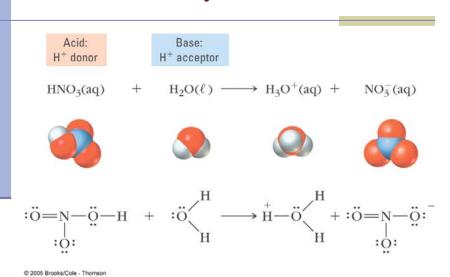
Acid-Base Chemistry

- There are a couple of ways to define acids and bases
- Brønsted-Lowry acids and bases

Acid: H⁺ ion donor


■ Base: H+ ion acceptor

Lewis acids and bases

Acid: electron pair acceptor

Base: electron pair donor

Brønsted-Lowry Acids & Bases

Brønsted-Lowry Acids & Bases

Brønsted-Lowry Acids & Bases

In most acid-base systems, water may play a role as either an acid (H+ donor) or a base (H+ acceptor)

Water as an acid

$$H_2O(l) + B(aq) \leftrightarrow OH^{-}(aq) + HB^{+}(aq)$$

Water as a base

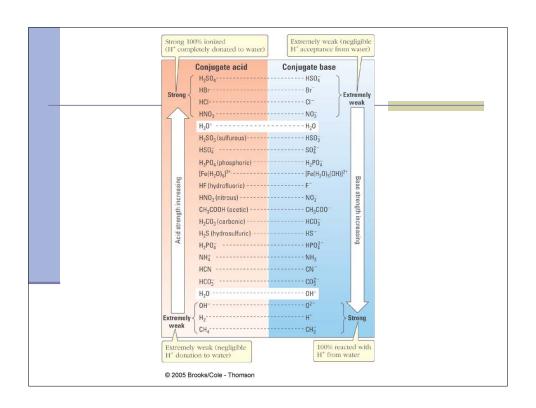
$$H_2O(l) + HA(aq) \leftrightarrow H_3O^+(aq) + A^-(aq)$$

Conjugate Acids & Bases

- Acids react with bases and vice versa
- All acids and bases come with a conjugate pair—a base or acid, respectively, that is formed in conjunction with the original species

Examples

$$HCI(aq) + H_2O(\ell) \Leftrightarrow H_3O^+(aq) + CI^-(aq)$$
acid base conjugate conjugate acid base


Conjugate Acids & Bases

Examples

NaOH(aq) +
$$H_2O(\ell) \leftrightarrow OH^-(aq) + H_2O(\ell) + Na^+(aq)$$

base acid conjugate conjugate
base acid

Strengths of Acids and Bases

- Strong acids donate H+ ions more easily
 - The stronger the acid, the weaker the conjugate base associated with that acid
- Strong bases accept H⁺ ions more easily
 - The stronger the base, the weaker the conjugate acid associated with that base

Strengths of Acids and Bases

- Stronger acids will always react to form weaker conjugate bases
- Stronger bases will always react to form weaker conjugate acids

Example

$$H_2SO_4(aq) + NaOH(aq) + H_2O(\ell) \leftrightarrow ???$$

sulfuric acid can react with either OH⁻ or H_2O —which would it prefer?

$$H_2SO_4(aq) + OH^-(aq) \leftrightarrow HSO_4^-(aq) + H_2O(l)$$

preferred

$$H_2SO_4(aq) + H_2O(\ell) \Leftrightarrow HSO_4^-(aq) + H_3O^+(aq)$$

Autoionization of Water

- Water always undergoes some degree of dissociation to form H₃O⁺ ions and OH⁻ ions 2 H₂O(ℓ) ↔ H₃O⁺(aq) + OH⁻(aq)
- The equilibrium constant for this process at 25 °C is:

$$K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14}$$

In pure water

$$[H_3O^+] = [OH^-] = 1.0 \times 10^{-7} M$$

Autoionization of Water

K_w is temperature dependent—it increases with increasing temperature

TABLE 16.1 Temperature Dependence of K_w for Water

T(°C)	K_w
10	0.29×10^{-14}
15	0.45×10^{-14}
20	0.68×10^{-14}
25	1.01×10^{-14}
30	1.47×10^{-14}
50	5.48×10^{-14}

0 2005 Brooks/Cole - Thomson

Autoionization of Water

Example

Determine [H₃O⁺] in a 0.053 M NaOH solution

Step 1: since NaOH is a strong base, dissociation is complete

$$\therefore [OH^{-}] = 0.053 \text{ M}$$

Step 2: Use K_w to calculate [H₃O⁺]

$$K_{w} = [H_{3}O^{+}][OH^{-}] = 1.0 \times 10^{-14}$$

 $[H_{3}O^{+}] = \frac{K_{w}}{[OH^{-}]} = \frac{1.0 \times 10^{-14}}{0.053} = 1.9 \times 10^{-13} M$

The pH Scale

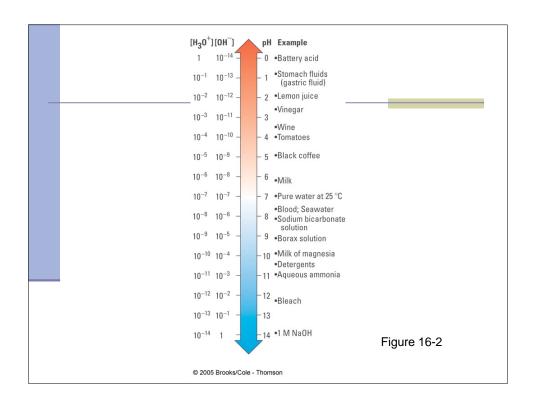
- pH is a measure of the hydronium ion content of a solution
- pH is defined as:

```
pH = -log[H_3O^+]
log is log base 10, not ln (natural log)
[H<sub>3</sub>O<sup>+</sup>] is given in molar units (M)
```

- PH of pure water ($[H_3O^+] = 1.0 \times 10^{-7} \text{ M}$): pH = -log(1.0x10⁻⁷) = 7.0
- pH of last example ($[H_3O^+] = 1.9 \times 10^{-13} \text{ M}$): pH = -log(1.9x10⁻¹³) = 12.7

The pH Scale

Neutral is defined as the pH of pure water:


$$pH = 7$$

Acidic solutions have pH lower than 7:

$$pH < 7 \Rightarrow acidic$$

Basic solutions have pH larger than 7:

$$pH > 7 \Rightarrow basic$$

The pH Scale

- We can also use pOH to describe a solution
- pOH is defined as:

$$pOH = -log[OH^{-}]$$

The sum of pH and pOH must equal 14

$$pH + pOH = 14$$

assuming room temperature (25 °C)

The pH Scale

Example

```
Find [H<sub>3</sub>O<sup>+</sup>] of a solution that has pOH = 9.37

Method 1: Calculate pH, then [H<sub>3</sub>O<sup>+</sup>]

Step 1: Determine pH

pH = 14 - pOH = 14.00 - 9.37 = 4.63

Step 2: Determine [H<sub>3</sub>O<sup>+</sup>]

[H<sub>3</sub>O<sup>+</sup>] = 10^{-pH} = 10^{-4.63} = 2.34 x 10^{-5} M
```

The pH Scale

```
Example (con't.) Find [H<sub>3</sub>O+] of a solution that has pOH = 9.37 Method 2: Calculate [OH-], then [H<sub>3</sub>O+] using K<sub>w</sub> Step 1: Determine [OH-]  [OH-] = 10^{-pOH} = 10^{-9.37} = 4.27 \times 10^{-10} \text{ M}  Step 2: Determine [H<sub>3</sub>O+] using K<sub>w</sub>  [H_3O+] = K_w/[OH-] = (1.0\times10^{-14})/(4.27\times10^{-10})   = 2.34 \times 10^{-5} \text{ M}
```

- The extent of dissociation of an acid or base in H₂O can be quantified using its ionization constant
- Acids:

$$HA(aq) + H_2O(l) \Leftrightarrow H_3O^+(aq) + A^-(aq)$$

acid base c. acid c. base

$$K_a = \frac{[H_3O^+][A^-]}{[HA]} = \frac{[H_3O^+][conjugate base]}{[acid]}$$

[HA] = undissociated acid in solution

Ionization Constants

- K_a is a specific equilibrium constant
- Acids:

$$HA(aq) + H_2O(l) \Leftrightarrow H_3O^+(aq) + A^-(aq)$$

acid base c. acid c. base

$$K_a = \frac{[H_3O^+][A^-]}{[HA]} = \frac{[H_3O^+][conjugate base]}{[acid]}$$

[HA] = undissociated acid in solution

Example:

Acetic acid has a $K_a = 1.8 \times 10^{-5}$

Determine the pH of a 0.2 M acetic acid solution $CH_3COOH(aq) + H_2O(\ell) \Leftrightarrow CH_3COO^{-}(aq) + H_3O^{+}(aq)$

We can approach this like any equilibrium problem from Chap. 15

	CH₃COOH	CH ₃ COO-	H ₃ O+
initial	0.2	0	0
Δ	-x	x	X
equil	.2 – x	Χ	x

Ionization Constants

Example (con't.):

$$K_a = 1.8 \times 10^{-5} = \frac{[\text{CH}_3\text{COO}^{-}][\text{H}_3\text{O}^{+}]}{[\text{CH}_3\text{COOH}]}$$

 $1.8 \times 10^{-5} = \frac{x^2}{.2 - x} \implies x = 0.0019 \text{ M}$

$$pH = -log[H_3O^+] = -log(.0019) = 2.7$$

- K_b is a specific equilibrium constant for bases
- Bases:

$$B(aq) + H_2O(l) \leftrightarrow HB^+(aq) + OH^-(aq)$$

base acid c. acid c. base

$$K_b = \frac{[HB^+][OH^-]}{[B]} = \frac{[OH^-][conjugate acid]}{[base]}$$

[B] = undissociated base in solution

Ionization Constants

Example:

Determine [B] in a 1.82 x 10^{-3} M solution of NH₃ NH₃(aq) + H₂O(ℓ) \leftrightarrow NH₄⁺(aq) + OH⁻(aq)

	NH_3	NH_4^+	OH-
initial	1.82x10 ⁻³	0	0
Δ	-X	Χ	X
equil	$1.82 \times 10^{-3} - x$	Χ	Х

Example:

$$NH_3(aq) + H_2O(l) \leftrightarrow NH_4^+(aq) + OH^-(aq)$$

$$K_b = 1.8x10^{-5} = \frac{[NH_4^+][OH^-]}{[NH_3]} = \frac{x^2}{1.82x10^{-3} - x}$$

$$x = 1.72 \times 10^{-4} M = [NH_4^+] = [OH^-]$$

$$[NH_3] = 1.82 \times 10^{-3} M - 1.72 \times 10^{-4} M$$

= 1.65 x 10⁻³ M

Polyprotic Acids

- Some acids contain more than one hydrogen atom that may be donated to form H⁺ ion
- These are called *polyprotic acids*
- Examples include:

H₂SO₄ sulfuric acid (2 H⁺ ions)

H₃PO₄ phosphoric acid (3 H⁺ ions)

H₂CO₃ carbonic acid (2 H⁺ ions)

Polyprotic Acids

- Each H atom has a unique K_a associated with its release to form H⁺ ion
- Consider phosphoric acid:

$$\begin{split} &H_{3}PO_{4}(aq) + H_{2}O(\ell) \Leftrightarrow H_{2}PO_{4}^{-}(aq) + H_{3}O^{+}(aq) & 1^{st} \\ &K_{a1} = 7.5 \times 10^{-3} \\ &H_{2}PO_{4}^{-}(aq) + H_{2}O(\ell) \Leftrightarrow HPO_{4}^{2-}(aq) + H_{3}O^{+}(aq) & 2^{nd} \\ &K_{a2} = 6.2 \times 10^{-8} \\ &HPO_{4}^{2-}(aq) + H_{2}O(\ell) \Leftrightarrow PO_{4}^{3-}(aq) + H_{3}O^{+}(aq)3^{rd} \\ &K_{a3} = 3.6 \times 10^{-13} \end{split}$$

The first H atom is easiest to pull off, so it has the higher K_a value

Strengths of Acids

- Acid strength is determined by a combination of factors:
 - Bond polarity—the H-A bond must be polar in order for the H atom to be transferred to water as H+

The H atom in CH₄ is non-acidic because the C-H bond is not polar

The H-Cl bond in HCl is polar, and HCl is a strong acid

Strengths of Acids

- Acid strength is determined by a combination of factors:
 - Bond strength—the stronger the bond, the weaker the acid—it is harder to pull away the H atom to form H⁺

Acid	Bond Energy	K_{a}
HF	617 kJ/mol	7.2 x 10 ⁻⁴
HCI	427 kJ/mol	~106
HBr	362 kJ/mol	~108
HI	295 kJ/mol	~10 ⁹

Strengths of Acids

- Oxoacids are those with a H-O-Z linkage
 - Electronegativity of Z—the higher the electronegativity of Z, the stronger the acid

Acid	χ_{z}	K_a
HOCI	3.0	3.5 x 10 ⁻⁸
HOBr	2.8	2.5 x 10 ⁻⁹
HOI	2.5	2.3 x 10 ⁻¹¹

Strengths of Acids

- Oxoacids are those with a H-O-Z linkage
 - The more O atoms attached to Z, the stronger the acid

Acid	O atoms	K_a
HOCI	1	3.5 x 10 ⁻⁸
HOCIO	2	1.1 x 10 ⁻²
HOCIO ₂	3	~10³
HOCIO ₃	4	~108

Relationship Between K_a and K_b

■ The K_a of an acid and the K_b of its conjugate base are related:

$$\begin{aligned} \text{HA}(\text{aq}) + \text{H}_2\text{O}(\ell) &\iff \text{A}^\text{-}(\text{aq}) + \text{H}_3\text{O}^\text{+}(\text{aq}) \\ \text{acid} & \text{c. base} \end{aligned}$$

$$K_a = \frac{[\text{A}^\text{-}][\text{H}_3\text{O}^\text{+}]}{[\text{HA}]}$$

$$\text{A}^\text{-}(\text{aq}) + \text{H}_2\text{O}(\ell) &\iff \text{HA}(\text{aq}) + \text{OH}^\text{-}(\text{aq}) \\ \text{base} & \text{c. acid} \end{aligned}$$

$$K_b = \frac{[\text{HA}][\text{OH}^\text{-}]}{[\text{A}^\text{-}]}$$

Relationship Between K_a and K_b

- The K_a of an acid and the K_b of its conjugate base are related:
 - The product $K_a \times K_b = K_w$

$$K_a \times K_b = \frac{[A][H_3O^+]}{[HA]} \times \frac{[HA][OH^-]}{[A^-]}$$

= $[H_3O^+][OH^-] = K_w$

This is true of any conjugate pair of acid and base

Salts of Acids and Bases

When an acid and a base undergo an exchange reaction, the result is a salt and water:

$$HX(aq) + MOH(aq) \leftrightarrow MX(aq) + H_2O$$

acid base salt

If a strong base is neutralized with a strong acid, the resulting solution contains only the salt

$$HCI(aq) + NaOH(aq) \leftrightarrow NaCI(aq) + H_2O(aq)$$

Determine the pH of 0.284 M solution of sodium acetate, NaCH₃COO

$$NaCH_3COO(aq) + H_2O \Leftrightarrow$$

$$Na^+(aq) + CH_3COOH(aq) + OH^-(aq)$$

Complete ionic equation:

$$Na^{+}(aq) + CH_{3}COO^{-}(aq) + H_{2}O \Leftrightarrow$$

$$Na^{+}(aq) + CH_{3}COOH(aq) + OH^{-}(aq)$$

$$K = \frac{[CH_3COOH][OH^-]}{[CH_3COO^-]} = \frac{K_w}{K_a} = 5.56 \times 10^{-10}$$

Salts of Acids and Bases

Determine the pH of 0.284 M solution of sodium acetate, NaCH₃COO

$$5.56 \times 10^{-10} = \frac{x^2}{0.284 - x}$$
 assume x is negligible

$$x^2 = 1.58 \times 10^{-10} \implies x = 1.26 \times 10^{-5} \text{ M} = [\text{OH}^-]$$

$$pOH = -log(1.26x10^{-5}) = 4.90$$
 $pH = 9.1$

Weak acid and salt of a strong base:

If stoichiometric amounts are combined, the solution will be slightly basic

Determine pH of a solution with 0.020 M NaOH and 0.020 M acetic acid

 $CH_3COOH(aq) + NaOH(aq) \Leftrightarrow NaCH_3COO(aq) + H_2O$ Complete ionic equation:

$$CH_3COOH(aq) + Na^+(aq) + OH^-(aq)$$

 $\Leftrightarrow Na^+(aq) + CH_3COO^-(aq) + H_2O$

Sodium is a spectator ion and does not actively participate in the reaction

Salts of Acids and Bases

$$CH_3COOH(aq) + OH^-(aq) \leftrightarrow CH_3COO^-(aq) + H_2O$$

$$K = 1.8 \times 10^9 = \frac{[CH_3COO^-]}{[CH_3COOH][OH^-]} = \frac{0.020 - x}{x^2}$$
 assume x is negligible

$$x^2 = \frac{0.020}{1.8 \times 10^9} = 1.11 \times 10^{-11}$$
 $x = 3.33 \times 10^{-6}$

$$CH_3COOH(aq) + OH^-(aq) \leftrightarrow CH_3COO^-(aq) + H_2O$$

$$[OH^{-}] = [CH_{3}COOH] = 3.3 \times 10^{-6} M$$

 $pOH = -log(3.3 \times 10^{-6}) = 5.5$
 $pH = 14.0 - 5.5 = 8.5$

Salts of Acids and Bases

Salts of weak bases:

A principle ingredient of chlorine bleach is sodium hypochlorite, NaOCI

Determine the pH of a solution containing 1.00% by weight NaOCI

$$MW = 74.44 \text{ g/mol}$$

$$K_b(\text{CIO}^-) = 2.9 \times 10^{-7}$$

$$(1.00 \text{ g NaOCl})/(74.44 \text{ g/mol}) = .0134 \text{ mol NaOCl}$$

$$(99.00 \text{ g H}_2\text{O})/(.9971 \text{ g/mL}) = 99.29 \text{ mL H}_2\text{O}$$

$$[\text{CIO}^-] = (.0134 \text{ mol})/(.09929 \text{ L}) = .135 \text{ M}$$

Determine the pH of a solution containing 1.00% by weight NaOCI

$$CIO^{-}(aq) + H_2O \Leftrightarrow HOCl(aq) + OH^{-}(aq)$$

$$K_b = \frac{[HOC1][OH^-]}{[CIO^-]} = 2.9 \times 10^{-7}$$

	[CIO-]	[HOCI]	[OH ⁻]
initial	.135	0	0
Δ	-x	X	Х
equil	.135 – x	Х	Х

Salts of Acids and Bases

Determine the pH of a solution containing 1.00% by weight NaOCI

$$ClO^{-}(aq) + H_2O \Leftrightarrow HOCl(aq) + OH^{-}(aq)$$

$$2.9 \times 10^{-7} = \frac{x^2}{.135 - x}$$
 \Rightarrow $x = 1.98 \times 10^{-4}$ assume x is negligible

$$[OH^{-}] = 1.98 \times 10^{-4} M$$

$$pOH = -log(1.98 \times 10^{-4}) = 3.70$$

$$pH = 10.30$$

Lewis Acids and Bases

- Remember:
 - Lewis Acid = electron pair acceptor
 - Lewis Base = electron pair donor
- A Lewis acid reacts with a Lewis base to form a coordinate covalent bond

Lewis Acids and Bases

- Metal cations are potential Lewis acids
- Any empty valence orbitals can accept an electron pair from a Lewis base to form a coordinate covalent compound
- If the coordinate covalent compound is an ion, it is called a *complex ion*

$$Ag^{+}(aq) + 2 NH_{3}(aq) \leftrightarrow Ag(NH_{3})_{2}^{+}(aq)$$

Lewis Acids and Bases

One electron pair on the oxygen atom in water can act a Lewis base to hydrated metal ions

$$Fe^{3+} + 6 H_2O \Leftrightarrow Fe(H_2O)_6^{3+}(aq)$$

OH⁻ is a good Lewis base
Al(OH)₃(s) + OH⁻(aq) ↔ Al(OH)₄⁻(aq)
electron pair from OH⁻ inserts into the empty
2p orbital on aluminum to form covalent bond