
02-601: Programming for Scientists

Phillip Compeau
Fall 2017

1. Course Information

1.1 Contact information

Instructor: Prof. Phillip Compeau
E-mail: pcompeau@cs.cmu.edu

Website: http://compeau.cbd.cmu.edu

Office: Gates-Hillman Center (GHC) 7403
Office Hours: Wednesdays 10:30 - 11:30 AM (or by appointment)

TA: Amir Alavi
E-mail: aalavi@andrew.cmu.edu

Office Hours: Tuesdays 12:00 - 1:00 PM and Fridays 11:30 - 12:30 PM (see Canvas for locations)

1.2 Class location

Lecture: Tuesdays and Thursdays 3:30 - 4:20 PM in Wean Hall (WEH) 5409
Recitation: Fridays 10:30 - 11:20 AM in Gates-Hillman (GHC) 4102

1.3 Course description

This course provides a practical introduction to programming for students with little or no pre-
vious programming experience. Extensive programming assignments will illustrate programming
concepts, languages, and tools. Programming assignments will be based on analytical tasks that
might be faced by scientists and will typically include parsing, statistical analysis, simulation, and
optimization. Principles of good software engineering will also be stressed. After an introduction
to computational thinking (as it pertains to science), most programming assignments will be done
in the Go programming language, an industry-supported, modern programming language, the syn-
tax of which will be covered in depth. Other assignments may be given in other languages (Java,
Python, etc.) to highlight the commonalities and differences between languages.

1.4 Course philosophy

Our first goal for this course is to make you comfortable writing your own programs and have a
better understanding of how computing works, at multiple levels.

Our second goal is to convince you how much fun programming is! Writing a program is like
solving a sudoku puzzle — programming tests (and builds!) your powers of concentration and
logical thinking. But programming is more rewarding than sudoku because it equips you with a
transferable skill instead of the ability to fill in a square of numbers.

Our third goal is to help you understand some fundamental scientific (in particular, biological)
algorithms on a high-level.

Finally, we want you to gain independence to hack your own scientific problem by planning
and executing a longer programming assignment of your own choice, so that you will be capable of
programming independently in the future.

1



This can be a challenging course for some because “thinking like a programmer” might be new
to you. Rest assured: the difficulty of the course and the material we cover is well within that of a
typical introductory programming course.

1.5 Pre-requisites

• Some analytical skills and mathematical background.

• No biology or programming knowledge is assumed.

1.6 Course Details

Course Homepage The homepage for the course will be hosted on Canvas, where I will post
assignments, lecture notes, and general information. You should automatically be enrolled in
the course, but the course homepage can be found at https://canvas.cmu.edu/courses/

625.

Submitting Assignments. The programming assignments will be submitted via Autolab (see
Canvas/Piazza for link), and will be graded in conjunction with the policy outlined below.

Discussion Forum. An online forum is provided on Piazza as an area for discussion and questions.
The forum will be moderated by the course staff who will respond to questions, but students
are encouraged to help each other via discussion. However, assignment specifics should not
be discussed — any hints will be provided by the teaching staff. Piazza is integrated into
Canvas, and you can find the class at piazza.com/cmu/fall2017/02601.

Programming Expectations. You are expected to produce clean, readable, and well-documented
code. The coding practices should be consistent with what is taught in the lectures (e.g. con-
sistent naming conventions, descriptive variable names, and short functions). A component
of each assignment’s grade will be based on coding style.

Programming Languages. Most of the course will be taught in the Go programming language.
This is a relatively new language that has industry backing and that is simpler than many
languages, but not too simple (it still contains important concepts like types, pointers, and
type interfaces). However, unlike most introductory programming courses, we will not only
look at a single language. Think of it as “comparative computational linguistics” — we
may have a few assignments in a couple of other languages. The best way to understand
programming concepts is to think about them in terms of pseudocode as well as see how they
are realized in more than one language.

2. Tentative Course Topics

We hope to cover the following topics. We won’t necessarily cover them in this order, however.

• The machine and how programming languages abstract it. The connection between
programming language constructs and the underlying machine will be discussed. The syn-
tax for the programming language “Go” will be covered in depth, and comparison between
common programming language syntaxes will be given.

1. Imperative programming constructs: functions, if-statements, loops (for, while), switch-
statements, expressions

2. Basic data structuring constructs: variables, arrays, strings, structs, types, and pointers

2



3. Reading and writing files

4. How to build large programs using top-down design

5. Basic execution and memory model (Von Neumann architecture)

• Basic data structures and algorithm design techniques: Several data structures and
algorithms will be introduced.

6. Linear data structures: arrays, lists, stacks, queues; binary search

7. Dictionary data structures: binary search trees including tree traversals (DFS, BFS,
pre-, in-, post-order); hash tables.

8. Divide and conquer, recursion

• The tools of programming: Throughout the course, we will cover important tools for good
software engineering practice.

9. Assertions, preconditions, postconditions

10. Code documentation

11. Unit tests — testing small sections of code

12. Debugging — strategies, common errors

13. Profiling — figuring out what’s taking so long

• Abstraction and modularization: How we control complexity through well-defined inter-
faces.

14. Bigger units of code: Modules, namespaces, packages

15. Type interfaces and user-defined types

16. Object-oriented programming

17. Design patterns

• Parallelism: Using Go’s parallel features to let your program do more than 1 thing at a
time.

18. Goroutines

19. Channels

• Computability and the limits of computers. Are there problems computers fundamen-
tally cannot solve?

20. Turing machines

21. Halting problem and uncomputable functions

22. NP and NP-complete problems

• Fundamental scientific algorithms. We will also encounter a handful of fundamental
scientific algorithms, especially those taken from biology. Examples are below:

23. Graph-based algorithms for genome assembly

24. Evolutionary tree construction with UPGMA

25. Applying dynamic programming to compare biological sequences

26. Local search for protein folding

27. Simulating large galaxy models with the Barnes-Hut algorithm

28. Applying game theory to understand the dynamics of cooperation

3



3. Coursework

Coursework will consist of extensive programming plus two midterms and a final exam:

Programming assignments. (30% of your grade) Approximately ten assignments designed to
give you familiarity with a particular language feature, programming idea, common program-
ming task, or algorithm.

Examinations. (40% of your grade) The midterms and final exam will tests your knowledge of
the material from the class, and your ability to read and design programs. The midterms will
be held in class and the final held during the university’s scheduled time. The midterm dates
are:

• Midterm 1 (10% of your grade): Friday, September 29 (in recitation)

• Midterm 2 (10% of your grade): Friday, November 3 (in recitation)

• Final (20% of your grade): Time and location TBD (will be posted when set by univer-
sity)

The midterms will not be cumulative: midterm 2 will cover material encountered after
midterm 1. That having been said, later material in the class builds upon the earlier material.

The final will cover all the material from the class.

Project. (15% of your grade) The homework assignments in this course are designed to help
reinforce the introductory concepts of programming. However, because they are weekly as-
signments, they are unable to delve very deeply into a single idea. The purpose of this project
is for you to “take the next steps” as a scientific programmer and have the opportunity to
design a larger project on your own. An ancillary purpose is for you to become a better scien-
tific writer; to be able to clearly communicate the key aspects of a scientific issue and explain
the technical ideas used to address that issue. After all, a large part of being a successful
scientist is about clearly and effectively communicating ideas.

As a result, you will write a Go program of your choosing and apply this program to a practical
dataset, then write an explanation of the key technical ideas presented in that paper.

Finally, you will describe your project in a short in-class presentation during the final week
of class.

We will have in-class presentations at the end of the course. I will send around a separate
assignment describing expectations for the project.

Pre-class exercises. (7.5% of your grade) Learning to program is a lot like learning to speak a
foreign language; it is far better to practice a little each day than to practice a lot once a
week. Accordingly, you will perform much better in the course if you don’t wait until the last
minute to complete a week’s worth of homework. Sleep is often the best way to debug! To
encourage you to space out your work, I will frequently assign short exercises due the evening
before class. Each assignment will receive a binary grade of “pass” or “incomplete”.

You are allowed three dropped pre-class exercises without penalty. These can be used for any
purpose.

Attendance and participation (7.5% of your grade) Attendance will be taken, and we will
have occasional in-class exercises that serve to reinforce the concepts we have covered. These

4



exercises will not be graded, but participation will be expected in order to receive a complete
grade for that day.

You are allowed three “dropped” attendance grades without penalty. These can be used for
any purpose.

Programming assignments must be completed on your own (unless noted) and turned in to the
autograder by a given deadline. No late assignments will be accepted. All programming
assignments will be graded by the autograder, which will check that your programs are outputting
the expected results. In addition, a fraction of your grade for every programming assignment will
be based on following appropriate programming style. The autograder will give you an estimated
grade immediately, excluding the style portion of your grade. The TAs will subsequently go over
your code and assign the final grade, taking into account coding style.

4. Collaboration Policy

You may discuss programming assignments with classmates. However, you must not share or
show or see the code of your classmates. You must write your own code entirely. You can
post general coding questions (with code snippets) on the discussion board.

You must write all programming assignments on your own and cannot share code with other
students or use code obtained from other students. In addition to manual inspection, we use an
automatic system for detecting programming assignments that are significantly similar.

You may never use, look at, study, or copy any answers from previous semesters of this course.

5. Other policies

Classroom etiquette: To minimize disruptions and in consideration of your classmates, I ask
that you please arrive on time and do not leave early. If you must do either, please do so quietly.
Laptop use is allowed only for following along with in-class examples. The use of
phones or other electronic devices during class is forbidden and will result in a zero
discussion grade for the day.

Excused absences: Students claiming an excused absence for an in-class exam must supply
documentation (such as a doctor’s note) justifying the absence. Absences for religious observances
must be submitted by email to the instructor during the first two weeks of the semester.

Academic honesty: All class work should be done independently unless explicitly indicated
on the assignment handout. You may discuss homework problems and programming assignments
with classmates, but must write your solution by yourself. If you do discuss assignments with other
classmates, you must supply their names at the top of your homework / source code. No excuses
will be accepted for copying others’ work (from the current or past semesters), and violations will
be dealt with harshly. (Getting a bad grade is much preferable to cheating.)

The university’s policy on academic integrity can be found at the following link: http://www.
cmu.edu/academic-integrity/. In part, it reads, “Unauthorized assistance refers to the use of
sources of support that have not been specifically authorized in this policy statement or by the
course instructor(s) in the completion of academic work to be graded. Such sources of support
may include but are not limited to advice or help provided by another individual, published or
unpublished written sources, and electronic sources.” You should be familiar with the policy in its
entirety.

5



In particular: use of a previous semester’s answer keys or online solution manuals
for graded work is absolutely forbidden. Any use of such material will be dealt with
as an academic integrity violation.

6. Accommodations for Students with Disabilities

If you have a disability and have an accommodations letter from the Disability Resources office,
I encourage you to discuss your accommodations and needs with me as early in the semester
as possible. I will work with you to ensure that accommodations are provided as appropriate.
If you suspect that you may have a disability and would benefit from accommodations but are
not yet registered with the Office of Disability Resources, I encourage you to contact them at
access@andrew.cmu.edu.

7. Provost’s Statement on Student Well-Being

Take care of yourself. Do your best to maintain a healthy lifestyle this semester by eating well,
exercising, avoiding drugs and alcohol, getting enough sleep and taking some time to relax. This
will help you achieve your goals and cope with stress.

All of us benefit from support during times of struggle. You are not alone. There are many
helpful resources available on campus and an important part of the college experience is learning
how to ask for help. Asking for support sooner rather than later is often helpful.

If you or anyone you know experiences any academic stress, difficult life events, or feelings like
anxiety or depression, we strongly encourage you to seek support. Counseling and Psychological
Services (CaPS) is here to help: call 412-268-2922 and visit their website at http://www.cmu.

edu/counseling/. Consider reaching out to a friend, faculty or family member you trust for help
getting connected to the support that can help.

If you or someone you know is feeling suicidal or in danger of self-harm, call someone immedi-
ately, day or night:

CaPS: 412-268-2922
Re:solve Crisis Network: 888-796-8226

If the situation is life threatening, call the police:
On campus: CMU Police: 412-268-2323
Off campus: 911

If you have questions about this or your coursework, please let me know.

6


