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A B S T R A C T

Background and aims: In this work, breath samples rom clinically stable bronchiectasis patients with and without
bronchial inections by Pseudomonas Aeruginosa- PA) were collected and chemically analysed to determine i they
have clinical value in the monitoring o these patients.
Materials and methods: A cohort was recruited inviting bronchiectasis patients (25) and controls (9). Among the
ormer group, 12 members were suering PA inection. Breath samples were collected in Tedlar bags and
analyzed by e-nose and Gas Chromatography-Mass Spectrometry (GC-MS). The obtained data were analyzed by
chemometric methods to determine their discriminant power in regards to their health condition. Results were
evaluated with blind samples.
Results: Breath analysis by electronic nose successully separated the three groups with an overall classication
rate o 84% or the three-class classication problem. The best discrimination was obtained between control and
bronchiectasis with PA inection samples 100% (CI95%: 84–100%) on external validation and the results were
conrmed by permutation tests. The discrimination analysis by GC-MS provided good results but did not reach
proper statistical signicance ater a permutation test.
Conclusions: Breath sample analysis by electronic nose ollowed by proper predictive models successully
dierentiated between control, Bronchiectasis and Bronchiectasis PA samples.

1. Introduction

The potential advantages o breath analysis or volatolomics studies,
including the unlimited sample supply, the non-invasive way to collect
samples, and the possibility deliver ast analysis results have been
described in several previous works [1–7]. However, despite the abun-
dant literature, the use o breath analysis or clinical applications is in its
inancy [8,9] and the lack o standardization on sample collection/
analysis [10–13] and the complexity o data analysis step leave space to
urther developments [14–18].

In breath analysis, there are dierent types o conounding actors
and the most important are the clinical (gender, age, diet, medication)
and instrumental ones (time o the measurements, time rom collection
until analysis). A good design is essential to handle conounding actors

and methods as randomization, restriction, or matching [19] can be
used. Appropriate control o the clinical and instrumental conounding
actors on observational studies in breath analysis could improve and
decrease biased results [20–22].

On the other hand, there are a variety o instrumental techniques or
breath analysis that dier on usability, cost, and retrieved chemical
inormation: namely, GCxGC-MS [23], chemical sensor systems [24],
Proton Transer Reaction-Mass Spectrometry (PTR-MS) [25], Selected
Ion Flow Tube-Mass Spectrometry (SIFT-MS) [26], Laser Spectroscopy
[27] or Gas Chromatography -Ion Mobility Spectrometry (GC-IMS) [28].

Among the several analytical platorms available to analyse breath
samples a review on cancer detection mentions that GC-MS and e-nose
are the most commonly used platorms (47% and 26% o papers), while
their simultaneous use on the same samples appears only in 8% o the
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studies [29]. The use o two (or more) analytical distinct platorms
[30,31] on the same samples or conront the results rom breath analysis
with another type o sample (as tissue/ sputum) [32–34] are an inter-
esting avenue o research in breath analysis and can be used to conrm
somehow the obtained results.

As said the raw data provided by dierent analytical platorms dier
in inormation content but also on dimensionality and data processing
needs. E-noses and GC-MS datasets, particularly, are represented as a
vector and a matrix, or one sample, and as a matrix and a three-way
array or the whole dataset, respectively. In general terms, GC-MS pro-
vides higher dimensional and richer inormation data, at the expense o
requiring a more complex data processing pipeline [35].

Proper validation methodologies help to avoid overtting and
consequently reduce alse discoveries [36–38]. Overtting problems in
GC/MS are aggravated by the curse o dimensionality [39], because
these datasets are highly dimensional (102–103 detected analytes) and
most studies have limited sample size (20–100 subjects). In this context,
we advocate the use o resampling methods or model optimization and
external validation or perormance assessment [40,41]. We have to
remind that or small datasets, all samples can be used or external
validation using double cross-validation methodologies [42]. Even i
external validation is unbiased, small sample datasets do still eature
perormance estimators with large variance and a permutation test
should be used to conrm the obtained results [43].

In the last decade, a number o VOCs in breath have been ound to be
helpul in the diagnostics o several diseases including respiratory dis-
eases and cancer [5,44–46] Among the several diseases that can be
evaluated by breath analysis the development o bronchial inections on
bronchiectasis patients has been described and evaluated by previous
work. In this case, electronic nose has been used to identiy airway
bacterial colonization in Chronic Obstructive Pulmonary Disease
(COPD) patients [47,48]. Furthermore, e-nose technology has been
proven successul to identiy Pseudomonas aeruginosa inection in bron-
chiectasis [49].

In the clinical stability phase the presence o potential pathogens
bacteria in the airway o bronchiectasis patients are common (30–70%)
being mainly Pseudomonas aeruginosa [50]. Furthermore, aggravations
as aster lung unction loss, pulmonary and systemic infammation are
serious concerns. Bronchial inection is the reason or 60–70% o these
aggravations [51], that has a direct relation with mortality increase in
Bronchiectasis [52] and the reasons why bronchiectasis patients are
more susceptible to developing a bronchial inection are still unknown.

In this work, we build upon previous works to test the adequacy o
breath sampling to monitor inections in bronchiectasis patients,
particularly with Pseudomonas aeruginosa. Previous studies have re-
ported success on e-nose applications using linear discriminant analysis
and leave-one-out internal validation. In this new study, we amplied

the nds collecting a new group o samples and using external validation
methodologies and permutations test. Additionally, the same samples
collected were also analyzed by GC-MS aiming to understand, i
possible, the origin o the chemical discrimination already proven by e-
noses and discuss the advantages and disadvantages o these distinct
analytical platorms on breath analysis. In act, prior studies using GC-
MS have ound VOCs related to the presence o Pseudomonas Aerugi-
nosa (PA) in cystic brosis patients: methyl thiocyanate [53] and 2-ami-
noacetophenone [54] have been reported as putative biomarkers. In this
work, a volatolomics untargeted approach is proposed to discover po-
tential signatures o PA inection in Bronchiectasis patients.

2. Methods

A schematic representation o the applied methodology can be
observed in Fig. 1. This research eatures parallel analysis o breath
samples by electronic nose and GC/MS. The ollowing sections provide
methodological inormation.

2.1. Cohort selection and experimental design

Observational studies are always suspect o bias. In order to block
potential conounding actors, we carried out a proper experimental
design. To prevent gender as a conounding actor a restriction strategy
was applied. It is known that in non-cystic brosis bronchiectasis has
more prevalence among emales than among males. Additionally, e-
males suer more severe diseases and with worse prognoses in terms o
poorer lung unction and survival [55]. For these reasons, only emales
were included in the cohort.

Breath samples rom woman subjects were collected, all o them
were not currently smokers and the ones with prescribed drugs therapies
were asked to stop medication 1 day beore sample collection and ood-
drink intake at least 12 h beore. All patients signed the inormed con-
sent orm to participate in the study (Ethical approvement code: Institut
d’Investigació Biomédica Sant Pau- IIBSP-PRI-2018-105). Diagnosis o
Bronchiectasis was perormed according to current European guidelines
[56]. Bronchial inection was determined using a quantitative sputum
culture prior to breath samples collection. PA inection was diagnosed
using sputum culture that was not perormed in healthy controls because
PA only aects patients with pulmonary diseases who had chronic
sputum production [50]. The procedure used to diagnose PA was well
validated and previously described [57], besides that no other patho-
gens dierently o PA were detected. Bacterial colonization was
considered when patients had PA inection and clinical stability, dened
by the absence o increased symptoms that required changes in baseline
treatment during 4 weeks [57].

To block instrumental shits oten ound in e-noses [37] and even in

Fig. 1. Overview o sample collection and analysis.
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GC-MS, we matched the collection and analysis o samples belonging to
the dierent groups as depicted in Fig. 2. Supplementary Material 1
shows specic inormation or the subjects in the study.

2.2. Breath sample collection

Three liters Tedlar® bags were used to collect the total amount o
exhaled air by the patients. Two-valve Tedlar® bags were cleaned beore
use by fushing with argon and baking at 45 ◦C during 15 min (repeated
three times) [58]. All samples were collected in the same room ater the
patients breathing through a Hans-Rudolph valve during 3 min as
described in previous work [49]. Also, a biological lter was used or
each patient to avoid pathogens entering the bags and cross contami-
nation between patients.

Samples were collected in the hospital and e-nose measurements
were done a ewminutes ater the patients lled the bags. Then, the bags
were carried out to the laboratory and analyzed on the same day o
sample collection by GC-MS. For each day o sample collection, ambient
air, controls, and cases samples were collected. The nal sample set
analyzed consisted o 8 ambient air samples, 9 Controls (healthy
women), 13 bronchiectasis patients (Bronch), and 12 bronchiectasis
subjects with bronchial inection by Pseudomonas aeruginosa (Bro_PA).

2.3. Sample analysis

2.3.1. E-nose
The e-nose device Cyranose 320® (Smith Detections, Pasadena, CA),

that eatures a nanocomposite sensor array with 32 sensors, was con-
nected to the breath Tedlar bag or 5 min and each measurement con-
sisted o 5 replicates. Nitrogen was used as carrier gas and a constant
fow rate o 120 mL/min was used during 60 s and 40 s or baseline
recording and sample analysis, respectively, ollowed by an increase o
the fow or 180mL/min or sample line purging and air intake. A Tedlar
bag with ambient air collected in the day o sample analysis was ana-
lysed in parallel every day as background measurement. Supplementary
Materials shows actual pictures o the breath sampling process (Figure 2
in supplementary materials.)

2.3.2. Gas chromatography
Solid phase micro extraction (SPME) sample preconcentration was

carried out using a 75 µm carboxen®/ Polydimethylsiloxane (CAR/
PDMS) ber [59]. The ber was exposed inside the bags or 30 min at
ambient temperature and immediately ater it was desorbed into the GC

injector. The chromatographic column used was type DB-624 (60 m ×
0.320 mmID × 1.8µm – Agilent). The temperature o the column was
maintained at 40 ◦C or 2 min and then subjected to a temperature ramp
o 10 ◦C/min till 250 ◦C and stayed at this temperature or 5 additional
minutes. The carrier gas used was helium in a constant fow o 1.7 mL
min1. The temperatures o the injector and the transer line were set to
250 ◦C and 230 ◦C, respectively. Ion source temperature was set to
200 ◦C and the mass scan range was rom 40 to 400 m/z.

2.4. Data analysis

2.4.1. E-nose
A non-linear transormation (arctangent transormation) was used to

improve data gaussianity [60]. Data normality was then conrmed with
the Shapiro-Wilk test at the 5% risk with Benjamini-Hochberg multitest
correction [61]. Variance o inter-replicates or each sample and robust
PCA [62] was used or outlier detection. Specically, the algorithm
ROBPCA (available in the rospca package in R) was used and outliers
were selected based on the robust score distance and the robust
orthogonal distance. Proper cuto values or those statistics are given by
Hubert et al. [63]. Ater outlier removal, data was autoscaled and
inspected by classical PCA.

Subject classication was based on the K-NN algorithm (available in
the class package in R [64]) plus a majority voting over the replicate
measurements. K-NN classier optimization and perormance assess-
ment were based on double cross-validation [42] using leave one subject
out (LOSO). By LOSO we mean that all the replicate measurements rom
the same subject are treated as a single indicator to decide the nal label
given to the subject. In the inner loop (internal validation) the number o
neighbors was optimized, while perormance assessment was carried out
in the external loop (external validation). In both cases, the chosen
gure omerit was classication accuracy (classication rate: CR). Final
class assignment to each subject was based on the joint classication o
all the replicates through a voting mechanism. To check that the ob-
tained value cannot be obtained by random choice (null hypothesis) we
calculated a permutations test [65] with 500 iterations. Supplementary
Material 3 shows a block diagram o the e-nose data analysis (Figure 3 in
supplementary materials.)

2.4.2. Gas chromatography
Features rom the raw chromatograms were extracted using the

XCMS package in R [66,67]. On XCMS matched lter algorithm was
used or peak detection ollowed by peak clustering and alignment. Data

Fig. 2. Distribution o cases, controls, and quality controls samples between the days o collection.
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imputation was used to ll missing values based on the integration o the
peak position. Robust Principal component analysis (RobPCA) was used
to explore the data and veriy the presence o outliers in the same
manner described above.

The extracted eatures were then corrected using log transormation
and PQN normalization [68]. The AlpsNMR package [69] was used to
create Partial Least Squares – Discriminant Analysis (PLS-DA) [70]
classication models ollowed by permutations test. Furthermore, a
second strategy was used applying variable selection based on Wilcoxon
and binary problems were built using the same strategy applied to the e-
nose data (double cross-validation [42] using leave one subject out
(LOSO)), and PLS-DA and KNNmodels were built. All data analysis or e-
nose and GC-MS was done in RStudio 4.0.3.

3. Results

3.1. E-nose analysis

E-nose analysis aim is to record a breath-print o a wide range o
gases and vapours (mixture o compounds) present in each breath
sample not ocusing on a specic compound or class o compounds, in
the case o Cyranose 320® this is done by 32 nanocomposite sensor
arrays. Each patient breath measurement is represented as a matrix,
having 32 columns, one per sensor, and as many rows as replicates have
been measured (typically ve). Supplementary Material 4 shows a
heatmap where on rows is showed the dierent replicates o each pa-
tient and in the columns the sensors. The colors correspond to the value
o the sensor’s response ater preprocessing. The rows are arranged ac-
cording to the class o the patient and the columns are ordered according
to hierarchical clustering o the sensor responses. Ater the non-linear
transormation, all sensors except numbers 6 and 28 were normally
distributed and we could not reject the null hypothesis o a normal
distribution using the Shapiro-Wilk hypothesis test with Benjamini-
Hochberg multitest correction. Three entire samples (including all rep-
licates) were considered outliers (see methods) and were removed rom
the dataset beore the construction o the models. Ater preprocessing,
data were visually inspected by PCA and the score plot (PC1xPC2) is
shown in Fig. 3. No clear data separation was observed at this point.

The best number o neighbors k (optimized in the internal validation
loop), the values o classication rates (in external validation), and the
p-value ater permutation tests or all constructed models are showed in
Table 1 (including three class and two class models). Furthermore,
Supplementary Material 5 shows the conusion matrix or the three class
K-NN models.

3.2. Gas chromatographic analysis

The application o XCMS to the raw data provided a eature table

with dimensions 42 samples × 409 eatures. The outlier detection step
did not show any anomalous sample and all subjects were kept in the
data set. The Total Ion Chromatograms (TICs) in log scale or the GC-MS
analysis or all collected samples and the outlier detection step plot are
shown on Supplementary Material 6(i) and 6(ii).

Fig. 4 (i) shows the score plots o a PLS-DA model or a binary
classication problem. However, it is well known that scoreplots are
overoptimistic. In this spirit, we gave better credit to the evaluation o
the classiers in external validation. The best results were obtained or
the discrimination between Control versus Bronchiectasis_PA. PLS-DA
models presented good classication rates above 0.75 on external vali-
dation. However, permutation tests were applied or all binary PLS-DA
models, and it was not possible to reject the null hypothesis (see Fig. 4
(ii)).

Table 2 shows a summary o the obtained results or the GC-MS ater
eature selection applying Wilcoxon test (binary models) and then
applying the same strategy used to the e-nose (double cross-validation
using leave one subject out).

The last step on an untargeted approach is the compound identi-
cation and although several important compounds were already iden-
tied and described as potential to be related with specic diseases on
breath samples [71,72] the untargeted methodology used here was not
able to reach the annotation step, in other words, even though some PLS-
DA presented good results neither model was able to overcome per-
mutations tests or statistical signicance.

4. Discussion

4.1. Sample collection and analysis

Breath samples can be collected and analyzed online and ofine, the
main reason or choosing one or another method will depend on the nal
aim o the work. Although, analyzing breath directly and the use o
cartridges are preerential or e-nose and GC-MS, respectively, Tedlar®
bags ts very well when the objective is to analyze the same sample with
two or more analytical platorm [58]. Furthermore, when a patient has a
pulmonary disability, identiying and collecting the end-tidal breath it is
not a simple task and or this reason and, to ollow the same protocol or
all involved subjects in the study, whole breath samples were collected

Fig. 3. Score plot or the Principal Component Analysis (PC1xPC2) containing
all samples rom the e-nose measurements.

Table 1
Summary o the KNN models perormance in external validation or the e-nose
dataset (condence limits 95% in brackets, calculated according to the binomial
distribution).

All replicates

Models best
k

Sensitivity Specicity CR(%) p-
value

Control vs
Bronch vs
Bro_PA

7 – – 78 0.002

Control vs
Bronch

7 0.86
(0.73,0.92)

0.9
(0.76,0.96)

89(84,96) 0.002

Control vs
Bro_PA

5 0.94
(0.82,0.97)

0.9
(0.76,0.96)

92(83,95) 0.004

Bronch vs
Bro_PA

5 0.86
(0.71,0.92)

0.92
(0.83,0.97)

89(81,93) 0.002

Majority vote
Models best

k
Sensitivity Specicity CR (%) p-

value
Control vs
Bronch vs
Bro_PA

7 – – 84 0.002

Control vs
Bronch

7 0.92
(0.64,1.00)

1(0.66,1.00) 95
(77,100)

0.002

Control vs
Bro_PA

5 1(0.75,1.00) 1(0.66,1.00) 100
(84,100)

0.004

Bronch vs
Bro_PA

5 0.75
(0.43–0.95)

1(0.74,1.00) 87(69,97) 0.002
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Clinica Chimica Acta 526 (2022) 6–13

10

and the methodology was previous validated [49].
Furthermore, the CAR/PDMS ber and the column selected possess

intrinsic characteristics that will allow the pre-concentration and anal-
ysis o a delineated group o compounds presented in breath samples
analyzed by GC-MS. However, the preconcentration step is mandatory
since many compounds will be present in very low concentrations inside
the bags mainly when whole breath samples are collected as in this
work. Breath sampling methodologies, advantages, and disadvantages
are described in the literature [73].

4.2. E-nose analysis

Initial visual inspection o the sensor response distribution indicated
a strong lack o normality. The histogram presented long right-side tails
but also the presence o negative values. This is known to have a
negative eect on data analysis techniques based on the analysis o
variance. Data normality was greatly improved using a non-linear
transormation. To be able to deal with negative values we selected
the arctangent transormation instead o the most common logarithmic
transorm.

It is possible to observe that samples do not appear linearly separable
in an unsupervised exploration based on the PCA scoreplot (Fig. 3). K-
NN and PLS-DA classiers were evaluated. PLS-DA is one o the most
common classiers in metabolomics, but it provides only linear parti-
tions o the input space. To test a more fexible input space partition K-
NN models were chosen as a simple an model-ree alternative. All K-NN
models constructed or the e-nose dataset presented better results than
the PLS-DA ones and or this reason, only the KNN results are shown.

The classication rates were calculated using two dierent ap-
proaches. First, considering each individual replicates and second using
the most voted class using all replicates rom the same individual. This
last procedure does not represent in act additional costs since all the
replicates are just consecutive analyses rom the same bag as explained
in Section 2.4.1. Using all the replicates approach signicantly improved
the perormance o the classier, except in the case o the three-class
problem.

When trying to classiy individual measurements, K-NN models
presented very good classication rates on external validation, and the
values varied between 78% and 92%. Permutation tests were used or all
models and in all cases, the classication rates were considered statis-
tically signicant (risk level 0.05) compared with the distribution o the
null hypothesis. The three-class problem resulted in a smaller CR (78%)
but still statistically signicant. For all the other binary problems the CR
ranged between 89 and 92%, but those dierences were not statistically
signicant due to the limited cardinality o the dierent groups.

Results improved signicantly when we used the majority vote
mechanism to classiy a subject using the ve consecutive replicates. In
this case, the CR or the three-class problem improved up to 84%, while
we got perect classication (100)% or the Control vs Bronchiectasis
with PA inection. The next model in terms o good perormance was the
discrimination between Controls and Bronchiectasis, while the presence
o PA inection in Bronchiectasis perormed a bit lower but still with an
excellent 87% classication rate. In general, models presented better
specicity than sensitivity, however, the latter still ranged rom 92% to
100% (see Table 1).

The current study indicates that the e-nose was able to classiy the
breath samples not only in internal validation as previously described
but also in external validation. Furthermore, the class separation is not
linear requiring non-linear decision unctions to obtain good results.
While these results are encouraging, they should be urther validated
with more subjects (due to the risk o over adjustment related with the
small sample conditions), during a longer study, and eventually in a
multicenter study. It should be independently tested with additional e-
nose units. Another direction o study is to investigate i this very good
separation is specic to the sensing technology used with the presently
used device or i they can be replicated with electronic noses o dierent
technologies.

4.3. Gas chromatographic analysis

While the score plot shows a good separation between the two
studied classes, we have to take into account that PLS-DA score plots are
easily overoptimistic [36,74]. Additionally, the apparent good result in
classication rate is unable to overcome the additional permutation test
due to the large variance o the CR estimator probably linked to the
small number o samples compared to the input data dimensionality.

Regarding the second strategy applied (Table 2), these results agree
with the obtained results or the e-nose in the sense that KNN models
presented a better perormance than PLS-DA (exception or the Control
vs Bro_PA). However, in this work, all the predictive models constructed
or the GC-MS data the classication rates were not good enough to
distinguish between the classes, and consequently it was not possible to

Fig. 4. (i) Scoreplot PLS-DA model obtained rom alpsNMR using as class Control versus Bronchiectasis_PA (ii) permutation test or the predictive model.

Table 2
Summary o results obtained or the GC-MS ater eature selection applying
Wilcoxon test (binary models).

PLS-DA KNN
Number of selected features CR (%) CR (%)

Control vs Bronch 39 40 62
Control vs Bro_PA 42 62 52
Bronch vs Bro_PA 13 48 58

L.F. Oliveira et al.
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discover the compounds that are important to class separation.
It is interesting to conront the successul results o the predictive

models built with the e-nose measurements in opposition to the ailure
obtained using GC-MS data. We can point several underlying reasons
behind these results. First, the e-nose measurements have replicates (5
per sample) while a single GC/MS analysis is carried out per bag. Sec-
ondly and as expected, the dimensionality o the e-nose is much smaller
than the GC-MS leading to curse o dimensionality problems. This is
more important when acing binary problems (or the GC-MS) since the
sample count is even smaller.

Furthermore, the signal processing pipeline or GC-MS is more
complex than or e-nose data. The large number o peaks, sometimes
with strong coelution, baseline instabilities, and slight shits in retention
time leading to alignment problems, makes the whole data processing
workfow a real challenge, particularly i in addition we have a limited
supply o examples or the machine learning step. This is in agreement
with previous research that combined GC-MS and e-nose analysis on the
same samples or cancer screening [75,76]. The GC-MS results obtained
in this study sign that, even though the use o experimental design and
good analytical chemistry practices are essential, good validations
techniques in the development o the models are key to avoiding alse
discoveries in complex data.

5. Conclusions

This study showed that e-noses were able to dierentiate bronchi-
ectasis and bronchiectasis with bronchial inections, produced by pseu-
domonas aeruginosa, patients rom controls with good results in external
validation and the results were conrmed by permutation tests.

We would like to highlight a number o methodological actors that
support the results and the validity o the conclusions. First, the proper
experimental design to block the most important conounding actors.
Second, the evaluation o the predictive models in external validation
using double leave one subject out and the additional permutation tests
to explore i the obtained results can just be obtained due to the large
variance o perormance estimators in small sample conditions. Results
or e-nose improved signicantly ater non-linear signal transormation,
and the use o majority voting over measurement replicates.

The use o GC-MS to explore the important compounds or the class
dierentiation was not successul. The main reasons or that were the
small sample counting, the lack o replicates and the complexity o the
obtained signals. We consider that more strict validation methodologies
should be in use to avoid alse discoveries in breath analysis.

Despite the good results obtained by electronic nose, the act that this
approach does not allow to identiy condition specic compounds is a
clear limitation o this approach since it does not bring additional in-
ormation or the understanding o the underlying mechanisms below
the observed discrimination.

The obtained results should be considered as a positive indication
supporting the validity o the proposed methodology. However, studies
with larger cohorts, rom dierent geographical areas and recruitment
hospitals are needed to give additional support to the ndings reported
in this work.
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O. Sibila, A. Agustí, B.G. Cosío, K. Kostikas, Using the electronic nose to identiy
airway inection during COPD exacerbations, PLoS One. 10 (9) (2015) e0135199,
https://doi.org/10.1371/journal.pone.013519910.1371/journal.pone.0135199.
g00110.1371/journal.pone.0135199.g00210.1371/journal.pone.0135199.
g00310.1371/journal.pone.0135199.g00410.1371/journal.pone.0135199.
t00110.1371/journal.pone.0135199.t00210.1371/journal.pone.0135199.
t00310.1371/journal.pone.0135199.t00410.1371/journal.pone.0135199.s001.

[49] G. Suarez-Cuartin, J. Giner, J.L. Merino, A. Rodrigo-Troyano, A. Feliu, L. Perea,
F. Sanchez-Reus, D. Castillo, V. Plaza, J.D. Chalmers, O. Sibila, Identication o
Pseudomonas aeruginosa and airway bacterial colonization by an electronic nose
in bronchiectasis, Respir. Med. 136 (2018) 111–117, https://doi.org/10.1016/j.
rmed.2018.02.008.

[50] A. Rodrigo-Troyano, O. Sibila, The respiratory threat posed by multidrug resistant
Gram-negative bacteria, Respirology 22 (7) (2017) 1288–1299.

[51] J.A. Wedzicha, T.A. Seemungal, COPD exacerbations: dening their cause and
prevention, Lancet 370 (2007) 786–796.

[52] J.D. Chalmers, A. Filonenko, M. Shteinberg, P.C. Goeminne, M.J. McDonnell,
S. Aliberti, T.C. Fardon, D. Obradovic, E. Operschall, C. Gerlinger, G. Sotgiu,

L.F. Oliveira et al.



Clinica Chimica Acta 526 (2022) 6–13

13

K. Dimakou, E. Polverino, A. De Soyza, A. Hill, Characterisation o the requent
exacerbator phenotype in bronchiectasis: Data rom the riends cohort, Am. J.
Respir. Crit. Care Med. 195 (2017) rccm.201711-2202OC. http://www.atsjournals.
org/doi/abs/10.1164/ajrccm-conerence.2017.195.1_MeetingAbstracts.A7305%
0Ahttp://ovidsp.ovid.com/ovidweb.cgi?
T=JS&PAGE=reerence&D=emed18&NEWS=N&AN=617704054.

[53] V. Shestivska, A. Nemec, P. Dřevínek, K. Sovová, K. Dryahina, P. Španěl,
Quantication o methyl thiocyanate in the headspace o Pseudomonas aeruginosa
cultures and in the breath o cystic brosis patients by selected ion fow tube mass
spectrometry, Rapid Commun. Mass Spectrom. 25 (17) (2011) 2459–2467, https://
doi.org/10.1002/rcm.5146.

[54] A.J. Scott-Thomas, M. Syhre, P.K. Pattemore, M. Epton, R. Laing, J. Pearson, S.
T. Chambers, 2-Aminoacetophenone as a potential breath biomarker or
Pseudomonas aeruginosa in the cystic brosis lung, BMC Pulm. Med. 10 (2010) 56,
https://doi.org/10.1186/1471-2466-10-56.

[55] C. Vidaillac, V.F.L. Yong, T.K. Jaggi, -.-M. Soh, S.H. Chotirmall, Gender dierences
in bronchiectasis: a real issue? Breathe 14 (2) (2018) 108–121, https://doi.org/
10.1183/20734735.000218.

[56] E. Polverino, P.C. Goeminne, M.J. McDonnell, S. Aliberti, S.E. Marshall, M.
R. Loebinger, M. Murris, R. Cantón, A. Torres, K. Dimakou, A. De Soyza, A.T. Hill,
C.S. Haworth, M. Vendrell, F.C. Ringshausen, D. Subotic, R. Wilson, J. Vilaró,
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