
M A C H I N E L E A R N I N G

Ecosystem 101

http://www.arize.com

Introduction ... 1

STAGE 1: Data Preparation .. 2

STAGE 2: Model Building & Development Tools ... 7

STAGE 3: Model Validation .. 12

STAGE 4: Model Serving ... 18

STAGE 5: Observability ... 25

Table of contents

Artificial Intelligence (AI) and Machine Learning (ML) are being adopted by
businesses in almost every industry. Many businesses are looking towards
ML Infrastructure platforms to propel their movement of leveraging AI in
their business. Understanding the various platforms and offerings can be a
challenge. The ML Infrastructure space is crowded, confusing, and complex.
There are a number of platforms and tools spanning a variety of functions
across the model building workflow.

To understand the ecosystem, we broadly break up the machine learning
workflow into three stages — data preparation, model building, and
production. Understanding what the goals and challenges of each stage of
the workflow can help make an informed decision on what ML Infrastructure
platforms out there are best suited for your business’s needs.

Introduction

Each of these broad stages of the Machine Learning workflow (Data
Preparation, Model Building and Production) have a number of vertical
functions. Some of these functions are part of a larger end-to-end platform,
while some functions are the main focus of some platforms.

Since models are built and learned from data, the first step of building a
model is data preparation — the process of extracting inputs to the model
from data. There are a number of tools to help data scientists source data,
transform data, and add labels to datasets. In this blog post, we will dive
deep into understanding what are the goals of data preparation, challenges
organizations face in this stage of the ML workflow, and when data scientists
decide it is time to move onto the next stage of the workflow.

Data Preparation
Process and augment
data for use by models

Model Building
Build the model based on

wealth of goals

Production
Integrate model predictions

into the business

Data Engineer

Data Wrangler
Data Scientist ML Engineer

ML Ecosystem 101 | Page 1

What is Data
Preparation?S

T
A

G
E

 0
1

In the early stages of the pipeline, raw data is sourced across different data
stores and lakes in an organization. The next stage involves data processing
to clean, transform and extract features to generate consistent inputs in
the feature selection stage. Large tech companies at the forefront of using
ML Infrastructure (Google, Facebook, Uber, etc) will typically have central
feature storage, so many teams can extract value without duplicate work.

The data preparation stage involves a number of steps: sourcing data,
ensuring completeness, adding labels, and data transformations to
generate features.

Sourcing data is the first step and often the first challenge. Data can live in
various data stores, with different access permissions, and can be littered with
personally identifiable information (PII).

The first step in data preparation involves sourcing data from the right places
and consolidating data from different data lakes within an organization. This
can be difficult if the model’s inputs, predictions, and actuals are received at

Sourcing Data

Ask any data scientist and they will tell you A LOT
of their time is spent in data preparation. The data
preparation phase of the pipeline is used to turn raw
data into model input features used to train the model.
Features are transformations on the cleaned data that
provide the actual model inputs.

STAGE 1: What is Data Preparation? | Page 3

Once the data is sourced, there are a series of checks on completeness
needed to determine if the data collected can be turned into meaningful
features. First, it is important to understand the length of historical data
available to be used. This helps understand if the model builder has enough
data for training purposes (a year’s worth of data, etc). Having data that has
seasonal cycles and identified anomalies can help the model build resiliency.

Data completeness can also include checking if the data has proper labels.
Many companies have problems with the raw data in terms of cleanliness.
There can be multiple labels that mean the same thing. There will be some
data that is unlabeled or mislabeled. A number of vendors offer Data Labeling
services that employ a mix of technology and people to add labels to data and
clean up issues.

It is also important to have some check on whether the data seen is a
representative distribution. Was the data collected over an unusual period of
time? This is a tougher question because it is specific to the business and data
will continue to change over time.

different time periods and stored in separate data stores. Setting a common
prediction or transaction ID can help tie predictions with their actuals.

This stage can often involve data management, data governance and legal
to determine what data sources are available to use. The roles working in this
stage usually involve the data engineer, data scientist, legal, and IT.

Example ML Infrastructure Companies in Data Storage:

Example ML Infrastructure Companies in Data Labeling:

Completeness

STAGE 1: What is Data Preparation? | Page 4

Once the data is collected and there is enough data across time with the
proper labels, there can be a series of data transforms to go from raw data
to features the model can understand. This stage is specific to the types of
data that the business is using. For categorical values, it is common practice
to use one-hot encoding. For numeric values, there can be some form for
normalization based on the distribution of the data. A key part of this process
is to understand your data, including data distributions.

Data processing can also involve
additional data cleaning and
adding data quality checks.
Since models depend on the
data they are training on, it is
important to ensure clean data
through removing duplicated
events, indexing issues, and
other data quality issues.

A set of data wrangling
companies allow data scientists,
business analysts, and data engineers to define rules for transformations to
clean and prepare the data. These companies can range from no code, low
code, to developer focused platforms.

Lastly, there are ongoing data quality checks that are done on training data to
make sure what is clean today will be clean tomorrow.

Data preparation is integral to the model’s performance. There are a lot
of challenges to getting complete and clean data. With all of the work
that goes into building a training dataset from data sourcing to all of the
data transformations, it can be difficult to track all of the versioned data
transformations that can impact model performance. As an organization
grows, a feature store with common data transformations can reduce
duplicative work and compute costs.

Data Processing

ML Infrastructure Companies in Data Wrangling:

Image by Tecton.

STAGE 1: What is Data Preparation? | Page 5

https://www.tecton.ai/
https://www.getdbt.com/

Once data scientists have the data ready, In some cases, the handoff between
data preparation and model building is structured with a data file or feature
store with processed data. In other cases, the handoff is fluid. In larger
organizations the Data Engineering team is responsible for getting the data
into a format that the data scientists can use for model building.

In many managed notebooks such as Databricks Managed Notebooks,
Cloudera Data Science Workbench, Domino Data Labs Notebooks, the data
preparation workflow is not separate from the model building. Feature
selection is dependent on data so that function begins to blur the line
between data preparation and model building.

What Happens After Data Preparation

ML Infrastructure Companies in Data Processing:

ML Infrastructure Companies in Notebook Management:

ML Infrastructure Companies in Data Versioning,
Feature Storage & Feature Extraction:

STAGE 1: What is Data Preparation? | Page 6

https://deepnote.com/

Model Building &
Development ToolsS

T
A

G
E

 0
2

As part of this experimental process, data scientists explore various data input
options to select features. Feature selection is the process of finding the
feature inputs for machine learning models. For a new model, this can be a
lengthy process of understanding the data inputs available, the importance of
the input, and the relationships between different feature candidates. There
are a number of decisions that can be made here for more interpretable
models, shorter training times, cost of acquiring features, and reducing
overfitting. Figuring out the right features is a constant iterative process.

There are a number of modeling approaches that a data scientist can try.
Some types of models are better for certain tasks than others (ex — tree
based models are more interpretable). As part of the ideation phase, it will be
evident if the model is supervised, unsupervised, classification, regression, etc.
However, deciding what type of modeling approaches, what hyperparameters,
and what features is dependent on experimentation. Some AutoML platforms
will try a number of different models with various parameters and this can

Feature Exploration and Selection

Model Management

The first step of model building begins with
understanding the business needs. What business
needs is the model addressing? This step begins
much further at the planning and ideation phase of
the ML workflow. During this phase, similar to the
software development lifecycle, data scientists gather
requirements, consider feasibility, and create a plan for
data preparation, model building, and production. In
this stage, they use the data to explore various model
building experiments they had considered during their
planning phase.

ML Infrastructure companies in Feature Extraction:

STAGE 2: Model Building & Development Tools | Page 8

While there are a number of advantages and tradeoffs amongst the various
types of models, in general, this phase involves a number of experiments.
There are a number of platforms to track these experiments, modeling
dependencies, and model storage. These functions are broadly categorized as
model management. Some platforms primarily focus on experiment tracking.
Other companies that have training and/or serving components have model
management components for comparing the performance of various models,
tracking training/test datasets, tuning and optimizing hyperparameters,
storing evaluation metrics, and enabling detailed lineage and version control.
Similar to Github for software, these model management platforms should
enable version control, historical lineage, and reproducibility.

A tradeoff between these various model management platforms is the cost of
integration. Some more lightweight platforms only offer experiment tracking,
but can integrate easily with the current environment and be imported into
data science notebooks. Others require some more heavy lifting integration
and require model builders to move to their platform so there is centralized
model management.

In this phase of the machine learning workflow, data scientists usually spend
their time building models in notebooks, training models, storing the model
weights in a model store, and then evaluating the results of the model on a
validation set. There are a number of platforms that exist to provide compute
resources for training. There are also a number of storage options for models
depending on how teams want to store the model object.

Experiment Tracking

ML Infrastructure AutoML:

ML Infrastructure companies in Experiment Tracking:

be helpful to establish a baseline approach. Even done manually, exploring
various options can provide the model builder with insights on model
interpretability.

STAGE 2: Model Building & Development Tools | Page 9

ML Infrastructure Model Evaluation:

ML Infrastructure Pre-Launch Validation:

Once an experimental model has been trained on a training data set with the
selected features, the model is evaluated on a test set. This evaluation phase
involves the data scientist trying to understand the model’s performance
and areas for improvement. Some more advanced ML teams will have an
automated backtesting framework for them to evaluate model performance
on historical data.

Each experiment tries to beat the baseline model’s performance and
considers the tradeoffs in compute costs, interpretability, and ability to
generalize. In some more regulated industries, this evaluation process can
also encompass compliance and auditing by external reviewers to ensure the
model’s reproducibility, performance, and requirements.

Model Evaluation

ML Infrastructure companies in Model Management:

ML Infrastructure companies in HyperParameter Opt.:

STAGE 2: Model Building & Development Tools | Page 10

A number of companies that center on AutoML or model building, pitch a
single platform for everything. They are vying to be the single AI platform
an enterprise uses across DataPrep, Model Building and Production. These
companies include DataRobot, H20, SageMaker and a number of others.

This set splits into a low-code versus developer centric solutions. Datarobot
seems to be focused on the no-code/low code option that allows BI or Finance
teams to take up DataScience projects. This is in contrast with SageMaker and
H20 which seem to cater to either data scientists or developer first teams that
are the more common data science organizations today. The markets in both
cases are large and can co-exist but it’s worth noting that not all of the ML
Infrastructure companies are selling to the same people or teams.

A number of the more recent entrants in the space can be thought as best
of breed solutions for a specific part of the ML Infrastructure food chain. The
best analog would be the software engineering space, where your software
solutions GitHub, IDE, production monitoring are not all the same end-to-
end system. There are reasons why they are different pieces of software; they
provide very different functions with clear differentiation.

One Platform to Rule Them All

Image by author. Best of Breeds Platforms

STAGE 2: Model Building & Development Tools | Page 11

Model
ValidationS

T
A

G
E

 0
3

The production environment is by far, the most important, and surprisingly,
least discussed part of the Model Lifecycle. This is where the model touches
the business. It’s where the decisions the model makes actually improve
outcomes or cause issues for customers. Training environments, where data
scientists spend most of their time and thought, consist of just a sample of
what the model will see in the real world.

One unique challenge in the operationalizing of Machine Learning is the
movement from a research environment to a true production engineering
environment. A Jupyter Notebook, the most common home of model
development, is ostensibly a research environment. In a well controlled
software development environment an engineer has version control, test
coverage analysis, integration testing, tests that run at code check-ins, code
reviews, and reproducibility. While there are many solutions trying to bring
pieces of the software engineering workflow to Jupyter notebooks, these
notebooks are first and foremost a research environment designed for rapid
and flexible experimentation. This coupled with the fact that not all data
scientists are software engineers by training, but have backgrounds that span
many fields such as chemical engineering, physicists, and statisticians — you
have what is one of the core problems in production ML:

The core challenge in Production ML is uplifting a model from a research
environment to a software engineering environment while still delivering the
results of research.

Research to Production

Launching a model into production can feel like
crossing the finish line after a marathon. In most
real-world environments, it can take a long time to
get the data ready, model trained, and finally done
with the research process. Then there’s the arduous
process of putting the model into production which
can involve complex deployment pipelines and serving
infrastructures. The final stage of standing a model
up in production involves checking the model is ready
for production, packaging the model for deployment,
deploying the model to a serving environment and
monitoring the model & data in production.

STAGE 3: Model Validation | Page 13

Note: Model validation is NOT to be confused with the validation data set.

Quick Recap on Datasets: Models are built and evaluated using multiple
datasets. The training data set is used to fit the parameters of the model.
The validation data set is used to evaluate the model while tuning
hyperparameters. The test set is used to evaluate the unbiased performance
of the final model by presenting a dataset that wasn’t used to tune
hyperparameters or used in any way in training.

You’re a data scientist and you’ve built a well-performing model on your test
set that addresses your business goals. Now, how do you validate that your
model will work in a production environment?

Model validation is critical to delivering models that work in production.
Models are not linear code. They are built from historical training data and
deployed in complex systems that rely on real-time input data. The goal of
model validation is to test model assumptions and demonstrate how well
a model is likely to work under a large set of different environments. These
model validation results should be saved and referenced to compare
model performance when deployed in production environments.

Models can be deployed to production environments in a variety of different
ways, there are a number of places where translation from research to
production can introduce errors. In some cases, migrating a model from
research to production can literally involve translating a Python based Jupyter
notebook to Java production code. While we will cover in depth on model
storage, deployment and serving in the next section, it is important to note
that some operationalization approaches insert additional risk that research
results do not match production results. Platforms such as Algorithmia,
SageMaker, Databricks and Anyscale are building platforms that are trying to
allow research code to directly move to production without rewriting code.

In the Software Development Lifecycle, unit testing, integration testing,
benchmarking, build checks,etc help ensure that the software is considered

In this blog post, we will highlight core areas that are needed to uplift research
into production with consistency, reproducibility, and observability that we
expect of software engineering.

Model Validation

What is Model Validation?

STAGE 3: Model Validation | Page 14

Model validation is varied across machine learning teams in the industry
today. In less regulated use cases/industries or less mature data science
organizations, the model validation process involves just the data scientist
who built the model. The data scientist might submit a code review for their
model built on a Jupyter notebook to the broader team. Another data scientist
on the team might catch any modeling issues. Additionally model testing
might consist of a very simple set of hold out tests that are part of the model
development process.

More mature machine learning teams have built out a wealth of tests that
run both at code check-in and prior to model deployment. These tests might
include feature checks, data quality checks, model performance by slice,
model stress tests and backtesting. In the case of backtesting, the production
ready model is fed prior historical production data, ideally testing the model
on a large set of unseen data points.

In regulated industries such as fintech and banking, the validation process
can be very involved and can be even longer than the actual model building
process. There are separate teams for model risk management focused on
assessing the risk of the model and it’s outputs. Model Validation is a separate
team whose job it is to break the model. It’s an internal auditing function that is
designed to stress and find situations where the model breaks. A parallel to the
software engineering world would be the QA team and code review process.

Regardless of the industry, there are certain checks to do prior to deploying
the model in production. These checks include (but are not limited to):

• Model evaluation tests (Accuracy, RMSE, etc…) both overall and by slice

• Prediction distribution checks to compare model output vs previous

 versions

• Feature distribution checks to compare highly important features to

 previous tests

with different inputs and validated before deploying into production. In
the Model Development Lifecycle, model validation is a set of common &
reproducible tests that are run prior to the model going into production.

Current State of Model Validation in Industry

Model Validation Checks

STAGE 3: Model Validation | Page 15

• Feature importance analysis to compare changes in features models are

 using for decisions

• Sensitivity analysis to random & extreme input noise

• Model Stress Testing

• Bias & Discrimination

• Labeling Error and Feature Quality Checks

• Data Leakage Checks (includes Time Travel)

• Over-fitting & Under-fitting Checks

• Backtesting on historical data to compare and benchmark performance

• Feature pipeline tests that ensure no feature broke between research and

 production

ML Infrastructure tools that are focused on model validation provide an ability
to perform these checks or analyze data from checks — in a repeatable, and
reproducible fashion. They enable an organization to reduce the time to
operationalize their models and deliver models with the same confidence
they deliver software.

Example ML Infrastructure Platforms that enable Model Validation:

Example ML Infrastructure:

Other companies

In the most regulated industries, there can be an additional compliance and
audit stage where models are reviewed by internal auditors or even external
auditors. ML Infrastructure tools that are focused on compliance and audit
teams often focus on maintaining a model inventory, model approval and
documentation surrounding the model. They work with model governance to
enforce policies on who has access to what models, what tier of validation a
model has to go through, and aligning incentives across the organization.

Model Compliance and Audit

STAGE 3: Model Validation | Page 16

Example ML Infrastructure Platforms that Enable Continuous Delivery:

In organizations that are setup for continuous delivery and continuous
integration, a subset of the validation checks above are run when:

• Code is checked in — Continuous Integration

• A new model is ready for production -Continuous Delivery

The continuous integration tests can be run as code is checked in and are
typically structured more as unit tests. A larger set of validation tests that are
broader and may include backtesting are typically run when the model is
ready for production. The continuous delivery validation of a model becomes
even more important as teams are trying to continually retrain or auto-retrain
based on model drift metrics.

A number of tools such as ML Flow enable the model management workflow
that integrates with CI/CD tests and records artifacts. These tools integrate
into Github to enable pulling/storing the correct model and storing results
initiated by GitHub actions.

Continuous Delivery

STAGE 3: Model Validation | Page 17

Model
ServingS

T
A

G
E

 0
4

The first decision that teams need to make is whether they should even build
a model server at all. Most models deployed in the last five years were home-
built serving approaches. In recent years, however, companies working with
ML models have moved away from building everything from scratch. In fact,
we predict that the approach of building everything from scratch will change
drastically going forward, given the number of model servers coming to
market.

• Model serving options for models typically fit into a couple different types:

• Internally built executable (PKL File/Java) — containerized & non-

 containerized

• Cloud ML Provider — Amazon SageMaker, Azure ML, Google AI

• Batch or Stream: Hosted & On-Prem — Algorithmia, Spark/Databricks,

 Paperspace

• Open Source — TensorFlow Serving, Kubeflow, Seldon, Anyscale, etc.

Which of these is the right choice for a given team? There are a number
of considerations in the decision of model serving options. Here are a few
questions teams ask themselves to determine which is the best ML option for
them:

Once the model has been trained, built, and validated,
it is finally time to deploy and serve the model! In this
last step of ML, all of the work of the previous steps are
finally put to use by a data-driven model

Key Questions to Consider

1. What are the data security requirements of the organization?
On-premise ML solutions may be required for organizations with strict
data security requirements. Some good choices are Algorithmia, Seldon,
Tensorflow, Kubeflow, or home- built proprietary solutions. Some providers
such as Algorithmia have security specific feature sets detailed below.
Cloud solutions may be a better choice for those organizations needing less
security but more remote access/virtualization.

2. Does the team want managed or unmanaged solutions for model
serving?
A managed solution such as Algorithmia, SageMaker, Google ML, Azure, and

STAGE 4: Model Serving | Page 19

Paperspace are a good idea for companies with a low IT presence. An un-
managed solution such as Kubeflow, Seldon, Tensorflow Serving, or Anyscale
may be better for more technical organizations.

3. Is every team in the organization going to use the same deployment
option?
Even if one team chooses a serving option, rarely is the whole organization
using the same serving approach. Having common model management
platform like ML-Flow can still help bridge the gap.

4. What does the final model look like? Is there an already established
interface?
If a model is already deployed, it might not make sense to rip out the model
serving system and replace it with a new model server. How easy it would be
to replace the already-deployed model might depend on the model server
that was chosen and its integrations with other systems, APIs, and Feature
Pipelines.

5. Where does the model executable live? (for example, ML Flow or S3
Bucket)
Easy integration to ML-Flow or model storage systems is an important
consideration.

6. Is GPU inference needed?
Predictions using GPU servers based on performance requirements will
likely drive you to either cloud providers or Algorithmia for on-premises.

7. Are there separate feature generation pipelines or are they integrated
into the model server?
Depending on where your feature pipelines are deployed, say, Amazon
Web Services (AWS), that might direct you toward using SageMaker. This is
probably one of more common reasons to use SageMaker as data is already
deployed in AWS.

Deployment Details
The format of the model can vary, based on the frameworks used to build
the model, across organizations and projects. Some example formats
include a pickle image of weights/parameters for the classifier, a Tensorflow
SavedModel object, a Pytorch model, Keras model, XGBoost model, Apache
TVM, MXNet, ONNX Runtime, etc.

STAGE 4: Model Serving | Page 20

Implementation
There are many ways that ML models can be implemented. These models
can be integrated into a larger system’s codebase, deployed as a microservice,
or even live on a device. If the model is code that is integrated into a larger
system, the interface into the model is simply a function call. If the model is in
its own service/executable or server, it can be seen as a service. These services
have well defined APIs or interfaces to pass inputs to the models and get
responses. The model servers described above take the trained model artifact
generated in the above formats and allow you to deploy it to a containerized
model server that generates well defined APIs.

Containerization
A modern server approach is to containerize the model executable so there
is a common interface into models and a common way of standing them up.
The model is pulled from the model management system (such as ML-Flow)
into a container when it is deployed. There are many ways to accomplish
this, either building a custom container for your company, using open source
solutions like KubeFlow or Seldon AI, or using the common cloud provider
tools such as Algorithmia, SageMaker, Azure or Google AI.

Real-Time or Batch Model
Another important deployment consideration to make is whether to have
a real-time/online model or a batch model. Online models are used when
predictions need to be immediate and take in real-time application input. If
this isn’t a requirement, batch inferences can be appropriate.
A number of serving platforms allow you to build a single model and have
different deployment options (Batch or Real Time) to support both types of
serving regimes.

Easy Scale Out:
As the prediction volume grows of an application, the initial approach of
having a single server supporting predictions can get easily overwhelmed. The
ability to simply add servers to a prediction service, without the need to re-
architect or generate a large amount of additional model operations work, is
one of the more useful features of a model server.

Canary A/B Framework:
A canary A/B framework allows developers to roll out software to a small
subset of users to perform A/B testing to figure out which aspects of the
software are most useful and provide the best functionality for users. Once
deployed, some teams run a A/B (canary) model side-by-side with the
production model, initially predicting on only a small subset of traffic for the

Things to Look for in Model Servers

STAGE 4: Model Serving | Page 21

new model. This is done as a simple test before deploying the new model
across the full volume of predictions. A lot of teams we talk to have home-
built their own A/B testing framework. That said, some of the model server
solutions also support easy A/B deployments out of the box, for example, to
choose the % of traffic to the B model with the click of a button.

Ensemble Support:
The ability to co-locate multiple models in the same server or easily connect
the prediction (inference) flow between models might be an important
consideration. Most of the time, the model response will be consumed by the
end application, but as systems get more complex, some models’ outputs
are inputs to another model. In cases of fast prediction response, co-locating
models can be desired.

Fall Back Support:
As you deploy a new model into production, you might find that performance
drops drastically. The ability to have a different model, maybe a previous
version or a very simple model during periods of degraded performance, can
be very helpful in situations like this.

Security:
If security is extremely important to the organization, some platforms have
very well thought out security feature sets. These span a set of security
requirements focused on: access rights, application security, network security,
and memory security. The model in production needs to grab data/inputs
from somewhere in the system, and it needs to generate predictions/outputs
used by other systems. The application who has access to the predictions
might not have rights to the input data. Also, if the application is using Python
packages in a Kubernetes-hosted model, many companies want to make
certain that those packages are not public packages. Lastly, if you are running
in a shared memory environment like a GPU, you will need to take stock of
what data protections you have in place around memory encryption and
access. Some platforms, such as Algorithmia, have more developed security
feature sets that provide solutions for a myriad of situations.

Feature Pipeline Support:
In containerized solutions, input-to-feature transformations may reside in the
container itself, or may have separate feature transformation pipelines. The
larger the infrastructure, the more likely the input-to-feature transformation
is a pipeline or feature store system with inputs to the container being pre-
processed.

In the serving layer, there are also some new platforms such as Tecton AI
which are focused on feature serving. A global feature store allows teams to

STAGE 4: Model Serving | Page 22

easily deploy the feature pipeline directly into production environments —
minimizing feature pipeline mistakes, and allowing teams to take advantage
of cross-company feature builds.

Monitoring:
Some model servers support basic monitoring solutions. Some servers
support monitoring for serving infrastructure, memory usage, and other
operational aspects. Our view is that this type of raw model ops monitoring
and visualization is important to model scale out, but is not observability. We
are obviously biased, but have an opinion that true model observability is
really a separate platform.

Example ML Infrastructure Platforms for Deployment and
Serving include:

It may seem like anyone can do monitoring — green lights are good, and red
lights are bad. You can set alerts, and if a value falls below a certain level, this
triggers sending an email to the staff.

Yet, if that were the case, Amazon Cloud Watch would have killed Datadog.
The issue here is — what do you do when you get that alert?

Our opinion is that the difference between a monitoring solution and an
Observability platform is the ability to troubleshoot and bottom out issues
seamlessly. In the ML ecosystem, these problems surface as issues linking
AI research to engineering. Is the platform designed from the bottom up to
troubleshoot problems, or was an alerting system tacked on to some pre-existing
graphs? Troubleshooting models + data in the real world is a large and complex
space. That’s why Observability platforms are designed from the ground up to
help research and engineering teams jointly tackle these problems.

Model Observability vs Model Monitoring

STAGE 4: Model Serving | Page 23

https://algorithmia.com/

Why the model server is not a great spot for Observability:
The model server does not have the right data points to link the complex
layers needed to analyze models. The model server is missing essential data
such as training data, test runs, pre-one hot encoded feature data, truth/label
events, and much more. In the case of feature data, for a number of larger
models we have worked on, the insertion point into the data pipeline for
troubleshooting is a very different technology than the model server. Lastly,
many organizations have as many model serving approaches as they have
models in production, and it is very unlikely they will move to a single server to
rule them all. What happens when you have a mix of models served that feed
each other data but you want a cohesive picture?

It’s the same in software infrastructure; your infrastructure observability
solutions are not tied to the infrastructure itself.

STAGE 4: Model Serving | Page 24

Observability
S

T
A

G
E

 0
5

Image by author. Making complex simple

As a machine learning community we have made huge
strides in building models that empower computers to
do amazing feats of intelligence. Now that these models
are out in the world making decisions, how do we make
sure that these technologies are actually working,
that we deliver them continuously with quality, that
we actively improve them and ensure research results
match production?

As most data scientists quickly realize a Jupyter Notebook is not the real
world. Model Observability is the key that bridges the gap. Model Observability
is the foundational platform that empowers teams to continually deliver and
improve results from the lab to production.

In this blog series, we will be discussing the topic of model observability. We
will dig into the problems models run into, in the real world. We will also take a
look at tools that help one understand how models are behaving.

Is Model Observability just a fancy word for ML monitoring?

Model observability begins with the process of collecting model evaluations
in environments such as training, validation, and production, then tying
them together with analytics that allows one to connect these points to
solve ML Engineering problems. These inferences are stored in a model
evaluation store (credit to Josh Tobin for this term) which hosts the raw
inference data. An evaluation store holds the response of the model, a
signature of the model decisions, to every piece of input data for every
model version, in every environment.

STAGE 5: Observability | Page 26

The ML Observability platform allows teams to analyze model degradation
and to root cause any issues that arise. This ability to diagnose the root cause
of a model’s issues, by connecting points across validation and production, is
what differentiates model observability from traditional model monitoring.

While model monitoring consists of setting up alerts on key model
performance metrics such as accuracy, or drift, model observability implies a
higher objective of getting to the bottom of any regressions in performance
or anomalous behavior. We are interested in the why. Monitoring is interested
in only aggregates and alerts. Observability is interested in what we can infer
from the model’s predictions, explainability insights, the production feature
data, and the training data, to understand the cause behind model actions
and build workflows to improve.

Image by author. ML Observability Flow

STAGE 5: Observability | Page 27

ML Observability backed by an Evaluation Store:

• Move seamlessly between production, training, and validation dataset

 environments

• Natively support model evaluation analysis by environment

• Designed to analyze performance Facets/Slices of predictions

• Explainability attribution designed for troubleshooting and regulatory

 analysis

• Performance analysis with ground truth — Accuracy, F1, MAE

• Proxy performance without ground truth — prediction drift

• Distribution drift analysis between data sets and environments

• Designed to answer the why behind performance changes

• Integrated validation

• Architected to iterate and improve

Our team has personally worked on models deployed in pricing, forecasting,
marketing, credit and delivery time estimates, to name a few. In all cases
there is a common story line; we would build a model, deploy it and it would
work great in one city and not in another. It would work great across a set of
neighborhoods/customers/types of products and poorly across others. It would
be great in the average case but horrible on the tail end of predictions. Or it
would work great on initial launch and then the model would slowly degrade.
Other times you would have an instantaneous change caused by an upstream
data pipeline mistake, that would slowly poison the training data. In all these
cases it was clear there was a missing foundational piece of ML infrastructure
to help make models work as teams deployed them to production.

In another common use of Machine Learning, such as fraud model
analysis, understanding the why behind performance changes is extremely
important. In fraud there is a constant landscape of changing behavior
based on adversarial actions of bad actors. These bad actors create pockets
of performance degradation that might throw a red or green light in a
monitoring system. But the causal connection, “the why”, is typically the
insight for stopping the fraud scheme.

In companies that build a model per customer, trained on customer specific
data, every model is trained differently. Teams can be inundated with models
showing data/model drift but it can be hard to show if that drift is a problem.

Why ML Observability matters

STAGE 5: Observability | Page 28

How do you bottom out issues at scale and how does your ML team scale as
customers grow? Teams want to quickly know where issues are occurring at
scale, compare production swiftly to validation and clear the issues quickly
with confidence.

Without the tools to reason about mistakes a model is making in the
wild, teams are investing a massive amount of money in the data science
laboratory but essentially flying blind in the real world.

Contact Us

Contact us Join us

If this whitepaper
caught your attention

and you’re eager to
learn more, follow us on

Twitter and Medium!

If you’d like to hear more
about what we’re doing
at Arize AI, reach out to
us at contacts@arize.

com.

Join our rockstar
engineering crew to

make models successful
in production, reach out
to us at jobs@arize.com.

mailto:contacts%40arize.com?subject=
mailto:jobs%40arize.com?subject=Open%20positions%20at%20Arize
https://twitter.com/arizeai
https://medium.com/arize-ai
mailto:contacts%40arize.com?subject=
mailto:contacts%40arize.com?subject=
mailto:jobs%40arize.com?subject=
http://www.arize.com

