Soil

Conservation
Service
Portland, Oregon

Oregon

Engineering Handbook

Hydrology Guide

OREGON HYDROLOGY GUIDE

FOREWORD

The Engineering Field Manual, Chapter 2, Estimating Runoff, presents a simplified method for determining storm runoff volume and peak rate of discharge. However, the method presented in this EFM chapter applies to watersheds with less than 2,000 acres. A simplified method for hydrology determination for watersheds over 2,000 acres did not exist until the June 1986 revision of Technical Release No. 55, Urban Hydrology for Small Watersheds, was issued. Although the title of TR-55 implies that it is primarily for urban hydrology, in actuality it applies to any watershed (urban and non-urban) within the limitations stated in the TR.

The purpose of the Oregon Hydrology Guide is to assist in applying the simplified hydrology procedures of TR-55 for developing peak flow and hydrograph estimates in Oregon. The guide accomplishes this by:

1. Providing instructions beyond those given in TR-55. This is done with detailed explanation, step-by-step procedures, and example solution. As mentioned in TR-55, the time of concentration (Tc) is -a critical parameter. For this reason, the guide gives considerable emphasis to the determination of Tc. Chapters in the guide correspond to the chapters of TR-55.
2. Enclosing additional maps and tables specific to Oregon. Also included is information specific to Oregon needed to use the TR-55 computer programs.

The Oregon Hydrology Guide is to be used in conjunction with TR-55. No attempt was made to duplicate data already available in TR-55. For this reason, the guide should be filed with TR-55.

The procedure for estimating runoff, in Chapter 2 of the EFM, may continue to be used for watersheds less than 2,000 acres. Chapter 2 of the EFM, TR-55, TR-20, and streamgage analyses are accepted procedures for obtaining peak flows in Oregon.
Chapter l - Introduction
Watershed and Sub-Area Drainage Areas
Delineation
Sub-Areas
Measurement
Chapter 2 - Estimating Runoff Runoff Curve Number Procedure Example
Chapter 3 - Time of Concentration and Travel Time Intensity of Investigation Considerations Variability of Tc and Effect Upon the Hydrograph Step Procedure
Field Observations
Office Data Collection and Computations Examples
Chapter 4 - Graphical Peak Discharge Method ExampleChapter 5 - Tabular Hydrograph MethodExample
Appendix A - Hydrologic Soil Groups of the Soil Series Used in Oregon
Appendix B - Synthetic Rainfall Distributions and Rainfall Data SourcesSynthetic Rainfall DistributionsRainfall Data Sources
Appendix C - Computer Program
Appendix D - Worksheets

CHAPTER 1

INTRODUCTION

Watershed and Sub-Area Drainage Areas

Delineation

The drainage area of the watershed to be studied is outlined using a USGS topographic map, aerial photographs, county drainage or road maps, or other availabie map. A field observation of the terrain may be helpful in this delineation.

Sub-Areas

One drainage outline is normally adequate for a watershed. Larger, or unique, watersheds may need to be divided into sub-areas. Watersheds which might need sub-division are: larger watersheds (over 2500 acres); watersheds with two or more major branches which are very different in watershed slope or shape; or watersheds which have a significant pond or swamp within the watershed.

The advantages of developing sub-areas are as follows: (1) results are more precise, (2) basic data is more easily developed, and (3) areas contributing most to the peak flow can be identified. Disadvantages of using sub-areas are as follows: (1) more data is required, (2) some required data may be difficult to obtain, (3) a hydrograph must be developed in addition to the peak flow, and (4) hydrographs may need to be routed to obtain a composite hydrograph.

Measurement

The watershed or sub-area(s) is measured to determine its acreage. A planimeter, a dot grid, computation by average dimensions, or an electronic measuring device may be used to measure area.

The method used to measure the sub-area, and when to use sub-areas, is dependent on the precision necessary for the study. Generally, the more precise the data collection, the more accurate the answers. Structures in urban areas may require more intensive data collection procedures than those in rural areas.

CHAPTER 2

ESTIMATING RUNOFF

Runoff Curve Number Procedure

The steps to determine the Runoff Curve Number (RCN) are (see Worksheet 2):

1. Identify the soil series found in the watershed area. Use published soil survey maps when available. If a soil map is not available, a soil scientist will need to determine the soil series.
2. Determine the Hydrologic Soil Group (HSG) from the list of soils in Appendix A of this guide, or from SCS Soils 5. Slope does not affect the HSG of a soil series. All soils of one HSG, regardless of slope, can be combined into one unit.
3. Determine the cover type, treatment, and hydrologic condition. Several combinations are listed on Table 2-2 of TR-55. Pick the combination which most closely fits the conditions in the watershed.
4. Read the applicable curve number for the cover description and HSG from Table 2-2 in TR-55.
5. If more than one soil or cover condition occurs in the watershed, determine the area in each combination of soil and cover. Area can be measured in either acres, square miles, or percent of the watershed.
6. Multiply the applicable curve number times the area.
7. Repeat Steps 1 through 6 for each soil-cover combination in the watershed.
8. Sum the areas and the products.
9. Compute the weighted curve number by the equation:

$$
\mathrm{CN}=\frac{\text { Total Product }}{\text { Total Area }}
$$

10. Round off the curve number to the nearest whole number.

Example 2-1 - Runoff Curve Number

Develop RCN and Runoff for Watershed near Pendleton and 10-, 25-, 50-year frequency storms.

Sub-Area 1 Data:
Soil Cover, Treatment Acres

Walla Walla, B slopeWalla Walla, C slopeWalla Walla, B slopeAnderly, C slopeWalla Walla, B slopeWalla Walla, C slopeWalla Walla, B slopeAnderly, C slope-Cover, Treatment

Acres
Fallow Bare soil 650
Fallow Bare soil 40
Fallow w/crop residue, poor 120
Fallow Bare soil 45
Wheat straight row, poor 650
Wheat straight row, poor 40
Wheat contour w/residue, poor 120
Wheat straight row, poor 45

Example 2-2 - Runoff Curve Number (RCN)

Develop RCN and Runoff for Sub-Area 2 of watershed near Pendleton for the 10-, 25-, and 50 -year frequency storms.

Sub-Area 2 Data:

Soil
Walla Walla Anderly
Walla Walla Anderly Walla Walla Walla Walla Anderly Walla Walla

Walla Walla Hermiston

Cover, Treatment Acres
Road, gravel = 7
Road, gravel 1
Fallow, bare soil 345
Fallow, bare soil 30
Fallow, crop residence, good 275
Wheat, straight row, poor 344
Wheat, straight row, poor 31
Wheat; contour \& terraced, 275
good
Range, sagebrush, fair 50
Range, sagebrush, fair 40

Project	Example 2-1	By RSW	Date	8-87
-ocation	Uma. - Pendleton	Checked IMU	Date	8-87
Circle o	Presene Developed			

1. Runofe curve number (CN)

Soil name and hydrologic 8roup (HG APP-A)	Cover description (cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervióus area ratio) (TR-55 Table 2-2)	CN 1/			 口\%	$\begin{aligned} & \text { Product } \\ & \text { of } \\ & \text { CN } x a=e a \end{aligned}$
		$\begin{gathered} N \\ N \\ N \\ \underset{\sim}{0} \\ \tilde{\sigma} \end{gathered}$	$\begin{gathered} m \\ i \\ r_{1} \\ \dot{H} \\ i=0 \end{gathered}$	$\begin{gathered} T \\ N \\ N \\ \dot{c} \\ \dot{k} \\ \hline \end{gathered}$		
$\begin{aligned} & \hline \text { B-HSG } \\ & \text { Walla Walla } \end{aligned}$	Fallow, bare soil	86			690	59340
B-HSG	Fallow, crop residue cover cover, poor condition	85			120	10200
B-	Wheat, straight row, poor condition	76			690	52440
B-	Wheat, contour, crop residue, poor condition	73			120	8760
CAnderly	Fallow, bare soil	91			45	4095
C-	Wheat, straight row, poor condition	84			45	3780
$1 /$ Use only onc CN suurce per line. (TR-55)		Totals $=$			1710	138615
$C N \text { (weighted) }=\frac{\text { total product }}{\text { total area }}=\frac{138,600}{1710}=81.05$		Use $\mathrm{CN}=$			81	
2. Runoff	-	Storm			torm 12	Storm 13
Frequency -		10			25	50
Kainfall, P (1.3			1.5	1.6
		. 23			. 32	. 38

(Ise P and $C N$ with table 2-1, fig. 2-1, or eqs. 2-3 and 2-4.) (TR-55)

Worksheet 2: Runoff curve number and runoff

Project Example 2-2	By RSW	Date 8-87
-ocation Uma.-Pendleton	Checked CUM	Date 8-87
le one: Present peveloped	Sub-area 2	

$\begin{aligned} & \text { Soll name } \\ & \text { and } \\ & \text { hydrologic } \\ & \text { group } \\ & \text { (HG APP-A) } \end{aligned}$	Cover description (cover type, treatment, and hydrologic condition; percent impervious; ${ }^{\text {' }}$ unconnected/connected impervious area ratio) (TR-55 Table 2-2)	CN $1 /$				Product of
			$\begin{gathered} n \\ n \\ c \\ \dot{c} \\ \dot{e n} \\ i= \end{gathered}$		兇acres $\square_{m i}{ }^{2}$ 口\%	CN \times area
Halla Walla-B	Road - gravel Fallow - bare soil	$\begin{array}{\|l} 85 \\ 86 \end{array}$			7 345	
Halla Walla-B	Fallow - crop residue, good	83		,	275	
$\begin{aligned} & \text { Walla } \\ & \text { Walla-B } \end{aligned}$	Wheat, straight row, poor	76			344	
$\begin{aligned} & \text { Walla } \\ & \text { Walla-B } \end{aligned}$	Wheat, contour \& terrace, good	70			275	
Anderly-C	Fallow, bare soil Wheat, str. row, good	$\begin{aligned} & 91 \\ & 84 \\ & \hline \end{aligned}$			30 31	
Anderly-C	Road - gravel	89			1	
Walla Walla-Hermiston-B	Range, sagebrush, fair	51			90	
1/ Use only one CN source per line. (TR-55)		Totals $=$			1398	108497
$C N \text { (weighted) }=\frac{\text { total product }}{\text { total area }}=\frac{108500}{1398}=77.61$		Use $C N=$			78	

2. Runafe

Frequency .. yr
Rainfall, P (24-hour)(HG.APP-B)..... in
Runoff, Q....................................... in

Storm \#1	Storm 22	Storm 3^{2}
10	25	50
1.3	1.5	1.6
.16	.24	.29

('Jse P and $C N$ with table 2-1, fig. 2-1, or eqs. 2-3 and 2-4.) (TR-55)

CHAPTER 3

TIME OF CONCENTRATION AND TRAVEL TIME

Intensity of Investigation Considerations

The intended use of the computed peak flows will determine the amount of effort that should be put into securing data for estimating time of concentration (Tc). A more detailed investigation is needed where it will be used for (a) detailed design, (b) complex/high hazard structures, (c) important planning decisions: or (d) economic justification. Less detail may be appropriate if it is to be used only for preliminary conclusions or where benefit-cost is not critical. A "minimum" detail would include measuring the travel distance from maps or aerial photographs and estimating average velocity from a ;general knowledge of the conditions in the area. The procedures in this chapter describe the steps needed to do a "high" detail investigation.

Variability of Tc and Effect Upon the Hydrograph

The time of concentration influences the shape and peak of the runoff hydrograph. Changes in the Tc, due to changes in either the conditions of the water course or the land use, can cause changes in the hydrograph shape and its peak. The Tc will vary with the time of year and the conditions in the watershed. A channel with a lush growth will have a slower velocity than the same channel with dried grasses or as a bare channel. The flow across a frozen or a saturated field would be faster than under dry conditions. Variations in conditions can result in actual changes in TC of 15% or more and a similar difference in peak flow.

Time of concentration is normally developed considering average flow conditions for the time of year when a problem is likely to occur. Where most of the damaging storms happen in the winter, such as in Western Oregon, the Tc should be developed for dormant conditions. If the damaging storms are resulting from thunderstorms, then summer conditions should be considered. Occasionally, it may be best to develop two "times of concentration" values, one for the dormant season and one for the growing season. Developed peak flows would be compared to determine the desired value to use. This would also require developing two runoff curve number values.

Step Procedure

Step procedure for developing time of concentration is as follows. Worksheet 3 in TR-55 has been prepared to aid in developing the Time of Concentration.

1. Flow Path

The first step in developing the $T c$ is to determine the flow path. This would normally be determined using a topographic map or an aerial photograph. Flow path is the path water would take as it flows from the headwaters of the watershed to the point of interest. For Tc,
$=:$
path needed is the one that takes the longest travel time--usually the longest travel distance. Occasionally, it is not obvious whether a longer, moderately sloped path or a shorter, flat one would be the proper Tc path. When this is the case, both paths may need to be evaluated.
2. Reaches or Segments

Using the topographic map or aerial photograph, divide the flow path into reaches or segments, each with approximately a constant s?ope. Usually, reach breaks are also made where a channel starts and where intermittent flow becomes perennial. Reach breaks may be needed where there are major changes in channel roughness (n-value). A field examination will determine if changes in n-value are significant.

The number of reaches picked would also be related to the considerations for the detail discussed above. Three to five reaches normally would be adequate to define a small watershed. If more are needed, dividing the watershed into two areas should be considered.

Each segment is identified as a sheet flow, shallow concentrated flow, or open channel flow segment. The three groups are described in Chapter 3 of TR-55.

3. Segment Slope

When the reaches have been identified, the length (L) of the flow path in each reach is measured. Scaling distance off the topographic maps or photographs is usually adequate. The change in elevation (Δh) from one end of the reach to the other is also determined from maps or by field observation. Average slope of the reach is computed using the change in elevation divided by the length through the reach.

$$
s=\frac{\Delta h}{L}
$$

4. Sheet Flow Seqment

Sheet flow segment is described on page 3-3: of TR-55. Develop Travel time ($T t$) for this segment using equation 3-3. Data needed are: land surface description, flow length, land slope, and 2-year, 24-hour rainfall. Rainfall is available from a map in Appendix B. The other data is known from previous steps.

5. Shallow Concentrated Flow Segments

The segment(s) between sheet flow and a defined channel are computed using shallow concentrated flow as described on page 3-3. The curve for unpaved surface (figure 3-1) would normally be the condition encountered.

6. Open Channel Segments

The travel time (Tt) for the remaining reaches would be developed using channel hydraulics, normally Manning's formula. This is discussed on pages 3-3 and 3-4 of TR-55.
OR3-2
a. Check measurement of channel length (L) for the reach. Natural streams may have several curves and meanders, as well as overfalls and eddies. Tendencies are, therefore, to underestimate the length of channels and overestimate average slope through reaches.
b. Verify the vertical fall (h) through the reach. This can be taken from a topo map if one is available; otherwise, an approximate measure in the field is needed. Any overfalls should be subtracted from the total vertical drop since they would indicate a greater slope and, therefore, a greater velocity than actually occurs.
c. Recalculate the slope, as in step 3 above, if length or vertical fall have been revised.

$$
s=\frac{\Delta h}{L}
$$

d. Estimate the average n-value for the channel in the segment considering the vegetative conditions at the time a flood might occur. In the western portions of Oregon, most of the storms occur in November or December. Other locations may be affected by winter frozen soil conditions or by summer thunderstorms. The n-value to use may be picked from Table 3-2 following. The "Guide for Selecting Roughness coefficient ' n ' Values for Channels," by Guy B. Faskin, SCS, and "Roughness Characteristics of Natural Channels," USGS WSP-1849, are additional good references. If the actual conditions are not similar to any on the table or more precision is desired, NEH-5 Hydraulics Supplement B has a procedure to develop a computed n-value.
e. Determine approximate trapezoidal channel dimensions for the reach. This is an average typical of the reach being computed. Measure or estimate the average bottom width (bw), depth (d), and top width ($t w$) of the channel for the reach being considered.
f. Calculate the flow area of the channel.

$$
A=(d) \frac{(b w+t w)}{2}
$$

g. Calculate the wetted perimeter (wp) and hydraulic radius (r).

$$
\begin{aligned}
& w p=2\left[\left(\frac{t w-b w}{2}\right)^{2}+d^{2}\right]^{\frac{1}{2}}+b w \\
& r=\frac{A}{w p}
\end{aligned}
$$

h. Determine the travel velocity (v) using Manning's formula.

$$
\begin{equation*}
v=\left(\frac{1.49}{n}\right)(r)^{0.67}(s)^{0.5} \tag{array}
\end{equation*}
$$

Table 3-2 Values of Roughness Coefficient "n"

Adapted from "Modern Sewer Design," 1980, American Iron and Steel Institute
Brater \&:King "Handbook of Hydraulics" 6th Edition, 1970
SCS NEH-5 Hydraulics
i. Determine travel time for segment in hours.

$$
\begin{equation*}
T t=\frac{L}{(3600 v)} \tag{Eq3-1}
\end{equation*}
$$

7. Summation of Segments:

Determine time of concentration for entire sub-area by adding travel times of the segments including sheet flow and shallow concentrated flow and channel flow portions.

Field Observations

Much of the-data needed to determine the time of concentration may require collection of information in the field. General observations are made in the field of conditions such as the soil-types, land cover and slopes, materials and vegetation in the channel, and the apparent degree of stability of the channel. Indications of debris flows as evidenced by deposition next to the channel and the size of deposited materials, may also be significant.

Other information obtained in the field includes: the shape and size of the channel (tw,bw,d), the average Manning's roughness coefficient (n-value), and a check of the channel slope using a hand level or a transit. These field data will be needed for all segments in each sub-area.

Office Data Collection and Computations

Many of the steps in determining Tc can be done in the office. Higher efficiency can be obtained by doing the map measurement and analysis in the office before going to the field. Computation and tabulation of travel times to develop time of concentration are office operations which normally will follow field data collection. Use worksheet 3 to tabulate and document time of concentration data. Tc sub-routine in the TR- 55 computer program can aid in developing the data. A HP-41C program is also available which does the mathematics involved in worksheet 3. Cards and program description are available from the State Office.

Examples

Example 3-1 Time of Concentration

Compute Tc for sub-area 1 of watershed near Pendleton.
Sub-area 1 Data:
Segment A - Sheet flow on cultivated soil with residue cover $\mathbf{> 2 0 \%}$. Length is 300 feet with 10 -foot difference in elevation.

Segment B - Shallow concentrated flow in cultivated field. Length is 900 feet, elevation change is 35 feet.

Segment C - Channel flow in vegetative draw (tall grasses) with average dimensions: $d=1.0, b_{w}=2.0$, and $t w=10.0$.

Segment D - Channel flow in winding natural channel with some weeds and stones. Average channel dimensions are: $d=4.0$, $b w=4.0$, $t w=10.0$.

Example 3-2, Travel Time and Time of Concentration

Compute Tc and Tt for watershed near Pendleton, Sub-area 2
Sub-area 2 data:
Travel time -
Sub-area is downstream of sub-area 1 (see sketch). Main channel flows through the sub-area with average dimensions: $d=4$ feet, bw=5.0 feet, $t w=12$ feet. Channel is winding with stony sections and some weeds, generally in good condition. Flow distance is $9000(7000+2000)$ feet with a $60-$ foot change in elevation.

Time of Concentration -
Segment A - Flow over cultivated field with high residue. Length $=$ 300 feet, Elevation Change $=44$ feet.

Segment B - Shallow concentrated flow in crop field. Length $=2100$ feet, Elevation Change $=44$ feet .

Segment C - Channel flow through draw in scattered brush, heavy weeds. Average dimensions are: $d=0.6$ feet, $b w=2.0$ feet, $t w=6.8$ feet. Segment length $=3500$ feet and Elevation Change $=70$ feet.

Segment D - Flow in main channel described above with average dimensions: $d=4$ feet, $b w=5.0$ feet, $t w=12$ feet. Length=7000 feet.

Sheet flow (Applicable to T_{c} only) Segment ID1. Surface description (table 3-1)(TR-55)..2. Manning's roughness coeff., n (table 3-1) ..3. Flow length, L (total $L \leq 300 \mathrm{ft}$)ft4. Two-yr 24-hr rainfall, P_{2}in
5. Land slope, s ft/ft
6. $T_{t}=\frac{0.007(n L)^{0.8}}{P_{2}^{0.5} 8^{0.4}}$Compute $T_{t} \ldots . .$. hr

Shallow concentrated flowSegment ID
7. Surface description (paved or unpaved)
8. Flow length, Lft
9. Watercourse slope, s ft/ft
10. Average velocity, V (figure 3-1) ...(TR-55) ft / s
11. $T_{t}=\frac{L}{3600 \mathrm{~V}}$ Compute T_{t} hr

$-\infty$	

$=$ \squareChannel flowSegraent ID
12. Cross sectional flow area, a f^{-2}13. Hetted perimeter, P_{w}14. Hydraulic radius, $r=\frac{a}{P_{W}}$ Compute rft
15. Channel slope, s ft/ft
16. Manning's roughness coeff., n (HG Table 3-2).
17. $V=\frac{1.49 r^{2 / 3} s^{1 / 2}}{n}$Compute V ft/s18. Flow lengch, LL19. $T_{t}=\frac{L}{3600 V}$Compute $\mathrm{T}_{\mathrm{t}} \ldots . . . \mathrm{H}$ hr

--	
34.0	
15.6	
2.18	
.007	
.045	
4.66	
9000	
0.54	+

Workshect 3: Time of concentration (T_{c}) or travel time (T_{t})

Sheet flow (Applicable to T_{c} only) Segment ID

1. Surface description (table 3-1)(IR-55)..
2. Manning's roughness coeff., n (table 3-1) ..
3. Flow length, L (total L $\leq 300 \mathrm{ft}$)
4. Two-yr 24-hr rainfall, P_{2}
5. Land slope, s
6. $T_{t}=\frac{0.007(n L)^{0.8}}{P_{2}^{0.5}{ }_{8}^{0.4}} \quad$ Compute $T_{t} \ldots \ldots \ldots \mathrm{ft} / \mathrm{Et}_{\mathrm{t}}$

A cuit.- high res 0.17 300 1.0 .020 0.78	

Shallow concentrated flow
Segment ID
7. Surface description (paved or unpaved)
8. Flow length, L
9. Watercourse slope, s 44/2100.
10. Average velocity, V (figure 3-1) ..(TR-55)... ft/s
11. $T_{t}=\frac{L}{3600 V} \quad$ Compute $T_{t} \ldots \ldots$ hr

Segrant ID

Channel flow

12. Cross sectional flow area, a
13. Wetted perimeter, P_{w}
14. Hydraulic radius, $r=\frac{a}{\mathrm{P}_{\mathrm{H}}}$ Compute $\mathrm{r} \ldots . .$. . ft
15. Channel slope, s 70/3500.......................ft/ft
16. Manning's roughness coeff., n (HG Table.3-2).
17. $V=\frac{1.49 r^{2 / 3} \mathrm{~s}^{1 / 2}}{n} \quad$ Compute $V \ldots \ldots \mathrm{ft} / \mathrm{s}$
18. Flow length, 1 ...ft ft
19. $T_{t}=\frac{L}{3600 V}$

Compute $T_{t} \ldots \ldots$ hr
20. Watershed or subarea T_{C} or T_{t} (add T_{t} in steps 6, 11, and 19)

C	D
2.64	
6.95	
.38	
.020	\ddots
.045	
2.46	4.66
3500	7000
0.40	+0.42
see	
travel	
time	
comp s	

CHAPTER 4

graphical PEAK DISCHARGE METHOD

The Graphical Peak Discharge.procedure is described in TR-55 Chapter 4. Follow the steps in worksheet 4 to obtain peak.

Examples

Example 4-1 Graphical Peak Discharge
Compute peak discharge for sub-area 1 of watershed near Pendleton for the 10-, 25-, and 50-year storms using Graphical procedure. Use data from Examples 2-1 and 3-1.

Worksheet 4: (iraphical I'eak I)ischarge method

Project Example 4-1

Location Uma.-Pendleton By RSW \quad Date $\frac{8-87}{8-87}$

Circle one:

Sub-area 1

1. Data:

2. Frequency
3. Rainfall, P (2i-hour)

10

Storm \#1	Storm \#2	Storm \#3
10	25	50
1.3	1.5	1.6

4. Inftial abstraction, Ia in

| 0.469 | .469 | .469 |
| :--- | :--- | :--- | (Use CN with table 4-1.) (TR-55)

5. Compute I_{a} / P
6. Unit peak discharge, q_{u}.......................... csm/in

| 167 | 184 | 190 |
| :--- | :--- | :--- | (Use T_{c} and I_{a} / P with exhibit 4^{-}_ (TR-55)

7. Runoff, Q

Q . (From worksheet 2).
8. Pond and swamp adjustment factor, $\mathrm{F}_{\mathrm{p}} \ldots$...

| 1.0 | 1.0 | 1.0 |
| :--- | :--- | :--- | (Use percent pond and swamp area with table 4-2. Factor is 1.0 for zero percent pond and swamp area.) (TR-55)

9. Peak discharge, q_{p} (Where $q_{p}=q_{u} A_{m}{ }^{p}{ }_{p}$)

The Tabular Peak Hydrograph procedure is described in Chapter 5 of TR-55. Follow the Steps on Worksheet $5 a$ and $5 b$ to develop peak hydrographs.

Examples

Example 5-1 Tabular Peak Hydrograph

Compute the 25 -year peak discharge at the downstream end of sub-area 2 of the watershed near Pendleton. Sub-area 2 data: $D A=1400$ acres, RCN $=78$. Use also data developed in Éxamples 2-1, 2-2, 3-1, and 3-2.

Solution:

Enter on worksheet 5 a the drainage area (sq. mi.) time of concentration (Tc) and travel time (Tt). Times are obtained from worksheet 3. List the names of downstream subareas for each sub-area. For this example, the flow from sub-area 1 flows through sub-area 2; therefore, travel time summation to outlet is 0.54 hr . The rainfall, curve number, and runoff area read from worksheet 2. Multiply the area by the runoff to get AmQ. Initial abstraction is read directly from table $5-1$ using the curve number, and $I a / P$ is calculated.

Next, determine for worksheet 5b the rounded values of $T c, T t$, and $I a / P$ to use in the hydrograph tables. In this example, a Tc of 2.0 , an Ia / p of .30 , and a Tt of .50 are the closest tabulated values to the computed figures. Identify the rainfall distribution for the area from the state map in appendix B. Pendleton is in a type II storm distribution area; therefore, exhibit 5-II, Tabular Hydrograph, will be applicable. Select the hydrograph times which need to be tabulated to cover the peak of each hydrograph. Using the proper combination of $\mathrm{Tc}, \mathrm{Ia} / \mathrm{P}$, and Tt , identify the peak time for each sub-area. Sub-area 1 has a peak time of 14.0 hours, and sub-area 2 peaks at 13.6 hours. Hydrograph times of 13.0 through 14.6 were selected in this example to determine the shape of the hydrograph peak. For each time, read the unit discharge and multiply it by AmQ. For example, Sub-area 1, 13.0 hour, 37 times 0.83 equals 31 cfs ; and for Sub-area 2, 13.6 hour, 185 times 0.50 equals 92 cfs .

Once all hydrographs are tabulated, sum the values for each time to get a composite hydrograph; i.e., at time 14.0 , 142 plus 80 equals 222 cfs.

Worksheet 5a: Basic watershed data

$\underset{\sim}{n}$	Subaren name	Drainage area Am (mi ${ }^{2}$)	Time of concentration $\begin{gathered} T_{c} \\ (h r) \end{gathered}$	Travel time through subarea $\begin{gathered} \mathrm{T}_{\mathrm{t}} \\ (\mathrm{hr}) \end{gathered}$	Downstream subarea names	```Travel time summation to outlet \SigmaTt (hr)```	24-hr Rainfall P (\ln)	Runoff curve number	Runoff $\begin{gathered} Q \\ (1 n) \\ \hline \end{gathered}$	$\begin{gathered} A_{m} Q \\ \left(m 1^{2}-1 n\right) \\ \hline \end{gathered}$	```Inittal abstrac- tion Ia (1n)```	$\mathrm{I}_{\mathrm{a}} / \mathrm{P}$
O	1	2.67	1.96	--	2	0.54	1.5	81	. 32	0.83	. 469	. 31
-	2	2.19	1.85	0.54	--	--	1.5	78	. 23	0.50	. 564	. 38
?									-*			
-				\because								
	.		$1 t+1$ from wor	$\begin{aligned} & 4 t+\dagger \\ & \text { lect } 3 \end{aligned}$				$\begin{aligned} & \hline \uparrow \uparrow \uparrow \\ & \text { com wol } \end{aligned}$	$\begin{aligned} & 1+t \\ & \text { heet } \end{aligned}$	Fr	$t+\uparrow \uparrow$ table (TR-55)	

Workshect 5h: Tabular hydrograph discharge summary

	Project Example 5-1						Location \qquad reas 182			Frequency (yr) 25			$\text { By } \frac{\text { RSW }}{\text { Checked }}$				$8-87$
	Circle one: Present Developed					Sub-A											
	Subarea nane	Baste watershed data used 1/				Select and enter hydrograph times in hours from exhitit 5-II $2 /$											
		$\begin{aligned} & \text { Sub- } \\ & \text { area } \end{aligned}$	ET T_{t} to ct	${ }_{\text {L }} / \mathrm{P}$			13.0	13.2	13.4	13.6	13.8	14.0	14.3	14.6			
		$\begin{gathered} T \mathrm{c} \\ (\mathrm{hr}) \end{gathered}$	outlet (hr)		$\left(m 1^{2}-1 n\right)$	--	--	-	charg	at	ected $-\left(c f_{s}\right)$	hydrogr	Plit	31	-	- -	-
	1	2.0	0.50	. 30	0.83		31	56	86	113	133	142	137	120			
	2	2.0	--	. 30	0.50		58	74	84	92	85	80	66	55			
													.				
					,												
	Composite hydrosraph at outlet						89	130	170	205	218	222	203	175			

$\frac{1 /}{2 /}$ worksheet 5a. Rounded as needed for use with exhtbit 5. (TR-55)
$\frac{2 /}{3 /}$ Enter ralnfall distribution type used. (HG APP-B)
3/ Hydrograph discharge for selected times is A_{m} ? multiplied by tabular discharge froin appropriate exhibit S. (TR-55)

Hydrologic Soil Groups of the soil series used in Oregon. Use in place of Exhibit A-1 in TR-55.

MOTES: TwO MYOROLOGIE SOIL EROUPS SUCM AS E/C IMOIEATES THE ORAINED/UMDRAINED SITUATIOM

MOTES: Tw MYOROLQEIC ©
 OR-A-4

Synthetic Rainfall Distributions

Storm distribution types I, IA, and II are to be used in Oregon. The following map shows the areas where each distribution type applies. Generally, the area from the east slopes of the Cascade Mountains to the Pacific Ocean would use type IA distribution. Type I is used for most of the area east of the Cascades with Type II being used in specific areas of extreme eastern and northeastern Cregon.

Rainfall Data Sources

Precipitation records are collected and maintained by NOAA. Data is published monthly in Climatalogical Data (daily records) and Hourly Precipitation Data. These records are kept at the SCS State Office, at the WNTC-WSF, with the State Climatologist in Corvallis, and at many local libraries.

NOAA Atlas 2, Precipitation-Frequency Atlas of the Western United States, Volume X -Oregon, contains maps of the state with various storm durations and frequencies. The 24 -hour storm duration maps have been reprinted and are included in this appendix.

NOAA Technical Report NWS 36, Water Available for Runoff ... for Selected Agricultural Regions in the Northwest United States, gives combined frequency of precipitation with water available from snowmelt for all or part of 11 counties in Northeast Oregon. Maps present Water Available for Runoff (WAR) for 1-, 5-, and 10-day durations and 2-, 10-, and 100-year frequencies. These may be used to supplement the precipitation maps. Copies of the NWS 36 report are available from the SCS Oregon State Conservation Engineer.

GEOGRAPHIC BOUNDARIES FOR SCS RAINFALL DISTRIBUTIONS
oregon

The TR-55 computer program is set up to help guide through the input of data and will solve the equations for computing RCN, Tc, and peak flow. Samples of the computer output of each routine are attached. These use the input data of the examples in this guide.

The program requests a county name as early input data. If the name entered agrees with one on the county rainfall table in the program, the rainfall-frequency data will be read by the program. A county rainfall table for Oregon is in the program; however, the large counties and varied rainfall patterns required that multiple locations in a county be identified. The following Table C-1 lists county-city combinations which are in the program.

The locations are generally in the agricultural areas of the counties. This assumes that usually peak flows will be wanted in these areas. If the location under study is not similar to one of the cities listed, rainfall data from the maps in Appendix B should be entered where needed.

The county-city entry must be entered just as it is listed for the program to recognize the location (i.e., Clackamas-Oregon Cy). The spacing and abbreviations need to be as listed. Upper or lower case letters are acceptable.

TABLE C-1 - TR-55 COMPUTER PROGRAM COUNTY RAINFALL DATA SITES

AREA	COUNTY-CITY		AREA	COUNTY-CITY
1	BENTON-CORVALLIS		1	Linn-LEBANON
1	CLACKAMAS-OREGON CY		1	LINN-HALSEY
1	CLACKAMAS-SANDY		1	LINN-SWEET HOME
1	CLACKAMAS-MOLLALA		1	MARION-SALEM
1	CLATSOP-ASTORIA		1	MARION-MILL CITY
1	CLATSOP-CANNON BCH		1	MULTNOMAH-PORTLAND
1	COLUMBIA-CLATSKANIE	!	1	POLK-DALLAS
1	COLUMBIA-VERNONIA		1	POLK-FALLS CITY
1	COLUMBIA-SCAPPOOSE		1	TILLAMOOK-NEHALEM
1	LANE-FLORENCE		1	TILLAMOOK-TILLAMOOK
1	LANE-EUGENE		1	WASHINGTON-HILLSBORO
1	LANE-JUNCTION CITY		1	WASHINGTON-BANKS
1	LANE-OAKRIDGE		1	YAMHILL-MCMINNVILLE
1	LINCOLN-NEWPORT		1	YAMHILL-NEWBERG
1	LINCOLN-LINCOLN CY			
AREA	COUNTY-CITY		AREA	COUNTY-CITY
2	COOS-COOS BAY		2	JACKSON-MEDFORD
2	COOS-MYRTLE POINT		2	JACKSON-BUTTE FALLS
2	COOS-POWERS		2	JEFFERSON-MADRAS
2	CROOK-PRINEVILLE		2	JOS.-GRANTS PASS
2	CROOK-CAMP CR JCT		2	JOS.-CAVE JUNCTION
2	CURRY-GOLD BEACH		2	KLAM.-KLAMATH FALLS
2	DESCHUTES-BEND		2	KLAM.-BONANZA
2	DESCHUTES-REDMOND		2	LAKE-LAKEVIEW
2	DOUGLAS-REEDSPORT		2	LAKE-PAISLEY
2	DOUGLAS-ELKTON		2	SHERMAN-MORO
2	DOUGLAS-ROSEBURG		2	WASCO-THE DALLES
2	HOOD R.-CASCADE LOC.		2	WASCO-MAUPIN
2	HOOD R.-HOOD RIVER		2	WASCO-ANTELOPE
AREA	COUNTY-CITY		AREA	COUNTY-CITY
3	BAKER-BAKER		3	MORROW-BOARDMAN
3	BAKER-SUMPTER		3	MORROW-HEPPNER
3	BAKER-RICHLAND		3	UMA.-HERMISTON
3	GILLIAM-ARLINGTON		3	UMA.-PENDLETON
3	GILLIAM-CONDON		3	UMA.-MILTON-FREE.
3	GRANT-MONUMENT		3	UNION-ELGIN
3	GRANT-JOHN DAY		3	UNION-LAGRANDE
3	HARNEY-DREWSEY		3	UNION-NORTH POWDER
3	HARNEY-BURNS		3	WALLOWA-ENTERPRISE
3	MAL. -ONTARIO		3	WALLOWA-WALLOWA
3	MAL.-JORDAN VALLEY		3	WHEELER-FOSSIL

TOTAL DRAINAGE AREA: 1710 Acres WEIGHTED CLRVE NUMEEF:E1*

* - Gerierated for use by GRAFHIC method

Example 3-1

TR-EE TE and Tt THRU SUBAREA COMPUTATIGIN

VEFSSIUN 1.11

Example 3-2

TR-GE TE and Tt THRU SUEAREA COMPUTATIGIN
VEFSION 1.11

Example 5-1 (with Ia/P rounded)

TR-ES TABULAR DISCHARGE METHOD VERSION 1.11

Example 5-1 (with Ia/P as computed)

Appendix D - Worksheets

Worksheets are included which can be reproduced for use with Chapters 2 through 5. Notes have been added to the worksheets referencing the data sources.

Worksheet 2: Runoff curve number and runoff

1. Runoff curve number (CN)

2. Runoff

Frequency ... yr
Rainfall, P (24-hour)(HG APP-B)..... in
Runoff, Q..................................... in

Storm \#1	Storm \#2	Storm \#3

(IJse P and $C N$ with table 2-1, fig. 2-1, or eqs. 2-3 and 2-4.) (TR-55)

OR-D-2

Worksheet 3: Time of concentration (T_{c}) or travel time $\left(\mathrm{T}_{\mathrm{t}}\right)$
Project
\qquad By \qquad Date \qquad
Location
\qquad Checked \qquad Date \qquad
Circle one: Present Developed
Circle one: $T_{c} \quad T_{t}$ through aubarea
\qquadNOTES: Space for as many as two segments per flow type can be used for eachworksheet.Include a map, schematic, or description of flow segments.
Sheet flow (Applicable to T_{c} only) Segment ID

1. Surface description (table 3-1)(TR-55).
2. Manning's roughness coeff., n (table 3-1) ..
3. Flow length, L (total $\mathrm{L} \leq 300 \mathrm{ft}$) c)

\qquad ft
4. Two-yr 24-hr rainfall, P_{2} in
5. Land slope, s $f t / f t$
6. $T_{t}=\frac{0.007(\mathrm{~nL})^{0.8}}{\mathrm{P}_{2}^{0.5} \mathrm{~s}^{0.4}}$.Compute T_{t}.hr

\squareShallow concentrated flowSegment ID
7. Surface description (paved or unpaved)8. Flow length, LL.

\square
9. Watercourse slope, s $\mathrm{ft} / \mathrm{ft}$
10. Average velocity, V (figure 3-1) .. (TR-55) ft / s
11. $T_{t}=\frac{L}{3600 \mathrm{~V}}$ Compute $\mathrm{T}_{\mathrm{t}} \ldots \ldots$. hrChannel flowSegment ID
12. Cross sectional flow area, a
13. Wetted perimeter, P_{w} ft
14. Hydraulic radius, $r=\frac{a}{P_{w}}$ Compute r r.ft
15. Channel slope, s ft/ft
16. Manning's roughnes (HG Table 3-2).
17. $V=\frac{1.49 r^{2 / 3} \mathrm{~g}^{1 / 2}}{\mathrm{n}} \quad$ Compute V $f t / b$
18. Flow length, L fe
19. $T_{t}=\frac{L}{3600 ~ V}$Compute T_{t}......hr

20. Watershed or subarea T_{c} or T_{t} (add T_{t} in steps 6,11 , and 19)

\square

Worksheet 4: Graphical Peak Discharge method

Yroject
By \qquad Date \qquad
Location \qquad Checked \qquad Date \qquad
Circle one: Present Developed

1. Data:
Drainage area $A_{m}=$ $m i^{2}$ (acres/640)
Runoff curve number $C N=$ \qquad (From worksheet 2)
Time of concentration .. $T_{c}=$ \qquad hr (From worksheet 3)
Rainfall distribution type $=$ \qquad (I, IA, II, III) (HG APP-B)
Pond and swamp areas spread throughout watershed = \qquad percent of $A_{\text {m }}$ (__ acres or mi ${ }^{2}$ covered)
2. Frequency
yr
3. Rainfall, P (24-hour)
in

yr	Storm \#1	Storm \#2	Storm ${ }^{\text {a }}$ 3
in			

4. Initial abstraction, I_{a}........................... in

(Use CN with table 4-1.) (TR-55)
5. Compute I_{a} / P \qquad

6. Unit peak discharge, q_{u}
$\operatorname{csm} /$ in \square (Use T_{c} and I_{a} / P with exhibit 4- \qquad) (TR-55)
7. Runoff, Q in

(From workshect 2).
8. Pond and swamp adjustment factor, F_{p}....

(Use percent pond and swamp area with table 4-2. Factor is 1.0 for zero percent pond and swamps area.). (TR-55)
9. Peak discharge, \ddot{q}_{p}
cfs

(Where $q_{p}=q_{u} A_{m} Q F_{p}$)

Worksheet 5a: Basic watershed data

Worksheet 5h: Tabular hydrograph discharge summary

$\frac{1 /}{2 /}$ Worksheet 5a. Rounded as needed for use with exhibit 5. (TR-55)
Enter rainfall distribution type used. (HG APP-B)
Hydrograph discharge for selected times is A_{m} ? muitiplied by tabular discharge from appropriate exhibit 5. (TR-55)

