left(\begin{array}{ccc|c}
-1 & -3 & 0 & 1 \\
-2 & 4 & -5 & -3 \\
3 & -1 & 5 & 2
\end{array}\right)
$$

$$
\begin{gathered}
\left(-\mathbf{r}_{1}\right) \rightarrow \mathbf{r}_{1} \\
-2 \mathbf{r}_{1}+\mathbf{r}_{2} \rightarrow \mathbf{r} 2 \\
\sim \\
3 \mathbf{r}_{1}+\mathbf{r}_{3} \rightarrow \mathbf{r} 3 \\
\mathbf{r}_{2}+\mathbf{r}_{3} \rightarrow \mathbf{r} 3 \\
\sim
\end{gathered}\left(\begin{array}{ccc|c}
1 & 3 & 0 & -1 \\
0 & 10 & -5 & -5 \\
0 & -10 & 5 & 5
\end{array}\right)
$$

Taking η_{3} (free) to be zero, the second row says

$$
10 \eta_{2}-5(0)=-5 \quad \Rightarrow \quad \eta_{2}=-\frac{1}{2}
$$

and thus the first row says

$$
\eta_{1}-3\left(\frac{1}{2}\right)=-1 \quad \Rightarrow \quad \eta_{1}=\frac{1}{2}
$$

So, $\boldsymbol{\eta}=(1 / 2,-1 / 2,0)$.
Now, we solve for ζ :

$$
\left.\begin{array}{ccc|c}
\left(\begin{array}{ccc}
-2 & 4 & -5 \\
-1 & -3 & 0 \\
-1 / 2 \\
3 & -1 & 5
\end{array}\right) & 0
\end{array}\right) \begin{array}{cc}
\mathbf{r}_{1} & \leftrightarrow \mathbf{r}_{2} \\
\sim & \left(\begin{array}{ccc|c}
-1 & -3 & 0 & -1 / 2 \\
-2 & 4 & -5 & 1 / 2 \\
3 & -1 & 5 & 0
\end{array}\right) \\
\left(-\mathbf{r}_{1}\right) \rightarrow \mathbf{r}_{1} \\
-2 \mathbf{r}_{1}+\mathbf{r}_{2} \rightarrow \mathbf{r} 2 \\
\sim \\
3 \mathbf{r}_{1}+\mathbf{r}_{3} \rightarrow \mathbf{r} 3 \\
\mathbf{r}_{2}+\mathbf{r}_{3} \rightarrow \mathbf{r} 3 \\
& \sim
\end{array}\left(\begin{array}{ccc|c}
1 & 3 & 0 & 1 / 2 \\
0 & 10 & -5 & 3 / 2 \\
0 & -10 & 5 & -3 / 2
\end{array}\right)
$$

Once again, ζ_{3} is free, and we take it to be zero. Thus,

$$
10 \zeta_{2}-5(0)=\frac{3}{2} \quad \Rightarrow \quad \zeta_{2}=\frac{3}{20}
$$

and

$$
\zeta_{1}+3\left(\frac{3}{20}\right)=\frac{1}{2} \quad \Rightarrow \quad \zeta_{1}=\frac{1}{20}
$$

So, $\boldsymbol{\zeta}=(1 / 20,3 / 20,0)$, and the general solution is

$$
\begin{gathered}
\mathbf{x}(t)=e^{-5 t}\left\{c_{1}\left(\begin{array}{c}
-3 \\
1 \\
2
\end{array}\right)+c_{2}\left[\left(\begin{array}{c}
1 / 2 \\
-1 / 2 \\
0
\end{array}\right)+t\left(\begin{array}{c}
-3 \\
1 \\
2
\end{array}\right)\right]\right. \\
\left.+c_{3}\left[\left(\begin{array}{c}
1 / 20 \\
3 / 20 \\
0
\end{array}\right)+t\left(\begin{array}{c}
1 / 2 \\
-1 / 2 \\
0
\end{array}\right)+\frac{t^{2}}{2}\left(\begin{array}{c}
-3 \\
1 \\
2
\end{array}\right)\right]\right\}
\end{gathered}
$$

