GitLab 12

Implement DevOps culture and repository management solutions

- Packt

www. packt.com
Joost Evertse

Mastering GitLab 12

Implement DevOps culture and repository management
solutions

Joost Evertse

BIRMINGHAM - MUMBAI

Mastering GitLab 12

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Pavan Ramchandani
Acquisition Editor: Rohit Rajkumar

Content Development Editor: Drashti Panchal
Senior Editor: Rahul Dsouza

Technical Editor: Komal Karne

Copy Editor: Safis Editing

Project Coordinator: Jagdish Prabhu
Proofreader: Safis Editing

Indexer: Pratik Shirodkar

Production Designer: Aparna Bhagat

First published: August 2019
Production reference: 2201219

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78953-128-2

www.packt.com

For my family, who supported me throughout the entire effort of writing this book.

Packt

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt . com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

Contributors

About the author

Joost Evertse is an all-round professional with over 20 years of experience in IT in the
financial and telecom sectors. He has worked for big and small organizations and has lived
in different worlds, including Unix, Oracle, Java, and Windows. Creating order from chaos
has been a big focus during his system-engineering years. After 10 years of system
administration, he moved into software development and started using CI/CD tools,
including GitLab.

At the end of 2016, he started at a significant financial company in the GitLab team, shifting
his focus more toward the entire CI/CD pipeline, with the mission of making the CI/CD
platform more stable and highly available. His team eventually migrated GitLab to a
private cloud and improved release cycles.

About the reviewer

Orlando Monreal is a software engineer with over 12 years of experience, currently
working at HCL Technologies Mexico, as part of the Source Code Management team in his
project account. He has worked with GitLab applications as an administrator and contact
for application support queries, handling upgrade processes and troubleshooting
performance and configuration-related issues with the application.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

Table of Contents

Preface 1

Section 1: Install and Set Up GitLab On-Premises or
in the Cloud

Chapter 1: Introducing the GitLab Architecture 8
Technical requirements 9
The origins of GitLab 9
Exploring GitLab editions — CE and EE 10
The core system components of GitLab 11

NGINX 12
Debugging NGINX 12
Unicorn 13
Debugging Unicorn 13
Timeouts in Unicorn logs 13

Unicorn processes disappear 14

Other kinds of errors or 100% CPU load 14

Sidekiq 15
Debugging Sidekiq 16

Sidekiq processes disappear 16

A Sidekiq process is seemingly doing nothing 16

Other kind of errors or 100% CPU load 17

GitLab Shell 18
Debugging GitLab Shell 18

Redis 20
Basic data operations in Redis 20

Gitaly 22
Debugging Gitaly 24

GitLab Workhorse 25
Debugging GitLab Workhorse 25
Database 26
Debugging PostgreSQL 29
GitLab ClI 29
Pipelines and jobs 31
GitLab Runners 32
Issues with the old runner 33
Switching to Go 33
Cloud native 36
Summary 37
Questions 37

Further reading 38

Table of Contents

Chapter 2: Installing GitLab
Technical requirements
Installing GitLab using omnibus packages
Omnibus structure
Project definition
Individual software definitions
A GitLab configuration template
Chef components
Runit recipe
Tests
gitlab-ctl commands
Running the installer
Browsing to the external URL and login
Upgrade using the omnibus-gitlab package
Running from source
Operating system — Debian 10
Required basic software packages
Required programming languages
Ruby
Go
Node.js
System users
SQL database
Redis memory database
GitLab
Installing GitLab Shell
Installing GitLab-Workhorse
Installing Gitaly
Initializing the database and activating advanced features
Final steps for preparing the system
Preparing to serve
Compiling GetText PO files
Compiling assets
Starting your GitLab instance
NGINX
Using it from Docker
Running the image directly
Configuring GitLab after startup
Starting the container with configuration settings as input
Upgrading GitLab
Run GitLab CE on a different IP address
Debugging the container
Install GitLab using Docker Compose
Updating GitLab using Docker Compose
Deploying GitLab using Kubernetes
GitLab Runner Helm chart
Deploying of a GitLab Runner to Kubernetes
GitLab Helm chart
Deploying GitLab to Kubernetes

[ii]

Table of Contents

Monitoring the deployment
Initial login
Outgoing email
Updating GitLab using the Helm chart
Uninstalling GitLab using the Helm chart
Creating droplets on DigitalOcean
Summary
Questions

Further reading

Chapter 3: Configuring GitLab Using the Web Ul
Technical requirements
Configuring GitLab settings at the instance level

Menu options

Monitoring

Messages

System hooks

Plugins

Applications

Abuse reports

License

Kubernetes

Push rules

Geo

Deploy Keys

Service templates

Appearance

Settings

General

Visibility and access controls
Account and limit
Diff limits
Sign-up restrictions
Sign-in restrictions
Terms of service and privacy policy
External authentication

Web Terminal
Web IDE

Integrations
Elasticsearch
PlantUML
Third-party offers
Snowplow

Repository
Repository mirror
Repository storage
Repository maintenance

Templates

Cl/CD

[iii]

Table of Contents

Auto DevOps settings
Shared runner settings
Container registry
Reporting
Spam and anti-bot protection
Abuse reports
Error reporting and logging
Metrics and profiling
Metrics — InfluxDB
Metrics — Prometheus
Profiling — Performance Bar
Usage statistics
Pseudonymizer data collection
Network
Performance optimization
User and IP rate limits
Outbound requests
Geo
Preferences
Email
Help page
Pages
Real-time features
Gitaly
Localization
Configuring GitLab settings at the group level
Configuring GitLab settings at the project level
General
Naming, topics, avatar
Visibility, project features, permissions
Merge requests
Summary
Questions

Further reading

Chapter 4: Configuring GitLab from the Terminal
Technical requirements
Configuring omnibus and GitLab installations from the terminal
Configuring source installations
GitLab app settings
Storing big files
Using object storage
GitLab pages
Mattermost
Gravatar
Sidekiq
GitLab Registry
GitLab ClI settings

97

98

99

99

99

99
100
100
100
100
101
101
101
102
102
102
102
102
102
102
103
104
105
105
105

105
107
107
108
109
109
111
111
111

112
112
113
114
114

117
118

120
121
121
122
122
123

[iv]

Table of Contents

Auth settings 124
Advanced settings 126
Rack Attack 128
Reconfiguring GitLab Docker containers 129
Changing GitLab in a Kubernetes environment 130
Basic configuration 130
Configuring TLS 130
Configuring outgoing emails 131
Other settings 131
Summary 132
Questions 132
Further reading 133
Section 2: Migrating Data from Different Locations
Chapter 5: Importing Your Project from GitHub to GitLab 135
Technical requirements 136
Using the GitHub integration feature 136
Preparing GitHub for export 137
Preparing GitLab for import 140
Running the import 141
Using a GitHub token 144
Preparing GitHub for export 144
Running the import 146
Using a GitLab rake task 148
Preparing GitLab for import 148
Running the import 148
Summary 151
Questions 151
Further reading 151
Chapter 6: Migrating from CVS 152
Technical requirements 153
CVS versus Git 153
Filesets versus changesets 154
Git branching 155
Creating repositories 156
Atomic operations 157
Object naming or referencing versions 157
Keyword substitution 157
Binary blobs 158
Amending commits 159
A central repository 160
Accompanying toolset 160

Detecting file renames
Commit before merge

161
161

[v]

Table of Contents

Preparing to migrate from CVS to Git

161

Preparing for a conversion using cvs-fast-export 162
Preparing for a conversion using cvs2git 164
Running the conversion 165
Converting data using cvs-fast-export 165
Converting data using cvs2git 167
Cleaning up after migration 168
Summary 169
Questions 169
Further reading 170
Chapter 7: Switching from SVN 171
Technical requirements 171
The difference between SVN and Git 172
Security and access control 173
Space requirements and references 174
Branching 175
Handling binaries with SVN and Git 176
Mirroring SVN and GIT 178
No sync, just convert 182
Using svn2git to migrate in one cut 183
Summary 185
Questions 186
Further reading 186
Chapter 8: Moving Repositories from TFS 187
Technical requirements 187
TFS versus Git 188
Centralized or decentralized 189
Handling changes 189
Branching and merging capacity 190
History 191
Traceability 192
File handling 192
The git-tfs tool 193
Preparing to migrate 194
Summary 200
Questions 201
Further reading 201
Section 3: Implement the GitLab DevOps Workflow
Chapter 9: GitLab Vision - the Whole Toolchain in One Application 203
Technical requirements 203
The Agile Manifesto 204

[vi]

Table of Contents

The initial model — waterfall
Royce's model
The sashimi model
The V-model
DSDM
Timeboxing
MoSCoW
Scrum
Crystal methods
XP
Fine-scale feedback
Planning game
Release planning
Iteration planning
Pair programming
Test Driven Development
Continuous processes
Continuous integration
Refactoring
Short iterations
Everybody owns the code
Shared understanding
Coding standards
Simple design
System metaphor
The DevOps movement
History of the movement
Four Quadrant Model
Four levels of competence
The toolchain
Summary
Questions
Further reading

Chapter 10: Create Your Product, Verify, and Package it
Technical requirements
The GitLab workflow
DevOps phase — manage your ideas
Cycle analytics
DevOps phase — plan your feature
Issues
Content
Status of the issue
Meta information
Discussions
Milestones
Epics

204
206
207
208
209
210
211
212
213
214
214
215
215
218
219
220
222
222
223
224
224
224
225
225
225
226
227
228
230
231
235
235

236

237
237
238
239
239
241
241
241

241
242

243
246
248

[vii]

Table of Contents

Time tracking
Quick actions
The Project Issue board
Todos
DevOps phase — create it
Projects and groups
Snippets
Web IDE
Wiki
Protected branches
Merge requests
DevOps phase — verify your product
Code Quality reports
Review apps
DevOps phase — package it for use
GitLab container registry
Summary
Questions
Further reading

Chapter 11: The Release and Configure Phase
Technical requirements
Continuous Deployment
Auto DevOps
Configuring Auto DevOps
Build step
Code quality scan
Container scanning
Dependency scanning
License management
Static application security testing (sast)
The final test step
Production
Performance

Summary
Questions
Further reading

Chapter 12: Monitoring with Prometheus

Technical requirements
Setting up Prometheus

Using an external Prometheus host

Enabling the external dashboard link
Customizing monitoring
The static analysis of security vulnerabilities
Dynamic Application Security Testing

249
251
252
255
256
256
260
261
261
263
265
270
271
273
278
278
281
281
281

282
282
283
289
289
291
292
292
294
294
295
295
296
299

300
301
301

302
302
303
309
311
311
313
317

[viii]

Table of Contents

Dependency checking 320
Summary 324
Questions 325
Further reading 325
Chapter 13: Integrating GitLab with CI/CD Tools 326
Technical requirements 326
Using Jira with GitLab 327
Connecting Jenkins to GitLab 334
Integrating with Mattermost 344
Using webhooks for events 354
Summary 359
Questions 360
Further reading 360
Section 4: Utilize GitLab Cl and Cl Runners
Chapter 14: Setting Up Your Project for GitLab Continuous Integration 362
Technical requirements 363
Pipelines 363
Jobs 368
Creating .gitlab-ci.yml 369
Configuring a runner 370
GitLab Runner features 371
Summary 374
Questions 374
Further reading 374
Chapter 15: Installing and Configuring GitLab Runners 375
Technical requirements 375
The Runner client architecture 376
Basic architecture 376
Creating a basic Runner with the shell executor 379
Installing Runner on Linux 380
Using a package manager 380
Using a manual installation 382
Updating a manually installed runner binary 383
Installing on Mac 383
The manual way of installing a runner 384
Installing and using the Homebrew package manager 384
Updating a manually installed runner binary 384
Installing on Windows 385
Registering a runner 386
The interactive way of registering a runner 386
The non-interactive way of registering a runner 387
Running the nightly version 389

[ix]

Table of Contents

Summary
Questions
Further reading

Chapter 16: Using GitLab Runners with Docker or Kubernetes
Technical requirements
Runner client architecture
Creating your own Dockerized GitLab Runner
Using a prebuilt Docker container to deploy GitLab Runners
Using a Kubernetes cluster to spawn GitLab Runners
Summary
Questions
Further reading

Chapter 17: Autoscaling GitLab Cl Runners
Technical requirements
Runner client architecture
Setting up the environment
Preparing a bastion host
Deploying the GitLab Runner software
Installing Docker Machine
Configuring the Runner
Off-peak time mode configuration
Distributed runners caching
Setting the cache globally
Setting the cache at the project level
Distributed container registry mirroring

Installing and running a proxy container registry and a caching server

Proxy container registry
Caching server
Creating an S3 bucket in Amazon Web Services
Creating your own MinlO server
Scaling your runners
Using Docker Machines with a local VirtualBox instance

Using docker machines that have been created on Amazon Web Services

(EC2)
Summary
Questions
Further reading

Chapter 18: Monitoring Cl Metrics
Technical requirements
Enabling monitoring for Runners
Editing the GitLab Runner configuration file
Runner business logic metrics
Key metrics to watch

390
390
390

391
392
393
395
401
404
408
408
408

409
410
410
412
412
412
413
414
414
415
415
415
416
417
417
418

418
419

420
420

421
423
424
424

425
426
426
428
433
433

[x]

Table of Contents

General process metrics 438
Key metrics to watch 439
Alert management 443

Summary 448

Questions 448

Further reading 449

Section 5: Scale the Server Infrastructure

(High Availability Setup)

Chapter 19: Creating a Basic HA Architecture Using Horizontal Scaling 451
Technical requirements 452
The underlying architecture of this solution 453

Amazon services 455
Elastic compute cloud (EC2) 455
Classic load balancer 456
Virtual private cloud and subnets 456
SGs 456

Terraform 457
Installing Terraform 457

Ansible 458

Installing the Ansible Terraform provider 458

Starting with the code 459
vpc.tf 460
subnet.tf 461
instance.tf 462
ansible_host.tf 463
route_table.tf 465
security_group.tf 465
variable.tf 466
keypair.if 467
Ib.tf 468
providers.tf 470

Preparing to run Terraform to deploy the virtual hardware 470

Running the deployment 471

Setting up the bastion hosts 473

Configuring the database nodes 474
Contents of the gitlab.rb.postgres.j2 template 474
Configuring the consul nodes 477

Contents of gitlab.rb.consul.j2 477

Configuring the PgBouncer node 478
Contents of gitlab.rb.pgbouncer.j2 478

The Redis configuration 480
Contents of gitlab.rb.redis.j2 480

Connecting the shared filesystem 481
Contents of nfs_exports.j2 482

[xil

Table of Contents

Setting up the application servers
Contents of gitlab.rb.j2
Running all the Ansible playbooks
Summary
Questions
Further reading

Chapter 20: Managing a Hybrid HA Environment
Technical requirements
The basic architecture of this solution
A renewed Terraform configuration
instance.tf
ansible_host.tf

Splitting application components into frontend and middleware

tiers
Splitting Sidekiq from the frontend
Contents of gitlab.rb.middleware.j2
Creating a monitoring instance
Contents of gitlab.rb.prometheus.j2
Creating a monitoring dashboard with Grafana
Contents of gitlab.rb.grafana.j2
Connecting the shared filesystem
Contents of the gitlab.rb.gitaly.j2 file
Changes in Ansible files
Script enhancements
Summary
Questions
Further reading

Chapter 21: Making Your Environment Fully Distributed

Technical requirements
The basic architecture of this solution

Performing changes to the Terraform configuration

instance.tf
ansible_host.tf
Splitting more application components

The third application server for Git SSH
Contents of gitlab.rb.frontend_ssh.j2

The middleware layer — Sidekiq
The ASAP Sidekiq instance

Contents of gitlab.rb.sidekiq_asap.j2

The real-time Sidekiq instance
Contents of gitlab.sidekiq.realtime.j2
The pipeline Sidekiq instance
Contents of gitlab.sidekiqg.pipeline.j2
The normal Sidekiq instance

482
482
484
488
488
489

490
491
491
493
493
495

498
498
498
500
500
501
501
502
502
503
504
505
505
506

507
507
508
510
510
512
514
515
515
516
516
517
517
518
518
519
519

[xii]

Table of Contents

The clustered Redis/Sentinel configuration 519
Contents of gitlab.rb.redis-cluster.j2 520
Changes in Ansible files 521
Script enhancements 522
Summary 523
Questions 523
Further reading 523
Chapter 22: Using Geo to Create Distributed Read-Only Copies of
GitLab 524
Technical requirements 524
The basic architecture of this solution 525
Preparing the infrastructure 526
The root module explained — main.tf 528
Utilizing the keypair module — modules/services/keypair/main.tf 529
Variables for the keypair module — modules/services/keypair/vars.tf 530
Outputs from the keypair module — modules/services/keypair/output.tf 530
Explaining the GitLab module 530
The main module file — modules/services/gitlab/main.tf 530
The variable file — modules/services/gitlab/vars.tf 532
The outputs for the module — modules/services/gitlab/outputs.tf 533
Setting up Geo 534
Installing the GitLab software and license 534
Contents of gitlab.rb.j2 535
Preparing the database replicas 535
Contents of gitlab.rb.primary.j2 536
Contents of gitlab.rb.primary.j2 537
Changing the SSH key lookup method to the database 538
Adding the secondary node via the web Ul 538
Activating hashed storage 539
Checking the status of the secondary node 541
Summary 542
Questions 542
Further reading 542
Assessments 543
Other Books You May Enjoy 552
Index 555

[xiii]

Preface

GitLab is a tool to enhance the workflow of teams and enable parts of the DevOps life cycle.
It started out as a tool only for source code management, but today, GitLab can offer help
ranging from managing an initial idea to building and testing source code, all the way from
development to production.

You'll learn ways to use all of the features available in GitLab to enhance your business via
the integration of all phases of the development process. You'll benefit from lower friction
by creating one platform on-premises or in the cloud, increase collaboration, and drive
competitive advantage with more efficient operations.

Who this book is for

This book is for developers and DevOps professionals who want to master the software
development workflow in GitLab and boost their productivity by putting their teams to
work on GitLab via an on-premise installation or cloud-based infrastructure.

What this book covers

Chapter 1, Introducing the GitLab Architecture, provides a short introduction to the company
and the people that created the product, along with a high-level overview of GitLab and its
components.

Chapter 2, Installing GitLab, shows you how to install and configure GitLab via several
different methods. This can be done from scratch, or via the Omnibus installer. Special
attention is given to Docker and Kubernetes when outlining containerized solutions.
Finally, a cloud installation via the DigitalOcean infrastructure is taken as an example.

Chapter 3, Configuring GitLab Using the Ul, explains the options in the GitLab web UI that
can be configured after installation. This chapter also covers the administration pages
where these instance-level options are situated.

Chapter 4, Configuring GitLab from the Terminal, looks at the different ways of configuring
GitLab. The first approach is by using the Omnibus package installer provided by GitLab,
which automates most of the installation. The chapter continues with configuring a source
installation. Configuring Docker containers and managing a Kubernetes installation are
also covered.

Preface

Chapter 5, Importing Your Project from GitHub to GitLab, outlines the process of migration
from GitHub via a hands-on lab. It starts by exploring settings that should be altered in
your GitHub project. After this, the settings necessary in GitLab to prepare an import are
shown, and finally, the procedure for running the import is addressed.

Chapter 6, Migrating from CVS, begins with a comparison of the fundamentally different
systems of CVS and Git. It then provides directions on preparing for migration. Actual
conversion is addressed, as is the cleaning up of artifacts not needed anymore.

Chapter 7, Switching from SVN, begins by explaining the subtle and not-so-subtle
differences between SVN and Git. The reader is shown how to migrate using two different
methods: mirroring with SubGit and using the svn2git tool.

Chapter 8, Moving Repositories from TFS, first deals with the differences between TFS and
Git. Subsequently, the act of migrating information from a TFS project to Git is shown via
the use of the git-tfs tool.

Chapter 9, GitLab Vision - the Whole Toolchain in One Application, explains GitLab's vision of
providing the whole DevOps toolchain to the developer, looking at the origins of XP and
the Agile manifesto. The emergence of the DevOps paradigm is also explored, and the
toolchain that GitLab provides is summarized.

Chapter 10, Create Your Product, Verify It, and Package It, shows how the product vision for
GitLab and its workflow is centered around the idea of providing a complete toolchain to
create a product. This chapter focuses on the different phases and explains the relevant
concepts with examples.

Chapter 11, The Release and Configure Phase, discusses one of the big features of GitLab: the
ability to offer the complete journey to production with different, easy-to-design stages.
This way, you can create different environments and, ultimately, automate the whole
pipeline for a product.

Chapter 12, Monitoring with Prometheus, handles ways of monitoring your GitLab
environment by using the built-in Prometheus feature and default scripting languages. The
second part of this chapter explains the different security tests that are available.

Chapter 13, Integrating GitLab with CI/CD Tools, explains how, although GitLab aims to
provide a complete toolchain in the real world, there will always be a need for integration.
This chapter explains some of the bigger possible integrations that are configurable out of
the box. It closes with a section on how webhooks provide a general way to consume
information from GitLab.

[2]

Preface

Chapter 14, Setting Up Your Project for GitLab Continuous Integration, describes GitLab CI
concepts that are present on the application server and can be fine-tuned and customized
per project. The second part of the chapter mainly focuses on how to get your project ready
to use these CI concepts and set up a runner for it to use.

Chapter 15, Installing and Configuring GitLab Runners, explains the way GitLab runners
work, by installing them. The next step is creating an example project and building it with a
shell executor.

Chapter 16, Using GitLab Runners with Docker or Kubernetes, examines the architecture of
Docker-based runners and runners using the Kubernetes API, using the same examples as
in earlier chapters.

Chapter 17, Autoscaling GitLab CI Runners, demonstrates the architecture of runners using
autoscaling. The number of runners required will decrease and increase based on demand.
The example shown uses VirtualBox and Amazon Web Services (AWS) to deploy
instances.

Chapter 18, Monitoring CI Metrics, deals with monitoring specific GitLab runners. Using a
lab, we demonstrate how to enable monitoring inside the runner. After this introduction,
the specific functional and system metrics are explained.

Chapter 19, Creating a Basic HA Architecture by Using Horizontal Scaling, visualizes the way
in which different components interact. Secondly, the preparation of databases is shown, as
well as several all-in-one application servers. Finally, the shared filesystem for repositories
and Redis caching in this high availability (HA) setup is explained. We will use Terraform
and Ansible to create the demonstration environment.

Chapter 20, Managing a Hybrid HA Environment, builds on the earlier architecture of
horizontal HA, but continues to grow in complexity. The main difference is that the
application servers combined several components that are now split into new tiers.

Chapter 21, Making Your Environment Fully Distributed, builds on earlier chapters. A fully
distributed architecture aims to create more fault tolerance by again splitting components
into new tiers. There is now an SSH node and several sidekiq tiers.

Chapter 22, Using Geo to Create Distributed Read-Only Copies of GitLab, starts with an
explanation of the GEO product, which is part of the Enterprise Edition license. Using the
same tools as in earlier chapters from Section 5 of this book 'Scale the Server Infrastructure
(High Availability Setup)', we will explain how to set up GEO to create replication between
two different geographical locations.

[3]

Preface

To get the most out of this book

To get the most out of this book, you should have access to a Linux or macOS machine,
have an internet connection, and have Amazon AWS, Google, and Microsoft Azure
accounts. These are all necessary to run the examples.

Some basic IT knowledge is necessary to read this book. The subjects you need experience
in are as follows:

e Linux

Shell scripting
¢ Basic programming skills in Ruby and JavaScript

A basic understanding of Docker containers

A basic understanding of using Terraform to create infrastructure as code

A basic understanding of Ansible

Download the example code files

You can download the example code files for this book from your account at
www . packt . com. If you purchased this book elsewhere, you can visit
www . packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt .com.
Select the Support tab.
Click on Code Downloads.

Enter the name of the book in the Search box and follow the onscreen
instructions.

Ll e

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Mastering-GitLab-12.In case there's an update to the code, it will be
updated on the existing GitHub repository.

[4]

Preface

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Code in Action

Visit the following link to see the code being executed:

http://bit.1ly/2KirIo0

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://static.packt-cdn.com/downloads/
9781789531282_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Let's continue with installing web documents in /usr/local/www."

A block of code is set as follows:

server {
listen 8080;
server_name localhost;

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

server {
listen 8080;
server_name localhost;

Any command-line input or output is written as follows:

Smkdir /usr/local/www
$chmod 755 /usr/local/www
$cd /usr/local/www

[5]

Preface

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"You can do this by clicking the Choose File button near the Logo section."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

[6]

Section 1: Install and Set Up
GitLab On-Premises or in the
Cloud

This section will give you a solid understanding of GitLab deployment options and GitLab
component architecture, leaving you able to install and configure GitLab on-premises and
in the cloud.

This section comprises the following chapters:

® Chapter 1, Introducing the GitLab Architecture

® Chapter 2, Installing GitLab

e chapter 3, Configuring GitLab Using the Web UI
e chapter 4, Configuring GitLab from the Terminal

Introducing the GitLab
Architecture

Understanding the context of the GitLab project will help us to appreciate the choices that
were made with regard to the design of the GitLab workflow. The GitLab project started
out as a small, open source project, and has grown to be an organization of 400 people and
thousands of volunteers. It is currently available in two versions, a free Community
Edition (CE) and an Enterprise Edition (EE) with a proprietary license. There are several
tiers of support for the enterprise version. Although it is proprietary licensed, the source
code for that version is publicly available from GitLab.

To master GitLab, it is necessary to have a solid understanding of its individual
components. In this chapter, we will look at the basic components of a GitLab installation,
paying special attention to GitLab Continuous Integration (CI) and the accompanying
runners. As the different components can be distributed across servers or even cloud
providers, we will also provide an overview of those providers and how GitLab views
them.

In this chapter, we will be covering the following topics:

¢ The origins of GitLab

GitLab CE or EE

e The core components of GitLab
GitLab CI

GitLab Runners

Cloud native

Introducing the GitLab Architecture Chapter 1

Technical requirements

To follow along with the instructions in this chapter, please download the Git repository
with examples, commands and instructions, available at GitHub: https://github.com/
PacktPublishing/Mastering-GitLab-12/tree/master/Chapter01l. Look in the Readme.md
file for a general explanation of the content of the directory.

To run or install software used in this chapter you need one of the following platforms:

e Debian 10 Linux codename 'Buster'
e CentOS 7.x or RHEL (Red Hat Enterprise Linux) 7.x
e macQOS Sierra or later

The origins of GitLab

The story began in 2011, when Dimitri Zaporozhets, a web programmer from Ukraine, was
faced with a common problem. He wanted to switch to Git for version management and
GitHub to collaborate, but that was not allowed in his company. He needed a tool that did
not hinder him in developing code and was easy to use. Like many developers, he had
issues with the collaboration tool that he was obliged to use. To get around those issues, he
created his side project in Ruby on Rails: GitLab. Together with his colleague, Valery Sizov,
he developed this project alongside his regular work.

After this initiative, the project grew enormously:

Date|Fact

Sytze Sybrandij, the future CEO of GitLab, is impressed by the GitLab project and

2011 |code, and offers Zaporozhets the opportunity to try to commercialize it via https://
about.gitlab.com/.

GitLab was announced to a broader audience via Hacker News (nhttps://news.

2012 , . ,
ycombinator.com/item?id=4428278).

2013 |Dimitri Zaporozhets decides to work full-time on GitLab and joins the company.

2015 |GitLab becomes part of the Y Combinator class and received VC funding that year.

2018 |GitLab receives another $100 million of VC funding and is valued at $1 billion.

2019 |The GitLab company employs over 600 employees.

[9]

Introducing the GitLab Architecture Chapter 1

The initial idea of GitLab was to earn money from open source technology by offering
support services. However, what happened was that companies started to bring in
consultants only to upgrade GitLab, and then they would stop the service contract. It
became clear that going for a 100% open source was not going to be competitive. Instead of
this, therefore, they chose open core. Under open core, a company releases a core software
system under an open source license. A different version of the software is sold under a
commercial license and contains more features.

So, GitLab was split up into two editions: an open source version, and an enterprise
version.

Exploring GitLab editions — CE and EE

The core of the GitLab software is called the CE. It is distributed under the MIT license,
which is a permissive free software license created at the Massachusetts Institute of
Technology. You are allowed to modify the software and use it in your creations.

No feature that ever made it to CE will ever be removed, or moved to a closed source
version. When GitLab EE was created in 2013, it was, at its core, GitLab CE, but it had
additional enterprise features, such as Lightweight Directory Access Protocol

(LDAP) groups. Those features are not open source, per se, but can be added to the core
version if they are perceived by the company as a core feature. The idea was that companies
should also contribute as much as possible to solving problems and creating new features.

In 2016, the GitLab EE product was divided into three tiers: Starter, Premium, and
Ultimate. Each tier is about five times more expensive than the previous one and
contains more features and support options, as mentioned in the following table:

Version Features (short list)

Everything on core GitLab CE:
* CI/CD

* Project Issue Board

* Mattermost integrations

* Time tracking

* GitLab pages

Starter

More enterprise features such as the following:
* Maven and NPM repository functionality

Premium * Protected environments

* Burndown charts

* Multiple LDAP servers and Active Directory support

[10]

Introducing the GitLab Architecture

All options, including the following:
* All security scanning tools

Ultimate * Epics

* Free guest users

* Web terminal for the web IDE

GitLab has a lot of features, but let's concentrate first on the basic building blocks.

The core system components of GitLab

GitLab is not a monolithic application. It tries to follow the Unix philosophy, which means

that a software module should do only one particular thing, and do it well. The

components that GitLab is made of are not as small and elegant as Unix's awk and sed, but

each component has a single purpose. You can find a high-level overview of these
components in the following diagram:

GitLab components

+ TCP 22 ! TCP
| 80,443
TCP GitLab shell :
8080
Unicorn GitLab workhorse NGINX
Redis Gitaly
Database — Sidekiq Redis
All lines are Unix sockets unless
noted otherwise

[11]

Introducing the GitLab Architecture Chapter 1

Gitlab started as a pure Ruby on Rails application, but some components were later
redesigned using Go. Ruby on Rails is a development framework built on top of the Ruby
programming language. It implements a model-view-controller pattern and offers methods
to connect to different databases (for example, ActiveRecord). It values convention over
configuration and don't-repeat-yourself (DRY) programming. It is very well suited to
rapid development, and at the same time, it is highly performant and has many features.

Let's dive a little deeper into those components in order to understand their roles.

NGINX

The Unicorn web component cannot be used directly as it does not offer all the features for
handling clients. The reverse proxy that is bundled by default is NGINX. It is also possible
to use Apache as a frontend for GitLab, but it is preferable to use NGINX. There are many
web servers available that could be installed in front of Unicorn, but in the end, there are
basically two types, which are as follows:

e Process-based (forking or threaded)
e Asynchronous

NGINX and lighttpd are probably the two most-well known asynchronous servers. Apache
is without a doubt the de facto standard process-based server. The biggest difference
between the two types is how they handle scalability. For a process-based server, any new
connections require a thread, while an event-driven, asynchronous server such as NGINX
only needs a few threads (or, theoretically, only one). For lighter workloads, this does not
matter much, but you will see a big difference when the number of connections grows,
especially in terms of RAM. When serving tens of thousands of simultaneous connections,
the amount of RAM used by NGINX would still hover around a couple of megabytes.
Apache would either use hundreds, or it would not work at all. This is why NGINX is the
better choice.

Debugging NGINX

The first thing you will want to look at are the log files which by default are called
error.logand access. log. In a GitLab environment installed from source these log files
will typically reside in /var/log/nginx/ and in a GitLab omnibus install in
/var/log/gitlab/nginx.

[12]

Introducing the GitLab Architecture Chapter 1

Following is an example of the error log:

2019/09/08 20:45:14 [crit] 2387#2387: *95 connect () to
unix:/var/www/gitlab—-app/tmp/sockets/unicorn.sock failed (2: No such file
or directory) while connecting to upstream, client: 127.0.0.1, server:
localhost, request: "GET /-/metrics HTTP/1.1", upstream:
"http://unix:/var/www/gitlab—app/tmp/sockets/unicorn.sock:/—/metrics",
host: "127.0.0.1:8080"

Unicorn

Unicorn is an HTTP server for applications that deal with well-performing clients on
connections that show low latency and have enough bandwidth. It takes advantage of
features that are present in the core of Linux-like systems. It is called a Rack HTTP server
because it implements HTTP for Rack applications. Rack, in turn, is actually a Ruby
implementation of a minimal interface to deal with web requests, which you can use in
your code.

You can find the project at https://rack.github.io.

Unicorn runs as a daemon server in Unix and is programmed in Ruby and the C
programming language. Using Ruby means that it can also run a Ruby on Rails application
such as GitLab.

Debugging Unicorn
Maybe installing Unicorn produced errors, or you are experiencing bad performance that

you suspect is caused by Unicorn not working properly.

There are several ways to find the cause. The log files can point you in the right direction.

Timeouts in Unicorn logs

The following output is what a Unicorn worker timeout looks like
in unicorn_stderr. log. This is not necessarily bad; it just means that a new worker is
spawned:

[2015-06-05T10:58:08.660325 #56227] ERROR —-— : worker=10 PID:53009 timeout
(61ls > 60s), killing

[13]

Introducing the GitLab Architecture Chapter 1

[2015-06-05T10:58:08.699360 #56227] ERROR ——- : reaped #<Process: :Status:
pid 53009 SIGKILL (signal 9)> worker=10

[2015-06-05T10:58:08.708141 #62538] INFO —-- : worker=10 spawned pid=62538

[2015-06-05T10:58:08.708824 #62538] INFO —— : worker=10 ready

It could be that there are just not enough Unicorn workers available to respond to the
requests at hand. NGINX buffers a lot of requests so we must check on the handover socket
whether Unicorn can keep up. To do this, a little nifty script is available here: https://

github.com/jahio/unicorn-status.

It can be called with the following command:

$ ruby unicorn_status.rb /var/opt/gitlab/gitlab-rails/sockets/gitlab.socket
10
Running infinite loop. Use CTRL+C to exit.

Active Requests Queued Requests
20 11

The first argument here is the unicorn_status. rb script, the second is the socket to
connect to . ./ .socket, and the last argument is the poll interval (10).

Unicorn processes disappear

On Linux, there is a mechanism called Out-of-Memory (OOM) Killer that will free up
memory if the system is running low on memory, and you don't have any swap memory
left. It might kill Unicorn if it is using too much memory.

Use dmesg | egrep -i 'killed process' to search for OOM events:

[102335.3134488] Killed process 5567 (ruby) total-vm:13423004kB, anon-—
rss:554088kB

Other kinds of errors or 100% CPU load

The ultimate way to debug Unicorn processes is to run st race on them:

1. Run sudo gdb -p (PID) to attach to the Unicorn process.

2. Runcall (void) rb_backtrace () inthe GDB console and find the generated
Ruby backtrace in /var/log/gitlab/unicorn/unicorn_stderr.log:

from
/opt/gitlab/embedded/1lib/ruby/gems/2.4.0/gems/bundler-1.16.2/1ib/bu
ndler/cli/exec.rb:28:in “run'

from

[14]

Introducing the GitLab Architecture Chapter 1

/opt/gitlab/embedded/lib/ruby/gems/2.4.0/gems/bundler-1.16.2/1ib/bu
ndler/cli/exec.rb:74:in “kernel_load'

from
/opt/gitlab/embedded/lib/ruby/gems/2.4.0/gems/bundler-1.16.2/1ib/bu
ndler/cli/exec.rb:74:in "load'

from /opt/gitlab/embedded/bin/unicorn:23:in " <top
(required)>'
 from /opt/gitlab/embedded/bin/unicorn:23:in "load
from
/opt/gitlab/embedded/1lib/ruby/gems/2.4.0/gems/unicorn-5.1.0/bin/uni
corn:126:in “<top (required)>'

from
/opt/gitlab/embedded/1lib/ruby/gems/2.4.0/gems/unicorn-5.1.0/1lib/uni
corn/http_server.rb:132:in ‘start’

from
/opt/gitlab/embedded/lib/ruby/gems/2.4.0/gems/unicorn-5.1.0/1ib/uni
corn/http_server.rb:508:in °spawn_missing_workers'

from
/opt/gitlab/embedded/lib/ruby/gems/2.4.0/gems/unicorn-5.1.0/1ib/uni
corn/http_server.rb:678:in ‘worker_loop'

from
/opt/gitlab/embedded/1lib/ruby/gems/2.4.0/gems/unicorn-5.1.0/1lib/uni
corn/http_server.rb:678:in ’select'

3. When you are done, leave GDB with detach and q.

Sidekiq
Sidekiq is a framework for background job processing. It allows you to scale your

application by performing work in the background. For more information on Sidekiq,
consult the following website: https://github.com/mperham/sidekiq/wiki.

Each Sidekiq server process pulls jobs from the queue in Redis and processes them. Like

your web processes, Sidekiq boots Rails so that your jobs and workers have the full Rails
API available for use, including ActiveRecord. The server will instantiate the worker and
call perform with the given arguments. Everything else is up to your code.

[15]

Introducing the GitLab Architecture Chapter 1

Debugging Sidekiq
As with Unicorn, there are several ways to debug Sidekiq processing. The easiest way is to

log in to GitLab as an administrator and view the logs from there, and especially view the
queues and jobs on the Background Jobs page, as shown in the following screenshot:

Background Jobs

GitLab uses sidekiq library for async job processing

Sidekiq running processes
USER PID CPU MEM STATE START COMMAND
git 1007 25.5 20.2 Ssl 22:12:22 sidekiq 5.1.3 gitlab-rails [0 of 25 busy]

@ If '[25 of 25 busy]' is shown, restart GitLab with 'sudo service gitlab reload".

@ If more than one sidekiq process is listed, stop GitLab, kill the remaining sidekiq processes (sudo pkill -u git -f sidekiq) and restart GitLab.

Sidekiq K idle Dashboard Busy = Queues Retries Scheduled Dead Cron Live Poll
1 o 0o 0 o 0 o
Processed Failed Busy Enqueued Retries Scheduled Dead

Sometimes, you experience troubles and find situations on your Linux server.

Sidekiq processes disappear

As mentioned before, in the Unicorn section, the OOM Killer might kill Sidekiq if it is using
too much memory.

Use dmesg | egrep -i 'killed process' to search for OOM events:

[102335.3134488] Killed process 8887 (ruby) total-vm:13523004kB, anon-—
rss:5540458kB

A Sidekiq process is seemingly doing nothing

If Sidekiq isn't doing any work and it seems stuck most of the time, this means that the
program is waiting for something. A common wait situation is when you are doing remote
network calls. If you think this could be the case, you could make Sidekiq processes dump a
backtrace to the log by sending it a TTIN signal.

[16]

Introducing the GitLab Architecture Chapter 1

This is what a Sidekiq worker looks like in the log file in
/var/log/gitlab/sidekiqg/current:

{"severity":"INFO", "time":"2019-06
23T19:00:14.49372","class":"RemoteMirrorNotificationWorker", "retry":3, "queue
":"remote_mirror_notification","jid":"69eb806bfb66b82315bcb249", "created_at
":"2019-06-23T19:00:14.4612", "correlation_id":"toX0HnYWO0s9", "enqueued_at":"
2019-06-23T19:00:14.461Z2", "pid":471, "message" : "RemoteMirrorNotificationWork
er JID-69eb806bfb66b82315bcb249: done: 0.03
sec", "job_status":"done", "duration":0.03, "completed_at":"2019-06-23T19:00:1
4.4937"}

Since GitLab 12.0, the default output log format for Sidekiq is JSON, this makes it easier to
read the log files into a tool like logstash because it is more structured.

Other kind of errors or 100% CPU load

The ultimate way to debug Sidekiq processes is to make it dump a backtrace via GDB:

1. Run sudo gdb -p (PID) to attach to the Sidekiq worker process.

2. Run call (void) rb_backtrace () in the GDB console and find the generated
Ruby backtrace in /var/log/gitlab/sidekiq/current:

2018-09-21_19:55:03.48430 from
/opt/gitlab/embedded/lib/ruby/gems/2.4.0/gems/redis-3.3.5/1ib/redis
/connection/ruby.rb:83:in " _read_from_socket'
2018-09-21_19:55:03.48431 from
/opt/gitlab/embedded/lib/ruby/gems/2.4.0/gems/redis-3.3.5/1ib/redis
/connection/ruby.rb:87:in ‘rescue in _read_from_socket'
2018-09-21_19:55:03.48432 from
/opt/gitlab/embedded/lib/ruby/gems/2.4.0/gems/redis-3.3.5/1ib/redis
/connection/ruby.rb:87:in "“select'

3. Itis very hard to read backtraces, but this process was doing network operations
while being traced, we can see a (_read_from _socket). You can read the
source code to check what it is doing (there are line numbers mentioned).

4. When you are done, leave GDB with detach and quit.

You can also use other tracing tools to examine the behavior of the looping process. On
Linux, for instance, strace -p <pid> allows you to view the system calls that are being
made by the process.

[17]

Introducing the GitLab Architecture Chapter 1

GitLab Shell

This component is used to provide access to Git repositories through SSH. In fact, for
pushes via the git-http protocol, it is also called instead of the Rails app. It's essentially a
small Ruby wrapper around the Git client. Git, through SSH, uses predefined commands
that can be executed on the GitLab server. For authorization, it makes calls to the GitLab
API. Before GitLab 5.0, this functionality was delivered by Gitolite and powered by the Perl
programming language.

The source code of this project can be found here: https://gitlab.com/gitlab-org/
gitlab-shell. You can see the following page:

¥ GitLab.org > ¥ gitlab-shell > Details

2

gitlab-shell @
SSH access and repository management app for GitLab

Project ID: 14022

coverage 96.99% pipeline = passed AN maintainability FA

o Star 92 Y Fork 143 SSH~ git@gitlab.com:gitlab-org/gitl @ @ ~ + - A Global ~

Files (6.3 MB) Commits (1,111) Branches (30) Tags (132) Readme Changelog LICENSE Contribution guide CI/CD configuration

master gitlab-shell / + + History Q Findfile & ~

You can install it locally, but it's really only useful when deployed together with other
GitLab components. When you have that installed (see chapter 2, Installing GitLab, for
instructions on how), the next section describes a way to debug when you have problems.

Debugging GitLab Shell

In an omnibus installation, the log file for GitLab Shell can be found in the following
location:

/var/log/gitlab/gitlab-shell/gitlab-shell.log

[18]

Introducing the GitLab Architecture Chapter 1

Alternatively, it may be found in the following location, for installations from source:
/home/git/gitlab-shell/gitlab-shell.log
What you will generally find are log lines that concern the basic operations of GitLab Shell:

e Git commands (such as git pushand git pull).

Authorization calls to the GitLab Rails API to check whether you are allowed to
connect

¢ Execution of pre-receive hooks

Actions requested
Post-receive actions

Any custom post-receive actions

Here, we have listed some lines from the log file:

bash-4.1$ tail gitlab-shell.log

time="2018-09-26T08:59:53+02:00" level=info msg="executing git command"
command="gitaly-upload-pack unix:/var/opt/gitlab/gitaly/gitaly.socket
{\"repository\":{\"storage_name\":\"default\", \"relative_path\":\"xxx/xxx.g
it\",\"git_object_directory\":\"\",\"git_alternate_object_directories\":[],
\"gl_repository\":\"xxx\"},\"gl_repository\":\"project-
xx\",\"gl_id\":\"key-xx\",\"gl_username\":\"xxxxxx\"}" pid=18855 user="user
with key key-—-xx"

time="2018-09-26T08:59:534+02:00" level=info msg="finished HTTP request"
duration=0.228132057
method=POST pid=18890 url="http://127.0.0.1:8080/api/v4/internal/allowed"

time="2018-09-26T08:59:54+02:00" level=info msg="finished HTTP request"
duration=0.030036933 method=POST pid=18890
url="http://127.0.0.1:8080/api/v4/internal/pre_receive"

time="2018-09-26T08:59:54+02:00" level=info msg="finished HTTP request"
duration=0.094035804 method=POST pid=18979
url="http://127.0.0.1:8080/api/v4/internal/post_receive"

One way to find errors is to look for certain patterns, such as failed, as follows. This
particular error points to a 500 error from Unicorn while checking whether a user has the
right authorization to make a call to the GitLab API.

[19]

Introducing the GitLab Architecture Chapter 1

This error should show up in the Unicorn logs (production. log) if you search for an
HTTP 500 error:

bash-4.1$ grep —-i failed gitlab-shell.log
time="2018-09-26T08:05:52+02:00" level=error msg="API call failed"
body="{\"message\":\"500 Internal Server Error\"}" code=500 method=POST
pid=1587 url="http://127.0.0.1:8080/api/v4/internal/allowed"
time="2018-09-26T08:45:134+02:00" level=error msg="API call failed"
body="{\"message\":\"500 Internal Server Error\"}" code=500 method=POST
pid=24813 url="http://127.0.0.1:8080/api/v4/internal/allowed"

Redis

Redis is a caching tool and HTTP session store that allows you to save cached data and
session information from your website to an external location. This means that your
website doesn't have to calculate everything every time; instead, it can retrieve the data
from the cache and load the website much faster. The user sessions are in memory even if
the application goes down. Redis is a fast caching tool because it uses memory first. It has
several useful advantages:

Everything is stored in one place, so you only have to flush one cache.

It is faster than Memcache. This is noticeable when using the websites of large
shops.

e Sessions are stored in memory and not in the database.
The backend becomes faster.

Redis is not merely a cache, but is also a data structure store. It is basically a database and
should be viewed conceptually as such. With regard to its operation and how it handles
data, it has more in common with a NoSQL database.

Basic data operations in Redis

We can discover some of the basics of Redis by playing with the data structures. You can
install Redis using instructions found at https://github.com/PacktPublishing/
Mastering-GitLab-12/tree/master/Chapter01/InstallingRedis.md.

Start the redis-cli command-line utility, and it will connect to the local Redis server:

$redis-cli
127.0.0.1:6379>

[20]

Introducing the GitLab Architecture Chapter 1

It is not fair to view Redis as a simple hash database with key values. But still, the five data
structures that are provided do actually consist of a key and a value. Let's sum up the five
data structures:

e String: You can use the set command to write a value to Redis. In the case of a
simple string, you can simply save the value in the datastore shown as follows.
After setting the string value, you can retrieve the value again by issuing the
get command:

$ redis-cli

127.0.0.1:6379> set mykind "Human"
OK

127.0.0.1:6379> get mykind

"Human"

127.0.0.1:6379>

¢ Hash: In the same way as the string, you can set an arbitrary number of values
to a key. Generally speaking, Redis treats values as a byte array and doesn't care
what they are. This make Redis very handy for representing objects. Again, with
the get command, you can retrieve the values. GitLab uses this type to store web
session information from users:

$ redis-cli

127.0.0.1:6379> set programs:tron '{"name": "tron", "kind":
n program" }]

OK

127.0.0.1:6379> get programs:tron

"{\"name\": \"tron\",\"kind\": \"program\"}"

e List: The list type in Redis is implemented as a linked list. You can add items to
the list quite quickly with rpush (right push, to the tail of the list) or 1push (left
push, to the head of the list). On the other hand, accessing an item by index is not
that fast because it has to search the linked list. Still, for a queue mechanism, this
is a good solution.

$ redis-cli

127.0.0.1:6379> rpush specieslist human computer cyborg
(integer) 3

127.0.0.1:6379> rpop specieslist
"cyborg"

127.0.0.1:6379> rpop specieslist
"computer"

127.0.0.1:6379> rpop specieslist
n human "

127.0.0.1:6379> rpop specieslist
(nil)

[21]

Introducing the GitLab Architecture Chapter 1

e Sets: Another datatype is the set. You add members with the sadd command.
Don't forget that these sets are unordered, so if you ask for the members with
smembers, the order will mostly be different to how you entered it:

$ redis-cli
127.0.0.1:6379> sadd speciesset human computer cyborg

(integer) 3

127.0.0.1:6379> smembers speciesset
1) "computer"

2) "human"

3) "cyborg"

¢ Sorted sets: Fortunately, there is an ordered set as well. It is almost the same, but
one difference is that you add a score to the entry, and that will automatically
score the sort order, as you can see from the following;

127.0.0.1:6379> zadd speciessortedset 1 human

(integer) 1
127.0.0.1:6379> zadd speciessortedset 2 computer

(integer) 1
127.0.0.1:6379> zadd speciessortedset 3 cyborg

(integer) 1

127.0.0.1:6379> zrange speciessortedset 0 -1
1) "human"

2) "computer"

3) "cyborg"

Gitaly

In the first versions of GitLab, all Git operations relied on using a local disk or network
share. Gitaly is a project that tries to eliminate reliance on the Network File System
(NES). Instead of calls to a filesystem service, Gitaly provides GitLab with a system based
on Remote Procedure Calls (RPCs) to access Git repositories. It is written in Go and uses
gRPC Remote Procedure Call (gRPC), a cross-platform RPC framework from Google. It
has been steadily developing since the beginning of 2017, and since GitLab 11.4, it can
replace the need for a shared NFS filesystem.

[22]

Introducing the GitLab Architecture

Chapter 1

You can find an overview of Gitaly and its place in the GitLab architecture in the following
screenshot:

GitLab
application node
1

arpe

GitLab
application node
2

groc
gitaly node -~
Gitaly service
v
git repositories
v
san cluster

On a small installation, it runs in the same servers as all other components. In big clustered
environments, you can set up dedicated Gitaly servers, which can be used by Gitaly clients
such as the following;:

Unicorn

Sidekiq
gitlab-workhorse
gitlab-shell

Elasticsearch indexer

Gitaly as a client

The source code of this project can be found here: https://gitlab.com/gitlab-org/

gitaly.

[23]

