Bison

The Yacc-compatible Parser Generator
10 September 2021, Bison Version 3.8.1

by Charles Donnelly and Richard Stallman

This manual (10 September 2021) is for GNU Bison (version 3.8.1), the GNU parser gen-
erator.

Copyright (©) 1988-1993, 1995, 1998-2015, 2018-2021 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover texts being “A GNU Manual,” and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
“GNU Free Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have the freedom to copy and modify
this GNU manual. Buying copies from the FSF supports it in developing GNU
and promoting software freedom.”

Published by the Free Software Foundation

51 Franklin Street, Fifth Floor

Boston, MA 02110-1301 USA

Printed copies are available from the Free Software Foundation.
ISBN 1-882114-44-2

Cover art by Etienne Suvasa.

Table of Contents

Introduction 1
Conditions for Using Bison......................... 2
GNU GENERAL PUBLIC LICENSE............. 3
1 The Conceptsof Bison......................... 14
1.1 Languages and Context-Free Grammars........................ 14
1.2 From Formal Rules to Bison Input.............. 15
1.3 Semantic Values. ... 16
1.4 Semantic Actions........ ... 17
1.5 Writing GLR Parsers..........cooiiiiiiiiiiiiii .. 17
1.5.1 Using GLR on Unambiguous Grammars................... 18

1.5.2 Using GLR to Resolve Ambiguities........................ 20

1.5.3 GLR Semantic Actionscoiiiiiiiiiiiinn.. 23
1.5.3.1 Deferred semantic actions............................ 23

1.5.3.2 YYERROR..... ... 23

1.5.3.3 Restrictions on semantic values and locations......... 24

1.5.4 Controlling a Parse with Arbitrary Predicates............. 24

1.6 Locationsoounnn i e 24
1.7 Bison Output: the Parser Implementation File................. 25
1.8 Stages in Using Bison........o 26
1.9 The Overall Layout of a Bison Grammar....................... 26

2 Examples............ 28
2.1 Reverse Polish Notation Calculator 28
2.1.1 Declarations for rpcalc.........ccvvuiiiiiiiiiiiiiiiinenn.. 28

2.1.2 Grammar Rules for rpcalc............. ...l 29
2.1.2.1 Explanation of inputol 30

2.1.2.2 Explanation of line ..., 30

2.1.2.3 Explanation of exp ... 31

2.1.3 The rpcalc Lexical Analyzer............................. 31

2.1.4 The Controlling Function............. oo 33

2.1.5 The Error Reporting Routine................... 33

2.1.6 Running Bison to Make the Parser........................ 33

2.1.7 Compiling the Parser Implementation File 34

2.2 Infix Notation Calculator: calc...........coooiiiiiiiiia... 34
2.3 Simple Error Recovery........ ..o 36
2.4 Location Tracking Calculator: 1tcalcooouin... 37
2.4.1 Declarations for 1tcalc........cooviriiniiieenninannn.. 37

2.4.2 Grammar Rules for 1tcalc..........oooiiiiiiiiii ... 37

2.4.3 The 1tcalc Lexical Analyzer.............................. 38
2.5 Multi-Function Calculator: mfcalcoo.... 40
2.5.1 Declarations formfcalc...........cooviiiiiiiiienenen... 40
2.5.2 Grammar Rules formfcalc............cooiiiiiiiiiiin.. 41
2.5.3 The mfcalc Symbol Table............o ot 42
2.5.4 Themfcalc Lexer........coviiiiiiiiiiiiiiiiiiinnnnnn... 44
2.5.5 Themfcalc Main.............iiiiiiiiiii, 46
2.6 EXOTCISeS . .ttt 46
Bison Grammar Files.......................... 47
3.1 Outline of a Bison Grammar................ccoiiiiiiiiinne... 47
3.1.1 The prologue . ..o 47
3.1.2 Prologue Alternatives.ooviiiiiiiineniinnannn. 48
3.1.3 The Bison Declarations Section 52
3.1.4 The Grammar Rules Section.............................. 52
3.1.5 Theepilogueo 53
3.2 Symbols, Terminal and Nonterminal 53
3.3 Grammar Rules....... 55
3.3.1 Syntax of Grammar Rules 55
3.3.2 Empty Rules...... ..o 56
3.3.3 Recursive Rules..............c i 56
3.4 Defining Language Semantics...............coiiiiiiiiiiii.n. 57
3.4.1 Data Types of Semantic Values........................... 57
3.4.2 More Than One Value Type ..., 58
3.4.3 Generating the Semantic Value Type...................... 58
3.4.4 The Union Declarationccoiiiiiiiinn.... 59
3.4.5 Providing a Structured Semantic Value Type.............. 60
3.4.6 ACHIONS. ...ttt 60
3.4.7 Data Types of Values in Actions.......................... 62
3.4.8 Actionsin Midrule. ... 62
3.4.8.1 Using Midrule Actionscoiiiiii. ... 62
3.4.8.2 Typed Midrule Actions ..., 64
3.4.8.3 Midrule Action Translation 64
3.4.8.4 Conflicts due to Midrule Actions..................... 66

3.5 Tracking Locationsc.ooiiiiiiiiiiii .. 67
3.5.1 Data Type of Locations. ..., 67
3.5.2 Actions and Locationsc.cooiiiiiiiiiiiiin. 68
3.5.3 Printing Locations......... i 69
3.5.4 Default Action for Locations.....................cooua... 69
3.6 Named References.............coiiiiiiiiiiiiiiiiin, 70
3.7 Bison Declarationso 71
3.7.1 Require a Version of Bison................................ 72
3.7.2 Token Kind Namesccoiiiiiiiiiiiiiiiiiiiannnn... 72
3.7.3 Operator Precedence...............ooiiiiiiiiiiiiiiin... 73
3.7.4 Nonterminal Symbols........... 74
3.7.5 Syntax of Symbol Declarations............................ 74
3.7.6 Performing Actions before Parsing 74

3.7.7 Freeing Discarded Symbols.............. ...l 75

ii

3.7.8 Printing Semantic Values.................... ... L. 76
3.7.9 Suppressing Conflict Warnings 77
3.7.10 The Start-Symbol i i 79
3.7.11 A Pure (Reentrant) Parser........................ 79
3.712 A PushParser.............o i 79
3.7.13 Bison Declaration Summary 81
3.7.14 %define Summary 85
3.7.15 %code SUMMATYottt 95
3.8 Multiple Parsers in the Same Program......................... 97
Parser C-Language Interface.................. 99
4.1 The Parser Function yyparse............ccooiiiiiiiiiii .. 99
4.2 Push Parser Interface.............. i 100
4.3 The Lexical Analyzer Function yylex......................... 101
4.3.1 Calling Convention for yylex............ccccviiiiinin... 101
4.3.2 Special Tokens i 102
4.3.3 Finding Tokens by String Literals........................ 103
4.3.4 Semantic Values of Tokens............................... 103
4.3.5 Textual Locations of Tokens............................. 103
4.3.6 Calling Conventions for Pure Parsers 104
4.4 Error Reporting........oouiiiiiii i 105
4.4.1 The Error Reporting Function yyerror.................. 105
4.4.2 The Syntax Error Reporting
Function yyreport_syntax_error 106
4.5 Special Features for Use in Actions 108
4.6 Parser Internationalization oL 110
4.6.1 Enabling Internationalization 110
4.6.2 Token Internationalization............................... 111
The Bison Parser Algorithm............... .. 112
5.1 Lookahead Tokens........... ..o, 112
5.2 Shift/Reduce Conflicts 113
5.3 Operator Precedence ..., 115
5.3.1 When Precedence is Needed 115
5.3.2 Specifying Operator Precedence.......................... 115
5.3.3 Specifying Precedence Only............... 116
5.3.4 Precedence Examples. ... 116
5.3.5 How Precedence Works ...t 117
5.3.6 Using Precedence For Non Operators 117
5.4 Context-Dependent Precedence............................... 117
5.5 Parser States............oo i 118
5.6 Reduce/Reduce Conflicts ..., 118
5.7 Mysterious Conflicts. ... 121
58 Tuning LR ... 123
5.8.1 LR Table Constructioncooveviiiienninen.n. 123
5.8.2 Default Reductions.............oooiiiiiiiii i, 125

5.8.3 LAC .. 126

iii

5.8.4 Unreachable States...........ccoiiiiiiiiiiiieiiin.n. 128
5.9 Generalized LR (GLR) Parsing.................. ..., 128
5.10 Memory Management, and How to Avoid Memory Exhaustion.. 129

6 Error Recovery................................ 131
7 Handling Context Dependencies............. 133
7.1 Semantic Info in Token Kinds 133
7.2 Lexical Tie-insoouuiiiii e e 134
7.3 Lexical Tie-ins and Error Recovery 135

8 Debugging Your Parser 136
8.1 Generation of Counterexamples...................oviiiii.... 136
8.2 Understanding Your Parser........... o i 139
8.3 Visualizing Your Parser.............ccoo i, 146
8.4 Visualizing your parser in multiple formats 149
8.5 Tracing Your Parser......... i i 149
8.5.1 Enabling Tracesccoviiiiiiiiiiiiiiiiiiinnn... 149

8.5.2 Enabling Debug Traces for mfcalc...............ooonue.. 151

9 Invoking Bison................................ 154
9.1 Bison Options.o 154
9.1.1 Operation Modes. ..., 155

9.1.2 DiagnostiCs.......couiiini 157

9.1.3 Tuning the Parser......... o i i 161

9.1.4 Output Files ... 163

9.2 Option Cross Key ... 164
9.3 Yacc Library ..o 165
10 Parsers Written In Other Languages....... 166
10.1 CHH Parsers. ... 166
10.1.1 A Simple C++ Example. ..., 166
10.1.2 CH+ Bison Interface ..., 168
10.1.3 CH+ Parser Interface ..., 169
10.1.4 CH+ Semantic Values.......... ..o, 171
10.1.41 CH4 Unions . ..ovveeeie i 171

10.1.4.2 CH4 Variants.......cooviiiiniiiiiiie ... 171

10.1.5 CH+ Location Values, 172
10.1.5.1 CH+ posSition.....coviutiniiiiiiiiiiainen.. 172

10.1.5.2 CH4 10Cation. .o vvuttt e 173

10.1.5.3 Exposing the Location Classes..................... 174

10.1.5.4 User Defined Location Type 175

10.1.6 CH+ Parser Context ..., 176
10.1.7 CH+ Scanner Interface...........o 177
10.1.7.1 Split Symbols ... 178

10.1.7.2 Complete Symbols........ ..., 178

10.1.8 A Complete C++ Example.................cccovin... 180

10.1.8.1 Calc++ — C++ Calculator 181
10.1.8.2 Calc++ Parsing Driver.......... ...t 181
10.1.8.3 Calct++ Parser ... 183
10.1.8.4 Calc++ Scanner...........cooviiiiieiiiinennnn.. 185
10.1.8.5 Calc++ Top Level............oooiiiiiii.. 187
10.2 D Parserst 187
10.2.1 D Bison Interface........ ... i 187
10.2.2 D Semantic Values ...t 188
10.2.3 D Location Values.oiiiiiniiin.. 188
10.2.4 D Parser Interface. ... 188
10.2.5 D Parser Context Interface, 191
10.2.6 D Scanner Interface i 191
10.2.7 Special Features for Use in D Actions................... 192
10.2.8 D Push Parser Interface 192
10.2.9 D Complete Symbols. 193
10.3 Java Parsers ... 193
10.3.1 Java Bison Interface............. 193
10.3.2 Java Semantic Values........... 194
10.3.3 Java Location Values.............. 194
10.3.4 Java Parser Interface i 195
10.3.5 Java Parser Context Interface........................... 197
10.3.6 Java Scanner Interface.............. 197
10.3.7 Special Features for Use in Java Actions................ 199
10.3.8 Java Push Parser Interface 200
10.3.9 Differences between C/C++ and Java Grammars....... 201
10.3.10 Java Declarations Summary 202

11 A Brief History of the Greater Ungulates.. 205

11.1 The ancestral Yacc..... ..., 205
11.2 yacchack ... 205
11.3 Berkeley Yacco 205
114 BiSOm ..ot 206
11.5 Other Ungulates ..o 206

12 Bison Version Compatibility: Best Practices.. 207

13 Frequently Asked Questions................ 208
13.1 Memory Exhausted i 208
13.2 How Can I Reset the Parser..................., 208
13.3 Strings are Destroyed......... ..o i i 209
13.4 Implementing Gotos/Loops.oovuiiiiiiiiian.... 210
13.5 Multiple start-symbols o i 211
13.6 Secure? Conform?........ ...t 211
13.7 Enabling Relocatabilityo i 211
13.8 Tcan’t build Bisonoo i 212

13.9 Wherecan I find help? i, 213

13.10 Bug Reportsoouii 213

13.11 More Languagest emiuiiiii e 213
13.12 Beta Testingcoovuuiiii e 213
13.13 Mailing Lists....oooiii e 214
Appendix A Bison Symbols.................... 215
Appendix B Glossaryoooo.... 224

Appendix C GNU Free Documentation License .. 229
Bibliography 237

Index of Terms. 239

Introduction

Bison is a general-purpose parser generator that converts an annotated context-free gram-
mar into a deterministic LR or generalized LR (GLR) parser employing LALR(1), IELR(1)
or canonical LR(1) parser tables. Once you are proficient with Bison, you can use it to
develop a wide range of language parsers, from those used in simple desk calculators to
complex programming languages.

Bison is upward compatible with Yacc: all properly-written Yacc grammars ought to
work with Bison with no change. Anyone familiar with Yacc should be able to use Bison
with little trouble. You need to be fluent in C, C++, D or Java programming in order to
use Bison or to understand this manual.

We begin with tutorial chapters that explain the basic concepts of using Bison and show
three explained examples, each building on the last. If you don’t know Bison or Yacc, start
by reading these chapters. Reference chapters follow, which describe specific aspects of
Bison in detail.

Bison was written originally by Robert Corbett. Richard Stallman made it Yacc-
compatible. Wilfred Hansen of Carnegie Mellon University added multi-character string
literals and other features. Since then, Bison has grown more robust and evolved many
other new features thanks to the hard work of a long list of volunteers. For details, see the
THANKS and ChangeLog files included in the Bison distribution.

This edition corresponds to version 3.8.1 of Bison.

Conditions for Using Bison

The distribution terms for Bison-generated parsers permit using the parsers in nonfree
programs. Before Bison version 2.2, these extra permissions applied only when Bison was
generating LALR(1) parsers in C. And before Bison version 1.24, Bison-generated parsers
could be used only in programs that were free software.

The other GNU programming tools, such as the GNU C compiler, have never had such
a requirement. They could always be used for nonfree software. The reason Bison was
different was not due to a special policy decision; it resulted from applying the usual General
Public License to all of the Bison source code.

The main output of the Bison utility—the Bison parser implementation file—contains a
verbatim copy of a sizable piece of Bison, which is the code for the parser’s implementation.
(The actions from your grammar are inserted into this implementation at one point, but
most of the rest of the implementation is not changed.) When we applied the GPL terms
to the skeleton code for the parser’s implementation, the effect was to restrict the use of
Bison output to free software.

We didn’t change the terms because of sympathy for people who want to make software
proprietary. Software should be free. But we concluded that limiting Bison’s use to free
software was doing little to encourage people to make other software free. So we decided to
make the practical conditions for using Bison match the practical conditions for using the
other GNU tools.

This exception applies when Bison is generating code for a parser. You can tell whether
the exception applies to a Bison output file by inspecting the file for text beginning with
“As a special exception. ..”. The text spells out the exact terms of the exception.

GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007
Copyright (©) 2007 Free Software Foundation, Inc. https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program—to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

https://fsf.org/

GNU GENERAL PUBLIC LICENSE 4

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS
0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.
The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.

GNU GENERAL PUBLIC LICENSE 5

The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.

GNU GENERAL PUBLIC LICENSE 6

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this Li-
cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:

GNU GENERAL PUBLIC LICENSE 7

a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

c¢. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.

A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.

GNU GENERAL PUBLIC LICENSE 8

The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or

GNU GENERAL PUBLIC LICENSE 9

d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.

GNU GENERAL PUBLIC LICENSE 10

10.

11.

However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so

GNU GENERAL PUBLIC LICENSE 11

12.

13.

14.

available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

Revised Versions of this License.

GNU GENERAL PUBLIC LICENSE 12

15.

16.

17.

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

GNU GENERAL PUBLIC LICENSE 13

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see https://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it
starts in an interactive mode:

program Copyright (C) year name of author
This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show ¢’ for details.
The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a

GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see https://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into pro-
prietary programs. If your program is a subroutine library, you may consider it more useful
to permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Lesser General Public License instead of this License. But first, please read
https://www.gnu.org/licenses/why-not-1gpl.html.

https://www.gnu.org/licenses/
https://www.gnu.org/licenses/
https://www.gnu.org/licenses/why-not-lgpl.html

14

1 The Concepts of Bison

This chapter introduces many of the basic concepts without which the details of Bison will
not make sense. If you do not already know how to use Bison or Yacc, we suggest you start
by reading this chapter carefully.

1.1 Languages and Context-Free Grammars

In order for Bison to parse a language, it must be described by a context-free grammar.
This means that you specify one or more syntactic groupings and give rules for constructing
them from their parts. For example, in the C language, one kind of grouping is called an
‘expression’. One rule for making an expression might be, “An expression can be made of a
minus sign and another expression”. Another would be, “An expression can be an integer”.
As you can see, rules are often recursive, but there must be at least one rule which leads
out of the recursion.

The most common formal system for presenting such rules for humans to read is Backus-
Naur Form or “BNF” | which was developed in order to specify the language Algol 60. Any
grammar expressed in BNF is a context-free grammar. The input to Bison is essentially
machine-readable BNF.

There are various important subclasses of context-free grammars. Although it can handle
almost all context-free grammars, Bison is optimized for what are called LR(1) grammars.
In brief, in these grammars, it must be possible to tell how to parse any portion of an
input string with just a single token of lookahead. For historical reasons, Bison by default
is limited by the additional restrictions of LALR(1), which is hard to explain simply. See
Section 5.7 [Mysterious Conflicts], page 121, for more information on this. You can escape
these additional restrictions by requesting IELR(1) or canonical LR(1) parser tables. See
Section 5.8.1 [LR Table Construction], page 123, to learn how.

Parsers for LR(1) grammars are deterministic, meaning roughly that the next grammar
rule to apply at any point in the input is uniquely determined by the preceding input and
a fixed, finite portion (called a lookahead) of the remaining input. A context-free grammar
can be ambiguous, meaning that there are multiple ways to apply the grammar rules to
get the same inputs. Even unambiguous grammars can be nondeterministic, meaning that
no fixed lookahead always suffices to determine the next grammar rule to apply. With the
proper declarations, Bison is also able to parse these more general context-free grammars,
using a technique known as GLR parsing (for Generalized LR). Bison’s GLR parsers are
able to handle any context-free grammar for which the number of possible parses of any
given string is finite.

In the formal grammatical rules for a language, each kind of syntactic unit or grouping
is named by a symbol. Those which are built by grouping smaller constructs according
to grammatical rules are called nonterminal symbols; those which can’t be subdivided
are called terminal symbols or token kinds. We call a piece of input corresponding to a
single terminal symbol a token, and a piece corresponding to a single nonterminal symbol
a grouping.

We can use the C language as an example of what symbols, terminal and nonterminal,
mean. The tokens of C are identifiers, constants (numeric and string), and the various key-
words, arithmetic operators and punctuation marks. So the terminal symbols of a grammar

Chapter 1: The Concepts of Bison 15

for C include ‘identifier’, ‘number’, ‘string’, plus one symbol for each keyword, operator
or punctuation mark: ‘if’, ‘return’; ‘const’, ‘static’, ‘int’, ‘char’; ‘plus-sign’, ‘open-brace’,
‘close-brace’, ‘comma’ and many more. (These tokens can be subdivided into characters,
but that is a matter of lexicography, not grammar.)

Here is a simple C function subdivided into tokens:

int /* keyword ‘int’ */
square (int x) /* identifier, open-paren, keyword ‘int’,
identifier, close-paren */
{ /* open-brace */
return x * x; /* keyword ‘return’, identifier, asterisk,
identifier, semicolon */
} /* close-brace */

The syntactic groupings of C include the expression, the statement, the declaration,
and the function definition. These are represented in the grammar of C by nonterminal
symbols ‘expression’, ‘statement’, ‘declaration’ and ‘function definition’. The full grammar
uses dozens of additional language constructs, each with its own nonterminal symbol, in
order to express the meanings of these four. The example above is a function definition;
it contains one declaration, and one statement. In the statement, each ‘x’ is an expression
and so is ‘x * x.

Each nonterminal symbol must have grammatical rules showing how it is made out of
simpler constructs. For example, one kind of C statement is the return statement; this
would be described with a grammar rule which reads informally as follows:

A ‘statement’ can be made of a ‘return’ keyword, an ‘expression’ and a ‘semi-
colon’.

There would be many other rules for ‘statement’; one for each kind of statement in C.

One nonterminal symbol must be distinguished as the special one which defines a com-
plete utterance in the language. It is called the start symbol. In a compiler, this means a
complete input program. In the C language, the nonterminal symbol ‘sequence of definitions
and declarations’ plays this role.

For example, ‘1 + 2’ is a valid C expression—a valid part of a C program—but it is not
valid as an entire C program. In the context-free grammar of C, this follows from the fact
that ‘expression’ is not the start symbol.

The Bison parser reads a sequence of tokens as its input, and groups the tokens using the
grammar rules. If the input is valid, the end result is that the entire token sequence reduces
to a single grouping whose symbol is the grammar’s start symbol. If we use a grammar for
C, the entire input must be a ‘sequence of definitions and declarations’. If not, the parser
reports a syntax error.

1.2 From Formal Rules to Bison Input

A formal grammar is a mathematical construct. To define the language for Bison, you must
write a file expressing the grammar in Bison syntax: a Bison grammar file. See Chapter 3
[Bison Grammar Files], page 47.

Chapter 1: The Concepts of Bison 16

A nonterminal symbol in the formal grammar is represented in Bison input as an iden-
tifier, like an identifier in C. By convention, it should be in lower case, such as expr, stmt
or declaration.

The Bison representation for a terminal symbol is also called a token kind. Token kinds
as well can be represented as C-like identifiers. By convention, these identifiers should be
upper case to distinguish them from nonterminals: for example, INTEGER, IDENTIFIER, IF or
RETURN. A terminal symbol that stands for a particular keyword in the language should be
named after that keyword converted to upper case. The terminal symbol error is reserved
for error recovery. See Section 3.2 [Symbols, Terminal and Nonterminal], page 53.

A terminal symbol can also be represented as a character literal, just like a C character
constant. You should do this whenever a token is just a single character (parenthesis,
plus-sign, etc.): use that same character in a literal as the terminal symbol for that token.

A third way to represent a terminal symbol is with a C string constant containing
several characters. See Section 3.2 [Symbols, Terminal and Nonterminal], page 53, for more
information.

The grammar rules also have an expression in Bison syntax. For example, here is the
Bison rule for a C return statement. The semicolon in quotes is a literal character token,
representing part of the C syntax for the statement; the naked semicolon, and the colon,
are Bison punctuation used in every rule.

stmt: RETURN expr ’;’ ;
See Section 3.3 [Grammar Rules|, page 55.

1.3 Semantic Values

A formal grammar selects tokens only by their classifications: for example, if a rule mentions
the terminal symbol ‘integer constant’, it means that any integer constant is grammatically
valid in that position. The precise value of the constant is irrelevant to how to parse the
input: if ‘x+4’ is grammatical then ‘x+1’ or ‘x+3989’ is equally grammatical.

But the precise value is very important for what the input means once it is parsed.
A compiler is useless if it fails to distinguish between 4, 1 and 3989 as constants in the
program! Therefore, each token in a Bison grammar has both a token kind and a semantic
value. See Section 3.4 [Defining Language Semantics|, page 57, for details.

The token kind is a terminal symbol defined in the grammar, such as INTEGER,
IDENTIFIER or ’,’. It tells everything you need to know to decide where the token may
validly appear and how to group it with other tokens. The grammar rules know nothing
about tokens except their kinds.

The semantic value has all the rest of the information about the meaning of the token,
such as the value of an integer, or the name of an identifier. (A token such as ’,’ which is
just punctuation doesn’t need to have any semantic value.)

For example, an input token might be classified as token kind INTEGER and have the
semantic value 4. Another input token might have the same token kind INTEGER but
value 3989. When a grammar rule says that INTEGER is allowed, either of these tokens is
acceptable because each is an INTEGER. When the parser accepts the token, it keeps track
of the token’s semantic value.

Chapter 1: The Concepts of Bison 17

Each grouping can also have a semantic value as well as its nonterminal symbol. For
example, in a calculator, an expression typically has a semantic value that is a number. In
a compiler for a programming language, an expression typically has a semantic value that
is a tree structure describing the meaning of the expression.

1.4 Semantic Actions

In order to be useful, a program must do more than parse input; it must also produce some
output based on the input. In a Bison grammar, a grammar rule can have an action made
up of C statements. Each time the parser recognizes a match for that rule, the action is
executed. See Section 3.4.6 [Actions], page 60.

Most of the time, the purpose of an action is to compute the semantic value of the whole
construct from the semantic values of its parts. For example, suppose we have a rule which
says an expression can be the sum of two expressions. When the parser recognizes such a
sum, each of the subexpressions has a semantic value which describes how it was built up.
The action for this rule should create a similar sort of value for the newly recognized larger
expression.

For example, here is a rule that says an expression can be the sum of two subexpressions:
expr: expr ’+’ expr { $$ = $1 + $3; } ;
The action says how to produce the semantic value of the sum expression from the values
of the two subexpressions.

1.5 Writing GLR Parsers

In some grammars, Bison’s deterministic LR(1) parsing algorithm cannot decide whether
to apply a certain grammar rule at a given point. That is, it may not be able to decide
(on the basis of the input read so far) which of two possible reductions (applications of a
grammar rule) applies, or whether to apply a reduction or read more of the input and apply
a reduction later in the input. These are known respectively as reduce/reduce conflicts (see
Section 5.6 [Reduce/Reduce Conflicts], page 118), and shift/reduce conflicts (see Section 5.2
[Shift /Reduce Conflicts]|, page 113).

To use a grammar that is not easily modified to be LR(1), a more general parsing algo-
rithm is sometimes necessary. If you include %glr-parser among the Bison declarations in
your file (see Section 3.1 [Outline of a Bison Grammar]|, page 47), the result is a General-
ized LR (GLR) parser. These parsers handle Bison grammars that contain no unresolved
conflicts (i.e., after applying precedence declarations) identically to deterministic parsers.
However, when faced with unresolved shift /reduce and reduce/reduce conflicts, GLR parsers
use the simple expedient of doing both, effectively cloning the parser to follow both possi-
bilities. Each of the resulting parsers can again split, so that at any given time, there can
be any number of possible parses being explored. The parsers proceed in lockstep; that is,
all of them consume (shift) a given input symbol before any of them proceed to the next.
Each of the cloned parsers eventually meets one of two possible fates: either it runs into a
parsing error, in which case it simply vanishes, or it merges with another parser, because
the two of them have reduced the input to an identical set of symbols.

During the time that there are multiple parsers, semantic actions are recorded, but not
performed. When a parser disappears, its recorded semantic actions disappear as well, and

Chapter 1: The Concepts of Bison 18

are never performed. When a reduction makes two parsers identical, causing them to merge,
Bison records both sets of semantic actions. Whenever the last two parsers merge, reverting
to the single-parser case, Bison resolves all the outstanding actions either by precedences
given to the grammar rules involved, or by performing both actions, and then calling a
designated user-defined function on the resulting values to produce an arbitrary merged
result.

1.5.1 Using GLR on Unambiguous Grammars

In the simplest cases, you can use the GLR algorithm to parse grammars that are unam-
biguous but fail to be LR(1). Such grammars typically require more than one symbol of
lookahead.

Consider a problem that arises in the declaration of enumerated and subrange types in
the programming language Pascal. Here are some examples:

type subrange = lo .. hi;
type enum = (a, b, c);

The original language standard allows only numeric literals and constant identifiers for the
subrange bounds (‘lo’ and ‘hi’), but Extended Pascal (ISO/IEC 10206) and many other
Pascal implementations allow arbitrary expressions there. This gives rise to the following
situation, containing a superfluous pair of parentheses:

type subrange = (a) .. b;
Compare this to the following declaration of an enumerated type with only one value:
type enum = (a);

(These declarations are contrived, but they are syntactically valid, and more-complicated
cases can come up in practical programs.)

These two declarations look identical until the ‘..’ token. With normal LR (1) one-token
lookahead it is not possible to decide between the two forms when the identifier ‘a’ is parsed.
It is, however, desirable for a parser to decide this, since in the latter case ‘a’ must become
a new identifier to represent the enumeration value, while in the former case ‘a’ must be
evaluated with its current meaning, which may be a constant or even a function call.

You could parse ‘(a)’ as an “unspecified identifier in parentheses”, to be resolved later,
but this typically requires substantial contortions in both semantic actions and large parts
of the grammar, where the parentheses are nested in the recursive rules for expressions.

You might think of using the lexer to distinguish between the two forms by returning
different tokens for currently defined and undefined identifiers. But if these declarations
occur in a local scope, and ‘a’ is defined in an outer scope, then both forms are possible—
either locally redefining ‘a’, or using the value of ‘a’ from the outer scope. So this approach
cannot work.

A simple solution to this problem is to declare the parser to use the GLR algorithm.
When the GLR parser reaches the critical state, it merely splits into two branches and
pursues both syntax rules simultaneously. Sooner or later, one of them runs into a parsing
error. If there is a ‘..’ token before the next ¢;’, the rule for enumerated types fails since
it cannot accept ‘..’ anywhere; otherwise, the subrange type rule fails since it requires

a ‘..’ token. So one of the branches fails silently, and the other one continues normally,
performing all the intermediate actions that were postponed during the split.

Chapter 1: The Concepts of Bison 19

If the input is syntactically incorrect, both branches fail and the parser reports a syntax
error as usual.

The effect of all this is that the parser seems to “guess” the correct branch to take, or in
other words, it seems to use more lookahead than the underlying LR(1) algorithm actually
allows for. In this example, LR(2) would suffice, but also some cases that are not LR(k) for
any k can be handled this way.

In general, a GLR parser can take quadratic or cubic worst-case time, and the current
Bison parser even takes exponential time and space for some grammars. In practice, this
rarely happens, and for many grammars it is possible to prove that it cannot happen. The
present example contains only one conflict between two rules, and the type-declaration
context containing the conflict cannot be nested. So the number of branches that can exist
at any time is limited by the constant 2, and the parsing time is still linear.

Here is a Bison grammar corresponding to the example above. It parses a vastly simpli-
fied form of Pascal type declarations.

%token TYPE DOTDOT ID

%left >+ -’
%left)% 7/7

oo
type_decl: TYPE ID ’=’ type ’;’ ;

type:
> (? id_list)’
| expr DOTDOT expr

3

id_list:
ID
| id_1list ’,’ ID

3

expr:

:(7 expr)))
| expr ’+’ expr
| expr ’-’ expr
| expr ’*’ expr
| expr ’/’ expr
| ID

b

When used as a normal LR(1) grammar, Bison correctly complains about one
reduce/reduce conflict. In the conflicting situation the parser chooses one of the
alternatives, arbitrarily the one declared first. Therefore the following correct input is not
recognized:

type t = (@) .. b;

Chapter 1: The Concepts of Bison 20

The parser can be turned into a GLR parser, while also telling Bison to be silent about the
one known reduce/reduce conflict, by adding these two declarations to the Bison grammar
file (before the first ‘%%’):

hglr-parser
%expect-rr 1

No change in the grammar itself is required. Now the parser recognizes all valid declarations,
according to the limited syntax above, transparently. In fact, the user does not even notice
when the parser splits.

So here we have a case where we can use the benefits of GLR, almost without disad-
vantages. Even in simple cases like this, however, there are at least two potential problems
to beware. First, always analyze the conflicts reported by Bison to make sure that GLR
splitting is only done where it is intended. A GLR parser splitting inadvertently may cause
problems less obvious than an LR parser statically choosing the wrong alternative in a con-
flict. Second, consider interactions with the lexer (see Section 7.1 [Semantic Info in Token
Kinds], page 133) with great care. Since a split parser consumes tokens without performing
any actions during the split, the lexer cannot obtain information via parser actions. Some
cases of lexer interactions can be eliminated by using GLR to shift the complications from
the lexer to the parser. You must check the remaining cases for correctness.

In our example, it would be safe for the lexer to return tokens based on their current
meanings in some symbol table, because no new symbols are defined in the middle of a type
declaration. Though it is possible for a parser to define the enumeration constants as they
are parsed, before the type declaration is completed, it actually makes no difference since
they cannot be used within the same enumerated type declaration.

1.5.2 Using GLR to Resolve Ambiguities
Let’s consider an example, vastly simplified from a C++ grammar.'

h{
#include <stdio.h>
int yylex (void);
void yyerror (char const *);

h}
%define api.value.type {char const *}
/itoken TYPENAME ID

hright ’=’
hleft >+’

hglr-parser

Toth

1 The sources of an extended version of this example are available in C as examples/c/glr, and in C++
as examples/c++/glr.

Chapter 1: The Concepts of Bison 21

prog:
%empty
| prog stmt { printf ("\n"); }

3

stmt:
expr ’;’ Jdprec 1
| decl %hdprec 2
expr:
ID { printf ("%s ", $$); }

| TYPENAME ’(’ expr ’)’

{ printf ("%s <cast> ", $1); }
| expr ’+’ expr { printf ("+ "); %
| expr ’=’ expr { printf ("= "); }

3

decl:
TYPENAME declarator ’;°’
{ printf ("%s <declare> ", $1); }
| TYPENAME declarator ’=’ expr ’;’
{ printf ("%s <init-declare> ", $1); }

declarator:
ID { printf ("\"%s\" ", $1); }

| >’ declarator ’)’
This models a problematic part of the C++ grammar—the ambiguity between certain dec-
larations and statements. For example,

T (x) = y+z;
parses as either an expr or a stmt (assuming that ‘T’ is recognized as a TYPENAME and
‘x” as an ID). Bison detects this as a reduce/reduce conflict between the rules expr : ID
and declarator : ID, which it cannot resolve at the time it encounters x in the example
above. Since this is a GLR parser, it therefore splits the problem into two parses, one for
each choice of resolving the reduce/reduce conflict. Unlike the example from the previous
section (see Section 1.5.1 [Using GLR on Unambiguous Grammars|, page 18), however,
neither of these parses “dies,” because the grammar as it stands is ambiguous. One of
the parsers eventually reduces stmt : expr ’;’ and the other reduces stmt : decl, after
which both parsers are in an identical state: they've seen ‘prog stmt’ and have the same
unprocessed input remaining. We say that these parses have merged.

At this point, the GLR parser requires a specification in the grammar of how to choose
between the competing parses. In the example above, the two %dprec declarations specify
that Bison is to give precedence to the parse that interprets the example as a decl, which
implies that x is a declarator. The parser therefore prints

Chapter 1: The Concepts of Bison 22

"x" y z + T <init-declare>

The %dprec declarations only come into play when more than one parse survives. Con-
sider a different input string for this parser:

T (x) +v;

This is another example of using GLR to parse an unambiguous construct, as shown in
the previous section (see Section 1.5.1 [Using GLR on Unambiguous Grammars], page 18).
Here, there is no ambiguity (this cannot be parsed as a declaration). However, at the
time the Bison parser encounters x, it does not have enough information to resolve the
reduce/reduce conflict (again, between x as an expr or a declarator). In this case, no
precedence declaration is used. Again, the parser splits into two, one assuming that x is an
expr, and the other assuming x is a declarator. The second of these parsers then vanishes
when it sees +, and the parser prints

x T <cast> y +

Suppose that instead of resolving the ambiguity, you wanted to see all the possibilities.
For this purpose, you must merge the semantic actions of the two possible parsers, rather
than choosing one over the other. To do so, you could change the declaration of stmt as
follows:

stmt:
expr ’;’ Ymerge <stmt_merge>

| decl Jmerge <stmt_merge>
and define the stmt_merge function as:
static YYSTYPE
stmt_merge (YYSTYPE x0, YYSTYPE x1)
{
printf ("<OR> ");
return "";

b

with an accompanying forward declaration in the C declarations at the beginning of the
file:

o
static YYSTYPE stmt_merge (YYSTYPE x0, YYSTYPE x1);
hx
With these declarations, the resulting parser parses the first example as both an expr and
a decl, and prints

"x" y z + T <init-declare> x T <cast> y z + = <0R>

Bison requires that all of the productions that participate in any particular merge have
identical ‘/merge’ clauses. Otherwise, the ambiguity would be unresolvable, and the parser
will report an error during any parse that results in the offending merge.

The signature of the merger depends on the type of the symbol. In the previous example,
the merged-to symbol (stmt) does not have a specific type, and the merger is

YYSTYPE stmt_merge (YYSTYPE xO, YYSTYPE x1);

Chapter 1: The Concepts of Bison 23

However, if stmt had a declared type, e.g.,
Jtype <Node *> stmt;
or

Y%union {
Node *node;

};
%type <node> stmt;

then the prototype of the merger must be:
Node *stmt_merge (YYSTYPE x0O, YYSTYPE x1);

(This signature might be a mistake originally, and maybe it should have been ‘Node
*stmt_merge (Node *x0, Node *x1)’. If you have an opinion about it, please let us know.)

1.5.3 GLR Semantic Actions

The nature of GLR parsing and the structure of the generated parsers give rise to certain
restrictions on semantic values and actions.

1.5.3.1 Deferred semantic actions

By definition, a deferred semantic action is not performed at the same time as the associated
reduction. This raises caveats for several Bison features you might use in a semantic action
in a GLR parser.

In any semantic action, you can examine yychar to determine the kind of the lookahead
token present at the time of the associated reduction. After checking that yychar is not set
to YYEMPTY or YYEQF, you can then examine yylval and yylloc to determine the lookahead
token’s semantic value and location, if any. In a nondeferred semantic action, you can also
modify any of these variables to influence syntax analysis. See Section 5.1 [Lookahead
Tokens|, page 112.

In a deferred semantic action, it’s too late to influence syntax analysis. In this case,
yychar, yylval, and yylloc are set to shallow copies of the values they had at the time
of the associated reduction. For this reason alone, modifying them is dangerous. Moreover,
the result of modifying them is undefined and subject to change with future versions of
Bison. For example, if a semantic action might be deferred, you should never write it to
invoke yyclearin (see Section 4.5 [Special Features for Use in Actions], page 108) or to
attempt to free memory referenced by yylval.

1.5.3.2 YYERROR

Another Bison feature requiring special consideration is YYERROR (see Section 4.5 [Special
Features for Use in Actions], page 108), which you can invoke in a semantic action to
initiate error recovery. During deterministic GLR operation, the effect of YYERROR is the
same as its effect in a deterministic parser. The effect in a deferred action is similar,
but the precise point of the error is undefined; instead, the parser reverts to deterministic
operation, selecting an unspecified stack on which to continue with a syntax error. In
a semantic predicate (see Section 1.5.4 [Controlling a Parse with Arbitrary Predicates],
page 24) during nondeterministic parsing, YYERROR silently prunes the parse that invoked
the test.

Chapter 1: The Concepts of Bison 24

1.5.3.3 Restrictions on semantic values and locations

GLR parsers require that you use POD (Plain Old Data) types for semantic values and
location types when using the generated parsers as C++ code.

1.5.4 Controlling a Parse with Arbitrary Predicates

In addition to the %dprec and Ymerge directives, GLR parsers allow you to reject parses on
the basis of arbitrary computations executed in user code, without having Bison treat this
rejection as an error if there are alternative parses. For example,

widget:
%?{ new_syntax } "widget" id new_args { $$ = £($3, $4); }
| %7{ 'new_syntax } "widget" id old_args { $$ = £($3, $4); }

is one way to allow the same parser to handle two different syntaxes for widgets. The clause
preceded by %7 is treated like an ordinary midrule action, except that its text is handled as
an expression and is always evaluated immediately (even when in nondeterministic mode).
If the expression yields 0 (false), the clause is treated as a syntax error, which, in a nonde-
terministic parser, causes the stack in which it is reduced to die. In a deterministic parser,
it acts like YYERROR.

As the example shows, predicates otherwise look like semantic actions, and therefore
you must take them into account when determining the numbers to use for denoting the
semantic values of right-hand side symbols. Predicate actions, however, have no defined
value, and may not be given labels.

There is a subtle difference between semantic predicates and ordinary actions in nonde-
terministic mode, since the latter are deferred. For example, we could try to rewrite the
previous example as

widget:
{ if (!new_syntax) YYERROR; }
"widget" id new_args { $$ = £($3, $4); }
| { if (new_syntax) YYERROR; }
"widget" id old_args { $$ = £($3, $4); }
(reversing the sense of the predicate tests to cause an error when they are false). However,
this does not have the same effect if new_args and old_args have overlapping syntax.
Since the midrule actions testing new_syntax are deferred, a GLR parser first encounters
the unresolved ambiguous reduction for cases where new_args and old_args recognize the
same string before performing the tests of new_syntax. It therefore reports an error.

Finally, be careful in writing predicates: deferred actions have not been evaluated, so
that using them in a predicate will have undefined effects.

1.6 Locations

Many applications, like interpreters or compilers, have to produce verbose and useful error
messages. To achieve this, one must be able to keep track of the textual location, or location,
of each syntactic construct. Bison provides a mechanism for handling these locations.

Chapter 1: The Concepts of Bison 25

Each token has a semantic value. In a similar fashion, each token has an associated
location, but the type of locations is the same for all tokens and groupings. Moreover, the
output parser is equipped with a default data structure for storing locations (see Section 3.5
[Tracking Locations|, page 67, for more details).

Like semantic values, locations can be reached in actions using a dedicated set of con-
structs. In the example above, the location of the whole grouping is @$, while the locations
of the subexpressions are @1 and @3.

When a rule is matched, a default action is used to compute the semantic value of its left
hand side (see Section 3.4.6 [Actions]|, page 60). In the same way, another default action
is used for locations. However, the action for locations is general enough for most cases,
meaning there is usually no need to describe for each rule how @$ should be formed. When
building a new location for a given grouping, the default behavior of the output parser is
to take the beginning of the first symbol, and the end of the last symbol.

1.7 Bison Output: the Parser Implementation File

When you run Bison, you give it a Bison grammar file as input. The most important output
is a C source file that implements a parser for the language described by the grammar. This
parser is called a Bison parser, and this file is called a Bison parser implementation file.
Keep in mind that the Bison utility and the Bison parser are two distinct programs: the
Bison utility is a program whose output is the Bison parser implementation file that becomes
part of your program.

The job of the Bison parser is to group tokens into groupings according to the grammar
rules—for example, to build identifiers and operators into expressions. As it does this, it
runs the actions for the grammar rules it uses.

The tokens come from a function called the lexical analyzer that you must supply in some
fashion (such as by writing it in C). The Bison parser calls the lexical analyzer each time it
wants a new token. It doesn’t know what is “inside” the tokens (though their semantic values
may reflect this). Typically the lexical analyzer makes the tokens by parsing characters of
text, but Bison does not depend on this. See Section 4.3 [The Lexical Analyzer Function
yylex], page 101.

The Bison parser implementation file is C code which defines a function named yyparse
which implements that grammar. This function does not make a complete C program:
you must supply some additional functions. One is the lexical analyzer. Another is an
error-reporting function which the parser calls to report an error. In addition, a complete C
program must start with a function called main; you have to provide this, and arrange for it
to call yyparse or the parser will never run. See Chapter 4 [Parser C-Language Interface],
page 99.

Aside from the token kind names and the symbols in the actions you write, all symbols
defined in the Bison parser implementation file itself begin with ‘yy’ or ‘YY’. This includes
interface functions such as the lexical analyzer function yylex, the error reporting function
yyerror and the parser function yyparse itself. This also includes numerous identifiers
used for internal purposes. Therefore, you should avoid using C identifiers starting with
‘yy’ or ‘YY’ in the Bison grammar file except for the ones defined in this manual. Also, you
should avoid using the C identifiers ‘malloc’ and ‘free’ for anything other than their usual
meanings.

Chapter 1: The Concepts of Bison 26

In some cases the Bison parser implementation file includes system headers, and in those
cases your code should respect the identifiers reserved by those headers. On some non-GNU
hosts, <limits.h>, <stddef.h>, <stdint.h> (if available), and <stdlib.h> are included
to declare memory allocators and integer types and constants. <libintl.h> is included
if message translation is in use (see Section 4.6 [Parser Internationalization], page 110).
Other system headers may be included if you define YYDEBUG (see Section 8.5 [Tracing Your
Parser], page 149) or YYSTACK_USE_ALLOCA (see Appendix A [Bison Symbols], page 215) to
a nonzero value.

1.8 Stages in Using Bison

The actual language-design process using Bison, from grammar specification to a working
compiler or interpreter, has these parts:

1. Formally specify the grammar in a form recognized by Bison (see Chapter 3 [Bison
Grammar Files], page 47). For each grammatical rule in the language, describe the
action that is to be taken when an instance of that rule is recognized. The action is
described by a sequence of C statements.

2. Write a lexical analyzer to process input and pass tokens to the parser. The lexical
analyzer may be written by hand in C (see Section 4.3 [The Lexical Analyzer Function
yylex], page 101). It could also be produced using Lex, but the use of Lex is not
discussed in this manual.

3. Write a controlling function that calls the Bison-produced parser.

4. Write error-reporting routines.

To turn this source code as written into a runnable program, you must follow these steps:
1. Run Bison on the grammar to produce the parser.
2. Compile the code output by Bison, as well as any other source files.
3. Link the object files to produce the finished product.

1.9 The Overall Layout of a Bison Grammar

The input file for the Bison utility is a Bison grammar file. The general form of a Bison
grammar file is as follows:

Wi

Prologue

h}

Bison declarations

he

Grammar rules

hto

Epilogue
The %%, ‘%{’ and ‘%}’ are punctuation that appears in every Bison grammar file to separate
the sections.

Chapter 1: The Concepts of Bison 27

The prologue may define types and variables used in the actions. You can also use
preprocessor commands to define macros used there, and use #include to include header
files that do any of these things. You need to declare the lexical analyzer yylex and the
error printer yyerror here, along with any other global identifiers used by the actions in
the grammar rules.

The Bison declarations declare the names of the terminal and nonterminal symbols, and
may also describe operator precedence and the data types of semantic values of various
symbols.

The grammar rules define how to construct each nonterminal symbol from its parts.

The epilogue can contain any code you want to use. Often the definitions of functions
declared in the prologue go here. In a simple program, all the rest of the program can go
here.

28

2 Examples

Now we show and explain several sample programs written using Bison: a Reverse Polish
Notation calculator, an algebraic (infix) notation calculator — later extended to track “lo-
cations” — and a multi-function calculator. All produce usable, though limited, interactive
desk-top calculators.

These examples are simple, but Bison grammars for real programming languages are
written the same way. You can copy these examples into a source file to try them.

Bison comes with several examples (including for the different target languages). If this
package is properly installed, you shall find them in prefix/share/doc/bison/examples,
where prefix is the root of the installation, probably something like /usr/local or /usr.

2.1 Reverse Polish Notation Calculator

The first example! is that of a simple double-precision Reverse Polish Notation calcula-
tor (a calculator using postfix operators). This example provides a good starting point,
since operator precedence is not an issue. The second example will illustrate how operator
precedence is handled.

The source code for this calculator is named rpcalc.y. The ‘.y’ extension is a convention
used for Bison grammar files.

2.1.1 Declarations for rpcalc

Here are the C and Bison declarations for the Reverse Polish Notation calculator. As in C,
comments are placed between ‘/*...*/ or after ‘//’.

/* Reverse Polish Notation calculator. */

hi
#include <stdio.h>
#include <math.h>
int yylex (void);
void yyerror (char const *);

h}

%define api.value.type {double}
Jtoken NUM

%% /* Grammar rules and actions follow. */

The declarations section (see Section 3.1.1 [The prologue|, page 47) contains two pre-
processor directives and two forward declarations.
The #include directive is used to declare the exponentiation function pow.

The forward declarations for yylex and yyerror are needed because the C language
requires that functions be declared before they are used. These functions will be defined in
the epilogue, but the parser calls them so they must be declared in the prologue.

1 The sources of rpcalc are available as examples/c/rpcalc.

Chapter 2: Examples 29

The second section, Bison declarations, provides information to Bison about the tokens
and their types (see Section 3.1.3 [The Bison Declarations Section], page 52).

The %define directive defines the variable api.value.type, thus specifying the C data
type for semantic values of both tokens and groupings (see Section 3.4.1 [Data Types of
Semantic Values], page 57). The Bison parser will use whatever type api.value.type is
defined as; if you don’t define it, int is the default. Because we specify ‘{double}’, each
token and each expression has an associated value, which is a floating point number. C
code can use YYSTYPE to refer to the value api.value.type.

Each terminal symbol that is not a single-character literal must be declared. (Single-
character literals normally don’t need to be declared.) In this example, all the arithmetic
operators are designated by single-character literals, so the only terminal symbol that needs
to be declared is NUM, the token kind for numeric constants.

2.1.2 Grammar Rules for rpcalc
Here are the grammar rules for the Reverse Polish Notation calculator.
input:
%empty
| input line

I

line:
7\n7
| exp ’\n’ { printf ("%.10g\n", $1); }
exp:
NUM
| exp exp ’+> { $$ = $1 + $2; }
| exp exp -2 { $$ = $1 - $2; }
| exp exp %> { $$ = $1 x $2; +
| exp exp 7/7 { $$ = $1 / $2; }
| exp exp 77 { $$ = pow ($1, $2); } /* Exponentiation */
| exp ’n’ { $$ = -81; } /* Unary minus */

hlo
The groupings of the rpcalc “language” defined here are the expression (given the name
exp), the line of input (1ine), and the complete input transcript (input). Each of these
nonterminal symbols has several alternate rules, joined by the vertical bar ‘|’ which is read
as “or”. The following sections explain what these rules mean.

The semantics of the language is determined by the actions taken when a grouping
is recognized. The actions are the C code that appears inside braces. See Section 3.4.6
[Actions], page 60.

You must specify these actions in C, but Bison provides the means for passing semantic
values between the rules. In each action, the pseudo-variable $$ stands for the semantic
value for the grouping that the rule is going to construct. Assigning a value to $$ is the

Chapter 2: Examples 30

main job of most actions. The semantic values of the components of the rule are referred
to as $1, $2, and so on.

2.1.2.1 Explanation of input

Consider the definition of input:

input:
%empty
| input line
This definition reads as follows: “A complete input is either an empty string, or a
complete input followed by an input line”. Notice that “complete input” is defined in terms
of itself. This definition is said to be left recursive since input appears always as the
leftmost symbol in the sequence. See Section 3.3.3 [Recursive Rules], page 56.

The first alternative is empty because there are no symbols between the colon and the
first ¢|’; this means that input can match an empty string of input (no tokens). We write
the rules this way because it is legitimate to type Ctrl-d right after you start the calculator.
It’s conventional to put an empty alternative first and to use the (optional) %empty directive,
or to write the comment ‘/* empty */’ in it (see Section 3.3.2 [Empty Rules|, page 56).

The second alternate rule (input line) handles all nontrivial input. It means, “After
reading any number of lines, read one more line if possible.” The left recursion makes this
rule into a loop. Since the first alternative matches empty input, the loop can be executed
zero or more times.

The parser function yyparse continues to process input until a grammatical error is seen
or the lexical analyzer says there are no more input tokens; we will arrange for the latter
to happen at end-of-input.

2.1.2.2 Explanation of line

Now consider the definition of 1line:

line:
7\n)
| exp ’\n’ { printf ("%.10g\n", $1); }

The first alternative is a token which is a newline character; this means that rpcalc
accepts a blank line (and ignores it, since there is no action). The second alternative is
an expression followed by a newline. This is the alternative that makes rpcalc useful. The
semantic value of the exp grouping is the value of $1 because the exp in question is the
first symbol in the alternative. The action prints this value, which is the result of the
computation the user asked for.

This action is unusual because it does not assign a value to $$. As a consequence, the
semantic value associated with the line is uninitialized (its value will be unpredictable).
This would be a bug if that value were ever used, but we don’t use it: once rpcalc has
printed the value of the user’s input line, that value is no longer needed.

Chapter 2: Examples 31

2.1.2.3 Explanation of exp

The exp grouping has several rules, one for each kind of expression. The first rule handles
the simplest expressions: those that are just numbers. The second handles an addition-
expression, which looks like two expressions followed by a plus-sign. The third handles
subtraction, and so on.

exp:
NUM
| exp exp ’+’ {88 = 81 + $2; }
| exp exp ’-’ { 83 = $1 - $2; }
We have used ‘|’ to join all the rules for exp, but we could equally well have written
them separately:
exp: NUM;
exp: exp exp '+’ { $$ = $1 + $2; };
exp: exp exp =’ { $$ = $1 - $2; 1};

Most of the rules have actions that compute the value of the expression in terms of the
value of its parts. For example, in the rule for addition, $1 refers to the first component exp
and $2 refers to the second one. The third component, >+’ has no meaningful associated
semantic value, but if it had one you could refer to it as $3. The first rule relies on the
implicit default action: ‘{ $$ = $1; }".

When yyparse recognizes a sum expression using this rule, the sum of the two subexpres-

sions’ values is produced as the value of the entire expression. See Section 3.4.6 [Actions],
page 60.

You don’t have to give an action for every rule. When a rule has no action, Bison by
default copies the value of $1 into $$. This is what happens in the first rule (the one that
uses NUM).

The formatting shown here is the recommended convention, but Bison does not require

it. You can add or change white space as much as you wish. For example, this:

exp: NUM | exp exp ’+’ {$$ = $1 + $2; } | ... ;
means the same thing as this:

exp:

NUM
| exp exp ’+’ {$$ =$1 + $2; }
|

The latter, however, is much more readable.

2.1.3 The rpcalc Lexical Analyzer

The lexical analyzer’s job is low-level parsing: converting characters or sequences of char-
acters into tokens. The Bison parser gets its tokens by calling the lexical analyzer. See
Section 4.3 [The Lexical Analyzer Function yylex|, page 101.

Chapter 2: Examples 32

Only a simple lexical analyzer is needed for the RPN calculator. This lexical analyzer
skips blanks and tabs, then reads in numbers as double and returns them as NUM tokens.
Any other character that isn’t part of a number is a separate token. Note that the token-
code for such a single-character token is the character itself.

The return value of the lexical analyzer function is a numeric code which represents
a token kind. The same text used in Bison rules to stand for this token kind is also a
C expression for the numeric code of the kind. This works in two ways. If the token
kind is a character literal, then its numeric code is that of the character; you can use the
same character literal in the lexical analyzer to express the number. If the token kind is an
identifier, that identifier is defined by Bison as a C enum whose definition is the appropriate
code. In this example, therefore, NUM becomes an enum for yylex to use.

The semantic value of the token (if it has one) is stored into the global variable yylval,
which is where the Bison parser will look for it. (The C data type of yylval is YYSTYPE,
whose value was defined at the beginning of the grammar via ‘/define api.value.type
{double}’; see Section 2.1.1 [Declarations for rpcalc|, page 28.)

A token kind code of zero is returned if the end-of-input is encountered. (Bison recognizes
any nonpositive value as indicating end-of-input.)

Here is the code for the lexical analyzer:

/* The lexical analyzer returns a double floating point
number on the stack and the token NUM, or the numeric code
of the character read if not a number. It skips all blanks
and tabs, and returns O for end-of-input. */

#include <ctype.h>
#include <stdlib.h>

int
yylex (void)
{
int ¢ = getchar Q;
/* Skip white space. */
while (c == 7 7 || c == ’\t’)
c = getchar ();
/* Process numbers. */
if (c == 2.7 || isdigit (c))
{
ungetc (c, stdin);
if (scanf ("%1lf", &yylval) != 1)
abort ();
return NUM;
}

Chapter 2: Examples 33

/* Return end-of-input. */
else if (c == EOF)

return YYEOQOF,;
/* Return a single char. */
else

return c;

}

2.1.4 The Controlling Function

In keeping with the spirit of this example, the controlling function is kept to the bare
minimum. The only requirement is that it call yyparse to start the process of parsing.
int
main (void)
{

return yyparse ();

}
2.1.5 The Error Reporting Routine

When yyparse detects a syntax error, it calls the error reporting function yyerror to print
an error message (usually but not always "syntax error"). It is up to the programmer
to supply yyerror (see Chapter 4 [Parser C-Language Interface|, page 99), so here is the
definition we will use:

#include <stdio.h>

/* Called by yyparse on error. */

void

yyerror (char const *s)

{

fprintf (stderr, "%s\n", s);
}
After yyerror returns, the Bison parser may recover from the error and continue parsing

if the grammar contains a suitable error rule (see Chapter 6 [Error Recovery], page 131).
Otherwise, yyparse returns nonzero. We have not written any error rules in this example,
so any invalid input will cause the calculator program to exit. This is not clean behavior
for a real calculator, but it is adequate for the first example.

2.1.6 Running Bison to Make the Parser

Before running Bison to produce a parser, we need to decide how to arrange all the source
code in one or more source files. For such a simple example, the easiest thing is to put
everything in one file, the grammar file. The definitions of yylex, yyerror and main go at
the end, in the epilogue of the grammar file (see Section 1.9 [The Overall Layout of a Bison
Grammar|, page 26).

For a large project, you would probably have several source files, and use make to arrange
to recompile them.

With all the source in the grammar file, you use the following command to convert it
into a parser implementation file:

Chapter 2: Examples 34

$ bison file.y

In this example, the grammar file is called rpcalc.y (for “Reverse Polish cALculator”).
Bison produces a parser implementation file named file.tab.c, removing the ‘.y’ from the
grammar file name. The parser implementation file contains the source code for yyparse.
The additional functions in the grammar file (yylex, yyerror and main) are copied verbatim
to the parser implementation file.

2.1.7 Compiling the Parser Implementation File
Here is how to compile and run the parser implementation file:

List files in current directory.
$ 1s
rpcalc.tab.c rpcalc.y

Compile the Bison parser.
-1m tells compiler to search math library for pow.
$ cc -1m -o rpcalc rpcalc.tab.c

List files again.
$ 1s
rpcalc rpcalc.tab.c rpcalc.y

The file rpcalc now contains the executable code. Here is an example session using
rpcalc.

$ rpcalc

4 9 +

= 13

37+ 345 x+-

= -13

37+ 345%*+ -n Note the unary minus, ‘n’
= 13

56/ 4n+

= -3.166666667

34-° Exponentiation

= 81

°D End-of-file indicator
$

2.2 Infix Notation Calculator: calc

We now modify rpcalc to handle infix operators instead of postfix.? Infix notation involves
the concept of operator precedence and the need for parentheses nested to arbitrary depth.
Here is the Bison code for calc.y, an infix desk-top calculator.

/* Infix notation calculator. */

2 A similar example, but using an unambiguous grammar rather than precedence and associativity anno-
tations, is available as examples/c/calc.

Chapter 2: Examples 35

hi
#include <math.h>
#include <stdio.h>
int yylex (void);
void yyerror (char const *);

h}

/* Bison declarations. */

%define api.value.type {double}

Jitoken NUM

%left Yy 4

%left)% ;/;

%precedence NEG /* negation--unary minus */
hright °°° /* exponentiation */

%% /* The grammar follows. */
input:

%hempty
| input line

3

line:
;\n7
| exp ’\n’ { printf ("\t%.10g\n", $1);

b

exp:
NUM

| exp ’+’ exp { $$ = $1 + $3; }
| exp ’-’ exp { $$ = $1 - $3; }
| exp ’*’ exp { 88 = $1 = $3; }
| exp °/’ exp { %% = 31 / $3; }
| >-? exp Y%prec NEG { $$ = -$2; }
| exp ’°’ exp { $$ = pow ($1, $3); }
| > exp ’)’ { $$ = $2; +

52
The functions yylex, yyerror and main can be the same as before.
There are two important new features shown in this code.

In the second section (Bison declarations), %1eft declares token kinds and says they are
left-associative operators. The declarations %left and %right (right associativity) take the
place of %token which is used to declare a token kind name without associativity /precedence.
(These tokens are single-character literals, which ordinarily don’t need to be declared. We
declare them here to specify the associativity /precedence.)

Operator precedence is determined by the line ordering of the declarations; the higher
the line number of the declaration (lower on the page or screen), the higher the precedence.

Chapter 2: Examples 36

Hence, exponentiation has the highest precedence, unary minus (NEG) is next, followed by ‘*’
and ‘/’, and so on. Unary minus is not associative, only precedence matters (%precedence.
See Section 5.3 [Operator Precedence], page 115.

The other important new feature is the %prec in the grammar section for the unary
minus operator. The %prec simply instructs Bison that the rule ‘| -’ exp’ has the same
precedence as NEG—in this case the next-to-highest. See Section 5.4 [Context-Dependent
Precedence], page 117.

Here is a sample run of calc.y:
$ calc
4 + 4.5 - (34/(8*%3+-3))
6.880952381
-56 + 2
-54
3" 2
9

2.3 Simple Error Recovery

Up to this point, this manual has not addressed the issue of error recovery—how to continue
parsing after the parser detects a syntax error. All we have handled is error reporting with
yyerror. Recall that by default yyparse returns after calling yyerror. This means that
an erroneous input line causes the calculator program to exit. Now we show how to rectify
this deficiency.

The Bison language itself includes the reserved word error, which may be included in
the grammar rules. In the example below it has been added to one of the alternatives for
line:

line:

;\n)
| exp ’\n’ { printf ("\t%.10g\n", $1); }
| error ’\n’ { yyerrok; }

3

This addition to the grammar allows for simple error recovery in the event of a syntax
error. If an expression that cannot be evaluated is read, the error will be recognized by the
third rule for line, and parsing will continue. (The yyerror function is still called upon
to print its message as well.) The action executes the statement yyerrok, a macro defined
automatically by Bison; its meaning is that error recovery is complete (see Chapter 6 [Error
Recovery], page 131). Note the difference between yyerrok and yyerror; neither one is a
misprint.

This form of error recovery deals with syntax errors. There are other kinds of errors; for
example, division by zero, which raises an exception signal that is normally fatal. A real
calculator program must handle this signal and use longjmp to return to main and resume
parsing input lines; it would also have to discard the rest of the current line of input. We
won’t discuss this issue further because it is not specific to Bison programs.

Chapter 2: Examples 37

2.4 Location Tracking Calculator: ltcalc

This example extends the infix notation calculator with location tracking. This feature will
be used to improve the error messages. For the sake of clarity, this example is a simple
integer calculator, since most of the work needed to use locations will be done in the lexical
analyzer.

2.4.1 Declarations for ltcalc

The C and Bison declarations for the location tracking calculator are the same as the
declarations for the infix notation calculator.

/* Location tracking calculator. */

h{
#include <math.h>
int yylex (void);
void yyerror (char const *);

h}

/* Bison declarations. */
%define api.value.type {int}
%token NUM

Yleft =2 4’
%left)%)/;
Jiprecedence NEG
hright °°°

%% /* The grammar follows. */

Note there are no declarations specific to locations. Defining a data type for storing lo-
cations is not needed: we will use the type provided by default (see Section 3.5.1 [Data
Type of Locations|, page 67), which is a four member structure with the following integer
fields: first_line, first_column, last_line and last_column. By conventions, and in
accordance with the GNU Coding Standards and common practice, the line and column
count both start at 1.

2.4.2 Grammar Rules for 1ltcalc

Whether handling locations or not has no effect on the syntax of your language. Therefore,
grammar rules for this example will be very close to those of the previous example: we will
only modify them to benefit from the new information.

Here, we will use locations to report divisions by zero, and locate the wrong expressions
or subexpressions.
input:
hempty
| input line

3

Chapter 2: Examples 38

line:
7\n7
| exp ’\n’ { printf ("%d\n", $1); }

3

exp:
NUM
| exp '+’ exp { $$ = $1 + $3; }
| exp - exp { $$ = $1 - $3; }
| exp ’*’ exp { $$ = $1 * $3; }
| exp /7 exp
{
if ($3)
$$ = $1 / $3;
else
{
$$ = 1;

fprintf (stderr, "%d.%d-%d.%d: division by zero",
@3.first_line, @3.first_column,
©@3.last_line, @3.last_column);

}
}
| °-’ exp %prec NEG {$$ =-%2; }
I exp ’"’ exp {$$ = pow (81, $3); }
| > exp ’)’ { %8 =2%2; }

This code shows how to reach locations inside of semantic actions, by using the pseudo-
variables @n for rule components, and the pseudo-variable @$ for groupings.

We don’t need to assign a value to @$: the output parser does it automatically. By
default, before executing the C code of each action, @$ is set to range from the beginning
of @1 to the end of @n, for a rule with n components. This behavior can be redefined (see
Section 3.5.4 [Default Action for Locations], page 69), and for very specific rules, @$ can be
computed by hand.

2.4.3 The 1tcalc Lexical Analyzer.

Until now, we relied on Bison’s defaults to enable location tracking. The next step is to
rewrite the lexical analyzer, and make it able to feed the parser with the token locations,
as it already does for semantic values.

To this end, we must take into account every single character of the input text, to avoid
the computed locations of being fuzzy or wrong:

int
yylex (void)
{

int c;

Chapter 2: Examples 39

/* Skip white space. */
while ((c = getchar ()) ==’ || ¢ == ’\t’)
++yylloc.last_column;

/* Step. */
yylloc.first_line = yylloc.last_line;
yylloc.first_column = yylloc.last_column;

/* Process numbers. */
if (isdigit (<))
{
yylval = ¢ - ’07;
++yylloc.last_column;
while (isdigit (c = getchar ()))
{
++yylloc.last_column;
yylval = yylval * 10 + ¢ - ’0’;
3
ungetc (c, stdin);
return NUM;
b

/* Return end-of-input. */
if (¢ == EOF)
return YYEOQOF;

/* Return a single char, and update location. */
if (c == ’\n’)
{
++yylloc.last_line;
yylloc.last_column = O;
X
else
++yylloc.last_column;
return c;

Basically, the lexical analyzer performs the same processing as before: it skips blanks
and tabs, and reads numbers or single-character tokens. In addition, it updates yylloc,
the global variable (of type YYLTYPE) containing the token’s location.

Now, each time this function returns a token, the parser has its kind as well as its
semantic value, and its location in the text. The last needed change is to initialize yylloc,
for example in the controlling function:

Chapter 2: Examples 40

int

main (void)

{
yylloc.first_line = yylloc.last_line = 1;
yylloc.first_column = yylloc.last_column = O;
return yyparse ();

}

Remember that computing locations is not a matter of syntax. Every character must be
associated to a location update, whether it is in valid input, in comments, in literal strings,
and so on.

2.5 Multi-Function Calculator: mfcalc

Now that the basics of Bison have been discussed, it is time to move on to a more advanced
problem.? The above calculators provided only five functions, ‘+’, ‘=, ‘*’, /" and ‘~’. It
would be nice to have a calculator that provides other mathematical functions such as sin,
cos, etc.

It is easy to add new operators to the infix calculator as long as they are only single-
character literals. The lexical analyzer yylex passes back all nonnumeric characters as
tokens, so new grammar rules suffice for adding a new operator. But we want something
more flexible: built-in functions whose syntax has this form:

function_name (argument)

At the same time, we will add memory to the calculator, by allowing you to create named
variables, store values in them, and use them later. Here is a sample session with the
multi-function calculator:

$ mfcalc

pi = 3.141592653589
= 3.1415926536
sin(pi)

= 0.0000000000
alpha = betal = 2.3
= 2.3000000000
alpha

= 2.3000000000
1n(alpha)

= 0.8329091229
exp(1ln(betal))

= 2.3000000000

$

Note that multiple assignment and nested function calls are permitted.

2.5.1 Declarations for mfcalc

Here are the C and Bison declarations for the multi-function calculator.

3 The sources of mfcalc are available as examples/c/mfcalc.

Chapter 2: Examples 41

i
#include <stdio.h> /* For printf, etc. */
#include <math.h> /* For pow, used in the grammar. */
#include "calc.h" /* Contains definition of ’symrec’. */
int yylex (void);
void yyerror (char const *);

h}

%define api.value.type union /* Generate YYSTYPE from these types: */
Jitoken <double> NUM /* Double precision number. */

%token <symrec*> VAR FUN /* Symbol table pointer: variable/function. */
/nterm <double> exp

%precedence ’=’

%1eft Y- 4

%left)% 7/7

Jprecedence NEG /* negation--unary minus */
hright °°° /* exponentiation */

The above grammar introduces only two new features of the Bison language. These
features allow semantic values to have various data types (see Section 3.4.2 [More Than
One Value Type], page 58).

The special union value assigned to the %define variable api.value.type specifies that
the symbols are defined with their data types. Bison will generate an appropriate definition
of YYSTYPE to store these values.

Since values can now have various types, it is necessary to associate a type with each
grammar symbol whose semantic value is used. These symbols are NUM, VAR, FUN, and exp.
Their declarations are augmented with their data type (placed between angle brackets). For
instance, values of NUM are stored in double.

The Bison construct %nterm is used for declaring nonterminal symbols, just as %token is
used for declaring token kinds. Previously we did not use %nterm before because nonterminal
symbols are normally declared implicitly by the rules that define them. But exp must be
declared explicitly so we can specify its value type. See Section 3.7.4 [Nonterminal Symbols],
page 74.

2.5.2 Grammar Rules for mfcalc

Here are the grammar rules for the multi-function calculator. Most of them are copied
directly from calc; three rules, those which mention VAR or FUN, are new.

%% /* The grammar follows. */
input:

hempty
| input line

3

Chapter 2: Examples 42

line:

’\n)
| exp ’\n’ { printf ("%.10g\n", $1); }
| error ’\n’ { yyerrok; }
exp:

NUM
| VAR { $$ = $1->value.var; }
| VAR ’=’ exp { $$ = $3; $1->value.var = $3; }
| FUN °(° exp)’ { $$ = $1->value.fun ($3); }
| exp ’+’ exp { $8 = $1 + $3; }
| exp ’-’ exp { 8% = 81 - $3; ¥
| exp ’*’ exp { 8% = 81 * $3; by
| exp ’/’ exp { 8% =81 / $3; }
| >-’ exp Yprec NEG { $$ = -$2; +
| exp >’ exp { 8% = pow (31, $3); by
| > exp ’)’ { $$ = $2; }

/* End of grammar. */

/YA

2.5.3 The mfcalc Symbol Table

The multi-function calculator requires a symbol table to keep track of the names and mean-
ings of variables and functions. This doesn’t affect the grammar rules (except for the
actions) or the Bison declarations, but it requires some additional C functions for support.

The symbol table itself consists of a linked list of records. Its definition, which is kept in
the header calc.h, is as follows. It provides for either functions or variables to be placed
in the table.

/* Function type. */
typedef double (func_t) (double);

/* Data type for links in the chain of symbols. */
struct symrec

{
char *name; /* name of symbol */
int type; /* type of symbol: either VAR or FUN */
union
{
double var; /* value of a VAR *x/
func_t *fun; /* value of a FUN */
} value;

struct symrec *next; /* link field */

Chapter 2: Examples 43

typedef struct symrec symrec;

/* The symbol table: a chain of ’struct symrec’. */
extern symrec *sym_table;

symrec *putsym (char const *name, int sym_type);
symrec *getsym (char const *name);
The new version of main will call init_table to initialize the symbol table:

struct init

{
char const *name;
func_t *fun;

}s

struct init const funs[] =

{
{ "atan", atan 1},
{ "cos", cos 1},
{ "exp", exp 1},
{ "ln", log 3},
{ "sin", sin 1},
{ "sqrt", sqrt },
{0, 01},

};

/* The symbol table: a chain of ’struct symrec’. */
symrec *sym_table;

/* Put functions in table. */
static void
init_table (void)

{
for (int i = 0; funs[i].name; i++)
{
symrec *ptr = putsym (funs[i].name, FUN);
ptr->value.fun = funs[i].fun;
}
}

By simply editing the initialization list and adding the necessary include files, you can
add additional functions to the calculator.

Two important functions allow look-up and installation of symbols in the symbol table.
The function putsym is passed a name and the kind (VAR or FUN) of the object to be installed.
The object is linked to the front of the list, and a pointer to the object is returned. The
function getsym is passed the name of the symbol to look up. If found, a pointer to that
symbol is returned; otherwise zero is returned.

Chapter 2: Examples

/* The mfcalc code assumes that malloc and realloc

always succeed, and that integer calculations
never overflow. Production-quality code should
not make these assumptions. */

#include <assert.h>
#include <stdlib.h> /* malloc, realloc. */
#include <string.h> /* strlen. */

symrec *
putsym (char const *name, int sym_type)

{

symrec *res = (symrec *) malloc (sizeof (symrec));
res->name = strdup (name);

res->type = sym_type;

res->value.var = 0; /* Set value to O even if fun.
res->next = sym_table;

sym_table = res;

return res;

symrec
getsym (char const *name)

{

¥

for (symrec *p = sym_table; p; p = p->next)
if (strcmp (p->name, name) == 0)
return p;
return NULL;

2.5.4 The mfcalc Lexer

The function yylex must now recognize variables, numeric values, and the single-character
arithmetic operators. Strings of alphanumeric characters with a leading letter are recognized

as either variables or functions depending on what the symbol table says about them.

*/

44

The string is passed to getsym for look up in the symbol table. If the name appears in
the table, a pointer to its location and its type (VAR or FUN) is returned to yyparse. If it
is not already in the table, then it is installed as a VAR using putsym. Again, a pointer and
its type (which must be VAR) is returned to yyparse.

No change is needed in the handling of numeric values and arithmetic operators in yylex.

#include <ctype.h>
#include <stddef.h>

Chapter 2: Examples 45

int
yylex (void)
{
int ¢ = getchar (O);

/* Ignore white space, get first nonwhite character. */
while (c ==’ 7 || c == ’\t’)
c = getchar ();

if (¢ == EOF)
return YYEQOF;

/* Char starts a number => parse the number. */
if (c == ’.’ || isdigit (c))
{
ungetc (c, stdin);
if (scanf ("%1f", &yylval.NUM) != 1)
abort ();
return NUM;
}

Bison generated a definition of YYSTYPE with a member named NUM to store value of NUM
symbols.

/* Char starts an identifier => read the name. */
if (isalpha (c))
{
static ptrdiff_t bufsize = O;
static char *symbuf = 0;
ptrdiff_t i = O;

do
{
/* If buffer is full, make it bigger. */
if (bufsize <= i)
{
bufsize = 2 *x bufsize + 40;
symbuf = realloc (symbuf, (size_t) bufsize);
}
/* Add this character to the buffer. */
symbuf [i++] = (char) c;
/* Get another character. */
c = getchar (O;
}

while (isalnum (c));

ungetc (c, stdin);
symbuf [i] = ’\0’;

Chapter 2: Examples 46

symrec *s = getsym (symbuf);
if (!s)
s = putsym (symbuf, VAR);
yylval.VAR = s; /* or yylval.FUN = s. */
return s—->type;

}

/* Any other character is a token by itself. */
return c;

}
2.5.5 The mfcalc Main

The error reporting function is unchanged, and the new version of main includes a call to
init_table and sets the yydebug on user demand (See Section 8.5 [Tracing Your Parser|,
page 149, for details):

/* Called by yyparse on error. */
void yyerror (char const *s)
{
fprintf (stderr, "%s\n", s);
}

int main (int argc, char const* argvl[])
{
/* Enable parse traces on option -p. */
if (argc == 2 && strcmp(argv[i], "-p") == 0)
yydebug = 1;
init_table Q;
return yyparse ();

by

This program is both powerful and flexible. You may easily add new functions, and it
is a simple job to modify this code to install predefined variables such as pi or e as well.

2.6 Exercises

1. Add some new functions from math.h to the initialization list.

2. Add another array that contains constants and their values. Then modify init_table
to add these constants to the symbol table. It will be easiest to give the constants type
VAR.

3. Make the program report an error if the user refers to an uninitialized variable in any
way except to store a value in it.

47

3 Bison Grammar Files

Bison takes as input a context-free grammar specification and produces a C-language func-
tion that recognizes correct instances of the grammar.

The Bison grammar file conventionally has a name ending in ‘.y’. See Chapter 9 [In-
voking Bison|, page 154.

3.1 Outline of a Bison Grammar

A Bison grammar file has four main sections, shown here with the appropriate delimiters:

hi

Prologue

%}

Bison declarations

Dot
Grammar rules

oo

Epilogue
Comments enclosed in ‘//* ... */’ may appear in any of the sections. As a GNU exten-
sion, ‘//’ introduces a comment that continues until end of line.

3.1.1 The prologue

The Prologue section contains macro definitions and declarations of functions and variables
that are used in the actions in the grammar rules. These are copied to the beginning of
the parser implementation file so that they precede the definition of yyparse. You can use
‘#include’ to get the declarations from a header file. If you don’t need any C declarations,
you may omit the ‘%{’ and ‘%4}’ delimiters that bracket this section.

The Prologue section is terminated by the first occurrence of ‘%}’ that is outside a
comment, a string literal, or a character constant.

You may have more than one Prologue section, intermixed with the Bison declarations.
This allows you to have C and Bison declarations that refer to each other. For example, the
%union declaration may use types defined in a header file, and you may wish to prototype
functions that take arguments of type YYSTYPE. This can be done with two Prologue blocks,
one before and one after the %union declaration.

hi
#define _GNU_SOURCE
#include <stdio.h>
#include "ptypes.h"
%}

%union {

long n;

tree t; /* tree is defined in ptypes.h. */
}

Chapter 3: Bison Grammar Files 48

i
static void print_token (yytoken_kind_t token, YYSTYPE val);
h}

When in doubt, it is usually safer to put prologue code before all Bison declarations,
rather than after. For example, any definitions of feature test macros like _GNU_SOURCE or
_POSIX_C_SOURCE should appear before all Bison declarations, as feature test macros can
affect the behavior of Bison-generated #include directives.

3.1.2 Prologue Alternatives

The functionality of Prologue sections can often be subtle and inflexible. As an alternative,
Bison provides a %code directive with an explicit qualifier field, which identifies the purpose
of the code and thus the location(s) where Bison should generate it. For C/C++, the qualifier
can be omitted for the default location, or it can be one of requires, provides, top. See
Section 3.7.15 [%code Summary]|, page 95.

Look again at the example of the previous section:

hi
#define _GNU_SOURCE
#include <stdio.h>
#include "ptypes.h"

ht
Y%union {
long n;
tree t; /* tree is defined in ptypes.h. */
}
YA
static void print_token (yytoken_kind_t token, YYSTYPE val);
%t

Notice that there are two Prologue sections here, but there’s a subtle distinction between
their functionality. For example, if you decide to override Bison’s default definition for
YYLTYPE, in which Prologue section should you write your new definition?! You should
write it in the first since Bison will insert that code into the parser implementation file
before the default YYLTYPE definition. In which Prologue section should you prototype an
internal function, trace_token, that accepts YYLTYPE and yytoken_kind_t as arguments?
You should prototype it in the second since Bison will insert that code after the YYLTYPE
and yytoken_kind_t definitions.

1 However, defining YYLTYPE via a C macro is not the recommended way. See Section 3.5.1 [Data Type of
Locations], page 67

Chapter 3: Bison Grammar Files 49

This distinction in functionality between the two Prologue sections is established by the
appearance of the %union between them. This behavior raises a few questions. First, why
should the position of a %union affect definitions related to YYLTYPE and yytoken_kind_t?
Second, what if there is no %union? In that case, the second kind of Prologue section is
not available. This behavior is not intuitive.

To avoid this subtle %union dependency, rewrite the example using a %code top and an
unqualified %code. Let’s go ahead and add the new YYLTYPE definition and the trace_token
prototype at the same time:

%code top {
#define _GNU_SOURCE
#include <stdio.h>

/* WARNING: The following code really belongs
* in a ’Jcode requires’; see below. */

#include "ptypes.h"
#define YYLTYPE YYLTYPE
typedef struct YYLTYPE
{
int first_line;
int first_column;
int last_line;
int last_column;
char *filename;
} YYLTYPE;
}

%union {

long n;

tree t; /* tree is defined in ptypes.h. */
}

hcode {
static void print_token (yytoken_kind_t token, YYSTYPE val);
static void trace_token (yytoken_kind_t token, YYLTYPE loc);
}

In this way, %code top and the unqualified %,code achieve the same functionality as the two
kinds of Prologue sections, but it’s always explicit which kind you intend. Moreover, both
kinds are always available even in the absence of %union.

The %code top block above logically contains two parts. The first two lines before the
warning need to appear near the top of the parser implementation file. The first line after the
warning is required by YYSTYPE and thus also needs to appear in the parser implementation
file. However, if you've instructed Bison to generate a parser header file (see Section 3.7.13
[Bison Declaration Summary], page 81), you probably want that line to appear before the

Chapter 3: Bison Grammar Files 50

YYSTYPE definition in that header file as well. The YYLTYPE definition should also appear
in the parser header file to override the default YYLTYPE definition there.

In other words, in the %code top block above, all but the first two lines are dependency
code required by the YYSTYPE and YYLTYPE definitions. Thus, they belong in one or more
%code requires

%code top {
#define _GNU_SOURCE
#include <stdio.h>

%code requires {
#include "ptypes.h"
}
Junion {
long n;
tree t; /* tree is defined in ptypes.h. */
}

%code requires {

#define YYLTYPE YYLTYPE
typedef struct YYLTYPE
{

int first_line;

int first_column;

int last_line;

int last_column;

char *filename;

} YYLTYPE;
3
%hcode {
static void print_token (yytoken_kind_t token, YYSTYPE val);
static void trace_token (yytoken_kind_t token, YYLTYPE loc);
3

Now Bison will insert #include "ptypes.h" and the new YYLTYPE definition before the
Bison-generated YYSTYPE and YYLTYPE definitions in both the parser implementation file
and the parser header file. (By the same reasoning, %code requires would also be the
appropriate place to write your own definition for YYSTYPE.)

When you are writing dependency code for YYSTYPE and YYLTYPE, you should prefer
%code requires over %code top regardless of whether you instruct Bison to generate a
parser header file. When you are writing code that you need Bison to insert only into the
parser implementation file and that has no special need to appear at the top of that file, you
should prefer the unqualified %code over %code top. These practices will make the purpose
of each block of your code explicit to Bison and to other developers reading your grammar

Chapter 3: Bison Grammar Files 51

file. Following these practices, we expect the unqualified %code and %code requires to be
the most important of the four Prologue alternatives.

At some point while developing your parser, you might decide to provide trace_token
to modules that are external to your parser. Thus, you might wish for Bison to insert
the prototype into both the parser header file and the parser implementation file. Since
this function is not a dependency required by YYSTYPE or YYLTYPE, it doesn’t make sense to
move its prototype to a J,code requires. More importantly, since it depends upon YYLTYPE
and yytoken_kind_t, %code requires is not sufficient. Instead, move its prototype from
the unqualified %code to a %code provides:

%icode top {
#define _GNU_SOURCE
#include <stdio.h>

¥

%icode requires {
#include "ptypes.h"
}
%union {
long n;
tree t; /* tree is defined in ptypes.h. */
}

%code requires {
#define YYLTYPE YYLTYPE
typedef struct YYLTYPE
{
int first_line;
int first_column;
int last_line;
int last_column;
char *filename;
} YYLTYPE;
}

%icode provides {
void trace_token (yytoken_kind_t token, YYLTYPE loc);
}

%code {
static void print_token (FILE *file, int token, YYSTYPE val);
}

Bison will insert the trace_token prototype into both the parser header file and the parser
implementation file after the definitions for yytoken_kind_t, YYLTYPE, and YYSTYPE.

Chapter 3: Bison Grammar Files 52

The above examples are careful to write directives in an order that reflects the layout of
the generated parser implementation and header files: %code top, %code requires, %code
provides, and then %code. While your grammar files may generally be easier to read if
you also follow this order, Bison does not require it. Instead, Bison lets you choose an
organization that makes sense to you.

You may declare any of these directives multiple times in the grammar file. In that case,
Bison concatenates the contained code in declaration order. This is the only way in which
the position of one of these directives within the grammar file affects its functionality.

The result of the previous two properties is greater flexibility in how you may organize
your grammar file. For example, you may organize semantic-type-related directives by
semantic type:

%code requires { #include "typel.h" }

%union { typel fieldl; }

%destructor { typel_free (3); } <fieldl>
Jprinter { typel_print (yyo, $$); } <fieldl>

%code requires { #include "type2.h" }

%union { type2 field2; }

%destructor { type2_free (3); } <field2>
hprinter { type2_print (yyo, $$); } <field2>

You could even place each of the above directive groups in the rules section of the grammar
file next to the set of rules that uses the associated semantic type. (In the rules section, you
must terminate each of those directives with a semicolon.) And you don’t have to worry
that some directive (like a %union) in the definitions section is going to adversely affect
their functionality in some counter-intuitive manner just because it comes first. Such an
organization is not possible using Prologue sections.

This section has been concerned with explaining the advantages of the four Prologue
alternatives over the original Yacc Prologue. However, in most cases when using these
directives, you shouldn’t need to think about all the low-level ordering issues discussed
here. Instead, you should simply use these directives to label each block of your code
according to its purpose and let Bison handle the ordering. %code is the most generic label.
Move code to %code requires, %code provides, or j%code top as needed.

3.1.3 The Bison Declarations Section

The Bison declarations section contains declarations that define terminal and nonterminal
symbols, specify precedence, and so on. In some simple grammars you may not need any
declarations. See Section 3.7 [Bison Declarations|, page 71.

3.1.4 The Grammar Rules Section

The grammar rules section contains one or more Bison grammar rules, and nothing else.
See Section 3.3 [Grammar Rules|, page 55.

There must always be at least one grammar rule, and the first ‘%%’ (which precedes the
grammar rules) may never be omitted even if it is the first thing in the file.

Chapter 3: Bison Grammar Files 53

3.1.5 The epilogue

The Epilogue is copied verbatim to the end of the parser implementation file, just as the
Prologue is copied to the beginning. This is the most convenient place to put anything that
you want to have in the parser implementation file but which need not come before the
definition of yyparse. For example, the definitions of yylex and yyerror often go here.
Because C requires functions to be declared before being used, you often need to declare
functions like yylex and yyerror in the Prologue, even if you define them in the Epilogue.
See Chapter 4 [Parser C-Language Interface], page 99.

If the last section is empty, you may omit the ‘%%’ that separates it from the grammar
rules.

The Bison parser itself contains many macros and identifiers whose names start with
‘yy’ or ‘YY’, so it is a good idea to avoid using any such names (except those documented
in this manual) in the epilogue of the grammar file.

3.2 Symbols, Terminal and Nonterminal

Symbols in Bison grammars represent the grammatical classifications of the language.

A terminal symbol (also known as a token kind) represents a class of syntactically
equivalent tokens. You use the symbol in grammar rules to mean that a token in that class
is allowed. The symbol is represented in the Bison parser by a numeric code, and the yylex
function returns a token kind code to indicate what kind of token has been read. You don’t
need to know what the code value is; you can use the symbol to stand for it.

A nonterminal symbol stands for a class of syntactically equivalent groupings. The
symbol name is used in writing grammar rules. By convention, it should be all lower case.

Symbol names can contain letters, underscores, periods, and non-initial digits and
dashes. Dashes in symbol names are a GNU extension, incompatible with POSIX Yacc.
Periods and dashes make symbol names less convenient to use with named references,
which require brackets around such names (see Section 3.6 [Named References], page 70).
Terminal symbols that contain periods or dashes make little sense: since they are not valid
symbols (in most programming languages) they are not exported as token names.

There are three ways of writing terminal symbols in the grammar:

e A named token kind is written with an identifier, like an identifier in C. By convention,
it should be all upper case. Each such name must be defined with a Bison declaration
such as %token. See Section 3.7.2 [Token Kind Names]|, page 72.

e A character token kind (or literal character token) is written in the grammar using the
same syntax used in C for character constants; for example, >+’ is a character token
kind. A character token kind doesn’t need to be declared unless you need to specify its
semantic value data type (see Section 3.4.1 [Data Types of Semantic Values|, page 57),
associativity, or precedence (see Section 5.3 [Operator Precedence], page 115).

By convention, a character token kind is used only to represent a token that consists of
that particular character. Thus, the token kind ’+’ is used to represent the character
‘+’ as a token. Nothing enforces this convention, but if you depart from it, your program
will confuse other readers.

All the usual escape sequences used in character literals in C can be used in Bison
as well, but you must not use the null character as a character literal because its

Chapter 3: Bison Grammar Files 54

numeric code, zero, signifies end-of-input (see Section 4.3.1 [Calling Convention for
yylex], page 101). Also, unlike standard C, trigraphs have no special meaning in
Bison character literals, nor is backslash-newline allowed.

o A literal string token is written like a C string constant; for example, "<=" is a literal
string token. A literal string token doesn’t need to be declared unless you need to
specify its semantic value data type (see Section 3.4.1 [Data Types of Semantic Values],
page 57), associativity, or precedence (see Section 5.3 [Operator Precedence|, page 115).

You can associate the literal string token with a symbolic name as an alias, using the
%itoken declaration (see Section 3.7.2 [Token Kind Names], page 72). If you don’t do
that, the lexical analyzer has to retrieve the token code for the literal string token from
the yytname table (see Section 4.3.1 [Calling Convention for yylex], page 101).

Warning: literal string tokens do not work in Yacc.

By convention, a literal string token is used only to represent a token that consists
of that particular string. Thus, you should use the token kind "<=" to represent the
string ‘<=’ as a token. Bison does not enforce this convention, but if you depart from
it, people who read your program will be confused.

All the escape sequences used in string literals in C can be used in Bison as well,
except that you must not use a null character within a string literal. Also, unlike
Standard C, trigraphs have no special meaning in Bison string literals, nor is backslash-
newline allowed. A literal string token must contain two or more characters; for a token
containing just one character, use a character token (see above).

How you choose to write a terminal symbol has no effect on its grammatical meaning.
That depends only on where it appears in rules and on when the parser function returns
that symbol.

The value returned by yylex is always one of the terminal symbols, except that a zero
or negative value signifies end-of-input. Whichever way you write the token kind in the
grammar rules, you write it the same way in the definition of yylex. The numeric code
for a character token kind is simply the positive numeric code of the character, so yylex
can use the identical value to generate the requisite code, though you may need to convert
it to unsigned char to avoid sign-extension on hosts where char is signed. Each named
token kind becomes a C macro in the parser implementation file, so yylex can use the name
to stand for the code. (This is why periods don’t make sense in terminal symbols.) See
Section 4.3.1 [Calling Convention for yylex]|, page 101.

If yylex is defined in a separate file, you need to arrange for the token-kind definitions
to be available there. Use the -d option when you run Bison, so that it will write these
definitions into a separate header file name.tab.h which you can include in the other source
files that need it. See Chapter 9 [Invoking Bison|, page 154.

If you want to write a grammar that is portable to any Standard C host, you must use
only nonnull character tokens taken from the basic execution character set of Standard C.
This set consists of the ten digits, the 52 lower- and upper-case English letters, and the
characters in the following C-language string;:

"\a\b\t\n\v\f\r '\"#%&’ OQO*+,-./:;<=>?2[\\1"_{|}~"

The yylex function and Bison must use a consistent character set and encoding for char-
acter tokens. For example, if you run Bison in an ASCII environment, but then compile

Chapter 3: Bison Grammar Files 55

and run the resulting program in an environment that uses an incompatible character set
like EBCDIC, the resulting program may not work because the tables generated by Bison
will assume ASCII numeric values for character tokens. It is standard practice for software
distributions to contain C source files that were generated by Bison in an ASCII environ-
ment, so installers on platforms that are incompatible with ASCII must rebuild those files
before compiling them.

The symbol error is a terminal symbol reserved for error recovery (see Chapter 6 [Error
Recovery], page 131); you shouldn’t use it for any other purpose. In particular, yylex
should never return this value. The default value of the error token is 256, unless you
explicitly assigned 256 to one of your tokens with a %token declaration.

3.3 Grammar Rules

A Bison grammar is a list of rules.

3.3.1 Syntax of Grammar Rules
A Bison grammar rule has the following general form:
result: components...;

where result is the nonterminal symbol that this rule describes, and components are var-
ious terminal and nonterminal symbols that are put together by this rule (see Section 3.2
[Symbols, Terminal and Nonterminal], page 53).

For example,
exp: exp '+’ exp;

says that two groupings of type exp, with a ‘+’ token in between, can be combined into a
larger grouping of type exp.

White space in rules is significant only to separate symbols. You can add extra white
space as you wish.

Scattered among the components can be actions that determine the semantics of the
rule. An action looks like this:

{C statements}

This is an example of braced code, that is, C code surrounded by braces, much like a
compound statement in C. Braced code can contain any sequence of C tokens, so long as
its braces are balanced. Bison does not check the braced code for correctness directly; it
merely copies the code to the parser implementation file, where the C compiler can check
it.

Within braced code, the balanced-brace count is not affected by braces within comments,
string literals, or character constants, but it is affected by the C digraphs ‘<%’ and ‘%>’ that
represent braces. At the top level braced code must be terminated by ‘}’ and not by a
digraph. Bison does not look for trigraphs, so if braced code uses trigraphs you should
ensure that they do not affect the nesting of braces or the boundaries of comments, string
literals, or character constants.

Usually there is only one action and it follows the components. See Section 3.4.6 [Ac-
tions]|, page 60.

Chapter 3: Bison Grammar Files 56

Multiple rules for the same result can be written separately or can be joined with the
vertical-bar character ‘|’ as follows:

result:
rulel-components. ..
| rule2-components. ..

b

They are still considered distinct rules even when joined in this way.

3.3.2 Empty Rules

A rule is said to be empty if its right-hand side (components) is empty. It means that result
in the previous example can match the empty string. As another example, here is how to
define an optional semicolon:

semicolon.opt: | ";";

It is easy not to see an empty rule, especially when | is used. The %empty directive allows
to make explicit that a rule is empty on purpose:

semicolon.opt:
%hempty
I n ; n
Flagging a non-empty rule with J%empty is an error. If run with -Wempty-rule, bison

will report empty rules without %empty. Using %empty enables this warning, unless -Wno-
empty-rule was specified.

The %empty directive is a Bison extension, it does not work with Yacc. To remain
compatible with POSIX Yacc, it is customary to write a comment ‘/* empty */’ in each
rule with no components:

semicolon.opt:
/* empty */

I n.n
)

I

3.3.3 Recursive Rules

A rule is called recursive when its result nonterminal appears also on its right hand side.
Nearly all Bison grammars need to use recursion, because that is the only way to define
a sequence of any number of a particular thing. Consider this recursive definition of a
comma-separated sequence of one or more expressions:

expseql:
exp
| expseql ’,’ exp

Since the recursive use of expseql is the leftmost symbol in the right hand side, we call
this left recursion. By contrast, here the same construct is defined using right recursion:

Chapter 3: Bison Grammar Files 57

expseql:
exp

| exp ’,’ expseql
Any kind of sequence can be defined using either left recursion or right recursion, but you
should always use left recursion, because it can parse a sequence of any number of elements
with bounded stack space. Right recursion uses up space on the Bison stack in proportion
to the number of elements in the sequence, because all the elements must be shifted onto the
stack before the rule can be applied even once. See Chapter 5 [The Bison Parser Algorithm],
page 112, for further explanation of this.

Indirect or mutual recursion occurs when the result of the rule does not appear directly

on its right hand side, but does appear in rules for other nonterminals which do appear on
its right hand side.

For example:
expr:
primary
| primary ’+’ primary

3

primary:
constant
|)(7 expr 7);

defines two mutually-recursive nonterminals, since each refers to the other.

3.4 Defining Language Semantics

The grammar rules for a language determine only the syntax. The semantics are determined
by the semantic values associated with various tokens and groupings, and by the actions
taken when various groupings are recognized.

For example, the calculator calculates properly because the value associated with each
expression is the proper number; it adds properly because the action for the grouping ‘x + y’
is to add the numbers associated with x and y.

3.4.1 Data Types of Semantic Values

In a simple program it may be sufficient to use the same data type for the semantic values
of all language constructs. This was true in the RPN and infix calculator examples (see
Section 2.1 [Reverse Polish Notation Calculator], page 28).

Bison normally uses the type int for semantic values if your program uses the same data
type for all language constructs. To specify some other type, define the %define variable
api.value.type like this:

%define api.value.type {double}
or

%define api.value.type {struct semantic_value_type}

Chapter 3: Bison Grammar Files 58

The value of api.value.type should be a type name that does not contain parentheses
or square brackets.

Alternatively in C, instead of relying of Bison’s %define support, you may rely on the
C preprocessor and define YYSTYPE as a macro:

#define YYSTYPE double

This macro definition must go in the prologue of the grammar file (see Section 3.1 [Outline
of a Bison Grammar|, page 47). If compatibility with POSIX Yacc matters to you, use this.
Note however that Bison cannot know YYSTYPE’s value, not even whether it is defined, so
there are services it cannot provide. Besides this works only for C.

3.4.2 More Than One Value Type

In most programs, you will need different data types for different kinds of tokens and
groupings. For example, a numeric constant may need type int or long, while a string
constant needs type char *, and an identifier might need a pointer to an entry in the
symbol table.

To use more than one data type for semantic values in one parser, Bison requires you to
do two things:

e Specify the entire collection of possible data types. There are several options:
e let Bison compute the union type from the tags you assign to symbols;

e use the %union Bison declaration (see Section 3.4.4 [The Union Declaration],
page 59);

e define the %define variable api.value.type to be a union type whose members
are the type tags (see Section 3.4.5 [Providing a Structured Semantic Value Type],
page 60);

e use a typedef or a #define to define YYSTYPE to be a union type whose member
names are the type tags.

e Choose one of those types for each symbol (terminal or nonterminal) for which seman-
tic values are used. This is done for tokens with the %token Bison declaration (see
Section 3.7.2 [Token Kind Names|, page 72) and for groupings with the %nterm/%type
Bison declarations (see Section 3.7.4 [Nonterminal Symbols|, page 74).

3.4.3 Generating the Semantic Value Type

The special value union of the %define variable api.value.type instructs Bison that the
type tags (used with the %token, %nterm and %type directives) are genuine types, not names
of members of YYSTYPE.

For example:

%hdefine api.value.type union

%token <int> INT "integer"

%token <int> ’n’

Jnterm <int> expr

%token <char const *> ID "identifier"

generates an appropriate value of YYSTYPE to support each symbol type. The name of the
member of YYSTYPE for tokens than have a declared identifier id (such as INT and ID above,

Chapter 3: Bison Grammar Files 59

but not ’n’) is id. The other symbols have unspecified names on which you should not
depend; instead, relying on C casts to access the semantic value with the appropriate type:

/* For an "integer". */
yylval.INT = 42;
return INT;

/* For an ’n’, also declared as int. */
((int)&yylval) = 42;
return ’n’;

/* For an "identifier". x/
yylval.ID = "42";
return ID;

If the %define variable api.token.prefix is defined (see Section 3.7.14 [%define Sum-
mary], page 85), then it is also used to prefix the union member names. For instance, with
‘%define api.token.prefix {TOK_}":

/* For an "integer". */
yylval . TOK_INT = 42;
return TOK_INT;

This Bison extension cannot work if %yacc (or -y/--yacc) is enabled, as POSIX man-
dates that Yacc generate tokens as macros (e.g., ‘#define INT 258’ or ‘#define TOK_INT
258").

A similar feature is provided for C++ that in addition overcomes C++ limitations (that
forbid non-trivial objects to be part of a union): ‘%define api.value.type variant’, see
Section 10.1.4.2 [C++ Variants|, page 171.

3.4.4 The Union Declaration

The %union declaration specifies the entire collection of possible data types for semantic
values. The keyword %union is followed by braced code containing the same thing that goes
inside a union in C.

For example:

%union {
double val;
symrec *tptr;

}

This says that the two alternative types are double and symrec *. They are given names
val and tptr; these names are used in the %token, /nterm and %type declarations to
pick one of the types for a terminal or nonterminal symbol (see Section 3.7.4 [Nonterminal
Symbols|, page 74).

As an extension to POSIX, a tag is allowed after the %union. For example:

%union value {
double val;
symrec *tptr;

3

Chapter 3: Bison Grammar Files 60

specifies the union tag value, so the corresponding C type is union value. If you do not
specify a tag, it defaults to YYSTYPE (see Section 3.7.14 [%define Summary], page 85).

As another extension to POSIX, you may specify multiple %union declarations; their
contents are concatenated. However, only the first %union declaration can specify a tag.

Note that, unlike making a union declaration in C, you need not write a semicolon after
the closing brace.

3.4.5 Providing a Structured Semantic Value Type

Instead of %union, you can define and use your own union type YYSTYPE if your grammar
contains at least one ‘<type>’ tag. For example, you can put the following into a header
file parser.h:

union YYSTYPE {
double val;
symrec *tptr;

s
and then your grammar can use the following instead of %union:
i
#include "parser.h"
ht

%define api.value.type {union YYSTYPE}
Jinterm <val> expr
%htoken <tptr> ID

Actually, you may also provide a struct rather that a union, which may be handy if
you want to track information for every symbol (such as preceding comments).

The type you provide may even be structured and include pointers, in which case the
type tags you provide may be composite, with ‘.’ and ‘->’ operators.

3.4.6 Actions

An action accompanies a syntactic rule and contains C code to be executed each time an
instance of that rule is recognized. The task of most actions is to compute a semantic value
for the grouping built by the rule from the semantic values associated with tokens or smaller
groupings.

An action consists of braced code containing C statements, and can be placed at any
position in the rule; it is executed at that position. Most rules have just one action at the
end of the rule, following all the components. Actions in the middle of a rule are tricky and
used only for special purposes (see Section 3.4.8 [Actions in Midrule], page 62).

The C code in an action can refer to the semantic values of the components matched
by the rule with the construct $n, which stands for the value of the nth component. The
semantic value for the grouping being constructed is $$. In addition, the semantic values
of symbols can be accessed with the named references construct $name or $[name]. Bison
translates both of these constructs into expressions of the appropriate type when it copies
the actions into the parser implementation file. $$ (or $name, when it stands for the current
grouping) is translated to a modifiable lvalue, so it can be assigned to.

Chapter 3: Bison Grammar Files 61

Here is a typical example:

exp:

| exp ’+’ exp {8 =3%1+383; }
Or, in terms of named references:

expl[result]:

| exp[left] ’+’ explright] { $result = $left + $right; }

This rule constructs an exp from two smaller exp groupings connected by a plus-sign token.
In the action, $1 and $3 ($left and $right) refer to the semantic values of the two
component exp groupings, which are the first and third symbols on the right hand side of
the rule. The sum is stored into $$ ($result) so that it becomes the semantic value of
the addition-expression just recognized by the rule. If there were a useful semantic value
associated with the ‘+’ token, it could be referred to as $2.

See Section 3.6 [Named References|, page 70, for more information about using the
named references construct.

Note that the vertical-bar character ‘|’ is really a rule separator, and actions are attached
to a single rule. This is a difference with tools like Flex, for which ‘|’ stands for either “or”,
or “the same action as that of the next rule”. In the following example, the action is
triggered only when ‘b’ is found:

a-or-b: ’a’|’b’ { a_or_b_found = 1; };

If you don’t specify an action for a rule, Bison supplies a default: $$ = $1. Thus, the
value of the first symbol in the rule becomes the value of the whole rule. Of course, the
default action is valid only if the two data types match. There is no meaningful default
action for an empty rule; every empty rule must have an explicit action unless the rule’s
value does not matter.

$n with n zero or negative is allowed for reference to tokens and groupings on the stack
before those that match the current rule. This is a very risky practice, and to use it reliably
you must be certain of the context in which the rule is applied. Here is a case in which you
can use this reliably:

foo:

expr bar '+’ expr { ... }
| expr bar ’-’ expr { ... }
bar:

hempty { previous_expr = $0; }
As long as bar is used only in the fashion shown here, $0 always refers to the expr which
precedes bar in the definition of foo.

It is also possible to access the semantic value of the lookahead token, if any, from a
semantic action. This semantic value is stored in yylval. See Section 4.5 [Special Features
for Use in Actions], page 108.

Chapter 3: Bison Grammar Files 62

3.4.7 Data Types of Values in Actions

If you have chosen a single data type for semantic values, the $$ and $n constructs always
have that data type.

If you have used %union to specify a variety of data types, then you must declare a
choice among these types for each terminal or nonterminal symbol that can have a semantic
value. Then each time you use $$ or $n, its data type is determined by which symbol it
refers to in the rule. In this example,

exp:

| exp ’+’ exp { %% =3%1+83; }
$1 and $3 refer to instances of exp, so they all have the data type declared for the nonter-

minal symbol exp. If $2 were used, it would have the data type declared for the terminal
symbol ’+’, whatever that might be.

Alternatively, you can specify the data type when you refer to the value, by inserting
‘<type>’ after the ‘¢’ at the beginning of the reference. For example, if you have defined
types as shown here:

%union {
int itype;
double dtype;
3

then you can write $<itype>1 to refer to the first subunit of the rule as an integer, or
$<dtype>1 to refer to it as a double.

3.4.8 Actions in Midrule

Occasionally it is useful to put an action in the middle of a rule. These actions are written
just like usual end-of-rule actions, but they are executed before the parser even recognizes
the following components.

3.4.8.1 Using Midrule Actions

A midrule action may refer to the components preceding it using $n, but it may not refer
to subsequent components because it is run before they are parsed.

The midrule action itself counts as one of the components of the rule. This makes a
difference when there is another action later in the same rule (and usually there is another
at the end): you have to count the actions along with the symbols when working out which
number n to use in $n.

The midrule action can also have a semantic value. The action can set its value with
an assignment to $$, and actions later in the rule can refer to the value using $n. Since
there is no symbol to name the action, there is no way to declare a data type for the value
in advance, so you must use the ‘$<...>n’ construct to specify a data type each time you
refer to this value.

There is no way to set the value of the entire rule with a midrule action, because assign-
ments to $$ do not have that effect. The only way to set the value for the entire rule is
with an ordinary action at the end of the rule.

Chapter 3: Bison Grammar Files 63

Here is an example from a hypothetical compiler, handling a 1let statement that looks like
‘let (variable) statement’ and serves to create a variable named variable temporarily
for the duration of statement. To parse this construct, we must put variable into the symbol
table while statement is parsed, then remove it afterward. Here is how it is done:

stmt:
"let" °(’ var)’
{
$<context>$ = push_context (O ;
declare_variable ($3);
}
stmt
{
$$ = $6;
pop_context ($<context>5);
}

As soon as ‘let (variable)’ has been recognized, the first action is run. It saves a copy
of the current semantic context (the list of accessible variables) as its semantic value, using
alternative context in the data-type union. Then it calls declare_variable to add the
new variable to that list. Once the first action is finished, the embedded statement stmt
can be parsed.

Note that the midrule action is component number 5, so the ‘stmt’ is component num-
ber 6. Named references can be used to improve the readability and maintainability (see
Section 3.6 [Named References|, page 70):

stmt:
"let" °(’ var)’
{
$<context>let = push_context ();
declare_variable ($3);
}[1et]
stmt
{
$$ = $6;
pop_context ($<context>let);
}

After the embedded statement is parsed, its semantic value becomes the value of the
entire let-statement. Then the semantic value from the earlier action is used to restore
the prior list of variables. This removes the temporary let-variable from the list so that it
won’t appear to exist while the rest of the program is parsed.

Because the types of the semantic values of midrule actions are unknown to Bison, type-
based features (e.g., ‘%printer’, ‘%destructor’) do not work, which could result in memory
leaks. They also forbid the use of the variant implementation of the api.value.type in
C++ (see Section 10.1.4.2 [C++ Variants|, page 171).

See Section 3.4.8.2 [Typed Midrule Actions], page 64, for one way to address this issue,
and Section 3.4.8.3 [Midrule Action Translation], page 64, for another: turning mid-action
actions into regular actions.

Chapter 3: Bison Grammar Files 64

3.4.8.2 Typed Midrule Actions

In the above example, if the parser initiates error recovery (see Chapter 6 [Error Recovery],
page 131) while parsing the tokens in the embedded statement stmt, it might discard the
previous semantic context $<context>5 without restoring it. Thus, $<context>5 needs a
destructor (see Section 3.7.7 [Freeing Discarded Symbols], page 75), and Bison needs the
type of the semantic value (context) to select the right destructor.

As an extension to Yacc’s midrule actions, Bison offers a means to type their semantic
value: specify its type tag (‘<...>" before the midrule action.

Consider the previous example, with an untyped midrule action:

stmt:
"let" > (’ var ’)°
{
$<context>$ = push_context (); // *x*
declare_variable ($3);
}
stmt
{
$$ = $6;
pop_context ($<context>5); /] Fxx
}
If instead you write:
stmt:
"let" °(’ var ’)’
<context>{ /] *xx
$$ = push_context (); /] *xx
declare_variable ($3);
}
stmt
{
$$ = $6;
pop_context ($5); /] Fxk
}

then %printer and %destructor work properly (no more leaks!), C++ variants can be
used, and redundancy is reduced (<context> is specified once).

3.4.8.3 Midrule Action Translation

Midrule actions are actually transformed into regular rules and actions. The various reports
generated by Bison (textual, graphical, etc., see Section 8.2 [Understanding Your Parser],
page 139) reveal this translation, best explained by means of an example. The following
rule:

exp: { aQ; """ { cO; ¥ {dO; } "e" { £0O; };
is translated into:

$e1: Y%empty { a(Q); I;
$02: %empty { cQ; 3};

Chapter 3: Bison Grammar Files 65

$03: Yempty { dO; I};
exp: $@1 "b" $02 $@3 "e" { £(); I};

with new nonterminal symbols $@n, where n is a number.

A midrule action is expected to generate a value if it uses $$, or the (final) action uses
$n where n denote the midrule action. In that case its nonterminal is rather named @n:

exp: { a0; } "b" { 8 =cO; ¥ {dO; ¥ "e" { £ =$1; };
is translated into

@1: Y%empty { aQ; ¥};

02: Y%empty { $$ = cO; };

$@3: Y%empty { dO); I};

exp: @1 "b" @2 $@3 "e" { f = $1; }

There are probably two errors in the above example: the first midrule action does not
generate a value (it does not use $$ although the final action uses it), and the value of the
second one is not used (the final action does not use $3). Bison reports these errors when
the midrule-value warnings are enabled (see Chapter 9 [Invoking Bison], page 154):

$ bison -Wmidrule-value mid.y
mid.y:2.6-13: warning: unset value: $$

2 | exp: {a0; } "b" {$$ =cO; ¥ {ad0; ¥ "e" { £ = $1; };
| e
mid.y:2.19-31: warning: unused value: $3
2 | exp: {aO; > "0" {$$=cO; T {dO; ¥} "e" { £ = $1; };

It is sometimes useful to turn midrule actions into regular actions, e.g., to factor them,
or to escape from their limitations. For instance, as an alternative to typed midrule action,
you may bury the midrule action inside a nonterminal symbol and to declare a printer and
a destructor for that symbol:

Jnterm <context> let
%destructor { pop_context ($$); } let
%printer { print_context (yyo, $$); } let

oo

stmt:
let stmt
{
$$ = $2;
pop_context ($let);
+;

Chapter 3: Bison Grammar Files 66

let:
"let" ’(’ var ’)’
{
$let = push_context (O);
declare_variable ($var);

};

3.4.8.4 Conflicts due to Midrule Actions

Taking action before a rule is completely recognized often leads to conflicts since the parser
must commit to a parse in order to execute the action. For example, the following two rules,
without midrule actions, can coexist in a working parser because the parser can shift the
open-brace token and look at what follows before deciding whether there is a declaration
or not:

compound:
’{’ declarations statements ’}’
| °{> statements ’}’

But when we add a midrule action as follows, the rules become nonfunctional:

compound :
{ prepare_for_local_variables (); }
’{’> declarations statements ’}’
| ’{’> statements ’}’

Now the parser is forced to decide whether to run the midrule action when it has read no
farther than the open-brace. In other words, it must commit to using one rule or the other,
without sufficient information to do it correctly. (The open-brace token is what is called

the lookahead token at this time, since the parser is still deciding what to do about it. See
Section 5.1 [Lookahead Tokens], page 112.)

You might think that you could correct the problem by putting identical actions into
the two rules, like this:

compound :
{ prepare_for_local_variables (); }
’{> declarations statements ’}’
| { prepare_for_local_variables (); }
’{’> statements ’}’

But this does not help, because Bison does not realize that the two actions are identical.
(Bison never tries to understand the C code in an action.)

If the grammar is such that a declaration can be distinguished from a statement by the
first token (which is true in C), then one solution which does work is to put the action after
the open-brace, like this:

Chapter 3: Bison Grammar Files 67

compound:
’{> { prepare_for_local_variables (); }
declarations statements ’}’
| °{’> statements ’}’
Now the first token of the following declaration or statement, which would in any case tell
Bison which rule to use, can still do so.

Another solution is to bury the action inside a nonterminal symbol which serves as a
subroutine:

subroutine:
%empty { prepare_for_local_variables (); }

compound :
subroutine ’{’ declarations statements ’}’
| subroutine ’{’ statements ’}’
5
Now Bison can execute the action in the rule for subroutine without deciding which rule
for compound it will eventually use.

3.5 Tracking Locations

Though grammar rules and semantic actions are enough to write a fully functional parser,
it can be useful to process some additional information, especially symbol locations.

The way locations are handled is defined by providing a data type, and actions to take
when rules are matched.

3.5.1 Data Type of Locations

Defining a data type for locations is much simpler than for semantic values, since all tokens
and groupings always use the same type. The location type is specified using ‘%define
api.location.type’:

%define api.location.type {location_t}

This defines, in the C generated code, the YYLTYPE type name. When YYLTYPE is not
defined, Bison uses a default structure type with four members:

typedef struct YYLTYPE
{
int first_line;
int first_column;
int last_line;
int last_column;
} YYLTYPE;

In C, you may also specify the type of locations by defining a macro called YYLTYPE, just
as you can specify the semantic value type by defining a YYSTYPE macro (see Section 3.4.1
[Data Types of Semantic Values|, page 57). However, rather than using macros, we recom-
mend the api.value.type and api.location.type %define variables.

Chapter 3: Bison Grammar Files 68

Default locations represent a range in the source file(s), but this is not a requirement.
It could be a single point or just a line number, or even more complex structures.

When the default location type is used, Bison initializes all these fields to 1 for yylloc at
the beginning of the parsing. To initialize yylloc with a custom location type (or to chose
a different initialization), use the %initial-action directive. See Section 3.7.6 [Performing
Actions before Parsing], page 74.

3.5.2 Actions and Locations

Actions are not only useful for defining language semantics, but also for describing the
behavior of the output parser with locations.

The most obvious way for building locations of syntactic groupings is very similar to
the way semantic values are computed. In a given rule, several constructs can be used to
access the locations of the elements being matched. The location of the nth component of
the right hand side is @n, while the location of the left hand side grouping is @$.

In addition, the named references construct @name and @[name] may also be used to
address the symbol locations. See Section 3.6 [Named References|, page 70, for more infor-
mation about using the named references construct.

Here is a basic example using the default data type for locations:
exp:

| exp /7 exp
{
@$.first_column = @1.first_column;
0$.first_line = @1.first_line;
@$.last_column = @3.last_column;
0$.last_line = @3.last_line;
if ($3)
$$ = $1 / $3;
else
{
$$ = 1;
fprintf (stderr, "%d.%d-%d.%d: division by zero",
@3.first_line, @3.first_column,
@3.last_line, @3.last_column);

3

As for semantic values, there is a default action for locations that is run each time a rule
is matched. It sets the beginning of @$ to the beginning of the first symbol, and the end of
@$ to the end of the last symbol.

With this default action, the location tracking can be fully automatic. The example
above simply rewrites this way:

Chapter 3: Bison Grammar Files 69

exp:
| exp /7 exp
{
if ($3)
$$ = $1 / $3;
else
{
$$ = 1;
fprintf (stderr, "%d.%d-%d.%d: division by zero",
@3.first_line, @3.first_column,
@3.last_line, @3.last_column);
}
}

It is also possible to access the location of the lookahead token, if any, from a semantic
action. This location is stored in yylloc. See Section 4.5 [Special Features for Use in
Actions|, page 108.

3.5.3 Printing Locations

When using the default location type, the debug traces report the symbols’ location. The
generated parser does so using the YYLOCATION_PRINT macro.

YYLOCATION_PRINT (file, loc); [Macro]
When traces are enabled, print loc (of type ‘YYLTYPE const *’) on file (of type ‘FILE
*’). Do nothing when traces are disabled, or if the location type is user defined.

To get locations in the debug traces with your user-defined location types, define the
YYLOCATION_PRINT macro. For instance:

#define YYLOCATION_PRINT location_print

3.5.4 Default Action for Locations

Actually, actions are not the best place to compute locations. Since locations are much
more general than semantic values, there is room in the output parser to redefine the
default action to take for each rule. The YYLLOC_DEFAULT macro is invoked each time a
rule is matched, before the associated action is run. It is also invoked while processing a
syntax error, to compute the error’s location. Before reporting an unresolvable syntactic
ambiguity, a GLR parser invokes YYLLOC_DEFAULT recursively to compute the location of
that ambiguity.

Most of the time, this macro is general enough to suppress location dedicated code from
semantic actions.

The YYLLOC_DEFAULT macro takes three parameters. The first one is the location of the
grouping (the result of the computation). When a rule is matched, the second parameter
identifies locations of all right hand side elements of the rule being matched, and the third
parameter is the size of the rule’s right hand side. When a GLR parser reports an ambiguity,
which of multiple candidate right hand sides it passes to YYLLOC_DEFAULT is undefined.
When processing a syntax error, the second parameter identifies locations of the symbols

Chapter 3: Bison Grammar Files 70

that were discarded during error processing, and the third parameter is the number of
discarded symbols.

By default, YYLLOC_DEFAULT is defined this way:

define YYLLOC_DEFAULT(Cur, Rhs, N) \

do \

if (W) \

{ \

(Cur) .first_line = YYRHSLOC(Rhs, 1).first_line; \

(Cur) .first_column = YYRHSLOC(Rhs, 1).first_column; \

(Cur) .last_line = YYRHSLOC(Rhs, N).last_line; \

(Cur) .last_column = YYRHSLOC(Rhs, N).last_column; \

} \

else \

{ \

(Cur) .first_line = (Cur).last_line = \

YYRHSLOC(Rhs, 0).last_line; \

(Cur) .first_column = (Cur).last_column = \

YYRHSLOC(Rhs, 0).last_column; \

} \
while (0)

where YYRHSLOC (rhs, k) is the location of the kth symbol in rhs when k is positive, and
the location of the symbol just before the reduction when k and n are both zero.

When defining YYLLOC_DEFAULT, you should consider that:

e All arguments are free of side-effects. However, only the first one (the result) should
be modified by YYLLOC_DEFAULT.

e For consistency with semantic actions, valid indexes within the right hand side range
from 1 to n. When n is zero, only 0 is a valid index, and it refers to the symbol just
before the reduction. During error processing n is always positive.

e Your macro should parenthesize its arguments, if need be, since the actual arguments
may not be surrounded by parentheses. Also, your macro should expand to something
that can be used as a single statement when it is followed by a semicolon.

3.6 Named References

As described in the preceding sections, the traditional way to refer to any semantic value
or location is a positional reference, which takes the form $n, 3, @n, and @$. However,
such a reference is not very descriptive. Moreover, if you later decide to insert or remove
symbols in the right-hand side of a grammar rule, the need to renumber such references can
be tedious and error-prone.

To avoid these issues, you can also refer to a semantic value or location using a named
reference. First of all, original symbol names may be used as named references. For example:

invocation: op ’(’ args ’)’
{ $invocation = new_invocation ($op, $args, @invocation); }

Positional and named references can be mixed arbitrarily. For example:

Chapter 3: Bison Grammar Files 71

invocation: op ’(’ args ’)’
{ $$ = new_invocation ($op, $args, @$); }

However, sometimes regular symbol names are not sufficient due to ambiguities:

exp: exp ’/’ exp
{ $exp = $exp / $exp; } // $exp is ambiguous.

exp: exp ’/’ exp
{ $3 = $1 / $exp; } // One usage is ambiguous.

exp: exp '/’ exp

{$$ =917/ $3; } // No error.

When ambiguity occurs, explicitly declared names may be used for values and locations. Ex-
plicit names are declared as a bracketed name after a symbol appearance in rule definitions.
For example:

explresult]: expl[left] ’/’ explright]
{ $result = $left / $right; }

In order to access a semantic value generated by a midrule action, an explicit name may
also be declared by putting a bracketed name after the closing brace of the midrule action
code:

explres]: expl[x] ’+’ {$left = $x;}[left] explright]
{ $res = $left + $right; }

In references, in order to specify names containing dots and dashes, an explicit bracketed
syntax $[name] and @[name] must be used:

if-stmt: "if" ’(’ expr ’)’ "then" then.stmt ’;’
{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); }

It often happens that named references are followed by a dot, dash or other C punctuation
marks and operators. By default, Bison will read ‘$name.suffix’ as a reference to symbol
value $name followed by ‘.suffix’, i.e., an access to the suffix field of the semantic value.
In order to force Bison to recognize ‘name.suffix’ in its entirety as the name of a semantic
value, the bracketed syntax ‘$ [name.suffix]’ must be used.

3.7 Bison Declarations

The Bison declarations section of a Bison grammar defines the symbols used in formulating
the grammar and the data types of semantic values. See Section 3.2 [Symbols, Terminal
and Nonterminal], page 53.

All token kind names (but not single-character literal tokens such as ’+’ and ’*’) must
be declared. Nonterminal symbols must be declared if you need to specify which data type
to use for the semantic value (see Section 3.4.2 [More Than One Value Type], page 58).

The first rule in the grammar file also specifies the start symbol, by default. If you want
some other symbol to be the start symbol, you must declare it explicitly (see Section 1.1
[Languages and Context-Free Grammars|, page 14).

Chapter 3: Bison Grammar Files 72

3.7.1 Require a Version of Bison
You may require the minimum version of Bison to process the grammar. If the requirement
is not met, bison exits with an error (exit status 63).
%require "version"
Some deprecated behaviors are disabled for some required version:

"3.2" (or better)
The C++ deprecated files position.hh and stack.hh are no longer generated.

3.7.2 Token Kind Names

The basic way to declare a token kind name (terminal symbol) is as follows:
Jtoken name

Bison will convert this into a definition in the parser, so that the function yylex (if it is
in this file) can use the name name to stand for this token kind’s code.

Alternatively, you can use %left, Yright, %precedence, or %nonassoc instead of
%itoken, if you wish to specify associativity and precedence. See Section 3.7.3 [Operator
Precedence], page 73. However, for clarity, we recommend to use these directives only to
declare associativity and precedence, and not to add string aliases, semantic types, etc.

You can explicitly specify the numeric code for a token kind by appending a nonnegative
decimal or hexadecimal integer value in the field immediately following the token name:

%token NUM 300

%token XNUM 0x12d // a GNU extension
It is generally best, however, to let Bison choose the numeric codes for all token kinds.
Bison will automatically select codes that don’t conflict with each other or with normal
characters.

In the event that the stack type is a union, you must augment the %token or other

token declaration to include the data type alternative delimited by angle-brackets (see
Section 3.4.2 [More Than One Value Type|, page 58).

For example:

%union { /* define stack type */
double val;
symrec *tptr;
}
%token <val> NUM /* define token NUM and its type */

You can associate a literal string token with a token kind name by writing the literal
string at the end of a %token declaration which declares the name. For example:

%token ARROW "=>"
For example, a grammar for the C language might specify these names with equivalent
literal string tokens:

%itoken <operator> OR “p
%token <operator> LE 134 ‘'"<="
%left OR '"<="

Once you equate the literal string and the token kind name, you can use them interchange-
ably in further declarations or the grammar rules. The yylex function can use the token

Chapter 3: Bison Grammar Files 73

name or the literal string to obtain the token kind code (see Section 4.3.1 [Calling Conven-
tion for yylex], page 101).

String aliases allow for better error messages using the literal strings instead of the to-
ken names, such as ‘syntax error, unexpected ||, expecting number or (’ rather than
‘syntax error, unexpected OR, expecting NUM or LPAREN’.

String aliases may also be marked for internationalization (see Section 4.6.2 [Token
Internationalization], page 111):

%token

OR R

LPAREN " ("

RPAREN ")"

’\n’ _("end of line")

<double>

NUM _("number")
would produce in French ‘erreur de syntaxe, || inattendu, attendait nombre ou (’
rather than ‘erreur de syntaxe, || inattendu, attendait number ou (.

3.7.3 Operator Precedence

Use the %left, %right, %nonassoc, or jprecedence declaration to declare a token and
specify its precedence and associativity, all at once. These are called precedence declara-
tions. See Section 5.3 [Operator Precedence], page 115, for general information on operator
precedence.

The syntax of a precedence declaration is nearly the same as that of %token: either
%left symbols. ..
or
%left <type> symbols...

And indeed any of these declarations serves the purposes of %token. But in addition,
they specify the associativity and relative precedence for all the symbols:

e The associativity of an operator op determines how repeated uses of the operator nest:
whether ‘x op y op 2’ is parsed by grouping x with y first or by grouping y with z
first. %left specifies left-associativity (grouping x with y first) and %right specifies
right-associativity (grouping y with z first). %nonassoc specifies no associativity, which
means that ‘x op y op 2’ is considered a syntax error.

%precedence gives only precedence to the symbols, and defines no associativity at all.
Use this to define precedence only, and leave any potential conflict due to associativity

enabled.

e The precedence of an operator determines how it nests with other operators. All
the tokens declared in a single precedence declaration have equal precedence and nest
together according to their associativity. When two tokens declared in different prece-
dence declarations associate, the one declared later has the higher precedence and is
grouped first.

For backward compatibility, there is a confusing difference between the argument lists
of %token and precedence declarations. Only a %token can associate a literal string with a

Chapter 3: Bison Grammar Files 74

token kind name. A precedence declaration always interprets a literal string as a reference
to a separate token. For example:

%left OR "<=" // Does not declare an alias.
%left OR 134 "<=" 135 // Declares 134 for OR and 135 for '"<=".

3.7.4 Nonterminal Symbols

When you use %union to specify multiple value types, you must declare the value type of
each nonterminal symbol for which values are used. This is done with a %type declaration,
like this:

stype <type> nonterminal...

Here nonterminal is the name of a nonterminal symbol, and type is the name given in
the %union to the alternative that you want (see Section 3.4.4 [The Union Declaration],
page 59). You can give any number of nonterminal symbols in the same %type declaration,
if they have the same value type. Use spaces to separate the symbol names.

While POSIX Yacc allows %type only for nonterminals, Bison accepts that this directive
be also applied to terminal symbols. To declare exclusively nonterminal symbols, use the
safer %nterm:

Jnterm <type> nonterminal. ..

3.7.5 Syntax of Symbol Declarations

The syntax of the various directives to declare symbols is as follows.
%token tag? (id number? string?)+ (tag (id number? string?)+)*
%left tag? (id number?)+ (tag (id number?)+)*
htype tag? (id | char | string)+ (tag (id | char | string)+)*
Jnterm tag? id+ (tag id+)*
where tag denotes a type tag such as ‘<ival>’, id denotes an identifier such as ‘NUM’, number
a decimal or hexadecimal integer such as ‘300’ or ‘0x12d’, char a character literal such as
© 427 and string a string literal such as ‘"number"’. The postfix quantifiers are ‘?’ (zero or
one), ‘*’ (zero or more) and ‘+’ (one or more).

The directives %precedence, %right and %nonassoc behave like % left.

3.7.6 Performing Actions before Parsing

Sometimes your parser needs to perform some initializations before parsing. The
%initial-action directive allows for such arbitrary code.

hinitial-action { code } [Directive]
Declare that the braced code must be invoked before parsing each time yyparse is
called. The code may use $$ (or $<tag>$) and @$ — initial value and location of the
lookahead — and the %parse-param.

For instance, if your locations use a file name, you may use
%parse-param { char const *file_name };
%initial-action
{

0$.initialize (file_name);

};

Chapter 3: Bison Grammar Files 75

3.7.7 Freeing Discarded Symbols

During error recovery (see Chapter 6 [Error Recovery|, page 131), symbols already pushed
on the stack and tokens coming from the rest of the file are discarded until the parser falls
on its feet. If the parser runs out of memory, or if it returns via YYABORT, YYACCEPT or
YYNOMEM, all the symbols on the stack must be discarded. Even if the parser succeeds, it
must discard the start symbol.

When discarded symbols convey heap based information, this memory is lost. While
this behavior can be tolerable for batch parsers, such as in traditional compilers, it is unac-
ceptable for programs like shells or protocol implementations that may parse and execute
indefinitely.

The %destructor directive defines code that is called when a symbol is automatically
discarded.

hdestructor { code } symbols [Directive]
Invoke the braced code whenever the parser discards one of the symbols. Within
code, $$ (or $<tag>$) designates the semantic value associated with the discarded
symbol, and @$ designates its location. The additional parser parameters are also
available (see Section 4.1 [The Parser Function yyparse], page 99).

When a symbol is listed among symbols, its %destructor is called a per-symbol
%hdestructor. You may also define a per-type %destructor by listing a semantic
type tag among symbols. In that case, the parser will invoke this code whenever it
discards any grammar symbol that has that semantic type tag unless that symbol has
its own per-symbol /destructor.

Finally, you can define two different kinds of default %destructors. You can place
each of <x> and <> in the symbols list of exactly one j%destructor declaration in your
grammar file. The parser will invoke the code associated with one of these whenever
it discards any user-defined grammar symbol that has no per-symbol and no per-type
%hdestructor. The parser uses the code for <*> in the case of such a grammar symbol
for which you have formally declared a semantic type tag (%token, %nterm, and %type
count as such a declaration, but $<tag>$ does not). The parser uses the code for <>
in the case of such a grammar symbol that has no declared semantic type tag.

For example:

Junion { char *string; }

%token <string> STRING1 STRING2
Jnterm <string> stringl string?2
%union { char character; }
%token <character> CHR

Jnterm <character> chr

%token TAGLESS

hdestructor { } <character>

%destructor { free ($$); } <*>

%hdestructor { free ($$); printf ("%d", @$.first_line); } STRING1 stringl
%destructor { printf ("Discarding tagless symbol.\n"); } <>

Chapter 3: Bison Grammar Files 76

guarantees that, when the parser discards any user-defined symbol that has a semantic type
tag other than <character>, it passes its semantic value to free by default. However, when
the parser discards a STRING1 or a stringl, it uses the third %destructor, which frees it
and prints its line number to stdout (free is invoked only once). Finally, the parser merely
prints a message whenever it discards any symbol, such as TAGLESS, that has no semantic
type tag.

A Bison-generated parser invokes the default %destructors only for user-defined as
opposed to Bison-defined symbols. For example, the parser will not invoke either kind
of default %destructor for the special Bison-defined symbols $accept, $undefined, or
$end (see Appendix A [Bison Symbols|, page 215), none of which you can reference in
your grammar. It also will not invoke either for the error token (see Appendix A [Bison
Symbols|, page 215), which is always defined by Bison regardless of whether you reference
it in your grammar. However, it may invoke one of them for the end token (token 0) if you
redefine it from $end to, for example, END:

%token END O

Finally, Bison will never invoke a %destructor for an unreferenced midrule semantic
value (see Section 3.4.8 [Actions in Midrule], page 62). That is, Bison does not consider
a midrule to have a semantic value if you do not reference $$ in the midrule’s action or
$n (where n is the right-hand side symbol position of the midrule) in any later action in
that rule. However, if you do reference either, the Bison-generated parser will invoke the
<> Ydestructor whenever it discards the midrule symbol.

Discarded symbols are the following:
e stacked symbols popped during the first phase of error recovery,
e incoming terminals during the second phase of error recovery,

e the current lookahead and the entire stack (except the current right-hand side symbols)
when the parser returns immediately, and

e the current lookahead and the entire stack (including the current right-hand side sym-
bols) when the C++ parser (lalrl.cc) catches an exception in parse,

e the start symbol, when the parser succeeds.

The parser can return immediately because of an explicit call to YYABORT, YYACCEPT or
YYNOMEM, or failed error recovery, or memory exhaustion.

Right-hand side symbols of a rule that explicitly triggers a syntax error via YYERROR are
not discarded automatically. As a rule of thumb, destructors are invoked only when user
actions cannot manage the memory.

3.7.8 Printing Semantic Values

When run-time traces are enabled (see Section 8.5 [Tracing Your Parser|, page 149), the
parser reports its actions, such as reductions. When a symbol involved in an action is
reported, only its kind is displayed, as the parser cannot know how semantic values should
be formatted.

The %printer directive defines code that is called when a symbol is reported. Its syntax
is the same as %destructor (see Section 3.7.7 [Freeing Discarded Symbols|, page 75).

Chapter 3: Bison Grammar Files 77

hprinter { code } symbols [Directive]
Invoke the braced code whenever the parser displays one of the symbols. Within code,
yyo denotes the output stream (a FILE* in C, an std: :ostream& in C++, and stdout
in D), $$ (or $<tag>$) designates the semantic value associated with the symbol, and
@$ its location. The additional parser parameters are also available (see Section 4.1
[The Parser Function yyparse], page 99).

The symbols are defined as for jdestructor (see Section 3.7.7 [Freeing Discarded
Symbols]|, page 75.): they can be per-type (e.g., ‘<ival>’), per-symbol (e.g., ‘exp’,
‘NUM’, ‘“"float"’), typed per-default (i.e., ‘<*>’) or untyped per-default (i.e., ‘<>").

For example:

%union { char *string; }

%token <string> STRING1 STRING2
Jnterm <string> stringl string2
%union { char character; }
%token <character> CHR

%nterm <character> chr

%token TAGLESS

printer { fprintf (yyo, "’%c’", $$); } <character>
Yiprinter { fprintf (yyo, "&%p", $$); } <x>

%printer { fprintf (yyo, "\"%s\"", $$); } STRING1 stringl
%printer { fprintf (yyo, "<>"); } <>

guarantees that, when the parser print any symbol that has a semantic type tag other
than <character>, it display the address of the semantic value by default. However, when
the parser displays a STRING1 or a stringl, it formats it as a string in double quotes. It
performs only the second %printer in this case, so it prints only once. Finally, the parser
print ‘<>’ for any symbol, such as TAGLESS, that has no semantic type tag. See Section 8.5.2
[Enabling Debug Traces for mfcalc], page 151, for a complete example.

3.7.9 Suppressing Conflict Warnings

Bison normally warns if there are any conflicts in the grammar (see Section 5.2 [Shift /Reduce
Conflicts]|, page 113), but most real grammars have harmless shift /reduce conflicts which
are resolved in a predictable way and would be difficult to eliminate. It is desirable to
suppress the warning about these conflicts unless the number of conflicts changes. You can
do this with the %expect declaration.

The declaration looks like this:
%expect n

Here n is a decimal integer. The declaration says there should be n shift /reduce conflicts
and no reduce/reduce conflicts. Bison reports an error if the number of shift /reduce conflicts
differs from n, or if there are any reduce/reduce conflicts.

For deterministic parsers, reduce/reduce conflicts are more serious, and should be elim-
inated entirely. Bison will always report reduce/reduce conflicts for these parsers. With
GLR parsers, however, both kinds of conflicts are routine; otherwise, there would be no

Chapter 3: Bison Grammar Files 78

need to use GLR parsing. Therefore, it is also possible to specify an expected number of
reduce /reduce conflicts in GLR parsers, using the declaration:

hexpect-rr n

You may wish to be more specific in your specification of expected conflicts. To this
end, you can also attach %expect and %expect-rr modifiers to individual rules. The
interpretation of these modifiers differs from their use as declarations. When attached to
rules, they indicate the number of states in which the rule is involved in a conflict. You will
need to consult the output resulting from -v to determine appropriate numbers to use. For
example, for the following grammar fragment, the first rule for empty_dims appears in two
states in which the ‘[’ token is a lookahead. Having determined that, you can document
this fact with an %expect modifier as follows:

dims:
empty_dims
| [’ expr ’]’ dims

3

empty_dims:
%hempty ‘expect 2
| empty_dims ’[’]’

Mid-rule actions generate implicit rules that are also subject to conflicts (see
Section 3.4.8.4 [Conflicts due to Midrule Actions], page 66). To attach an %expect or
hexpect-rr annotation to an implicit mid-rule action’s rule, put it before the action. For
example,

hglr-parser
%hexpect-rr 1

Toth

clause:
"condition" Yexpect-rr 1 { value_mode(); } ’(’ exprs ’)’
| "condition" %expect-rr 1 { class_mode(); } ’(° types ’)°
Here, the appropriate mid-rule action will not be determined until after the *(’ token is
shifted. Thus, the two actions will clash with each other, and we should expect one re-
duce/reduce conflict for each.

In general, using %expect involves these steps:

e Compile your grammar without %expect. Use the -v option to get a verbose list of
where the conflicts occur. Bison will also print the number of conflicts.

e Check each of the conflicts to make sure that Bison’s default resolution is what you
really want. If not, rewrite the grammar and go back to the beginning.

e Add an %expect declaration, copying the number n from the number that Bison printed.
With GLR parsers, add an %expect-rr declaration as well.

e Optionally, count up the number of states in which one or more conflicted reductions
for particular rules appear and add these numbers to the affected rules as %expect-rr

Chapter 3: Bison Grammar Files 79

or jexpect modifiers as appropriate. Rules that are in conflict appear in the output
listing surrounded by square brackets or, in the case of reduce/reduce conflicts, as
reductions having the same lookahead symbol as a square-bracketed reduction in the
same state.

Now Bison will report an error if you introduce an unexpected conflict, but will keep
silent otherwise.

3.7.10 The Start-Symbol

Bison assumes by default that the start symbol for the grammar is the first nonterminal
specified in the grammar specification section. The programmer may override this restriction
with the %start declaration as follows:

Jistart symbol

3.7.11 A Pure (Reentrant) Parser

A reentrant program is one which does not alter in the course of execution; in other words, it
consists entirely of pure (read-only) code. Reentrancy is important whenever asynchronous
execution is possible; for example, a nonreentrant program may not be safe to call from a
signal handler. In systems with multiple threads of control, a nonreentrant program must
be called only within interlocks.

Normally, Bison generates a parser which is not reentrant. This is suitable for most
uses, and it permits compatibility with Yacc. (The standard Yacc interfaces are inherently
nonreentrant, because they use statically allocated variables for communication with yylex,
including yylval and yylloc.)

Alternatively, you can generate a pure, reentrant parser. The Bison declaration ‘%define
api.pure’ says that you want the parser to be reentrant. It looks like this:

%define api.pure full

The result is that the communication variables yylval and yylloc become local variables
in yyparse, and a different calling convention is used for the lexical analyzer function yylex.
See Section 4.3.6 [Calling Conventions for Pure Parsers|, page 104, for the details of this.
The variable yynerrs becomes local in yyparse in pull mode but it becomes a member
of yypstate in push mode. (see Section 4.4.1 [The Error Reporting Function yyerror],
page 105). The convention for calling yyparse itself is unchanged.

Whether the parser is pure has nothing to do with the grammar rules. You can generate
either a pure parser or a nonreentrant parser from any valid grammar.

3.7.12 A Push Parser

A pull parser is called once and it takes control until all its input is completely parsed. A
push parser, on the other hand, is called each time a new token is made available.

A push parser is typically useful when the parser is part of a main event loop in the
client’s application. This is typically a requirement of a GUI, when the main event loop
needs to be triggered within a certain time period.

Normally, Bison generates a pull parser. The following Bison declaration says that you
want the parser to be a push parser (see Section 3.7.14 [%define Summary]|, page 85):

%define api.push-pull push

Chapter 3: Bison Grammar Files 80

In almost all cases, you want to ensure that your push parser is also a pure parser (see
Section 3.7.11 [A Pure (Reentrant) Parser], page 79). The only time you should create an
impure push parser is to have backwards compatibility with the impure Yacc pull mode
interface. Unless you know what you are doing, your declarations should look like this:

%define api.pure full
%define api.push-pull push
There is a major notable functional difference between the pure push parser and the
impure push parser. It is acceptable for a pure push parser to have many parser instances,
of the same type of parser, in memory at the same time. An impure push parser should
only use one parser at a time.

When a push parser is selected, Bison will generate some new symbols in the generated
parser. yypstate is a structure that the generated parser uses to store the parser’s state.
yypstate_new is the function that will create a new parser instance. yypstate_delete will
free the resources associated with the corresponding parser instance. Finally, yypush_parse
is the function that should be called whenever a token is available to provide the parser. A
trivial example of using a pure push parser would look like this:

int status;
yypstate *ps = yypstate_new ();
do {

status = yypush_parse (ps, yylex (), NULL);
} while (status == YYPUSH_MORE);
yypstate_delete (ps);

If the user decided to use an impure push parser, a few things about the generated parser
will change. The yychar variable becomes a global variable instead of a local one in the
yypush_parse function. For this reason, the signature of the yypush_parse function is
changed to remove the token as a parameter. A nonreentrant push parser example would
thus look like this:

extern int yychar;
int status;
yypstate *ps = yypstate_new ();
do {

yychar = yylex ();

status = yypush_parse (ps);
} while (status == YYPUSH_MORE);
yypstate_delete (ps);

That’s it. Notice the next token is put into the global variable yychar for use by the
next invocation of the yypush_parse function.

Bison also supports both the push parser interface along with the pull parser interface
in the same generated parser. In order to get this functionality, you should replace the
‘%define api.push-pull push’ declaration with the ‘/define api.push-pull both’ dec-
laration. Doing this will create all of the symbols mentioned earlier along with the two
extra symbols, yyparse and yypull_parse. yyparse can be used exactly as it normally
would be used. However, the user should note that it is implemented in the generated
parser by calling yypull_parse. This makes the yyparse function that is generated with
the ‘%define api.push-pull both’ declaration slower than the normal yyparse function.

Chapter 3: Bison Grammar Files 81

If the user calls the yypull_parse function it will parse the rest of the input stream. It is
possible to yypush_parse tokens to select a subgrammar and then yypull_parse the rest
of the input stream. If you would like to switch back and forth between between parsing
styles, you would have to write your own yypull_parse function that knows when to quit
looking for input. An example of using the yypull_parse function would look like this:

yypstate *ps = yypstate_new ();
yypull_parse (ps); /* Will call the lexer */
yypstate_delete (ps);

Adding the ‘%define api.pure’ declaration does exactly the same thing to the generated
parser with ‘%define api.push-pull both’ as it did for ‘/define api.push-pull push’.

3.7.13 Bison Declaration Summary

Here is a summary of the declarations used to define a grammar:

Junion [Directive]
Declare the collection of data types that semantic values may have (see Section 3.4.4
[The Union Declaration], page 59).

Jtoken [Directive]
Declare a terminal symbol (token kind name) with no precedence or associativity
specified (see Section 3.7.2 [Token Kind Names], page 72).

hright [Directive]
Declare a terminal symbol (token kind name) that is right-associative (see
Section 3.7.3 [Operator Precedence], page 73).

Yleft [Directive]
Declare a terminal symbol (token kind name) that is left-associative (see Section 3.7.3
[Operator Precedence], page 73).

Jnonassoc [Directive]
Declare a terminal symbol (token kind name) that is nonassociative (see Section 3.7.3
[Operator Precedence|, page 73). Using it in a way that would be associative is a
syntax error.

Jnterm [Directive]
Declare the type of semantic values for a nonterminal symbol (see Section 3.7.4 [Non-
terminal Symbols], page 74).

Ytype [Directive]
Declare the type of semantic values for a symbol (see Section 3.7.4 [Nonterminal
Symbols|, page 74).

hstart [Directive]
Specify the grammar’s start symbol (see Section 3.7.10 [The Start-Symbol], page 79).

hexpect [Directive]
Declare the expected number of shift/reduce conflicts, either overall or for a given
rule (see Section 3.7.9 [Suppressing Conflict Warnings|, page 77).

Chapter 3: Bison Grammar Files 82

hexpect-rr [Directive]
Declare the expected number of reduce/reduce conflicts, either overall or for a given
rule (see Section 3.7.9 [Suppressing Conflict Warnings|, page 77).

In order to change the behavior of bison, use the following directives:

hcode {code} [Directive]

%code qualifier {code} [Directive]
Insert code verbatim into the output parser source at the default location or at the
location specified by qualifier. See Section 3.7.15 [%code Summary], page 95.

hdebug [Directive]
Instrument the parser for traces. Obsoleted by ‘%define parse.trace’. See
Section 8.5 [Tracing Your Parser|, page 149.

%define variable [Directive]

hdefine variable value [Directive]

hdefine variable {value} [Directive]

hdefine variable "value" [Directive]
Define a variable to adjust Bison’s behavior. See Section 3.7.14 [%define Summary]|,
page 85.

hdefines [Directive]

hdefines defines-file [Directive]
Historical name for %header. See [4header], page 82.

Jdestructor [Directive]

Specify how the parser should reclaim the memory associated to discarded symbols.
See Section 3.7.7 [Freeing Discarded Symbols], page 75.

%file-prefix "prefix" [Directive]
Specify a prefix to use for all Bison output file names. The names are chosen as if the
grammar file were named prefix.y.

Jheader [Directive]
Write a parser header file containing definitions for the token kind names defined in
the grammar as well as a few other declarations. If the parser implementation file is
named name.c then the parser header file is named name.h.

For C parsers, the parser header file declares YYSTYPE unless YYSTYPE is already
defined as a macro or you have used a <type> tag without using %union. Therefore,
if you are using a %union (see Section 3.4.2 [More Than One Value Type|, page 58)
with components that require other definitions, or if you have defined a YYSTYPE macro
or type definition (see Section 3.4.1 [Data Types of Semantic Values|, page 57), you
need to arrange for these definitions to be propagated to all modules, e.g., by putting
them in a prerequisite header that is included both by your parser and by any other
module that needs YYSTYPE.

Unless your parser is pure, the parser header file declares yylval as an external
variable. See Section 3.7.11 [A Pure (Reentrant) Parser|, page 79.

Chapter 3: Bison Grammar Files 83

If you have also used locations, the parser header file declares YYLTYPE and yylloc
using a protocol similar to that of the YYSTYPE macro and yylval. See Section 3.5
[Tracking Locations|, page 67.

This parser header file is normally essential if you wish to put the definition of yylex in
a separate source file, because yylex typically needs to be able to refer to the above-
mentioned declarations and to the token kind codes. See Section 4.3.4 [Semantic
Values of Tokens|, page 103.

If you have declared %code requires or %code provides, the output header also
contains their code. See Section 3.7.15 [%code Summary], page 95.

The generated header is protected against multiple inclusions with a C preprocessor
guard: ‘YY_PREFIX_FILE_INCLUDED’, where PREFIX and FILE are the prefix (see
Section 3.8 [Multiple Parsers in the Same Program]|, page 97) and generated file name
turned uppercase, with each series of non alphanumerical characters converted to a
single underscore.

For instance with ‘/define api.prefix {calc}’ and ‘/header "lib/parse.h"’, the
header will be guarded as follows.

#ifndef YY_CALC_LIB_PARSE_H_INCLUDED
define YY_CALC_LIB_PARSE_H_INCLUDED

#endif /* ! YY_CALC_LIB_PARSE_H_INCLUDED */

Introduced in Bison 3.8.

Jheader header-file [Directive]
Same as above, but save in the file header-file.

hlanguage "language" [Directive]
Specify the programming language for the generated parser. Currently supported
languages include C, C++, D and Java. language is case-insensitive.

%locations [Directive]
Generate the code processing the locations (see Section 4.5 [Special Features for Use
in Actions], page 108). This mode is enabled as soon as the grammar uses the special
‘@n’ tokens, but if your grammar does not use it, using ‘%locations’ allows for more
accurate syntax error messages.

Jname-prefix "prefix" [Directive]
Obsoleted by ‘%define api.prefix {prefix}’. See Section 3.8 [Multiple Parsers in
the Same Program], page 97. For C++ parsers, see the ‘%define api.namespace’
documentation in this section.

Rename the external symbols used in the parser so that they start with prefix instead
of ‘yy’. The precise list of symbols renamed in C parsers is yyparse, yylex, yyerror,
yynerrs, yylval, yychar, yydebug, and (if locations are used) yylloc. If you use a
push parser, yypush_parse, yypull_parse, yypstate, yypstate_new and yypstate_
delete will also be renamed. For example, if you use ‘/iname-prefix "c_"’, the names
become c_parse, c_lex, and so on.

Contrary to defining api.prefix, some symbols are not renamed by %name-prefix,
for instance YYDEBUG, YYTOKENTYPE, yytoken_kind_t, YYSTYPE, YYLTYPE.

Chapter 3: Bison Grammar Files 84

Jno-lines [Directive]
Don’t generate any #line preprocessor commands in the parser implementation file.
Ordinarily Bison writes these commands in the parser implementation file so that the
C compiler and debuggers will associate errors and object code with your source file
(the grammar file). This directive causes them to associate errors with the parser
implementation file, treating it as an independent source file in its own right.

Joutput "file" Directive
p
Generate the parser implementation in file.

Jpure-parser [Directive]
Deprecated version of ‘%define api.pure’ (see Section 3.7.14 [%define Summary],
page 85), for which Bison is more careful to warn about unreasonable usage.

%require "version" [Directive]
Require version version or higher of Bison. See Section 3.7.1 [Require a Version of
Bison|, page 72.

%skeleton "file" [Directive]
Specify the skeleton to use.

If file does not contain a /, file is the name of a skeleton file in the Bison installation
directory. If it does, file is an absolute file name or a file name relative to the directory
of the grammar file. This is similar to how most shells resolve commands.

Jtoken-table [Directive]
This feature is obsolescent, avoid it in new projects.

Generate an array of token names in the parser implementation file. The name of the
array is yytname; yytname[i] is the name of the token whose internal Bison token
code is i. The first three elements of yytname correspond to the predefined tokens
"$end", "error", and "$undefined"; after these come the symbols defined in the
grammar file.

The name in the table includes all the characters needed to represent the token in
Bison. For single-character literals and literal strings, this includes the surrounding
quoting characters and any escape sequences. For example, the Bison single-character
literal ’+’ corresponds to a three-character name, represented in C as "’+’"; and
the Bison two-character literal string "\\/" corresponds to a five-character name,
represented in C as "\"\\\\/\"".

When you specify %token-table, Bison also generates macro definitions for macros
YYNTOKENS, YYNNTS, and YYNRULES, and YYNSTATES:

YYNTOKENS
The number of terminal symbols, i.e., the highest token code, plus one.

YYNNTS The number of nonterminal symbols.
YYNRULES The number of grammar rules,

YYNSTATES
The number of parser states (see Section 5.5 [Parser States|, page 118).

Chapter 3: Bison Grammar Files 85

Here’s code for looking up a multicharacter token in yytname, assuming that the
characters of the token are stored in token_buffer, and assuming that the token
does not contain any characters like ‘"’ that require escaping.

for (int i = 0; i < YYNTOKENS; i++)
if (yytname[i]
&& yytname[i] [0] == *"°
&& ! strncmp (yytname[i] + 1, token_buffer,
strlen (token_buffer))

&& yytname[i] [strlen (token_buffer) + 1] == >"’
&& yytname[i] [strlen (token_buffer) + 2] == 0)
break;

This method is discouraged: the primary purpose of string aliases is forging good
error messages, not describing the spelling of keywords. In addition, looking for the
token kind at runtime incurs a (small but noticeable) cost.

Finally, %token-table is incompatible with the custom and detailed values of the
parse.error }define variable.

Jverbose [Directive]
Write an extra output file containing verbose descriptions of the parser states and
what is done for each type of lookahead token in that state. See Section 8.2 [Under-
standing Your Parser], page 139, for more information.

hyacc [Directive]
Pretend the option --yacc was given (see [--yacc|, page 162), i.e., imitate Yacc,
including its naming conventions. Only makes sense with the yacc.c skeleton. See
Section 9.1.3 [Tuning the Parser]|, page 161, for more.

Of course, being a Bison extension, %yacc is somewhat self-contradictory. . .

3.7.14 %define Summary

There are many features of Bison’s behavior that can be controlled by assigning the feature
a single value. For historical reasons, some such features are assigned values by dedicated
directives, such as %start, which assigns the start symbol. However, newer such features
are associated with variables, which are assigned by the %define directive:

%define variable [Directive]

%define variable value [Directive]

%hdefine variable {value} [Directive]

fhdefine variable "value" [Directive]
Define variable to value.

The type of the values depend on the syntax. Braces denote value in the target
language (e.g., a namespace, a type, etc.). Keyword values (no delimiters) denote
finite choice (e.g., a variation of a feature). String values denote remaining cases
(e.g., a file name).

It is an error if a variable is defined by %define multiple times, but see Section 9.1.3
[-D name[=valuel]|, page 161.

Chapter 3: Bison Grammar Files 86

The rest of this section summarizes variables and values that %define accepts.

Some variables take Boolean values. In this case, Bison will complain if the variable
definition does not meet one of the following four conditions:

1. value is true
2. value is omitted (or "" is specified). This is equivalent to true.
3. value is false.
4. variable is never defined. In this case, Bison selects a default value.
What variables are accepted, as well as their meanings and default values, depend on the
selected target language and/or the parser skeleton (see Section 3.7.13 [Bison Declaration

Summary]|, page 81, see Section 3.7.13 [Bison Declaration Summary]|, page 81). Unaccepted
variables produce an error. Some of the accepted variables are described below.

%define api.filename.type {type} [Directive]
Language(s): C++

e Purpose: Define the type of file names in Bison’s default location and position
types. See Section 10.1.5.3 [Exposing the Location Classes]|, page 174.

e Accepted Values: Any type that is printable (via streams) and comparable (with
== and !=).
e Default Value: const std::string.

e History: Introduced in Bison 2.0 as filename_type (with std::string as de-
fault), renamed as api.filename.type in Bison 3.7 (with const std::string
as default).

hdefine api.header.include {"header.h"} [Directive]
%define api.header.include {<header.h>} [Directive]
e Languages(s): C (yacc.c)
e Purpose: Specify how the generated parser should include the generated header.

Historically, when option -d or --header was used, bison generated a header
and pasted an exact copy of it into the generated parser implementation file.
Since Bison 3.6, it is #included as ‘"basename.h"’, instead of duplicated, unless
file is ‘y.tab’, see below.

The api.header.include variable allows to control how the generated parser
#includes the generated header. For instance:

%define api.header.include {"parse.h"}
or
%define api.header.include {<parser/parse.h>}

Using api.header.include does not change the name of the generated header,
only how it is included.

To work around limitations of Automake’s ylwrap (which runs bison with
--yacc), api.header.include is not predefined when the output file is
y.tab.c. Define it to avoid the duplication.

e Accepted Values: An argument for #include.

Chapter 3: Bison Grammar Files 87

%define
%define
[]

%define
%define
[]

%define
[]

Default Value: ‘"header-basename"’, unless the header file is y.tab.h, where
header-basename is the name of the generated header, without directory part.
For instance with ‘bison -d calc/parse.y’, api.header.include defaults to
‘"parse.h"’, not ‘"calc/parse.h"’.

History: Introduced in Bison 3.4. Defaults to ‘"basename.h"’ since Bison 3.7,
unless the header file is y.tab.h.

api.location.file "file" [Directive]
api.location.file none [Directive]
Language(s): C++

Purpose: Define the name of the file in which Bison’s default location and posi-
tion types are generated. See Section 10.1.5.3 [Exposing the Location Classes],
page 174.

Accepted Values:

none If locations are enabled, generate the definition of the position and
location classes in the header file if Jheader, otherwise in the parser
implementation.

"file" Generate the definition of the position and location classes in file.
This file name can be relative (to where the parser file is output) or
absolute.

Default Value: Not applicable if locations are not enabled, or if a user loca-

tion type is specified (see api.location.type). Otherwise, Bison’s location is

generated in location.hh (see Section 10.1.5.2 [C++ location|, page 173).

History: Introduced in Bison 3.2.

api.location.include {"file"} [Directive]
api.location.include {<file>} [Directive]
Language(s): C++

Purpose: Specify how the generated file that defines the position and location
classes is included. This makes sense when the location class is exposed to
the rest of your application/library in another directory. See Section 10.1.5.3
[Exposing the Location Classes], page 174.

Accepted Values: Argument for #include.

Default Value: ‘"dir/location.hh"’ where dir is the directory part of the out-
put. For instance src/parse if ——output=src/parse/parser.cc was given.
History: Introduced in Bison 3.2.

api.location.type {type} [Directive]
Language(s): C, C++, Java

Purpose: Define the location type. See Section 3.5.1 [Data Type of Locations],
page 67, and Section 10.1.5.4 [User Defined Location Type], page 175.
Accepted Values: String

Default Value: none

History: Introduced in Bison 2.7 for C++ and Java, in Bison 3.4 for C. Was
originally named location_type in Bison 2.5 and 2.6.

Chapter 3: Bison Grammar Files 88

%define
[]

Y%define
[]

%define
[]

%define
[]

api.namespace {namespace} [Directive]

Languages(s): C++

Purpose: Specify the namespace for the parser class. For example, if you specify:
%define api.namespace {foo::bar}

Bison uses foo: :bar verbatim in references such as:
foo::bar::parser::value_type

However, to open a namespace, Bison removes any leading : : and then splits on
any remaining occurrences:

namespace foo { namespace bar {
class position;
class location;

1,
Accepted Values: Any absolute or relative C++ namespace reference without a
trailing "::". For example, "foo" or "::foo: :bar".

Default Value: yy, unless you used the obsolete ‘/name-prefix "prefix"’ direc-
tive.

api.parser.class {name} [Directive]
Language(s): C++, Java, D

Purpose: The name of the parser class.
Accepted Values: Any valid identifier.

Default Value: In C++, parser. In D and Java, YYParser or api.prefixParser
(see Section 10.3.1 [Java Bison Interface|, page 193).

History: Introduced in Bison 3.3 to replace parser_class_name.
api.prefix {prefix} [Directive]
Language(s): C, C++, Java

Purpose: Rename exported symbols. See Section 3.8 [Multiple Parsers in the
Same Program]|, page 97.

Accepted Values: String
Default Value: YY for Java, yy otherwise.

History: introduced in Bison 2.6, with its argument in double quotes. Uses braces
since Bison 3.0 (double quotes are still supported for backward compatibility).

api.pure purity [Directive]
Language(s): C

Purpose: Request a pure (reentrant) parser program. See Section 3.7.11 [A Pure
(Reentrant) Parser|, page 79.

Accepted Values: true, false, full

The value may be omitted: this is equivalent to specifying true, as is the case
for Boolean values.

When Ydefine api.pure full is used, the parser is made reentrant. This
changes the signature for yylex (see Section 4.3.6 [Calling Conventions for Pure

Chapter 3: Bison Grammar Files 89

Parsers], page 104), and also that of yyerror when the tracking of locations has
been activated, as shown below.

The true value is very similar to the full value, the only difference is in the sig-
nature of yyerror on Yacc parsers without %parse-param, for historical reasons.

Le., if ‘4locations %define api.pure’is passed then the prototypes for yyerror
are:

void yyerror (char const *msg); // Yacc parsers.
void yyerror (YYLTYPE *xlocp, char const *msg); // GLR parsers.

But if ‘%4locations %define api.pure %parse-param {int *nastiness}’ is
used, then both parsers have the same signature:

void yyerror (YYLTYPE *llocp, int *nastiness, char const *msg);
(see Section 4.4.1 [The Error Reporting Function yyerror], page 105)
e Default Value: false

e History: the full value was introduced in Bison 2.7

%define api.push-pull kind [Directive]
e Language(s): C (deterministic parsers only), D, Java

e Purpose: Request a pull parser, a push parser, or both. See Section 3.7.12 [A
Push Parser|, page 79.

e Accepted Values: pull, push, both
e Default Value: pull

%define api.symbol.prefix {prefix} [Directive]

e Languages(s): all

e Purpose: Add a prefix to the name of the symbol kinds. For instance
%define api.symbol.prefix {S_}
%token FILE for ERROR
o
start: FILE for ERROR;

generates this definition in C:

/* Symbol kind. */
enum yysymbol_kind_t

{
S_YYEMPTY = -2, /x No symbol. */
S_YYEQF = 0, /* $end */
S_YYERROR = 1, /* error */
S_YYUNDEF = 2, /* $undefined */
S_FILE = 3, /* FILE x*/
S_for = 4, /*x for x/
S_ERROR = 5, /* ERROR */
S_YYACCEPT = 6, /* $accept x/
S_start = 7 /* start x/

Chapter 3: Bison Grammar Files 90

%define
[]

Y%define
[]

Accepted Values: Any non empty string. Must be a valid identifier in the target
language (typically a non empty sequence of letters, underscores, and —not at
the beginning— digits).

The empty prefix is (generally) invalid:

e in C it would create collision with the YYERROR macro, and potentially token
kind definitions and symbol kind definitions would collide;

e unnamed symbols (such as ‘>+?’) have a name which starts with a digit;

e cven in languages with scoped enumerations such as Java, an empty prefix
is dangerous: symbol names may collide with the target language keywords,
or with other members of the SymbolKind class.

Default Value: YYSYMBOL_ in C, S_ in C++ and Java, empty in D.

History: introduced in Bison 3.6.

api.token.constructor [Directive]
Language(s): C++, D

Purpose: Request that symbols be handled as a whole (type, value, and possibly
location) in the scanner. In the case of C++, it works only when variant-based
semantic values are enabled (see Section 10.1.4.2 [C++ Variants|, page 171), see
Section 10.1.7.2 [Complete Symbols|, page 178, for details. In D, token construc-
tors work with both ‘/union’ and ‘/,define api.value.type union’.

Accepted Values: Boolean.
Default Value: false

History: introduced in Bison 3.0.

api.token.prefix {prefix} [Directive]
Languages(s): all

Purpose: Add a prefix to the token names when generating their definition in
the target language. For instance

%define api.token.prefix {TOK_}

%token FILE for ERROR

he

start: FILE for ERROR;
generates the definition of the symbols TOK_FILE, TOK_for, and TOK_ERROR in
the generated source files. In particular, the scanner must use these prefixed
token names, while the grammar itself may still use the short names (as in the
sample rule given above). The generated informational files (*.output, *.xml,
*.gv) are not modified by this prefix.
Bison also prefixes the generated member names of the semantic value union. See
Section 3.4.3 [Generating the Semantic Value Type], page 58, for more details.
See Section 10.1.8.3 [Calc++ Parser|, page 183, and Section 10.1.8.4 [Calc++
Scanner|, page 185, for a complete example.
Accepted Values: Any string. Must be a valid identifier prefix in the target

language (typically, a possibly empty sequence of letters, underscores, and —not
at the beginning— digits).

Chapter 3: Bison Grammar Files 91

e Default Value: empty
e History: introduced in Bison 3.0.

%define api.token.raw [Directive]

e Language(s): all

e Purpose: The output files normally define the enumeration of the token kinds
with Yacc-compatible token codes: sequential numbers starting at 257 except
for single character tokens which stand for themselves (e.g., in ASCII, “’a’’ is
numbered 65). The parser however uses symbol kinds which are assigned numbers
sequentially starting at 0. Therefore each time the scanner returns an (external)
token kind, it must be mapped to the (internal) symbol kind.
When api.token.raw is set, the code of the token kinds are forced to coincide
with the symbol kind. This saves one table lookup per token to map them from
the token kind to the symbol kind, and also saves the generation of the mapping
table. The gain is typically moderate, but in extreme cases (very simple user
actions), a 10% improvement can be observed.
When api.token.raw is set, the grammar cannot use character literals (such as
(3] a) 7) X

e Accepted Values: Boolean.

e Default Value: true in D, false otherwise

e History: introduced in Bison 3.5. Was initially introduced in Bison 1.25 as ‘Jraw’,
but never worked and was removed in Bison 1.29.

%define api.value.automove [Directive]
e Language(s): C++
e Purpose: Let occurrences of semantic values of the right-hand sides of a rule be
implicitly turned in rvalues. When enabled, a grammar such as:
exp:
"number" { $$ = make_number ($1); }
| exp "+" exp { $$ = make_binary (add, $1, $3); }
["("exp " { $$ =9%2; }

is actually compiled as if you had written:

exp:
"number" { $$
| exp "+" exp { $$

make_number (std::move ($1)); }
make_binary (add,
std::move ($1),
std::move ($3)); }
["(" exp ")" { $$ = std::move ($2); }
Using a value several times with automove enabled is typically an error. For
instance, instead of:

exp: "twice" exp { $$ = make_binary (add, $2, $2); }

write:

exp: "twice" exp { auto v = $2; $$ = make_binary (add, v, v); }
It is tempting to use std::move on one of the v, but the argument evaluation
order in C++ is unspecified.

Chapter 3: Bison Grammar Files 92

e Accepted Values: Boolean.
e Default Value: false

e History: introduced in Bison 3.2

%hdefine api.value.type support [Directive]
hdefine api.value.type {type} [Directive]
e Language(s): all
e Purpose: The type for semantic values.

e Accepted Values:

£y This grammar has no semantic value at all. This is not properly
supported yet.

‘union-directive’ (C, C++, D)
The type is defined thanks to the %union directive. You don’t have
to define api.value.type in that case, using %union suffices. See
Section 3.4.4 [The Union Declaration], page 59. For instance:
%define api.value.type union-directive
%union
{
int ival;
char *sval;

}
%token <ival> INT "integer"
htoken <sval> STR "string"

‘union’ (C, C++)
The symbols are defined with type names, from which Bison will
generate a union. For instance:
%define api.value.type union
%token <int> INT "integer"
Jitoken <char *> STR "string"

Most C++ objects cannot be stored in a union, use ‘variant’ instead.
‘variant’ (C++)
This is similar to union, but special storage techniques are used to
allow any kind of C++ object to be used. For instance:
%define api.value.type variant
%token <int> INT "integer"
%token <std::string> STR "string"

See Section 10.1.4.2 [C4++ Variants], page 171.

‘{type}’ Use this type as semantic value.

%code requires
{

struct my_value

{

enum

Chapter 3: Bison Grammar Files 93

%define
[]

%define
[]

%define
[]

{
is_int, is_str
} kind;
union
{
int ival;
char *sval;
}ou;
3
}
%define api.value.type {struct my_value}
%token <u.ival> INT "integer"
%token <u.sval> STR "string"

Default Value:

— union-directive if %union is used, otherwise . ..

)

— int if type tags are used (i.e., ‘%token <type>...
is used), otherwise . . .

or ‘)nterm <type>...’

— undefined.

History: introduced in Bison 3.0. Was introduced for Java only in 2.3b as stype.

api.value.union.name name [Directive]
Language(s): C

Purpose: The tag of the generated union (not the name of the typedef). This
variable is set to id when ‘4union id’ is used. There is no clear reason to give
this union a name.

Accepted Values: Any valid identifier.
Default Value: YYSTYPE.
History: Introduced in Bison 3.0.3.

lr.default-reduction when [Directive]
Language(s): all

Purpose: Specify the kind of states that are permitted to contain default reduc-
tions. See Section 5.8.2 [Default Reductions], page 125.

Accepted Values: most, consistent, accepting
Default Value:

e accepting if 1r.type is canonical-1r.

e most otherwise.

History: introduced as 1lr.default-reductions in 2.5, renamed as
lr.default-reduction in 3.0.

1lr.keep-unreachable-state [Directive]
Language(s): all

Purpose: Request that Bison allow unreachable parser states to remain in the
parser tables. See Section 5.8.4 [Unreachable States|, page 128.

Chapter 3: Bison Grammar Files 94

hdefine
°

%define

Accepted Values: Boolean
Default Value: false

History: introduced as lr.keep_unreachable_states in 2.3b, renamed as
1lr.keep-unreachable-states in 2.5, and as lr.keep-unreachable-state in
3.0.

1lr.type type [Directive]
Language(s): all

Purpose: Specify the type of parser tables within the LR(1) family. See
Section 5.8.1 [LR Table Construction], page 123.

Accepted Values: lalr, ielr, canonical-1r

Default Value: lalr

namespace {namespace} [Directive]

Obsoleted by api.namespace

%define
[]

%define
[]

parse.assert [Directive]
Languages(s): C, C++

Purpose: Issue runtime assertions to catch invalid uses. In C, some important
invariants in the implementation of the parser are checked when this option is

enabled.

In C++, when variants are used (see Section 10.1.4.2 [C++ Variants|, page 171),
symbols must be constructed and destroyed properly. This option checks these
constraints using runtime type information (RTTT). Therefore the generated code
cannot be compiled with RTTI disabled (via compiler options such as -fno-
rtti).

Accepted Values: Boolean

Default Value: false

parse.error verbosity [Directive]
Languages(s): all
Purpose: Control the generation of syntax error messages. See Section 4.4 [Error
Reporting], page 105.
Accepted Values:

e simple Error messages passed to yyerror are simply "syntax error".

e detailed Error messages report the unexpected token, and possibly the
expected ones. However, this report can often be incorrect when LAC is not
enabled (see Section 5.8.3 [LAC], page 126). Token name internationalization
is supported.

e verbose Similar (but inferior) to detailed. The D parser does not support
this value.

Error messages report the unexpected token, and possibly the expected ones.
However, this report can often be incorrect when LAC is not enabled (see
Section 5.8.3 [LAC], page 126).

Does not support token internationalization. Using non-ASCII characters in
token aliases is not portable.

Chapter 3: Bison Grammar Files 95

%define
[]

%define
[]

e custom The user is in charge of generating the syntax error message by
defining the yyreport_syntax_error function. See Section 4.4.2 [The Syn-
tax Error Reporting Function yyreport_syntax_error], page 106.

Default Value: simple

History: introduced in 3.0 with support for simple and verbose. Values custom
and detailed were introduced in 3.6.

parse.lac when [Directive]
Languages(s): C/C++ (deterministic parsers only), D and Java.

Purpose: Enable LAC (lookahead correction) to improve syntax error handling.
See Section 5.8.3 [LAC], page 126.

Accepted Values: none, full
Default Value: none

parse.trace [Directive]
Languages(s): C, C++, D, Java

Purpose: Require parser instrumentation for tracing. See Section 8.5 [Tracing
Your Parser|, page 149.

In C/C++, define the macro YYDEBUG (or prefixDEBUG with ‘%define
api.prefix {prefix}’), see Section 3.8 [Multiple Parsers in the Same
Program|, page 97) to 1 (if it is not already defined) so that the debugging
facilities are compiled.

Accepted Values: Boolean

Default Value: false

hdefine parser_class_name {name} [Directive]
Obsoleted by api.parser.class

3.7.15 %code Summary

The %code directive inserts code verbatim into the output parser source at any of a pre-
defined set of locations. It thus serves as a flexible and user-friendly alternative to the
traditional Yacc prologue, %{code%}. This section summarizes the functionality of %code
for the various target languages supported by Bison. For a detailed discussion of how to use
’icode in place of %{code}} for C/C++ and why it is advantageous to do so, see Section 3.1.2
[Prologue Alternatives], page 48.

%hcode {code} [Directive]
This is the unqualified form of the %code directive. It inserts code verbatim at a
language-dependent default location in the parser implementation.

For C/C++, the default location is the parser implementation file after the usual
contents of the parser header file. Thus, the unqualified form replaces %{code’} for
most purposes.

For D and Java, the default location is inside the parser class.

%hcode qualifier {code} [Directive]
This is the qualified form of the %code directive. qualifier identifies the purpose of
code and thus the location(s) where Bison should insert it. That is, if you need to

Chapter 3: Bison Grammar Files 96

specify location-sensitive code that does not belong at the default location selected
by the unqualified %code form, use this form instead.

For any particular qualifier or for the unqualified form, if there are multiple occurrences
of the %code directive, Bison concatenates the specified code in the order in which it appears
in the grammar file.

Not all qualifiers are accepted for all target languages. Unaccepted qualifiers produce
an error. Some of the accepted qualifiers are:

requires

provides

top

imports

Language(s): C, C++

Purpose: This is the best place to write dependency code required for the
value and location types (YYSTYPE and YYLTYPE in C). In other words, it’s
the best place to define types referenced in %union directives. In C, if
you use #define to override Bison’s default YYSTYPE and YYLTYPE defini-
tions, then it is also the best place. However you should rather Ydefine
api.value.type and api.location.type.

Location(s): The parser header file and the parser implementation file
before the Bison-generated definitions of the value and location types
(YYSTYPE and YYLTYPE in C).

Language(s): C, C++
Purpose: This is the best place to write additional definitions and decla-
rations that should be provided to other modules.

Location(s): The parser header file and the parser implementation file after
the Bison-generated value and location types (YYSTYPE and YYLTYPE in C),
and token definitions.

Language(s): C, C++
Purpose: The unqualified %code or %code requires should usually be more

appropriate than %code top. However, occasionally it is necessary to insert
code much nearer the top of the parser implementation file. For example:

%icode top {
#define _GNU_SOURCE
#include <stdio.h>

¥

Location(s): Near the top of the parser implementation file.

Language(s): D, Java

Purpose: This is the best place to write Java import directives. D syntax
allows for import statements all throughout the code.

Location(s): The parser Java file after any Java package directive and
before any class definitions. The parser D file before any class definitions.

Chapter 3: Bison Grammar Files 97

Though we say the insertion locations are language-dependent, they are technically
skeleton-dependent. Writers of non-standard skeletons however should choose their loca-
tions consistently with the behavior of the standard Bison skeletons.

3.8 Multiple Parsers in the Same Program

Most programs that use Bison parse only one language and therefore contain only one Bison
parser. But what if you want to parse more than one language with the same program? Then
you need to avoid name conflicts between different definitions of functions and variables such
as yyparse, yylval. To use different parsers from the same compilation unit, you also need
to avoid conflicts on types and macros (e.g., YYSTYPE) exported in the generated header.

The easy way to do this is to define the %define variable api.prefix. With different
api.prefixs it is guaranteed that headers do not conflict when included together, and that
compiled objects can be linked together too. Specifying ‘%define api.prefix {prefix}’
(or passing the option -Dapi.prefix={prefix}, see Chapter 9 [Invoking Bison|, page 154)
renames the interface functions and variables of the Bison parser to start with prefix instead
of ‘yy’, and all the macros to start by PREFIX (i.e., prefix upper-cased) instead of ‘YY’.

The renamed symbols include yyparse, yylex, yyerror, yynerrs, yylval, yylloc,
yychar and yydebug. If you use a push parser, yypush_parse, yypull_parse, yypstate,
yypstate_new and yypstate_delete will also be renamed. The renamed macros include
YYSTYPE, YYLTYPE, and YYDEBUG, which is treated specifically — more about this below.

For example, if you use ‘%define api.prefix {c}’, the names become cparse, clex,
..., CSTYPE, CLTYPE, and so on.

Users of Flex must update the signature of the generated yylex function. Since the Flex
scanner usually includes the generated header of the parser (to get the definitions of the
tokens, etc.), the most convenient way is to insert the declaration of yylex in the provides
section:

%define api.prefix {c}
// Emitted in the header file, after the definition of YYSTYPE.
%code provides

{
// Tell Flex the expected prototype of yylex.
#define YY_DECL \
int clex (CSTYPE #*yylval, CLTYPE xyylloc)
// Declare the scanner.
YY_DECL;
}

The %define variable api.prefix works in two different ways. In the implementation
file, it works by adding macro definitions to the beginning of the parser implementation file,
defining yyparse as prefixparse, and so on:

#define YYSTYPE CTYPE

#define yyparse cparse
#define yylval clval

Chapter 3: Bison Grammar Files 98

YYSTYPE yylval;
int yyparse (void);

This effectively substitutes one name for the other in the entire parser implementation
file, thus the “original” names (yylex, YYSTYPE, ...) are also usable in the parser imple-
mentation file.

However, in the parser header file, the symbols are defined renamed, for instance:

extern CSTYPE clval;
int cparse (void);

The macro YYDEBUG is commonly used to enable the tracing support in parsers. To
comply with this tradition, when api.prefix is used, YYDEBUG (not renamed) is used as a
default value:

/* Debug traces. */
#ifndef CDEBUG
if defined YYDEBUG
if YYDEBUG
define CDEBUG 1
else
define CDEBUG O
endif
else
define CDEBUG O
endif
#endif
#if CDEBUG
extern int cdebug;
#endif

#
#
#
#
#
#
#
#

Prior to Bison 2.6, a feature similar to api.prefix was provided by the obsolete directive
Jiname-prefix (see Appendix A [Bison Symbols|, page 215) and the option --name-prefix
(see Section 9.1.4 [Output Files|, page 163).

99

4 Parser C-Language Interface

The Bison parser is actually a C function named yyparse. Here we describe the interface
conventions of yyparse and the other functions that it needs to use.

Keep in mind that the parser uses many C identifiers starting with ‘yy’ and ‘YY’ for
internal purposes. If you use such an identifier (aside from those in this manual) in an
action or in epilogue in the grammar file, you are likely to run into trouble.

4.1 The Parser Function yyparse

You call the function yyparse to cause parsing to occur. This function reads tokens,
executes actions, and ultimately returns when it encounters end-of-input or an unrecoverable
syntax error. You can also write an action which directs yyparse to return immediately
without reading further.

int yyparse (void) [Function]
The value returned by yyparse is 0 if parsing was successful (return is due to end-of-
input).

The value is 1 if parsing failed because of invalid input, i.e., input that contains a
syntax error or that causes YYABORT to be invoked.

The value is 2 if parsing failed due to memory exhaustion.
In an action, you can cause immediate return from yyparse by using these macros:

YYACCEPT [Macro]
Return immediately with value 0 (to report success).

YYABORT [Macro]
Return immediately with value 1 (to report failure).

YYNOMEM [Macro]
Return immediately with value 2 (to report memory exhaustion).

If you use a reentrant parser, you can optionally pass additional parameter information
to it in a reentrant way. To do so, use the declaration %parse-param:

hparse-param {argument-declaration} ... [Directive]
Declare that one or more argument-declaration are additional yyparse arguments.
The argument-declaration is used when declaring functions or prototypes. The last
identifier in argument-declaration must be the argument name.

Here’s an example. Write this in the parser:
%iparse-param {int *nastiness} {int *randomness}
Then call the parser like this:
{

int nastiness, randomness;
/* Store proper data in nastiness and randomness. */
value = yyparse (&nastiness, &randomness);

Chapter 4: Parser C-Language Interface 100

}
In the grammar actions, use expressions like this to refer to the data:
exp: ... { ...; *randomness += 1; ... }
Using the following;:
%parse-param {int *randomness}
Results in these signatures:
void yyerror (int *randomness, const char *msg);
int yyparse (int *randomness);
Or, if both %define api.pure full (or just %define api.pure) and %locations are used:

void yyerror (YYLTYPE *1llocp, int *randomness, const char *msg);
int yyparse (int *randomness) ;

4.2 Push Parser Interface

You call the function yypstate_new to create a new parser instance. This function is
available if either the ‘%define api.push-pull push’ or ‘%define api.push-pull both’
declaration is used. See Section 3.7.12 [A Push Parser], page 79.

yypstatex yypstate_new (void) [Function]
Return a valid parser instance if there is memory available, 0 otherwise. In impure
mode, it will also return 0 if a parser instance is currently allocated.

You call the function yypstate_delete to delete a parser instance. function is available
if either the ‘/)define api.push-pull push’ or ‘/define api.push-pull both’ declaration
is used. See Section 3.7.12 [A Push Parser|, page 79.

void yypstate_delete (yypstate *yyps) [Function]
Reclaim the memory associated with a parser instance. After this call, you should no
longer attempt to use the parser instance.

You call the function yypush_parse to parse a single token. This function is available
if either the ‘define api.push-pull push’ or ‘%define api.push-pull both’ declaration
is used. See Section 3.7.12 [A Push Parser]|, page 79.

int yypush_parse (yypstate *yyps) [Function]
The value returned by yypush_parse is the same as for yyparse with the following
exception: it returns YYPUSH_MORE if more input is required to finish parsing the
grammar.

After yypush_parse returned, the instance may be consulted. For instance check
yynerrs to see whether there were (possibly recovered) syntax errors.

After yypush_parse returns a status other than YYPUSH_MORE, the parser instance
yyps may be reused for a new parse.

The fact that the parser state is reusable even after an error simplifies reuse. For example,
a calculator application which parses each input line as an expression can just keep reusing
the same yyps even if an input was invalid.

Chapter 4: Parser C-Language Interface 101

You call the function yypull_parse to parse the rest of the input stream. This function
is available if the ‘/define api.push-pull both’ declaration is used. See Section 3.7.12 [A
Push Parser|, page 79.

int yypull_parse (yypstate *yyps) [Function]
The value returned by yypull_parse is the same as for yyparse.

The parser instance yyps may be reused for new parses.

int yypstate_expected_tokens (const yypstate *yyps, [Function]
yysymbol_kind_t argv||, int argc)

Fill argv with the expected tokens, which never includes YYSYMBOL_YYEMPTY,
YYSYMBOL_YYerror, or YYSYMBOL_YYUNDEF.

Never put more than argc elements into argv, and on success return the number of
tokens stored in argv. If there are more expected tokens than argc, fill argv up to
argc and return 0. If there are no expected tokens, also return 0, but set argv[0] to
YYSYMBOL_YYEMPTY.

When LAC is enabled, may return a negative number on errors, such as YYENOMEM on
memory exhaustion.

If argv is null, return the size needed to store all the possible values, which is always
less than YYNTOKENS.

4.3 The Lexical Analyzer Function yylex

The lexical analyzer function, yylex, recognizes tokens from the input stream and returns
them to the parser. Bison does not create this function automatically; you must write it so
that yyparse can call it. The function is sometimes referred to as a lexical scanner.

In simple programs, yylex is often defined at the end of the Bison grammar file. If
yylex is defined in a separate source file, you need to arrange for the token-kind definitions
to be available there. To do this, use the -d option when you run Bison, so that it will write
these definitions into the separate parser header file, name.tab.h, which you can include in
the other source files that need it. See Chapter 9 [Invoking Bison], page 154.

4.3.1 Calling Convention for yylex

The value that yylex returns must be the positive numeric code for the kind of token it
has just found; a zero or negative value signifies end-of-input.

When a token kind is referred to in the grammar rules by a name, that name in the parser
implementation file becomes an enumerator of the enum yytoken_kind_t whose definition
is the proper numeric code for that token kind. So yylex should use the name to indicate
that type. See Section 3.2 [Symbols, Terminal and Nonterminal], page 53.

When a token is referred to in the grammar rules by a character literal, the numeric
code for that character is also the code for the token kind. So yylex can simply return
that character code, possibly converted to unsigned char to avoid sign-extension. The null
character must not be used this way, because its code is zero and that signifies end-of-input.

Here is an example showing these things:
int
yylex (void)

Chapter 4: Parser C-Language Interface 102

{
if (c == EOF) /* Detect end-of-input. */
return YYEOQOF;
else if (c == ’+’ || ¢ == ’=?)
return c; /* Assume token kind for ’+’ is ’+’. x/
else
return INT; /* Return the kind of the token. */
}

This interface has been designed so that the output from the lex utility can be used without
change as the definition of yylex.

4.3.2 Special Tokens

In addition to the user defined tokens, Bison generates a few special tokens that yylex may
return.

The YYEQF token denotes the end of file, and signals to the parser that there is nothing
left afterwards. See Section 4.3.1 [Calling Convention for yylex], page 101, for an example.
Returning YYUNDEF tells the parser that some lexical error was found. It will emit an error
message about an “invalid token”, and enter error-recovery (see Chapter 6 [Error Recovery],
page 131). Returning an unknown token kind results in the exact same behavior.
Returning YYerror requires the parser to enter error-recovery without emitting an error
message. This way the lexical analyzer can produce an accurate error messages about the
invalid input (something the parser cannot do), and yet benefit from the error-recovery
features of the parser.
int
yylex (void)
{

é%itch (c)
{

case ’0’: case ’1’: case ’2’: case ’3’: case ’'4’:
case ’5’: case ’6’: case ’7’: case ’8’: case ’9’:

return TOK_NUM;
case EOF:

return YYEQOF;
default:

yyerror ("syntax error: invalid character: Y%c", c);
return YYerror;

Chapter 4: Parser C-Language Interface 103

4.3.3 Finding Tokens by String Literals

If the grammar uses literal string tokens, there are two ways that yylex can determine the
token kind codes for them:

e If the grammar defines symbolic token names as aliases for the literal string tokens,
yylex can use these symbolic names like all others. In this case, the use of the literal
string tokens in the grammar file has no effect on yylex.

This is the preferred approach.

e yylex can search for the multicharacter token in the yytname table. This method is
discouraged: the primary purpose of string aliases is forging good error messages, not
describing the spelling of keywords. In addition, looking for the token kind at runtime
incurs a (small but noticeable) cost.

The yytname table is generated only if you use the %token-table declaration. See
Section 3.7.13 [Bison Declaration Summary], page 81.

4.3.4 Semantic Values of Tokens

In an ordinary (nonreentrant) parser, the semantic value of the token must be stored into
the global variable yylval. When you are using just one data type for semantic values,
yylval has that type. Thus, if the type is int (the default), you might write this in yylex:

yylval = value; /* Put value onto Bison stack. */
return INT; /* Return the kind of the token. */

When you are using multiple data types, yylval’s type is a union made from the %union
declaration (see Section 3.4.4 [The Union Declaration], page 59). So when you store a token’s
value, you must use the proper member of the union. If the %union declaration looks like
this:

Y%union {
int intval;
double val;
symrec *tptr;

}
then the code in yylex might look like this:

yylval.intval = value; /* Put value onto Bison stack. */
return INT; /* Return the kind of the token. */

4.3.5 Textual Locations of Tokens

If you are using the ‘@n’-feature (see Section 3.5 [Tracking Locations], page 67) in actions
to keep track of the textual locations of tokens and groupings, then you must provide this
information in yylex. The function yyparse expects to find the textual location of a token
just parsed in the global variable yylloc. So yylex must store the proper data in that
variable.

Chapter 4: Parser C-Language Interface 104

By default, the value of yylloc is a structure and you need only initialize the members
that are going to be used by the actions. The four members are called first_line, first_
column, last_line and last_column. Note that the use of this feature makes the parser
noticeably slower.

The data type of yylloc has the name YYLTYPE.

4.3.6 Calling Conventions for Pure Parsers

When you use the Bison declaration /define api.pure full to request a pure, reentrant
parser, the global communication variables yylval and yylloc cannot be used. (See
Section 3.7.11 [A Pure (Reentrant) Parser|, page 79.) In such parsers the two global vari-
ables are replaced by pointers passed as arguments to yylex. You must declare them as
shown here, and pass the information back by storing it through those pointers.

int

yylex (YYSTYPE *lvalp, YYLTYPE *1locp)

{

xlvalp = value; /* Put value onto Bison stack. */
return INT; /* Return the kind of the token. */

}

If the grammar file does not use the ‘@’ constructs to refer to textual locations, then the
type YYLTYPE will not be defined. In this case, omit the second argument; yylex will be
called with only one argument.

If you wish to pass additional arguments to yylex, use %lex-param just like
Jiparse-param (see Section 4.1 [The Parser Function yyparse|, page 99). To pass
additional arguments to both yylex and yyparse, use %param.

%hlex-param {argument-declaration} ... [Directive]
Specify that argument-declaration are additional yylex argument declarations. You
may pass one or more such declarations, which is equivalent to repeating %lex-param.

hparam {argument-declaration} ... [Directive]
Specify that argument-declaration are additional yylex/yyparse argument
declaration. This is equivalent to ‘/lex-param {argument-declaration} ...
hparse-param {argument-declaration} You may pass one or more

declarations, which is equivalent to repeating %param.

For instance:

%lex-param {scanner_mode *mode}
%parse-param {parser_mode *mode}
Jparam {environment_type *env}

results in the following signatures:

int yylex (scanner_mode *mode, environment_type *env);
int yyparse (parser_mode *mode, environment_type *env);

If ‘“Ydefine api.pure full’ is added:

int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env) ;

Chapter 4: Parser C-Language Interface 105

int yyparse (parser_mode *mode, environment_type *env);
and finally, if both ‘/4define api.pure full’ and %locations are used:

int yylex (YYSTYPE *lvalp, YYLTYPE x*1llocp,
scanner_mode *mode, environment_type *env);
int yyparse (parser_mode *mode, environment_type *env) ;

4.4 Error Reporting

During its execution the parser may have error messages to pass to the user, such as syntax
error, or memory exhaustion. How this message is delivered to the user must be specified
by the developer.

4.4.1 The Error Reporting Function yyerror

The Bison parser detects a syntax error (or parse error) whenever it reads a token which
cannot satisfy any syntax rule. An action in the grammar can also explicitly proclaim
an error, using the macro YYERROR (see Section 4.5 [Special Features for Use in Actions],
page 108).

The Bison parser expects to report the error by calling an error reporting function named
yyerror, which you must supply. It is called by yyparse whenever a syntax error is found,
and it receives one argument. For a syntax error, the string is normally "syntax error".

If you invoke ‘) define parse.error detailed’ (or ‘custom’) in the Bison declarations
section (see Section 3.1.3 [The Bison Declarations Section], page 52), then Bison provides
a more verbose and specific error message string instead of just plain "syntax error".
However, that message sometimes contains incorrect information if LAC is not enabled (see
Section 5.8.3 [LAC], page 126).

The parser can detect one other kind of error: memory exhaustion. This can happen
when the input contains constructions that are very deeply nested. It isn’t likely you will
encounter this, since the Bison parser normally extends its stack automatically up to a very
large limit. But if memory is exhausted, yyparse calls yyerror in the usual fashion, except
that the argument string is "memory exhausted".

In some cases diagnostics like "syntax error" are translated automatically from En-
glish to some other language before they are passed to yyerror. See Section 4.6 [Parser
Internationalization], page 110.

The following definition suffices in simple programs:
void

yyerror (char const *s)

{
fprintf (stderr, "%s\n", s);
}

After yyerror returns to yyparse, the latter will attempt error recovery if you have
written suitable error recovery grammar rules (see Chapter 6 [Error Recovery], page 131).
If recovery is impossible, yyparse will immediately return 1.

Obviously, in location tracking pure parsers, yyerror should have an access to the
current location. With %define api.pure, this is indeed the case for the GLR parsers, but

Chapter 4: Parser C-Language Interface 106

not for the Yacc parser, for historical reasons, and this is the why %define api.pure full
should be preferred over %define api.pure.

When %locations %define api.pure full isused, yyerror has the following signature:
void yyerror (YYLTYPE *locp, char const *msg);

The prototypes are only indications of how the code produced by Bison uses yyerror.
Bison-generated code always ignores the returned value, so yyerror can return any type,
including void. Also, yyerror can be a variadic function; that is why the message is always
passed last.

Traditionally yyerror returns an int that is always ignored, but this is purely for
historical reasons, and void is preferable since it more accurately describes the return type
for yyerror.

The variable yynerrs contains the number of syntax errors reported so far. Normally this
variable is global; but if you request a pure parser (see Section 3.7.11 [A Pure (Reentrant)
Parser], page 79) then it is a local variable which only the actions can access.

4.4.2 The Syntax Error Reporting Function yyreport_syntax_error

If you invoke ‘Jdefine parse.error custom’ (see Section 3.1.3 [The Bison Declarations
Section], page 52), then the parser no longer passes syntax error messages to yyerror,
rather it delegates that task to the user by calling the yyreport_syntax_error function.

The following functions and types are “static”: they are defined in the implementation
file (*.c) and available only from there. They are meant to be used from the grammar’s
epilogue.

static int yyreport_syntax_error (const yypcontext_t *ctx) [Function]
Report a syntax error to the user. Return 0 on success, YYENOMEM on memory ex-
haustion. Whether it uses yyerror is up to the user.

Use the following types and functions to build the error message.

yypcontext_t [Type]
An opaque type that captures the circumstances of the syntax error.

yysymbol_kind_t [Type]
An enum of all the grammar symbols, tokens and nonterminals. Its enumerators are
forged from the symbol names:

enum yysymbol_kind_t
{

YYSYMBOL_YYEMPTY = -2, /* No symbol. x*/
YYSYMBOL_YYEQF = 0, /* "end of file" x/
YYSYMBOL_YYerror = 1, /* error x*x/
YYSYMBOL_YYUNDEF = 2, /* "invalid token" */
YYSYMBOL_PLUS = 3, Jx "N x/
YYSYMBOL_MINUS = 4, /x "="ox/

[...]

YYSYMBOL_VAR = 14, /* "variable" x/

YYSYMBOL_NEG

15, /* NEG */

Chapter 4: Parser C-Language Interface 107

YYSYMBOL_YYACCEPT = 16, /* $accept */
YYSYMBOL_exp = 17, /% exp */
YYSYMBOL_input = 18 /* input */

s
typedef enum yysymbol_kind_t yysymbol_kind_t;

static yysymbol_kind_t yypcontext_token (const yypcontext_t [Function]
*Ctx)
The “unexpected” token: the symbol kind of the lookahead token that caused the
syntax error. Returns YYSYMBOL_YYEMPTY if there is no lookahead.

static YYLTYPE * yypcontext_location (const yypcontext_t [Function]
*xCtX)
The location of the syntax error (that of the unexpected token).

static int yypcontext_expected_tokens (const yypcontext_t [Function]
*ctx, yysymbol_kind_t argvl], int argc)
Fill argv with the expected tokens, which never includes YYSYMBOL_YYEMPTY,
YYSYMBOL_YYerror, or YYSYMBOL_YYUNDEF.

Never put more than argc elements into argv, and on success return the number of
tokens stored in argv. If there are more expected tokens than argc, fill argv up to
argc and return 0. If there are no expected tokens, also return 0, but set argv[0] to
YYSYMBOL_YYEMPTY.

When LAC is enabled, may return a negative number on errors, such as YYENOMEM on
memory exhaustion.

If argv is null, return the size needed to store all the possible values, which is always
less than YYNTOKENS.

static const char * yysymbol_name (symbol_kind_t symbol) [Function]
The name of the symbol whose kind is symbol, possibly translated.

A custom syntax error function looks as follows. This implementation is inappropriate
for internationalization, see the c/bistromathic example for a better alternative.

static int
yyreport_syntax_error (const yypcontext_t *ctx)
{
int res = 0;
YYLOCATION_PRINT (stderr, *yypcontext_location (ctx));

fprintf (stderr, ": syntax error");
// Report the tokens expected at this point.
{

enum { TOKENMAX = 5 };
yysymbol_kind_t expected[TOKENMAX] ;
int n = yypcontext_expected_tokens (ctx, expected, TOKENMAX);
if (n < 0)
// Forward errors to yyparse.
res = n;
else

Chapter 4: Parser C-Language Interface 108

for (int i = 0; i < n; ++i)
fprintf (stderr, "%s %s",
i==07": expected" : " or", yysymbol_name (expected[i]));
}
// Report the unexpected token.
{
yysymbol_kind_t lookahead = yypcontext_token (ctx);
if (lookahead != YYSYMBOL_YYEMPTY)
fprintf (stderr, " before %s", yysymbol_name (lookahead));

}
fprintf (stderr, "\n");
return res;

¥

You still must provide a yyerror function, used for instance to report memory exhaus-
tion.

4.5 Special Features for Use in Actions

Here is a table of Bison constructs, variables and macros that are useful in actions.

3 [Variable]
Acts like a variable that contains the semantic value for the grouping made by the
current rule. See Section 3.4.6 [Actions|, page 60.

$n [Variable]
Acts like a variable that contains the semantic value for the nth component of the
current rule. See Section 3.4.6 [Actions], page 60.

$<typealt>$ [Variable]
Like $$ but specifies alternative typealt in the union specified by the %union decla-
ration. See Section 3.4.7 [Data Types of Values in Actions], page 62.

$<typealt>n [Variable]
Like $n but specifies alternative typealt in the union specified by the %union decla-
ration. See Section 3.4.7 [Data Types of Values in Actions], page 62.

YYABORT ; [Macro]
Return immediately from yyparse, indicating failure. See Section 4.1 [The Parser
Function yyparse], page 99.

YYACCEPT ; [Macro]
Return immediately from yyparse, indicating success. See Section 4.1 [The Parser
Function yyparse], page 99.

YYBACKUP (token, value); [Macro]
Unshift a token. This macro is allowed only for rules that reduce a single value, and
only when there is no lookahead token. It is also disallowed in GLR parsers. It installs
a lookahead token with token kind token and semantic value value; then it discards
the value that was going to be reduced by this rule.

Chapter 4: Parser C-Language Interface 109

If the macro is used when it is not valid, such as when there is a lookahead token
already, then it reports a syntax error with a message ‘cannot back up’ and performs
ordinary error recovery.

In either case, the rest of the action is not executed.

YYEMPTY [Value]
Value stored in yychar when there is no lookahead token.

YYEQF [Value]
Value stored in yychar when the lookahead is the end of the input stream.

YYERROR ; [Macro]
Cause an immediate syntax error. This statement initiates error recovery just as if
the parser itself had detected an error; however, it does not call yyerror, and does
not print any message. If you want to print an error message, call yyerror explicitly
before the ‘YYERROR;’ statement. See Chapter 6 [Error Recovery], page 131.

YYNOMEM ; [Macro]
Return immediately from yyparse, indicating memory exhaustion. See Section 4.1
[The Parser Function yyparse], page 99.

YYRECOVERING [Macro]
The expression YYRECOVERING () yields 1 when the parser is recovering from a syntax
error, and 0 otherwise. See Chapter 6 [Error Recovery|, page 131.

yychar [Variable]
Variable containing either the lookahead token, or YYEOF when the lookahead is the
end of the input stream, or YYEMPTY when no lookahead has been performed so the
next token is not yet known. Do not modify yychar in a deferred semantic action (see
Section 1.5.3 [GLR Semantic Actions|, page 23). See Section 5.1 [Lookahead Tokens],
page 112.

yyclearin ; [Macro]
Discard the current lookahead token. This is useful primarily in error rules. Do not
invoke yyclearin in a deferred semantic action (see Section 1.5.3 [GLR Semantic
Actions|, page 23). See Chapter 6 [Error Recovery|, page 131.

yyerrok ; [Macro]
Resume generating error messages immediately for subsequent syntax errors. This is
useful primarily in error rules. See Chapter 6 [Error Recovery], page 131.

yylloc [Variable]
Variable containing the lookahead token location when yychar is not set to YYEMPTY
or YYEOF. Do not modify yylloc in a deferred semantic action (see Section 1.5.3 [GLR
Semantic Actions]|, page 23). See Section 3.5.2 [Actions and Locations], page 68.

yylval [Variable]
Variable containing the lookahead token semantic value when yychar is not set
to YYEMPTY or YYEOF. Do not modify yylval in a deferred semantic action (see
Section 1.5.3 [GLR Semantic Actions], page 23). See Section 3.4.6 [Actions], page 60.

Chapter 4: Parser C-Language Interface 110

e$ [Value]
Acts like a structure variable containing information on the textual location of the
grouping made by the current rule. See Section 3.5 [Tracking Locations], page 67.

@n [Value]
Acts like a structure variable containing information on the textual location of the
nth component of the current rule. See Section 3.5 [Tracking Locations], page 67.

4.6 Parser Internationalization

A Bison-generated parser can print diagnostics, including error and tracing messages. By
default, they appear in English. However, Bison also supports outputting diagnostics in
the user’s native language. To make this work, the user should set the usual environment
variables. See Section “The User’s View” in GNU gettext utilities. For example, the
shell command ‘export LC_ALL=fr_CA.UTF-8" might set the user’s locale to French Cana-
dian using the UTF-8 encoding. The exact set of available locales depends on the user’s
installation.

4.6.1 Enabling Internationalization

The maintainer of a package that uses a Bison-generated parser enables the international-
ization of the parser’s output through the following steps. Here we assume a package that
uses GNU Autoconf and GNU Automake.

1. Into the directory containing the GNU Autoconf macros used by the package
—often called m4— copy the bison-il8n.m4 file installed by Bison under
‘share/aclocal/bison-i18n.m4’ in Bison’s installation directory. For example:

cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4

2. In the top-level configure.ac, after the AM_GNU_GETTEXT invocation, add an invocation
of BISON_I18N. This macro is defined in the file bison-i18n.m4 that you copied
earlier. It causes configure to find the value of the BISON_LOCALEDIR variable, and it
defines the source-language symbol YYENABLE_NLS to enable translations in the Bison-
generated parser.

3. In the main function of your program, designate the directory containing Bison’s
runtime message catalog, through a call to ‘bindtextdomain’ with domain name
‘bison-runtime’. For example:

bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
Typically this appears after any other call bindtextdomain (PACKAGE, LOCALEDIR)
that your package already has. Here we rely on ‘BISON_LOCALEDIR’ to be defined as a
string through the Makefile.

4. In the Makefile.am that controls the compilation of the main function, make
‘BISON_LOCALEDIR’ available as a C preprocessor macro, either in ‘DEFS’ or in
‘AM_CPPFLAGS’. For example:

DEFS = @DEFS@ -DBISON_LOCALEDIR=’"$(BISON_LOCALEDIR)"’
or:
AM_CPPFLAGS = -DBISON_LOCALEDIR=’"$(BISON_LOCALEDIR)"’

5. Finally, invoke the command autoreconf to generate the build infrastructure.

Chapter 4: Parser C-Language Interface 111

4.6.2 Token Internationalization

When the Ydefine variable parse.error is set to custom or detailed, token aliases can
be internationalized:

%token
’\n’ _("end of line")
<double>
NUM _("number")
<symrec*>
FUN _("function")
VAR _("variable")

The remainder of the grammar may freely use either the token symbol (FUN) or its alias
("function"), but not with the internationalization marker (_("function")).

If at least one token alias is internationalized, then the generated parser will use both
N_ and _, that must be defined (see Section “The Programmer’s View” in GNU gettext
utilities). They are used only on string aliases marked for translation. In other words, even
if your catalog features a translation for “function”, then with

%token
<symrec*>
FUN "function"
VAR _("variable")

“function” will appear untranslated in debug traces and error messages.

Unless defined by the user, the end-of-file token, YYEQF, is provided “end of file” as an
alias. It is also internationalized if the user internationalized tokens. To map it to another
string, use:

%token END O _("end of input")

112

5 The Bison Parser Algorithm

As Bison reads tokens, it pushes them onto a stack along with their semantic values. The
stack is called the parser stack. Pushing a token is traditionally called shifting.

For example, suppose the infix calculator has read ‘1 + 5 *’, with a ‘3’ to come. The
stack will have four elements, one for each token that was shifted.

But the stack does not always have an element for each token read. When the last
n tokens and groupings shifted match the components of a grammar rule, they can be
combined according to that rule. This is called reduction. Those tokens and groupings are
replaced on the stack by a single grouping whose symbol is the result (left hand side) of
that rule. Running the rule’s action is part of the process of reduction, because this is what
computes the semantic value of the resulting grouping.

For example, if the infix calculator’s parser stack contains this:
1 +5 %3

and the next input token is a newline character, then the last three elements can be reduced
to 15 via the rule:

expr: expr ’*’ expr;
Then the stack contains just these three elements:
1+ 15

At this point, another reduction can be made, resulting in the single value 16. Then the
newline token can be shifted.

The parser tries, by shifts and reductions, to reduce the entire input down to a single
grouping whose symbol is the grammar’s start-symbol (see Section 1.1 [Languages and
Context-Free Grammars|, page 14).

This kind of parser is known in the literature as a bottom-up parser.

5.1 Lookahead Tokens

The Bison parser does not always reduce immediately as soon as the last n tokens and
groupings match a rule. This is because such a simple strategy is inadequate to handle
most languages. Instead, when a reduction is possible, the parser sometimes “looks ahead”
at the next token in order to decide what to do.

When a token is read, it is not immediately shifted; first it becomes the lookahead token,
which is not on the stack. Now the parser can perform one or more reductions of tokens
and groupings on the stack, while the lookahead token remains off to the side. When no
more reductions should take place, the lookahead token is shifted onto the stack. This does
not mean that all possible reductions have been done; depending on the token kind of the
lookahead token, some rules may choose to delay their application.

Here is a simple case where lookahead is needed. These three rules define expressions
which contain binary addition operators and postfix unary factorial operators (‘!’), and
allow parentheses for grouping.

expr:
term ’+’ expr
| term

3

Chapter 5: The Bison Parser Algorithm 113

term:

) () expr 7))
| term !’
| "number"

Suppose that the tokens ‘1 + 2’ have been read and shifted; what should be done? If
the following token is ‘)’, then the first three tokens must be reduced to form an expr.
This is the only valid course, because shifting the)’ would produce a sequence of symbols
term ’)’, and no rule allows this.

If the following token is ‘!’; then it must be shifted immediately so that ‘2 !’ can be
reduced to make a term. If instead the parser were to reduce before shifting, ‘1 + 2" would
become an expr. It would then be impossible to shift the ‘!’ because doing so would produce
on the stack the sequence of symbols expr ’!’. No rule allows that sequence.

The lookahead token is stored in the variable yychar. Its semantic value and location,
if any, are stored in the variables yylval and yylloc. See Section 4.5 [Special Features for
Use in Actions], page 108.

5.2 Shift/Reduce Conflicts

Suppose we are parsing a language which has if-then and if-then-else statements, with a
pair of rules like this:
if_stmt:
"if" expr "then" stmt
| "if" expr "then" stmt "else" stmt
Here "if", "then" and "else" are terminal symbols for specific keyword tokens.

When the "else" token is read and becomes the lookahead token, the contents of the
stack (assuming the input is valid) are just right for reduction by the first rule. But it is
also legitimate to shift the "else", because that would lead to eventual reduction by the
second rule.

This situation, where either a shift or a reduction would be valid, is called a shift/reduce
conflict. Bison is designed to resolve these conflicts by choosing to shift, unless otherwise
directed by operator precedence declarations. To see the reason for this, let’s contrast it
with the other alternative.

Since the parser prefers to shift the "else", the result is to attach the else-clause to the
innermost if-statement, making these two inputs equivalent:

if x then if y then win; else lose;

if x then do; if y then win; else lose; end;

But if the parser chose to reduce when possible rather than shift, the result would be to
attach the else-clause to the outermost if-statement, making these two inputs equivalent:

if x then if y then win; else lose;

if x then do; if y then win; end; else lose;

Chapter 5: The Bison Parser Algorithm 114

The conflict exists because the grammar as written is ambiguous: either parsing of the
simple nested if-statement is legitimate. The established convention is that these ambiguities
are resolved by attaching the else-clause to the innermost if-statement; this is what Bison
accomplishes by choosing to shift rather than reduce. (It would ideally be cleaner to write an
unambiguous grammar, but that is very hard to do in this case.) This particular ambiguity
was first encountered in the specifications of Algol 60 and is called the “dangling else”
ambiguity.

To assist the grammar author in understanding the nature of each conflict, Bison can be
asked to generate “counterexamples”. In the present case it actually even proves that the
grammar is ambiguous by exhibiting a string with two different parses:

Example: "if" expr "then" stmt e "else" stmt
Shift derivation

stmt
— 2: if_stmt
— 4: "if" expr "then" stmt e "else" stmt
Example: "if" expr "then" stmt e
Reduce derivation

stmt
— 2: 1if_stmt
— 3: "if" expr "then" stmt e

See Section 8.1 [Generation of Counterexamples], page 136, for more details.

To avoid warnings from Bison about predictable, legitimate shift/reduce conflicts, you
can use the %expect n declaration. There will be no warning as long as the number of
shift /reduce conflicts is exactly n, and Bison will report an error if there is a different
number. See Section 3.7.9 [Suppressing Conflict Warnings], page 77. However, we don’t
recommend the use of %expect (except ‘%hexpect 0’!), as an equal number of conflicts does
not mean that they are the same. When possible, you should rather use precedence direc-
tives to fiz the conflicts explicitly (see Section 5.3.6 [Using Precedence For Non Operators],
page 117).

The definition of if_stmt above is solely to blame for the conflict, but the conflict does
not actually appear without additional rules. Here is a complete Bison grammar file that
actually manifests the conflict:

o

stmt :
expr

| if_stmt

3

if_stmt:
"if" expr "then" stmt
| "if" expr "then" stmt "else" stmt

b

Chapter 5: The Bison Parser Algorithm 115

expr:
"identifier"

5.3 Operator Precedence

Another situation where shift/reduce conflicts appear is in arithmetic expressions. Here
shifting is not always the preferred resolution; the Bison declarations for operator precedence
allow you to specify when to shift and when to reduce.

5.3.1 When Precedence is Needed

Consider the following ambiguous grammar fragment (ambiguous because the input
‘1 - 2 % 3’ can be parsed in two different ways):
expr:
expr ’-’ expr
| expr ’*’ expr
| expr ’<’ expr
|) (7 expr 7))

Suppose the parser has seen the tokens ‘1’, ‘=" and ‘2’; should it reduce them via the rule
for the subtraction operator? It depends on the next token. Of course, if the next token is
)7, we must reduce; shifting is invalid because no single rule can reduce the token sequence
‘= 2)’ or anything starting with that. But if the next token is ‘*’ or ‘<’, we have a choice:
either shifting or reduction would allow the parse to complete, but with different results.

To decide which one Bison should do, we must consider the results. If the next operator
token op is shifted, then it must be reduced first in order to permit another opportunity
to reduce the difference. The result is (in effect) ‘1 = (2 op 3)’. On the other hand, if the
subtraction is reduced before shifting op, the result is ‘(1 - 2) op 3’. Clearly, then, the
choice of shift or reduce should depend on the relative precedence of the operators ‘=’ and
op: ‘*’ should be shifted first, but not ‘<’.

What about input such as ‘1 - 2 - 5’; should this be ‘(1 - 2) -5’ or should it be
‘1 - (2 -5)’?7 For most operators we prefer the former, which is called left association.
The latter alternative, right association, is desirable for assignment operators. The choice
of left or right association is a matter of whether the parser chooses to shift or reduce when

the stack contains ‘1 - 2’ and the lookahead token is ‘~’: shifting makes right-associativity.

5.3.2 Specifying Operator Precedence

Bison allows you to specify these choices with the operator precedence declarations %left
and %right. KEach such declaration contains a list of tokens, which are operators whose
precedence and associativity is being declared. The %left declaration makes all those
operators left-associative and the %right declaration makes them right-associative. A third
alternative is %nonassoc, which declares that it is a syntax error to find the same operator
twice “in a row”. The last alternative, Jprecedence, allows to define only precedence
and no associativity at all. As a result, any associativity-related conflict that remains will

Chapter 5: The Bison Parser Algorithm 116

be reported as an compile-time error. The directive %nonassoc creates run-time error:
using the operator in a associative way is a syntax error. The directive Yprecedence
creates compile-time errors: an operator can be involved in an associativity-related conflict,
contrary to what expected the grammar author.

The relative precedence of different operators is controlled by the order in which they
are declared. The first precedence/associativity declaration in the file declares the oper-
ators whose precedence is lowest, the next such declaration declares the operators whose
precedence is a little higher, and so on.

5.3.3 Specifying Precedence Only

Since POSIX Yacc defines only %left, Jiright, and %nonassoc, which all defines precedence
and associativity, little attention is paid to the fact that precedence cannot be defined
without defining associativity. Yet, sometimes, when trying to solve a conflict, precedence
suffices. In such a case, using %1left, %right, or %nonassoc might hide future (associativity
related) conflicts that would remain hidden.

The dangling else ambiguity (see Section 5.2 [Shift/Reduce Conflicts], page 113) can
be solved explicitly. This shift/reduce conflicts occurs in the following situation, where the
period denotes the current parsing state:

if el then if e2 then s1 e else s2

The conflict involves the reduction of the rule ‘IF expr THEN stmt’, which precedence
is by default that of its last token (THEN), and the shifting of the token ELSE. The usual
disambiguation (attach the else to the closest if), shifting must be preferred, i.e., the
precedence of ELSE must be higher than that of THEN. But neither is expected to be involved
in an associativity related conflict, which can be specified as follows.

%precedence THEN
%iprecedence ELSE

The unary-minus is another typical example where associativity is usually over-specified,
see Section 2.2 [Infix Notation Calculator: calc], page 34. The %left directive is tradition-
ally used to declare the precedence of NEG, which is more than needed since it also defines
its associativity. While this is harmless in the traditional example, who knows how NEG
might be used in future evolutions of the grammar. . .

5.3.4 Precedence Examples

In our example, we would want the following declarations:

hleft ’<’
hleft -7
hleft %’

In a more complete example, which supports other operators as well, we would declare
them in groups of equal precedence. For example, >+’ is declared with >-’:

%left YK IS =) m=n ng=n Ny
%left >+ -’
%left)% 7/7

Chapter 5: The Bison Parser Algorithm 117

5.3.5 How Precedence Works

The first effect of the precedence declarations is to assign precedence levels to the terminal
symbols declared. The second effect is to assign precedence levels to certain rules: each
rule gets its precedence from the last terminal symbol mentioned in the components. (You
can also specify explicitly the precedence of a rule. See Section 5.4 [Context-Dependent
Precedence], page 117.)

Finally, the resolution of conflicts works by comparing the precedence of the rule being
considered with that of the lookahead token. If the token’s precedence is higher, the choice
is to shift. If the rule’s precedence is higher, the choice is to reduce. If they have equal
precedence, the choice is made based on the associativity of that precedence level. The
verbose output file made by -v (see Chapter 9 [Invoking Bison|, page 154) says how each
conflict was resolved.

Not all rules and not all tokens have precedence. If either the rule or the lookahead
token has no precedence, then the default is to shift.

5.3.6 Using Precedence For Non Operators

Using properly precedence and associativity directives can help fixing shift /reduce conflicts
that do not involve arithmetic-like operators. For instance, the “dangling else” problem
(see Section 5.2 [Shift /Reduce Conflicts], page 113) can be solved elegantly in two different
ways.

In the present case, the conflict is between the token "else" willing to be shifted, and the
rule ‘if_stmt: "if" expr "then" stmt’, asking for reduction. By default, the precedence
of a rule is that of its last token, here "then", so the conflict will be solved appropriately
by giving "else" a precedence higher than that of "then", for instance as follows:

Jiprecedence "then"
%precedence "else"

Alternatively, you may give both tokens the same precedence, in which case associativity
is used to solve the conflict. To preserve the shift action, use right associativity:

%right "then" "else"

Neither solution is perfect however. Since Bison does not provide, so far, “scoped”
precedence, both force you to declare the precedence of these keywords with respect to
the other operators your grammar. Therefore, instead of being warned about new conflicts
you would be unaware of (e.g., a shift/reduce conflict due to ‘if test then 1 else 2 + 3’
being ambiguous: ‘if test then 1 else (2 + 3)’ or ‘(if test then 1 else 2) + 3'7), the
conflict will be already “fixed”.

5.4 Context-Dependent Precedence

Often the precedence of an operator depends on the context. This sounds outlandish at first,
but it is really very common. For example, a minus sign typically has a very high precedence
as a unary operator, and a somewhat lower precedence (lower than multiplication) as a
binary operator.

The Bison precedence declarations can only be used once for a given token; so a token
has only one precedence declared in this way. For context-dependent precedence, you need
to use an additional mechanism: the %prec modifier for rules.

Chapter 5: The Bison Parser Algorithm 118

The %prec modifier declares the precedence of a particular rule by specifying a terminal
symbol whose precedence should be used for that rule. It’s not necessary for that symbol
to appear otherwise in the rule. The modifier’s syntax is:

hprec terminal-symbol

and it is written after the components of the rule. Its effect is to assign the rule the
precedence of terminal-symbol, overriding the precedence that would be deduced for it in
the ordinary way. The altered rule precedence then affects how conflicts involving that rule
are resolved (see Section 5.3 [Operator Precedence], page 115).

Here is how %prec solves the problem of unary minus. First, declare a precedence for a
fictitious terminal symbol named UMINUS. There are no tokens of this type, but the symbol
serves to stand for its precedence:

%left >+ -’
hleft 7%’
%left UMINUS

Now the precedence of UMINUS can be used in specific rules:

exp:
| exp >-’ exp
| °-’ exp %prec UMINUS

5.5 Parser States

The function yyparse is implemented using a finite-state machine. The values pushed
on the parser stack are not simply token kind codes; they represent the entire sequence of
terminal and nonterminal symbols at or near the top of the stack. The current state collects
all the information about previous input which is relevant to deciding what to do next.

Each time a lookahead token is read, the current parser state together with the kind of
lookahead token are looked up in a table. This table entry can say, “Shift the lookahead
token.” In this case, it also specifies the new parser state, which is pushed onto the top
of the parser stack. Or it can say, “Reduce using rule number n.” This means that a
certain number of tokens or groupings are taken off the top of the stack, and replaced by
one grouping. In other words, that number of states are popped from the stack, and one
new state is pushed.

There is one other alternative: the table can say that the lookahead token is erroneous
in the current state. This causes error processing to begin (see Chapter 6 [Error Recovery],
page 131).

5.6 Reduce/Reduce Conflicts

A reduce/reduce conflict occurs if there are two or more rules that apply to the same
sequence of input. This usually indicates a serious error in the grammar.

For example, here is an erroneous attempt to define a sequence of zero or more word
groupings.

Chapter 5: The Bison Parser Algorithm 119

sequence:
%hempty { printf ("empty sequence\n"); }
| maybeword
| sequence word { printf ("added word %s\n", $2); }

b

maybeword:
%hempty { printf ("empty maybeword\n"); }
| word { printf ("single word %s\n", $1); }

The error is an ambiguity: as counterexample generation would demonstrate (see Section 8.1
[Generation of Counterexamples|, page 136), there is more than one way to parse a single
word into a sequence. It could be reduced to a maybeword and then into a sequence via

the second rule. Alternatively, nothing-at-all could be reduced into a sequence via the first
rule, and this could be combined with the word using the third rule for sequence.

There is also more than one way to reduce nothing-at-all into a sequence. This can be
done directly via the first rule, or indirectly via maybeword and then the second rule.

You might think that this is a distinction without a difference, because it does not change
whether any particular input is valid or not. But it does affect which actions are run. One
parsing order runs the second rule’s action; the other runs the first rule’s action and the
third rule’s action. In this example, the output of the program changes.

Bison resolves a reduce/reduce conflict by choosing to use the rule that appears first in
the grammar, but it is very risky to rely on this. Every reduce/reduce conflict must be
studied and usually eliminated. Here is the proper way to define sequence:

sequence:
%hempty { printf ("empty sequence\n"); }
| sequence word { printf ("added word %s\n", $2); }
Here is another common error that yields a reduce/reduce conflict:

sequence:
%hempty
| sequence words
| sequence redirects

3

words:
hempty
| words word

3

redirects:
hempty
| redirects redirect

3

Chapter 5: The Bison Parser Algorithm 120

The intention here is to define a sequence which can contain either word or redirect
groupings. The individual definitions of sequence, words and redirects are error-free,
but the three together make a subtle ambiguity: even an empty input can be parsed in
infinitely many ways!

Consider: nothing-at-all could be a words. Or it could be two words in a row, or three,
or any number. It could equally well be a redirects, or two, or any number. Or it could
be a words followed by three redirects and another words. And so on.

Here are two ways to correct these rules. First, to make it a single level of sequence:

sequence:
hempty
| sequence word
| sequence redirect
Second, to prevent either a words or a redirects from being empty:

sequence:
%empty

| sequence words

| sequence redirects

J

words:
word
| words word

J

redirects:
redirect
| redirects redirect
Yet this proposal introduces another kind of ambiguity! The input ‘word word’ can be
parsed as a single words composed of two ‘word’s, or as two one-word words (and likewise for
redirect/redirects). However this ambiguity is now a shift/reduce conflict, and therefore
it can now be addressed with precedence directives.

To simplify the matter, we will proceed with word and redirect being tokens: "word"
and "redirect".

To prefer the longest words, the conflict between the token "word" and the rule
‘sequence: sequence words’ must be resolved as a shift. To this end, we use the same
techniques as exposed above, see Section 5.3.6 [Using Precedence For Non Operators],
page 117. One solution relies on precedences: use %prec to give a lower precedence to the
rule:

%precedence "word"
Jprecedence "sequence"

Toth

Chapter 5: The Bison Parser Algorithm 121

sequence:

%hempty
| sequence word %prec "sequence"
| sequence redirect Yprec "sequence"

b

words:
word
| words "word"
Another solution relies on associativity: provide both the token and the rule with the
same precedence, but make them right-associative:

%right "word" "redirect"
hto
sequence:
%hempty
| sequence word %prec "word"
| sequence redirect Yprec "redirect"

b

5.7 Mysterious Conflicts

Sometimes reduce/reduce conflicts can occur that don’t look warranted. Here is an example
T
def: param_spec return_spec ’,’;
param_spec:
type
| name_list ’:’ type

J

return_spec:
type
| name ’:’ type

type: "id";

name: "id";
name_list:
name
| name ’,’ name_list
It would seem that this grammar can be parsed with only a single token of lookahead:

when a param_spec is being read, an "id" is a name if a comma or colon follows, or a
type if another "id" follows. In other words, this grammar is LR(1). Yet Bison finds one

Chapter 5: The Bison Parser Algorithm 122

reduce/reduce conflict, for which counterexample generation (see Section 8.1 [Generation
of Counterexamples|, page 136) would find a nonunifying example.

This is because Bison does not handle all LR(1) grammars by default, for historical
reasons. In this grammar, two contexts, that after an "id" at the beginning of a param_
spec and likewise at the beginning of a return_spec, are similar enough that Bison assumes
they are the same. They appear similar because the same set of rules would be active—the
rule for reducing to a name and that for reducing to a type. Bison is unable to determine
at that stage of processing that the rules would require different lookahead tokens in the
two contexts, so it makes a single parser state for them both. Combining the two contexts
causes a conflict later. In parser terminology, this occurrence means that the grammar is

not LALR(1).

For many practical grammars (specifically those that fall into the non-LR(1) class), the
limitations of LALR(1) result in difficulties beyond just mysterious reduce/reduce conflicts.
The best way to fix all these problems is to select a different parser table construction algo-
rithm. Either IELR(1) or canonical LR (1) would suffice, but the former is more efficient and
easier to debug during development. See Section 5.8.1 [LR Table Construction|, page 123,
for details.

If you instead wish to work around LALR(1)’s limitations, you can often fix a mysterious
conflict by identifying the two parser states that are being confused, and adding something
to make them look distinct. In the above example, adding one rule to return_spec as
follows makes the problem go away:

return_spec:

type
| name ’:’ type
| "id" "bogus" /* This rule is never used. */

This corrects the problem because it introduces the possibility of an additional active
rule in the context after the "id" at the beginning of return_spec. This rule is not active
in the corresponding context in a param_spec, so the two contexts receive distinct parser
states. As long as the token "bogus" is never generated by yylex, the added rule cannot
alter the way actual input is parsed.

In this particular example, there is another way to solve the problem: rewrite the rule for
return_spec to use "id" directly instead of via name. This also causes the two confusing
contexts to have different sets of active rules, because the one for return_spec activates
the altered rule for return_spec rather than the one for name.

param_spec:

type
| name_list ’:’ type

3

return_spec:
type
I Hidll J . J type

3

Chapter 5: The Bison Parser Algorithm 123

For a more detailed exposition of LALR(1) parsers and parser generators, see [DeRemer
1982], page 237.

5.8 Tuning LR

The default behavior of Bison’s LR-based parsers is chosen mostly for historical reasons,
but that behavior is often not robust. For example, in the previous section, we discussed
the mysterious conflicts that can be produced by LALR(1), Bison’s default parser table
construction algorithm. Another example is Bison’s %define parse.error verbose direc-
tive, which instructs the generated parser to produce verbose syntax error messages, which
can sometimes contain incorrect information.

In this section, we explore several modern features of Bison that allow you to tune fun-
damental aspects of the generated LR-based parsers. Some of these features easily eliminate
shortcomings like those mentioned above. Others can be helpful purely for understanding
your parser.

5.8.1 LR Table Construction

For historical reasons, Bison constructs LALR(1) parser tables by default. However, LALR
does not possess the full language-recognition power of LR. As a result, the behavior of
parsers employing LALR parser tables is often mysterious. We presented a simple example
of this effect in Section 5.7 [Mysterious Conflicts], page 121.

As we also demonstrated in that example, the traditional approach to eliminating such
mysterious behavior is to restructure the grammar. Unfortunately, doing so correctly is
often difficult. Moreover, merely discovering that LALR causes mysterious behavior in
your parser can be difficult as well.

Fortunately, Bison provides an easy way to eliminate the possibility of such mysterious
behavior altogether. You simply need to activate a more powerful parser table construction
algorithm by using the %define 1r.type directive.

hdefine 1lr.type type [Directive]
Specify the type of parser tables within the LR(1) family. The accepted values for
type are:
e lalr (default)
e ielr

e canonical-lr

For example, to activate IELR, you might add the following directive to you grammar
file:

%hdefine lr.type ielr

For the example in Section 5.7 [Mysterious Conflicts], page 121, the mysterious conflict
is then eliminated, so there is no need to invest time in comprehending the conflict or
restructuring the grammar to fix it. If, during future development, the grammar evolves
such that all mysterious behavior would have disappeared using just LALR, you need not
fear that continuing to use IELR will result in unnecessarily large parser tables. That
is, IELR generates LALR tables when LALR (using a deterministic parsing algorithm) is
sufficient to support the full language-recognition power of LR. Thus, by enabling IELR

Chapter 5: The Bison Parser Algorithm 124

at the start of grammar development, you can safely and completely eliminate the need to
consider LALR’s shortcomings.

While TELR is almost always preferable, there are circumstances where LALR or the
canonical LR parser tables described by Knuth (see [Knuth 1965], page 237) can be useful.
Here we summarize the relative advantages of each parser table construction algorithm
within Bison:

o LALR
There are at least two scenarios where LALR can be worthwhile:
e GLR without static conflict resolution.

When employing GLR parsers (see Section 1.5 [Writing GLR Parsers], page 17),
if you do not resolve any conflicts statically (for example, with %left or
Jiprecedence), then the parser explores all potential parses of any given input. In
this case, the choice of parser table construction algorithm is guaranteed not to
alter the language accepted by the parser. LALR parser tables are the smallest
parser tables Bison can currently construct, so they may then be preferable.
Nevertheless, once you begin to resolve conflicts statically, GLR behaves more like
a deterministic parser in the syntactic contexts where those conflicts appear, and
so either IELR or canonical LR can then be helpful to avoid LALR’s mysterious
behavior.

e Malformed grammars.

Occasionally during development, an especially malformed grammar with a major
recurring flaw may severely impede the IELR or canonical LR parser table con-
struction algorithm. LALR can be a quick way to construct parser tables in order
to investigate such problems while ignoring the more subtle differences from IELR
and canonical LR.

e IELR

IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given any
grammar (LR or non-LR), parsers using IELR or canonical LR parser tables always
accept exactly the same set of sentences. However, like LALR, IELR merges parser
states during parser table construction so that the number of parser states is often an
order of magnitude less than for canonical LR. More importantly, because canonical
LR’s extra parser states may contain duplicate conflicts in the case of non-LR gram-
mars, the number of conflicts for IELR is often an order of magnitude less as well. This
effect can significantly reduce the complexity of developing a grammar.

e Canonical LR

While inefficient, canonical LR parser tables can be an interesting means to explore a
grammar because they possess a property that IELR and LALR tables do not. That
is, if %nonassoc is not used and default reductions are left disabled (see Section 5.8.2
[Default Reductions|, page 125), then, for every left context of every canonical LR
state, the set of tokens accepted by that state is guaranteed to be the exact set of
tokens that is syntactically acceptable in that left context. It might then seem that an
advantage of canonical LR parsers in production is that, under the above constraints,
they are guaranteed to detect a syntax error as soon as possible without performing
any unnecessary reductions. However, IELR parsers that use LAC are also able to

Chapter 5: The Bison Parser Algorithm 125

achieve this behavior without sacrificing %nonassoc or default reductions. For details
and a few caveats of LAC, see Section 5.8.3 [LAC], page 126.

For a more detailed exposition of the mysterious behavior in LALR parsers and the
benefits of IELR, see [Denny 2008], page 237, and [Denny 2010 November], page 237.

5.8.2 Default Reductions

After parser table construction, Bison identifies the reduction with the largest lookahead
set in each parser state. To reduce the size of the parser state, traditional Bison behavior is
to remove that lookahead set and to assign that reduction to be the default parser action.
Such a reduction is known as a default reduction.

Default reductions affect more than the size of the parser tables. They also affect the
behavior of the parser:

e Delayed yylex invocations.

A consistent state is a state that has only one possible parser action. If that action is
a reduction and is encoded as a default reduction, then that consistent state is called
a defaulted state. Upon reaching a defaulted state, a Bison-generated parser does not
bother to invoke yylex to fetch the next token before performing the reduction. In
other words, whether default reductions are enabled in consistent states determines
how soon a Bison-generated parser invokes yylex for a token: immediately when it
reaches that token in the input or when it eventually needs that token as a lookahead
to determine the next parser action. Traditionally, default reductions are enabled, and
so the parser exhibits the latter behavior.

The presence of defaulted states is an important consideration when designing yylex
and the grammar file. That is, if the behavior of yylex can influence or be influenced by
the semantic actions associated with the reductions in defaulted states, then the delay
of the next yylex invocation until after those reductions is significant. For example,
the semantic actions might pop a scope stack that yylex uses to determine what token
to return. Thus, the delay might be necessary to ensure that yylex does not look up
the next token in a scope that should already be considered closed.

e Delayed syntax error detection.

When the parser fetches a new token by invoking yylex, it checks whether there is an
action for that token in the current parser state. The parser detects a syntax error if
and only if either (1) there is no action for that token or (2) the action for that token is
the error action (due to the use of %nonassoc). However, if there is a default reduction
in that state (which might or might not be a defaulted state), then it is impossible for
condition 1 to exist. That is, all tokens have an action. Thus, the parser sometimes
fails to detect the syntax error until it reaches a later state.

While default reductions never cause the parser to accept syntactically incorrect sen-
tences, the delay of syntax error detection can have unexpected effects on the behavior
of the parser. However, the delay can be caused anyway by parser state merging and
the use of %nonassoc, and it can be fixed by another Bison feature, LAC. We discuss
the effects of delayed syntax error detection and LAC more in the next section (see
Section 5.8.3 [LAC], page 126).

For canonical LR, the only default reduction that Bison enables by default is the accept
action, which appears only in the accepting state, which has no other action and is thus a

Chapter 5: The Bison Parser Algorithm 126

defaulted state. However, the default accept action does not delay any yylex invocation or
syntax error detection because the accept action ends the parse.

For LALR and IELR, Bison enables default reductions in nearly all states by default.
There are only two exceptions. First, states that have a shift action on the error token do
not have default reductions because delayed syntax error detection could then prevent the
error token from ever being shifted in that state. However, parser state merging can cause
the same effect anyway, and LAC fixes it in both cases, so future versions of Bison might
drop this exception when LAC is activated. Second, GLR parsers do not record the default
reduction as the action on a lookahead token for which there is a conflict. The correct
action in this case is to split the parse instead.

To adjust which states have default reductions enabled, wuse the Y%define
lr.default-reduction directive.

hdefine 1lr.default-reduction where [Directive]
Specify the kind of states that are permitted to contain default reductions. The
accepted values of where are:

e most (default for LALR and IELR)
e consistent

e accepting (default for canonical LR)

5.8.3 LAC

Canonical LR, TELR, and LALR can suffer from a couple of problems upon encountering
a syntax error. First, the parser might perform additional parser stack reductions before
discovering the syntax error. Such reductions can perform user semantic actions that are
unexpected because they are based on an invalid token, and they cause error recovery to
begin in a different syntactic context than the one in which the invalid token was encoun-
tered. Second, when verbose error messages are enabled (see Section 4.4 [Error Reporting],
page 105), the expected token list in the syntax error message can both contain invalid
tokens and omit valid tokens.

The culprits for the above problems are %nonassoc, default reductions in inconsistent
states (see Section 5.8.2 [Default Reductions|, page 125), and parser state merging. Because
IELR and LALR merge parser states, they suffer the most. Canonical LR can suffer only
if 4nonassoc is used or if default reductions are enabled for inconsistent states.

LAC (Lookahead Correction) is a new mechanism within the parsing algorithm that
solves these problems for canonical LR, IELR, and LALR without sacrificing %nonassoc,
default reductions, or state merging. You can enable LAC with the %define parse.lac
directive.

%define parse.lac value [Directive]
Enable LAC to improve syntax error handling.

e none (default)
e full

This feature is currently only available for deterministic parsers in C and C++.

Chapter 5: The Bison Parser Algorithm 127

Conceptually, the LAC mechanism is straight-forward. Whenever the parser fetches a
new token from the scanner so that it can determine the next parser action, it immediately
suspends normal parsing and performs an exploratory parse using a temporary copy of
the normal parser state stack. During this exploratory parse, the parser does not perform
user semantic actions. If the exploratory parse reaches a shift action, normal parsing then
resumes on the normal parser stacks. If the exploratory parse reaches an error instead, the
parser reports a syntax error. If verbose syntax error messages are enabled, the parser must
then discover the list of expected tokens, so it performs a separate exploratory parse for
each token in the grammar.

There is one subtlety about the use of LAC. That is, when in a consistent parser state
with a default reduction, the parser will not attempt to fetch a token from the scanner
because no lookahead is needed to determine the next parser action. Thus, whether default
reductions are enabled in consistent states (see Section 5.8.2 [Default Reductions], page 125)
affects how soon the parser detects a syntax error: immediately when it reaches an erroneous
token or when it eventually needs that token as a lookahead to determine the next parser
action. The latter behavior is probably more intuitive, so Bison currently provides no way
to achieve the former behavior while default reductions are enabled in consistent states.

Thus, when LAC is in use, for some fixed decision of whether to enable default reductions
in consistent states, canonical LR and IELR behave almost exactly the same for both
syntactically acceptable and syntactically unacceptable input. While LALR still does not
support the full language-recognition power of canonical LR and IELR, LAC at least enables
LALR’s syntax error handling to correctly reflect LALR’s language-recognition power.

There are a few caveats to consider when using LAC:
e Infinite parsing loops.

IELR plus LAC does have one shortcoming relative to canonical LR. Some parsers
generated by Bison can loop infinitely. LAC does not fix infinite parsing loops that
occur between encountering a syntax error and detecting it, but enabling canonical LR
or disabling default reductions sometimes does.

e Verbose error message limitations.

Because of internationalization considerations, Bison-generated parsers limit the size
of the expected token list they are willing to report in a verbose syntax error message.
If the number of expected tokens exceeds that limit, the list is simply dropped from
the message. Enabling LAC can increase the size of the list and thus cause the parser
to drop it. Of course, dropping the list is better than reporting an incorrect list.

e Performance.

Because LAC requires many parse actions to be performed twice, it can have a perfor-
mance penalty. However, not all parse actions must be performed twice. Specifically,
during a series of default reductions in consistent states and shift actions, the parser
never has to initiate an exploratory parse. Moreover, the most time-consuming tasks
in a parse are often the file I/O, the lexical analysis performed by the scanner, and the
user’s semantic actions, but none of these are performed during the exploratory parse.
Finally, the base of the temporary stack used during an exploratory parse is a pointer
into the normal parser state stack so that the stack is never physically copied. In
our experience, the performance penalty of LAC has proved insignificant for practical
grammars.

Chapter 5: The Bison Parser Algorithm 128

While the LAC algorithm shares techniques that have been recognized in the parser
community for years, for the publication that introduces LAC, see [Denny 2010 May],
page 237.

5.8.4 Unreachable States

If there exists no sequence of transitions from the parser’s start state to some state s, then
Bison considers s to be an unreachable state. A state can become unreachable during
conflict resolution if Bison disables a shift action leading to it from a predecessor state.

By default, Bison removes unreachable states from the parser after conflict resolution
because they are useless in the generated parser. However, keeping unreachable states is
sometimes useful when trying to understand the relationship between the parser and the
grammar.

%define 1lr.keep-unreachable-state value [Directive]
Request that Bison allow unreachable states to remain in the parser tables. value
must be a Boolean. The default is false.

There are a few caveats to consider:
e Missing or extraneous warnings.

Unreachable states may contain conflicts and may use rules not used in any other
state. Thus, keeping unreachable states may induce warnings that are irrelevant to
your parser’s behavior, and it may eliminate warnings that are relevant. Of course, the
change in warnings may actually be relevant to a parser table analysis that wants to
keep unreachable states, so this behavior will likely remain in future Bison releases.

e Other useless states.

While Bison is able to remove unreachable states, it is not guaranteed to remove other
kinds of useless states. Specifically, when Bison disables reduce actions during conflict
resolution, some goto actions may become useless, and thus some additional states may
become useless. If Bison were to compute which goto actions were useless and then
disable those actions, it could identify such states as unreachable and then remove
those states. However, Bison does not compute which goto actions are useless.

5.9 Generalized LR (GLR) Parsing

Bison produces deterministic parsers that choose uniquely when to reduce and which re-
duction to apply based on a summary of the preceding input and on one extra token of
lookahead. As a result, normal Bison handles a proper subset of the family of context-
free languages. Ambiguous grammars, since they have strings with more than one possible
sequence of reductions cannot have deterministic parsers in this sense. The same is true
of languages that require more than one symbol of lookahead, since the parser lacks the
information necessary to make a decision at the point it must be made in a shift/reduce
parser. Finally, as previously mentioned (see Section 5.7 [Mysterious Conflicts|, page 121),
there are languages where Bison’s default choice of how to summarize the input seen so far
loses necessary information.

When you use the ‘Yiglr-parser’ declaration in your grammar file, Bison generates a
parser that uses a different algorithm, called Generalized LR (or GLR). A Bison GLR parser

Chapter 5: The Bison Parser Algorithm 129

uses the same basic algorithm for parsing as an ordinary Bison parser, but behaves differ-
ently in cases where there is a shift /reduce conflict that has not been resolved by precedence
rules (see Section 5.3 [Operator Precedence], page 115) or a reduce/reduce conflict. When
a GLR parser encounters such a situation, it effectively splits into a several parsers, one
for each possible shift or reduction. These parsers then proceed as usual, consuming tokens
in lock-step. Some of the stacks may encounter other conflicts and split further, with the
result that instead of a sequence of states, a Bison GLR parsing stack is what is in effect a
tree of states.

In effect, each stack represents a guess as to what the proper parse is. Additional
input may indicate that a guess was wrong, in which case the appropriate stack silently
disappears. Otherwise, the semantics actions generated in each stack are saved, rather than
being executed immediately. When a stack disappears, its saved semantic actions never get
executed. When a reduction causes two stacks to become equivalent, their sets of semantic
actions are both saved with the state that results from the reduction. We say that two
stacks are equivalent when they both represent the same sequence of states, and each pair
of corresponding states represents a grammar symbol that produces the same segment of
the input token stream.

Whenever the parser makes a transition from having multiple states to having one, it
reverts to the normal deterministic parsing algorithm, after resolving and executing the
saved-up actions. At this transition, some of the states on the stack will have semantic
values that are sets (actually multisets) of possible actions. The parser tries to pick one of
the actions by first finding one whose rule has the highest dynamic precedence, as set by the
‘hdprec’ declaration. Otherwise, if the alternative actions are not ordered by precedence,
but there the same merging function is declared for both rules by the ‘/merge’ declaration,
Bison resolves and evaluates both and then calls the merge function on the result. Otherwise,
it reports an ambiguity.

It is possible to use a data structure for the GLR parsing tree that permits the pro-
cessing of any LR(1) grammar in linear time (in the size of the input), any unambiguous
(not necessarily LR(1)) grammar in quadratic worst-case time, and any general (possibly
ambiguous) context-free grammar in cubic worst-case time. However, Bison currently uses
a simpler data structure that requires time proportional to the length of the input times the
maximum number of stacks required for any prefix of the input. Thus, really ambiguous
or nondeterministic grammars can require exponential time and space to process. Such
badly behaving examples, however, are not generally of practical interest. Usually, nonde-
terminism in a grammar is local—the parser is “in doubt” only for a few tokens at a time.
Therefore, the current data structure should generally be adequate. On LR(1) portions of
a grammar, in particular, it is only slightly slower than with the deterministic LR(1) Bison
parser.

For a more detailed exposition of GLR parsers, see [Scott 2000], page 237.

5.10 Memory Management, and How to Avoid Memory
Exhaustion
The Bison parser stack can run out of memory if too many tokens are shifted and not

reduced. When this happens, the parser function yyparse calls yyerror and then returns
2.

Chapter 5: The Bison Parser Algorithm 130

Because Bison parsers have growing stacks, hitting the upper limit usually results from
using a right recursion instead of a left recursion, see Section 3.3.3 [Recursive Rules], page 56.

By defining the macro YYMAXDEPTH, you can control how deep the parser stack can
become before memory is exhausted. Define the macro with a value that is an integer.
This value is the maximum number of tokens that can be shifted (and not reduced) before
overflow.

The stack space allowed is not necessarily allocated. If you specify a large value for
YYMAXDEPTH, the parser normally allocates a small stack at first, and then makes it bigger by
stages as needed. This increasing allocation happens automatically and silently. Therefore,
you do not need to make YYMAXDEPTH painfully small merely to save space for ordinary
inputs that do not need much stack.

However, do not allow YYMAXDEPTH to be a value so large that arithmetic overflow could
occur when calculating the size of the stack space. Also, do not allow YYMAXDEPTH to be
less than YYINITDEPTH.

The default value of YYMAXDEPTH, if you do not define it, is 10000.

You can control how much stack is allocated initially by defining the macro YYINITDEPTH
to a positive integer. For the deterministic parser in C, this value must be a compile-time
constant unless you are assuming C99 or some other target language or compiler that allows
variable-length arrays. The default is 200.

Do not allow YYINITDEPTH to be greater than YYMAXDEPTH.

You can generate a deterministic parser containing C++ user code from the default (C)
skeleton, as well as from the C++ skeleton (see Section 10.1 [C++ Parsers|, page 166).
However, if you do use the default skeleton and want to allow the parsing stack to grow, be
careful not to use semantic types or location types that require non-trivial copy constructors.
The C skeleton bypasses these constructors when copying data to new, larger stacks.

131

6 Error Recovery

It is not usually acceptable to have a program terminate on a syntax error. For example, a
compiler should recover sufficiently to parse the rest of the input file and check it for errors;
a calculator should accept another expression.

In a simple interactive command parser where each input is one line, it may be sufficient
to allow yyparse to return 1 on error and have the caller ignore the rest of the input line
when that happens (and then call yyparse again). But this is inadequate for a compiler,
because it forgets all the syntactic context leading up to the error. A syntax error deep
within a function in the compiler input should not cause the compiler to treat the following
line like the beginning of a source file.

You can define how to recover from a syntax error by writing rules to recognize the
special token error. This is a terminal symbol that is always defined (you need not declare
it) and reserved for error handling. The Bison parser generates an error token whenever
a syntax error happens; if you have provided a rule to recognize this token in the current
context, the parse can continue.

For example:

stmts:
%empty
| stmts ’\n’
| stmts exp ’\n’
| stmts error ’\n’

The fourth rule in this example says that an error followed by a newline makes a valid
addition to any stmts.

What happens if a syntax error occurs in the middle of an exp? The error recovery rule,
interpreted strictly, applies to the precise sequence of a stmts, an error and a newline. If
an error occurs in the middle of an exp, there will probably be some additional tokens and
subexpressions on the stack after the last stmts, and there will be tokens to read before
the next newline. So the rule is not applicable in the ordinary way.

But Bison can force the situation to fit the rule, by discarding part of the semantic
context and part of the input. First it discards states and objects from the stack until
it gets back to a state in which the error token is acceptable. (This means that the
subexpressions already parsed are discarded, back to the last complete stmts.) At this
point the error token can be shifted. Then, if the old lookahead token is not acceptable
to be shifted next, the parser reads tokens and discards them until it finds a token which
is acceptable. In this example, Bison reads and discards input until the next newline so
that the fourth rule can apply. Note that discarded symbols are possible sources of memory
leaks, see Section 3.7.7 [Freeing Discarded Symbols], page 75, for a means to reclaim this
memory.

The choice of error rules in the grammar is a choice of strategies for error recovery. A
simple and useful strategy is simply to skip the rest of the current input line or current
statement if an error is detected:

stmt: error ’;’ /* On error, skip until ’;’ is read. */

Chapter 6: Error Recovery 132

It is also useful to recover to the matching close-delimiter of an opening-delimiter that has
already been parsed. Otherwise the close-delimiter will probably appear to be unmatched,
and generate another, spurious error message:

primary:
J () expr)) J
| >C error)’

Error recovery strategies are necessarily guesses. When they guess wrong, one syntax
error often leads to another. In the above example, the error recovery rule guesses that an
error is due to bad input within one stmt. Suppose that instead a spurious semicolon is
inserted in the middle of a valid stmt. After the error recovery rule recovers from the first
error, another syntax error will be found straight away, since the text following the spurious
semicolon is also an invalid stmt.

To prevent an outpouring of error messages, the parser will output no error message for
another syntax error that happens shortly after the first; only after three consecutive input
tokens have been successfully shifted will error messages resume.

Note that rules which accept the error token may have actions, just as any other rules
can.

You can make error messages resume immediately by using the macro yyerrok in an
action. If you do this in the error rule’s action, no error messages will be suppressed. This
macro requires no arguments; ‘yyerrok;’ is a valid C statement.

The previous lookahead token is reanalyzed immediately after an error. If this is unac-
ceptable, then the macro yyclearin may be used to clear this token. Write the statement
‘yyclearin;’ in the error rule’s action. See Section 4.5 [Special Features for Use in Actions],
page 108.

For example, suppose that on a syntax error, an error handling routine is called that
advances the input stream to some point where parsing should once again commence. The
next symbol returned by the lexical scanner is probably correct. The previous lookahead
token ought to be discarded with ‘yyclearin;’.

The expression YYRECOVERING () yields 1 when the parser is recovering from a syntax
error, and 0 otherwise. Syntax error diagnostics are suppressed while recovering from a
syntax error.

133

7 Handling Context Dependencies

The Bison paradigm is to parse tokens first, then group them into larger syntactic units. In
many languages, the meaning of a token is affected by its context. Although this violates
the Bison paradigm, certain techniques (known as kludges) may enable you to write Bison
parsers for such languages.

(Actually, “kludge” means any technique that gets its job done but is neither clean nor
robust.)

7.1 Semantic Info in Token Kinds

The C language has a context dependency: the way an identifier is used depends on what
its current meaning is. For example, consider this:

foo (x);

This looks like a function call statement, but if foo is a typedef name, then this is
actually a declaration of x. How can a Bison parser for C decide how to parse this input?

The method used in GNU C is to have two different token kinds, IDENTIFIER and
TYPENAME. When yylex finds an identifier, it looks up the current declaration of the iden-
tifier in order to decide which token kind to return: TYPENAME if the identifier is declared
as a typedef, IDENTIFIER otherwise.

The grammar rules can then express the context dependency by the choice of token kind
to recognize. IDENTIFIER is accepted as an expression, but TYPENAME is not. TYPENAME can
start a declaration, but IDENTIFIER cannot. In contexts where the meaning of the identifier
is not significant, such as in declarations that can shadow a typedef name, either TYPENAME
or IDENTIFIER is accepted—there is one rule for each of the two token kinds.

This technique is simple to use if the decision of which kinds of identifiers to allow is
made at a place close to where the identifier is parsed. But in C this is not always so: C
allows a declaration to redeclare a typedef name provided an explicit type has been specified
earlier:

typedef int foo, bar;
int baz (void)

{
static bar (bar); /* redeclare bar as static variable */
extern foo foo (foo); /* redeclare foo as function */
return foo (bar);

}

Unfortunately, the name being declared is separated from the declaration construct itself
by a complicated syntactic structure—the “declarator”.

As aresult, part of the Bison parser for C needs to be duplicated, with all the nonterminal
names changed: once for parsing a declaration in which a typedef name can be redefined,
and once for parsing a declaration in which that can’t be done. Here is a part of the
duplication, with actions omitted for brevity:

initdcl:
declarator maybeasm ’=’ init
| declarator maybeasm

3

Chapter 7: Handling Context Dependencies 134

notype_initdcl:
notype_declarator maybeasm ’=’ init
| notype_declarator maybeasm
Here initdcl can redeclare a typedef name, but notype_initdcl cannot. The distinction
between declarator and notype_declarator is the same sort of thing.

There is some similarity between this technique and a lexical tie-in (described next), in
that information which alters the lexical analysis is changed during parsing by other parts of
the program. The difference is here the information is global, and is used for other purposes

in the program. A true lexical tie-in has a special-purpose flag controlled by the syntactic
context.

7.2 Lexical Tie-ins

One way to handle context-dependency is the lexical tie-in: a flag which is set by Bison
actions, whose purpose is to alter the way tokens are parsed.

For example, suppose we have a language vaguely like C, but with a special construct
‘hex (hex-expr)’. After the keyword hex comes an expression in parentheses in which all
integers are hexadecimal. In particular, the token ‘alb’ must be treated as an integer rather
than as an identifier if it appears in that context. Here is how you can do it:

i
int hexflag;
int yylex (void);
void yyerror (char const *);

ht
Dot
expr:
IDENTIFIER
| constant
| HEX °(° { hexflag = 1; }
expr ’)’ { hexflag = 0; $$ = $4; }

| expr ’+’ expr { $$ = make_sum ($1, $3); }

constant:
INTEGER
| STRING

3

Here we assume that yylex looks at the value of hexflag; when it is nonzero, all integers
are parsed in hexadecimal, and tokens starting with letters are parsed as integers if possible.
The declaration of hexflag shown in the prologue of the grammar file is needed to make

it accessible to the actions (see Section 3.1.1 [The prologue], page 47). You must also write
the code in yylex to obey the flag.

Chapter 7: Handling Context Dependencies 135

7.3 Lexical Tie-ins and Error Recovery

Lexical tie-ins make strict demands on any error recovery rules you have. See Chapter 6
[Error Recovery|, page 131.

The reason for this is that the purpose of an error recovery rule is to abort the parsing
of one construct and resume in some larger construct. For example, in C-like languages, a
typical error recovery rule is to skip tokens until the next semicolon, and then start a new
statement, like this:

stmt:

expr ’;’
| IF °(’ expr ’)’ stmt { ... }
| error ’;’ { hexflag = 0; }

If there is a syntax error in the middle of a ‘hex (expr)’ construct, this error rule will
apply, and then the action for the completed ‘hex (expr)’ will never run. So hexflag would
remain set for the entire rest of the input, or until the next hex keyword, causing identifiers
to be misinterpreted as integers.

To avoid this problem the error recovery rule itself clears hexflag.

There may also be an error recovery rule that works within expressions. For example,
there could be a rule which applies within parentheses and skips to the close-parenthesis:

expr:

| »C expr ’)> { $$ = 8$2; }

| >’ error ’)’

If this rule acts within the hex construct, it is not going to abort that construct (since
it applies to an inner level of parentheses within the construct). Therefore, it should not
clear the flag: the rest of the hex construct should be parsed with the flag still in effect.

What if there is an error recovery rule which might abort out of the hex construct or
might not, depending on circumstances? There is no way you can write the action to
determine whether a hex construct is being aborted or not. So if you are using a lexical
tie-in, you had better make sure your error recovery rules are not of this kind. Each rule
must be such that you can be sure that it always will, or always won’t, have to clear the
flag.

136

8 Debugging Your Parser

Developing a parser can be a challenge, especially if you don’t understand the algorithm
(see Chapter 5 [The Bison Parser Algorithm|, page 112). This chapter explains how to
understand and debug a parser.

The most frequent issue users face is solving their conflicts. To fix them, the first step is
understanding how they arise in a given grammar. This is made much easier by automated
generation of counterexamples, cover in the first section (see Section 8.1 [Generation of
Counterexamples], page 136).

In most cases though, looking at the structure of the automaton is still needed. The
following sections explain how to generate and read the detailed structural description of
the automaton. There are several formats available:

— as text, see Section 8.2 [Understanding Your Parser], page 139;
— as a graph, see Section 8.3 [Visualizing Your Parser], page 146;

— or as a markup report that can be turned, for instance, into HTML, see Section 8.4
[Visualizing your parser in multiple formats|, page 149.

The last section focuses on the dynamic part of the parser: how to enable and understand
the parser run-time traces (see Section 8.5 [Tracing Your Parser], page 149).

8.1 Generation of Counterexamples

Solving conflicts is probably the most delicate part of the design of an LR parser, as demon-
strated by the number of sections devoted to them in this very documentation. To solve
a conflict, one must understand it: when does it occur? Is it because of a flaw in the
grammar? Is it rather because LR (1) cannot cope with this grammar?

One difficulty is that conflicts occur in the automaton, and it can be tricky to relate
them to issues in the grammar itself. With experience and patience, analysis of the detailed
description of the automaton (see Section 8.2 [Understanding Your Parser], page 139) allows
one to find example strings that reach these conflicts.

That task is made much easier thanks to the generation of counterexamples, initially
developed by Chinawat Isradisaikul and Andrew Myers (see [Isradisaikul 2015], page 237).

As a first example, see the grammar of Section 5.2 [Shift/Reduce Conflicts|, page 113,
which features one shift/reduce conflict:

$ bison else.y
else.y: warning: 1 shift/reduce conflict [-Wconflicts-sr]
else.y: note: rerun with option ’-Wcounterexamples’ to generate conflict counterexampl

Let’s rerun bison with the option -Wcex/-Wcounterexamples:

else.y: warning: 1 shift/reduce conflict [-Wconflicts-sr]
else.y: warning: shift/reduce conflict on token "else" [-Wcounterexamples]

Chapter 8: Debugging Your Parser 137

Example: "if" expr "then" stmt e "else" stmt
Shift derivation

stmt
— 2: if_stmt
— 4: "if" expr "then" stmt e "else" stmt
Example: "if" expr "then" stmt e
Reduce derivation

stmt
— 2: if_stmt
— 3: "if" expr "then" stmt e

This shows two different derivations for one single expression, which proves that the
grammar is ambiguous.

As a more delicate example, consider the example grammar of Section 5.6
[Reduce/Reduce Conflicts], page 118, which features a reduce/reduce conflict:

hto
sequence:
%empty
| maybeword
| sequence "word"
maybeword:
%hempty
I "Word n

Bison generates the following counterexamples:

$ bison -Wcex sequence.y
sequence.y: warning: 1 shift/reduce conflict [-Wconflicts-sr]
sequence.y: warning: 2 reduce/reduce conflicts [-Wconflicts-rr]

sequence.y: warning: shift/reduce conflict on token "word" [-Wcounterexamples]
Example: e "word"
Shift derivation

maybeword

— 5: e "word"
Example: e
Reduce derivation

sequence
— 1: e

Chapter 8: Debugging Your Parser 138

sequence.y: warning: reduce/reduce conflict on tokens $end, "word" [-Wcounterexamples]
Example: e
First reduce derivation

[]
Example: e
Second reduce derivation

maybeword
—: 4 e
sequence.y: warning: shift/reduce conflict on token "word" [-Wcounterexamples]
Example: e "word"
Shift derivation

maybeword

— 5: e "wyord"
Example: e
Reduce derivation

sequence
— 2: maybeword
— 4: o
sequence.y:8.3-45: warning: rule useless in parser due to conflicts [-Wother]
8 | Yempty { printf ("empty maybeword\n"); }

Each of these three conflicts, again, prove that the grammar is ambiguous. For instance,
the second conflict (the reduce/reduce one) shows that the grammar accepts the empty
input in two different ways.

Sometimes, the search will not find an example that can be derived in two ways. In these
cases, counterexample generation will provide two examples that are the same up until the
dot. Most notably, this will happen when your grammar requires a stronger parser (more
lookahead, LR instead of LALR). The following example isn’t LR(1):

%token ID

Toth

s: a ID

a: expr

expr: fempty | expr ID ’,°

bison reports:

ids.y: warning: 1 shift/reduce conflict [-Wconflicts-sr]
ids.y: warning: shift/reduce conflict on token ID [-Wcounterexamples]

Chapter 8: Debugging Your Parser 139

First example: expr e ID ’,’ ID
Shift derivation

s
— 1: a ID
— 2: expr
— 4: expr e ID ’,°
Second example: expr e ID
Reduce derivation

s
— 1: a ID
— 2: expr e
ids.y:4.4-7: warning: rule useless in parser due to conflicts [-Wother]
4 | a: expr

This conflict is caused by the parser not having enough information to know the difference
between these two examples. The parser would need an additional lookahead token to know
whether or not a comma follows the ID after expr. These types of conflicts tend to be more
difficult to fix, and usually need a rework of the grammar. In this case, it can be fixed by
changing around the recursion: expr: ID | ’,’ expr ID.

Alternatively, you might also want to consider using a GLR parser (see Section 1.5
[Writing GLR Parsers|, page 17).

On occasions, it is useful to look at counterexamples in situ: with the automaton report
(See Section 8.2 [Understanding Your Parser|, page 139, in particular [State 8], page 143).

8.2 Understanding Your Parser

Bison parsers are shift/reduce automata (see Chapter 5 [The Bison Parser Algorithm],
page 112). In some cases (much more frequent than one would hope), looking at this
automaton is required to tune or simply fix a parser.

The textual file is generated when the options --report or --verbose are specified,
see Chapter 9 [Invoking Bison|, page 154. Its name is made by removing ‘.tab.c’ or ‘.c’
from the parser implementation file name, and adding ‘.output’ instead. Therefore, if the
grammar file is foo.y, then the parser implementation file is called foo.tab.c by default.
As a consequence, the verbose output file is called foo.output.

The following grammar file, calc.y, will be used in the sequel:

%union
{

int ival;

const char *sval;
}
%token <ival> NUM
Jnterm <ival> exp

Chapter 8: Debugging Your Parser 140

%token <sval> STR
Jnterm <sval> useless
%left Y40 1
hleft %’
hte
exp:
exp '+’ exp
| exp ’-’ exp
| exp ’*’ exp
| exp ’/’ exp
| NUM
useless: STR;
Yoo
bison reports:

calc.y: warning: 1 nonterminal useless in grammar [-Wother]

calc.y: warning: 1 rule useless in grammar [-Wother]

calc.y:19.1-7: warning: nonterminal useless in grammar: useless [-Wother]

19 | useless: STR;
| ~mmmmme
calc.y: warning: 7 shift/reduce conflicts [-Wconflicts-sr]
calc.y: note: rerun with option ’-Wcounterexamples’ to generate conflict counterexamples
Going back to the calc example, when given --report=state, in addition to calc.tab.c,

it creates a file calc.output with contents detailed below. The order of the output and

the exact presentation might vary, but the interpretation is the same.

The first section reports useless tokens, nonterminals and rules. Useless nonterminals and
rules are removed in order to produce a smaller parser, but useless tokens are preserved,
since they might be used by the scanner (note the difference between “useless” and “unused”
below):

Nonterminals useless in grammar
useless

Terminals unused in grammar
STR

Rules useless in grammar
6 useless: STR

The next section lists states that still have conflicts.

State 8 conflicts: 1 shift/reduce
State 9 conflicts: 1 shift/reduce
State 10 conflicts: 1 shift/reduce
State 11 conflicts: 4 shift/reduce

Then Bison reproduces the exact grammar it used:

Grammar

0 $accept: exp $end

Chapter 8: Debugging Your Parser 141

1 exp: exp ’+’ exp
2 | exp ’-’ exp
3 | exp %’ exp
4 | exp ’/’ exp
5 | NUM

and reports the uses of the symbols:

Terminals, with rules where they appear

$end (0) O

’x7 (42) 3

Y+ (43) 1

’—2 (45) 2

Y/0 (47) 4

error (256)

NUM <ival> (258) 5
STR <sval> (259)

Nonterminals, with rules where they appear

$accept (9)
on left: O

exp <ival> (10)
on left: 1 2345
on right: 01 2 3 4

Bison then proceeds onto the automaton itself, describing each state with its set of items,
also known as dotted rules. Each item is a production rule together with a point (‘.)
marking the location of the input cursor.

State O
0 $accept: e exp $end
NUM shift, and go to state 1

exp go to state 2

This reads as follows: “state 0 corresponds to being at the very beginning of the parsing,
in the initial rule, right before the start symbol (here, exp). When the parser returns to
this state right after having reduced a rule that produced an exp, the control flow jumps to
state 2. If there is no such transition on a nonterminal symbol, and the lookahead is a NUM,
then this token is shifted onto the parse stack, and the control flow jumps to state 1. Any
other lookahead triggers a syntax error.”

Even though the only active rule in state 0 seems to be rule 0, the report lists NUM as
a lookahead token because NUM can be at the beginning of any rule deriving an exp. By
default Bison reports the so-called core or kernel of the item set, but if you want to see
more detail you can invoke bison with --report=itemset to list the derived items as well:

Chapter 8: Debugging Your Parser

State O

0 $accept: e exp

1 exp: o
2 | o
3 | o
4 | o
5 | o

NUM shift, and go to state 1

exp '+’
exp -’
exp ¥’
exp ’/’
NUM

$en
exp
exp
exp
exp

exp go to state 2

In the state 1. ..

State 1
5 exp: NUM e
$default

d

142

reduce using rule 5 (exp)

the rule 5, ‘exp: NUM;’, is completed. Whatever the lookahead token (‘$default’), the
parser will reduce it. If it was coming from State 0, then, after this reduction it will return
to state 0, and will jump to state 2 (‘exp: go to state 27).

State 2
0 $accept: exp e
1 exp: exp o '+’
2 | exp o 7=
3 | exp o 7%’
4 | exp o /?
$end shift, and
r40 shift, and
= shift, and
7% shift, and
2/ shift, and

$en
exp
exp
exp
exp

g0
g0
go
go
g0

d

to
to
to
to
to

state
state
state
state
state

o O b W

7

In state 2, the automaton can only shift a symbol. For instance, because of the item ‘exp:
exp e ’+’ exp’, if the lookahead is ‘+’ it is shifted onto the parse stack, and the automaton
jumps to state 4, corresponding to the item ‘exp: exp ’+’ e exp’. Since there is no default
action, any lookahead not listed triggers a syntax error.

The state 3 is named the final state, or the accepting state:

State 3

0 $accept: exp $end e

$default

accept

Chapter 8: Debugging Your Parser 143

the initial rule is completed (the start symbol and the end-of-input were read), the parsing
exits successfully.

The interpretation of states 4 to 7 is straightforward, and is left to the reader.
State 4

1 exp: exp '+’ o exp
NUM shift, and go to state 1

exp go to state 8

State 5
2 exp: exp ’-’ e exp
NUM shift, and go to state 1

exp go to state 9

State 6
3 exp: exp ’*’ e exp
NUM shift, and go to state 1

exp go to state 10

State 7
4 exp: exp ’/’ e exp
NUM shift, and go to state 1

exp go to state 11

As was announced in beginning of the report, ‘State 8 conflicts: 1 shift/reduce’:

State 8
1 exp: exp @ ’+’ exp
1 | exp ’+’ exp e
2 | exp @ -’ exp
3 | exp e ’*’ exp
4 | exp ® °/’ exp

Chapter 8: Debugging Your Parser 144

’x? shift, and go to state 6
>/’ shift, and go to state 7

2/ [reduce using rule 1 (exp)]
$default reduce using rule 1 (exp)

Indeed, there are two actions associated to the lookahead ¢/’: either shifting (and going
to state 7), or reducing rule 1. The conflict means that either the grammar is ambiguous, or
the parser lacks information to make the right decision. Indeed the grammar is ambiguous,
as, since we did not specify the precedence of ‘/’, the sentence ‘NUM + NUM / NUM’ can be
parsed as ‘NUM + (NUM / NUM)’, which corresponds to shifting ‘/’, or as ‘(NUM + NUM) / NUM’,
which corresponds to reducing rule 1.

Because in deterministic parsing a single decision can be made, Bison arbitrarily chose to
disable the reduction, see Section 5.2 [Shift/Reduce Conflicts], page 113. Discarded actions
are reported between square brackets.

Note that all the previous states had a single possible action: either shifting the next
token and going to the corresponding state, or reducing a single rule. In the other cases,
i.e., when shifting and reducing is possible or when several reductions are possible, the
lookahead is required to select the action. State 8 is one such state: if the lookahead is ‘*’
or ¢/’ then the action is shifting, otherwise the action is reducing rule 1. In other words, the
first two items, corresponding to rule 1, are not eligible when the lookahead token is ‘*’, since
we specified that ‘*’ has higher precedence than ‘+’. More generally, some items are eligible
only with some set of possible lookahead tokens. When run with --report=lookahead,
Bison specifies these lookahead tokens:

State 8
1 exp: exp ® '+’ exp
1 | exp L) exp e [$end, R R 1 /0]
2 | exp e -’ exp
3 | exp e ’*’ exp
4 | exp @ ’/’ exp

>’ shift, and go to state 6
>/’ shift, and go to state 7

2/’ [reduce using rule 1 (exp)]
$default reduce using rule 1 (exp)

Note however that while ‘NUM + NUM / NUM’ is ambiguous (which results in the conflicts on
‘/’), ‘NUM + NUM * NUM’ is not: the conflict was solved thanks to associativity and precedence
directives. If invoked with --report=solved, Bison includes information about the solved
conflicts in the report:

Conflict between rule 1 and token ’+’ resolved as reduce (Jleft ’+’).
Conflict between rule 1 and token ’-’ resolved as reduce (%left ’-’).
Conflict between rule 1 and token ’*’ resolved as shift (’°+’ < ’x7),

Chapter 8: Debugging Your Parser 145

When given --report=counterexamples, bison will generate counterexamples within
the report, augmented with the corresponding items (see Section 8.1 [Generation of Coun-
terexamples], page 136).

shift/reduce conflict on token ’/’:

1 exp: exp '+’ exp e

4 exp: exp o ’/’ exp
Example: exp '+’ exp e ’/’ exp
Shift derivation

exp

— 1: exp '+’ exp

— 4: exp ® ’/’ exp

Example: exp '+’ exp e ’/’ exp
Reduce derivation

exp

— 4: exp ’/? exp

— 1: exp ’+’ exp e

This shows two separate derivations in the grammar for the same exp: ‘el + e2 / e3’.
The derivations show how your rules would parse the given example. Here, the first deriva-
tion completes a reduction when seeing ‘/’, causing ‘el + e2’ to be grouped as an exp. The
second derivation shifts on ‘/’, resulting in ‘e2 / e3’ being grouped as an exp. Therefore,
it is easy to see that adding precedence/associativity directives would fix this conflict.

The remaining states are similar:

State 9
1 exp: exp ® ’+’ exp
2 | exp @ -’ exp
2 | exp ’-’ exp e
3 | exp @ ’*’ exp
4 | exp ® ’/’ exp

’x> shift, and go to state 6
>/? shift, and go to state 7

1/ [reduce using rule 2 (exp)]
$default reduce using rule 2 (exp)

Chapter 8: Debugging Your Parser 146

State 10
1 exp: exp ® ’+’ exp
2 | exp @ -’ exp
3 | exp @ ’*’ exp
3 | exp ’*’ exp e
4 | exp @ ’/’ exp

>/? shift, and go to state 7

1/ [reduce using rule 3 (exp)]
$default reduce using rule 3 (exp)

State 11

1 exp: exp o '+’ exp

2 | exp @ -7 exp

3 | exp @ ’*’ exp

4 | exp @ ’/’ exp

4 | exp °/’ exp o

’+> shift, and go to state 4

’-? shift, and go to state 5

’x? shift, and go to state 6

>/’ shift, and go to state 7

740 [reduce using rule 4 (exp)]
. [reduce using rule 4 (exp)]
2% [reduce using rule 4 (exp)]
2/’ [reduce using rule 4 (exp)]

$default reduce using rule 4 (exp)
Observe that state 11 contains conflicts not only due to the lack of precedence of ‘/’ with

[

respect to ‘+’, ‘=7, and ‘*’, but also because the associativity of ‘/’ is not specified.

Bison may also produce an HTML version of this output, via an XML file and XSLT
processing (see Section 8.4 [Visualizing your parser in multiple formats]|, page 149).

8.3 Visualizing Your Parser

As another means to gain better understanding of the shift /reduce automaton corresponding
to the Bison parser, a DOT file can be generated. Note that debugging a real grammar with
this is tedious at best, and impractical most of the times, because the generated files are
huge (the generation of a PDF or PNG file from it will take very long, and more often than
not it will fail due to memory exhaustion). This option was rather designed for beginners,
to help them understand LR parsers.

This file is generated when the --graph option is specified (see Chapter 9 [Invoking
Bison|, page 154). Its name is made by removing ‘.tab.c’ or ‘.c’ from the parser imple-
mentation file name, and adding ‘.gv’ instead. If the grammar file is foo.y, the Graphviz

Chapter 8: Debugging Your Parser 147

output file is called foo.gv. A DOT file may also be produced via an XML file and XSLT
processing (see Section 8.4 [Visualizing your parser in multiple formats|, page 149).

The following grammar file, rr.y, will be used in the sequel:

Toth

eXp: a ll;ll | b ll.";
a: "Oll;
b: "OII;

The graphical output (see Figure 8.1) is very similar to the textual one, and as such it is
easier understood by making direct comparisons between them. See Chapter 8 [Debugging
Your Parser|, page 136, for a detailed analysis of the textual report.

State 0
0 Saccept: ¢ exp $end
1 exp: ®* a ";"
2 | b
3 a: e "Q"
4 b: e "0" L
7 N
/ N RN
/exp Y. ~<b
/ N \\\
| 4 "4 T A
State 1 State 2 State 3 State 4
"% 0 Saccept: exp ¢ $end 1 exp: a * ";" 2 exp: b e "."
Send "
State 5 State 6 State 7
0 Saccept: exp $end e 1 exp: a ";" o 2 exp: b "." e

> & @

Figure 8.1: A graphical rendering of the parser.

Graphical Representation of States

The items (dotted rules) for each state are grouped together in graph nodes. Their num-
bering is the same as in the verbose file. See the following points, about transitions, for
examples

When invoked with --report=lookaheads, the lookahead tokens, when needed, are
shown next to the relevant rule between square brackets as a comma separated list. This is
the case in the figure for the representation of reductions, below.

The transitions are represented as directed edges between the current and the target
states.

Chapter 8: Debugging Your Parser 148

Graphical Representation of Shifts

Shifts are shown as solid arrows, labeled with the lookahead token for that shift. The
following describes a reduction in the rr.output file:

State 3
1 exp: a o ";"

";" shift, and go to state 6

A Graphviz rendering of this portion of the graph could be:

State 3
1 exp: a °

non

State 6
1 exp: a "

Graphical Representation of Reductions

Reductions are shown as solid arrows, leading to a diamond-shaped node bearing the number
of the reduction rule. The arrow is labeled with the appropriate comma separated lookahead
tokens. If the reduction is the default action for the given state, there is no such label.

This is how reductions are represented in the verbose file rr.output:

State 1

3 a: nou ° [n;u]
4 b: "O" e [n'u]

reduce using rule 4 (b)
$default reduce using rule 3 (a)

A Graphviz rendering of this portion of the graph could be:

State 1
a: |I0|l ° [II.H]
b: "0" e [":;"]

3
4

When unresolved conflicts are present, because in deterministic parsing a single de-
cision can be made, Bison can arbitrarily choose to disable a reduction, see Section 5.2
[Shift /Reduce Conflicts], page 113. Discarded actions are distinguished by a red filling
color on these nodes, just like how they are reported between square brackets in the verbose
file.

Chapter 8: Debugging Your Parser 149

The reduction corresponding to the rule number 0 is the acceptation state. It is shown
as a blue diamond, labeled “Acc”.

Graphical Representation of Gotos

The ‘go to’ jump transitions are represented as dotted lines bearing the name of the rule
being jumped to.

8.4 Visualizing your parser in multiple formats

Bison supports two major report formats: textual output (see Section 8.2 [Understanding
Your Parser|, page 139) when invoked with option --verbose, and DOT (see Section 8.3
[Visualizing Your Parser|, page 146) when invoked with option --graph. However, another
alternative is to output an XML file that may then be, with xsltproc, rendered as either
a raw text format equivalent to the verbose file, or as an HTML version of the same file,
with clickable transitions, or even as a DOT. The .output and DOT files obtained via
XSLT have no difference whatsoever with those obtained by invoking bison with options
—--verbose or ——graph.

The XML file is generated when the options -x or --xml[=FILE] are specified, see
Chapter 9 [Invoking Bison|, page 154. If not specified, its name is made by removing
‘.tab.c’ or ‘.c’ from the parser implementation file name, and adding ‘.xml1’ instead. For
instance, if the grammar file is foo.y, the default XML output file is foo.xm1l.

Bison ships with a data/xslt directory, containing XSL Transformation files to apply
to the XML file. Their names are non-ambiguous:

xml2dot.xsl
Used to output a copy of the DOT visualization of the automaton.

xml2text.xsl
Used to output a copy of the ‘.output’ file.
xml2xhtml.xsl
Used to output an xhtml enhancement of the ‘. output’ file.
Sample usage (requires xsltproc):
$ bison -x gr.y
$ bison --print-datadir
/usr/local/share/bison
$ xsltproc /usr/local/share/bison/xslt/xml2xhtml.xsl gr.xml >gr.html

8.5 Tracing Your Parser

When a Bison grammar compiles properly but parses “incorrectly”, the yydebug parser-
trace feature helps figuring out why.

8.5.1 Enabling Traces
There are several means to enable compilation of trace facilities, in decreasing order of

preference:

the variable ‘parse.trace’
Add the ‘%define parse.trace’ directive (see Section 3.7.14 [%define Sum-
mary|, page 85), or pass the -Dparse.trace option (see Section 9.1.3 [Tuning

Chapter 8: Debugging Your Parser 150

the Parser|, page 161). This is a Bison extension. Unless POSIX and Yacc
portability matter to you, this is the preferred solution.

the option -t (POSIX Yacc compliant)

the option --debug (Bison extension)
Use the -t option when you run Bison (see Chapter 9 [Invoking Bison],
page 154). With ‘/define api.prefix {c}’, it defines CDEBUG to 1, otherwise
it defines YYDEBUG to 1.

the directive ‘%debug’ (deprecated)
Add the Y%debug directive (see Section 3.7.13 [Bison Declaration Summary],
page 81). This Bison extension is maintained for backward compatibility; use
%define parse.trace instead.

the macro YYDEBUG (C/C++ only)
Define the macro YYDEBUG to a nonzero value when you compile the parser.
This is compliant with POSIX Yacc. You could use -DYYDEBUG=1 as a compiler
option or you could put ‘#define YYDEBUG 1’ in the prologue of the grammar
file (see Section 3.1.1 [The prologue|, page 47).

If the %define variable api.prefix is used (see Section 3.8 [Multiple Parsers
in the Same Program|, page 97), for instance ‘%define api.prefix {c}’, then
if CDEBUG is defined, its value controls the tracing feature (enabled if and only
if nonzero); otherwise tracing is enabled if and only if YYDEBUG is nonzero.

In C++, where POSIX compliance makes no sense, avoid this option, and prefer
‘%define parse.trace’. If you #define the YYDEBUG macro at the wrong place
(e.g., in ‘Ycode top’ instead of ‘%code require’), the parser class will have
two different definitions, thus leading to ODR violations and happy debugging
times.

We suggest that you always enable the trace option so that debugging is always possible.

In C the trace facility outputs messages with macro calls of the form YYFPRINTF
(stderr, format, args) where format and args are the usual printf format and variadic
arguments. If you define YYDEBUG to a nonzero value but do not define YYFPRINTF,
<stdio.h> is automatically included and YYFPRINTF is defined to fprintf.

Once you have compiled the program with trace facilities, the way to request a trace is
to store a nonzero value in the variable yydebug. You can do this by making the C code do
it (in main, perhaps), or you can alter the value with a C debugger.

Each step taken by the parser when yydebug is nonzero produces a line or two of trace
information, written on stderr. The trace messages tell you these things:

e Each time the parser calls yylex, what kind of token was read.
e Each time a token is shifted, the depth and complete contents of the state stack (see
Section 5.5 [Parser States], page 118).

e Each time a rule is reduced, which rule it is, and the complete contents of the state
stack afterward.

To make sense of this information, it helps to refer to the automaton description file
(see Section 8.2 [Understanding Your Parser|, page 139). This file shows the meaning of
each state in terms of positions in various rules, and also what each state will do with

Chapter 8: Debugging Your Parser 151

each possible input token. As you read the successive trace messages, you can see that the
parser is functioning according to its specification in the listing file. Eventually you will
arrive at the place where something undesirable happens, and you will see which parts of
the grammar are to blame.

The parser implementation file is a C/C++/D/Java program and you can use debuggers
on it, but it’s not easy to interpret what it is doing. The parser function is a finite-state
machine interpreter, and aside from the actions it executes the same code over and over.
Only the values of variables show where in the grammar it is working.

8.5.2 Emnabling Debug Traces for mfcalc

The debugging information normally gives the token kind of each token read, but not its
semantic value. The %printer directive allows specify how semantic values are reported,
see Section 3.7.8 [Printing Semantic Values|, page 76.

As a demonstration of %printer, consider the multi-function calculator, mfcalc (see
Section 2.5 [Multi-Function Calculator: mfcalc], page 40). To enable run-time traces, and
semantic value reports, insert the following directives in its prologue:

/* Generate the parser description file. */
Jiverbose

/* Enable run-time traces (yydebug). */
%define parse.trace

/* Formatting semantic values. */

“printer { fprintf (yyo, "%s", $$->name); } VAR;
%printer { fprintf (yyo, "%s(O", $$->name); } FUN;
Jprinter { fprintf (yyo, "%g", $$); } <double>;

The %define directive instructs Bison to generate run-time trace support. Then, acti-
vation of these traces is controlled at run-time by the yydebug variable, which is disabled
by default. Because these traces will refer to the “states” of the parser, it is helpful to ask
for the creation of a description of that parser; this is the purpose of (admittedly ill-named)
%verbose directive.

The set of %printer directives demonstrates how to format the semantic value in the
traces. Note that the specification can be done either on the symbol type (e.g., VAR or FUN),
or on the type tag: since <double> is the type for both NUM and exp, this printer will be
used for them.

Here is a sample of the information provided by run-time traces. The traces are sent
onto standard error.

$ echo ’sin(1-1)’ | ./mfcalc -p
Starting parse

Entering state O

Reducing stack by rule 1 (line 34):
-> $$ = nterm input ()

Stack now 0

Entering state 1

Chapter 8: Debugging Your Parser 152

This first batch shows a specific feature of this grammar: the first rule (which is in line 34
of mfcalc.y can be reduced without even having to look for the first token. The resulting
left-hand symbol ($$) is a valueless (‘()’) input nonterminal (nterm).

Then the parser calls the scanner.

Reading a token

Next token is token FUN (sin())
Shifting token FUN (sin())
Entering state 6

That token (token) is a function (FUN) whose value is ‘sin’ as formatted per our %printer
specification: ‘sin()’. The parser stores (Shifting) that token, and others, until it can do
something about it.

Reading a token

Next token is token ’(’ ()

Shifting token ’(° ()

Entering state 14

Reading a token

Next token is token NUM (1.000000)

Shifting token NUM (1.000000)

Entering state 4

Reducing stack by rule 6 (line 44):
$1 = token NUM (1.000000)

-> $$ = nterm exp (1.000000)

Stack now 0 1 6 14

Entering state 24

The previous reduction demonstrates the Yprinter directive for <double>: both the token
NUM and the resulting nonterminal exp have ‘1’ as value.

Reading a token
Next token is token ’-’ ()
Shifting token -’ ()
Entering state 17
Reading a token
Next token is token NUM (1.000000)
Shifting token NUM (1.000000)
Entering state 4
Reducing stack by rule 6 (line 44):
$1 = token NUM (1.000000)
-> $$ = nterm exp (1.000000)
Stack now 0 1 6 14 24 17
Entering state 26
Reading a token
Next token is token ’)’ ()
Reducing stack by rule 11 (line 49):
$1 = nterm exp (1.000000)
$2 = token -’ ()
$3 = nterm exp (1.000000)

Chapter 8: Debugging Your Parser 153

-> $$ = nterm exp (0.000000)
Stack now 0 1 6 14
Entering state 24

The rule for the subtraction was just reduced. The parser is about to discover the end of
the call to sin.

Next token is token ’)’ ()
Shifting token ’)°’ ()
Entering state 31
Reducing stack by rule 9 (line 47):
$1 = token FUN (sin())
$2 = token (° ()
$3 = nterm exp (0.000000)
$4 = token ’)’ ()
-> $$ = nterm exp (0.000000)
Stack now 0 1
Entering state 11

Finally, the end-of-line allow the parser to complete the computation, and display its result.
Reading a token
Next token is token ’\n’ ()
Shifting token ’\n’ ()
Entering state 22
Reducing stack by rule 4 (line 40):

$1 = nterm exp (0.000000)
$2 = token ’\n’ ()

= 0

-> $$ = nterm line ()

Stack now 0 1
Entering state 10
Reducing stack by rule 2 (line 35):

$1 = nterm input QO

$2 = nterm line ()
-> $$ = nterm input ()
Stack now O

Entering state 1

The parser has returned into state 1, in which it is waiting for the next expression to
evaluate, or for the end-of-file token, which causes the completion of the parsing.

Reading a token

Now at end of input.

Shifting token $end ()
Entering state 2

Stack now 0 1 2

Cleanup: popping token $end ()
Cleanup: popping nterm input ()

154

9 Invoking Bison

The usual way to invoke Bison is as follows:
$ bison file

Here file is the grammar file name, which usually ends in ‘.y’. The parser implementation
file’s name is made by replacing the ‘.y’ with ‘. tab.c’ and removing any leading directory.
Thus, the ‘bison foo.y’ file name yields foo.tab.c, and the ‘bison hack/foo.y’ file name
yields foo.tab.c. It’s also possible, in case you are writing C++ code instead of C in your
grammar file, to name it foo.ypp or foo.y++. Then, the output files will take an extension
like the given one as input (respectively foo.tab.cpp and foo.tab.c++). This feature
takes effect with all options that manipulate file names like -o or -d.

For example:
$ bison -d file.yxx
will produce file.tab.cxx and file.tab.hxx, and
$ bison -d -o output.c++ file.y
will produce output.c++ and output.h++.

For compatibility with POSIX, the standard Bison distribution also contains a shell
script called yacc that invokes Bison with the -y option.

The exit status of bison is:

0 (success)
when there were no errors. Warnings, which are diagnostics about dubious
constructs, do not change the exit status, unless they are turned into errors
(see [-Werror], page 160).

1 (failure) when there were errors. No file was generated (except the reports generated by
--verbose, etc.). In particular, the output files that possibly existed were not
changed.

63 (mismatch)
when bison does not meet the version requirements of the grammar file. See
Section 3.7.1 [Require a Version of Bison], page 72. No file was generated or
changed.

9.1 Bison Options

Bison supports both traditional single-letter options and mnemonic long option names.
Long option names are indicated with —-- instead of -. Abbreviations for option names are
allowed as long as they are unique. When a long option takes an argument, like --file-
prefix, connect the option name and the argument with ‘=".

Here is a list of options that can be used with Bison. It is followed by a cross key
alphabetized by long option.

Chapter 9: Invoking Bison 155

9.1.1 Operation Modes
Options controlling the global behavior of bison.

-h
--help Print a summary of the command-line options to Bison and exit.

-V
—-version
Print the version number of Bison and exit.

--print-localedir
Print the name of the directory containing locale-dependent data.

--print-datadir
Print the name of the directory containing skeletons, CSS and XSLT.

-u

--update Update the grammar file (remove duplicates, update deprecated directives, etc.)
and exit (i.e., do not generate any of the output files). Leaves a backup of the
original file with a ~ appended. For instance:

$ cat foo.y
herror-verbose
%define parse.error verbose
Toth
exp:;
$ bison -u foo.y
foo.y:1.1-14: warning: deprecated directive, use ’Jdefine parse.error ver-
bose’ [-Wdeprecated]
1 | %error-verbose

foo.y:2.1-27: warning: %define variable ’parse.error’ redefined [-
Wother]
2 | %define parse.error verbose

foo.y:1.1-14: previous definition

1 | Yerror-verbose

| ~~~~~~~~~~~~~~
bison: file ’foo.y’ was updated (backup: ’foo.y™’)
$ cat foo.y
%define parse.error verbose
oo
exp:;
See the documentation of -—-feature=fixit below for more details.
-f [feature]

-—feature[=featurel
Activate miscellaneous features. Feature can be one of:

Chapter 9: Invoking Bison 156

caret

diagnostics-show-caret
Show caret errors, in a manner similar to GCC’s -fdiagnostics-
show-caret, or Clang’s ~-fcaret-diagnostics. The location pro-
vided with the message is used to quote the corresponding line of
the source file, underlining the important part of it with carets (‘*").
Here is an example, using the following file in.y:

Jnterm <ival> exp
ot
exp: exp '+’ exp { $exp = $1 + $2; };
When invoked with -fcaret (or nothing), Bison will report:

in.y:3.20-23: error: ambiguous reference: ’$exp’
3 | exp: exp +’ exp { $exp = $1 + $2; };
| e
in.y:3.1-3: refers to: $exp at $$
3 | exp: exp ’+’ exp { $exp = $1 + $2; };
|~~~
in.y:3.6-8: refers to: $exp at $1
3 | exp: exp ’+’ exp { $exp = $1 + $2; };
| e
in.y:3.14-16: refers to: $exp at $3
3 | exp: exp '+’ exp { $exp = $1 + $2; I};
| e
in.y:3.32-33: error: $2 of ’exp’ has no declared type
3 | exp: exp '+’ exp { $exp = $1 + $2; };
| a—

Whereas, when invoked with -fno-caret, Bison will only report:

in.y:3.20-23: error: ambiguous reference: ’$exp’

in.y:3.1-3: refers to: $exp at $$
in.y:3.6-8: refers to: $exp at $1
in.y:3.14-16: refers to: $exp at $3

in.y:3.32-33: error: $2 of ’exp’ has no declared type
This option is activated by default.

fixit
diagnostics-parseable-fixits
Show machine-readable fixes, in a manner similar to GCC’s and
Clang’s -fdiagnostics-parseable-fixits.
Fix-its are generated for duplicate directives:
$ cat foo.y
%define api.prefix {foo}
%define api.prefix {bar}
hto

exp:;

Chapter 9: Invoking Bison 157

$ bison -ffixit foo.y
foo.y:2.1-24: error: Ydefine variable ’api.prefix’ redefined
2 | Ydefine api.prefix {bar}
|~
foo.y:1.1-24: previous definition
1 | Jdefine api.prefix {foo}

fix-it:"foo.y":{2:1-2:25}:""
foo.y: warning: fix-its can be applied. Rerun with op-
tion ’--update’. [-Wother]

They are also generated to update deprecated directives, unless
-Wno-deprecated was given:

$ cat /tmp/foo.yy
ferror-verbose
Jname-prefix "foo"
hto
exp:;
$ bison foo.y
foo.y:1.1-14: warning: deprecated directive, use ’%de-
fine parse.error verbose’ [-Wdeprecated]

1 | Y%error-verbose

| ~mmmmmm e

foo.y:2.1-18: warning: deprecated directive, use ’%de-
fine api.prefix {foo}’ [-Wdeprecated]

2 | Y%name-prefix "foo"

foo.y: warning: fix-its can be applied. Rerun with op-
tion ’--update’. [-Wother]

The fix-its are applied by bison itself when given the option
-u/--update. See its documentation above.

syntax-only
Do not generate the output files. The name of this feature is some-
what misleading as more than just checking the syntax is done:
every stage is run (including checking for conflicts for instance),
except the generation of the output files.

9.1.2 Diagnostics
Options controlling the diagnostics.

-W [category]
--warnings [=category]
Output warnings falling in category. category can be one of:

conflicts-sr

conflicts-rr
S/R and R/R conflicts. These warnings are enabled by default.
However, if the %expect or %expect-rr directive is specified, an

Chapter 9: Invoking Bison 158

unexpected number of conflicts is an error, and an expected number
of conflicts is not reported, so -W and ——warning then have no effect
on the conflict report.

counterexamples

cex Provide counterexamples for conflicts. See Section 8.1 [Genera-
tion of Counterexamples|, page 136. Counterexamples take time to
compute. The option -Wcex should be used by the developer when
working on the grammar; it hardly makes sense to use it in a CI.

dangling-alias
Report string literals that are not bound to a token symbol.
String literals, which allow for better error messages, are (too) lib-
erally accepted by Bison, which might result in silent errors. For
instance

Jtype <exVal> cond "condition"

does not define “condition” as a string alias to cond—mnonterminal
symbols do not have string aliases. It is rather equivalent to

%nterm <exVal> cond
%token <exVal> "condition"

i.e., it gives the ‘"condition"’ token the type exVal.

Also, because string aliases do not need to be defined, typos such
as ‘"baz"’ instead of ‘"bar"’ will be not reported.

The option -Wdangling-alias catches these situations. On

%token BAR "bar"
%type <ival> foo "foo"
oo
foo: "baz" {}
‘pison -Wdangling-alias’ reports

warning: string literal not attached to a symbol
| %type <ival> foo "foo"
| A

warning: string literal not attached to a symbol
| foo: "baz" {}

deprecated
Deprecated constructs whose support will be removed in future
versions of Bison.

empty-rule
Empty rules without %empty. See Section 3.3.2 [Empty Rules],
page 56. Disabled by default, but enabled by uses of %empty, unless
-Wno-empty-rule was specified.

Chapter 9: Invoking Bison 159

midrule-values

Warn about midrule values that are set but not used within any of
the actions of the parent rule. For example, warn about unused $2
in:

exp: 17 { 8 =1; } '+’ exp { $% = $1 + $4; };
Also warn about midrule values that are used but not set. For
example, warn about unset $$ in the midrule action in:

exp: ’1”7 { $1 =1; } ’+> exp { $$ = $2 + $4; };
These warnings are not enabled by default since they sometimes

prove to be false alarms in existing grammars employing the Yacc
constructs $0 or $-n (where n is some positive integer).

precedence

Useless precedence and associativity directives. Disabled by de-
fault.

Consider for instance the following grammar:

Jnonassoc "="
%hleft "+"
%hleft "x"
%precedence " ("
Yoo
stmt:

exp
| "var" "=" exp

3

exp:
exp "+" exp
| exp "*" "number"
| " (" exp ")
| "number"

Bison reports:

warning: useless precedence and associativity for "="
| %nonassoc "="

warning: useless associativity for "*", use Yprecedence
| %left "x"

warning: useless precedence for " ("
| Y%precedence " ("

One would get the exact same parser with the following directives
instead:

Chapter 9: Invoking Bison 160

%left nyn
hprecedence "x"
yacc Incompatibilities with POSIX Yacc.
other All warnings not categorized above. These warnings are enabled
by default.

This category is provided merely for the sake of completeness. Fu-
ture releases of Bison may move warnings from this category to
new, more specific categories.

all All the warnings except counterexamples, dangling-alias and
yacc.

none Turn off all the warnings.

error See -Werror, below.

A category can be turned off by prefixing its name with ‘no-’. For instance,
-Wno-yacc will hide the warnings about POSIX Yacc incompatibilities.

-Werror Turn enabled warnings for every category into errors, unless they are explicitly
disabled by -Wno-error=category.

-Werror=category
Enable warnings falling in category, and treat them as errors.
category is the same as for -—warnings, with the exception that it may not be
prefixed with ‘no-’ (see above).
Note that the precedence of the ‘=" and ¢, operators is such that the following
commands are not equivalent, as the first will not treat S/R conflicts as errors.
$ bison -Werror=yacc,conflicts-sr input.y
$ bison -Werror=yacc,error=conflicts-sr input.y

-Wno-error
Do not turn enabled warnings for every category into errors, unless they are
explicitly enabled by -Werror=category.

-Wno-error=category
Deactivate the error treatment for this category. However, the warning itself
won’t be disabled, or enabled, by this option.

--color Equivalent to --color=always.

—-—color=when
Control whether diagnostics are colorized, depending on when:

always

yes Enable colorized diagnostics.

never

no Disable colorized diagnostics.

auto (default)

tty Diagnostics will be colorized if the output device is a tty, i.e. when

the output goes directly to a text screen or terminal emulator win-
dow.

Chapter 9: Invoking Bison 161

--style=file
Specifies the CSS style file to use when colorizing. It has an effect only when
the --color option is effective. The bison-default.css file provide a good
example from which to define your own style file. See the documentation of
libtextstyle for more details.

9.1.3 Tuning the Parser

Options changing the generated parsers.
-t
--debug In the parser implementation file, define the macro YYDEBUG to 1 if it is not

already defined, so that the debugging facilities are compiled. See Section 8.5
[Tracing Your Parser|, page 149.

-D name[=value]

--define=name[=value]

-F name([=valuel

--force-define=name[=value]
Each of these is equivalent to ‘%define name value’ (see Section 3.7.14
[Y%odefine Summary], page 85). Note that the delimiters are part of
value: -Dapi.value.type=union, -Dapi.value.type={union} and
-Dapi.value.type="union" correspond to ‘) define api.value.type union’,
‘hdefine api.value.type {union}’ and ‘/define api.value.type "union"’.

Bison processes multiple definitions for the same name as follows:
e Bison quietly ignores all command-line definitions for name except the last.

e If that command-line definition is specified by a -D or --define, Bison
reports an error for any %define definition for name.

e If that command-line definition is specified by a -F or --force-define
instead, Bison quietly ignores all %define definitions for name.

e Otherwise, Bison reports an error if there are multiple %define definitions
for name.

You should avoid using -F and --force-define in your make files unless you
are confident that it is safe to quietly ignore any conflicting %define that may
be added to the grammar file.

-L language

--language=language
Specify the programming language for the generated parser, as if %1anguage was
specified (see Section 3.7.13 [Bison Declaration Summary|, page 81). Currently
supported languages include C, C++, D and Java. language is case-insensitive.

--locations
Pretend that %locations was specified. See Section 3.7.13 [Bison Declaration
Summary]|, page 81.

-p prefix

—-—name-prefix=prefix
Pretend that %name-prefix "prefix" was specified (see Section 3.7.13 [Bison
Declaration Summary], page 81). The option -p is specified by POSIX. When

Chapter 9: Invoking Bison 162

POSIX compatibility is not a requirement, -Dapi.prefix=prefix is a better
option (see Section 3.8 [Multiple Parsers in the Same Program|, page 97).

-1

--no-lines
Don’t put any #line preprocessor commands in the parser implementation file.
Ordinarily Bison puts them in the parser implementation file so that the C
compiler and debuggers will associate errors with your source file, the grammar
file. This option causes them to associate errors with the parser implementation
file, treating it as an independent source file in its own right.

-S file

--skeleton=file
Specify the skeleton to use, similar to j%skeleton (see Section 3.7.13 [Bison
Declaration Summary|, page 81).

If file does not contain a /, file is the name of a skeleton file in the Bison
installation directory. If it does, file is an absolute file name or a file name
relative to the current working directory. This is similar to how most shells
resolve commands.

-k
--token-table
Pretend that %token-table was specified. See Section 3.7.13 [Bison Declaration
Summary]|, page 81.
Ty
--yacc Act more like the traditional yacc command:
o Generate different diagnostics (it implies -Wyacc).

o Generate #define statements in addition to an enum to associate token
codes with token kind names.

e If the POSIXLY_CORRECT environment variable is defined, generate proto-

types for yyerror and yylex' (since Bison 3.8):

int yylex (void);

void yyerror (comst char *);
As a Bison extension, additional arguments required by %pure-parser,
%locations, %lex-param and %parse-param are taken into account. You
may disable yyerror’s prototype with ‘#define yyerror yyerror’ (as
specified by POSIX), or with ‘#define YYERROR_IS_DECLARED’ (a Bison
extension). Likewise for yylex.

e Imitate Yacc’s output file name conventions, so that the parser implemen-
tation file is called y.tab.c, and the other outputs are called y.output
and y.tab.h. Do not use --yacc just to change the output file names
since it also triggers all the aforementioned behavior changes; rather use
‘-0 y.tab.c’.

The -y/--yacc option is intended for use with traditional Yacc grammars. This
option only makes sense for the default C skeleton, yacc.c. If your grammar

L See https://austingroupbugs.net/view.php?id=1388#c5220.

https://austingroupbugs.net/view.php?id=1388#c5220

Chapter 9: Invoking Bison 163

uses Bison extensions Bison cannot be Yacc-compatible, even if this option is
specified.

Thus, the following shell script can substitute for Yacc, and the Bison distribu-
tion contains such a yacc script for compatibility with POSIX:

#! /bin/sh

bison -y "$e@"

9.1.4 Output Files
Options controlling the output.

-H [file]

--header=[filel
Pretend that %header was specified, i.e., write an extra output file containing
definitions for the token kind names defined in the grammar, as well as a few
other declarations. See Section 3.7.13 [Bison Declaration Summary]|, page 81.

—-defines[=file]
Historical name for option --header before Bison 3.8.

-d This is the same as ——header except -d does not accept a file argument since
POSIX Yacc requires that —d can be bundled with other short options.

-b file-prefix

--file-prefix=prefix
Pretend that %file-prefix was specified, i.e., specify prefix to use for all Bison
output file names. See Section 3.7.13 [Bison Declaration Summary]|, page 81.

-r things

--report=things
Write an extra output file containing verbose description of the comma sepa-
rated list of things among;:

state Description of the grammar, conflicts (resolved and unresolved),
and parser’s automaton.

itemset Implies state and augments the description of the automaton with
the full set of items for each state, instead of its core only.

lookahead
Implies state and augments the description of the automaton with
each rule’s lookahead set.

solved Implies state. Explain how conflicts were solved thanks to prece-
dence and associativity directives.

counterexamples

cex Look for counterexamples for the conflicts. See Section 8.1 [Gener-
ation of Counterexamples], page 136. Counterexamples take time
to compute. The option -rcex should be used by the developer
when working on the grammar; it hardly makes sense to use it in
a CI.

all Enable all the items.

Chapter 9: Invoking Bison 164

none Do not generate the report.

--report-file=file
Specify the file for the verbose description.

-v

--verbose
Pretend that %verbose was specified, i.e., write an extra output file containing
verbose descriptions of the grammar and parser. See Section 3.7.13 [Bison
Declaration Summary|, page 81.

-o file

--output=~file
Specify the file for the parser implementation file.

The names of the other output files are constructed from file as described under
the -v and -d options.

-g [file]

—--graph[=file]
Output a graphical representation of the parser’s automaton computed by Bi-
son, in Graphviz (https://www.graphviz.org/) DOT (https://www.
graphviz.org/doc/info/lang.html) format. file is optional. If omitted
and the grammar file is foo.y, the output file will be foo.gv.

-x [file]

--xml [=file]
Output an XML report of the parser’s automaton computed by Bison. file
is optional. If omitted and the grammar file is foo.y, the output file will be
foo.xml.

-M old=new

--file-prefix-map=old=new
Replace prefix old with new when writing file paths in output files.

9.2 Option Cross Key

Here is a list of options, alphabetized by long option, to help you find the corresponding
short option and directive.

Long Option Short Option Bison Directive
--color[=when]

--debug -t hdebug
--define=name[=value] -D name[=value] ‘define name [value]
--feature[=features] -f [features]
--file-prefix-map=old=new -M old=new

--file-prefix=prefix -b prefix %file-prefix "prefix"
--force-define=name[=value] -F name[=value] Ydefine name [value]
--graph[=file] -g [file]

--header=[file] -H [file] %header ["file"]

--help -h

https://www.graphviz.org/
https://www.graphviz.org/doc/info/lang.html
https://www.graphviz.org/doc/info/lang.html

Chapter 9: Invoking Bison 165

—--html [=file]

--language=language -L language %language "language"
--locations %locations
--name-prefix=prefix -p prefix %name-prefix "prefix"
--no-lines -1 Jno-lines
—-—output=file -o file %output "file"

--print-datadir
--print-localedir
--report-file=file

--report=things -r things

--skeleton=file -S file %skeleton "file"
--style=file

--token-table -k %token-table
--update -u

--verbose -v hverbose
--version -V

--warnings [=category] -W [category]

——xml [=file] -x [file]

--yacc -y hyacc

9.3 Yacc Library

The Yacc library contains default implementations of the yyerror and main functions
These default implementations are normally not useful, but POSIX requires them. To use
the Yacc library, link your program with the -1y option. Note that Bison’s implementation
of the Yacc library is distributed under the terms of the GNU General Public License (see
[GNU GENERAL PUBLIC LICENSE], page 3).

If you use the Yacc library’s yyerror function, you should declare yyerror as follows:
int yyerror (char const *);
The int value returned by this yyerror is ignored.
The implementation of Yacc library’s main function is:

int main (void)

{
setlocale (LC_ALL, "");
return yyparse ();

}

so if you use it, the internationalization support is enabled (e.g., error messages are trans-
lated), and your yyparse function should have the following type signature:

int yyparse (void);

166

10 Parsers Written In Other Languages

In addition to C, Bison can generate parsers in C++, D and Java. This chapter is devoted
to these languages. The reader is expected to understand how Bison works; read the
introductory chapters first if you don’t.

10.1 C++ Parsers

The Bison parser in C++ is an object, an instance of the class yy: :parser.

10.1.1 A Simple C++ Example

This tutorial about C++ parsers is based on a simple, self contained example.! The following
sections are the reference manual for Bison with C++, the last one showing a fully blown
example (see Section 10.1.8 [A Complete C++ Example], page 180).

To look nicer, our example will be in C++14. It is not required: Bison supports the
original C++98 standard.

A Bison file has three parts. In the first part, the prologue, we start by making sure we
run a version of Bison which is recent enough, and that we generate C++.
%require "3.2"
%language "c++"
Let’s dive directly into the middle part: the grammar. Our input is a simple list of
strings, that we display once the parsing is done.
hlo
result:
list { std::cout << $1 << ’\n’; }

I

Jnterm <std::vector<std::string>> list;
list:

%hempty { /* Generates an empty string list */ }
| 1ist item { $$ = $1; $$.push_back ($2); }

We used a vector of strings as a semantic value! To use genuine C++ objects as semantic
values—not just PODs—we cannot rely on the union that Bison uses by default to store
them, we need variants (see Section 10.1.4.2 [C++ Variants|, page 171):

%define api.value.type variant

Obviously, the rule for result needs to print a vector of strings. In the prologue, we
add:

%hcode
{
// Print a list of strings.
auto
operator<< (std::ostream& o, const std::vector<std::string>& ss)

1 The sources of this example are available as examples/c++/simple.yy.

Chapter 10: Parsers Written In Other Languages 167

-> std::ostream&

o << {7
const char *sep = "";
for (const auto& s: ss)
{
0 << sep << s;
sep =", ";
}
return o << ’}’;

}
}

You may want to move it into the yy namespace to avoid leaking it in your default names-
pace. We recommend that you keep the actions simple, and move details into auxiliary
functions, as we did with operator<<.

Our list of strings will be built from two types of items: numbers and strings:

Jnterm <std::string> item;
Jtoken <std::string> TEXT;
Jitoken <int> NUMBER;
item:
TEXT
| NUMBER { $$ = std::to_string ($1); }

I

In the case of TEXT, the implicit default action applies: $$ = $1.

Our scanner deserves some attention. The traditional interface of yylex is not type safe:
since the token kind and the token value are not correlated, you may return a NUMBER with
a string as semantic value. To avoid this, we use token constructors (see Section 10.1.7.2
[Complete Symbols|, page 178). This directive:

%define api.token.constructor

requests that Bison generates the functions make_TEXT and make_NUMBER, but also make_
YYEQF, for the end of input.

Everything is in place for our scanner:

%hcode
{
namespace yy
{
// Return the next token.
auto yylex () -> parser::symbol_type
{
static int count = 0;
switch (int stage = count++)
{
case O:
return parser::make_TEXT ("I have three numbers for you.");

Chapter 10: Parsers Written In Other Languages 168

case 1: case 2: case 3:
return parser::make_NUMBER (stage);

case 4:

return parser::make TEXT ("And that’s alll!");
default:

return parser::make_YYEQF ();
}

3
X
3

In the epilogue, the third part of a Bison grammar file, we leave simple details: the error
reporting function, and the main function.
Toth
namespace yy
{
// Report an error to the user.
auto parser::error (const std::string& msg) -> void
{
std::cerr << msg << ’\n’;
}
}

int main ()
{
yy::parser parse;
return parse Q;
}
Compile, and run!
$ bison simple.yy -o simple.cc
$ g++ -std=c++14 simple.cc -o simple
$./simple
{I have three numbers for you., 1, 2, 3, And that’s all!}

10.1.2 C++ Bison Interface

The C++ deterministic parser is selected using the skeleton directive, ‘Jiskeleton
"lalrl.cc"’. See Section 3.7.13 [Bison Declaration Summary|, page 81.

When run, bison will create several entities in the ‘yy’ namespace. Use the ‘%define
api.namespace’ directive to change the namespace name, see Section 3.7.14 [%define Sum-
mary], page 85. The various classes are generated in the following files:

file.hh (Assuming the extension of the grammar file was ¢.yy’.) The declaration of the
C++ parser class and auxiliary types. By default, this file is not generated (see
Section 3.7.13 [Bison Declaration Summary], page 81).

file.cc The implementation of the C++ parser class. The basename and extension of
these two files (file.hh and file.cc) follow the same rules as with regular C
parsers (see Chapter 9 [Invoking Bison|, page 154).

Chapter 10: Parsers Written In Other Languages 169

location.hh
Generated when both %header and %locations are enabled, this file contains
the definition of the classes position and location, used for location tracking.
It is not generated if ‘/define api.location.file none’ is specified, or if user
defined locations are used. See Section 10.1.5 [C++ Location Values|, page 172.

position.hh
stack.hh Useless legacy files. To get rid of then, use ‘Yrequire "3.2"’ or newer.

All these files are documented using Doxygen; run doxygen for a complete and accurate
documentation.

10.1.3 C++ Parser Interface

The output files file.hh and file.cc declare and define the parser class in the
namespace yy. The class name defaults to parser, but may be changed using ‘%define
api.parser.class {name}’. The interface of this class is detailed below. It can be
extended using the Yparse-param feature: its semantics is slightly changed since it
describes an additional member of the parser class, and an additional argument for its
constructor.

token [Type of parser]
A structure that contains (only) the token_kind_type enumeration, which defines
the tokens. To refer to the token FOO, use yy: :parser: :token: :F00. The scanner
can use ‘typedef yy::parser::token token;’ to “import” the token enumeration
(see Section 10.1.8.4 [Calc++ Scanner], page 185).

token_kind_type [Type of parser]
An enumeration of the token kinds. Its enumerators are forged from the token names,
with a possible token prefix (see [api.token.prefix|, page 90):
/// Token kinds.
struct token

{
enum token_kind_type
{
YYEMPTY = -2, // No token.
YYEQF = O, // "end of file"
YYerror = 256, // error
YYUNDEF = 257, // "invalid token"
PLUS = 258, /] "+
MINUS = 259, // "=
[...]
VAR = 271, // "variable"
NEG = 272 // NEG
};
};

/// Token kind, as returned by yylex.
typedef token::token_kind_type token_kind_type;

Chapter 10: Parsers Written In Other Languages 170

value_type [Type of parser]
The types for semantic values. See Section 10.1.4 [C++ Semantic Values], page 171.

location_type [Type of parser]
The type of locations, if location tracking is enabled. See Section 10.1.5 [C++ Loca-
tion Values], page 172.

syntax_error [Type of parser]|
This class derives from std: :runtime_error. Throw instances of it from the scanner
or from the actions to raise parse errors. This is equivalent with first invoking error
to report the location and message of the syntax error, and then to invoke YYERROR to
enter the error-recovery mode. But contrary to YYERROR which can only be invoked
from user actions (i.e., written in the action itself), the exception can be thrown from
functions invoked from the user action.

parser () [Constructor on parser]

parser (typel argl, ...) [Constructor on parser]
Build a new parser object. There are no arguments, unless ‘/parse-param {typel
argl}’ was used.

syntax_error (const location_type& 1, const [Constructor on syntax_error]
std: :string& m)
syntax_error (const std::string& m) [Constructor on syntax_error]
Instantiate a syntax-error exception.
int operator() () [Method on parser]|
int parse () [Method on parser]|

Run the syntactic analysis, and return 0 on success, 1 otherwise. Both routines are
equivalent, operator () being more C++ish.

The whole function is wrapped in a try/catch block, so that when an exception
is thrown, the %destructors are called to release the lookahead symbol, and the
symbols pushed on the stack.

Exception related code in the generated parser is protected by CPP guards (#if) and
disabled when exceptions are not supported (i.e., passing -fno-exceptions to the
C++ compiler).

std::ostream& debug_stream () [Method on parser]
void set_debug_stream (std::ostream& o) [Method on parser]
Get or set the stream used for tracing the parsing. It defaults to std: :cerr.
debug_level_type debug_level () [Method on parser]|
void set_debug_level (debug_level_type 1) [Method on parser]|

Get or set the tracing level (an integral). Currently its value is either 0, no trace, or
nonzero, full tracing.

void error (const location_type& 1, const [Method on parser]|
std::string& m)
void error (const std::string& m) [Method on parser]|

The definition for this member function must be supplied by the user: the parser uses
it to report a parser error occurring at I, described by m. If location tracking is not
enabled, the second signature is used.

Chapter 10: Parsers Written In Other Languages 171

10.1.4 C++ Semantic Values

Bison supports two different means to handle semantic values in C++. One is alike the C
interface, and relies on unions. As C++ practitioners know, unions are inconvenient in C++,
therefore another approach is provided, based on variants.

10.1.4.1 C++ Unions

The %union directive works as for C, see Section 3.4.4 [The Union Declaration], page 59.
In particular it produces a genuine union, which have a few specific features in C++.

— The value type is yy: :parser: :value_type, not YYSTYPE.

— Non POD (Plain Old Data) types cannot be used. C++98 forbids any instance of classes
with constructors in unions: only pointers to such objects are allowed. C++11 relaxed
this constraints, but at the cost of safety.

Because objects have to be stored via pointers, memory is not reclaimed automatically:
using the %destructor directive is the only means to avoid leaks. See Section 3.7.7 [Freeing
Discarded Symbols], page 75.

10.1.4.2 C++ Variants

Bison provides a wvariant based implementation of semantic values for C++. This alleviates
all the limitations reported in the previous section, and in particular, object types can be
used without pointers.

To enable variant-based semantic values, set the %define variable api.value.type to
variant (see Section 3.7.14 [%define Summary|, page 85). Then %union is ignored; instead
of using the name of the fields of the %union to “type” the symbols, use genuine types.

For instance, instead of:

%union
{
int ival;
std::string* sval;
}
%token <ival> NUMBER;
%token <sval> STRING;

write:

%token <int> NUMBER;
Jtoken <std::string> STRING;

STRING is no longer a pointer, which should fairly simplify the user actions in the gram-
mar and in the scanner (in particular the memory management).

Since C++ features destructors, and since it is customary to specialize operator<< to
support uniform printing of values, variants also typically simplify Bison printers and de-
structors.

Variants are stricter than unions. When based on unions, you may play any dirty game
with yylval, say storing an int, reading a char*, and then storing a double in it. This is
no longer possible with variants: they must be initialized, then assigned to, and eventually,
destroyed. As a matter of fact, Bison variants forbid the use of alternative types such as

Chapter 10: Parsers Written In Other Languages 172

‘$<int>2’ or ‘$<std::string>$’, even in midrule actions. It is mandatory to use typed
midrule actions (see Section 3.4.8.2 [Typed Midrule Actions], page 64).

T& emplace<T> () [Method on value_type]

T& emplace<T> (const T& t) [Method on value_type]
Available in C++98/C++03 only. Default construct/copy-construct from t. Return a
reference to where the actual value may be stored. Requires that the variant was not
initialized yet.

T& emplace<T, U> (U&&... u) [Method on value_type]
Available in C++11 and later only. Build a variant of type T from the variadic for-
warding references u....

Warning: We do not use Boost.Variant, for two reasons. First, it appeared unacceptable
to require Boost on the user’s machine (i.e., the machine on which the generated parser will
be compiled, not the machine on which bison was run). Second, for each possible semantic
value, Boost.Variant not only stores the value, but also a tag specifying its type. But the
parser already “knows” the type of the semantic value, so that would be duplicating the
information.

We do not use C++17’s std: :variant either: we want to support all the C++ standards,
and of course std: :variant also stores a tag to record the current type.

Therefore we developed light-weight variants whose type tag is external (so they are
really like unions for C++ actually). There is a number of limitations in (the current
implementation of) variants:

e Alignment must be enforced: values should be aligned in memory according to the
most demanding type. Computing the smallest alignment possible requires meta-
programming techniques that are not currently implemented in Bison, and therefore,
since, as far as we know, double is the most demanding type on all platforms, align-
ments are enforced for double whatever types are actually used. This may waste space
in some cases.

e There might be portability issues we are not aware of.

As far as we know, these limitations can be alleviated. All it takes is some time and/or
some talented C++ hacker willing to contribute to Bison.

10.1.5 C++ Location Values

When the directive %locations is used, the C++ parser supports location tracking, see
Section 3.5 [Tracking Locations|, page 67.

By default, two auxiliary classes define a position, a single point in a file, and a
location, a range composed of a pair of positions (possibly spanning several files). If
the %define variable api.location.type is defined, then these classes will not be gener-
ated, and the user defined type will be used.

10.1.5.1 C++ position

filename_type [Type of position]
The base type for file names. Defaults to const std::string. See
[api.filename.type], page 86, to change its definition.

Chapter 10: Parsers Written In Other Languages 173

counter_type [Type of position]
The type used to store line and column numbers. Defined as int.

position (filename_typex* file = nullptr, [Constructor on position]
counter_type line = 1, counter_type col = 1)
Create a position denoting a given point. Note that file is not reclaimed when the
position is destroyed: memory managed must be handled elsewhere.

void initialize (filename_type* file = nullptr, [Method on position]
counter_type line = 1, counter_type col = 1)
Reset the position to the given values.

filename_typex file [Instance Variable of position]
The name of the file. It will always be handled as a pointer, the parser will never
duplicate nor deallocate it.

counter_type line [Instance Variable of position]
The line, starting at 1.

void lines (counter_type height = I) [Method on position]
If height is not null, advance by height lines, resetting the column number. The
resulting line number cannot be less than 1.

counter_type column [Instance Variable of position]
The column, starting at 1.

void columns (counter_type width = 1) [Method on position]
Advance by width columns, without changing the line number. The resulting column
number cannot be less than 1.

position& operator+= (counter_type width) [Method on position]

position operator+ (counter_type width) [Method on position]

position& operator-= (counter_type width) [Method on position]

position operator- (counter_type width) [Method on position]
Various forms of syntactic sugar for columns.

bool operator== (const position& that) [Method on position]
bool operator!= (const position& that) [Method on position]
Whether *this and that denote equal/different positions.

std::ostream& operator<< (std::ostream& o, const position& p) [Function]
Report p on o like this: ‘file:line.column’, or ‘line.column’ if file is null.

10.1.5.2 C++ location

location (const position& begin, const position& [Constructor on location]
end)
Create a Location from the endpoints of the range.

location (const position& pos = position()) [Constructor on location]
location (filename_type* file, counter_type [Constructor on location]
line, counter_type col)
Create a Location denoting an empty range located at a given point.

Chapter 10: Parsers Written In Other Languages 174

void initialize (filename_type* file = nullptr, [Method on location]
counter_type line = I, counter_type col = I)
Reset the location to an empty range at the given values.

position begin [Instance Variable of location]
position end [Instance Variable of location]
The first, inclusive, position of the range, and the first beyond.

void columns (counter_type width = 1) [Method on location]
void lines (counter_type height = 1) [Method on location]
Forwarded to the end position.

location operator+ (counter_type width) [Method on location]

location operator+= (counter_type width) [Method on location]

location operator- (counter_type width) [Method on location]

location operator-= (counter_type width) [Method on location]
Various forms of syntactic sugar for columns.

location operator+ (const location& end) [Method on location]

location operator+= (const location& end) [Method on location]
Join two locations: starts at the position of the first one, and ends at the position of
the second.

void step () [Method on location]
Move begin onto end.

bool operator== (const location& that) [Method on location]

bool operator!= (const location& that) [Method on location]

Whether *this and that denote equal/different ranges of positions.

std::ostream& operator<< (std::ostream& o, const location& p) [Function]
Report p on o, taking care of special cases such as: no filename defined, or equal
filename/line or column.

10.1.5.3 Exposing the Location Classes

When both %header and %locations are enabled, Bison generates an additional file:
location.hh. If you don’t use locations outside of the parser, you may avoid its creation
with ‘%define api.location.file none’.

However this file is useful if, for instance, your parser builds an abstract syntax
tree decorated with locations: you may use Bison’s location type independently of
Bison’s parser. You may name the file differently, e.g., ‘%define api.location.file
"include/ast/location.hh"’: this name can have directory components, or even be
absolute. The way the location file is included is controlled by api.location.include.

This way it is possible to have several parsers share the same location file.
For instance, in src/foo/parser.yy, generate the include/ast/loc.hh file:

// src/foo/parser.yy
%locations
%define api.namespace {foo}

Chapter 10: Parsers Written In Other Languages 175

%define api.location.file "include/ast/loc.hh"
%define api.location.include {<ast/loc.hh>}

and use it in src/bar/parser.yy:

// src/bar/parser.yy

%locations

%define api.namespace {bar}

%code requires {#include <ast/loc.hh>}
%define api.location.type {bar::location}

Absolute file names are supported; it is safe in your Makefile to pass the flag

-Dapi.location.file=""$(top_srcdir)/include/ast/loc.hh"’ to bison for
src/foo/parser.yy. The generated file will not have references to this absolute
path, thanks to ‘/define api.location.include {<ast/loc.hh>}’. Adding ‘-I

$(top_srcdir)/include’ to your CPPFLAGS will suffice for the compiler to find
ast/loc.hh.

10.1.5.4 User Defined Location Type

Instead of using the built-in types you may use the %define variable api.location.type
to specify your own type:

%define api.location.type {LocationTypel}
The requirements over your LocationType are:
e it must be copyable;
e in order to compute the (default) value of @$ in a reduction, the parser basically runs
Q@$.begin = @1.begin;
@b.end = @N.end; // The location of last right-hand side symbol.
so there must be copyable begin and end members;

e alternatively you may redefine the computation of the default location, in which case
these members are not required (see Section 3.5.4 [Default Action for Locations],
page 69);

e if traces are enabled, then there must exist an ‘std::ostream& operator<<
(std::ostream& o, const LocationType& s)’ function.

In programs with several C++ parsers, you may also use the Jdefine variable
api.location.type to share a common set of built-in definitions for position and
location. For instance, one parser master/parser.yy might use:

%header
%locations
%define api.namespace {master::}

to generate the master/position.hh and master/location.hh files, reused by other
parsers as follows:

hdefine api.location.type {master::location}
%code requires { #include <master/location.hh> }

Chapter 10: Parsers Written In Other Languages 176

10.1.6 C++ Parser Context

When ‘/define parse.error custom’ is used (see Section 4.4.2 [The Syntax Error Re-
porting Function yyreport_syntax_error|, page 106), the user must define the following
function.

void report_syntax_error (const context_type&ctx) [Method on parser]
const
Report a syntax error to the user. Whether it uses yyerror is up to the user.

Use the following types and functions to build the error message.

context [Type of parser]
A type that captures the circumstances of the syntax error.

symbol_kind_type [Type of parser]
An enum of all the grammar symbols, tokens and nonterminals. Its enumerators are
forged from the symbol names:

struct symbol_kind

{
enum symbol_kind_type
{
S_YYEMPTY = -2, // No symbol.
S_YYEQOF = O, // "end of file"
S_YYERROR = 1, // error
S_YYUNDEF = 2, // "invalid token"
S_PLUS = 3, /] "+
S_MINUS = 4, /] ="
[...]
S_VAR = 14, // "variable"
S_NEG = 15, // NEG
S_YYACCEPT = 186, // $accept
S_exp = 17, // exp
S_input = 18 // input
3
¥

typedef symbol_kind::symbol_kind_t symbol_kind_type;

const symbol_type& lookahead () const [Method on context]
The “unexpected” token: the lookahead that caused the syntax error.

symbol_kind_type token () const [Method on context]
The symbol kind of the lookahead token that caused the syntax error. Returns
symbol_kind: :S_YYEMPTY if there is no lookahead.

const location& location () const [Method on context]
The location of the syntax error (that of the lookahead).

Chapter 10: Parsers Written In Other Languages 177

int expected_tokens (symbol_kind_type argv||, int [Method on context]
argc) const
Fill argv with the expected tokens, which never includes symbol_kind: :S_YYEMPTY,
symbol_kind: :S_YYERROR, or symbol_kind::S_YYUNDEF.

Never put more than argc elements into argv, and on success return the number of
tokens stored in argv. If there are more expected tokens than argc, fill argv up to
argc and return 0. If there are no expected tokens, also return 0, but set argv[0] to
symbol_kind: :S_YYEMPTY.

If argv is null, return the size needed to store all the possible values, which is always
less than YYNTOKENS.

const char * symbol_name (symbol_kind_t symbol) [Method on parser]
const
The name of the symbol whose kind is symbol, possibly translated.

Returns a std: :string when parse.error is verbose.

A custom syntax error function looks as follows. This implementation is inappropriate
for internationalization, see the c/bistromathic example for a better alternative.
void
yy::parser: :report_syntax_error (const context& ctx)
{
int res = 0;
std::cerr << ctx.location () << ": syntax error";
// Report the tokens expected at this point.
{
enum { TOKENMAX = 5 };
symbol_kind_type expected[TOKENMAX] ;
int n = ctx.expected_tokens (ctx, expected, TOKENMAX);
for (int i = 0; 1 < n; ++1i)
std::cerr << 1 == 0 7 ": expected " : " or "
<< symbol_name (expected[i]);
}
// Report the unexpected token.
{
symbol_kind_type lookahead = ctx.token ();
if (lookahead != symbol_kind::S_YYEMPTY)
std::cerr << " before " << symbol_name (lookahead));
}
std::cerr << ’\n’;
}
You still must provide a yyerror function, used for instance to report memory exhaus-
tion.

10.1.7 C++ Scanner Interface

The parser invokes the scanner by calling yylex. Contrary to C parsers, C++ parsers
are always pure: there is no point in using the ‘/define api.pure’ directive. The actual
interface with yylex depends whether you use unions, or variants.

Chapter 10: Parsers Written In Other Languages 178

10.1.7.1 Split Symbols
The generated parser expects yylex to have the following prototype.

int yylex (value_type* yylval, location_type* yylloc, typel [Function]
argl, ...
int yylex (value_type* yylval, typel argl, ...) [Function]

Return the next token. Its kind is the return value, its semantic value and location
(if enabled) being yylval and yylloc. Invocations of ‘%lex-param {typel argi}’ yield
additional arguments.

Note that when using variants, the interface for yylex is the same, but yylval is handled
differently.

Regular union-based code in Lex scanner typically looks like:

[0-91+ {
yylval->ival = text_to_int (yytext);
return yy::parser::token: :INTEGER;
X
[a-z]+ {
yylval->sval = new std::string (yytext);
return yy::parser::token::IDENTIFIER;
3

Using variants, yylval is already constructed, but it is not initialized. So the code would
look like:

[0-91+ {
yylval->emplace<int> () = text_to_int (yytext);
return yy::parser::token: :INTEGER;

(S

la-z]+ {
yylval->emplace<std::string> () = yytext;
return yy::parser::token: :IDENTIFIER;

or

[0-91+ {
yylval->emplace (text_to_int (yytext));
return yy::parser::token::INTEGER;

la-z]+ A
yylval->emplace (yytext);
return yy::parser::token: :IDENTIFIER;
b

10.1.7.2 Complete Symbols

With both %define api.value.type variant and %define api.token.constructor, the
parser defines the type symbol_type, and expects yylex to have the following prototype.

Chapter 10: Parsers Written In Other Languages 179

parser: :symbol_type yylex () [Function]

parser::symbol_type yylex (typel argl, ...) [Function]
Return a complete symbol, aggregating its type (i.e., the traditional value returned
by yylex), its semantic value, and possibly its location. Invocations of ‘/%lex-param
{typel argi}’ yield additional arguments.

symbol_type [Type of parser]|
A “complete symbol”, that binds together its kind, value and (when applicable) lo-
cation.

symbol_kind_type kind () const [Method on symbol_type]

The kind of this symbol.

const char * name () const [Method on symbol_type|
The name of the kind of this symbol.

Returns a std: :string when parse.error is verbose.

For each token kind, Bison generates named constructors as follows.

symbol_type (int token, const [Constructor on parser: :symbol_type]
value_type& value, const location_type& location)

symbol_type (int token, const [Constructor on parser: : symbol_type]
location_type& location)

symbol_type (int token, const [Constructor on parser: :symbol_type]
value_type& value)

symbol_type (int token) [Constructor on parser: : symbol_type]

Build a complete terminal symbol for the token kind token (including the
api.token.prefix), whose semantic value, if it has one, is value of adequate
value_type. Pass the location iff location tracking is enabled.

Consistency between token and value_type is checked via an assert.

For instance, given the following declarations:

%define api.token.prefix {TOK_}
Jtoken <std::string> IDENTIFIER;
%token <int> INTEGER;

%token ’:’;

you may use these constructors:

symbol_type (int token, const std::string&, const location_type&) ;
symbol_type (int token, const int&, const location_type&) ;
symbol_type (int token, const location_type&);

Correct matching between token kinds and value types is checked via assert; for in-
stance, ‘symbol_type (ID, 42)’ would abort. Named constructors are preferable (see be-
low), as they offer better type safety (for instance ‘make_ID (42)’ would not even compile),
but symbol_type constructors may help when token kinds are discovered at run-time, e.g.,

Chapter 10: Parsers Written In Other Languages 180

[a-z]+ {
if (auto i = lookup_keyword (yytext))
return yy::parser::symbol_type (i, loc);
else
return yy::parser::make_ID (yytext, loc);

Note that it is possible to generate and compile type incorrect code (e.g. ‘symbol_type
(’:?, yytext, loc)’). It will fail at run time, provided the assertions are enabled (i.e.,
-DNDEBUG was not passed to the compiler). Bison supports an alternative that guarantees
that type incorrect code will not even compile. Indeed, it generates named constructors as
follows.

symbol_type make_token (const value_type& value, [Method on parser]
const location_type& location)

symbol_type make_token (const location_type& [Method on parser]
location)

symbol_type make_token (const value_type& value) [Method on parser]

symbol_type make_token () [Method on parser]

Build a complete terminal symbol for the token kind token (not including the
api.token.prefix), whose semantic value, if it has one, is value of adequate
value_type. Pass the location iff location tracking is enabled.

For instance, given the following declarations:

%define api.token.prefix {TOK_}
%token <std::string> IDENTIFIER;
%token <int> INTEGER;

%token COLON;

%token EQOF O0;

Bison generates:

symbol_type make_IDENTIFIER (const std::string&, const location_type&) ;
symbol_type make_ INTEGER (const int&, const location_type&);
symbol_type make_COLON (const location_type&);
symbol_type make_EOF (const location_type&);

which should be used in a scanner as follows.
[a-z]+ return yy::parser::make_IDENTIFIER (yytext, loc);
[0-9]+ return yy::parser::make_ INTEGER (text_to_int (yytext), loc);
S return yy::parser::make_COLON (loc);
<<EQF>> return yy::parser::make_EOF (loc);

Tokens that do not have an identifier are not accessible: you cannot simply use characters
such as ’:’, they must be declared with %token, including the end-of-file token.

10.1.8 A Complete C++ Example

This section demonstrates the use of a C++ parser with a simple but complete exam-
ple. This example should be available on your system, ready to compile, in the directory
examples/c++/calc++. It focuses on the use of Bison, therefore the design of the various

Chapter 10: Parsers Written In Other Languages 181

C++ classes is very naive: no accessors, no encapsulation of members etc. We will use a
Lex scanner, and more precisely, a Flex scanner, to demonstrate the various interactions.
A hand-written scanner is actually easier to interface with.

10.1.8.1 Calc++ — C++ Calculator

Of course the grammar is dedicated to arithmetic, a single expression, possibly preceded by
variable assignments. An environment containing possibly predefined variables such as one
and two, is exchanged with the parser. An example of valid input follows.

three := 3
seven := one + two * three
seven * seven

10.1.8.2 Calc++ Parsing Driver

To support a pure interface with the parser (and the scanner) the technique of the “parsing
context” is convenient: a structure containing all the data to exchange. Since, in addition
to simply launch the parsing, there are several auxiliary tasks to execute (open the file
for scanning, instantiate the parser etc.), we recommend transforming the simple parsing
context structure into a fully blown parsing driver class.

The declaration of this driver class, in driver.hh, is as follows. The first part includes
the CPP guard and imports the required standard library components, and the declaration
of the parser class.

#ifndef DRIVER_HH

define DRIVER_HH

include <string>

include <map>

include "parser.hh"

Then comes the declaration of the scanning function. Flex expects the signature of yylex
to be defined in the macro YY_DECL, and the C++ parser expects it to be declared. We can
factor both as follows.

// Give Flex the prototype of yylex we want ...
define YY_DECL \

yy::parser::symbol_type yylex (driver& drv)
// ... and declare it for the parser’s sake.
YY_DECL;

The driver class is then declared with its most obvious members.

// Conducting the whole scanning and parsing of Calc++.
class driver

{
public:
driver ();

std: :map<std::string, int> variables;

int result;

Chapter 10: Parsers Written In Other Languages 182

The main routine is of course calling the parser.

// Run the parser on file F. Return O on success.
int parse (const std::string& f);

// The name of the file being parsed.

std::string file;

// Whether to generate parser debug traces.

bool trace_parsing;

To encapsulate the coordination with the Flex scanner, it is useful to have member functions
to open and close the scanning phase.

// Handling the scanner.
void scan_begin ();
void scan_end ();
// Whether to generate scanner debug traces.
bool trace_scanning;
// The token’s location used by the scanner.
yy::location location;
s
#endif // ! DRIVER_HH

The implementation of the driver (driver.cc) is straightforward.

#include "driver.hh"
#include "parser.hh"

driver: :driver ()

: trace_parsing (false), trace_scanning (false)
{

variables["one"] 1;

variables["two"] = 2;

¥

The parse member function deserves some attention.

int
driver::parse (const std::string &f)
{

file = £;

location.initialize (&file);
scan_begin ();

yy::parser parse (*this);
parse.set_debug_level (trace_parsing);
int res = parse Q;

scan_end ();

return res;

Chapter 10: Parsers Written In Other Languages 183

10.1.8.3 Calc++ Parser

The grammar file parser.yy starts by asking for the C++ deterministic parser skeleton, the
creation of the parser header file. Because the C++ skeleton changed several times, it is
safer to require the version you designed the grammar for.

%skeleton "lalrl.cc" // —*— C++ —%-—
%require "3.8.1"
%header

Because our scanner returns only genuine tokens and never simple characters (i.e., it returns
‘PLUS’, not ‘’+’), we can avoid conversions.

%define api.token.raw

This example uses genuine C++ objects as semantic values, therefore, we require the variant-
based storage of semantic values. To make sure we properly use it, we enable asser-
tions. To fully benefit from type-safety and more natural definition of “symbol”, we enable
api.token.constructor.

%define api.token.constructor
%define api.value.type variant
hdefine parse.assert

Then come the declarations/inclusions needed by the semantic values. Because the parser
uses the parsing driver and reciprocally, both would like to include the header of the other,
which is, of course, insane. This mutual dependency will be broken using forward decla-
rations. Because the driver’s header needs detailed knowledge about the parser class (in
particular its inner types), it is the parser’s header which will use a forward declaration of
the driver. See Section 3.7.15 [%code Summary], page 95.
%code requires {
include <string>
class driver;
}
The driver is passed by reference to the parser and to the scanner. This provides a simple
but effective pure interface, not relying on global variables.
// The parsing context.
%param { driver& drv }

Then we request location tracking.
%locations
Use the following two directives to enable parser tracing and detailed error messages. How-

ever, detailed error messages can contain incorrect information if lookahead correction is
not enabled (see Section 5.8.3 [LAC], page 126).

%define parse.trace

%define parse.error detailed

%define parse.lac full
The code between ‘%4code {’ and ‘}’ is output in the *.cc file; it needs detailed knowledge
about the driver.

%code {
include "driver.hh"

3

Chapter 10: Parsers Written In Other Languages 184

User friendly names are provided for each symbol. To avoid name clashes in the gener-
ated files (see Section 10.1.8.4 [Calc++ Scanner|, page 185), prefix tokens with TOK_ (see
Section 3.7.14 [%define Summary], page 85).

%define api.token.prefix {TOK_}

%token
ASSIGN ":="
MINUS "-"
PLUS n + n
STAR n * n
SLASH "/
LPAREN " ("
RPAREN ")"

Since we use variant-based semantic values, %union is not used, and %token, %nterm and
htype expect genuine types, not type tags.

%token <std::string> IDENTIFIER "identifier"

%token <int> NUMBER "number"

Jnterm <int> exp
No %destructor is needed to enable memory deallocation during error recovery; the mem-
ory, for strings for instance, will be reclaimed by the regular destructors. All the values are
printed using their operator<< (see Section 3.7.8 [Printing Semantic Values|, page 76).

hprinter { yyo << $$; } <*>;

The grammar itself is straightforward (see Section 2.4 [Location Tracking Calculator:
ltcalc], page 37).

hto

%start unit;

unit: assignments exp { drv.result = $2; };

assignments:
%hempty {3
| assignments assignment {};

assignment:
"identifier" ":=" exp { drv.variables[$1] = $3; };
%left "+ "-v;
%left ll*ll "/ll;
exp:
"number"
| "identifier" { $$ = drv.variables[$1]; }
| exp "+" exp { $3 = $1 + $3; }
| exp "-"exp { $$=9%1 - $3; }
| exp "*" exp { $$ = $1 * $3; }
| exp "/" exp $$ = $1 / $3; }
[

{ $3
"("exp " { $% = $2; }

Chapter 10: Parsers Written In Other Languages 185

oo

Finally the error member function reports the errors.

void
yy::parser::error (const location_type& 1, const std::string& m)
{
std::cerr << 1 << ": " << m << ’\n’;
b

10.1.8.4 Calc++ Scanner

In addition to standard headers, the Flex scanner includes the driver’s, then the parser’s to
get the set of defined tokens.
%{ /* —%— C++ —-*— x/
include <cerrno>
include <climits>
include <cstdlib>
include <cstring> // strerror
include <string>
include "driver.hh"
include "parser.hh"

h}

Since our calculator has no #include-like feature, we don’t need yywrap. We don’t need
the unput and input functions either, and we parse an actual file, this is not an interactive
session with the user. Finally, we enable scanner tracing.

H OH HF H H

%option noyywrap nounput noinput batch debug

The following function will be handy to convert a string denoting a number into a NUMBER
token.

Wi

// A number symbol corresponding to the value in S.

yy::parser: :symbol_type

make_NUMBER (const std::string &s, const yy::parser::location_type& loc);
h}

Abbreviations allow for more readable rules.

id [a-zA-Z] [a-zA-Z_0-9] *

int [0-9]+

blank [\t\r]
The following paragraph suffices to track locations accurately. Each time yylex is invoked,
the begin position is moved onto the end position. Then when a pattern is matched, its width
is added to the end column. When matching ends of lines, the end cursor is adjusted, and
each time blanks are matched, the begin cursor is moved onto the end cursor to effectively
ignore the blanks preceding tokens. Comments would be treated equally.

hi

// Code run each time a pattern is matched.
define YY_USER_ACTION 1loc.columns (yyleng);
h}

Chapter 10: Parsers Written In Other Languages 186

Toth

hi
// A handy shortcut to the location held by the driver.
yy::location& loc = drv.location;
// Code run each time yylex is called.

loc.step O);
h}
{blank}+ 1loc.step QO;
\n+ loc.lines (yyleng); loc.step ();

The rules are simple. The driver is used to report errors.

"= return yy::parser::make_MINUS (loc);

"4 return yy::parser::make_PLUS (loc);
k!t return yy::parser::make_STAR (loc);
A return yy::parser::make_SLASH (loc);
e return yy::parser::make_LPAREN (loc);
" return yy::parser::make_RPAREN (loc);

"=t return yy::parser::make_ASSIGN (loc);

{int} return make_NUMBER (yytext, loc);
{id} return yy::parser::make_IDENTIFIER (yytext, loc);
{

throw yy::parser::syntax_error
(loc, "invalid character: " + std::string(yytext));

<<EQF>> return yy::parser::make_YYEOF (loc);

oo

You should keep your rules simple, both in the parser and in the scanner. Throwing from
the auxiliary functions is then very handy to report errors.

yy::parser::symbol_type
make_NUMBER (const std::string &s, const yy::parser::location_type& loc)

{
errno = 0;
long n = strtol (s.c_str(), NULL, 10);
if (! (INT_MIN <= n && n <= INT_MAX && errno !'= ERANGE))
throw yy::parser::syntax_error (loc, "integer is out of range: " + s);
return yy::parser::make _NUMBER ((int) n, loc);
b

Finally, because the scanner-related driver’s member-functions depend on the scanner’s
data, it is simpler to implement them in this file.

Chapter 10: Parsers Written In Other Languages

void
driver::scan_begin ()
{
yy_flex_debug = trace_scanning;
if (file.empty (O || file == "-")
yyin = stdin;

else if (!(yyin = fopen (file.c_str (), "r")))

{

std::cerr << "cannot open " << file << ":

exit (EXIT_FAILURE);

}
}
void
driver::scan_end ()
{
fclose (yyin);
}

10.1.8.5 Calc++ Top Level

The top level file, calc++.cc, poses no problem.

#include <iostream>
#include "driver.hh"

int
main (int argc, char *argv[])
{
int res = 0;
driver drv;
for (int i = 1; i < argc; ++i)
if (argv[i] == std::string ("-p"))
drv.trace_parsing = true;
else if (argv[i] == std::string ("-s"))
drv.trace_scanning = true;
else if (!drv.parse (argv[il))
std::cout << drv.result << ’\n’;
else
res = 1;
return res;

}

10.2 D Parsers

10.2.1 D Bison Interface

187

" << strerror (errno) << ’\n’;

The D parser skeletons are selected using the %language "D" directive or the -L

D/--language=D option.

Chapter 10: Parsers Written In Other Languages 188

When generating a D parser, ‘bison basename.y’ will create a single D source file named
basename.d containing the parser implementation. Using a grammar file without a .y suffix
is currently broken. The basename of the parser implementation file can be changed by the
%file-prefix directive or the -b/--file-prefix option. The entire parser implementa-
tion file name can be changed by the %output directive or the -o/--output option. The
parser implementation file contains a single class for the parser.

You can create documentation for generated parsers using Ddoc.
GLR parsers are currently unsupported in D. Do not use the glr-parser directive.

No header file can be generated for D parsers. Do not use the %header directive or the
-d/--header options.

10.2.2 D Semantic Values

Semantic types are handled by %union and ‘%define api.value.type union’, similar to
C/C++ parsers. In the latter case, the union of the values is handled by the backend.
In D, unions can hold classes, structs, etc., so this directive is more similar to ‘/,define
api.value.type variant’ from C++.

D parsers do not support %destructor, since the language adopts garbage collection.
The parser will try to hold references to semantic values for as little time as needed.

D parsers support %printer. An example for the output of type int, where yyo is the
parser’s debug output:

hprinter { yyo.write(3); } <int>

10.2.3 D Location Values

When the directive %locations is used, the D parser supports location tracking, see
Section 3.5 [Tracking Locations], page 67. The position and the location structures are
provided.

Position begin [Instance Variable of Location]
Position end [Instance Variable of Location]
The first, inclusive, position of the range, and the first beyond.

this(Position loc) [Constructor on Location]
Create a Location denoting an empty range located at a given point.

this(Position begin, Position end) [Constructor on Location]
Create a Location from the endpoints of the range.

string toString() [Method on Location]
The range represented by the location as a string.

10.2.4 D Parser Interface

The name of the generated parser class defaults to YYParser. The YY prefix may be changed
using the ‘%define api.prefix’. Alternatively, use ‘%define api.parser.class {name}’
to give a custom name to the class. The interface of this class is detailed below.

By default, the parser class has public visibility. To add modifiers to the parser class,
%idefine api.parser.public, api.parser.abstract and/or api.parser.final.

Chapter 10: Parsers Written In Other Languages 189

The superclass and the implemented interfaces of the parser class can be specified with
the ‘Y)define api.parser.extends’ and ‘/define api.parser.implements’ directives.

The parser class defines an interface, Lexer (see Section 10.2.6 [D Scanner Interface],
page 191). Other than this interface and the members described in the interface below, all
the other members and fields are preceded with a yy or YY prefix to avoid clashes with user
code.

The parser class can be extended using the %parse-param directive. Each occurrence of
the directive will add a by default public field to the parser class, and an argument to its
constructor, which initializes them automatically.

this(lex_param, ..., parse_param, .. .) [Constructor on YYParser]
Build a new parser object with embedded ‘/,code lexer’. There are no parameters,
unless %params and/or %parse-params and/or %lex-params are used.

this(Lexer lexer, parse_param, ...) [Constructor on YYParser]
Build a new parser object using the specified scanner. There are no additional pa-
rameters unless jparams and/or %parse-params are used.

boolean parse() [Method on YYParser]|
Run the syntactic analysis, and return true on success, false otherwise.

boolean getErrorVerbose() [Method on YYParser]
void setErrorVerbose(boolean verbose) [Method on YYParser]|
Get or set the option to produce verbose error messages. These are only available
with ‘/define parse.error detailed’, which also turns on verbose error messages.

void yyerror(string msg) [Method on YYParser]

void yyerror(Location loc, string msg) [Method on YYParser]
Print an error message using the yyerror method of the scanner instance in use. The
Location and Position parameters are available only if location tracking is active.

boolean recovering() [Method on YYParser]
During the syntactic analysis, return true if recovering from a syntax error. See
Chapter 6 [Error Recovery], page 131.

File getDebugStream() [Method on YYParser]
void setDebugStream(File o) [Method on YYParser]
Get or set the stream used for tracing the parsing. It defaults to stderr.

int getDebuglevel() [Method on YYParser]

void setDebugLevel(int 1) [Method on YYParser]
Get or set the tracing level. Currently its value is either 0, no trace, or nonzero, full
tracing.

string bisonVersion [Constant of YYParser]

string bisonSkeleton [Constant of YYParser]

Identify the Bison version and skeleton used to generate this parser.

Chapter 10: Parsers Written In Other Languages 190

The internationalization in D is very similar to the one in C. The D parser uses dgettext
for translating Bison messages.

To enable internationalization, compile using ‘-version ENABLE_NLS -version
YYENABLE_NLS’ and import bindtextdomain and textdomain from C:

extern(C) char* bindtextdomain(const char* domainname, const char* dirname);
extern(C) char* textdomain(const char* domainname) ;

The main function should load the translation catalogs, similarly to the c/bistromathic
example:

int main()
{

import core.stdc.locale;

// Set up internationalization.

setlocale(LC_ALL, "");

// Use Bison’s standard translation catalog for error messages
// (the generated messages).

bindtextdomain("bison-runtime", BISON_LOCALEDIR) ;

// For the translation catalog of your own project, use the

// name of your project.

bindtextdomain("bison", LOCALEDIR);

textdomain("bison");

// usual main content

}

For user message translations, the user must implement the ‘string _(const charx*
msg)’ function. It is recommended to use gettext:

%icode imports {
static if (!'is(typeof(_)))
{
version(ENABLE_NLS)
{
extern(C) charx gettext(const char*);
string _(const char* s)
{
return to!string(gettext(s));
}
}
}
static if (!is(typeof(_)))
{
pragma(inline, true)
string _(string msg) { return msg; }
}
}

Chapter 10: Parsers Written In Other Languages 191

10.2.5 D Parser Context Interface

The parser context provides information to build error reports when you invoke ‘%define
parse.error custom’.

SymbolKind [Type of YYParser]
A struct containing an enum of all the grammar symbols, tokens and nonterminals.
Its enumerators are forged from the symbol names. Use ‘void toString (W) (W sink)’
to get the symbol names.

YYParser.SymbolKind getToken () [Method on YYParser.Context]
The kind of the lookahead. Return null iff there is no lookahead.

YYParser.Location getLocation() [Method on YYParser.Context]
The location of the lookahead.

int [Method on YYParser.Context]
getExpectedTokens (YYParser.SymbolKind[] argv, int argc)
Fill argv with the expected tokens, which never includes SymbolKind.YYERROR, or
SymbolKind.YYUNDEF.

Never put more than argc elements into argv, and on success return the number of
tokens stored in argv. If there are more expected tokens than argc, fill argv up to
argc and return 0. If there are no expected tokens, also return 0, but set argv[0] to
null.

If argv is null, return the size needed to store all the possible values, which is always
less than YYNTOKENS.

10.2.6 D Scanner Interface

There are two possible ways to interface a Bison-generated D parser with a scanner: the
scanner may be defined by %code lexer, or defined elsewhere. In either case, the scanner
has to implement the Lexer inner interface of the parser class. This interface also contains
constants for all user-defined token names and the predefined YYEOF token.

In the first case, the body of the scanner class is placed in %code lexer blocks. If you
want to pass parameters from the parser constructor to the scanner constructor, specify
them with ¥%lex-param; they are passed before %parse-params to the constructor.

In the second case, the scanner has to implement the Lexer interface, which is defined
within the parser class (e.g., YYParser.Lexer). The constructor of the parser object will
then accept an object implementing the interface; %lex—param is not used in this case.

In both cases, the scanner has to implement the following methods.

void yyerror(Location loc, string msg) [Method on Lexer]
This method is defined by the user to emit an error message. The first parameter is
omitted if location tracking is not active.

Symbol yylex() [Method on Lexer]
Return the next token. The return value is of type Symbol, which binds together the
kind, the semantic value and the location.

Chapter 10: Parsers Written In Other Languages 192

void reportSyntaxError (YYParser.Context ctx) [Method on Lexer]
If you invoke ‘)define parse.error custom’ (see Section 3.1.3 [The Bison Declara-
tions Section], page 52), then the parser no longer passes syntax error messages to
yyerror, rather it delegates that task to the user by calling the reportSyntaxError
function.

Whether it uses yyerror is up to the user.

Here is an example of a reporting function (see Section 10.2.5 [D Parser Context
Interface], page 191).

public void reportSyntaxError(YYParser.Context ctx)

{
stderr.write(ctx.getLocation(), ": syntax error");
// Report the expected tokens.
{
immutable int TOKENMAX = 5;
YYParser.SymbolKind[] arg = new YYParser.SymbolKind [TOKENMAX] ;
int n = ctx.getExpectedTokens(arg, TOKENMAX) ;
if (n < TOKENMAX)
for (int i = 0; i < n; ++i)
stderr.write((i == 0 7 ": expected " : " or "), argl[il);
}
// Report the unexpected token which triggered the error.
{
YYParser.SymbolKind lookahead = ctx.getToken() ;
stderr.writeln(" before ", lookahead);
}
}

This implementation is inappropriate for internationalization, see the
c/bistromathic example for a better alternative.

10.2.7 Special Features for Use in D Actions
Here is a table of Bison constructs, variables and functions that are useful in actions.
3 [Variable]

Acts like a variable that contains the semantic value for the grouping made by the
current rule. See Section 3.4.6 [Actions]|, page 60.

$n [Variable]
Acts like a variable that contains the semantic value for the nth component of the
current rule. See Section 3.4.6 [Actions], page 60.

yyerrok [Function]
Resume generating error messages immediately for subsequent syntax errors. This is
useful primarily in error rules. See Chapter 6 [Error Recovery], page 131.

10.2.8 D Push Parser Interface

Normally, Bison generates a pull parser for D. The following Bison declaration says that
you want the parser to be a push parser (see Section 3.7.14 [%define Summary]|, page 85):

Chapter 10: Parsers Written In Other Languages 193

%define api.push-pull push

Most of the discussion about the D pull Parser Interface, (see Section 10.2.4 [D Parser
Interface], page 188) applies to the push parser interface as well.

When generating a push parser, the method pushParse is created with the following
signature:

int pushParse (Symbol sym) [Method on YYParser]|

The primary difference with respect to a pull parser is that the parser method
pushParse is invoked repeatedly to parse each token. This function is available if either
the ‘Ydefine api.push-pull push’ or ‘%define api.push-pull both’ declaration is used
(see Section 3.7.14 [Ydefine Summary], page 85).

The value returned by the pushParse method is one of the following: ACCEPT, ABORT,
or PUSH_MORE. This new value, PUSH_MORE, may be returned if more input is required to
finish parsing the input.

If api.push-pull is defined as both, then the generated parser class will also implement
the parse method. This method’s body is a loop that repeatedly invokes the scanner and
then passes the values obtained from the scanner to the pushParse method.

10.2.9 D Complete Symbols

To build return values for yylex, call the Symbol method of the same name as the token kind
reported, and adding the parameters for value and location if necessary. These methods
generate compile-time errors if the parameters are inconsistent. Token constructors work
with both %union and ‘/define api.value.type union’.

The order of the parameters is the same as for the Symbol constructor. An example for
the token kind NUM, which has value ival and with location tracking activated:

Symbol.NUM(ival, location);

10.3 Java Parsers

10.3.1 Java Bison Interface

The Java parser skeletons are selected using the %language "Java" directive or the -L
java/--language=java option.

When generating a Java parser, ‘bison basename.y’ will create a single Java source
file named basename.java containing the parser implementation. Using a grammar file
without a .y suffix is currently broken. The basename of the parser implementation file
can be changed by the %file-prefix directive or the -b/--file-prefix option. The
entire parser implementation file name can be changed by the %output directive or the
-o/--output option. The parser implementation file contains a single class for the parser.

You can create documentation for generated parsers using Javadoc.

Contrary to C parsers, Java parsers do not use global variables; the state of the parser is
always local to an instance of the parser class. Therefore, all Java parsers are “pure”, and
the Ydefine api.pure directive does nothing when used in Java.

GLR parsers are currently unsupported in Java. Do not use the glr-parser directive.

Chapter 10: Parsers Written In Other Languages 194

No header file can be generated for Java parsers. Do not use the %header directive or
the -d/-H/--header options.

Currently, support for tracing is always compiled in. Thus the ‘%define parse.trace’
and ‘%token-table’ directives and the -t/--debug and -k/--token-table options have
no effect. This may change in the future to eliminate unused code in the generated parser,
so use ‘% define parse.trace’ explicitly if needed. Also, in the future the %token-table
directive might enable a public interface to access the token names and codes.

Getting a “code too large” error from the Java compiler means the code hit the 64KB
bytecode per method limitation of the Java class file. Try reducing the amount of code in
actions and static initializers; otherwise, report a bug so that the parser skeleton will be
improved.

10.3.2 Java Semantic Values

There is no %union directive in Java parsers. Instead, the semantic values’ types (class
names) should be specified in the %nterm or %token directive:

Jnterm <Expression> expr assignment_expr term factor
Jnterm <Integer> number

By default, the semantic stack is declared to have Object members, which means that
the class types you specify can be of any class. To improve the type safety of the parser,
you can declare the common superclass of all the semantic values using the ‘%define
api.value.type’ directive. For example, after the following declaration:

%define api.value.type {ASTNode}

any %token, %nterm or %type specifying a semantic type which is not a subclass of ASTNode,
will cause a compile-time error.

Types used in the directives may be qualified with a package name. Primitive data types
are accepted for Java version 1.5 or later. Note that in this case the autoboxing feature of
Java 1.5 will be used. Generic types may not be used; this is due to a limitation in the
implementation of Bison, and may change in future releases.

Java parsers do not support %destructor, since the language adopts garbage collection.
The parser will try to hold references to semantic values for as little time as needed.

Java parsers do not support J%printer, as toString() can be used to print the semantic
values. This however may change (in a backwards-compatible way) in future versions of
Bison.

10.3.3 Java Location Values

When the directive %locations is used, the Java parser supports location tracking, see
Section 3.5 [Tracking Locations], page 67. An auxiliary user-defined class defines a position,
a single point in a file; Bison itself defines a class representing a location, a range composed
of a pair of positions (possibly spanning several files). The location class is an inner class
of the parser; the name is Location by default, and may also be renamed using %define
api.location.type {class-name}.

The location class treats the position as a completely opaque value. By default, the class
name is Position, but this can be changed with %define api.position.type {class-
name}. This class must be supplied by the user.

Chapter 10: Parsers Written In Other Languages 195

Position begin [Instance Variable of Location]
Position end [Instance Variable of Location]
The first, inclusive, position of the range, and the first beyond.

Location (Position loc) [Constructor on Location]
Create a Location denoting an empty range located at a given point.

Location (Position begin, Position end) [Constructor on Location]
Create a Location from the endpoints of the range.

String toString () [Method on Location]
Prints the range represented by the location. For this to work properly, the position
class should override the equals and toString methods appropriately.

10.3.4 Java Parser Interface

The name of the generated parser class defaults to YYParser. The YY prefix may be changed
using the ‘%define api.prefix’. Alternatively, use ‘%define api.parser.class {name}’
to give a custom name to the class. The interface of this class is detailed below.

By default, the parser class has package visibility. A declaration ‘%define
api.parser.public’ will change to public visibility. Remember that, according to the
Java language specification, the name of the .java file should match the name of the
class in this case. Similarly, you can use api.parser.abstract, api.parser.final and
api.parser.strictfp with the %define declaration to add other modifiers to the parser
class. A single ‘%define api.parser.annotations {annotations}’ directive can be used
to add any number of annotations to the parser class.

The Java package name of the parser class can be specified using the ‘/define package’
directive. The superclass and the implemented interfaces of the parser class can be specified
with the %define api.parser.extends and ‘%define api.parser.implements’ directives.

The parser class defines an inner class, Location, that is used for location tracking
(see Section 10.3.3 [Java Location Values|, page 194), and a inner interface, Lexer (see
Section 10.3.6 [Java Scanner Interface|, page 197). Other than these inner class/interface,
and the members described in the interface below, all the other members and fields are
preceded with a yy or YY prefix to avoid clashes with user code.

The parser class can be extended using the %parse-param directive. Each occurrence of
the directive will add a protected final field to the parser class, and an argument to its
constructor, which initializes them automatically.

YYParser (lex_param, ..., parse_param, ...) [Constructor on YYParser]
Build a new parser object with embedded %code lexer. There are no parameters,
unless %params and/or }parse-params and/or %lex-params are used.

Use %code init for code added to the start of the constructor body. This is especially
useful to initialize superclasses. Use ‘/idefine init_throws’ to specify any uncaught
exceptions.

YYParser (Lexer lexer, parse_param, ...) [Constructor on YYParser]
Build a new parser object using the specified scanner. There are no additional pa-
rameters unless jparams and/or %parse-params are used.

Chapter 10: Parsers Written In Other Languages 196

If the scanner is defined by %code lexer, this constructor is declared protected
and is called automatically with a scanner created with the correct %params and/or
%lex—params.

Use %code init for code added to the start of the constructor body. This is especially
useful to initialize superclasses. Use ‘/,define init_throws’ to specify any uncaught

exceptions.
boolean parse () [Method on YYParser]
Run the syntactic analysis, and return true on success, false otherwise.
boolean getErrorVerbose () [Method on YYParser]
void setErrorVerbose (boolean verbose) [Method on YYParser]

Get or set the option to produce verbose error messages. These are only available
with ‘%define parse.error detailed’ (or ‘verbose’), which also turns on verbose
error messages.

void yyerror (String msg) [Method on YYParser]
void yyerror (Position pos, String msg) [Method on YYParser]
void yyerror (Location loc, String msg) [Method on YYParser]

Print an error message using the yyerror method of the scanner instance in use. The
Location and Position parameters are available only if location tracking is active.

boolean recovering () [Method on YYParser]
During the syntactic analysis, return true if recovering from a syntax error. See
Chapter 6 [Error Recovery], page 131.

java.io.PrintStream getDebugStream () [Method on YYParser]

void setDebugStream (java.io.PrintStream o) [Method on YYParser]
Get or set the stream used for tracing the parsing. It defaults to System.err.

int getDebugLlevel () [Method on YYParser]

void setDebuglevel (int 1) [Method on YYParser]
Get or set the tracing level. Currently its value is either 0, no trace, or nonzero, full
tracing.

String bisonVersion [Constant of YYParser]

String bisonSkeleton [Constant of YYParser]

Identify the Bison version and skeleton used to generate this parser.

If you enabled token internationalization (see Section 4.6.2 [Token Internationalization],
page 111), you must provide the parser with the following function:

String i18n (string s) [Static Method of YYParser]|
Return the translation of s in the user’s language. As an example:
hcode {

static ResourceBundle myResources

= ResourceBundle.getBundle("domain-name");
static final String i18n(String s) {

return myResources.getString(s);

}

Chapter 10: Parsers Written In Other Languages 197

10.3.5 Java Parser Context Interface

The parser context provides information to build error reports when you invoke ‘%define
parse.error custom’.

SymbolKind [Type of YYParser]
An enum of all the grammar symbols, tokens and nonterminals. Its enumerators are
forged from the symbol names:

public enum SymbolKind

{
S_YYEQOF (0), /* "end of file" x/
S_YYERROR(1), /* error */
S_YYUNDEF(2), /* "invalid token" */
S_BANG(3), /x M ox/
S_PLUS(4), /* oK/
S_MINUS(5), /x "= %/
[...]
S_NUM(13), /* "number" */
S_NEG(14), /* NEG =/
S_YYACCEPT(15), /* $accept */
S_input (16), /* input */
S_line(17); /* line x*/

s

String getName () [Method on YYParser.SymbolKind]

The name of this symbol, possibly translated.

YYParser.SymbolKind getToken () [Method on YYParser.Context]
The kind of the lookahead. Return null iff there is no lookahead.

YYParser.Location getLocation () [Method on YYParser.Context|
The location of the lookahead.

int getExpectedTokens [Method on YYParser.Context|
(YYParser.SymbolKind[] argv, int argc)
Fill argv with the expected tokens, which never includes SymbolKind.S_YYERROR, or
SymbolKind.S_YYUNDEF.

Never put more than argc elements into argv, and on success return the number of
tokens stored in argv. If there are more expected tokens than argc, fill argv up to
argc and return 0. If there are no expected tokens, also return 0, but set argv[0] to
null.

If argv is null, return the size needed to store all the possible values, which is always
less than YYNTOKENS.

10.3.6 Java Scanner Interface

There are two possible ways to interface a Bison-generated Java parser with a scanner: the
scanner may be defined by %code lexer, or defined elsewhere. In either case, the scanner
has to implement the Lexer inner interface of the parser class. This interface also contains
constants for all user-defined token names and the predefined YYEOF token.

Chapter 10: Parsers Written In Other Languages 198

In the first case, the body of the scanner class is placed in %code lexer blocks. If you
want to pass parameters from the parser constructor to the scanner constructor, specify
them with %lex-param; they are passed before %parse-params to the constructor.

In the second case, the scanner has to implement the Lexer interface, which is defined
within the parser class (e.g., YYParser.Lexer). The constructor of the parser object will
then accept an object implementing the interface; %,lex-param is not used in this case.

In both cases, the scanner has to implement the following methods.

void yyerror (Location loc, String msg) [Method on Lexer]
This method is defined by the user to emit an error message. The first parameter
is omitted if location tracking is not active. Its type can be changed using %define
api.location.type {class-name}.

int yylex () [Method on Lexer]
Return the next token. Its type is the return value, its semantic value and location are
saved and returned by the their methods in the interface. Not needed for push-only
parsers.

Use ‘%define lex_throws’ to specify any uncaught exceptions. Default is
java.io.IOException.

Position getStartPos () [Method on Lexer]

Position getEndPos () [Method on Lexer]
Return respectively the first position of the last token that yylex returned, and the
first position beyond it. These methods are not needed unless location tracking and
pull parsing are active.

They should return new objects for each call, to avoid that all the symbol share the
same Position boundaries.

The return type can be changed using %define api.position.type {class-name}.

Object getLVal () [Method on Lexer]
Return the semantic value of the last token that yylex returned. Not needed for
push-only parsers.

The return type can be changed using ‘%define api.value.type {class-name}’.

void reportSyntaxError (YYParser.Context ctx) [Method on Lexer]
If you invoke ‘/define parse.error custom’ (see Section 3.1.3 [The Bison Declara-
tions Section]|, page 52), then the parser no longer passes syntax error messages to
yyerror, rather it delegates that task to the user by calling the reportSyntaxError
function.

Whether it uses yyerror is up to the user.
Here is an example of a reporting function (see Section 10.3.5 [Java Parser Context
Interface], page 197).

public void reportSyntaxError(YYParser.Context ctx) {
System.err.print(ctx.getLocation() + ": syntax error");
// Report the expected tokens.
{

Chapter 10: Parsers Written In Other Languages 199

final int TOKENMAX = 5;
YYParser.SymbolKind[] arg = new YYParser.SymbolKind [TOKENMAX] ;
int n = ctx.getExpectedTokens(arg, TOKENMAX) ;
for (int i = 0; 1 < n; ++1i)
System.err.print((i == 0 ? ": expected " : " or ")
+ arg[i] .getName());
}
// Report the unexpected token which triggered the error.
{
YYParser.SymbolKind lookahead = ctx.getToken() ;
if (lookahead != null)
System.err.print (" before " + lookahead.getName());
}

System.err.println("");

}

This implementation is inappropriate for internationalization, see the
c/bistromathic example for a better alternative.

10.3.7 Special Features for Use in Java Actions

The following special constructs can be uses in Java actions. Other analogous C action
features are currently unavailable for Java.

Use ‘%define throws’ to specify any uncaught exceptions from parser actions, and initial
actions specified by %initial-action.

$n [Variable]
The semantic value for the nth component of the current rule. This may not be
assigned to. See Section 10.3.2 [Java Semantic Values|, page 194.

$<typealt>n [Variable]
Like $n but specifies a alternative type typealt. See Section 10.3.2 [Java Semantic
Values], page 194.

3 [Variable]
The semantic value for the grouping made by the current rule. As a value, this is
in the base type (Object or as specified by ‘%define api.value.type’) as in not
cast to the declared subtype because casts are not allowed on the left-hand side of
Java assignments. Use an explicit Java cast if the correct subtype is needed. See
Section 10.3.2 [Java Semantic Values], page 194.

$<typealt>$ [Variable]
Same as $$ since Java always allow assigning to the base type. Perhaps we should
use this and $<>$ for the value and $$ for setting the value but there is currently no
easy way to distinguish these constructs. See Section 10.3.2 [Java Semantic Values],
page 194.

@n [Variable]
The location information of the nth component of the current rule. This may not be
assigned to. See Section 10.3.3 [Java Location Values]|, page 194.

Chapter 10: Parsers Written In Other Languages 200

03 [Variable]
The location information of the grouping made by the current rule. See Section 10.3.3
[Java Location Values], page 194.

return YYABORT ; [Statement]
Return immediately from the parser, indicating failure. See Section 10.3.4 [Java
Parser Interface], page 195.

return YYACCEPT ; [Statement)]
Return immediately from the parser, indicating success. See Section 10.3.4 [Java
Parser Interface], page 195.

return YYERROR ; [Statement]
Start error recovery (without printing an error message). See Chapter 6 [Error Re-
covery], page 131.

boolean recovering () [Function]
Return whether error recovery is being done. In this state, the parser reads token
until it reaches a known state, and then restarts normal operation. See Chapter 6
[Error Recovery], page 131.

void yyerror (String msg) [Function]
void yyerror (Position loc, String msg) [Function]
void yyerror (Location loc, String msg) [Function]

Print an error message using the yyerror method of the scanner instance in use. The
Location and Position parameters are available only if location tracking is active.

10.3.8 Java Push Parser Interface
Normally, Bison generates a pull parser for Java. The following Bison declaration says that
you want the parser to be a push parser (see Section 3.7.14 [%define Summary]|, page 85):
%define api.push-pull push
Most of the discussion about the Java pull Parser Interface, (see Section 10.3.4 [Java
Parser Interface|, page 195) applies to the push parser interface as well.

When generating a push parser, the method push_parse is created with the following
signature (depending on if locations are enabled).

void push_parse (int token, Object yylval) [Method on YYParser]

void push_parse (int token, Object yylval, Location [Method on YYParser]
yyloc)

void push_parse (int token, Object yylval, Position [Method on YYParser]
yypos)

The primary difference with respect to a pull parser is that the parser method push_
parse is invoked repeatedly to parse each token. This function is available if either the
‘%define api.push-pull push’ or ‘/define api.push-pull both’ declaration is used (see
Section 3.7.14 [%define Summary]|, page 85). The Location and Position parameters are
available only if location tracking is active.

The value returned by the push_parse method is one of the following: 0 (success), 1
(abort), 2 (memory exhaustion), or YYPUSH_MORE. This new value, YYPUSH_MORE, may be
returned if more input is required to finish parsing the grammar.

Chapter 10: Parsers Written In Other Languages 201

If api.push-pull is defined as both, then the generated parser class will also implement
the parse method. This method’s body is a loop that repeatedly invokes the scanner and
then passes the values obtained from the scanner to the push_parse method.

There is one additional complication. Technically, the push parser does not need to
know about the scanner (i.e. an object implementing the YYParser.Lexer interface), but
it does need access to the yyerror method. Currently, the yyerror method is defined in
the YYParser.Lexer interface. Hence, an implementation of that interface is still required
in order to provide an implementation of yyerror. The current approach (and subject
to change) is to require the YYParser constructor to be given an object implementing the
YYParser.Lexer interface. This object need only implement the yyerror method; the other
methods can be stubbed since they will never be invoked. The simplest way to do this is to
add a trivial scanner implementation to your grammar file using whatever implementation
of yyerror is desired. The following code sample shows a simple way to accomplish this.

%code lexer
{

public Object getLVal () {return null;}

public int yylex () {return 0;}

public void yyerror (String s) {System.err.println(s);}
}

10.3.9 Differences between C/C++ and Java Grammars

The different structure of the Java language forces several differences between C/C++ gram-
mars, and grammars designed for Java parsers. This section summarizes these differences.

e Java has no a preprocessor, so obviously the YYERROR, YYACCEPT, YYABORT symbols
(see Appendix A [Bison Symbols], page 215) cannot be macros. Instead, they should
be preceded by return when they appear in an action. The actual definition of these
symbols is opaque to the Bison grammar, and it might change in the future. The only
meaningful operation that you can do, is to return them. See Section 10.3.7 [Special
Features for Use in Java Actions], page 199.

Note that of these three symbols, only YYACCEPT and YYABORT will cause a return from
the yyparse method?.

e Java lacks unions, so %union has no effect. Instead, semantic values have a common
base type: Object or as specified by ‘/idefine api.value.type’. Angle brackets on
%token, type, $n and $$ specify subtypes rather than fields of an union. The type of
$$, even with angle brackets, is the base type since Java casts are not allow on the
left-hand side of assignments. Also, $n and @n are not allowed on the left-hand side of
assignments. See Section 10.3.2 [Java Semantic Values|, page 194, and Section 10.3.7
[Special Features for Use in Java Actions], page 199.

e The prologue declarations have a different meaning than in C/C++ code.

%code imports
blocks are placed at the beginning of the Java source code. They may
include copyright notices. For a package declarations, use ‘/%define
api.package’ instead.

2 Java parsers include the actions in a separate method than yyparse in order to have an intuitive syntax
that corresponds to these C macros.

Chapter 10: Parsers Written In Other Languages 202

unqualified %code
blocks are placed inside the parser class.

%code lexer
blocks, if specified, should include the implementation of the scanner. If
there is no such block, the scanner can be any class that implements the ap-
propriate interface (see Section 10.3.6 [Java Scanner Interface|, page 197).

Other %code blocks are not supported in Java parsers. In particular, %{ ... %} blocks
should not be used and may give an error in future versions of Bison.

The epilogue has the same meaning as in C/C++ code and it can be used to define
other classes used by the parser outside the parser class.

10.3.10 Java Declarations Summary

This summary only include declarations specific to Java or have special meaning when used
in a Java parser.

hlanguage "Java" [Directive]
Generate a Java class for the parser.

hlex-param {type name} [Directive]
A parameter for the lexer class defined by %code lexer only, added as parameters to
the lexer constructor and the parser constructor that creates a lexer. Default is none.
See Section 10.3.6 [Java Scanner Interface], page 197.

hparse-param {type name} [Directive]
A parameter for the parser class added as parameters to constructor(s) and as fields
initialized by the constructor(s). Default is none. See Section 10.3.4 [Java Parser
Interface], page 195.

htoken <type> token ... [Directive]
Declare tokens. Note that the angle brackets enclose a Java type. See Section 10.3.2
[Java Semantic Values|, page 194.

Jnterm <type> nonterminal ... [Directive]
Declare the type of nonterminals. Note that the angle brackets enclose a Java type.
See Section 10.3.2 [Java Semantic Values|, page 194.

%code { code ... } [Directive]
Code appended to the inside of the parser class. See Section 10.3.9 [Differences
between C/C++ and Java Grammars|, page 201.

%code imports { code ... } [Directive]
Code inserted just after the package declaration. See Section 10.3.9 [Differences
between C/C++ and Java Grammars|, page 201.

hcode init { code ... } [Directive]
Code inserted at the beginning of the parser constructor body. See Section 10.3.4
[Java Parser Interface], page 195.

Chapter 10: Parsers Written In Other Languages 203

%hcode lexer { code ... } [Directive]
Code added to the body of a inner lexer class within the parser class. See
Section 10.3.6 [Java Scanner Interface|, page 197.

hh code . .. [Directive]
Code (after the second %%) appended to the end of the file, outside the parser class.
See Section 10.3.9 [Differences between C/C++ and Java Grammars|, page 201.

W code ... %} [Directive]
Not supported. Use %code imports instead. See Section 10.3.9 [Differences between

C/C++ and Java Grammars|, page 201.

hdefine api.prefix {prefix} [Directive]
The prefix of the parser class name prefixParser if ‘//define api.parser.class’is
not used. Default is YY. See Section 10.3.1 [Java Bison Interface], page 193.

%define api.parser.abstract [Directive]
Whether the parser class is declared abstract. Default is false. See Section 10.3.1
[Java Bison Interface|, page 193.

%sdefine api.parser.annotations {annotations} [Directive]
The Java annotations for the parser class. Default is none. See Section 10.3.1 [Java
Bison Interface|, page 193.

%define api.parser.class {name} [Directive]
The name of the parser class. Default is YYParser or api.prefixParser. See
Section 10.3.1 [Java Bison Interface], page 193.

%define api.parser.extends {superclass} [Directive]
The superclass of the parser class. Default is none. See Section 10.3.1 [Java Bison
Interface], page 193.

%define api.parser.final [Directive]
Whether the parser class is declared final. Default is false. See Section 10.3.1 [Java
Bison Interface|, page 193.

%define api.parser.implements {interfaces} [Directive]
The implemented interfaces of the parser class, a comma-separated list. Default is
none. See Section 10.3.1 [Java Bison Interface|, page 193.

%define api.parser.public [Directive]
Whether the parser class is declared public. Default is false. See Section 10.3.1 [Java
Bison Interface|, page 193.

hdefine api.parser.strictfp [Directive]
Whether the parser class is declared strictfp. Default is false. See Section 10.3.1
[Java Bison Interface], page 193.

hdefine init_throws {exceptions} [Directive]
The exceptions thrown by %code init from the parser class constructor. Default is
none. See Section 10.3.4 [Java Parser Interface|, page 195.

Chapter 10: Parsers Written In Other Languages 204

%define lex_throws {exceptions} [Directive]
The exceptions thrown by the yylex method of the lexer, a comma-separated list. De-
fault is java.io.I0Exception. See Section 10.3.6 [Java Scanner Interface], page 197.

hdefine api.location.type {class} [Directive]
The name of the class used for locations (a range between two positions). This
class is generated as an inner class of the parser class by bison. Default is Location.
Formerly named location_type. See Section 10.3.3 [Java Location Values|, page 194.

%hdefine api.package {package} [Directive]
The package to put the parser class in. Default is none. See Section 10.3.1 [Java
Bison Interface|, page 193. Renamed from package in Bison 3.7.

Jhdefine api.position.type {class} [Directive]
The name of the class used for positions. This class must be supplied by the user.
Default is Position. Formerly named position_type. See Section 10.3.3 [Java
Location Values|, page 194.

hdefine api.value.type {class} [Directive]
The base type of semantic values. Default is Object. See Section 10.3.2 [Java Se-
mantic Values|, page 194.

%#define throws {exceptions} [Directive]
The exceptions thrown by user-supplied parser actions and %initial-action, a
comma-separated list. Default is none. See Section 10.3.4 [Java Parser Interface],
page 195.

205

11 A Brief History of the Greater Ungulates

11.1 The ancestral Yacc

Bison originated as a workalike of a program called Yacc — Yet Another Compiler Com-
piler.! Yacc was written at Bell Labs as part of the very early development of Unix; one
of its first uses was to develop the original Portable C Compiler, pcc. The same person,
Steven C. Johnson, wrote Yacc and the original pcc.

According to the author?, Yacc was first invented in 1971 and reached a form recognizably
similar to the C version in 1973. Johnson published A Portable Compiler: Theory and
Practice (see [Johnson 1978], page 237).

Yacc was not itself originally written in C but in its predecessor language, B. This goes
far to explain its odd interface, which exposes a large number of global variables rather
than bundling them into a C struct. All other Yacc-like programs are descended from the
C port of Yacc.

Yacc, through both its deployment in pcc and as a standalone tool for generating other
parsers, helped drive the early spread of Unix. Yacc itself, however, passed out of use
after around 1990 when workalikes with less restrictive licenses and more features became
available.

Original Yacc became generally available when Caldera released the sources of old ver-
sions of Unix up to V7 and 32V in 2002. By that time it had been long superseded in
practical use by Bison even on Yacc’s native Unix variants.

11.2 yacchack

One of the deficiencies of original Yacc was its inability to produce reentrant parsers. This
was first remedied by a set of drop-in modifications called “yacchack”, published by Eric
S. Raymond on USENET around 1983. This code was quickly forgotten when zoo and
Berkeley Yacc became available a few years later.

11.3 Berkeley Yacc

Berkeley Yacc was originated in 1985 by Robert Corbett (see [Corbett 1984], page 237).
It was originally named “zoo”, but by October 1989 it became known as Berkeley Yacc or
byacc.

Berkeley Yacc had three advantages over the ancestral Yacc: it generated faster parsers,
it could generate reentrant parsers, and the source code was released to the public domain
rather than being under an AT&T proprietary license. The better performance came from
implementing techniques from DeRemer and Penello’s seminal paper on LALR parsing (see
[DeRemer 1982], page 237).

Use of byacc spread rapidly due to its public domain license. However, once Bison
became available, byacc itself passed out of general use.

1 Because of the acronym, the name is sometimes given as “YACC”, but Johnson used “Yacc” in the de-
scriptive paper included in the Version 7 Unix Manual (https://s3.amazonaws.com/plan9-bell-labs/
7thEdMan/v7vol2b.pdf).

2 https://lists. gnu.org/r/bison-patches/2019-02/msg00061.html

https://s3.amazonaws.com/plan9-bell-labs/7thEdMan/v7vol2b.pdf
https://s3.amazonaws.com/plan9-bell-labs/7thEdMan/v7vol2b.pdf
https://lists.gnu.org/r/bison-patches/2019-02/msg00061.html

Chapter 11: A Brief History of the Greater Ungulates 206

11.4 Bison

Robert Corbett actually wrote two (closely related) LALR parsers in 1985, both using the
DeRemer /Penello techniques. One was “zoo”, the other was “Byson”. In 1987 Richard
Stallman began working on Byson; the name changed to Bison and the interface became
Yacc-compatible.

The main visible difference between Yacc and Byson/Bison at the time of Byson’s first
release is that Byson supported the @n construct (giving access to the starting and ending
line number and character number associated with any of the symbols in the current rule).

There was also the command ‘%expect n’ which said not to mention the conflicts if
there are n shift/reduce conflicts and no reduce/reduce conflicts. In more recent versions
of Bison, %expect and its %expect-rr variant for reduce/reduce conflicts can be applied to
individual rules.

Later versions of Bison added many more new features.

Bison error reporting has been improved in various ways. Notably. ancestral Yacc and
Byson did not have carets in error messages.

Compared to Yacc Bison uses a faster but less space-efficient encoding for the parse tables
(see [Corbett 1984], page 237), and more modern techniques for generating the lookahead
sets (see [DeRemer 1982], page 237). This approach is the standard one since then.

(It has also been plausibly alleged the differences in the algorithms stem mainly from the
horrible kludges that Johnson had to perpetrate to make the original Yacc fit in a PDP-11.)

Named references, semantic predicates, %, locations, %glr-parser, %printer, %destruc-
tor, dumps to DOT, %parse-param, }lex-param, and dumps to XSLT, LAC, and TELR(1)
generation are new in Bison.

Bison also has many features to support C++ that were not present in the ancestral Yacc
or Byson.

Bison obsolesced all previous Yacc variants and workalikes generating C by 1995.

11.5 Other Ungulates

The Yacc concept has frequently been ported to other languages. Some of the early ports
are extinct along with the languages that hosted them; others have been superseded by
parser skeletons shipped with Bison.

However, independent implementations persist. One of the best-known still in use is
David Beazley’s “PLY” (Python Lex-Yacc) for Python. Another is goyacc, supporting the
Go language. An “ocamlyacc” is shipped as part of the Ocaml compiler suite.

207

12 Bison Version Compatibility: Best Practices

Bison provides a Yacc compatibility mode in which it strives to conform with the POSIX
standard. Grammar files which are written to the POSIX standard, and do not take ad-
vantage of any of the special capabilities of Bison, should work with many versions of Bison
without modification.

All other features of Bison are particular to Bison, and are changing. Bison is actively
maintained and continuously evolving. It should come as no surprise that an older version
of Bison will not accept Bison source code which uses newer features that do no not exist at
all in the older Bison. Regrettably, in spite of reasonable effort to maintain compatibility,
the reverse situation may also occur: it may happen that code developed using an older
version of Bison does not build with a newer version of Bison without modifications.

Because Bison is a code generation tool, it is possible to retain its output and distribute
that to the users of the program. The users are then not required to have Bison installed
at all, only an implementation of the programming language, such as C, which is required
for processing the generated output.

It is the output of Bison that is intended to be of the utmost portability. So, that is to
say, whereas the Bison grammar source code may have a dependency on specific versions
of Bison, the generated parser from any version of Bison should work with with a large
number of implementations of C, or whatever language is applicable.

The recommended best practice for using Bison (in the context of software that is dis-
tributed in source code form) is to ship the generated parser to the downstream users. Only
those downstream users who engage in active development of the program who need to
make changes to the grammar file need to have Bison installed at all, and those users can
install the specific version of Bison which is required.

Following this recommended practice also makes it possible to use a more recent Bison
than what is available to users through operating system distributions, thereby taking
advantage of the latest techniques that Bison allows.

Some features of Bison have been, or are being adopted into other Yacc-like programs.
Therefore it might seem that is a good idea to write grammar code which targets multiple
implementations, similarly to the way C programs are often written to target multiple
compilers and language versions. Other than the Yacc subset described by POSIX, the
Bison language is not rigorously standardized. When a Bison feature is adopted by another
parser generator, it may be initially compatible with that version of Bison on which it was
based, but the compatibility may degrade going forward. Developers who strive to make
their Bison code simultaneously compatible with other parser generators are encouraged to
nevertheless use specific versions of all generators, and still follow the recommended practice
of shipping generated output. For example, a project can internally maintain compatibility
with multiple generators, and choose the output of a particular one to ship to the users. Or
else, the project could ship all of the outputs, arranging for a way for the user to specify
which one is used to build the program.

208

13 Frequently Asked Questions

Several questions about Bison come up occasionally. Here some of them are addressed.

13.1 Memory Exhausted

My parser returns with error with a ‘memory exhausted’ message. What can |
do?

This question is already addressed elsewhere, see Section 3.3.3 [Recursive Rules|, page 56.

13.2 How Can I Reset the Parser

The following phenomenon has several symptoms, resulting in the following typical ques-
tions:

I invoke yyparse several times, and on correct input it works properly; but
when a parse error is found, all the other calls fail too. How can I reset the
error flag of yyparse?

or

My parser includes support for an ‘#include’-like feature, in which case I run
yyparse from yyparse. This fails although I did specify ‘/define api.pure
full’.

These problems typically come not from Bison itself, but from Lex-generated scanners.
Because these scanners use large buffers for speed, they might not notice a change of input
file. As a demonstration, consider the following source file, first-line.1:

YAl

#include <stdio.h>
#include <stdlib.h>

ht

Dot

x\n ECHO; return 1;
Dot

int
yyparse (char const *file)
{
yyin = fopen (file, "r");
if (lyyin)

{
perror ("fopen");
exit (EXIT_FAILURE);
}

Chapter 13: Frequently Asked Questions 209

/* One token only. */
yylex O;
if (fclose (yyin) != 0)
{
perror ("fclose");
exit (EXIT_FAILURE);
}

return O;

int

main (void)

{
yyparse ("input");
yyparse ("input");
return O;

}
If the file input contains

input:1: Hello,
input:2: World!

then instead of getting the first line twice, you get:

$ flex -ofirst-line.c first-line.l

$ gcc -ofirst-line first-line.c -11
$./first-line

input:1: Hello,

input:2: World!

Therefore, whenever you change yyin, you must tell the Lex-generated scanner to discard
its current buffer and switch to the new one. This depends upon your implementation of
Lex; see its documentation for more. For Flex, it suffices to call ‘YY_FLUSH_BUFFER’ after
each change to yyin. If your Flex-generated scanner needs to read from several input
streams to handle features like include files, you might consider using Flex functions like
‘yy_switch_to_buffer’ that manipulate multiple input buffers.

If your Flex-generated scanner uses start conditions (see Section “Start conditions” in
The Flex Manual), you might also want to reset the scanner’s state, i.e., go back to the
initial start condition, through a call to ‘BEGIN (0)’.

13.3 Strings are Destroyed

My parser seems to destroy old strings, or maybe it loses track of them. Instead
of reporting ‘"foo", "bar"’, it reports ‘"bar", "bar"’, or even ‘"foo\nbar",
"bar"’.

This error is probably the single most frequent “bug report” sent to Bison lists, but is
only concerned with a misunderstanding of the role of the scanner. Consider the following
Lex code:

Chapter 13: Frequently Asked Questions 210

hi
#include <stdio.h>
char *yylval = NULL;

hx

Dot

.k yylval = yytext; return 1;
\n continue;

YA

int

main ()

{

/* Similar to using $1, $2 in a Bison action. */
char *fst = (yylex (), yylval);

char *snd = (yylex (), yylval);

printf ("\"%s\", \"%s\"\n", fst, snd);

return O;

}
If you compile and run this code, you get:

$ flex -osplit-lines.c split-lines.l1
$ gcc -osplit-lines split-lines.c -11

$ printf ’one\ntwo\n’ | ./split-lines
"one
twoll lltwoll

this is because yytext is a buffer provided for reading in the action, but if you want to keep
it, you have to duplicate it (e.g., using strdup). Note that the output may depend on how
your implementation of Lex handles yytext. For instance, when given the Lex compatibility
option -1 (which triggers the option ‘},array’) Flex generates a different behavior:

$ flex -1 -osplit-lines.c split-lines.1

$ gcc -osplit-lines split-lines.c -11
$ printf ’one\ntwo\n’ | ./split-lines
"tWO" s "tWO"

13.4 Implementing Gotos/Loops

My simple calculator supports variables, assignments, and functions, but how
can I implement gotos, or loops?

Although very pedagogical, the examples included in the document blur the distinction
to make between the parser—whose job is to recover the structure of a text and to transmit
it to subsequent modules of the program—and the processing (such as the execution) of this
structure. This works well with so called straight line programs, i.e., precisely those that
have a straightforward execution model: execute simple instructions one after the others.

If you want a richer model, you will probably need to use the parser to construct a tree
that does represent the structure it has recovered; this tree is usually called the abstract
syntax tree, or AST for short. Then, walking through this tree, traversing it in various
ways, will enable treatments such as its execution or its translation, which will result in an
interpreter or a compiler.

Chapter 13: Frequently Asked Questions 211

This topic is way beyond the scope of this manual, and the reader is invited to consult
the dedicated literature.

13.5 Multiple start-symbols

I have several closely related grammars, and I would like to share their im-
plementations. In fact, I could use a single grammar but with multiple entry
points.

Bison does not support multiple start-symbols, but there is a very simple means to
simulate them. If foo and bar are the two pseudo start-symbols, then introduce two new
tokens, say START_FO0 and START_BAR, and use them as switches from the real start-symbol:

%token START_FOO START_BAR;
%start start;
start:
START_F0OO0 foo
| START_BAR bar;

These tokens prevent the introduction of new conflicts. As far as the parser goes, that
is all that is needed.

Now the difficult part is ensuring that the scanner will send these tokens first. If your
scanner is hand-written, that should be straightforward. If your scanner is generated by
Lex, them there is simple means to do it: recall that anything between ‘%{ ... %}’ after the
first %% is copied verbatim in the top of the generated yylex function. Make sure a variable
start_token is available in the scanner (e.g., a global variable or using %lex-param etc.),
and use the following:

/* Prologue. */
ho

YAl
if (start_token)
{
int t = start_token;
start_token = 0;
return t;
}
ht

/* The rules. */

13.6 Secure? Conform?

Is Bison secure? Does it conform to POSIX?

If you're looking for a guarantee or certification, we don’t provide it. However, Bison
is intended to be a reliable program that conforms to the POSIX specification for Yacc. If
you run into problems, please send us a bug report.

13.7 Enabling Relocatability

It has been a pain for many users of GNU packages for a long time that packages are not
relocatable. It means a user cannot copy a program, installed by another user on the same

Chapter 13: Frequently Asked Questions 212

machine, to his home directory, and have it work correctly (including i18n). So many users
need to go through configure; make; make install with all its dependencies, options,
and hurdles.

Most package management systems, that allow the user to install pre-built binaries of the
packages, solve the “ease of installation” problem, but they hardwire path names, usually to
/usr or /usr/local. This means that users need root privileges to install a binary package,
and prevents installing two different versions of the same binary package.

A relocatable program can be moved or copied to a different location on the file system.
It is possible to make symlinks to the installed and moved programs, and invoke them
through the symlink. It is possible to do the same thing with a hard link only if the hard
link file is in the same directory as the real program.

To configure a program to be relocatable, add --enable-relocatable to the configure
command line.

On some OSes the executables remember the location of shared libraries and prefer them
over any other search path. Therefore, such an executable will look for its shared libraries
first in the original installation directory and only then in the current installation directory.
Thus, for reliability, it is best to also give a —-prefix option pointing to a directory that
does not exist now and which never will be created, e.g. ——prefix=/nonexistent. You may
use DESTDIR=dest-dir on the make command line to avoid installing into that directory.

We do not recommend using a prefix writable by unprivileged users (e.g. /tmp/inst$$)
because such a directory can be recreated by an unprivileged user after the original directory
has been removed. We also do not recommend prefixes that might be behind an automounter
(e.g. $HOME/inst$$) because of the performance impact of directory searching.

Here’s a sample installation run that takes into account all these recommendations:

./configure --enable-relocatable --prefix=/nonexistent
make
make install DESTDIR=/tmp/inst$$

Installation with ——enable-relocatable will not work for setuid or setgid executables,
because such executables search only system library paths for security reasons.

The runtime penalty and size penalty are negligible on GNU /Linux (just one system call
more when an executable is launched), and small on other systems (the wrapper program
just sets an environment variable and executes the real program).

13.8 I can’t build Bison

I can’t build Bison because make complains that msgfmt is not found. What

should I do?

Like most GNU packages with internationalization support, that feature is turned on by
default. If you have problems building in the po subdirectory, it indicates that your system’s
internationalization support is lacking. You can re-configure Bison with --disable-nls to
turn off this support, or you can install GNU gettext from https://ftp.gnu.org/gnu/
gettext/ and re-configure Bison. See the file ABOUT-NLS for more information.

I can’t build Bison because my C compiler is too old.

Except for GLR parsers (which require C99), the C code that Bison generates requires
only C89 or later. However, Bison itself requires common C99 features such as declarations

https://ftp.gnu.org/gnu/gettext/
https://ftp.gnu.org/gnu/gettext/

Chapter 13: Frequently Asked Questions 213

after statements. Bison’s configure script attempts to enable C99 (or later) support on
compilers that default to pre-C99. If your compiler lacks these C99 features entirely, GCC
may well be a better choice; or you can try upgrading to your compiler’s latest version.

13.9 Where can I find help?

I'm having trouble using Bison. Where can I find help?

First, read this fine manual. Beyond that, you can send mail to help-bison@gnu.org.
This mailing list is intended to be populated with people who are willing to answer questions
about using and installing Bison. Please keep in mind that (most of) the people on the
list have aspects of their lives which are not related to Bison (!), so you may not receive
an answer to your question right away. This can be frustrating, but please try not to honk
them off; remember that any help they provide is purely voluntary and out of the kindness
of their hearts.

13.10 Bug Reports
I found a bug. What should I include in the bug report?

Before sending a bug report, make sure you are using the latest version. Check https://
ftp.gnu.org/pub/gnu/bison/ or one of its mirrors. Be sure to include the version number
in your bug report. If the bug is present in the latest version but not in a previous version,
try to determine the most recent version which did not contain the bug.

If the bug is parser-related, you should include the smallest grammar you can which
demonstrates the bug. The grammar file should also be complete (i.e., I should be able to
run it through Bison without having to edit or add anything). The smaller and simpler the
grammar, the easier it will be to fix the bug.

Include information about your compilation environment, including your operating sys-
tem’s name and version and your compiler’s name and version. If you have trouble compil-
ing, you should also include a transcript of the build session, starting with the invocation
of configure. Depending on the nature of the bug, you may be asked to send additional
files as well (such as config.h or config.cache).

Patches are most welcome, but not required. That is, do not hesitate to send a bug
report just because you cannot provide a fix.

Send bug reports to bug-bison@gnu.org.

13.11 More Languages
Will Bison ever have C++ and Java support? How about insert your favorite
language here?

C++, D and Java are supported. We’d love to add other languages; contributions are
welcome.

13.12 Beta Testing

What is involved in being a beta tester?

It’s not terribly involved. Basically, you would download a test release, compile it, and
use it to build and run a parser or two. After that, you would submit either a bug report

mailto:help-bison@gnu.org
https://ftp.gnu.org/pub/gnu/bison/
https://ftp.gnu.org/pub/gnu/bison/
mailto:bug-bison@gnu.org

Chapter 13: Frequently Asked Questions 214

or a message saying that everything is okay. It is important to report successes as well as
failures because test releases eventually become mainstream releases, but only if they are
adequately tested. If no one tests, development is essentially halted.

Beta testers are particularly needed for operating systems to which the developers do
not have easy access. They currently have easy access to recent GNU/Linux and Solaris
versions. Reports about other operating systems are especially welcome.

13.13 Mailing Lists

How do I join the help-bison and bug-bison mailing lists?
See https://lists.gnu.org/.

https://lists.gnu.org/

215

Appendix A Bison Symbols

Q3 [Variable]
In an action, the location of the left-hand side of the rule. See Section 3.5 [Tracking
Locations], page 67.

@n [Variable]

@n [Symbol]
In an action, the location of the n-th symbol of the right-hand side of the rule. See
Section 3.5 [Tracking Locations|, page 67.

In a grammar, the Bison-generated nonterminal symbol for a midrule action with a
semantic value. See Section 3.4.8.3 [Midrule Action Translation], page 64.

@name [Variable]

Q@[name] [Variable]
In an action, the location of a symbol addressed by name. See Section 3.5 [Tracking
Locations], page 67.

$0n [Symbol]
In a grammar, the Bison-generated nonterminal symbol for a midrule action with no
semantics value. See Section 3.4.8.3 [Midrule Action Translation], page 64.

$$ [Variable]
In an action, the semantic value of the left-hand side of the rule. See Section 3.4.6
[Actions], page 60.

$n [Variable]
In an action, the semantic value of the n-th symbol of the right-hand side of the rule.
See Section 3.4.6 [Actions], page 60.

$name [Variable]

$ [name] [Variable]
In an action, the semantic value of a symbol addressed by name. See Section 3.4.6
[Actions], page 60.

o [Delimiter]
Delimiter used to separate the grammar rule section from the Bison declarations
section or the epilogue. See Section 1.9 [The Overall Layout of a Bison Grammar],
page 26.

h{codek} [Delimiter]
All code listed between ‘%{’ and ‘%}’ is copied verbatim to the parser implementation
file. Such code forms the prologue of the grammar file. See Section 3.1 [Outline of a
Bison Grammar]|, page 47.

%?{expression} [Directive]
Predicate actions. This is a type of action clause that may appear in rules. The
expression is evaluated, and if false, causes a syntax error. In GLR parsers during
nondeterministic operation, this silently causes an alternative parse to die. During
deterministic operation, it is the same as the effect of YYERROR. See Section 1.5.4
[Controlling a Parse with Arbitrary Predicates|, page 24.

Appendix A: Bison Symbols 216

/¥ .0/ [Construct]
// ... [Construct]
Comments, as in C/C++.

[Delimiter]
Separates a rule’s result from its components. See Section 3.3 [Grammar Rules],
page 55.
; [Delimiter]
Terminates a rule. See Section 3.3 [Grammar Rules|, page 55.
| [Delimiter]

Separates alternate rules for the same result nonterminal. See Section 3.3 [Grammar
Rules], page 55.

<k> [Directive]
Used to define a default tagged %destructor or default tagged %printer.

See Section 3.7.7 [Freeing Discarded Symbols], page 75.

<> [Directive]
Used to define a default tagless %destructor or default tagless %printer.

See Section 3.7.7 [Freeing Discarded Symbols], page 75.

$accept [Symbol]
The predefined nonterminal whose only rule is ‘$accept: start $end’, where start is
the start symbol. See Section 3.7.10 [The Start-Symbol], page 79. It cannot be used
in the grammar.

hcode {code} [Directive]

hcode qualifier {code} [Directive]
Insert code verbatim into the output parser source at the default location or at the
location specified by qualifier. See Section 3.7.15 [Y%ocode Summary|, page 95.

Jdebug [Directive]
Equip the parser for debugging. See Section 3.7.13 [Bison Declaration Summary],
page 81.

%define variable [Directive

%define variable value [Directive]

hdefine variable {value} [Directive]

hdefine variable "value" [Directive]
Define a variable to adjust Bison’s behavior. See Section 3.7.14 [%define Summary],
page 85.

%defines [Directive]

hdefines defines-file [Directive]

Historical name for %header. See Section 3.7.13 [Bison Declaration Summary]
page 81.

Appendix A: Bison Symbols 217

hdestructor [Directive]
Specify how the parser should reclaim the memory associated to discarded symbols.
See Section 3.7.7 [Freeing Discarded Symbols], page 75.

hdprec [Directive]
Bison declaration to assign a precedence to a rule that is used at parse time to resolve
reduce/reduce conflicts. See Section 1.5 [Writing GLR Parsers], page 17.

Jempty [Directive]
Bison declaration to declare make explicit that a rule has an empty right-hand side.
See Section 3.3.2 [Empty Rules], page 56.

$end [Symbol]
The predefined token marking the end of the token stream. It cannot be used in the
grammar.

error [Symbol]

A token name reserved for error recovery. This token may be used in grammar rules
so as to allow the Bison parser to recognize an error in the grammar without halting
the process. In effect, a sentence containing an error may be recognized as valid.
On a syntax error, the token error becomes the current lookahead token. Actions
corresponding to error are then executed, and the lookahead token is reset to the
token that originally caused the violation. See Chapter 6 [Error Recovery|, page 131.

herror-verbose [Directive]
An obsolete directive standing for ‘/define parse.error verbose’.

hfile-prefix "prefix" [Directive]
Bison declaration to set the prefix of the output files. See Section 3.7.13 [Bison
Declaration Summary|, page 81.

hglr-parser [Directive]
Bison declaration to produce a GLR parser. See Section 1.5 [Writing GLR Parsers],
page 17.

Jheader [Directive]

Bison declaration to create a parser header file, which is usually meant for the scanner.
See Section 3.7.13 [Bison Declaration Summary], page 81.

Jheader header-file [Directive]
Same as above, but save in the file header-file. See Section 3.7.13 [Bison Declaration
Summary]|, page 81.

hinitial-action [Directive]
Run user code before parsing. See Section 3.7.6 [Performing Actions before Parsing],
page 74.

hlanguage [Directive]

Specify the programming language for the generated parser. See Section 3.7.13 [Bison
Declaration Summary|, page 81.

Appendix A: Bison Symbols 218

hleft [Directive]
Bison declaration to assign precedence and left associativity to token(s). See
Section 3.7.3 [Operator Precedence], page 73.

%hlex-param {argument-declaration} ... [Directive]
Bison declaration to specifying additional arguments that yylex should accept. See
Section 4.3.6 [Calling Conventions for Pure Parsers], page 104.

Jmerge [Directive]
Bison declaration to assign a merging function to a rule. If there is a reduce/reduce
conflict with a rule having the same merging function, the function is applied to the
two semantic values to get a single result. See Section 1.5 [Writing GLR Parsers],
page 17.

Jname-prefix "prefix" [Directive]
Obsoleted by the %define variable api.prefix (see Section 3.8 [Multiple Parsers in
the Same Program]|, page 97).

Rename the external symbols (variables and functions) used in the parser so that
they start with prefix instead of ‘yy’. Contrary to api.prefix, do no rename types
and macros.

The precise list of symbols renamed in C parsers is yyparse, yylex, yyerror,
yynerrs, yylval, yychar, yydebug, and (if locations are used) yylloc. If you
use a push parser, yypush_parse, yypull_parse, yypstate, yypstate_new and
yypstate_delete will also be renamed. For example, if you use ‘/jname-prefix
"c_"’, the names become c_parse, c_lex, and so on. For C++ parsers, see the
hdefine api.namespace documentation in this section.

Jno-lines [Directive]
Bison declaration to avoid generating #line directives in the parser implementation
file. See Section 3.7.13 [Bison Declaration Summary], page 81.

Jnonassoc [Directive]
Bison declaration to assign precedence and nonassociativity to token(s). See
Section 3.7.3 [Operator Precedence], page 73.

Jnterm [Directive]
Bison declaration to declare nonterminals. See Section 3.7.4 [Nonterminal Symbols],
page 74.

Joutput "file" [Directive]

Bison declaration to set the name of the parser implementation file. See Section 3.7.13
[Bison Declaration Summary], page 81.

Jparam {argument-declaration} ... [Directive]
Bison declaration to specify additional arguments that both yylex and yyparse
should accept. See Section 4.1 [The Parser Function yyparse|, page 99.

hparse-param {argument-declaration} ... [Directive]
Bison declaration to specify additional arguments that yyparse should accept. See
Section 4.1 [The Parser Function yyparse|, page 99.

Appendix A: Bison Symbols 219

hprec [Directive]
Bison declaration to assign a precedence to a specific rule. See Section 5.4 [Context-
Dependent Precedence], page 117.

hprecedence [Directive]
Bison declaration to assign precedence to token(s), but no associativity See
Section 3.7.3 [Operator Precedence], page 73.

Jpure-parser [Directive]
Deprecated version of ‘%define api.pure’ (see Section 3.7.14 [%define Summary],
page 85), for which Bison is more careful to warn about unreasonable usage.

hrequire "version" [Directive]
Require version version or higher of Bison. See Section 3.7.1 [Require a Version of
Bison|, page 72.

Jiright [Directive]
Bison declaration to assign precedence and right associativity to token(s). See
Section 3.7.3 [Operator Precedence], page 73.

%skeleton [Directive]
Specify the skeleton to use; usually for development. See Section 3.7.13 [Bison Dec-
laration Summary], page 81.

hstart [Directive]
Bison declaration to specify the start symbol. See Section 3.7.10 [The Start-Symbol],
page 79.

Jtoken [Directive]

Bison declaration to declare token(s) without specifying precedence. See Section 3.7.2
[Token Kind Names|, page 72.

Jtoken-table [Directive]
Bison declaration to include a token name table in the parser implementation file.
See Section 3.7.13 [Bison Declaration Summary], page 81.

htype [Directive]
Bison declaration to declare symbol value types. See Section 3.7.4 [Nonterminal
Symbols], page 74.

$undefined [Symbol]
The predefined token onto which all undefined values returned by yylex are mapped.
It cannot be used in the grammar, rather, use error.

Junion [Directive]
Bison declaration to specify several possible data types for semantic values. See
Section 3.4.4 [The Union Declaration], page 59.

YYABORT [Macro]
Macro to pretend that an unrecoverable syntax error has occurred, by making yyparse
return 1 immediately. The error reporting function yyerror is not called. See
Section 4.1 [The Parser Function yyparse], page 99.

For Java parsers, this functionality is invoked using return YYABORT; instead.

Appendix A: Bison Symbols 220

YYACCEPT [Macro]
Macro to pretend that a complete utterance of the language has been read, by mak-
ing yyparse return 0 immediately. See Section 4.1 [The Parser Function yyparse],
page 99.

For Java parsers, this functionality is invoked using return YYACCEPT; instead.

YYBACKUP [Macro]
Macro to discard a value from the parser stack and fake a lookahead token. See
Section 4.5 [Special Features for Use in Actions], page 108.

YYBISON [Macro]
The version of Bison as an integer, for instance 30704 for version 3.7.4. Defined in
yacc.c only. Before version 3.7.4, YYBISON was defined to 1.

yychar [Variable]
External integer variable that contains the integer value of the lookahead token. (In
a pure parser, it is a local variable within yyparse.) Error-recovery rule actions may
examine this variable. See Section 4.5 [Special Features for Use in Actions]|, page 108.

yyclearin [Variable]
Macro used in error-recovery rule actions. It clears the previous lookahead token. See
Chapter 6 [Error Recovery], page 131.

YYDEBUG [Macro]
Macro to define to equip the parser with tracing code. See Section 8.5 [Tracing Your
Parser|, page 149.

yydebug [Variable]
External integer variable set to zero by default. If yydebug is given a nonzero value,
the parser will output information on input symbols and parser action. See Section 8.5
[Tracing Your Parser|, page 149.

YYEMPTY [Value]
The pseudo token kind when there is no lookahead token.

YYEQF [Value]
The token kind denoting is the end of the input stream.

yyerrok [Macro]
Macro to cause parser to recover immediately to its normal mode after a syntax error.
See Chapter 6 [Error Recovery], page 131.

YYERROR [Macro]
Cause an immediate syntax error. This statement initiates error recovery just as if
the parser itself had detected an error; however, it does not call yyerror, and does
not print any message. If you want to print an error message, call yyerror explicitly
before the ‘YYERROR;’ statement. See Chapter 6 [Error Recovery], page 131.

For Java parsers, this functionality is invoked using return YYERROR; instead.

Appendix A: Bison Symbols 221

yyerror [Function]
User-supplied function to be called by yyparse on error. See Section 4.4.1 [The Error
Reporting Function yyerror|, page 105.

YYFPRINTF [Macro]
Macro used to output run-time traces in C. See Section 8.5.1 [Enabling Traces],
page 149.

YYINITDEPTH [Macro]

Macro for specifying the initial size of the parser stack. See Section 5.10 [Memory
Management, and How to Avoid Memory Exhaustion], page 129.

yylex [Function]
User-supplied lexical analyzer function, called with no arguments to get the next
token. See Section 4.3 [The Lexical Analyzer Function yylex], page 101.

yylloc [Variable]
External variable in which yylex should place the line and column numbers associated
with a token. (In a pure parser, it is a local variable within yyparse, and its address
is passed to yylex.) You can ignore this variable if you don’t use the ‘@ feature
in the grammar actions. See Section 4.3.5 [Textual Locations of Tokens], page 103.
In semantic actions, it stores the location of the lookahead token. See Section 3.5.2
[Actions and Locations|, page 68.

YYLTYPE [Type]
Data type of yylloc. By default in C, a structure with four members (start/end
line/column). See Section 3.5.1 [Data Type of Locations]|, page 67.

yylval [Variable]
External variable in which yylex should place the semantic value associated with
a token. (In a pure parser, it is a local variable within yyparse, and its address
is passed to yylex.) See Section 4.3.4 [Semantic Values of Tokens|, page 103. In
semantic actions, it stores the semantic value of the lookahead token. See Section 3.4.6
[Actions], page 60.

YYMAXDEPTH [Macro]
Macro for specifying the maximum size of the parser stack. See Section 5.10 [Memory
Management, and How to Avoid Memory Exhaustion], page 129.

yynerrs [Variable]
Global variable which Bison increments each time it reports a syntax error. (In a pure
parser, it is a local variable within yyparse. In a pure push parser, it is a member of
yypstate.) See Section 4.4.1 [The Error Reporting Function yyerror], page 105.

YYNOMEM [Macro]
Macro to pretend that memory is exhausted, by making yyparse return 2 immedi-
ately. The error reporting function yyerror is called. See Section 4.1 [The Parser
Function yyparse]|, page 99.

Appendix A: Bison Symbols 222

yyparse [Function]
The parser function produced by Bison; call this function to start parsing. See
Section 4.1 [The Parser Function yyparse|, page 99.

yypstate_delete [Function]
The function to delete a parser instance, produced by Bison in push mode; call this
function to delete the memory associated with a parser. See [yypstate_delete],
page 100. Does nothing when called with a null pointer.

yypstate_new [Function]
The function to create a parser instance, produced by Bison in push mode; call this
function to create a new parser. See [yypstate_new], page 100.

yypull_parse [Function]
The parser function produced by Bison in push mode; call this function to parse the
rest of the input stream. See [yypull_parse|, page 101.

yypush_parse [Function]
The parser function produced by Bison in push mode; call this function to parse a
single token. See [yypush_parse], page 100.

YYRECOVERING [Macro]
The expression YYRECOVERING () yields 1 when the parser is recovering from a syntax
error, and 0 otherwise. See Section 4.5 [Special Features for Use in Actions|, page 108.

YYSTACK_USE_ALLOCA [Macro]
Macro used to control the use of alloca when the deterministic parser in C needs to
extend its stacks. If defined to 0, the parser will use malloc to extend its stacks and
memory exhaustion occurs if malloc fails (see Section 5.10 [Memory Management,
and How to Avoid Memory Exhaustion], page 129). If defined to 1, the parser will
use alloca. Values other than 0 and 1 are reserved for future Bison extensions. If
not defined, YYSTACK_USE_ALLOCA defaults to 0.

In the all-too-common case where your code may run on a host with a limited stack
and with unreliable stack-overflow checking, you should set YYMAXDEPTH to a value
that cannot possibly result in unchecked stack overflow on any of your target hosts
when alloca is called. You can inspect the code that Bison generates in order to
determine the proper numeric values. This will require some expertise in low-level
implementation details.

YYSTYPE [Type]
In C, data type of semantic values; int by default. Deprecated in favor of the %define
variable api.value.type. See Section 3.4.1 [Data Types of Semantic Values|, page 57.

yysymbol_kind_t [Type]
An enum of all the symbols, tokens and nonterminals, of the grammar. See
Section 4.4.2 [The Syntax Error Reporting Function yyreport_syntax_error],
page 106. The symbol kinds are used internally by the parser, and should not be
confused with the token kinds: the symbol kind of a terminal symbol is not equal to
its token kind! (Unless ‘%define api.token.raw’ was used.)

Appendix A: Bison Symbols 223

yytoken_kind_t [Type]
An enum of all the token kinds declared with %token (see Section 3.7.2 [Token Kind
Names|, page 72). These are the return values for yylex. They should not be confused
with the symbol kinds, used internally by the parser.

YYUNDEF [Value]
The token kind denoting an unknown token.

224

Appendix B Glossary

Accepting state
A state whose only action is the accept action. The accepting state is thus a
consistent state. See Section 8.2 [Understanding Your Parser], page 139.

Backus-Naur Form (BNF; also called “Backus Normal Form”)
Formal method of specifying context-free grammars originally proposed by John
Backus, and slightly improved by Peter Naur in his 1960-01-02 committee doc-
ument contributing to what became the Algol 60 report. See Section 1.1 [Lan-
guages and Context-Free Grammars|, page 14.

Consistent state
A state containing only one possible action. See Section 5.8.2 [Default Reduc-
tions], page 125.

Context-free grammars
Grammars specified as rules that can be applied regardless of context. Thus, if
there is a rule which says that an integer can be used as an expression, integers
are allowed anywhere an expression is permitted. See Section 1.1 [Languages
and Context-Free Grammars|, page 14.

Counterexample
A sequence of tokens and/or nonterminals, with one dot, that demonstrates a
conflict. The dot marks the place where the conflict occurs.

A unifying counterexample is a single string that has two different parses; its
existence proves that the grammar is ambiguous. When a unifying counterex-
ample cannot be found in reasonable time, a nonunifying counterexample is
built: two different string sharing the prefix up to the dot.

See Section 8.1 [Generation of Counterexamples|, page 136,

Default reduction
The reduction that a parser should perform if the current parser state contains
no other action for the lookahead token. In permitted parser states, Bison
declares the reduction with the largest lookahead set to be the default reduc-
tion and removes that lookahead set. See Section 5.8.2 [Default Reductions],
page 125.

Defaulted state
A consistent state with a default reduction. See Section 5.8.2 [Default Reduc-
tions], page 125.

Dynamic allocation
Allocation of memory that occurs during execution, rather than at compile time
or on entry to a function.

Empty string
Analogous to the empty set in set theory, the empty string is a character string
of length zero.

Appendix B: Glossary 225

Finite-state stack machine

A “machine” that has discrete states in which it is said to exist at each instant
in time. As input to the machine is processed, the machine moves from state
to state as specified by the logic of the machine. In the case of the parser, the
input is the language being parsed, and the states correspond to various stages
in the grammar rules. See Chapter 5 [The Bison Parser Algorithm], page 112.

Generalized LR (GLR)

Grouping

A parsing algorithm that can handle all context-free grammars, including those
that are not LR(1). It resolves situations that Bison’s deterministic parsing
algorithm cannot by effectively splitting off multiple parsers, trying all possible
parsers, and discarding those that fail in the light of additional right context.
See Section 5.9 [Generalized LR (GLR) Parsing], page 128.

A language construct that is (in general) grammatically divisible; for example,
‘expression’ or ‘declaration’ in C. See Section 1.1 [Languages and Context-Free
Grammars|, page 14.

IELR(1) (Inadequacy Elimination LR(1))

A minimal LR(1) parser table construction algorithm. That is, given any
context-free grammar, IELR(1) generates parser tables with the full language-
recognition power of canonical LR (1) but with nearly the same number of parser
states as LALR(1). This reduction in parser states is often an order of mag-
nitude. More importantly, because canonical LR(1)’s extra parser states may
contain duplicate conflicts in the case of non-LR(1) grammars, the number of
conflicts for IELR(1) is often an order of magnitude less as well. This can sig-
nificantly reduce the complexity of developing a grammar. See Section 5.8.1
[LR Table Construction], page 123.

Infix operator

An arithmetic operator that is placed between the operands on which it per-
forms some operation.

Input stream

Kind

A continuous flow of data between devices or programs.

“Token” and “symbol” are each overloaded to mean either a grammar symbol
(kind) or all parse info (kind, value, location) associated with occurrences of
that grammar symbol from the input. To disambiguate,

e we use “token kind” and “symbol kind” to mean both grammar symbols
and the values that represent them in a base programming language (C,
C++, etc.). The names of the types of these values are typically token_
kind_t, or token_kind_type, or TokenKind, depending on the program-
ming language.

e we use “token” and “symbol” without the word “kind” to mean parsed
occurrences, and we append the word “type” to refer to the types that
represent them in a base programming language.

In summary: When you see “kind”, interpret “symbol” or “token” to mean a
grammar symbol. When you don’t see “kind” (including when you see “type”),
interpret “symbol” or “token” to mean a parsed symbol.

Appendix B: Glossary 226

LAC (Lookahead Correction)
A parsing mechanism that fixes the problem of delayed syntax error detec-
tion, which is caused by LR state merging, default reductions, and the use
of Ynonassoc. Delayed syntax error detection results in unexpected semantic
actions, initiation of error recovery in the wrong syntactic context, and an incor-

rect list of expected tokens in a verbose syntax error message. See Section 5.8.3
[LAC], page 126.

Language construct
One of the typical usage schemas of the language. For example, one of the
constructs of the C language is the if statement. See Section 1.1 [Languages
and Context-Free Grammars|, page 14.

Left associativity
Operators having left associativity are analyzed from left to right: ‘a+b+c’
first computes ‘a+b’ and then combines with ‘c’. See Section 5.3 [Operator
Precedence], page 115.

Left recursion
A rule whose result symbol is also its first component symbol; for example,
‘expseql : expseql ’,’ exp;’. See Section 3.3.3 [Recursive Rules], page 56.

Left-to-right parsing
Parsing a sentence of a language by analyzing it token by token from left to
right. See Chapter 5 [The Bison Parser Algorithm|, page 112.

Lexical analyzer (scanner)
A function that reads an input stream and returns tokens one by one. See
Section 4.3 [The Lexical Analyzer Function yylex], page 101.

Lexical tie-in
A flag, set by actions in the grammar rules, which alters the way tokens are
parsed. See Section 7.2 [Lexical Tie-ins], page 134.

Literal string token
A token which consists of two or more fixed characters. See Section 3.2 [Sym-
bols, Terminal and Nonterminal|, page 53.

Lookahead token
A token already read but not yet shifted. See Section 5.1 [Lookahead Tokens],
page 112.

LALR(1) The class of context-free grammars that Bison (like most other parser gener-
ators) can handle by default; a subset of LR(1). See Section 5.7 [Mysterious
Conflicts], page 121.

LR(1) The class of context-free grammars in which at most one token of lookahead is
needed to disambiguate the parsing of any piece of input.

Nonterminal symbol
A grammar symbol standing for a grammatical construct that can be expressed
through rules in terms of smaller constructs; in other words, a construct that
is not a token. See Section 3.2 [Symbols, Terminal and Nonterminal], page 53.

Appendix B: Glossary 227

Parser A function that recognizes valid sentences of a language by analyzing the syntax
structure of a set of tokens passed to it from a lexical analyzer.

Postfix operator
An arithmetic operator that is placed after the operands upon which it performs
some operation.

Reduction Replacing a string of nonterminals and/or terminals with a single nonterminal,
according to a grammar rule. See Chapter 5 [The Bison Parser Algorithm)],
page 112.

Reentrant A reentrant subprogram is a subprogram which can be in invoked any number
of times in parallel, without interference between the various invocations. See
Section 3.7.11 [A Pure (Reentrant) Parser], page 79.

Reverse Polish Notation
A language in which all operators are postfix operators.

Right recursion
A rule whose result symbol is also its last component symbol; for example,
‘expseql: exp ’,’ expseql;’. See Section 3.3.3 [Recursive Rules], page 56.

Semantics In computer languages, the semantics are specified by the actions taken for each
instance of the language, i.e., the meaning of each statement. See Section 3.4
[Defining Language Semantics], page 57.

Shift A parser is said to shift when it makes the choice of analyzing further input from
the stream rather than reducing immediately some already-recognized rule. See
Chapter 5 [The Bison Parser Algorithm], page 112.

Single-character literal
A single character that is recognized and interpreted as is. See Section 1.2
[From Formal Rules to Bison Input], page 15.

Start symbol
The nonterminal symbol that stands for a complete valid utterance in the lan-
guage being parsed. The start symbol is usually listed as the first nonterminal
symbol in a language specification. See Section 3.7.10 [The Start-Symbol],
page 79.

Symbol kind
A (finite) enumeration of the grammar symbols, as processed by the parser.
See Section 3.2 [Symbols, Terminal and Nonterminal], page 53.

Symbol table
A data structure where symbol names and associated data are stored during
parsing to allow for recognition and use of existing information in repeated uses
of a symbol. See Section 2.5 [Multi-Function Calculator: mfcalc], page 40.

Syntax error
An error encountered during parsing of an input stream due to invalid syntax.
See Chapter 6 [Error Recovery|, page 131.

Appendix B: Glossary 228

Terminal symbol
A grammar symbol that has no rules in the grammar and therefore is gram-
matically indivisible. The piece of text it represents is a token. See Section 1.1
[Languages and Context-Free Grammars|, page 14.

Token A basic, grammatically indivisible unit of a language. The symbol that describes
a token in the grammar is a terminal symbol. The input of the Bison parser
is a stream of tokens which comes from the lexical analyzer. See Section 3.2
[Symbols, Terminal and Nonterminal], page 53.

Token kind
A (finite) enumeration of the grammar terminals, as discriminated by the scan-
ner. See Section 3.2 [Symbols, Terminal and Nonterminal], page 53.

Unreachable state
A parser state to which there does not exist a sequence of transitions from the
parser’s start state. A state can become unreachable during conflict resolution.
See Section 5.8.4 [Unreachable States], page 128.

229

Appendix C GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright (©) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

https://fsf.org/

Appendix C: GNU Free Documentation License 230

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix C: GNU Free Documentation License 231

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

Appendix C: GNU Free Documentation License 232

=

N.

O.

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix C: GNU Free Documentation License 233

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix C: GNU Free Documentation License 234

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix C: GNU Free Documentation License 235

10.

11.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See https://www.gnu.org/licenses/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

https://www.gnu.org/licenses/

Appendix C: GNU Free Documentation License 236

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . . Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

237

Bibliography

[Corbett 1984]
Robert Paul Corbett, Static Semantics in Compiler Error Recovery Ph.D. Dis-
sertation, Report No. UCB/CSD 85/251, Department of Electrical Engineer-
ing and Computer Science, Compute Science Division, University of Califor-
nia, Berkeley, California (June 1985). https://digicoll.lib.berkeley.edu/
record/135875

[Denny 2008]
Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
for Non-LR(1) Grammars with Conflict Resolution, in Proceedings of the 2008
ACM Symposium on Applied Computing (SAC’08), ACM, New York, NY,
USA, pp. 240-245. https://dx.doi.org/10.1145/1363686. 1363747

[Denny 2010 May]
Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the Deter-
ministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson Uni-
versity, Clemson, SC, USA (May 2010). https://tigerprints.clemson.edu/
all_dissertations/519/

[Denny 2010 November]
Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolu-
tion, in Science of Computer Programming, Vol. 75, Issue 11 (November 2010),
pp. 943-979. https://dx.doi.org/10.1016/j.scico.2009.08.001

[DeRemer 1982]
Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
Look-Ahead Sets, in ACM Transactions on Programming Languages and
Systems, Vol. 4, No. 4 (October 1982), pp. 615-649. https://dx.doi.org/
10.1145/69622.357187

[Isradisaikul 2015]
Chinawat Isradisaikul, Andrew Myers, Finding Counterexamples from Parsing
Conflicts, in Proceedings of the 36th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI ’15), ACM, pp. 555-564.
https://www.cs.cornell.edu/andru/papers/cupex/cupex.pdf

[Johnson 1978]
Steven C. Johnson, A portable compiler: theory and practice, in Proceedings
of the 5th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages (POPL ’78), pp. 97-104. https://dx.doi.org/10.1145/512760.
512771.

[Knuth 1965]
Donald E. Knuth, On the Translation of Languages from Left to Right, in Infor-
mation and Control, Vol. 8, Issue 6 (December 1965), pp. 607-639. https://
dx.doi.org/10.1016/50019-9958(65) 90426-2

https://digicoll.lib.berkeley.edu/record/135875
https://digicoll.lib.berkeley.edu/record/135875
https://dx.doi.org/10.1145/1363686.1363747
https://tigerprints.clemson.edu/all_dissertations/519/
https://tigerprints.clemson.edu/all_dissertations/519/
https://dx.doi.org/10.1016/j.scico.2009.08.001
https://dx.doi.org/10.1145/69622.357187
https://dx.doi.org/10.1145/69622.357187
https://www.cs.cornell.edu/andru/papers/cupex/cupex.pdf
https://dx.doi.org/10.1145/512760.512771
https://dx.doi.org/10.1145/512760.512771
https://dx.doi.org/10.1016/S0019-9958(65)90426-2
https://dx.doi.org/10.1016/S0019-9958(65)90426-2

Bibliography 238

[Scott 2000]
Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain, Tomita-Style
Generalised LR Parsers, Royal Holloway, University of London, Department
of Computer Science, TR-00-12 (December 2000). https://www.cs.rhul.ac.
uk/research/languages/publications/tomita_style_1.ps

https://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps
https://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps

Index of Terms

A 60, 108, 192, 199, 215
$<typealt>$ot 108, 199
$<typealtd>n.................iiiiiiii.. 108, 199
$lnamel ... 60, 215
S 64, 215
Faccept ... 216
Bend. .. e 217
$n... 60, 108, 192, 199, 215
$name...... ... 60, 215
$undefined.......... ... i 219

/3PP 203, 215
/3 S 24
%7{expression} ool 215
/S P 203
Ylcodeh} .o 215
heode ... 48, 82, 95, 183, 202, 216
%code 1MPOTtS ...vvvttin i 96, 202
Ycode init ... 202
fhcode LeXer . ..ottt 203
%code providesl 48, 83, 96
%code requires.................... 48, 83, 96, 183
7%hcode TOP ..ttt 48, 96
hdebug. ... 82, 150, 216
hdefine.......... 82, 85, 94, 95, 216
%define api.filename.type................... 86
%define api.header.include.................. 86
%define api.location.file................... 87
%define api.location.include................ 87
%define api.location.type.......... 87, 175, 204
/define api.namespace................... 88, 168
%define api.package......................... 204
%define api.parser.abstract................ 203
%define api.parser.annotations............ 203
%define api.parser.class 88, 203
%define api.parser.extends................. 203
%define api.parser.final................... 203
%define api.parser.implements............. 203
%define api.parser.public.................. 203
%define api.parser.strictfp................ 203
%define api.position.type.................. 204
%define api.prefix 88, 203
%define api.pure............... 79, 88
%define api.push-pull........... 79, 89, 192, 200
%define api.symbol.prefix................... 89
%define api.token.constructor.......... 90, 183
%define api.token.prefix.................... 90
%define api.token.raw................... 91, 183
%define api.value.automove.................. 91
%define api.value.type.................. 92, 204

%define api.value.type union................ 58

239

%define api.value.type variant............. 183
%define api.value.union.name................ 93
Y%define init_throws.............ccoovini... 203
hdefine lex_throws.......................... 204
%define lr.default-reduction...... 93, 125, 126
%define lr.keep-unreachable-state..... 93, 128
hdefine lr.type.............cooiiiiiia.. 94, 123
hdefine parse.assert......................... 94
%define parse.error.......................... 94
%define parse.error custom................. 106
#define parse.error detailed............... 105
%define parse.error verbose................ 105
%define parse.lac........................ 95, 126
hdefine parse.trace..................... 95, 149
%hdefine throws..........ooviiiiiiiiienen.. 204
HhAefines ... 82, 216
fhdestructor.......... ... 64, 75, 82, 217
BAPTEC . oot 20, 217
TEIMPLY - v e ettt e 56, 217
heTTOTr-verbosSettt 217
hEXPECT ..ttt 77, 81
heXPECE—TT. ...t 18, 77, 82
hfile-prefix.......ooiiiiiiiiiiiii 82, 217
hGLr-parser ... 17, 18, 217
Fheader..........coiiiiiiiiiiiii.. 82, 83, 217
%initial-actionoiiiiiinan. 74, 217
hlanguage ... 83, 217
%language "Java" ... 202
Pleft.. ... 74, 81, 115, 218
hlex—paramoovuiiiiinnnn.. 104, 202, 218
Hhlocationsot 83
5= o == 20, 218
Jname-prefix............ .. ol 83, 218
fno-lines ... 84, 218
/NONassoCoviiiii.... 81, 115, 124, 125, 218
IOterm ... 74, 81, 202, 218
houtput. 84, 218
IPATAM. ..ot 104, 218
hparse-param..................o.o.... 99, 202, 218
APTEC . ottt 117, 219
Jprecedenceoiiiii.nn. 115, 116, 219
sprinter...... ... 76, 77
IPULE=PATSErttt 84, 219
hrequire.......ooiiiiiiiiii 72, 84, 219
hright ... 81, 115, 219
HSKELetOn ..ot v e 84, 219
hSTATL ..o 79, 81, 219
Stoken........... ...l 72, 74, 81, 202, 219
Jtoken-table.............iiiiiiiiiii... 84, 219
LY - e 74, 81, 219
HUNIOM. ..ttt 59, 60, 81, 219
HVEIDOSE ..ottt 85
hYTACC . o 85

Index of Terms

K 216
/* K 47
/27 2N 216
/27 2P 47
S APPSR 216
;

D 216
<

CH D 75, 76, 216
> 75, 76, 216

OF . 68, 110, 200, 215
@namelo 68, 215
On .o 64, 68, 110, 199, 215
CRAME . .ottt et 68, 215

abstract syntax tree.......... oL 210
accepting state......... ... o il 142
ACtion ... 60
action data types i 62
action features summary 108
actions in midrule.............. L. 62, 76
actions, location 68
actions, semantic............. ... il 17
additional C code section 53
algorithm of parser 112
ambiguous grammars...................... 14, 128
associativity oo ool 115
AST 210

240
B
Backus-Naur formo 14
begin of location.................ooiiilL. 174
begin of Location..............c..couu... 188, 195
Bison declaration summary 81
Bison declarations ol 71
Bison declarations (introduction)............... 52
Bison grammar oo 15
Bison invocation.....................oL 154
Bison parser........... 25
Bison parser algorithm........................ 112
Bison symbols, table of 215
Bison utility 25
bison-il8n.m4........o i 110
bISON-PO . oo 110
BISON_I18N.. ..ottt 110
BISON_LOCALEDIR......c.ciiimiininnennnnn. 110
bisonSkeleton of YYParser.............. 189, 196
bisonVersion of YYParser 189, 196
BNE . 14
braced code....... i 55
DYACC . et 205
C
C code, section for additional 53
C-language interface 99
CALC . 34
calculator, infix notation 34
calculator, location tracking.................... 37
calculator, multi-function 40
calculator, simple................., 28
canonical LR.......... i 122, 123
COX ettt et e e 136
character tokenol 53
column of position.............. 173
columns on location......................... 174
columns on position................iiinan. 173
comment i 47
compatibilityo oo 207
compiling the parser 34
conflict counterexamples...................... 136
conflicts il 17, 18, 20, 113
conflicts, reduce/reduce....................... 118
conflicts, suppressing warnings of............... 77
consistent states........... ...t 125
context of parser............l 176
context-dependent precedence................. 117
context-free grammar 14
controlling function 33
core, itemset...... ... i 141
counter_type of position.................... 173
counterexample, nonunifying.................. 224
counterexample, unifying................. 224

counterexamples ..., 136

Index of Terms

D

dangling else............o L. 113
data type of locations.......................... 67
data types in actions........................... 62
data types of semantic values 57
debug_level onparser....................... 170
debug_stream on parser...................... 170
debugging i 149
declaration summary............. 81
declarations..............ooiiiiiiiii i, 47
declarations sectiono L 47
declarations, Bison............................. 71
declarations, Bison (introduction).............. 52
declaring literal string tokens................... 72
declaring operator precedence.................. 73
declaring the start symbol.............. 79
declaring token kind names 72
declaring value types.................... 58, 59, 60
declaring value types, nonterminals............. 74
default action........... ... 61
default data type oL 57
default location type.......... ... 67
default reductions............ 125
default stack limit 130
default start symbol 79
defaulted states. ... 125
deferred semantic actions 23
defining language semantics.................... 57
delayed syntax error detection............ 124, 125
delayed yylex invocations 125
discarded symbols.......... oL 76
discarded symbols, midrule actions............. 64
dot ..o 146
dottedrule ... 141

E

else, dangling.............. oL 113
emplace<T, U> on value_type 172
emplace<T> on value_type 172
empty rule.......... 56
end of locationooiiiiii.. 174
end of Location...........oovvveennnnn... 188, 195
epilogueo 53
EFTTOT . .\ttt 131, 217
€rTOT ON PATSET ...ttt eiie e eiieeannn 170
ETTOT TECOVETY . o vt e ttteee e et teee e e iaaeeeens 131
error recovery, midrule actions 64
error recovery, simple 36
error reporting function............, 105
error reporting routine............... 33
examples, simple.......... oo 28
eXCeptions 170
EXETCISES . .ottt i i 46
expected_tokens on context................. 177

241
F
file format 26
file of position............coiiiiiiiiiin 173
filename_type of position................... 172
finite-state machine.......... 118
formal grammar oL 15
format of grammar file............ L 26
freeing discarded symbols 75
frequently asked questions 208
G
generalized LR (GLR) parsing 14, 17, 128
generalized LR (GLR) parsing,
ambiguous grammars 20
generalized LR (GLR) parsing,
unambiguous grammars. 18
getDebuglevel on YYParser 196
getDebuglevel() on YYParser................ 189
getDebugStream on YYParser................. 196
getDebugStream() on YYParser............... 189
getEndPos on Lexer 198
getErrorVerbose on YYParser................ 196
getErrorVerbose() on YYParser.............. 189

getExpectedTokens on YYParser.Context 197
getExpectedTokens (YYParser.SymbolKind []

on YYParser.Context....................... 191
getLocation on YYParser.Context 197
getLocation() on YYParser.Context......... 191
getlValonLexer............................. 198
getName on YYParser.SymbolKind............. 197
getStartPos on Lexer........................ 198
gettext ... 110
getToken on YYParser.Context............... 197
getToken() on YYParser.Context............. 191
gloSSary ... 224
GLR parsers and yychar....................... 23
GLR parsers and yyclearin 23
GLR parsers and YYERROR............c...ovun.. 23
GLR parsers and yyl1loc........c.oovuuiinnnn.n. 23
GLR parsers and YYLLOC_DEFAULT.............. 69
GLR parsers and yylval....................... 23
GLR parsing, 14, 17, 128
GLR parsing, ambiguous grammars 20
GLR parsing, unambiguous grammars. 18
GLR with LALRo 124
grammar file........ ool 26
grammar rule syntax.................. ... 55
grammar rules section.................... ... 52
grammar, Bison........... ... oo 15
grammar, context-free........... 14
grouping, syntactic............ ..o 14

H

Header guard o il 83
historyovii 205

Index of Terms

F <3 5 TP 110
il8nof YYParser............................. 196
IELR ... 122, 123
IELR grammars 14
infix notation calculator........................ 34
initialize on location...................... 174
initialize on position...................... 173
interface........ 99
internationalization 110
introduction 1
invoking Bison........... ... oo 154
e . e 141
item set core.........oiiiiiiiiii 141

K

kernel, item set il 141
kind on symbol_type......................... 179

LAC ..o 124, 125, 126
LALR .o 122, 123
LALR grammars.ouevueiiinnennennn.. 14
language semantics, defining 57
layout of Bison grammar....................... 26
left recursion....... i i 56
lexical analyzer............ ...t 101
lexical analyzer, purposecoovuun. 25
lexical analyzer, writing........................ 31
lexical tie-in, 134
line of position............ooviiiiiiinn.n. 173
lines on location 174
lines on positioncoiiviiiiiiiiinn. 173
literal string tokeno L 54
literal token......... ..o 53
locationo 24, 67
location actions............ ...l 68
locationon context 176
Location on Location..................o..... 195
location on location...........ccovvennienn.. 173
location tracking calculator 37
location, textual........... 24, 67
location_type of parser..................... 170
lookahead correction.................... 126
lookahead on contextccoiiiiiinn.. 176
lookahead token i 112
LR 122
LR grammars. ..., 14
ltcale. .ot 37

242
M
main function in simple example 33
make_token On parser........................ 180
memory exhaustion.............. 129
memory management 129
mfcalc. 40
midrule actions.......... ool 62, 76
multi-function calculator....................... 40
multicharacter literal............. 54
mutual recursion............ ... oL 57
Mysterious Conflict 123
Mysterious Conflicts 121
N
name on symbol_typeoiiiiiii... 179
named references.............. oL 70
NS 110
nondeterministic parsing 14, 128
nonterminal symbol........... o 53
nonterminal, useless.............o 140
nonunifying counterexample................... 224
@)
operator precedence., 115
operator precedence, declaring 73
operator!=on location...................... 174
operator!=on position...................... 173
operator() onparser........................ 170
operator+ on location....................... 174
operator+ on position....................... 173
operator+=on location...................... 174
operator+=on position...................... 173
operator- on location....................... 174
operator- on position.............. 173
operator-=on location...................... 174
operator-=on position...................... 173
0Perator<< e 173, 174
operator==on location...................... 174
operator==on position...................... 173
options for invoking Bison 154
overflow of parser stack 129
P
PATSE €ITOT . .ottt e et ie et iiiee e ea 105
PATSE ONl PATSET .\ iiiiiiiiiiiiiiiiiiinnns 170
parseon YYParseroi.. 196
parse() on YYParserc.oouan.. 189
PATSET .ottt ettt 25
PArSEer ON PATSETottt 170
parser stack o 112
parser stack overflow.......................... 129
parser state........ i 118
position on position........................ 173

precedence declarations 73

Index of Terms

precedence of operators 115
precedence, context-dependent 117
precedence, unary operator 117
preventing warnings about conflicts s
printing semantic values........................ 76
Prologueo i 47, 95
Prologue Alternatives.......................... 48
PUTE PATSET .« . oi ettt ettt eee e e e eaa 79
push parser......... ..o, 79
push_parse on YYParser...................... 200
pushParse on YYParser....................... 193
Q

QUESEIONS &« v v vttt e 208

R

TECOVETING . . '\ttt 200
recovering on YYParser...................... 196
recovering() on YYParser 189
recovery from errorso.ieeaiin.. 131
recursive rule 56
reduce/reduce conflict................ ... 118
reduce/reduce conflicts 17, 18, 20
reduction....... ...l 112
reentrant parser.............. il 79
report_syntax_error on parser.............. 176
reportSyntaxError on Lexer 198
reportSyntaxError (YYParser.Context
onLexer............... i 192
requiring a version of Bison 72
Reverse Polish Notation........................ 28
right recursiono 56
TPCAlC. .o 28
rule syntax oo i 55
rule,dotted....... ... o o 141
rule, empty 56
rule, recursive...... ... oo 56
rule, useless. ... 140
rules section for grammar............. 52
running Bison (introduction)................... 33

S

semantic actionso il 17
Semantic predicates in GLR parsers............ 24
semantic value............ . ..o 16
semantic value type............. 57
set_debug_level onparser 170
set_debug_streamon parser................. 170
setDebuglevel on YYParser 196
setDebuglevel (int on YYParser.............. 189
setDebugStream on YYParser................. 196
setDebugStream(File on YYParser 189
setErrorVerbose on YYParser................ 196
setErrorVerbose(boolean on YYParser....... 189

shift /reduce conflicts 17, 18, 113

243
shifting 112
simple exampleso i 28
single-character literal.......................... 53
stack overflow......... o i 129
stack, parser............. 112
stages in using Bison.......... oo 26
start symbol 15
start symbol, declaring......................... 79
state (of parser) ... 118
step on location................. ... 174
string token.......... ... il 54
summary, action features...................... 108
summary, Bison declaration.................... 81
suppressing conflict warnings................... 77
symbol 53
symbol table example............. 42
symbol_kind_type of parser.................. 176
symbol_name ON ParSeroevvunnn 177
symbol_type of parser 179
symbol_type on parser: :symbol_type........ 179
SymbolKind of YYParser.................. 191, 197
symbols (abstract) L 14
symbols in Bison, table of 215
syntactic grouping oo 14
syntax error oo 105
syntax of grammar rules 55
syntax_error of parser 170
syntax_error on syntax_error............... 170
T
terminal symbol oo 53
textual locationol 24, 67
this(lex_param, on YYParser................ 189
this(Lexer on YYParser...................... 189
this(Position on Location.................. 188
token 14
token kind i 53
token kind names, declaring.................... 72
token of parser il 169
token on context..........iiiiiiiiiiiaan, 176
token, useless......... il 140
token_kind_type of parser................... 169
toString on Location..................... ... 195
toString() on Location...................... 188
tracing the parser............... 149
U
unary operator precedence 117
ungulates........... . 205
unifying counterexample 224
unreachable states oL 128
useless nonterminalol 140
uselessrule ... 140
useless token....... ool 140
using Bison............. oo oo 26

Index of Terms

AY

value type, semantic 57
value types, declaring................... 58, 59, 60
value types, nonterminals, declaring............ 74
value, semantico 16
value_type of parser......................... 170
VEISIONt 207
version requirement 72
\%\%

warnings, preventing 77
writing a lexical analyzer....................... 31
X

XML o 149
Y

yacchack........ ... o i 205
YYABORT ...t 99, 108, 200, 219
YYACCEPT, 99, 108, 200, 220
YYBACKUP 108, 220
YYBISON ...t 220
yychar ... 23, 109, 113, 220
yyclearin....................... 23, 109, 132, 220
yydebug ... 149, 220
YYDEBUGcoiiiiiii i 150, 220
YYEMPTY ... 109, 220
YYENABLE_NLSo 110
YYEOF .ot 109, 220
YYErTOK ..ot 109, 132, 192, 220
FYETLTOT .ottt 105, 200, 221
yyerroron Lexer................ 198
yyerror on YYParser 196
yyerror(Location on Lexer 191

yyerror(Location on YYParser............... 189

244
yyerror(string on YYParser 189
YYERRORcoiiiiiiiiinnn, 23, 109, 200, 220
YYFPRINTFo 150, 221
YYINITDEPTH...........ooiiiiiiinn. 130, 221
yylex ... 101, 178, 179, 221
yylexonLexer..............oooiiiiiiiiii 198
yylex() onLexer...........ooovuiiniinnn.... 191
yylloc..........ooouoe.. 23, 69, 103, 109, 113, 221
YYLLOC_DEFAULT ...t 69
YYLOCATION_PRINTot 69
YYLTYPE ... 104, 221
yylval.................. 23, 61, 103, 109, 113, 221
YYMAXDEPTH............ ..o, 130, 221
FYHELTS oottt 106, 221
YYNOMEM.....oooviiiiiiiii e 99, 109, 221
B0 £ 7
FYPATSE . oottt 99, 222
YYParser on YYParser........................ 195
yypcontext_expected_tokens 107
yypcontext_location 107
yypcontext_t ...l 106
yypcontext_token...............ol 107
yypstate_delete........................ 100, 222
yypstate_expected_tokens................... 101
yypstate_mew................ ...l 100, 222
yypull_parse............................ 101, 222
yypush_parse................ 100, 222
YYRECOVERINGo, 109, 132, 222
yyreport_syntax_error...................... 106
YYSTACK_USE_ALLOCA..................ooin.. 222
YYSTYPEo 222
yysymbol_kind_t 106, 222
yysymbol _name 107
yytoken_kind_t........... oL 223
YYUNDEF 223
Z
ZIOO o ottt et 206

	Introduction
	Conditions for Using Bison
	GNU GENERAL PUBLIC LICENSE
	1 The Concepts of Bison
	Languages and Context-Free Grammars
	From Formal Rules to Bison Input
	Semantic Values
	Semantic Actions
	Writing GLR Parsers
	Using GLR on Unambiguous Grammars
	Using GLR to Resolve Ambiguities
	GLR Semantic Actions
	Deferred semantic actions
	YYERROR
	Restrictions on semantic values and locations

	Controlling a Parse with Arbitrary Predicates

	Locations
	Bison Output: the Parser Implementation File
	Stages in Using Bison
	The Overall Layout of a Bison Grammar

	2 Examples
	Reverse Polish Notation Calculator
	Declarations for rpcalc
	Grammar Rules for rpcalc
	Explanation of input
	Explanation of line
	Explanation of exp

	The rpcalc Lexical Analyzer
	The Controlling Function
	The Error Reporting Routine
	Running Bison to Make the Parser
	Compiling the Parser Implementation File

	Infix Notation Calculator: calc
	Simple Error Recovery
	Location Tracking Calculator: ltcalc
	Declarations for ltcalc
	Grammar Rules for ltcalc
	The ltcalc Lexical Analyzer.

	Multi-Function Calculator: mfcalc
	Declarations for mfcalc
	Grammar Rules for mfcalc
	The mfcalc Symbol Table
	The mfcalc Lexer
	The mfcalc Main

	Exercises

	3 Bison Grammar Files
	Outline of a Bison Grammar
	The prologue
	Prologue Alternatives
	The Bison Declarations Section
	The Grammar Rules Section
	The epilogue

	Symbols, Terminal and Nonterminal
	Grammar Rules
	Syntax of Grammar Rules
	Empty Rules
	Recursive Rules

	Defining Language Semantics
	Data Types of Semantic Values
	More Than One Value Type
	Generating the Semantic Value Type
	The Union Declaration
	Providing a Structured Semantic Value Type
	Actions
	Data Types of Values in Actions
	Actions in Midrule
	Using Midrule Actions
	Typed Midrule Actions
	Midrule Action Translation
	Conflicts due to Midrule Actions

	Tracking Locations
	Data Type of Locations
	Actions and Locations
	Printing Locations
	Default Action for Locations

	Named References
	Bison Declarations
	Require a Version of Bison
	Token Kind Names
	Operator Precedence
	Nonterminal Symbols
	Syntax of Symbol Declarations
	Performing Actions before Parsing
	Freeing Discarded Symbols
	Printing Semantic Values
	Suppressing Conflict Warnings
	The Start-Symbol
	A Pure (Reentrant) Parser
	A Push Parser
	Bison Declaration Summary
	%define Summary
	%code Summary

	Multiple Parsers in the Same Program

	4 Parser C-Language Interface
	The Parser Function yyparse
	Push Parser Interface
	The Lexical Analyzer Function yylex
	Calling Convention for yylex
	Special Tokens
	Finding Tokens by String Literals
	Semantic Values of Tokens
	Textual Locations of Tokens
	Calling Conventions for Pure Parsers

	Error Reporting
	The Error Reporting Function yyerror
	The Syntax Error Reporting Function yyreport_syntax_error

	Special Features for Use in Actions
	Parser Internationalization
	Enabling Internationalization
	Token Internationalization

	5 The Bison Parser Algorithm
	Lookahead Tokens
	Shift/Reduce Conflicts
	Operator Precedence
	When Precedence is Needed
	Specifying Operator Precedence
	Specifying Precedence Only
	Precedence Examples
	How Precedence Works
	Using Precedence For Non Operators

	Context-Dependent Precedence
	Parser States
	Reduce/Reduce Conflicts
	Mysterious Conflicts
	Tuning LR
	LR Table Construction
	Default Reductions
	LAC
	Unreachable States

	Generalized LR (GLR) Parsing
	Memory Management, and How to Avoid Memory Exhaustion

	6 Error Recovery
	7 Handling Context Dependencies
	Semantic Info in Token Kinds
	Lexical Tie-ins
	Lexical Tie-ins and Error Recovery

	8 Debugging Your Parser
	Generation of Counterexamples
	Understanding Your Parser
	Visualizing Your Parser
	Visualizing your parser in multiple formats
	Tracing Your Parser
	Enabling Traces
	Enabling Debug Traces for mfcalc

	9 Invoking Bison
	Bison Options
	Operation Modes
	Diagnostics
	Tuning the Parser
	Output Files

	Option Cross Key
	Yacc Library

	10 Parsers Written In Other Languages
	C++ Parsers
	A Simple C++ Example
	C++ Bison Interface
	C++ Parser Interface
	C++ Semantic Values
	C++ Unions
	C++ Variants

	C++ Location Values
	C++ position
	C++ location
	Exposing the Location Classes
	User Defined Location Type

	C++ Parser Context
	C++ Scanner Interface
	Split Symbols
	Complete Symbols

	A Complete C++ Example
	Calc++ --- C++ Calculator
	Calc++ Parsing Driver
	Calc++ Parser
	Calc++ Scanner
	Calc++ Top Level

	D Parsers
	D Bison Interface
	D Semantic Values
	D Location Values
	D Parser Interface
	D Parser Context Interface
	D Scanner Interface
	Special Features for Use in D Actions
	D Push Parser Interface
	D Complete Symbols

	Java Parsers
	Java Bison Interface
	Java Semantic Values
	Java Location Values
	Java Parser Interface
	Java Parser Context Interface
	Java Scanner Interface
	Special Features for Use in Java Actions
	Java Push Parser Interface
	Differences between C/C++ and Java Grammars
	Java Declarations Summary

	11 A Brief History of the Greater Ungulates
	The ancestral Yacc
	yacchack
	Berkeley Yacc
	Bison
	Other Ungulates

	12 Bison Version Compatibility: Best Practices
	13 Frequently Asked Questions
	Memory Exhausted
	How Can I Reset the Parser
	Strings are Destroyed
	Implementing Gotos/Loops
	Multiple start-symbols
	Secure? Conform?
	Enabling Relocatability
	I can't build Bison
	Where can I find help?
	Bug Reports
	More Languages
	Beta Testing
	Mailing Lists

	A Bison Symbols
	B Glossary
	C GNU Free Documentation License
	Bibliography
	Index of Terms

