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Estimation of Number of Spectrally Distinct Signal
Sources in Hyperspectral Imagery

Chein-I Chang, Senior Member, IEEE, and Qian Du, Member, IEEE

Abstract—With very high spectral resolution, hyperspectral
sensors can now uncover many unknown signal sources which
cannot be identified by visual inspection or a priori. In order to
account for such unknown signal sources, we introduce a new
definition, referred to as virtual dimensionality (VD) in this
paper. It is defined as the minimum number of spectrally distinct
signal sources that characterize the hyperspectral data from the
perspective view of target detection and classification. It is different
from the commonly used intrinsic dimensionality (ID) in the sense
that the signal sources are determined by the proposed VD based
only on their distinct spectral properties. These signal sources may
include unknown interfering sources, which cannot be identified by
prior knowledge. With this new definition, three Neyman–Pearson
detection theory-based thresholding methods are developed to
determine the VD of hyperspectral imagery, where eigenvalues
are used to measure signal energies in a detection model. In
order to evaluate the performance of the proposed methods, two
information criteria, an information criterion (AIC) and minimum
description length (MDL), and the factor analysis-based method
proposed by Malinowski, are considered for comparative analysis.
As demonstrated in computer simulations, all the methods and
criteria studied in this paper may work effectively when noise is
independent identically distributed. This is, unfortunately, not true
when some of them are applied to real image data. Experiments
show that all the three eigenthresholding based methods (i.e.,
the Harsanyi–Farrand–Chang (HFC), the noise-whitened HFC
(NWHFC), and the noise subspace projection (NSP) methods)
produce more reliable estimates of VD compared to the AIC, MDL,
and Malinowski’s empirical indicator function, which generally
overestimate VD significantly. In summary, three contributions are
made in this paper, 1) an introduction of the new definition of VD,
2) three Neyman–Pearson detection theory-based thresholding
methods, HFC, NWHFC, and NSP derived for VD estimation,
and 3) experiments that show the AIC and MDL commonly used
in passive array processing and the second-order statistic-based
Malinowski’s method are not effective measures in VD estimation.

Index Terms—An information criterion (AIC), Malinowski’s
emperical indicator function (EIF), minimum description length
(MDL), Neyman–Pearson detection, noise subspace projection
(NSP), virtual dimensionality (VD).

I. INTRODUCTION

DETERMINATION of intrinsic dimensionality (ID) for re-
motely sensed imagery is a very challenging problem [1].

According to the definition given in [2], the ID, also referred to
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as effective dimensionality, is the minimum number of parame-
ters required to account for the observed properties of the data.
The true dimensionality of multivariate data is difficult to de-
termine in practice, since its ID cannot be simply determined
by the dimensionality of a data sample vector, referred to as
component dimensionality in this paper, which is defined by the
number of components in a data vector. In particular, when very
high-dimensional data are well structured, data tend to be dis-
tributed in a low-dimensional space. In this case, the ID is ex-
pected to be much smaller than the component dimensionality.
Several well-known methods have been proposed such as prin-
cipal components analysis (PCA) [3] and factor analysis [4], [5],
which make use of the eigenvalue distribution to determine the
ID. Such approaches may be suitable to multispectral imagery,
since only a small number of bands are used to acquire multi-
spectral imagery and the resulting ID is expected to be small.
However, a direct application of these methods to hyperspec-
tral imagery can be difficult. More importantly, it may not be
effective even if it is applicable [6]. This is particularly true for
hyperspectral imagery, where the component dimensionality is
the dimensionality of a pixel vector specified by hundreds of
spectral channels. The ID of the image is considerably smaller
than the component dimensionality. Accordingly, accurately de-
termining the ID is crucial and also critical to the success of hy-
perspectral image analysis, such as linear unmixing methods,
which require the knowledge of how many image endmembers
are in image data. Compared to multispectral imagery, hyper-
spectral imagery has very high component dimensionality, and
determining the ID could be more problematic for hyperspec-
tral imagery than for multispectral imagery. This is because a
high spectral resolution hyperspectral sensor has the capability
of uncovering many unknown target sources spectrally, which
cannot be identified by visual inspection or a priori.

In order to account for such unknown signal sources, and
also to avoid confusion with the ID, we introduce a new defini-
tion, referred to as virtual dimensionality (VD) in this paper. It
is defined as the minimum number of spectrally distinct signal
sources that characterize the hyperspectral data from the per-
spective view of target detection and classification rather than
the image endmembers defined in [7], which are idealized pure
signatures. It is different from the ID in the sense that signal
sources are considered to be different if they are spectrally dis-
tinct. It may not be necessarily measured by the same parameters
used to measure the ID. Such signal sources may include known
and unknown image endmembers, natural signatures, anoma-
lies, and interferers [8]. It should be noted that the definition of
the VD used here is our preference and is by no means a standard
terminology. It has a narrow implication driven by the require-
ments of target detection and classification.
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A practical issue encountered in PCA-based approaches to
VD estimation is that it is very difficult to determine the cutoff
threshold between the eigenvalues caused by signals and noise,
in particular, when a change between two adjacent eigenvalues
is not significant. Malinowski [4], [5] developed an empirical in-
dicator function (EIF) that was used to determine the threshold.
He used eignevalues to reconstruct the data correlation matrix
and measured the difference between the original and its recon-
structed matrices, which was used to estimate the ID. As shown
in the experiments, it does not work well for real data in remote
sensing. In passive array processing, two information criteria, an
information criterion (AIC) [9] and minimum description length
(MDL) [10], [11], were used to estimate the number of signals
impinging upon the array. It seemed that these criteria might be
applicable to VD estimation. Unfortunately, as will be demon-
strated in our experiments, this turns out not to be the case.

Recently, Harsanyi, Farrand, and Chang developed an eigen-
thresholding method, referred to as Harsanyi–Farrand–Chang
(HFC) method, to determine the number of spectral end-
members in Airborne Visible Infrared Imaging Spectrometer
(AVIRIS) data [12]. It was derived from the concept of the
Neyman–Pearson detection theory [13]. Their idea can be briefly
described as follows. Let the eigenvalues generated by the
sample correlation matrix and the sample covariance matrix be
denoted by correlation eigenvaules and covariance eigenvalues,
respectively. Since the component dimensionality is equal to the
total number of eigenvalues, each eigenvalue specifies a compo-
nent dimension and provides an indication of the significance
of that particular component in terms of energy or variance. If
there is no signal source contained in a particular component, the
corresponding correlation eigenvalue and covariance eigenvalue
in this component should reflect only the noise energy, in which
case, correlation eigenvalue and covariance eigenvalue are
equal. This fact provides us with a base from which we can
formulate the difference between the correlation eigenvalue and
its corresponding covariance eigenvalue as a binary composite
hypothesis testing problem. The null hypothesis represents the
case of the zero difference, while the alternative hypothesis
indicates the case that the difference is greater than zero. When
the Neyman–Pearson test is applied to each pair of correla-
tion eigenvalue and its corresponding covariance eigenvalue,
the number of times the test fails indicates how many signal
sources are present in the image. In other words, a failure of
the Neyman–Pearson test in a component indicates a truth of
the alternative hypothesis, which implies that there is a signal
source in this particular component. Using this approach, we
can estimate the VD with the receiver operating characteristic
(ROC) analysis for evaluating the effectiveness of the decision.
Since the HFC method does not have a noise-whitening process
that decorrelates noise with signal sources to enhance signal
detection performance, an alternative approach is to include a
noise-whitening process in the HFC method to remove noise
effects on eigenvalues. The resulting method will be referred to
as noise-whitened HFC (NWHFC) method. In this case, a noise
estimation is required for the NWHFC method.

Since both the HFC and NWHFC methods model the correla-
tion eigenvalue and the corresponding covariance eigenvalue as
random parameters in [14], the sample size must be sufficiently

large to ensure that the covariance between these two types of
eigenvalues is asymptotically zero. However, this may not be
valid for a small sample size. In order to alleviate this problem,
a third method, referred to as noise subspace projection (NSP)
approach, was recently proposed in [15], which used the covari-
ance eigenvalues only. It uses the NWHFC method as a transi-
tion to derive an approach that can take advantage of strengths
from both HFC and NWHFC. It first estimates the noise covari-
ance matrix of image data, then uses it to whiten the noise vari-
ances to unity. Consequently, the binary composite hypothesis
problem used in the HFC method can be simplified and reduced
to the one that the null hypothesis represents the case of unity
variance while the alternative hypothesis being the case of vari-
ance greater than unity. Accordingly, calculating the difference
between correlation eigenvaules and covariance eigenvalues can
be avoided. An immediate benefit from the NSP method is that
the sample size is not necessarily large as required by the HFC
and NWHFC methods. In order to estimate the noise covariance
matrix, a method suggested by Roger and Arnold [16], [17] and
Du and Chang [18] will be used in this paper.

The remainder of this paper is organized as follows. Section II
derives the HFC method using a Neyman–Pearson detection
theory-based eigenthresholding approach. Section III reviews a
method proposed by Roger and Arnold for noise covariance ma-
trix estimation. Section IV presents two noise-whitened eigen-
thresholding methods, the noise-whitened HFC method and the
NSP method, plus two information criteria (an AIC and MDL)
and Malinowski’s method, which will be used for comparative
analysis. Section V conducts computer simulations and real data
experiments to evaluate the effectiveness of the methods pro-
posed in this paper. Finally, a conclusion is drawn in Section VI.

II. NEYMAN–PEARSON DETECTION THEORY-BASED

EIGENTHRESHOLDING METHOD

A Neyman–Pearson detection theory-based eigenthreshold
method, referred to as the HFC method, was previously de-
veloped in [12] to determine the number of endmembers in
AVIRIS data. It first calculated the sample correlation matrix

and sample covariance matrix and then found
the difference between their corresponding eigenvalues. Let

and
be two sets of eigenvalues generated by and ,
called correlation eigenvalues and covariance eigenvalues,
respectively. By assuming that signal sources are nonrandom
unknown positive constants and noise is white with zero mean,
we can expect that

for VD (1)

and

for VD (2)

More specifically, the eigenvalues in the th spectral channel can
be related by

for VD

for VD (3)

where is the noise variance in the th spectral channel.
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In order to determine the VD, Harsanyi et al. [9] formu-
lated the problem of determination of VD as a binary hypothesis
problem as follows:

versus

for (4)

where the null hypothesis and the alternative hypothesis
represent the case that the correlation eigenvalue is equal to its
corresponding covariance eigenvalue and the case that the cor-
relation eigenvalue is greater than its corresponding covariance
eigenvalue, respectively. In other words, when is true (i.e.,

fails), it implies that there is an endmember contributing to
the correlation eigenvalue in addition to noise, since the noise
energy represented by the eigenvalue of in that particular
component is the same as the one represented by the eigenvalue
of in its corresponding component.

Despite the fact that the and in (1)–(3) are unknown con-
stants, according to [14], we can model each pair of eigenvalues

and under hypotheses and as random variables by
the asymptotic conditional probability densities given by

for (5)

and

for
(6)

respectively, where is an unknown constant and the variance
is given by

Var Var Cov

for (7)

It is shown in [14] that when the total number of samples is
sufficiently large, Var and Var .
Therefore, the noise variance in (5) and (6) can be estimated
and approximated using (7).

Now, we use Schwarz’s inequality to bound Cov in
(7) as follows:

Cov Var Var (8)

If we further assume that the estimators and are consis-
tent in mean square, the variances of and are asymptoti-
cally zero. In other words, Var and Var

converge to zero as . This further implies that
Cov as well as

Var Var

for as (9)

From (5), (6), and (9), we define the false-alarm probability
and detection power (i.e., detection probability) [13] as follows:

(10)

(11)

A Neyman–Pearson detector for , denoted by
, in the binary composite hypothesis testing problem speci-

fied by (4) can be obtained by maximizing the detection power

in (11), while the false-alarm probability in (10) is fixed
at a specific given value, , which determines the threshold value

in (10) and (11). So, a case of indicating that
fails the test, in which case there is signal energy

assumed to contribute to the eigenvalue in the th data dimen-
sion. It should be noted that the test for (4) must be performed for
each of data dimensions. Therefore, for each pair of , the
threshold is different and should be -dependent, i.e., .

To conclude this section, a comment is noteworthy. In order to
show that Cov as , we have assumed that
both and are consistent in mean square. However, this as-
sumption isnot crucial and doesnot affect the HFC method.Since

and are maximum-likelihoodestimators, they are asymptot-
ically unbiased and consistent [13]. In other words, and are
always consistent estimators in the sense that and converge
in probability to real correlation eigenvalues and real covariance
eigenvalues, respectively, regardless of whether Cov

as . Therefore, the binary composite hypothesis testing
problemdescribedby (4) is alwaysvalid.The only issue is that the
varianceof mayormay not beapproximated via (9), depending
upon the factor that Cov as . Should (9) fail,
the estimate of the variance of used in (10) and (11) may not
be accurate. This is the reason that we introduce the NWHFC
and NSP approach in the following sections.

III. ESTIMATION OF NOISE COVARIANCE MATRIX

As noted in (7), Cov is not necessarily zero, if the
and are not asymptotically consistent in mean square. How-
ever, Cov can be reduced if a noise-whitened process is
included prior to performing the hypothesis testing described
by (4). In order to take advantage of this, two approaches will
be developed in Section IV, which are the NWHFC method in
Section IV-A and the NSP method in Section IV-B. Of partic-
ular interest is the NSP method, which requires the computation
of either sample covariance matrix or sample correla-
tion matrix , but not both as do the HFC and NWHFC
methods. The only issue needed to be resolved is to estimate the
second-order statistics of the noise.

There exist many methods to estimate the noise covariance
matrix, such as residual-based estimation [16] taking into ac-
count intraband correlation, nearest neighbor difference (NND)
[19], [20] using interband correlation, and linear regression
model-based prediction [17] taking advantage of intra/interband
correlation. Since NND has shown to be a poor estimation [6],
only the residual analysis method developed by Roger and his
colleagues will be discussed in this paper for noise covariance
matrix estimation.

The can be decomposed as follows:

(12)

where is a diagonal matrix given by
diag with being diagonal ele-
ments of , which is the variance of , and

. . .
. . .

...
...

...
. . .

. . .

(13)
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with being the correlation coefficient at the th entry
of and .

Similarly, in analogy with the decomposition of , its
inverse can be also decomposed as

(14)

where is a diagonal matrix given by
with being the diagonal elements of

, and

. . .
. . .

...
...

...
. . .

. . .

(15)

with being the correlation coefficient at the th entry
of and . It turns out that the in can be
related to the by the following formula:

(16)

where is the multiple correlation coefficients of band on
the other bands obtained by using the mul-
tiple regression theory. So, is the reciprocal of a good noise
variance estimate of band . It should be noted that the in
(14) is not an inverse of the in (12), and nor is an in-
verse of the . The major advantage of using over is that
removes its correlation on other ’s for , while does not.

Therefore, the noise covariance matrix can be estimated
by diag , which is a diag-
onal matrix.

IV. TECHNIQUES FOR VD ESTIMATION

In order for a noise-whitening process to be effective, the
noise second-order statistics must be estimated accurately. The
techniques introduced in the previous section have shown suc-
cess in estimation of the noise covariance matrix of AVIRIS data
and can be used for this purpose.

A. NWHFC Method

Since the HFC method does not have a noise-whitening
process, an alternative is to modify the HFC method by in-
cluding a noise-whitening process as preprocessing to remove
the second-order statistical correlation such that the noise
variance in the corresponding correlation eigenvalue and
covariance eigenvalue will be the same. As a result, the VD
estimate can be more accurate due to the fact that the noise
variances have been decorrelated and do not have effects on the
eigenvalue comparison. The resulting HFC method will be re-
ferred to as noise-whitened HFC method. More specifically, the
reason that we introduce the NWHFC method is threefold. One
is that the correlation between and [i.e.,Cov ] can
be reduced. Another is that a noise-whitening process makes
the noise components in the corresponding eigenvalues and

equal to 1 in (3). As a result, when there is no signal present
in the th dimension, . Such a noise-whitening
process generally improves the accuracy of the VD estimation

Fig. 1. Five AVIRIS reflectance spectra.

and can be viewed as a hybrid of the noise-adjust PCA in [19]
and the HFC method. The third is to use it as a transition from
the HFC method to the NSP-based eigenthreshloding method
described in the following section.

B. NSP

The effectiveness of the HFC and NWHFC methods is based
on the assumption that Cov is asymptotically zero. How-
ever, for the case that sample size is not sufficiently large, this
may not be true. So, in order to mitigate this dilemma, a noise
subspace projection method is developed in this section to use
only . If the noise estimate is accurate, the NSP method
can outperform the HFC and NWHFC, particularly when the
sample size is small. It can be viewed as a hybrid of the noise-ad-
justed PCA, the HFC, and NWHFC methods.

The sample covariance matrix can be whitened using
the estimated in Section III by . As a
result, the noise variance of each band in the whitened is
reduced to unity. Let be a set of eigenvalues generated
by . We can express as

(17)

where and span signal subspace and noise
subspace, respectively. The variances of the noise components
in (17) have been whitened and normalized to unity, so
for VD , and for VD. Then, the
problem of VD estimation can be formulated as the following
binary hypothesis testing problem:

for
(18)

where

for
(19)

and

for
(20)

where is an unknown constant and is given by

Var (21)

Under the hypothesis , (21) can be further reduced to

(22)
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(a)

(b)

Fig. 2. Computer simulations using five AVIRIS signatures with additive i.i.d. Gaussian noise. (a) Eigenvalue distributions. The asterisk represents correlation
eigenvalues. The circles represent covariance eigenvalues. (b) Eigenvalue differences and thresholds. Dots represent eigenvalue differences. Solid line indicates
thresholds. (Left) HFC. (Middle) NWHFC. (Right) NSP.

TABLE I
VD ESTIMATES OBTAINED BY THE HFC, THE NWHFC, THE NSP-BASED EIGENTHRESHOLDING METHODS, THE AIC-BASED,

THE MDL-BASED, AND THE EIF METHODS FOR COMPUTER SIMULATIONS FOR VARIOUS SNRs

TABLE II
VD ESTIMATES OBTAINED BY THE HFC, THE NWHFC, THE NSP-BASED EIGENTHRESHOLDING METHODS, THE AIC-BASED, THE MDL-BASED,

AND THE EIF METHODS FOR TWO EXPERIMENTS OF COMPUTER SIMULATIONS WITH THE SAME SNR = 25 : 1

Fig. 3. AVIRIS image scene.

Now using (19)–(22), we can find the Neyman–Pearson de-
tector for (18) to determine VD. It is noteworthy that if (22)
is used, the threshold will be the same for all the eigenvalues,
since (19) is independent of the eigenvalue index.

C. AIC and MDL

In passive sensor array processing, a similar problem to
VD estimation also arises from the estimation of the number
of signal sources impinging upon the array. This problem is
related to how to select an appropriate model for a parame-
terized family of probability density functions used to best fit
the sensor array data. It is known that two commonly used
methods, an information-theoretic criterion (AIC) suggested
by Akaike [9], and an MDL proposed by Schwartz [10] and
Rissanen [11], can be used for model selection. They can be
derived from the following formulas that were obtained by Wax
and Kailath [21]:

AIC

(23)
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(a)

(b)

Fig. 4. Results produced for the AVIRIS image scene in Fig. 3. (a) Eigenvalue distributions. The asterisk represents correlation eigenvalues. The circles represent
covariance eigenvalues. (b) Eigenvalue differences and thresholds. Dots represent eigenvalue differences. Solid line indicates thresholds. (Left) HFC. (Middle)
NWHFC. (Right) NSP.

MDL

(24)

where is the number of free parameters that specifies a family
of probability density functions, and are
eigenvalues generated by as in (1)–(3).

In [22], a linear unmixing problem could be formulated as a
passive sensor array problem, where signal sources impinging
on a sensor array were interpreted as desired target sources to be
detected from a set of coregistered images acquired by a bank
of spectral channels. With this interpretation, a linear mixing
problem can be solved by techniques that are used to solve
sensor array problems. In order to take advantage of these two
criteria and apply them to the estimation of the VD, we need
to examine their underlying assumptions, i.e., 1) the noise must
be independent identically distributed (i.i.d.), and 2) the obser-
vation process is a zero-mean Gaussian random process. When
the noise is Gaussian, the first assumption can be taken care of
by the whitening technique proposed in Section III, in which
case the noise variance will be normalized to unity. Then, the
resulting sample covariance matrix can be used in the Gaussian
process made in the second assumption. Now, the problem of
estimating VD can be solved by minimizing (23) and (24) as
follows:

VD AIC (25)

VD MDL (26)

D. Malinowski’s Method

In absorption spectroscopy, mass spectra, and chromatog-
raphy, the determination of the number of factors in a data
matrix is also an important issue. Malinowski used the PCA to
develop a factor analysis-based indication function to estimate
this number, referred to as an empirical indicator function in
[5]. Since this problem of determining the number of factors
and experimental error in a data matrix is similar to that of
estimating the VD, Malinowski’s method will be also imple-
mented for comparison. The criterion used by Malinowski’s
method is the EIF defined by

EIF (27)

Using (27), the VD can be estimated via Malinowski’s EIF by

VD EIF (28)

V. EXPERIMENTS

The experiments conducted in this section consist of com-
puter simulations and real hyperspectral image experiments.
The purpose of these experiments is to demonstrate the ability
of the three methods presented in this paper by comparing their
performance to AIC, MDL, and Malinowski’s EIF method in
VD estimation.

A. Computer Simulations

Five AVIRIS reflectance spectra (dry grass, red soil, creosote
leaves, blackbrush, and sagebrush), as shown in Fig. 1, were used
for simulations, where 158 bands were used after water bands
were removed. Each of these five spectral signatures was used
to simulate 1000 pixels with abundance generated by random
numbers in the range (0,1) for computer simulations. Additive



614 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 42, NO. 3, MARCH 2004

Fig. 5. Unsupervised classification for the AVIRIS image produced by the UNCLS method.

Fig. 6. Unsupervised classification for the AVIRIS image produced by the ATDCA method.

Gaussian noise was added to these 1000 mixed pixels to achieve
SNR 25 : 1 for the entire data. In order to simulate an i.i.d. case,
the same Gaussian noise with the same variance was added to
each band. Fig. 2(a) shows the log eigenspectra generated by the
HFC, the NWHFC, and NSP-based eigenthresholding methods,
respectively, where the eigenvalues produced by and

are denoted by and , respectively. The noise estimation
method for NWHFC is the residue analysis in Section III because
of its simplicity and efficiency. As noted in Fig. 2(a), when the
eigenvalue index increases, the correlation eigenvalues start
to overlay the covariance eigenvalues. This phenomenon can
be explained by the fact that noise is the only signal sources
contributed to these eigenvalues. With this interpretation, the
VD was estimated by the HFC, the NWHFC, and NSP-based
eigenthresholding methods to be 5, 4, and 4, respectively, using
the Neyman–Pearson test with the false-alarm probability
set to . In Fig. 2(b), the eigenvalue differences of
HFC and NWHFC (denoted by dots) as well as thresholds used
for HFC, NWHFC, and NSP-based methods (denoted as curves)
were plotted. The HFC eigenthresholding method correctly

Fig. 7. Fifteen-panel HYDICE image scene.

predicted the true data dimensionality, 5, while both NWHFC
and NSP-based eigenthresholding methods predicting 4. Since
the spectra of creosote leaves and sagebrush in Fig. 1 are shown
in [23] to be very close, they were considered to be the same
signature by the NWHFC and NSP methods. This is also true for
theAICandMDL,where theVDwasestimated tobe4.The result
produced by Malinowski’s EIF was 5. Similar experiments were
also conducted for various SNRs. Table I tabulates the values
of VD estimated by the six methods for various SNRs. It was
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(a)

(b)

Fig. 8. Results produced for the HYDICE image scene in Fig. 7. (a) Eigenvalue distributions. The asterisk represents correlation eigenvalues. The circles represent
covariance eigenvalues. (b) Eigenvalue differences and thresholds. Dots represent eigenvalue differences. Solid line indicates thresholds. (Left) HFC. (Middle)
NWHFC. (Right) NSP.

found that the estimated VD for the SNR higher than 25 : 1 by
HFC, NWHFC, NSP, AIC, MDL, and Malinowski’s EIF stayed
the same, 5, 4, 4, 4, 4, 5, respectively. However, when the SNR
was lower than 25 : 1, the VD estimated by the HFC, NWHFC,
NSP, and MDL was reduced and stayed 3 except 4 estimated by
Malinowski’sEIF (for SNR 10 1,15 : 1, 20 : 1), by HFC(for
SNR 20 1), and by AIC (for SNR 15 1, 20 : 1). These
experiments made sense. Due to increased noise interference,
the blackbrush becomes indiscernible from creosote leaves and
sagebrush, as shown in [23]. In this case, the three signatures will
be considered to belong to one class, and this class along with
dry grass and red soil makes up three distinct classes in computer
simulations.

Unlike the above simulation with an equal noise variance
added to each individual band, we simulated another scenario
in such a way that additive Gaussian noise with a different vari-
ance was added to each individual band to achieve the band SNR
25 : 1. In this case, the noise is not i.i.d., since the variance is
varied from band to band. Interestingly, the values of VD esti-
mated by the three eigenthresholding based methods and Ma-
linowski’s EIF method still remained unchanged, but the AIC
and MDL completely failed, in which their estimated VD were
139 and 110, respectively.

The second scenario demonstrates that the i.i.d. assumption
is crucial to the success of the AIC and MDL, while it has very
little effect on the eigenthresholding based methods. Table II
summarizes the VD results estimated by the HFC, NWHFC,
NSP, AIC, MDL, and EIF for the two scenarios of simulated
non-i.i.d. Gaussian noise with SNR 25 1.

B. AVIRIS and HYDICE Experiments

The 224-band AVIRIS image shown in Fig. 3 was used in the
experiments. This was also the same image considered in [24].
Fig. 3(a) is a subscene of 200 200 pixels cropped from the

left upper corner of the Lunar Crater Volcanic Field in Northern
Nye County, NV in Fig. 3(b), where five signatures of interest
in these images demonstrated in [24] were “red oxidized
basaltic cinders,” “rhyolite,” “playa (dry lakebed),” “shade,”
and “vegetation.” The log eigenspectra generated by the HFC,
NWHFC, and NSP-based eigenthresholding methods are
shown in Fig. 4(a), where and denoted the eigenvalues pro-
duced by and , respectively. The VD estimated by
the HFC, NWHFC and NSP-based eigenthresholding methods
was 4, 6, and 9, respectively, using the Neyman–Pearson test
with the false-alarm probability set to , as
shown in Fig. 4(b). In order to see if these estimated values
are appropriate, we applied the unsupervised nonnegatively
constrained least squares (UNCLS) method proposed in [25]
to classify the AVIRIS image in Fig. 3. It should be noted that
since no prior knowledge was assumed, the target detection and
classification must be conducted in an unsupervised manner.
Fig. 5 shows the unsupervised classification results produced by
the UNCLS method, where at least five target signatures (i.e.,
cinders, playa, rhyolite, shade, and vegetation) in the image
scene were identified plus an anomaly detected at the upper
edge of the dry lake. This implies that the VD must be equal to
or greater than 6. As a matter of fact, due to a wide coverage
of the dry lake, the playa signature varied significantly from
its top to bottom. So, if we further applied the automatic target
detection and classification (ATDCA) proposed in [26] to the
AVIRIS scene, it required nine target signatures to separate the
rhyolite from cinders. It was because the dry lake was split into
two regions, as noted in Fig. 6. This is also close to the result
produced by the ICA-based approach in [27], which required
at least eight components to discriminate these five materials.
These mean that the results using NWHFC and NSP are more
reasonable. When the AIC and the MDL were applied to the
AVIRIS image scene, the estimated VD was 157 for both of
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Fig. 9. Unsupervised classification for the HYDICE image produced by the UNCLS method.

them. After the noise was whitened, the estimated VD was 150
for AIC and 121 for MDL. These values are significantly higher
than the numbers estimated by the three eigenthresholding
based methods. As illustrated in computer simulations, due to
the fact that the noise in remotely sensed imagery is generally

not i.i.d. as usually assumed in array processing, the VDs
estimated by the AIC and the MDL for the AVIRIS image
were largely affected by this assumption. Consequently, the
AIC and MDL performed poorly in the estimation of VD.
The VD estimated from Malinowski’s EIF was 15, and 10 for
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Fig. 10. Unsupervised classification for the HYDICE image results by the ATDCA.

the noise-whitened data, which were also large. According to
experiments conducted in [5], Malinowski’s EIF worked well
when the noise is random and fairly uniform. But this may not
be true in real data, where the noise may vary from band to band
and even be correlated among bands. As a result, Malinowski’s
EIF did not perform well as did in the computer simulation.

Similar experiments were also conducted for the 15-panel
HYDICE image using the HFC, the NWHFC, and the NSP-based
eigenthresholding methods. The image scene shown in Fig. 7(a)
has 15 panels located on the field and arranged in a 5 3 matrix.
The low-signal/high-noise bands: bands 1–3 and bands 202–210,
and water vapor absorption bands: bands 101–112 and bands
137–153, were removed. So, a total of 169 bands were used for
the experiments. The spatial resolution is 1.5 m, and spectral
resolution is 10 nm. The ground truth of the image scene is shown
in Fig. 7(b) and provides the precise spatial locations of these 15
panels. Black pixels are panel center pixels and the pixels in the
white masks are panel boundary pixels mixed with background
pixels. Each element in this matrix is a square panel and denoted
by with row indexed by and column indexed
by , 2, 3. For each row , the three panels , ,
were made from the same material but have three different sizes.
For each column , the five panels , , , , have
the same size but were made by five different materials. The

sizes of the panels in the first, second, and third columns are
, , and , respectively. The 1.5-m

spatial resolution of the image scene suggests that except for ,
, , , , which are two-pixel panels, all the remaining

panels are only one-pixel in size. Apparently, without ground
truth it is difficult to locate these panels in the scene. Fig. 8(a)
shows the distributions of the log eigenvalues produced by

and . Once again, the VD estimated by the HFC,
NWHFC, and NSP-based eigenthresholding methods using the
Neyman–Pearson test with the false-alarm probability set to

was 9, 18, and 20, as shown in Fig. 8(b) (only the
first 30 eigenvalues and their differences were plotted for a clear
presentation, and several signals were detected in the eigenvalues
higher than30 in thecaseofNWHFC). If theUNCLSmethodwas
applied to this 15-panel scene, 32 target signatures were required
to generate for the UNCLS method to effectively detect and
classify these 15 panels into five separate target classes, as shown
in Fig. 9. The results in Fig. 9 may lead to a conclusion that a good
estimate of the VD should be close to 32. Unfortunately, this is
not true. If we applied the ATDCA to the same HYDICE scene in
Fig. 7(a), only 19 target signatures were required for the ATDCA
to effectively detect and classify these 15 panels into five separate
target classes, as shown in Fig. 10. This is further confirmed by
the results produced by the ICA-based approach in [27], which



618 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 42, NO. 3, MARCH 2004

TABLE III
VD ESTIMATES OBTAINED BY THE HFC, THE NWHFC, THE NSP-BASED EIGENTHRESHOLDING METHODS, THE AIC-BASED, THE

MDL-BASED, AND THE EIF METHODS FOR AVIRIS AND HYDICE IMAGES

TABLE IV
VD ESTIMATES FOR AVIRIS DATA USING DIFFERENT P

TABLE V
VD ESTIMATES FOR HYDICE DATA USING DIFFERENT P

required at least 18 components to discriminate the 15 panels.
Therefore, should be a good estimate. According to the
ground truth, the panel signatures in rows 2 and 3 are very similar,
so are the panel signatures in rows 4 and 5. In order for the
UNCLS to effectively separate them, it would require more
subtle target signatures for discrimination. As a consequence,
some of natural or background signatures belonging to the
same class had been forced to split into separate classes.

Finally, the AIC, the MDL, and Malinowski’s EIF were also
applied to the 15-panel scene, the estimated VD were 167, 128,
and 94, respectively. After the noise was whitened, they were
down to 124, 85, and 28, respectively. Once again, they overes-
timated the VD. This experiment further supports our conclu-
sion that the AIC, the MDL, and Malinowski’s EIF may not be
appropriate methods for the VD estimation for remotely sensed
images. Table III summaries the VD estimation results obtained
by the HFC, the NWHFC, the NSP-based eigenthresholding
methods, the AIC, the MDL, and Malinowski’s EIF for AVIRIS
and HYDICE images. Tables IV and V list the VD estimates
under different . We can see that the VD estimate is increased
as becomes large. HFC is less sensitive to the , while
NWHFC is most sensitive to the . In general, is
a good choice in these two experiments.

If PCA or noise-adjusted PCA is applied to VD estimation,
we can select the first several eigenvalues that are significantly
larger than others. In our conducted AVIRIS experiment, this
number could be 3 or 4 according to the eigenvalue distributions
in Fig. 4(a). However, this practice may not work for our HY-
DICE experiments, since there is no drastic drop in the eigen-
value distributions in Fig. 8(a) that can help to determine the
number of eigenvalues to be used. For the noise-adjusted PCA,

the same problem remains. The HYDICE experiment provides
a good example to demonstrate the problem of using the PCA
or noise-adjusted PCA in VD estimation.

VI. SUMMARY AND CONCLUSION

The determination of VD is a difficult and challenging
problem. A common approach is to use PCA-based techniques.
Unfortunately, the major difficulty lying in such techniques is
that the eigenvalues are still mixtures of signal sources present
in data and noise. So, a problem occurs when signal sources
are weak and have very little energy contributed to eigenvalues,
in particular, when there is no drastic drop in the eigenvalue
distribution. This paper presents three Neyman–Pearson detec-
tion theory-based eigenthresholding methods to resolve such a
problem, which model the VD estimation as a binary composite
hypothesis testing problem and the VD estimation error can be
measured by ROC analysis. The first approach, referred to as
HFC method, was developed by Harsanyi, Farrand and Chang
[9]. This was later modified and extended to the NWHFC
method that includes a whitening process. A third approach,
called the noise subspace projection method, takes advantage of
the NWHFC method to derive an NSP-based eigenthresholding
method. All the three methods develop a Neyman–Pearson
detector to estimate the number of signal sources in terms of
their energies. On some occasions, weak signal sources with
small energies may not contribute significantly to eigenvalues,
in which case the false-alarm probability must be set high
to be able to detect such signal sources. The ROC analysis
resulting from the Neyman–Pearson detection theory provides
an effective tool to measure the trade-off between the detection
power (i.e., VD estimation error) and false-alarm probability.

The AIC and MDL have been widely used in the passive sensor
array processing to estimate the number of signals impinging on
the array. In order to determine their utility in estimation of VD
for remotely sensed images, they were also included for compar-
ison. Additionally, Malinowski’s EIF has been also used in mass
spectroscopy to estimate controlling factors in a data matrix. So,
its applicability to VD estimation was also studied. As shown in
our computer simulations, HFC, NWHFC, NSP, AIC, MDL, and
Malinowski’s EIF worked effectively when the noise is i.i.d.. In-
terestingly, this is no longer true when they are applied to real
image data. Our experimental results demonstrated that all the
three eigenthresholding based methods, the HFC, NWHFC, and
NSP methods, produced similar values of VD in contrast to the
AIC and MDL which overestimated VD significantly. As for Ma-
linowski’s EIF method, its performance was improved by data
whitening, but it still overestimated the VD. This is due to the
fact that the noise in remote sensing images is generally not i.i.d.,
which is a crucial condition for the AIC and MDL criteria and
Malinowski’s EIF method.
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As a concluding remark, the methods proposed in this paper
provide only an estimate of the number of signal sources in
image data that are assumed to be spectrally distinct. Therefore,
in most cases, these signal sources may include unknown inter-
ferers such as clutters, background signatures, etc. As a result,
the VD may overestimate the true number of image endmem-
bers, i.e., intrinsic dimensionality. In real applications, such a
VD estimate can be used as a reference rather than the exact
value of the intrinsic dimensionality.
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