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“Reverse Bayesianism”: 
 A Choice-Based Theory of Growing Awareness†

By Edi Karni and Marie-Louise Vierø*

This article introduces a new approach to modeling the expanding 
universe of decision makers in the wake of growing awareness, and 
invokes the axiomatic approach to model the evolution of decision 
makers’ beliefs as awareness grows. The expanding universe is 
accompanied by extension of the set of acts, the preference relations 
over which are linked by a new axiom, invariant risk preferences, 
asserting that the ranking of lotteries is independent of the set of acts 
under consideration. The main results are representation theorems 
and rules for updating beliefs over expanding state spaces and events 
that have the flavor of “reverse Bayesianism.” (JEL D81, D83)

According to the Bayesian paradigm, as new discoveries are made and new infor-
mation becomes available, the universe shrinks: with the arrival of new information, 
events replace the prior universal state space to become the posterior state space, or 
universe of discourse. This process of “destruction” reflects the impossibility, in the 
Bayesian framework, of expanding the state space and of updating the probabilities 
of null events, coupled with the fact that conditioning on new information renders 
null events that, a priori, were nonnull. Yet, experience and intuition alike contradict 
this view of the world. Becoming accustomed to possibilities that were once incon-
ceivable is part of history and our own life experience. There is a sense, therefore, in 
which our universe expands as we become aware of new opportunities.

In this paper we take a step toward modeling the process of growing awareness 
and expansion of the universe, or state space, in its wake.1 To model the evolution 
of beliefs in response to growing awareness, we invoke the theory of choice under 
uncertainty; borrowing its language and structure while modifying it to fit our pur-
pose. In particular, we allow for new consequences and feasible acts to be discov-
ered and for new evidence to establish, in the mind of decision makers, new links 
between acts and consequences. The interpretation of the updating is somewhat 
 different for the discovery of new feasible acts and consequences on the one hand 

1 Dekel, Lipman, and Rustichini (1998) argue that standard state spaces preclude unawareness. A choice theoretic 
approach therefore needs a more general point of departure than Savage (1954) and Anscombe and Aumann (1963).
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and the discovery of new links between feasible acts and consequences on the other. 
The discovery of new feasible acts and consequences represents growing awareness 
and leads to genuine expansion of the decision maker’s universe. By contrast, new 
evidence suggesting the existence of links between feasible acts and consequences 
that were previously considered conceivable but unfeasible, results in rendering 
nonnull events that prior to the discovery of the new links were null. This updating 
of zero probability events is part of the reverse Bayesianism nature of our model.

In this article, a decision maker’s initial perception of the state-space is deter-
mined by primitive sets of what he considers to be feasible acts and feasible conse-
quences. The conceivable state space consists of all the mappings from the set of 
feasible acts to that of the consequences.2 Taking only those mappings from the set 
of feasible acts to the set of consequences that the decision maker actually considers 
possible defines a (subjective) feasible state space. The discovery of new conse-
quences and/or new feasible acts expands both the conceivable and feasible state 
spaces, capturing the decision maker’s growing awareness. The discovery of new 
feasible states (that is, new links between feasible acts and consequences) that the 
decision maker previously believed to be impossible expands the feasible state space 
but not the conceivable state space. Within this framework, we model the evolution 
of beliefs in a way that can be described as “reverse Bayesianism.”

We assume throughout that, within a given conceivable state space, decision 
 makers’ choice behavior is governed by the axioms of subjective expected utility 
theory. Our axioms linking preferences under different levels of awareness imply 
that as the state space expands, probability mass is shifted proportionally away from 
the nonnull events in the prior state space to events created as a result of the expan-
sion of the state space. When new links between feasible acts and consequences 
are discovered, events become nonnull, requiring the shifting of probability mass, 
proportionally, away from the prior nonnull events to the prior null events that have 
now become nonnull. We note that the same process applies in the inverse direction. 
The discovery that certain hypotheses about the connections between feasible acts 
and consequences are invalid render some events null. This requires redistributing 
the probability mass assigned to prior nonnull events, proportionally, among the 
remaining nonnull events. This process amounts to Bayesian updating.

Preference relations corresponding to different levels of awareness are defined 
over different domains. To link the preference relations across their corresponding 
domains, we introduce a new axiom, dubbed invariant risk preferences, asserting 
that the ranking of lotteries is independent of the set of acts under consideration.

The main novelties of this article are the analytical framework within which grow-
ing awareness may be formalized and its consequences analyzed, and an axiomatic 
depiction of the evolution of preferences as the decision maker’s awareness grows. 
The reverse Bayesianism aspect of our approach is driven by axioms that have the 
flavor of Savage’s (1954) sure thing principle.

The systematic evolution of beliefs depicted by our approach makes it possible to 
predict, at least partially, the decision maker’s behavior when something unforeseen 
occurs. With the discovery of a contingency that he was unaware of, the decision 

2 Here we follow the approach to defining a state space described in Schmeidler and Wakker (1987) and Karni 
and Schmeidler (1991).
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maker’s prior conception—or “model”—of the universe is falsified. When this hap-
pens, the decision maker’s prior model need not be discarded; it can still provide 
some guidance for behavior in the “new” expanded universe. In other words, deci-
sion makers can use their experiences and understanding of the prior state space 
to guide their choices when their growing awareness enables them to construct an 
expanded state space.

The exploration of the issue of unawareness in the literature has invoked at least 
three different approaches. (i) the epistemic approach (see Fagin and Halpern 1988; 
Modica and Rustichini 1999; Halpern 2001; Li 2009; Hill 2010; and Heifetz, Meier, 
and Schipper 2006); (ii) the game-theoretic, or interactive decision making, approach 
(see Halpern and Rego 2008; Heifetz, Meier, and Schipper 2013; Grant and Quiggin 
forthcoming); and (iii) the choice-theoretic approach (see Kochov 2010; Schipper 
2013; Li 2008; Lehrer and Teper forthcoming; Ahn and Ergin 2010).

Our approach falls within the third category. However, unlike other studies that 
take the choice-theoretic approach, we do not take the state space as given.3 Instead, 
we construct the relevant state space from the sets of feasible acts and consequences 
and the perceived links between them. In so doing, we abstract from concrete 
interpretations of the states and treat them as abstract resolutions of uncertainty. 
Consequently, decision makers’ unawareness concerns feasible acts, feasible conse-
quences, and/or their links.

Kochov (2010) considers a decision maker who knows that his perception of the 
universe may be incomplete. He characterizes the collection of foreseen events and 
shows that the result of the decision maker being aware of his incomplete perception 
of the environment is that his beliefs are represented by a nonsingleton set of priors, 
which he updates as his perception of the environment becomes more precise.

Schipper (2013) focuses on detecting unawareness. Taking as primitive a lattice 
of disjoint state spaces in the Anscombe and Aumann (1963) model,4 he defines acts 
as mappings from the union of these state spaces to the set of consequences. Thus, 
an act in Schipper’s model corresponds to an equivalence class of acts in our model. 
Another difference between Schipper’s model and the approach taken here is that he 
defines the preference relation on the set of all acts, while we define the preference 
relation on the set of conceivable acts given a state space. Consequently, unlike in 
this work, in Schipper (2013) the decision maker may not understand how an act 
assigns consequences to states (because he may be unaware of some event). These 
differences reflect diverse motivations. While our main interest is modeling growing 
awareness, Schipper’s main interest is the behavioral implications of unawareness 
of some events.

3 In the epistemic approach it is possible to construct, canonically, the state space from syntax (e.g., Halpern 
and Rego 2008; Heifetz, Meier, and Schipper 2008). This allows a more direct comparison between the epistemic 
approach and the decision-theoretic approach pursued in this article. In particular, the two approaches attribute 
unawareness to the limitation of language rather than to the power of reasoning. The choice theoretic approach is 
a special case of the epistemic approach in that its depiction of the state space does not contain anything related to 
the epistemic status of the decision maker.

4 A lattice in Schipper’s framework could be constructed from primitives of the present model as follows: fix 
finite sets of acts and consequences and consider the power sets corresponding to these sets. For each subset of acts 
and consequences, define a conceivable state space, as we do below. The set of all conceivable state spaces thus 
defined constitute a complete lattice of spaces with partial order defined by set inclusion on acts and consequences.
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Li (2008) takes as primitives a fixed set of consequences and two exogenously 
given state spaces that correspond to a decision maker being less than fully aware 
and fully aware. Decision makers are characterized by preference relations, condi-
tional on the level of awareness, over Anscombe-Aumann acts on the corresponding 
state spaces. Li considers two types of unawareness: “pure unawareness,” depicting 
situations in which the decision maker’s perception of the environment is coarse, 
and “partial unawareness,” depicting situations in which the decision maker’s per-
ception of the universe is a subset of the full state space. Partial unawareness has 
a flavor of unawareness of consequences or links between acts and consequences. 
However, since Li uses a traditional approach in taking her two state spaces as exog-
enously given, unawareness is directly about states, and, thus, her model is silent 
on how the discovery of new consequences or new scientific links would translate 
into the evolution of the state space and into behavior. Also, her model is unable to 
accommodate the discovery of new acts.

Ahn and Ergin (2010) introduce a theory of decision making under uncertainty 
designed to capture the idea that the evaluation of acts may depend on the manner 
in which the underlying events, or contingencies, are described. Formally speaking, 
these descriptions, or frames, are finite partitions of the state space, and the subjec-
tive likelihoods of events are quantified by a partition-dependent probability mea-
sure which is the normalized nonadditive set function over events. Acts are functions 
measurable with respect to the algebras generated by the partitions. Decision mak-
ers in this model are characterized by a family of partition-dependent preference 
relations representable by expected utility functionals. This analytical framework 
accommodates what Ahn and Ergin refer to as overlooked events. Growing alert-
ness in their model takes the form of refining the partitions so that overlooked events 
become cells of the new partitions.

As will become clear below, the approach of Ahn and Ergin is different from 
the approach in this paper in several important respects. First, their model is not 
designed to, and therefore cannot, accommodate the discovery of new consequences 
and associated expansion of the state space following such discoveries. Second, 
their model is neither designed to nor can it accommodate the discovery of new links 
between acts and consequences and the updating of the probabilities of null events. 
Where the two approaches display similar features is in the case in which awareness 
grows in the wake of discovery of new acts. In our model this implies that what was 
considered a state at a lower level of awareness becomes an event at the higher level 
of awareness. Consequently, the higher level of awareness requires the partition of 
such events. In the work of Ahn and Ergin the refined partition of the state space 
expands the set of acts. In their model, however, the nonadditivity of the support 
function implies that the sum of the probabilities of the subevents may exceed (fall 
short of) that of the original event. By contrast, in the model presented here, the 
probabilities of the subevents of the finer partition sum up to the probability of the 
original event. Since the relative probabilities of the cells of the original partition 
change, and as a result the preferences among acts that are measurable with respects 
to these partitions change, this difference implies distinct behavioral implications of 
the two models.

Lehrer and Teper (forthcoming) model growing awareness due to the decision mak-
er’s improved ability, in the wake of information acquisition, to distinguish among 
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events. As in Ahn and Ergin (2010), the state space in the model of Lehrer and Teper 
takes the form of finer partitions of the existing state space. Thus, most of the discus-
sion in the previous paragraph applies to Lehrer and Teper as well, with the modifica-
tion that their decision maker has Knightian preferences on the expanded set of acts.

I. The Meanings of Growing Awareness

The examples below illustrate the sense in which a decision maker’s universe 
expands in the wake of his growing awareness.

A. Discovery of New Consequences

The Discovery of the New World.—Columbus set out to discover a new sea route 
to India, presumably taking into account consequences such as ending the trip at 
the bottom of the ocean, having to turn back, losing some ships and crew members, 
reaching India, etc. He could not have included, among the set of consequences, the 
discovery of a new continent. This discovery expanded the universe for mankind.

The Discovery of Syphilis.—The discovery of the New World ushered in its wake a 
new consequence of sexual intercourse. Presumably, sexual intercourse and the risk of 
contracting venereal diseases were well known in the Old World. Syphilis, however, 
was a new consequence whose discovery expanded the universe of the Europeans.

Discovery of a “new” consequence expands the state space and may affect the 
decision maker’s ordinal preferences over acts. In other words, two acts that agree 
on the “old” state space may become distinct when associated with new conse-
quences; as a result, one of the newly defined acts may be strictly preferred over the 
other.

B. Discovery of New Feasible Acts

Artificial Self-Sustaining Nuclear Chain Reaction.—After the discovery of nuclear 
fission, Szilárd and Fermi discovered neutron multiplication in uranium, proving 
that a nuclear chain reaction by this mechanism was possible. On December 2, 
1942, Fermi created the first artificial self-sustaining nuclear chain reaction, thus 
making it feasible to use nuclear energy, for peaceful and military purposes. The 
consequences, such as the use of energy to produce electricity or explosions, were 
known long before the scientists became aware of the new possibilities of producing 
these consequences by means of nuclear fission.

The Invention of Sound Recordings.—By making it possible to preserve sounds, 
the invention of sound recording devices expanded the state space to include future 
replays of currently produced sounds.

The Invention of New Financial Instruments.—The invention of option trading 
opened up new possibilities of creating portfolios and diversifying risks. Again, 
the consequences, monetary gains and losses, were there before the invention. 
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The new financial instruments represent new processes of attaining the same 
consequences.

C. Discovery of New Links and Changing Beliefs

Yellow Fever.—To prevent ants from crawling into hospitals’ beds, French doc-
tors working in Panama during the French attempt to build the Panama Canal placed 
the legs of the beds in bowls of water. These pools of water provided breeding 
grounds for the mosquitoes carrying yellow fever. Not being aware of the way the 
yellow fever was transmitted, the French did not conceive that their actions contrib-
uted to the propagation of the disease. Later, when the connection between stagnant 
water, mosquitoes, and yellow fever was understood, the Americans were able to 
eradicate yellow fever, eliminating a major stumbling point to the construction of 
the Panama Canal.

The Velocity of Light.—According to Newton’s mechanics the speed of light 
 emitted by a flashlight moving in the forward direction should exceed the known 
speed of light by the speed of the flashlight. The discovery that, despite the expected 
boost from being emitted by a very fast source, the light is going forward at the 
usual speed of 186,300 miles per second ushered in a revision of our understanding 
of the physical world. If we interpret the emission of light by a flashlight moving in 
the forward direction as an act, then the consequence, reaching a target in the direc-
tion of the movement at the speed of 186,300 miles per second, was not considered 
possible according to the Newtonian view of the universe. Establishing that this is 
not only possible but a necessary outcome led to a revision of our beliefs about the 
feasible state space.

II. The Analytical Framework

We introduce a unifying framework within which the different sources of growing 
awareness and changing beliefs may be described and analyzed. We also illustrate 
how the different notions of growing awareness can be formalized in this framework.

A. Conceivable State Spaces

States of nature, or states for short, are abstract representations of resolutions of 
uncertainty. To define the state space, we invoke the approach of Schmeidler and 
Wakker (1987) and Karni and Schmeidler (1991).5 According to this approach, 
there is a finite, nonempty set, F, of feasible acts, and a finite, nonempty set, C, of 
feasible consequences. Together these sets determine a conceivable state space,  
C F , whose elements depict the resolutions of uncertainty. In other words, being 
a  function on the set of feasible acts to the set of consequences, a state specifies 
the unique consequence that is associated with every act, thereby resolving all 
uncertainty.

5 See also Gilboa (2009, chapter 11) for a detailed discussion and an ingenious use of this approach to formulat-
ing the state space as means of resolving Newcomb’s paradox.
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Once the set of conceivable states is fixed, the set of acts is expanded to include 
what we refer to as conceivable acts. The notion of conceivable acts captures the 
idea of acts that are imaginable given the conceivable state space. In particular, we 
assume that the decision maker can imagine acts whose outcomes are lotteries with 
consequences in C as prizes. Let Δ ( C  )  be the set of all such lotteries. Formally, 
p ∈ Δ ( C   )  is a function p : C →  [ 0, 1 ]  satisfying  ∑  c∈C   

   p ( c )  = 1. Then the set of 
conceivable acts consists of the functions in the set

(1)    F  := { f :  C  F  → Δ ( C  ) }.

Notice that with the definition of Δ(C  ) above, for any C ⊂ C  ′, any p ∈ Δ(C  ) is also 
an element of Δ(C  ′ ) with p(c) = 0 for all c ∈ C  ′ − C. Likewise, q ∈ Δ(C  ′ ) is an 
element of Δ(C  ) if q(c) = 0 for all c ∈ C  ′ − C. We identify c ∈ C with the degen-
erate lottery  δ c  ∈ Δ ( C  )  that assigns c the unit probability mass. Hence, F ⊂    F . 
As is usually done, we abuse notation and use p to also denote the constant act that 
returns the lottery p in each state.

To illustrate these concepts we introduce the following simple example. Let 
C = {x, y}, F = {   f 1 ,  f 2 }; then the conceivable state space consists of four states as 
described below:

 F \ C F   s 1   s 2   s 3   s 4 
  f 1  x x y y
  f 2  x y x y .

Once the set of conceivable states is fixed, the set of acts may be expanded—for 
example, by adding the constant acts,  f 3  and  f 4  , whose respective payoffs are x and 
y in every state. More generally, conceivable acts may be regarded as bets on the 
outcomes of the feasible acts whose payoffs are lotteries on the set of feasible con-
sequences. Karni and Schmeidler (1991) observe that “In practice, the distinction 
between feasible and conceivable acts is not always crucial, and in many applica-
tions the sets of states and consequences are taken as primitives.” (p. 1766). In the 
present context, however, the distinction between feasible and conceivable acts is 
crucial. It is the set of feasible acts, together with the feasible consequences, that 
shape the decision maker’s image of the state space.

Discovery of new consequences expands the conceivable state space. For instance, 
let C denote the initial set of consequences and suppose that a new consequence, 
 
_
 c  , is discovered. The set of consequences of which the decision maker is aware then 

expands to C  ′ = C ∪ { _ c  }. The discovery of  
_
 c   requires a reformulation of the initial 

model, incorporating the new consequence into the range of the feasible acts. We 
denote the set of feasible acts with extended range by  F  ∗ . Using these notations, 
the expanded conceivable state space is (C  ′  )  F   ∗  . The event (C  ′  )  F   ∗   −  C  F  represents 
the expansion of the decision maker’s conceivable state space. The corresponding 
expanded set of conceivable acts is given by

(2)     F  ∗  :=  {   f : (C  ′  )  F   ∗   → Δ (  C′   )  } .
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As an illustration, let there be two feasible acts, F = {   f 1 ,  f 2 }, and two conse-
quences, C = { c 1 ,  c 2 }. The resulting conceivable state space is given by  C  F  and, 
thus, consists of four states as depicted in the following matrix:

(3) F \ C  F   s 1   s 2   s 3   s 4 
  f 1   c 1   c 2   c 1   c 2 
  f 2   c 1   c 1   c 2   c 2  .

Suppose that a new consequence,  c 3 , is discovered. The new conceivable state space 
consists of the nine states in the set (C  ′  )  F   ∗  :

  F  ∗  \(C  ′  )  F   ∗     s 1   s 2   s 3   s 4   s 5   s 6   s 7   s 8   s 9 
  f 1   c 1   c 2   c 1   c 2   c 3   c 3   c 1   c 2   c 3 
  f 2   c 1   c 1   c 2   c 2   c 1   c 2   c 3   c 3   c 3  .

Discovery of new feasible acts also expands the conceivable state space, albeit 
in a different way. To grasp the difference, assume again that F = {   f 1 ,  f 2 } and 
C = { c 1 ,  c 2 }. The resulting conceivable state space is depicted in the matrix labeled 
(3). Suppose that a new feasible act, say,  f 3 , is discovered. The set of feasible acts 
is now F ′ = {   f 1 ,  f 2 ,  f 3 }. The discovery of the new feasible act changes the decision 
maker’s conceivable state space.6 The new conceivable state space,  C   F  ′  , consists of 
the eight states depicted as follows:

  F′  \ C   F  ′    s 1   s 2   s 3   s 4   s 5   s 6   s 7   s 8 
  f 1   c 1   c 2   c 1   c 2   c 1   c 2   c 1   c 2 
  f 2   c 1   c 1   c 2   c 2   c 1   c 1   c 2   c 2 
  f 3   c 1   c 1   c 1   c 1   c 2   c 2   c 2   c 2  .

The elements of the expanded state space  C   F  ′   constitute a finer partition of the 
original state space  C    F . In other words, each state in  C   F  is a nondegenerate event in 
the expanded state space  C   F  ′  . For example, the state  s 1  :=  (  c 1 ,  c 1  )  ∈  C    F  is the event 
E = { s 1 ,  s 5 } in the state space  C   F  ′  . The new set of conceivable acts is

    F   ′ := {  f :  C   F  ′   → Δ ( C ) }.

Note that, unlike the discovery of new consequences, the discovery of new acts 
requires that the length of the vector of consequences defining each state increases. 
As we show later, this aspect of the evolving state space requires special treatment.

6 Unlike in this article, in which the state space expands and is partitioned more finely as a result of the discovery 
of new acts, in Ahn and Ergin (2010) new acts are defined as a result of a finer partition of an existing state space. 
These acts represent growing alertness to possibilities that were always present and were overlooked. The unique-
ness result (Theorem 2) of Ahn and Ergin depends on the notion of gradual filtration. This rules out the discovery 
of new acts which, as we shall show below, implies a simultaneous partition of all events.
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B. The Feasible State Space

The decision maker’s perception of the state space is bounded by his awareness 
of the sets of feasible acts and consequences. However, he also entertains beliefs 
about the possible links between feasible acts and their potential consequences. 
These beliefs manifest themselves in, and may be inferred from, the decision mak-
ers’ choice behavior.

To formalize this idea we consider a decision maker whose choice behavior is 
characterized by a preference relation  ≽    F   on    F .7 We denote by  ≻    F   and  ∼    F   the asym-
metric and symmetric parts of  ≽    F  , with the interpretations of strict preference and 
indifference, respectively. For any f ∈    F , p ∈ Δ ( C   ) , and s ∈  C   F , let  f −s   p be the 
act in    F  obtained from f by replacing its s − th coordinate with p. A state s ∈  C   F  
is said to be null if  f −s   p  ∼    F    f −s  q for all p, q ∈ Δ ( C ) . A state is said to be nonnull 
if it is not null. Denote by  E   N  the set of null states and let S ( F, C )  =  C   F  −  E   N  be 
the set of all nonnull states. Henceforth, we refer to S ( F, C )  as the feasible state 
space. Consistently with the revealed-preference approach, we make no distinction 
between feasible states and nonnull states. “Unawareness” of links between feasible 
acts and consequences, according to our interpretation, means awareness that such 
links are conceivable but believed to be impossible.

New information (e.g., scientific evidence, an observation) may change the deci-
sion maker’s beliefs concerning the links between feasible acts and consequences 
and his perception of the feasible state space. Unlike the discovery of new feasible 
consequences and/or new feasible acts, which expands both the set of conceivable 
and the set of feasible states, changes of the decision maker’s beliefs concerning the 
links between them changes the set of feasible states but leaves the set of conceivable 
states intact. Consequently, the discovery of new feasible consequences and/or new 
feasible acts represents a genuine expansion of the decision maker’s universe (that 
is, his perception of the state space), while new information concerning the links 
between feasible acts and consequences entails expansion or contraction of the fea-
sible state space. This may require the updating of zero probability events in the exist-
ing conceivable state space that, under the new information, might occur, or nullifying 
positive probability events that are considered no longer possible. When new links 
become possible, the decision maker includes the consequences f  ( s ) , for all f ∈ F 
and some s ∈  C   F  − S ( F, C ) , in the ranges he considers possible of the feasible acts. 
Vice versa when old links are eliminated. We denote the newly defined feasible state 
space incorporating the new links by S′ ( F, C ) , the corresponding set of conceivable 
acts by     F   S  ′  , and the decision maker’s posterior preference relation by  ≽     F   S  ′   .

8

To see how changes in the perceived links change the feasible state space, consider 
the case in which there are two feasible acts, F = {   f 1 ,  f 2 }, and two  consequences, 
C = { c 1 ,  c 2 }. The conceivable state space  C   F  consists of four states as in matrix (3). 
If the decision maker does not believe that the act  f 2  may result in the consequence  c 2 ,  
(that is, whether  f 1  results in  c 1  or  c 2 , the consequence  c 2  is considered impossible if  
f 2  is chosen) then the states  (  c 2 ,  c 2  )  and  (  c 1 ,  c 2  )  are null. In other words, the feasible 
state space is S ( F, C )  = { (  c 1 ,  c 1  ) ,  (  c 2 ,  c 1  ) }. Suppose that new evidence establishes 

7 More formally, the preference relation is a binary relation on    F .
8 In fact, the set of conceivable acts is unchanged, but the notation is used to index the preference relation.
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that  f 2  may result in  c 2   , (independently of the consequence that is associated with 
the choice of  f 1   ) and, as a result, the decision maker realizes that his belief that 
certain states cannot possibly obtain is untenable. Then, following the discovery of 
the new (and final) link, the feasible and conceivable state spaces coincide (that is, 
 S′  ( F, C )  =  C   F  ). By the same logic, the discovery that a link that the decision maker 
believed possible is, in fact, impossible, results in rendering null an event that was 
considered to be nonnull before the discovery.

What is a reasonable updating rule for probabilities of events that were considered 
impossible (null) and, as a result of scientific progress and growing understanding 
of the structure of the universe, become possible (nonnull)? Clearly, the Bayesian 
approach is useless for this purpose. Here we explore an alternative approach.

To discuss the various types of unawareness with which we are concerned, we use 
the following notational convention throughout. We denote by F and C, respectively, 
the initial sets of feasible acts and consequences, and we let S ( F, C )  denote the cor-
responding feasible state space. When new elements are introduced into each of these 
sets we denote the corresponding new sets by  F  ′  and  C  ′ . When new acts are discov-
ered, the new feasible state space is denoted by S (  F  ′ , C ) . When new consequences are 
discovered, the new feasible state space is denoted by S (  F   ∗ ,  C′  ) , where the asterisk 
indicates that the ranges of the feasible acts now include the new consequence.

III. Growing Awareness and Choice Behavior

The discovery of new feasible consequences and acts expands the decision maker’s 
perception of the state space and its structure. The discovery of new links between 
acts and consequences expands what he considers to be the feasible state space. How 
does the decision maker’s growing awareness manifest itself in his choice behavior? 
In this section we address this question.

A. Basic Preference Structure

Decision makers in our model are supposed to be able to express preferences among 
conceivable acts. Formally, let   be a family of sets of conceivable acts corresponding 
to increasing levels of awareness from all sources (that is, from the discovery of new 
feasible acts, consequences, and links between them). Because the set of conceivable 
acts is a variable in our model, we denote the preference relation on    F  by  ≽    F    . When 
the state space expands, so does the set of conceivable acts, which means that the 
preference relations must be redefined on the extended domain. For instance, if    F   ∗ is 
the expanded set of conceivable acts in the wake of discoveries of new feasible con-
sequences, then the corresponding preference relation is denoted by  ≽    F  ∗ . If the state 
space is expanded in the wake of the discovery of new feasible acts, then the new set 
of conceivable acts is denoted by    F ′ and the expanded preference relation by  ≽     F   ′  .

For each    F  ∈ , f, g ∈    F , and α ∈  [ 0, 1 ]  define the convex combination α f +  
( 1 − α )  g ∈    F  by  ( αf +  ( 1 − α )  g )   ( s )  = αf  ( s )  +  ( 1 − α )  g ( s ) , for all s ∈  C   F . 
Then,    F  is a convex subset in a linear space.9

9 Throughout this paper we use Fishburn’s (1970) formulation of Anscombe and Aumann (1963). According to 
this formulation, mixed acts, (that is, α  f +  ( 1 − α )  g) are, by definition, conceivable acts.
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We assume that, for each    F  ∈ ,  ≽    F   abides by the axioms of expected utility 
theory. Formally,

 (A.1) (Weak order) For all    F  ∈ , the preference relation  ≽    F   is transitive and 
complete.

 (A.2) (Archimedean) For all    F  ∈  and f, g, h ∈    F , if f  ≻    F   g and g  ≻    F   h then αf +  
( 1 − α )  h  ≻    F   g and g  ≻    F   β f +  ( 1 − β )  h, for some α, β ∈  ( 0, 1 ) .

 (A.3) (Independence) For all    F  ∈ , f, g, h ∈    F , and α ∈ (0, 1], f  ≽    F   g if and only 
if α f +  ( 1 − α )  h  ≽    F   αg +  ( 1 − α )  h.

In addition we suppose that, for each    F  ∈ ,  ≽    F   abides by the following axioms. 
The first axiom, monotonicity, is analogous to Savage’s (1954) postulate P3.10

 (A.4) (Monotonicity) For all    F  ∈ , f ∈    F , p, q ∈ Δ ( C )  and nonnull event E ⊆  
C   F ,  f −E  p  ≽    F    f −E  q if and only if p  ≽    F   q.

 (A.5) (Nontriviality) For all    F  ∈ ,   ≻    F   ≠ ∅.

B. Invariant Risk Preferences

To link the preference relations across expanding sets of conceivable acts, we 
introduce a new axiom, which we refer to as invariant risk preferences. The essence 
of this axiom is that the ranking of constant acts, which capture the decision maker’s 
risk preferences, is independent of the set of acts on which the preference relation is 
defined. The axiom delivers the commonality of risk attitudes regardless of whether 
the conceivable and/or feasible state space expands as a result of growing aware-
ness of consequences, acts, or links between them.11

 (A.6) (Invariant risk preferences) For every given    F ,     F ′ ∈ , if C and  C′  are the 
sets of consequences associated with    F  and    F ′, respectively, then p  ≽    F   q if 
and only if p  ≽     F   ′   q for all p, q ∈ Δ ( C ∩  C′   ) .

When new consequences are discovered, C ⊂  C′ , then C ∩  C′  = C. When new 
feasible acts are discovered, the invariant risk preferences axiom may be stated as 
follows: for all F,   F′  and p, q ∈ Δ(C), p  ≽    F   q if and only if p  ≽     F   ′   q. When new links 
are discovered (or old links eliminated) between the original sets of acts, , and con-
sequences, C, the invariant risk preferences axiom asserts that, for all p, q ∈ Δ(C), 
p  ≽    F   q if and only if p  ≽     F   S  ′    q.

10 It is well known that, under the axioms (A.1)–(A.3) and (A.5), monotonicity is equivalent to Anscombe and 
Aumann’s (1963) state-independence axiom.

11 This axiom was suggested to us by a referee. It is simpler and much more transparent than the axiom we used 
in our original paper.
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IV. The Main Results

The analysis of the effects of growing awareness on choice behavior and the evo-
lution of decision makers’ beliefs is divided into three parts. In the first part, we 
explore the implications of the discovery of new consequences. In the second part 
we explore the implications of the discovery of new feasible acts. In the third part, 
we explore the implications of the discovery of new acts-consequences links. The 
discovery of new consequences increases the number of conceivable and, in general, 
also of feasible states, but the “dimension” of each state is unchanged. By contrast, 
the discovery of new feasible acts increases the number of both conceivable and 
feasible states and, at the same time, changes the characterization of each state in 
such a way that what used to be a state before the discovery of the new act is an 
event in the reconstructed state space following the discovery. The discovery of new 
acts-consequences links increases the set of feasible states without affecting the 
conceivable state space.

A. Discovery of New Consequences and Its Representation

The following axiom requires that, as the decision maker’s awareness of con-
sequences grows and his state space expands, his preference relation conditional 
on the prior state space remains unchanged. In other words, the discovery of new 
consequences does not alter the preference relation conditional on the original set 
of feasible states.12 To formalize this idea, let  C′  ⊃ C,  F  ∗ , and S( F  ∗ ,  C′  ) denote, 
respectively, the new set of consequences, the new set of feasible acts redefined to 
accommodate the new consequences, and the resulting new feasible state space.13

 (A.7) (Awareness consistency) For every given F, for all C,  C′  with C ⊂  C′ , 
S(F, C) ⊆ S( F   ∗ ,  C′ ), f, g ∈    F , and  f ′ ,  g′  ∈    F   ∗, such that  f ′  = f and  g′  = g on 
S ( F, C )  and  f ′  =  g′  on S (  F   ∗ ,  C′  )  − S ( F, C )  it holds that f  ≽    F   g if and only if  
f ′   ≽    F  ∗   g′ .

Our first result describes the evolution of a decision maker’s beliefs in the wake 
of discoveries of new consequences. Specifically, a decision maker whose prefer-
ences have the structure depicted by the axioms above is a subjective expected util-
ity maximizer. Moreover, as he becomes aware of new consequences, the decision 
maker updates his beliefs in such a way that likelihood ratios of events in the origi-
nal state space remain intact. That is to say, probability mass is shifted away from 
states in the prior state space to the posterior state space, proportionally. We refer to 
this property as “reverse Bayesianism.”

THEOREM 1: For each    F  ∈ , let  ≽    F   be a binary relation on    F ; then, for all 
   F ,    F  ∗ ∈ , the following two conditions are equivalent:

12 This axiom is reminiscent of Savage’s (1954) sure thing principle in that it requires that preference between 
acts be independent of the aspects on which they agree.

13 Below,  f ′  = f on an event E means that  f ′ (s) = f (s) for all s ∈ E (i.e., it is defined pointwise for the states in 
E  ). Also, recall that for any C ⊂  C ′ , any p ∈ Δ(C ) is also an element of Δ( C ′  ).



2802 THE AMERICAN ECONOMIC REVIEW dECEMbER 2013

 (i) Each  ≽    F   satisfies (A.1)–(A.5) and, jointly,  ≽    F   and  ≽    F  ∗  satisfy (A.6) and 
(A.7).

  ( ii )  There exist real-valued, nonconstant, affine functions, U on Δ(C) and  U  ∗  on 
Δ( C′  ), and for any two    F ,     F  ∗ ∈ , there are probability measures,  π    F   on  C   F  
and  π    F  ∗  on   (  C′  )  F ∗ , such that for all f, g ∈    F ,

(4) f  ≽    F   g ⇔   ∑   
s∈ C  F 

   
 

   U (  f  ( s )  )   π    F    ( s )  ≥   ∑   
s∈ C  F 

   
 

  U ( g ( s )  )   π    F    ( s ) ,

and, for all  f ′ ,  g′  ∈    F  ∗,

(5)  f ′   ≽    F  ∗   g′  ⇔   ∑  
s∈  (  C′  )    F  ∗  

  
 

    U  ∗  (   f ′  ( s )  )   π    F  ∗  ( s )  ≥    ∑  
s∈  (  C′  )    F  ∗  

  
 

    U ∗  (  g′  ( s )  )   π    F  ∗  ( s ) .

Moreover, U and  U   ∗  are unique up to positive linear transformations, U ( p )   
=  U ∗  ( p )  for all p ∈ Δ ( C ) ,  π    F   and  π    F  ∗  are unique,  π    F   ( S ( F, C )  )  =  π    F  ∗  ( S (  F  ∗ ,  C′  )  )   
= 1, and

(6)   
 π    F    ( s ) 

 _ 
 π    F    (  s′  ) 

   =   
 π    F  ∗  ( s ) 

 _ 
 π    F  ∗  (  s′  ) 

  , 

for all s,  s′  ∈ S ( F, C ) .

The proof is in the Appendix.
It follows from the result in Theorem 1 that  U   ∗ , the von Neumann-Morgenstern 

utility function associated with the larger set of consequences  C′ , is an extension of 
U, the von Neumann-Morgenstern utility function associated with the smaller set of 
consequences C. This is an implication of the invariant risk preferences axiom (A.6).

B. Discovery of New Feasible Acts and its Representation

Recall that the introduction of new feasible acts increases the number of con-
ceivable states as well as the number of coordinates defining a state. Hence, the 
newly defined states constitute a finer partition of the original state space. To state 
the next axiom, which is analogous to axiom (A.7), we introduce the following 
additional notations: If F ⊂  F′  then  C  F  ∩  C   F  ′   = ∅, and for each s ∈  C  F  there cor-
responds an event E ( s )  ⊂  C   F  ′   defined by E ( s )  = { s′  ∈  C   F  ′   |  P  C  F   (  s′  )  = s}, where  
P  C    F   ( ⋅ )  is the projection of  C   F  ′   on  C  F .14 For s ∈  C  F , we refer to the set E ( s )  as 
the inverse image of s on  C   F  ′  . For all f ∈    F ′, p ∈ Δ ( C ) , and s ∈  C  F , define the 
act  f −E(s)  p by  (   f −E(s)  p )   (  s′  )  = p for all  s′  ∈ E ( s )  and  (   f −E(s)  p )   (  s′  )  = f  (  s′  )  for all 
 s′  ∈  C   F  ′   − E ( s ) .

14 Suppose that | F | = r and | F ′ | = k > r. Let s = ( c 1 , … ,  c k ) ∈  C   F   ′  , then  P  C  F   (s) = ( c 1 , … ,  c r ) ∈  C  F . Analogous 
projections across spaces appear in Modica (2008) and Heifetz, Meier, and Schipper (2013).
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Projection consistency requires that if two acts on the original state space disagree 
on two states, then the preference ranking of these acts is the same as that of two 
acts that disagree, in the same way, on the corresponding events in the expanded 
state space.

 (A.8) (Projection consistency) For every given C, for all F,  F′  such that 
F ⊂  F′ , p, q,   _ p  ,   _ q   ∈ Δ ( C ) , h ∈    F ,  h′  ∈     F   ′ , and s,  s′  ∈ S ( F, C ) , it 
holds that  (   (  h −s  p )  − s′    

_
 p   )   ≽    F    (   (  h −s  q )  − s′    

_
 q   )  if and only if  ( ( h  −E(s)  ′   p ) −E( s′  )  

_
 p   )   

 ≽     F   ′    ( ( h  −E(s)  ′  q ) −E (  s′  )   
_
 q   ) .

The representation theorem below describes how a decision maker’s beliefs 
evolve as he becomes aware of new feasible acts. As before, the decision maker is a 
subjective expected utility maximizer. When he becomes aware of new feasible acts, 
the decision maker updates his beliefs in a way that the likelihood ratios of events 
in the original state space remain intact. Because of the difference in the evolution 
of the state space, probability mass is shifted from states in the prior state space to 
the corresponding events the posterior state space, in such a way as to preserve the 
likelihood ratios of the events in the posterior state space and their corresponding 
projected states in the prior state space.15

THEOREM 2: For each    F  ∈ , let  ≽    F   be a binary relation on    F . Then for all 
   F ,    F ′ ∈ , the following two conditions are equivalent:

 (i) Each  ≽    F   satisfies (A.1)–(A.5) and, jointly,  ≽    F   and  ≽     F   ′   satisfy (A.6) and 
(A.8).

 (ii  )  There exists a real-valued, nonconstant, affine function, U on Δ(C  ) and, for 
any two    F ,    F ′ ∈ , there are probability measures,  π    F   on  C  F  and  π     F   ′   on  C   F ′, 
such that for all f, g ∈    F ,

(7) f  ≽    F   g ⇔   ∑  
s∈ C  F 

  
 

   U (  f  ( s )  )   π    F    ( s )  ≥   ∑  
s∈ C  F 

  
 

   U (  g  ( s )  )   π    F    ( s ) , 

and, for all  f ′ ,  g′  ∈    F ′,

(8)  f ′   ≽     F   ′    g′  ⇔   ∑  
s∈ C   F  ′  

  
 

   U (   f ′  ( s )  )   π     F   ′   ( s )  ≥   ∑  
s∈ C   F  ′  

  
 

   U (  g′  ( s )  )   π     F   ′   ( s ) .

Moreover, U is unique up to positive linear transformations,  π    F   and  π     F   ′   are unique,  
π    F    ( S ( F, C )  )  =  π     F   ′    ( S( F′ , C) )  = 1, and

(9)   
 π    F   ( s ) 

 _ 
 π    F   (  s′  ) 

   =   
 π     F   ′   ( E ( s )  ) 

 _ 
 π     F   ′   ( E (  s′  )  ) 

   , 

15 This is “reverse Bayesianism” applied to the present context. Li (2008) conjectures an axiomatization of the 
link between preferences under full awareness and those under pure unawareness and states a proposition linking 
the evolution of beliefs. This is in the spirit of Theorem 2.
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for all s,  s′  ∈ S ( F, C )  and E ( s ) , E (  s′  )  ⊂ S (  F′ , C ) , where E ( s )  and E (  s′  ) , are the 
inverse images of s and  s′  on S (  F′ , C ) .

The proof is in the Appendix.

C. Discovery of New Feasible States and their Representation

The discovery of new acts-consequences links, or the discovery that some links 
that were believed to exist are, in fact, nonexistent, does not affect the conceiv-
able state space. Rather such discoveries expand or contract only the feasible state 
space. To model this, fix C and F and suppose that a new link is established. Then, 
S ( F, C )  ⊂  S′  ( F, C ) , and  ≽     F   S  ′    denotes the posterior preference relation as discussed 
in Section IIIB. Using these notations we restate axiom (A.7) as follows:

 (A.7a) (Updating consistency) For all    F ,     F   S′   ∈ , if  S′  ( F, C )  ⊃ S ( F, C )   and 
 f ′ ,  g′  ∈     F   S  ′  ,  f ′  = f and  g′  = g on S ( F, C )    and  f ′  =  g′  on  S′  ( F, C )  − S ( F, C ) , 
then f  ≽    F   g if and only if  f ′   ≽     F   S  ′     g′ .

Similarly, if the feasible state space is contracted due to the nullification of a link 
that was supposed to exist, (that is,  S′  ( F, C )  ⊂ S ( F, C ) ), then Axiom (A.7a) can be 
restated as:

 (A.7b) (Bayesian updating) For all    F ,     F   S′   ∈ , if  S′  ( F, C )  ⊂ S ( F, C )   and 
f, g ∈    F , f =  f ′  and g =  g′  on  S′  ( F, C )  and f = g on S ( F, C )  −  S′  ( F, C ) , 
then  f ′   ≽     F   S  ′     g′  if and only if f  ≽    F   g.

Nullification of a link that was believed to hold corresponds to the shrinking of 
the feasible state space as new information arrives within the Bayesian paradigm.

We show next that the process of updating the zero probability events in the wake 
of discovery of new links between acts and consequences is the exact counterpart of 
Bayesian updating in the wake of discovery that some links that were presumed to 
exist are, in fact, nonexistent.

THEOREM 3: For each    F  ∈ , let  ≽    F   be a binary relation on    F , then, for all    F , 
    F   S  ′   ∈ , the following two conditions are equivalent:

 (i) Each  ≽    F   satisfies (A.1)–(A.5) and, jointly,  ≽    F   and  ≽     F   S  ′    satisfy (A.6), (A.7a), 
and (A.7b).

  ( ii )   There exists a real-valued, nonconstant, affine function, U, on Δ(C ) and, for 
any two    F ,      F   S  ′   ∈ , there are probability measures,  π    F   and  π     F   S  ′    on  C  F , such 
that, for all f, g ∈    F ,

(10) f  ≽    F   g ⇔   ∑   
s∈ C  F 

   
 

   U (  f  ( s )  )   π    F    ( s )  ≥   ∑   
s∈ C  F 

   
 

   U ( g ( s )  )   π    F    ( s ) , 

and, for all  f ′ ,  g′  ∈     F   S  ′  ,
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(11)  f ′   ≽     F   S  ′     g′  ⇔   ∑   
s∈ C  F 

   
 

   U (   f ′  ( s )  )   π     F   S  ′     ( s )  ≥   ∑   
s∈ C  F 

   
 

   U (  g′  ( s )  )  π     F   S  ′     ( s ) .

Moreover, U is unique up to positive linear transformations,  π    F   and  π     F   S  ′    are 
unique,  π    F    ( S ( F, C )  )  =  π     F   S  ′     (  S′  ( F, C )  )  = 1, and

(12)   
 π    F    ( s ) 

 _ 
 π    F    (  s′  ) 

   =   
 π     F   S  ′     ( s ) 

 _ 
 π     F   S  ′     (  s′  ) 

  , 

for all s,  s′  ∈ S ( F, C )  ∩  S′  ( F, C ) .16 

The proof is in the Appendix.

V. Concluding Remarks

The model presented in this article predicts that, as awareness grows and the state 
space expands, the relative likelihoods of events in the original state space remain 
unchanged. The model is silent about the absolute levels of these probabilities. In other 
words, our theory does not predict the probability of the new events in the expanded 
state space. This may appear as a serious limitation of our approach. However, this 
appearance is misleading. In fact, the relation between the prior and posterior prob-
abilities in our model is not essentially different from the Bayesian model.

To grasp this claim, consider the Bayesian model. In that model, new informa-
tion shrinks the state space by rendering null events that were assigned positive 
prior probabilities. Furthermore, given the prior probability of an event that has been 
rendered null, the Bayesian model predicts the absolute levels and, consequently, 
the likelihood ratios, of the posterior probabilities of all the events in the original 
algebra. These predictions, however, are predicated on the prior, about which the 
Bayesian model is silent. In Savage’s (1954) model, the prior is derived from a 
primitive preference relation over acts.

Our approach is analogous. Rather than being silent on the prior, it is silent on the 
posterior probabilities of the newly discovered events. If we proceed analogously to 
Savage (1954), the posterior is derived from a primitive preference relation on the 
acts defined over the expanded state space. Given the posterior, our model predicts 
the absolute probabilities and, consequently, the likelihood ratios, of all the events 
in the original algebra, including those between newly discovered and previously 
known events.

Finally, we observe that, in reality, one often becomes aware of multiple new con-
sequences and acts (and links among them) at the same time. Changes of this kind 
may be handled by defining new conceivable and feasible state spaces and applying 
Theorems 1 through 3, respectively. Our theory then predicts the likelihood ratios on 
the intersection of the feasible state spaces.17 If subjective probabilities are elicited 
at any point during these successive discoveries, the entire posterior will be known 
for the corresponding awareness level, and likelihood ratios can be predicted on the 

16 Notice that S(F, C  ) ∩ S′(F, C  ) = S(F, C  ) or S(F, C  ) ∩ S′(F, C  ) = S′(F, C  ).
17 When the growing awareness involves new acts, the likelihood ratios are predicted on the intersection of the 

lower dimensional state spaces and the inverse image of the states in this intersection.
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intersection of the feasible state spaces associated with that and the successive levels 
of awareness.

Mathematical Appendix

A. Proof of Theorem 1

Sufficiency.—Fix F and C, then, by (A.1)–(A.5), the theorem of Anscombe and 
Aumann (1963) and the von Neumann-Morgenstern expected utility theorem, there 
exists a real-valued, nonconstant function  u    F   on C such that for all p, q ∈ Δ ( C ) ,

(A1) p  ≽    F   q ⇔     ∑  
c∈Supp  ( p ) 

  
 

    u    F    ( c )  p ( c )  ≥     ∑  
c∈Supp ( q ) 

  
 

    u    F    ( c )  q ( c ) .

Let  C′  ⊃ C,    F   ∗ ∈ , with corresponding feasible state space S (  F   ∗ ,  C′  )  ⊇ S ( F, C ) . 
Then, by the same argument as above, there exists a real-valued function  u    F   ∗  on  C′  
such that for all  p′ ,  q′  ∈ Δ (  C′  ) ,

(A2)  p′   ≽    F   ∗   q′  ⇔     ∑   
c∈Supp   (  p′  ) 

  
 

   u    F  ∗  ( c )   p′  ( c )  ≥     ∑   
c∈Supp   (  q′  ) 

  
 

   u    F  ∗  ( c )   q′  ( c ) .

But, by (A.6), for all p, q ∈ Δ ( C ∩  C′  )  = Δ ( C ) ,

(A3) p  ≽    F   q ⇔ p  ≽    F  ∗  q.

The uniqueness of the von Neumann-Morgenstern utility function implies that for 
all    F ,    F  ∗ ∈ ,  u    F  ∗  ( c )  = b u    F   ( c )  + a, b > 0, for all c ∈ C. Hence,  u    F  ∗  is an exten-
sion of  u    F  .

Let u =  u    F  ∗  and define U (  f  ( s )  )  :=  ∑  
c∈Supp (  f  ( s )  )   
 
   u ( c )  f  ( s )   ( c ) , for all f ∈    F  ∗ and 

s ∈ S (     F  ∗ ,  C′  ) . Then, by Anscombe and Aumann (1963), for all    F  ∈ , and f, g ∈    F ,

(A4) f  ≽    F   g ⇔   ∑  
s∈ C  F 

  
 

   U (  f  ( s )  )   π    F    ( s )  ≥   ∑  
s∈ C  F 

  
 

   U ( g ( s )  )   π    F    ( s ) , 

and, for all  f ′ ,  g′  ∈    F  ∗,

(A5)  f ′   ≽    F  ∗   g′  ⇔     ∑  
s∈  (  C  ′  )    F  ∗  

  
 

   U (   f ′  ( s )  )   π    F  ∗  ( s )  ≥     ∑  
s∈  (  C  ′  )    F  ∗  

  
 

   U (  g′  ( s )  )   π    F  ∗  ( s ) , 

where  π    F   ( S ( F, C )  )  =  π     F  ∗   ( S (  F   ∗ ,  C′  )  )  = 1.
Let f, g ∈    F  and  f ′ ,  g′  ∈    F  ∗ be as in Axiom (A.7) (that is,  f ′  = f and  g′  = g on 

S ( F, C )    and  f ′  =  g′  on S (  F  ∗ ,  C′  )  − S ( F, C ) ) then,

(A6)  f ′   ≽    F  ∗   g′  ⇔     ∑   
s∈S ( F, C ) 

  
 

   U (  f  ( s )  )   π    F  ∗  ( s )  ≥     ∑   
s∈S ( F, C ) 

  
 

   U ( g ( s )  )   π    F  ∗  ( s ) .

Since  π    F    ( S ( F, C )  )  = 1, the representation (A4) implies 
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(A7) f  ≽    F   g ⇔     ∑   
s∈S ( F, C ) 

  
 

   U (  f  ( s )  )   π    F    ( s )  ≥     ∑   
s∈S ( F, C ) 

  
 

   U ( g ( s )  )   π    F    ( s ) .

But axiom (A.7) implies

(A8) f  ≽    F   g ⇔  f ′   ≽    F  ∗   g′ .

Thus the expressions in (A6) and (A7) are equivalent. Hence, by the uniqueness 
of the probabilities in Anscombe and Aumann (1963),

(A9)   
 π    F  ∗  ( s ) 
 __  

 ∑  
s∈S ( F, C )   
 
    π    F  ∗  ( s ) 

   =  π    F    ( s ) ,  for all s ∈ S ( F, C ) .

Necessity.—The necessity of (A.1)–(A.5) is an implication of the Anscombe and 
Aumann (1963) theorem. The necessity of (A.6) and (A.7) is immediate.

The uniqueness part is an implication of the uniqueness of the utility and prob-
ability in Anscombe and Aumann (1963). 

B. Proof of Theorem 2

Sufficiency.—By (A.1)–(A.6), and the argument in the proof of Theorem 1, 
 u     F   ′  ( c )   = b u    F    ( c )  + a, b > 0, for all c ∈ C and    F ,    F  ′ ∈ . Let  u    F   = u and define 
U (  f  ( s )  )  :=  ∑  

c∈Supp ( f  ( s )  )   
 
   u ( c )  f  ( s )   ( c ) , for all f ∈    F  and s ∈ S ( F, C ) . Then, since  

C  F  − S ( F, C )  is a null event, by Anscombe and Aumann (1963), for all    F  ∈ , and 
f, g ∈    F ,

(A10) f  ≽    F   g ⇔    ∑   
s∈S ( F, C ) 

  
 

   U (  f  ( s )  )   π    F    ( s )  ≥    ∑   
s∈S ( F, C ) 

  
 

   U ( g ( s )  )   π    F   ( s ) .

Let    F ,     F ′ ∈  and, without loss of generality, suppose that S (  F′ , C )  is a refine-
ment of the states in S ( F, C ) .18 Take s,  s′  ∈ S(F, C ) and  (   (  h  −E(s)  ′   p )  −E( s  ′   )   

_
 p   )  and 

 (   (  h  −E(s)  ′  q )  −E( s  ′  )  
_
 q   )  in    F ′ as defined in axiom (A.8). For these acts, (A10) is  equivalent 

to

(A11)  (   (  h  −E(s)  ′  p )  −E( s′  )  
_
 p   )   ≽     F   ′    (   (  h  −E(s)  ′   q )  −E( s  ′  )   

_
 q   )  

if and only if

(A12) U ( p )   π     F   ′    ( E ( s )  )  + U (  _ p   )   π     F   ′    ( E (  s′  )  )  ≥ U ( q )   π     F   ′    ( E ( s )  )  + U (  _ q   )   π     F   ′   ( E (  s′  )  ) , 

since common terms cancel out. By axiom (A.8),

(A13)   (   (  h  −E(s)  ′   p )  −E( s  ′   )   
_
 p   )   ≽     F   ′    (   (  h  −E(s)  ′  q )  −E( s  ′  )  

_
 q   )  ⇔  (   (  h −s  p )  − s  ′    

_
 p   )   ≽    F    (   (  h −s  q )  − s  ′    

_
 q   ) .

18 Hence, F ⊂ F ′. 
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By (A10),

  (   (  h −s  p )  − s  ′    
_
 p   )   ≽    F    (   (  h −s  q )  − s  ′    

_
 q   ) 

if and only if

   ∑   
s∈S ( F, C ) 

  
 

   U (  (   (  h −s  p )  − s  ′    
_
 p   )   ( s )  )   π    F    ( s )  ≥     ∑   

s∈S ( F, C ) 
  

 

   U (  (   (  h −s  q )  − s  ′    
_
 q   )   ( s )  )   π    F    ( s ) ,

which, since common terms cancel out, is equivalent to

(A14) U ( p )   π    F    ( s )  + U (  _ p   )   π    F    (  s′  )  ≥ U ( q )   π    F    ( s )  + U (  _ q   )   π    F    (  s′  ) .

By (A13), the expressions (A12) and (A14) are equivalent, which holds for all 
p,  _ p  , q,  _ q   ∈ Δ ( C ) , if and only if

(A15)   
 π    F    ( s ) 

 _ 
 π    F    (  s′  ) 

   =   
 π     F   ′    ( E ( s )  ) 

 _ 
 π     F   ′    ( E (  s′  )  ) 

   , 

for all s,  s′  ∈ S ( F, C )  and E ( s ) , E (  s′  )  ⊂ S (  F′ , C ) , where E ( s )  and E (  s′  )  are the pro-
jections of s and  s′  on S (  F′ , C ) .

Necessity.—The necessity of (A.1)–(A.5) is an implication of the Anscombe and 
Aumann (1963) theorem. The necessity of (A.6) and (A.8) is immediate.

The uniqueness part is an implication of the uniqueness of the utility and prob-
ability in Anscombe and Aumann (1963). 

C. Proof of Theorem 3

Sufficiency.—By (A.1)–(A.6) and the argument in the proof of Theorem 1, 
 u     F   S  ′     ( c )  = b u    F   ( c )  + a, b > 0, for all c ∈ C.

Let  u    F   = u and define U (  f  ( s )  )  :=   ∑  
c∈Supp (  f  ( s )  )   
 
   u ( c )  f  ( s )  ( c ) . Consider the case 

in which S(F, C) ⊂  S′ (F, C) (that is, a new link has been discovered). By Anscombe 
and Aumann (1963), for all f, g ∈    F ,

(A16) f  ≽    F   g ⇔     ∑   
s∈S ( F, C ) 

  
 

   U (  f  ( s )  )   π    F    ( s )  ≥     ∑   
s∈S ( F, C ) 

  
 

   U ( g ( s )  )   π    F    ( s ) , 

and, for all  f ′ ,  g′  ∈     F   S  ′  ,

(A17)  f ′   ≽     F   S  ′     g′  ⇔     ∑  
s∈ S  ′   ( F, C ) 

  
 

   U (   f ′  ( s )  )   π     F   S  ′    (s) ≥     ∑  
s∈ S  ′   ( F, C ) 

  
 

   U (  g′  ( s )  )   π     F   S  ′     ( s ) .
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Let  f ′ ,  g′  ∈  F  S  ′   be as in axiom (A.7a); then (A.7a) implies that

(A18)   ∑   
s∈S  ( F, C ) 

  
 

  U (  f  ( s )  )   π    F    ( s )  ≥     ∑   
s∈S  ( F, C ) 

  
 

   U ( g ( s )  )   π    F    ( s ) , 

if and only if

(A19)   ∑   
s∈S ( F, C ) 

  
 

   U (  f  ( s )  )   π     F   S  ′     ( s )  ≥     ∑   
s∈S ( F, C ) 

  
 

   U ( g ( s )  )   π     F   S  ′     ( s ) .

Hence,

(A20)  π    F   ( s )  =   
 π     F   S  ′     ( s ) 
 __  

 ∑  
s∈S ( F, C )   
 
    π     F   S  ′    (  s′  ) 

  

for all s ∈ S ( F, C ) . Thus, for all s,  s′  ∈ S ( F, C ) ,

(A21)   
 π    F    ( s ) 

 _ 
 π    F    (  s′  ) 

   =   
 π     F   S  ′     ( s ) 

 _ 
 π     F   S  ′     (  s′  ) 

   .

The case in which new evidence entails the severance of existing links and con-
traction of the feasible state space is treated analogously, with axiom (A.7b) in place 
of (A.7a).

Necessity.—The necessity of (A.1)–(A.6) is an implication of Theorem 1. The 
necessity of (A.7a) and (A.7b) is immediate.

The uniqueness part is an implication of the uniqueness of the utility and prob-
ability in Anscombe and Aumann (1963).
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