
Lesson 2: Tensor mathematics

Notes from Prof. Susskind video lectures publicly available
on YouTube
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Introduction

A good notation, as we said, will carry you a long way.
When it is well conceived, it just sort of automatically tells
you what to do next. That means that you can do physics
in a completely mindless way.

It is like having Tinkertoys. It is pretty clear where the
stick has to go into. It has to go into the thing with the
hole. You can try putting a hole into a hole or forcing a
stick into a stick. There is only one thing you can do. You
can put the stick into the hole, and the other end of the
stick can go into another hole. Then there are more sticks
and more holes you can put them into, etc.

The notation of general relativity is much like that. If you
follow the rules, you almost can’t make mistakes. But you
have to learn the rules. They are the rules of tensor algebra
and tensor analysis.

Flat space

The question we are aiming at in this chapter is to un-
derstand enough about tensor algebra and analysis, and
metrics, to be able to distinguish a flat geometry from a
non-flat geometry. That seems awfully simple. Flat means
like a plane. Non-flat means with bumps and lumps in it.
And you would think we could tell the difference very eas-
ily. Yet sometimes it is not so easy.

For example as discussed in last chapter, if I consider this
page, it is flat. If I roll it or furl it, the page now looks
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curved but it is not really curved. It is exactly the same
page. The relationship between the parts of the page, the
distances between the letters, the angles, and so forth, don’t
change. At least the distances between the letters measured
along the page don’t change. So a folded page, if we don’t
stretch it, if we don’t modify the relations between its parts,
doesn’t acquire a curvature.

Technically it introduces what is called an extrinsic curva-
ture. Extrinsic curvature has to do with the way a space –
in this case the page – is embedded in a higher-dimensional
space. For instance whatever I do with the page is embed-
ded in the three dimensional space of the room. When the
page is laid out flat on the desk, it is embedded in the em-
bedding space in one way. When it is furled like in figure
1, it is embedded in the same space in another way.

Figure 1: Intrinsic and extrinsic geometries and curvatures:
the intrinsic geometry of the page remains flat.

The extrinsic curvature which we perceive has to do with
how the space of the page is embedded in the larger space.
But it has nothing to do with its intrinsic geometry.
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If you like, you can think of the intrinsic geometry as the
geometry of a tiny little bug that moves along the surface.
It cannot look out of the surface. It only looks around
while crawling along the surface. It may have surveying
instruments with which it can measure distances along the
surface. It can draw a triangle, measure also the angles
within the surface, and do all kinds of interesting geometric
studies. But it never sees the surface as embedded in a
larger space.

Consequently the bug will never detect that the page
might be embedded in different ways in a higher dimen-
sional space. It will never detect it if we create a furl like in
figure 1, or if we remove the furl and flatten the page out
again. The bug just learns about the intrinsic geometry.

The intrinsic geometry of the surface means the geome-
try that is independent of the way the surface is embedded
in a larger space.

General relativity and Riemannian geometry, and a lot of
other geometries, are all about the intrinsic properties of
the geometry of the space under consideration. It doesn’t
have to be two dimensional. It can have any number of
dimensions.

Another way to think about the intrinsic geometry of a
space is this. Imagine sprinkling a bunch of points on this
page – or on a three dimensional space, but then we would
have to fiddle with it in four dimensions or more... Then
draw lines between them so they triangulate the space. And
then state what the distance between every pair of neigh-
boring points is. Specifying those distances specifies the
geometry.

Sometimes that geometry can be flattened out without

4



changing the length of any of these little links. In the case
of a two-dimensional surface, it means laying it out flat on
the desk without stretching it, tearing it, or creating any
distorsion. Any small equilateral triangle has to remain an
equilateral triangle. Every small little square has to remain
a square, etc.

But if the surface is intrinsically non-flat there will be small
constructions that cannot be flattened out. The other day
on his motorbike the second author saw on the road the fol-
lowing bulge, probably due to pine roots, with lines drawn
on it, and a warning painted on the pavement.

Figure 2: Watch the bump.

The road menders must have taken a course in general
relativity! Such a bump cannot be flattened out without
stretching or compressing some distances.

A curved space is basically one which cannot be flattened
out without distorting it. It is an intrinsic property of the
space, not extrinsic.
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Metric tensor

We want to answer the mathematical question: given a
space and its metric defined by the following equation

dS2 = gmn(X) dXmdXn (1)

is it really flat or not?

It is important to understand that the space may be intrin-
sically curved, like the road with a bump in figure (2), or
we may think that it is curved because equation (1) looks
complicated, when actually it is intrinsically flat.

For instance we can draw on a flat page a bunch of funny
curvilinear coordinates as in figure 3. Now let’s forget that
we look comfortably at the page from our embedding 3D
Euclidean space. At first sight the coordinate axes X’s
suggest that it is curved.

Figure 3: Curvilinear coordinates X’s of a flat page.

At each point A, if we want to compute the distance be-
tweenA and a neighboring pointB, we cannot apply Pythago-
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ras theorem. We have to apply Al-Kashi theorem which
generalizes Pythagoras taking into account the cosine of
the angle between the coordinate axes. And also perhaps
we have to correct for units which are not unit distances on
the axes.

Yet the page is intrinsically flat, be it rolled or not in
the embedding 3D Euclidean space. It is easy to find a set
of coordinates Y ’s which will transform equation (1) into
Pythagoras theorem. On the pages of school notebooks
they are even usually shown. And it doesn’t disturb us
to look at them, interpret them, and use them to locate a
point, even when the page is furled.

Our mathematical goal matches closely the question we ad-
dressed in the last chapter of whether there is a real gravi-
tational field or the apparent gravitational field is just due
to an artefact of funny space-time coordinates. For instance
in figure (4) of chapter 1 the curvilinear coordinates were
due to the accelerated frame we were using, not to tidal
forces. The space-time was intrinsically flat.

So we want to tackle the mathematical question. Typically
we are given the metric tensor of equation (1). The mathe-
matical question is a hard one. It will keep us busy during
the entire chapter and more.

Before we come to it, we need to get better acquainted with
tensors. We have begun to talk about them in the last chap-
ter. We introduced the basic contravariant and covariant
transformation rules. In this chapter, we want to give a
more formal presentation of tensors.

Scalars and vectors are special cases of tensors. Tensors are
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the general category of objects we are interested in.

Scalar, vector and tensor fields

So for us, tensors are collections of indexed values which de-
pend on coordinate systems. And they transform according
to certain rules when we go from one coordinate system to
another.

We are going to be interested in spaces such that at
every point P in space, located by its coordinates X in
some coordinate system, there may be some quantities as-
sociated with that point – what we call fields. And those
quantities will be tensors. There will also be all kinds of
quantities that will not be tensors. But in particular we
will be interested in tensor fields.

The simplest kind of tensor field is a scalar field S(X).
A scalar field is a function which to every point of space
associates a number – a scalar –, and everybody, no matter
what coordinate system he or she uses, agrees on the value
of that scalar. So the transformation properties in going,
let’s say, from the Xm coordinates to the Y m coordinates
is simply that the value of S at a given point P doesn’t
change.

We could use extremely heavy notations to express this
fact in the most unambiguous way. But we will simply
denote it

S′(Y ) = S(X) (2)

The right hand side and the left hand side denote the value
of the same field at the same point P , one in the Y system,
the other in the X system. Y is the coordinates of P in
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the Y system, X is the coordinates of P in the X system.
And we add a prime to S when we talk of its value at P
using the Y coordinates. With practice, equation (2) will
become clear and unambiguous.

To understand what distinguishes a scalar field from any
old scalar function, notice that if we fix the coordinate sys-
tem then "the first coordinate of a vector field" is a scalar
function, but is not a scalar field, because it depends on the
coordinate system, and it changes if we change coordinate
system.

Let’s represent, on a two-dimensional variety, the X coordi-
nate system. And now, to avoid confusion, let’s not embed
the surface in any larger Euclidean space.

Figure 4: Curvilinear coordinates X’s
on a two-dimensional curved variety.

Any point P of the space is located by the values its coordi-
nates X1 and X2. Of course we could think of a higher di-
mensional variety. There would then be more coordinates.
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Globally, we denote them Xm.

Now on the same space, there could be another coordinate
system, Y , to locate points.

Figure 5: Second coordinate system Y

on a two-dimensional curved variety.

In our figure, the point P has coordinates (2, 2) in the X
system, and (5, 3) in the Y system. Of course these coordi-
nates don’t have to be integers. They can take their values
in the set of real numbers, or even in other sets.

What is important to note is that at any point P , there are
two collections of coordinates

Xm and Y m

The Xm and Y m are related. At any point P , each coordi-
nate Xm is a function of all the Y m. And conversely. We
write it this way

Xm = Xm(Y ) (3a)
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and
Y m = Y m(X) (3b)

This is a coordinate transformation of some kind, and its
inverse. It can be pretty complicated. We will only assume
that functions (3a) and (3b) are continuous, and that we
can differentiate them when needed. But there is nothing
more special than that.

Scalars transform trivially. If you know the value of S at
a point P , you know it no matter what coordinate system
you use.

Next are vectors. They come in two varieties: contravariant
vectors which we denote with an upstairs index

V m

and covariant vectors with a dowstairs index

Vm

We spoke about them in the last chapter. Now we are
going to see a little bit about their geometrical interpreta-
tion. What it intuitively means to be contravariant or to
be covariant?

Geometric interpretation of contravariant and
covariant components of a vector

Let’s consider a coordinate system, and draw its axes as
straight lines because we are not interested at the moment
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in the fact that the coordinates may be curved and vary in
direction from place to place. We could also think of them
locally, where every variety is approximately flat (a surface,
locally, is like a plane) and every coordinate system locally
is formed of approximatelty straight lines or surfaces if we
are in more than two dimensions.

Figure 6: Coordinate system at point P .

We are mostly concerned with the fact that the coordinate
axes may not be perpendicular, and with what the implica-
tions of the non perpendicularity of these coordinates are.
Furthermore the distance between two axes, say X1 = 0
and X1 = 1, is not necessarily 1. The values of the coor-
dinates are just numerical labels, which don’t correspond
directly to distances.

Now let’s introduce some vectors. On our two-dimensional
variety, we introduce two

e1 and e2
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as shown on figure 6.
If we had three dimensions, there would be a third vec-

tor e3 sticking out of the page, possibly slanted. We can
label these vectors

ei

As i goes from 1 to the number of dimensions, the geomet-
ric vectors ei’s correspond to the various directions of the
coordinate system.

Next step in the geometric explanation of contravariant and
covariant vectors: we consider an arbitrary vector V , see
figure 7.

Figure 7: Vector V .

The vector V can be expanded into a linear combination
of the ei’s. We shall write V i for the i-th coefficient, and
suppose there are 3 dimensions. Then

V = V 1e1 + V 2e2 + V 3e3 (4)
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The things which are the vectors, on the right hand side of
this formula, are the ei’s. The V i’s are actually numbers.
They are the components of the vector V in the ei basis.

The coefficients V i are called the contravariant components
of the vector V . It is just a name. And there is nothing
in what I did that required me to put the index 1 of e1
downstairs and not upstairs, and the index 1 of V 1 upstairs.
It is a convention to write the expansion of V in the form
of equation (4).

So, first of all, we see what the contravariant compo-
nents are. They are the expansion coefficients of V , that
is, the numbers that we have to put in front of the three
vectors e1, e2 and e3 to express a given vector as a sum of
vectors colinear to the basis. This jives with what we have
said previously: ordinary vectors are contravariant vectors.

Next step: we look at the projection of V on the ei’s using
the dot product. Let’s start with e1

V.e1

Now if we were just using conventional Cartesian coor-
dinates, perpendicular to each other, and if the ei’s really
were unit vectors, that is, if the distance representing each
coordinate separation was one unit of whatever the units we
are dealing with, then the coefficients V 1, V 2 and V 3 would
be the same as the dot products. For instance we would
have V.e1 equal the first contravariant component of V .

However, when we have a peculiar coordinate system with
angles and with non-unit separations between the succes-
sive coordinate lines in figure 7, this is not true. So let’s
see if we can work out V with the values V.e1, V.e2, V.e3...
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Incidentally, V.e1 is called V1, denoted with a covariant in-
dex.

Notice how notations fit nicely together. We can write
equation (4) as

V = V mem (5)

using the Einstein summation convention.

Now let’s see how we can relate the contravariant compo-
nents V m and the covariant components Vn. To reach that
goal we take the dot product of each side of equation (5)
with en. We get

V.en = V mem.en (6)

And V.en is by definition Vn.

em.en is something new. Let’s isolate it. It has two lower
indices. We will see that it turns out to be the metric ten-
sor (expressed in the ei’s basis).

Let’s see this connection between em.en and the metric ten-
sor. The length of a vector is the dot product of the vector
with itself. Let’s calculate the length of V. Using twice
equation (5) we have

V.V = V mem.V
nen (7)

We must use two different indices m and n. Recall
indeed that, in the implicit summation formula V mem, the
symbol m is only a dummy index. So in order not to mix
things up, we use another dummy index n for the second
expression of V .
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If you are not yet totally at ease with Einstein sum-
mation convention, remember that, written explicitely, the
right hand side of equation (7) means nothing more than

(V 1e1 + V 2e2 + V 3e3).(V
1e1 + V 2e2 + V 3e3)

But now the right hand side of equation (7) can also be
reorganized as

V.V = V mV n(em.en) (8)

The quantity em.en we call gmn. So equation (8) rewrites

V.V = V mV ngmn (9)

This is characteristic of the metric tensor. It tells you how
to compute the length of a vector.

The vector could be for instance a small displacement
dX. Then equation (9) would be the computation of the
length of a little interval between two neighboring points

dX.dX = dXmdXngmn (10)

So now we have a better understanding of the difference be-
tween covariant and contravariant indices, that is to say co-
variant and contravariant components. Contravariant com-
ponents are the coefficients we use to construct a vector V
out of the basis vectors. Covariant components are the dot
products of V with the basis vectors. They are different
geometric things. They would, however, be the same if we
were talking about ordinary Cartesian coordinates.
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We inserted that discussion in order to give the reader some
geometric idea of what covariant and contravariant means
and also what the metric tensor is. For a given collection
of basis vectors ei’s and a given vector V , let’s summarize
all this in the following box

V = V mem

Vn = V.en

gmn = em.en

(11)

These relations are very important, and we will make fre-
quent use of them in the construction of the theory of gen-
eral relativity.

Let’s just make one more note about the case when the
coordinates axes are Cartesian coordinates. Then, as we
saw, the contravariant and the covariant components of V
are the same. And the metric tensor is the unit matrix.
This means that the basis vectors are perpendicular and
of unit length. Indeed, they could be orthogonal without
being of unit length. In polar coordinates (see figure 14
of chapter 1, and figure 8 below), the basis vectors at any
point P on the sphere are orthogonal, but they are not all
of unit length. The longitudinal basis vector has a length
which depends on the latitude. It is equal to the cosine
of the latitude. That is why, on the sphere of radius one,
to compute the square of the length of an element dS we
can use Pythagoras theorem, but we must add dθ2 and
cos2θ dφ2.
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Also note that nothing enjoins us to represent the sphere
in perspective, embedded in the usual 3D Euclidean space,
like we did in figure 14 of chapter 1. We can also represent
it – or part of it – on a page. Let’s do it for a section of the
Earth around one of its poles.

Figure 8: Map of the Earth around the North pole.

This is a representation on a page – therefore, out of ne-
cessity, flat – of a non-flat Riemannian surface with curvi-
linear coordinates, in this case a section of sphere in polar
coordinates. As already mentioned, we touch here on the
classical problem of cartographers: how to represent a sec-
tion of sphere on a page, that is, how to make useful maps
for mariners (see footnote on page 39 of chapter 1).

This ought to clarify the fact that we can represent on
a page a curved, truly non-flat, variety, and a curvilinear
coordinate system on it.

This is also what is achieved by ordnance survey maps,
which can show hills and valleys, slopes, distances on in-
clined land, gradients and things like that, see figure 9. The
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curvy lines shown are the lines of equal height with respect
to an underlying flat plane, which is a locally flat small sec-
tion of the sphere1 on which we represent the montainous
relief. The grid of straight lines is a coordinate system on
the sphere.

Figure 9: Ordnance survey map.

Since the notions of curved surfaces, and distances on them,
and local curvatures are fundamental in general relativity,
and we only treat them cursorily in this book, as ground-
work for the physics, we advised the interested reader to
go to any good simple manual on differential geometry ori-
ented toward applications.

So now let’s come to tensor mathematics.

1or more precisely the ellipsoid with which we represent the Earth
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Tensor mathematics

Tensors are objects which are characterised by the way they
transform under coordinate transformations. We already
talked a little bit about them at the end of chapter 1. Now
we want to go over again what we said and go further.

Notice that to say that tensors are characterized by the way
they transform is no more strange than to say in R3 that
(a, b, c) is a vector, or if you prefer "can be thought of as a
vector", if and only if this collection of 3 numbers depends
on a basis, is the expression of a thing in that basis, and it
transforms in the usual way when we change basis. Let’s
go over this in more detail.

So let’s start with a vector V . It has contravariant compo-
nents in the X coordinates. We called them V m. And it
has contravariant components in the Y coordinates, which
we called (V ′)m.

In figure 7, if we change the coordinate system, keeping the
abstract geometric vector V fixed in the space, we are still
talking about the same vector, but we will clearly change its
components. How do the contravariant components change
when we change coordinates? We have seen the rule. Let
us repeat it here. Remember, in the formula below, prime
means "in the Y system" and unprimed means "in the X
system".

(V ′)m =
∂Y m

∂Xn
V n (12)

And now let’s look at a covariant vector. For the most
typical example, we start from a scalar field S(X) which
we differentiate with respect to the X components, and the
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Y components. We have seen the rule as well. The partial
derivatives, which are covariant components, are related as
follows

∂S

∂Y m
=
∂Xn

∂Y m

∂S

∂Xn
(13)

Notice the difference. And notice how the notation carries
you along. In equation (12)
- the index m is upstairs
- on the right hand side the proportionality factor is ∂Y m/∂Xn

- the sum is over n

Whereas in equation (13)
- the index m is downstairs
- on the right hand side the proportionality factor is ∂Xn/∂Y m

- the sum is still on n.

If there is no index n on the left hand side, but an index
n appears on the right, then an index n upstairs has to
be balanced by an index n downstairs. And we can "con-
tract" them. This means that they represent a sum, are
only dummy indices, and disappear. In both equations you
can see the pattern. And as said, the notation pretty much
carries you along.

Equation (12) is the standard form for the transformation
property of contravariant components. And equation (13) is
the standard form for the transformation property of covari-
ant components, if they come from differentiating a scalar.
More generally it would be equation (14) below

(W ′)m =
∂Xn

∂Y m
Wn (14)

Let’s go now to tensors of higher rank. A tensor of higher
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rank simply means a tensor with more indices. For the sake
of pedagogy and completeness in this chapter 2, we overlap
a bit what we did at the end of the last lesson.

We start with a tensor of rank two, with one contravariant
index and one covariant index. It is nothing more than a
"thing" represented in a given basis by a collection of num-
bers. These numbers are indexed with two indices. Fur-
thermore in another basis the same "thing" is represented
by another collection of numbers and the two collections
are subject to specific transformation rules related to the
relationship between the two bases. Let’s consider the ten-
sor in a Y basis, that is to say, a Y coordinate system. We
denote it

(W ′)mn

The simplest example of such a thing would be, as we saw,
just the product of two vectors, one with a contravariant
index, one with a covariant index. By "product of the vec-
tors" we mean the collection of all the products of compo-
nents. What makes the thing a tensor is its transformation
property. So let’s write it

(W ′)mn =
∂Y m

∂Xp

∂Xq

∂Y n
W p

q (15)

This tells us how a tensor of rank 2, with one contravariant
and one covariant index, transforms. For each index on the
left hand side, there must be a ∂Y/∂X or a ∂X/∂Y on the
right hand side. And you simply track where the indices go.

Let’s do another example of a tensor of rank 2 with two
covariant indices

(W ′)mn
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how does it transform? By now you should begin to be able
to write it mechanically

(W ′)mn =
∂Xp

∂Y m

∂Xq

∂Y n
Wpq (16)

These rules are very general. If you take a tensor with any
number of indices, the pattern is always the same. To ex-
press the transformation rules from an unprimed system X
to a prime system Y , you introduce partial derivatives, in
one sense or the other as we did, on the right hand side,
and you sum over repeated indices.

We now know the basic notational device to express a tensor
of any rank and type in one coordinate system or another.

Who invented it? Einstein was the one who dropped the
summation symbol, because he realized he didn’t need it.
Gauss began to use formulas akin to equations (12) and (13)
in his study of surfaces. Riemann continued in the devel-
opment of non-Euclidean geometry. Ricci-Curbastro and
Levi-Civita gave a formal presentation of tensor analysis
in their fundamental work "Méthodes de calcul différentiel
absolu et leurs applications", published in Mathematische
Annalen, in March 1900.

The notation is the work of many, but it is very system-
atic.

Notice something about tensors. If they are zero in one
frame, there are necessarily zero in any other too. This is
obvious for scalars: if a scalar is 0 in one frame, it is 0 in
every frame, because its value depend only on the geomet-
ric point where it is measured, not the coordinates of that
point.
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Now suppose a vector V is zero in some frame – let’s say
the X frame. To say that V is zero doesn’t mean that some
component is equal to zero, it means all of its components
are equal zero. Then equation (12) or equation (14) show
that it is going to be zero in any frame.

Likewise with any tensor, if all of its components are 0
in one frame, that is, in one coordinate system, then all of
its components are 0 in every frame.

As a consequence, once we have written down an equation
equating two tensors in one frame, for instance

T lmn
pqr = U lmn

pqr

it can be rewritten

T lmn
pqr − U lmn

pqr = 0

So, considering that T − U is still a tensor (see below, the
section on tensor algebra), we see that

if two tensors are equal in one frame, they are equal in any
frame.

That is the basic value of tensors. They allow you to express
equations of various kinds, equations of motion, equations
of whatever it happens to be, in a form where the same
exact equation will be true in any coordinate system. That
is of course a deep advantage to thinking about tensors.

There are other objects which are not tensors. They will
have the property that they may be zero in some frames and
not zero in other frames. We are going to come across some
of them.
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Tensors have a certain invariance to them. Their compo-
nents are not invariant. They change from one frame to
another. But the statement that a tensor is equal to an-
other tensor in frame independent.

Incidentally, when you write a tensor equation, the com-
ponents have to match. It doesn’t make sense to write an
equation like W p

q (where p is contravariant and q covari-
ant) equals T pq (where both indices are contravariant). Of
course you can write whatever you like, but if, let’s say in
one coordinate system, the equation W p

q = T pq happened
to be true, then it would usually not be true in another. So
normally we wouldn’t write equations like that.

When thinking of two vectors, if we can write V =
W , then they are equal in all coordinates systems. Note
that in Euclidean geometry, or in non-Euclidean geometry
with a positive definite distance, for V = W to be true it
is necessary and sufficient that the magnitude of V − W
be equal to zero. But this statement is not true in the
Minkowski geometry of relativity, where the proper distance
between two events may be zero without them being the
same event.

In other words, notice that the magnitude of a vector
and the vector itself are two different things. The magni-
tude of a vector is a scalar, whereas the vector is a complex
object. It has components. It points in a direction. To say
that two vectors are equal means that their magnitudes are
the same and their directions are the same.

A tensor of higher rank is yet a more complicated object
which points in several directions. It has got some aspect of
it that points in one direction and some aspects that point
in other directions. We are going to come to their geometry
soon. But for the moment we define them by their trans-
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formation properties.

The next topic in tensor analysis is operations on tensors.

Tensor algebra

What can we do with tensors that make new tensors? We
are not at this point interested in things that we can do
to tensors which make other kinds of objects which are not
tensors. We are interested in the operations we can do with
tensors which will produce new tensors. In that way we can
make a collection of things out of which we can build equa-
tions. And the equations will be the same in every reference
frame.

First of all you can multiply a tensor by a numerical num-
ber. It is still a tensor. That rule is obvious and we don’t
need to spend time on it.

Then, we shall examine four operations. Most of them are
very simple. The last one is not simple.

1. Addition of tensors. We can add two tensors of the
same type, that is, of the same rank and the same
numbers of contravariant and covariant indices. And
addition of course includes also subtraction. If you
multiply a tensor by a negative number and then add
it, you are doing a subtraction.

2. Multiplication of tensors. We can multiply any pair
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of tensors to make another tensor.

3. Contraction of a tensor. From certain tensors we can
produce tensors of lower rank.

4. Differentiation of a tensor. But this will not be ordi-
nary differentiation. It will be covariant differentia-
tion. We will define it and see how it works.

Those are the four basic processes that you can apply to
tensors to make new tensors. The first three are straightfor-
ward. As said, the last one is more intricate: differentiation
with respect to what? Well, differentiation with respect to
position. These tensors are things which might vary from
place to place. They have a value at each point of the
surface under consideration. They are tensor fields. At the
next point on the surface they have a different value. Learn-
ing to differentiate them is going to be fun and hard. Not
very hard, a little hard. Furthermore it belongs, strictly
speaking, to tensor analysis and will be taken up in the
next chapter.

Adding tensors: you only add tensors if their indices match
and are of the same kind. For example if you have a tensor

T = Tm...
...p

with a bunch of upstairs contravariant indices, and a collec-
tion of downstairs covariant indices, and you have another
tensor of the same kind

S = Sm...
...p
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in other words their indices match exactly, then you are
permitted to add them and construct a new sensor which
we can denote

T + S

It is constructed in the obvious way: each component of
the sum

(T + S)m...
...p

is just the sum of the corresponding components of T and S.
And it is obvious too to check that T + S transforms as a
tensor with the same rules as T and S. The same is true of
T−S. It is a tensor. This is the basis for saying that tensor
equations are the same in every reference frame – because
T − S = 0 is a tensor equation.

Next, multiplication of tensors: now, unlike addition, mul-
tiplication of tensors can be done with tensors of any rank
and type. The rank of a tensor is its number of indices.
And we know that the two types, for each index, are con-
travariant or covariant. We can multiply T l

mn by Sp
q. The

tensor multiplication being not much more than the multi-
plication of components and of the number of indices, we
will get a tensor of the form P lp

mnq.
Let’s see a simple example: the tensor multiplication,

also called tensor product, of two vectors. Suppose V m is a
vector with a contravariant index, and let’s multiply it by a
vector Wn with a covariant index. This produces a tensor
with one upstairs index m and one downstairs index n

V m Wn = Tm
n (17)

A tensor is a set of values indexed by zero (in the case
of a scalar), one (in the case of a vector) or several indices.
This tensor T of equation (17) is a set of values – depending
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of the coordinate system in which we look at it – indexed
by two indices m and n, respectively of contravariant and
covariant type. It is tensor of rank two, contravariant for
on index and covariant for the other.

We could have done the multiplication with some other
vector Xn. And this would have produced some other ten-
sor

V m Xn = Umn (18)

We sometimes use the sign ⊗ to denote the tensor product.
So equations (17) and (18) are sometimes written

V m ⊗Wn = Tm
n

V m ⊗Xn = Umn

And this applies to the product of any tensors. The tensor
product of two vectors is not their dot product. We will
see how the dot product of two vectors is related to tensor
algebra in a moment. With the tensor product we produce
a tensor of higher rank, by just juxtaposing somehow all
the components of the multiplicands.

How many components does V m ⊗Xn have? Since we
are going to work mostly with 4-vectors in space-time, let’s
take V and X to be both 4-vectors. Each is a tensor of
rank one with a contravariant index. Their tensor product
U is a tensor of rank 2. It has 16 independent components,
each of them the simple multiplication of two numbers

U11 = V 1X1, U12 = V 1X2, U13 = V 1X3, ...

... U43 = V 4X3, U44 = V 4X4

It is not the dot product. The dot product has only is one
component, not sixteen. It is a number.
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Sometimes the tensor product is called the outer prod-
uct. But we shall continue to call it the tensor product of
two tensors, and it makes another tensor.

Typically the tensor product of two tensors is a tensor of
different rank than either one of the multiplicands.

The only way you can make a tensor of the same rank
is for one of the factors to be a scalar. A scalar is a tensor
of rank zero. You can always multiply a tensor by a scalar.
Take any scalar S multiply it by, say, V m. You get another
tensor of rank one, i.e. another vector. It is simply V
elongated by the value of S.

But generally you get back a tensor of higher rank with
more indices obviously.

We are in the course of learning tensor algebra and tensor
analysis. It is a bit dry. Where these tensors will come in?
We will meet then in real life soon enough. But so far this
is just a notational device.

Out of the four operations mentioned above, we already
have addition and multiplication.

Let’s now turn to contraction. Contraction is also an easy
algebraic process. But in order to prove that the contrac-
tion of a tensor leads to a tensor we need a tiny little the-
orem. No mathematician would call it a theorem. They
would at most call it maybe a lemma.

Here is what the lemma says. Consider the following
quantity2

∂Xb

∂Y m

∂Y m

∂Xa
(19)

2we begin to use also letters a, b, c, etc. for indices because there
just aren’t enough letters in the m range or the p range for our needs.
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Remember that the presence of m upstairs and downstairs
means implicitely that there is a sum to be perfomed over m.
Expression (19) is the same as∑

m

∂Xb

∂Y m

∂Y m

∂Xa
(20)

What is the object in expression (19) or (20)? Do you rec-
ognize what it is? It is the change in Xb when we change
Y m a little bit, times the change in Y m when you change
Xa a little bit, summed over m. That is, we change Y 1

a little bit, then we change Y 2 a little bit, etc. What is
expression (20) supposed to be?

Let’s go over it in detail. Instead of Xb, consider any func-
tion F . Suppose F depends on (Y 1, Y 2 ..., YM ), and each
Y m depends on Xa. Then, from elementary calculus,

∂F

∂Y m

∂Y m

∂Xa

is nothing more than the partial derivative of F with respect
to Xa (partial because there can be other Xn’s on which
the Y m’s depend). That is

∂F

∂Y m

∂Y m

∂Xa
=

∂F

∂Xa

What if what F happens to be Xb? Well, there is nothing
special in the formulas. We get

∂Xb

∂Y m

∂Y m

∂Xa
=
∂Xb

∂Xa

But what is ∂Xb/∂Xa? It looks like a stupid thing to
look at. The Xn are independent variables, so the partial
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derivative of one with respect to another is either 1, if they
are the same, that is if we are actually looking at ∂Xa/∂Xa,
or 0 otherwise. So ∂Xb/∂Xa is the Kronecker delta symbol.
We shall denote it

δba

Notice that we use an upper index and a lower index. We
shall find out that δba itself happens to also be a tensor.
That is a little weird because it is just a set of numbers.
But it is a tensor with one contravariant and one covariant
index.

Now that we have the little lemma we need in order to un-
derstand index contraction, let’s do an example. And then
define it more generally.

Let’s take a tensor which is composed out of two vectors,
one with a contravariant index and the other with a covari-
ant index,

Tm
n = V m Wn (21)

Now what contraction means is: take any upper index and
any lower index and set them to be the same and sum over
them. In other words take

V m Wm (22)

This means V 1W1 +V 2W2 +V 3W3 + ...+VMWM , if M is
the dimension of the space we are working with.

We have identified an upper index with a lower index.
We are not allowed to do this with two upper indices. We
are not allowed to do with two lower indices. But we can
take an upper index and a lower index. And let’s ask how
expression (22) transforms.
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Let’s look at the transformation rule applied first to
expression (21). We already know that it is a tensor. Here
is how it transforms3

(V m Wn)
′ =

∂Y m

∂Xa

∂Xb

∂Y n
(V a Wb) (23)

Equation (23) is the transformation property of the tensor
Tm

n which has one index upstairs and one index downstairs.

Now let m = n and contract the indices. Remember, con-
tracting means identifying an upper and a lower index and
sum over them. So on the left hand side we get

(V m Wm)′

How many indices does it have? Zero. The index m is
summed over. The quantity is a scalar. It is by definition
the expression of the scalar V m Wm in the prime coordinate
system, which as we know doesn’t change. So the contrac-
tion of V m Wn did create another tensor, namely a scalar.

We can check what equation (23) says. It should confirm
that (V m Wm)′ is the same as V m Wm.

Now our little lemma comes in handy. On the right
hand side of (23), when we set m = n and sum over m, the
sum of the products of partial derivatives is δba. So the right
hand side is V a Wa. But a or m are only dummy indices,

3We write (V m Wn)
′, but we could also write (V m)′ (Wn)

′, be-
cause we know that they are the same. Indeed that is what we mean
when we say that the outer product of two vectors forms a tensor :
we mean that we can take the collection of products of their com-
ponents in any coordinate system. Calculated in any two systems,
(V m)′ (Wn)

′ and V m Wn will be related by equation (23).
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therefore equation (23) says indeed that

(V m Wm)′ = V m Wm

So by contracting two indices of a tensor we make another
tensor, in this case a scalar.

It is easy to prove, and the reader is encouraged to do it,
that if you take any tensor with a bunch of indices, any
number of indices upstairs and downstairs,

Tnmr
pqs (24)

and you contract a pair of them (one contravariant and one
covariant), say r and q, you get

Tnmr
prs (25)

where the expression implicitely means a sum of compo-
nents over r, and this is a new tensor.

Notice that the tensor of expression (24) has six indices,
whereas the tensor of expression (25) has only four.

And notice two more things:

a) If we looked at V m Wn, we would be dealing with
a tensor which cannot be contracted. The analog of
equation (23) would involve

∂Y m

∂Xa

∂Y n

∂Xb

This quantity doesn’t become the Kronecker delta
symbol when we set m = n and sum over it. And∑

m(V m)′ (Wm)′ would not be equal to
∑

m V
m Wm.
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b) The dot product of two vectors V and W is the con-
traction of the tensor V m Wn. But in that case one
vector must have a contravariant index, and the other
a covariant index.

In other words, contraction is the generalization of the dot
product (also called inner product) of two vectors. We are
going to deal with inner products as soon as we work again
with the metric tensor.

More on the metric tensor

The metric tensor plays a big role in Riemannian geometry.
We showed its construction with the basis vectors em’s, see
figure 7 and after. In the set of equations (11), we wrote

gmn = em.en

But let’s now define it on its own terms abstractly. Again
these are things we have already covered before, but let’s
do them again now we have a bit more practice with tensors.

The definition of the metric tensor goes like this. Consider
a differential element dXm which just represents the com-
ponents of a displacement vector dX. In other words, we
are at a point P on the Riemannian surface (or Rieman-
nian space if we are in more that two dimensions), see figure
10, and we consider an infinitesimal displacement which we
call dX – even though we also attach X to a specific co-
ordinate system. We could call the small displacement dS
but traditionally dS is a scalar representing a length.
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Figure 10: Displacement vector dX.

The contravariant components of dX are the coefficients of
the vector dX in the expansion given by equation (4), which
we rewrite below specifically for dX, supposing furthermore
to make notations simple that there are three dimensions
and therefore three axes,

dX = dX1e1 + dX2e2 + dX3e3 (26)

Each dXm is a contravariant component of the little dis-
placement vector of figure 10.

Now we ask: what is the length of that displacement vector?

Well, we need to know more about the geometry of the sur-
face (also called variety) to know what the length of the
little vector is. The surface or variety could be some arbi-
trarily shaped complicated space.

Specifying what the geometry of the variety is, in effect is
specifying what the lengths of all the infinitesimal displace-
ments are.
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As said, we usually denote the length dS, and we usually
work with its square. When the variety locally is Euclidean,
dS is defined with Pythagoras theorem, but when the axes
locally are not orthogonal or the dXm are not expressed in
units of length, or both, then Pythagoras theorem takes a
more complicated form.

It is still quadratic in the dXm’s, but it may also involve
products dXmdXn and there is a coefficient gmn in front
of each quadratic term. The square of the length of any
infinitesimal displacement is given by

dS2 = gmn dX
mdXn

In general the gmn depend on where we are, that is, they
depend on P , which we locate with its coordinates X’s. So
we write more generally

dS2 = gmn(X) dXmdXn (27)

We are going to stick with the case of four dimensions be-
cause we are in a course on relativity. For the moment, how-
ever, we don’t consider the Einstein-Minkowski distance
whose square can be a negative number. We are in a
Riemannian geometry with four dimensions, where all dis-
tances are real and positive. In that case how many inde-
pendent components are there in the gmn object? Answer:
to begin with there are 16, because gmn is a 4 x 4 array.

But dX1dX2 is exactly the same as dX2dX1. So there is no
point in having a separate variable for g12 and g21, because
they can be made equal to each other. So there are only 4
+ 3 + 2 + 1 = 10 independent components in gmn in four
dimensions, see figure 11.
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Figure 11: Independent components in gmn.

Similarly in a three-dimensional space there would be 6 in-
dependent components in gmn. And in two dimensions it
would be 3.

So far we haven’t proved that gmn is a tensor. I called it the
metric tensor, but let’s now prove that it is indeed such an
object. The basic guiding principle is that the length of a
vector is a scalar, and that everybody agrees on that length.
People using different coordinate systems won’t agree on
the components of the little vector dX (see figure 10), but
they will agree on its length. Let’s write again the length
of dX, or rather its square

dS2 = gmn(X) dXm dXn (28)

And now let’s go from the X coordinates to the Y coordi-
nates. Because dS2 is invariant, the following holds

gmn(X) dXm dXn = g′pq(Y ) dY p dY q (29)

Now let’s use this elementary calculus fact

dXm =
∂Xm

∂Y p
dY p (30)
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And plug expression (30) for dXm and for dXn into equa-
tion (29). We get

gmn(X)
∂Xm

∂Y p

∂Xn

∂Y q
dY p dY q = g′pq(Y ) dY p dY q (31)

The two sides of equation (31) are expressions of the same
quadratic form in the dY p’s. That can only be true if the
coefficients are the same. Therefore we established the fol-
lowing transformation property

g′pq(Y ) = gmn(X)
∂Xm

∂Y p

∂Xn

∂Y q
(32)

This is just exactly the transformation property of a ten-
sor with two covariant indices. So we discovered that the
metric tensor is indeed really a tensor. It transforms as a
tensor. This will have many applications.

The metric tensor has two lower indices because it multi-
plies the differential displacements dXm’s in equation (28)
which have upper indices.

But the metric tensor is also just a matrix withm n indices.
Remembering that gij = gji, it is the following matrix,
which we still denote gmn,

gmn =


g11 g12 g13 g14
g12 g22 g23 g24
g13 g23 g33 g34
g14 g24 g34 g44


It is a symmetric matrix.
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There is one more fact about this matrix, that is about the
tensor gmn thought of as a matrix. It has eigenvalues. And
the eigenvalues are never zero.

The reason the eigenvalues are never zero is because a zero
eigenvalue would correspond to a little eigenvector of zero
length. But there are no vectors is 0 length. In Riemannian
geometry every direction has a positive length associated
with it.

What do we know about matrices which are symmetric and
whose eigenvalues are all non-zero? Answer: they have
inverses. The matrix of the metric tensor – both denoted
gmn or g for simplicity – has an inverse which in matrix
algebra would be denoted g−1mn or simply g−1. And

g−1 g = the unit matrix

In tensor algebra, the inverse matrix is not denoted g−1mn nor
g−1. It is denoted gmn, with the indices upstairs.

gmn is also a tensor. Its defining property is that, as a
matrix, it is the inverse of the initial matrix gmn with two
lower indices. Let’s write the corresponding equations. It
is the last thing we shall do in this lesson. Let’s do it slowly.

Consider two matrices A and B. Let’s say two square ma-
trices for simplicity, one denoted with upper indices and the
other with lower indices

Amn and Bpq

How do we multiply them? That is, how do we compute
the m q component of the product? It is very simple. If
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you remember matrix algebra, it is

(AB)mq = AmrBrq

So let’s compute the product of the two matrices gmn by
gmn. By definition of gmn, we have

gmn g
np = δpm (33)

where δpm is the identity matrix.

Equation (33) is an equation in matrix algebra. But it is
also an equation in tensor algebra. It is indeed elementary
to show that gnp is also a tensor. Its expression in a Y
coordinate system is by definition (g′)np, such that

g′mn (g′)np = δpm

Then there are various mathematical ways to arrive at the
analog of equation (32) for the tensor g with upper indices.

As a tensor equation, equation (33) shows on its left hand
side the contraction of the tensor gmn ⊗ gqp. And it says
that the contraction of that product is the Kronecker delta
object, which is necessarily also a tensor since it is the re-
sult of the contraction of a tensor.

gmn is called the metric tensor with two contravariant in-
dices.

The fact that there is a metric tensor with downstairs in-
dices and a metric tensor with upstairs indices will play an
important role.
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So far everything we have seen on tensors was easy. It is
essentially learning and getting accustomed with the nota-
tion.

Next step: differentiation of tensors

In the next chapter we will go on to the subject of curva-
ture, parallel transport, differentiation of tensors, etc.

The idea of a covariant derivative will be a little more com-
plicated than tensor algebra. Not much. But it is essential.
We have to know how to differentiate things in a space, if
we are going to do anything useful.

In particular, if we are going to study whether the space is
flat, we have to know how things vary from point to point.
The question of whether a space is flat or not fundamen-
tally has to do with derivatives of the metric tensor – the
character and nature of the derivatives of the metric tensor.

So in the next chapter we will talk a little bit about tensor
calculus or tensor analysis, differentiation of tensors, and
especially the notion of curvature.
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