
Cortex™-M3
Revision: r1p1

Technical Reference Manual
Copyright © 2005, 2006 ARM Limited. All rights reserved.
ARM DDI 0337E

Cortex-M3
Technical Reference Manual

Copyright © 2005, 2006 ARM Limited. All rights reserved.

Release Information

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited in the EU and
other countries, except as otherwise stated below in this proprietary notice. Other brands and names
mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM Limited in good faith.
However, all warranties implied or expressed, including but not limited to implied warranties of
merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to
license restrictions in accordance with the terms of the agreement entered into by ARM and the party that
ARM delivered this document to.

Product Status

The information in this document is Final (information on a developed product).

Web Address

http://www.arm.com

Change History

Date Issue Confidentiality Change

15 December 2005 A Confidential First Release

13 January 2006 B Non-Confidential Confidentiality status amended

10 May 2006 C Non-Confidential First Release for r1p0

27 September 2006 D Non-Confidential First Release for r1p1

13 June 2007 E Non-Confidential Minor update with no technical changes
ii Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Contents
Cortex-M3 Technical Reference Manual

Preface
About this manual .. xviii
Feedback ... xxiii

Chapter 1 Introduction
1.1 About the processor .. 1-2
1.2 Components, hierarchy, and implementation .. 1-4
1.3 Configurable options ... 1-12
1.4 Execution pipeline stages ... 1-13
1.5 Prefetch Unit ... 1-15
1.6 Branch target forwarding ... 1-16
1.7 Store buffers ... 1-19
1.8 Instruction set summary .. 1-20
1.9 Product revisions .. 1-31

Chapter 2 Programmer’s Model
2.1 About the programmer’s model ... 2-2
2.2 Privileged access and user access ... 2-3
2.3 Registers ... 2-4
2.4 Data types ... 2-10
2.5 Memory formats .. 2-11
2.6 Instruction set .. 2-13
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. iii

Contents
Chapter 3 System Control
3.1 Summary of processor registers ... 3-2

Chapter 4 Memory Map
4.1 About the memory map .. 4-2
4.2 Bit-banding ... 4-5
4.3 ROM memory table .. 4-7

Chapter 5 Exceptions
5.1 About the exception model ... 5-2
5.2 Exception types .. 5-4
5.3 Exception priority .. 5-6
5.4 Privilege and stacks .. 5-9
5.5 Pre-emption .. 5-11
5.6 Tail-chaining ... 5-14
5.7 Late-arriving .. 5-15
5.8 Exit .. 5-17
5.9 Resets .. 5-20
5.10 Exception control transfer ... 5-24
5.11 Setting up multiple stacks ... 5-25
5.12 Abort model .. 5-27
5.13 Activation levels .. 5-32
5.14 Flowcharts .. 5-34

Chapter 6 Clocking and Resets
6.1 Clocking .. 6-2
6.2 Resets .. 6-4
6.3 Cortex-M3 reset modes .. 6-5

Chapter 7 Power Management
7.1 About power management ... 7-2
7.2 System power management ... 7-3

Chapter 8 Nested Vectored Interrupt Controller
8.1 About the NVIC ... 8-2
8.2 NVIC programmer’s model ... 8-3
8.3 Level versus pulse interrupts .. 8-41

Chapter 9 Memory Protection Unit
9.1 About the MPU ... 9-2
9.2 MPU programmer’s model .. 9-3
9.3 MPU access permissions ... 9-13
9.4 MPU aborts ... 9-15
9.5 Updating an MPU region .. 9-16
9.6 Interrupts and updating the MPU .. 9-19
iv Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Contents
Chapter 10 Core Debug
10.1 About core debug .. 10-2
10.2 Core debug registers .. 10-3
10.3 Core debug access example .. 10-12
10.4 Using application registers in core debug ... 10-13

Chapter 11 System Debug
11.1 About system debug ... 11-2
11.2 System debug access ... 11-3
11.3 System debug programmer’s model ... 11-5
11.4 FPB ... 11-6
11.5 DWT .. 11-13
11.6 ITM .. 11-29
11.7 AHB-AP ... 11-38

Chapter 12 Debug Port
12.1 About the DP ... 12-2

Chapter 13 Trace Port Interface Unit
13.1 About the TPIU ... 13-2
13.2 TPIU registers ... 13-8
13.3 Serial wire output connection .. 13-17

Chapter 14 Bus Interface
14.1 About bus interfaces ... 14-2
14.2 AMBA 3 compliance .. 14-3
14.3 ICode bus interface ... 14-4
14.4 DCode bus interface ... 14-6
14.5 System interface ... 14-7
14.6 Unifying the code buses .. 14-9
14.7 External private peripheral interface ... 14-10
14.8 Access alignment .. 14-11
14.9 Unaligned accesses that cross regions ... 14-12
14.10 Bit-band accesses ... 14-13
14.11 Write buffer ... 14-14
14.12 Memory attributes ... 14-15
14.13 AHB timing characteristics .. 14-16

Chapter 15 Embedded Trace Macrocell
15.1 About the ETM .. 15-2
15.2 Data tracing ... 15-7
15.3 ETM resources .. 15-8
15.4 Trace output .. 15-11
15.5 ETM architecture ... 15-12
15.6 ETM programmer’s model ... 15-16
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. v

Contents
Chapter 16 Embedded Trace Macrocell Interface
16.1 About the ETM interface ... 16-2
16.2 CPU ETM interface port descriptions ... 16-3
16.3 Branch status interface ... 16-6

Chapter 17 AHB Trace Macrocell Interface
17.1 About the AHB trace macrocell interface .. 17-2
17.2 CPU AHB trace macrocell interface port descriptions 17-3

Chapter 18 Instruction Timing
18.1 About instruction timing .. 18-2
18.2 Processor instruction timings .. 18-3
18.3 Load-store timings .. 18-7

Chapter 19 AC Characteristics
19.1 Processor timing parameters .. 19-2
19.2 Processor timing parameters .. 19-3

Appendix A Signal Descriptions
A.1 Clocks ... A-2
A.2 Resets .. A-3
A.3 Miscellaneous ... A-4
A.4 Interrupt interface ... A-6
A.5 ICode interface ... A-7
A.6 DCode interface .. A-8
A.7 System bus interface .. A-9
A.8 Private Peripheral Bus interface ... A-10
A.9 ITM interface ... A-11
A.10 AHB-AP interface ... A-12
A.11 ETM interface ... A-13
A.12 AHB Trace Macrocell interface ... A-15
A.13 Test interface .. A-16

Glossary
vi Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

List of Tables
Cortex-M3 Technical Reference Manual

Change History ... ii
Table 1-1 16-bit Cortex-M3 instruction summary .. 1-20
Table 1-2 32-bit Cortex-M3 instruction summary .. 1-23
Table 2-1 Application Program Status Register bit assignments .. 2-6
Table 2-2 Interrupt Program Status Register bit assignments .. 2-7
Table 2-3 Bit functions of the EPSR .. 2-8
Table 2-4 Nonsupported Thumb instructions .. 2-13
Table 2-5 Supported Thumb-2 instructions ... 2-13
Table 3-1 NVIC registers ... 3-2
Table 3-2 Core debug registers ... 3-5
Table 3-3 Flash patch register summary ... 3-6
Table 3-4 DWT register summary ... 3-7
Table 3-5 ITM register summary ... 3-9
Table 3-6 AHB-AP register summary .. 3-10
Table 3-7 Summary of Debug interface port registers .. 3-11
Table 3-8 MPU registers ... 3-11
Table 3-9 TPIU registers ... 3-12
Table 3-10 ETM registers .. 3-13
Table 4-1 Memory interfaces ... 4-3
Table 4-2 Memory region permissions .. 4-4
Table 4-3 ROM table .. 4-7
Table 5-1 Exception types ... 5-4
Table 5-2 Priority-based actions of exceptions ... 5-6
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. vii

List of Tables
Table 5-3 Priority grouping .. 5-8
Table 5-4 Exception entry steps ... 5-12
Table 5-5 Exception exit steps .. 5-17
Table 5-6 Exception return behavior ... 5-19
Table 5-7 Reset actions .. 5-20
Table 5-8 Reset boot-up behavior .. 5-21
Table 5-9 Transferring to exception processing .. 5-24
Table 5-10 Faults .. 5-28
Table 5-11 Debug faults .. 5-30
Table 5-12 Fault status and fault address registers .. 5-31
Table 5-13 Privilege and stack of different activation levels ... 5-32
Table 5-14 Exception transitions ... 5-32
Table 5-15 Exception subtype transitions ... 5-33
Table 6-1 Cortex-M3 processor clocks ... 6-2
Table 6-2 Cortex-M3 macrocell clocks .. 6-2
Table 6-3 Reset inputs .. 6-4
Table 6-4 Reset modes ... 6-5
Table 7-1 Supported sleep modes ... 7-3
Table 8-1 NVIC registers .. 8-3
Table 8-2 Interrupt Controller Type Register bit assignments .. 8-8
Table 8-3 SysTick Control and Status Register bit assignments ... 8-9
Table 8-4 SysTick Reload Value Register bit assignments .. 8-10
Table 8-5 SysTick Current Value Register bit assignments .. 8-11
Table 8-6 SysTick Calibration Value Register bit assignments .. 8-11
Table 8-7 Interrupt Set-Enable Register bit assignments ... 8-13
Table 8-8 Interrupt Clear-Enable Register bit assignments .. 8-13
Table 8-9 Interrupt Set-Pending Register bit assignments ... 8-14
Table 8-10 Interrupt Clear-Pending Registers bit assignments .. 8-15
Table 8-11 Active Bit Register bit assignments .. 8-15
Table 8-12 Interrupt Priority Registers 0-31 bit assignments .. 8-17
Table 8-13 CPUID Base Register bit assignments ... 8-17
Table 8-14 Interrupt Control State Register bit assignments .. 8-19
Table 8-15 Vector Table Offset Register bit assignments .. 8-21
Table 8-16 Application Interrupt and Reset Control Register bit assignments 8-22
Table 8-17 System Control Register bit assignments ... 8-24
Table 8-18 Configuration Control Register bit assignments ... 8-26
Table 8-19 System Handler Priority Registers bit assignments .. 8-28
Table 8-20 System Handler Control and State Register bit assignments 8-29
Table 8-21 Memory Manage Fault Status Register bit assignments .. 8-32
Table 8-22 Bus Fault Status Register bit assignments ... 8-33
Table 8-23 Usage Fault Status Register bit assignments ... 8-35
Table 8-24 Hard Fault Status Register bit assignments ... 8-36
Table 8-25 Debug Fault Status Register bit assignments ... 8-38
Table 8-26 Memory Manage Fault Address Register bit assignments 8-39
Table 8-27 Bus Fault Address Register bit assignments .. 8-39
Table 8-28 Auxiliary Fault Status Register bit assignments .. 8-40
Table 8-29 Software Trigger Interrupt Register bit assignments .. 8-40
viii Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

List of Tables
Table 9-1 MPU registers ... 9-3
Table 9-2 MPU Type Register bit assignments ... 9-4
Table 9-3 MPU Control Register bit assignments ... 9-6
Table 9-4 MPU Region Number Register bit assignments .. 9-7
Table 9-5 MPU Region Base Address Register bit assignments .. 9-8
Table 9-6 MPU Region Attribute and Size Register bit assignments .. 9-9
Table 9-7 MPU protection region size field ... 9-10
Table 9-8 TEX, C, B encoding ... 9-13
Table 9-9 Cache policy for memory attribute encoding ... 9-14
Table 9-10 AP encoding .. 9-14
Table 9-11 XN encoding .. 9-14
Table 10-1 Core debug registers ... 10-2
Table 10-2 Debug Halting Control and Status Register .. 10-4
Table 10-3 Debug Core Register Selector Register .. 10-6
Table 10-4 Debug Exception and Monitor Control Register .. 10-9
Table 10-5 Application registers for use in core debug ... 10-13
Table 11-1 FPB register summary .. 11-7
Table 11-2 Flash Patch Control Register bit assignments .. 11-8
Table 11-3 COMP mapping ... 11-10
Table 11-4 Flash Patch Remap Register bit assignments .. 11-11
Table 11-5 Flash Patch Comparator Registers bit assignments ... 11-12
Table 11-6 DWT register summary ... 11-13
Table 11-7 DWT Control Register bit assignments ... 11-16
Table 11-8 DWT Current PC Sampler Cycle Count Register bit assignments 11-19
Table 11-9 DWT CPI Count Register bit assignments .. 11-20
Table 11-10 DWT Exception Overhead Count Register bit assignments 11-20
Table 11-11 DWT Sleep Count Register bit assignments ... 11-21
Table 11-12 DWT LSU Count Register bit assignments ... 11-22
Table 11-13 DWT Fold Count Register bit assignments ... 11-23
Table 11-14 DWT Program Counter Sample Register bit assignments 11-23
Table 11-15 DWT Comparator Registers 0-3 bit assignments .. 11-24
Table 11-16 DWT Mask Registers 0-3 bit assignments .. 11-24
Table 11-17 Bit functions of DWT Function Registers 0-3 .. 11-25
Table 11-18 Settings for DWT Function Registers .. 11-27
Table 11-19 ITM register summary ... 11-29
Table 11-20 ITM Trace Enable Register bit assignments ... 11-31
Table 11-21 ITM Trace Privilege Register bit assignments .. 11-32
Table 11-22 ITM Trace Control Register bit assignments ... 11-33
Table 11-23 ITM Integration Write Register bit assignments .. 11-35
Table 11-24 ITM Integration Read Register bit assignments ... 11-35
Table 11-25 ITM Integration Mode Control Register bit assignments 11-36
Table 11-26 ITM Lock Access Register bit assignments .. 11-36
Table 11-27 ITM Lock Status Register bit assignments .. 11-37
Table 11-28 AHB-AP register summary .. 11-38
Table 11-29 AHB-AP Control and Status Word Register bit assignments 11-39
Table 11-30 AHB-AP Transfer Address Register bit assignments .. 11-41
Table 11-31 AHB-AP Data Read/Write Register bit assignments ... 11-41
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. ix

List of Tables
Table 11-32 AHB-AP Banked Data Register bit assignments .. 11-42
Table 11-33 AHB-AP Debug ROM Address Register bit assignments 11-42
Table 11-34 AHB-AP ID Register bit assignments ... 11-43
Table 13-1 Trace out port signals ... 13-5
Table 13-2 ATB port signals ... 13-6
Table 13-3 Miscellaneous configuration inputs ... 13-6
Table 13-4 TPIU registers ... 13-8
Table 13-5 Async Clock Prescaler Register bit assignments ... 13-10
Table 13-6 Selected Pin Protocol Register bit assignments ... 13-11
Table 13-7 Formatter and Flush Status Register bit assignments .. 13-12
Table 13-8 Formatter and Flush Control Register bit assignments .. 13-13
Table 13-9 Integration Test Register-ITATBCTR2 bit assignments .. 13-15
Table 13-10 Integration Test Register-ITATBCTR0 bit assignments .. 13-16
Table 14-1 Instruction fetches ... 14-4
Table 14-2 Bus mapper unaligned accesses .. 14-11
Table 14-3 Memory attributes ... 14-15
Table 14-4 Interface timing characteristics ... 14-16
Table 15-1 ETM core interface inputs and outputs ... 15-4
Table 15-2 Miscellaneous configuration inputs ... 15-4
Table 15-3 Trace port signals ... 15-5
Table 15-4 Other signals ... 15-5
Table 15-5 Clocks and resets ... 15-6
Table 15-6 APB interface signals .. 15-6
Table 15-7 Cortex-M3 resources .. 15-8
Table 15-8 Exception tracing mapping ... 15-13
Table 15-9 ETM registers ... 15-16
Table 16-1 ETM interface ports .. 16-3
Table 16-2 Branch status signal function .. 16-6
Table 16-3 Example of an opcode sequence ... 16-10
Table 17-1 AHB interface ports ... 17-3
Table 18-1 Instruction timings ... 18-3
Table 19-1 Miscellaneous input ports timing parameters ... 19-3
Table 19-2 Interrupt input ports timing parameters ... 19-3
Table 19-3 AHB input ports timing parameters ... 19-4
Table 19-4 PPB input port timing parameters ... 19-4
Table 19-5 Debug input ports timing parameters .. 19-5
Table 19-6 Test input ports timing parameters ... 19-5
Table 19-7 ETM input port timing parameters .. 19-6
Table 19-8 Miscellaneous output ports timing parameters ... 19-6
Table 19-9 AHB output ports timing parameters ... 19-6
Table 19-10 PPB output ports timing parameters ... 19-8
Table 19-11 Debug interface output ports timing parameters ... 19-8
Table 19-12 ETM interface output ports timing parameters .. 19-9
Table 19-13 HTM interface output ports timing parameters ... 19-9
Table 19-14 Test output ports timing parameters ... 19-10
Table A-1 Clock signals ... A-2
Table A-2 Reset signals .. A-3
x Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

List of Tables
Table A-3 Miscellaneous signals ... A-4
Table A-4 Interrupt interface .. A-6
Table A-5 ICode interface .. A-7
Table A-6 DCode interface .. A-8
Table A-7 System bus interface ... A-9
Table A-8 Private Peripheral Bus interface .. A-10
Table A-9 ITM interface ... A-11
Table A-10 AHB-AP interface .. A-12
Table A-11 ETM interface .. A-13
Table A-12 HTM interface .. A-15
Table A-13 Test interface .. A-16
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. xi

List of Tables
xii Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

List of Figures
Cortex-M3 Technical Reference Manual

Key to timing diagram conventions .. xxi
Figure 1-1 Cortex-M3 block diagram .. 1-5
Figure 1-2 Cortex-M3 pipeline stages ... 1-13
Figure 2-1 Processor register set ... 2-4
Figure 2-2 Application Program Status Register bit assignments .. 2-6
Figure 2-3 Interrupt Program Status Register bit assignments .. 2-6
Figure 2-4 Execution Program Status Register .. 2-8
Figure 2-5 Little-endian and big-endian memory formats ... 2-12
Figure 4-1 Processor memory map .. 4-2
Figure 4-2 Bit-band mapping .. 4-6
Figure 5-1 Stack contents after a pre-emption ... 5-11
Figure 5-2 Exception entry timing ... 5-13
Figure 5-3 Tail-chaining timing ... 5-14
Figure 5-4 Late-arriving exception timing ... 5-15
Figure 5-5 Exception exit timing ... 5-18
Figure 5-6 Interrupt handling flowchart ... 5-34
Figure 5-7 Pre-emption flowchart ... 5-35
Figure 5-8 Return from interrupt flowchart .. 5-36
Figure 6-1 Reset signals ... 6-6
Figure 6-2 Power-on reset .. 6-6
Figure 6-3 Internal reset synchronization ... 6-7
Figure 7-1 SLEEPING power control example ... 7-4
Figure 7-2 SLEEPDEEP power control example .. 7-5
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. xiii

List of Figures
Figure 8-1 Interrupt Controller Type Register bit assignments .. 8-7
Figure 8-2 SysTick Control and Status Register bit assignments .. 8-8
Figure 8-3 SysTick Reload Value Register bit assignments .. 8-10
Figure 8-4 SysTick Current Value Register bit assignments .. 8-10
Figure 8-5 SysTick Calibration Value Register bit assignments .. 8-11
Figure 8-6 Interrupt Priority Registers 0-31 bit assignments .. 8-16
Figure 8-7 CPUID Base Register bit assignments ... 8-17
Figure 8-8 Interrupt Control State Register bit assignments .. 8-19
Figure 8-9 Vector Table Offset Register bit assignments .. 8-21
Figure 8-10 Application Interrupt and Reset Control Register bit assignments 8-22
Figure 8-11 System Control Register bit assignments ... 8-24
Figure 8-12 Configuration Control Register bit assignments ... 8-26
Figure 8-13 System Handler Priority Registers bit assignments .. 8-28
Figure 8-14 System Handler Control and State Register bit assignments 8-29
Figure 8-15 Configurable Fault Status Registers bit assignments ... 8-31
Figure 8-16 Memory Manage Fault Register bit assignments ... 8-32
Figure 8-17 Bus Fault Status Register bit assignments ... 8-33
Figure 8-18 Usage Fault Status Register bit assignments ... 8-35
Figure 8-19 Hard Fault Status Register bit assignments ... 8-36
Figure 8-20 Debug Fault Status Register bit assignments ... 8-37
Figure 8-21 Software Trigger Interrupt Register bit assignments .. 8-40
Figure 9-1 MPU Type Register bit assignments .. 9-4
Figure 9-2 MPU Control Register bit assignments ... 9-5
Figure 9-3 MPU Region Number Register bit assignments ... 9-7
Figure 9-4 MPU Region Base Address Register bit assignments .. 9-8
Figure 9-5 MPU Region Attribute and Size Register bit assignments .. 9-9
Figure 10-1 Debug Halting Control and Status Register format ... 10-4
Figure 10-2 Debug Core Register Selector Register format .. 10-6
Figure 10-3 Debug Exception and Monitor Control Register format .. 10-8
Figure 11-1 System debug access block diagram ... 11-4
Figure 11-2 Flash Patch Control Register bit assignments .. 11-8
Figure 11-3 Flash Patch Remap Register bit assignments .. 11-10
Figure 11-4 Flash Patch Comparator Registers bit assignments ... 11-11
Figure 11-5 DWT Control Register bit assignments ... 11-15
Figure 11-6 DWT CPI Count Register bit assignments .. 11-19
Figure 11-7 DWT Exception Overhead Count Register bit assignments 11-20
Figure 11-8 DWT Sleep Count Register bit assignments .. 11-21
Figure 11-9 DWT LSU Count Register bit assignments ... 11-22
Figure 11-10 DWT Fold Count Register bit assignments ... 11-22
Figure 11-11 DWT Mask Registers 0-3 bit assignments .. 11-24
Figure 11-12 DWT Function Registers 0-3 bit assignments .. 11-25
Figure 11-13 ITM Trace Privilege Register bit assignments .. 11-32
Figure 11-14 ITM Trace Control Register bit assignments .. 11-33
Figure 11-15 ITM Integration Write Register bit assignments .. 11-34
Figure 11-16 ITM Integration Read Register bit assignments .. 11-35
Figure 11-17 ITM Integration Mode Control bit assignments ... 11-36
Figure 11-18 ITM Lock Status Register bit assignments ... 11-37
xiv Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

List of Figures
Figure 11-19 AHB-AP Control and Status Word Register .. 11-39
Figure 11-20 AHB-AP ID Register .. 11-43
Figure 13-1 Block diagram of the TPIU (non-ETM version) .. 13-3
Figure 13-2 Block diagram of the TPIU (ETM version) ... 13-4
Figure 13-3 Supported Sync Port Size Register bit assignments ... 13-9
Figure 13-4 Async Clock Prescaler Register bit assignments .. 13-10
Figure 13-5 Selected Pin Protocol Register bit assignments ... 13-10
Figure 13-6 Formatter and Flush Status Register bit assignments .. 13-12
Figure 13-7 Formatter and Flush Control Register bit assignments .. 13-13
Figure 13-8 Integration Test Register-ITATBCTR2 bit assignments .. 13-15
Figure 13-9 Integration Test Register-ITATBCTR0 bit assignments .. 13-16
Figure 13-10 Dedicated pin used for TRACESWO ... 13-17
Figure 13-11 SWO shared with TRACEPORT ... 13-18
Figure 13-12 SWO shared with JTAG-TDO ... 13-18
Figure 14-1 ICode/DCode multiplexer .. 14-9
Figure 15-1 ETM block diagram ... 15-3
Figure 15-2 Return from exception packet encoding .. 15-12
Figure 15-3 Exception encoding for branch packet .. 15-14
Figure 16-1 Conditional branch backwards not taken .. 16-7
Figure 16-2 Conditional branch backwards taken .. 16-7
Figure 16-3 Conditional branch forwards not taken .. 16-8
Figure 16-4 Conditional branch forwards taken .. 16-8
Figure 16-5 Unconditional branch without pipeline stalls ... 16-8
Figure 16-6 Unconditional branch with pipeline stalls .. 16-9
Figure 16-7 Unconditional branch in execute aligned .. 16-9
Figure 16-8 Unconditional branch in execute unaligned .. 16-9
Figure 16-9 Example of an opcode sequence .. 16-11
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. xv

List of Figures
xvi Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Preface

This preface introduces the Cortex-M3 Technical Reference Manual (TRM). It contains
the following sections:

• About this manual on page xviii

• Feedback on page xxiii.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. xvii

Preface
About this manual

This is the TRM for the Cortex-M3 processor.

Product revision status

The rnpn identifier indicates the revision status of the product described in this manual,
where:

rn Identifies the major revision of the product.

pn Identifies the minor revision or modification status of the product.

Intended audience

This manual is written to help system designers, system integrators, and verification
engineers who are implementing a System-on-Chip (SoC) device based on the
Cortex-M3 processor.

Using this manual

This manual is organized into the following chapters:

Chapter 1 Introduction

Read this chapter to learn about the components of the processor, and
about the processor instruction set.

Chapter 2 Programmer’s Model

Read this chapter to learn about the processor register set, modes of
operation, and other information for programming the processor.

Chapter 3 System Control

Read this chapter to learn about the registers and programmer’s model for
system control.

Chapter 4 Memory Map

Read this chapter to learn about the processor memory map and
bit-banding feature.

Chapter 5 Exceptions

Read this chapter to learn about the processor exception model.

Chapter 6 Clocking and Resets

Read this chapter to learn about the processor clocking and resets.
xviii Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Preface
Chapter 7 Power Management

Read this chapter to learn about the processor power management and
power saving.

Chapter 8 Nested Vectored Interrupt Controller

Read this chapter to learn about the processor interrupt processing and
control.

Chapter 9 Memory Protection Unit

Read this chapter to learn about the processor Memory Protection Unit
(MPU).

Chapter 10 Core Debug

Read this chapter to learn about debugging and testing the processor core.

Chapter 11 System Debug

Read this chapter to learn about the processor system debug components.

Chapter 12 Debug Port

Read this chapter to learn about the processor debug port, and the Serial
Wire JTAG Debug Port (SWJ-DP) and Serial Wire Debug Port (SW-DP).

Chapter 13 Trace Port Interface Unit

Read this chapter to learn about the processor Trace Port Interface Unit
(TPIU).

Chapter 14 Bus Interface

Read this chapter to learn about the processor bus interfaces.

Chapter 15 Embedded Trace Macrocell

Read this chapter to learn about the processor Embedded Trace Macrocell
(ETM).

Chapter 16 Embedded Trace Macrocell Interface

Read this chapter to learn about the processor ETM interface.

Chapter 17 AHB Trace Macrocell Interface

Read this chapter to learn about the processor Advanced
High-performance Bus (AHB) trace macrocell interface.

Chapter 18 Instruction Timing

Read this chapter to learn about the processor instruction timing and
clock cycles.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. xix

Preface
Chapter 19 AC Characteristics

Read this chapter to learn about the processor ac characteristics.

Appendix A Signal Descriptions

Read this appendix for a summary of processor signals.

Conventions

Conventions that this manual can use are described in:

• Typographical

• Timing diagrams on page xxi

• Signals on page xxi

• Numbering on page xxii.

Typographical

The typographical conventions are:

italic Highlights important notes, introduces special terminology,
denotes internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes
signal names. Also used for terms in descriptive lists, where
appropriate.

monospace Denotes text that you can enter at the keyboard, such as
commands, file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You
can enter the underlined text instead of the full command or option
name.

monospace italic Denotes arguments to monospace text where the argument is to be
replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

< and > Angle brackets enclose replaceable terms for assembler syntax
where they appear in code or code fragments. They appear in
normal font in running text. For example:

• MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

• The Opcode_2 value selects which register is accessed.
xx Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Preface
Timing diagrams

The figure named Key to timing diagram conventions explains the components used in
timing diagrams. Variations, when they occur, have clear labels. You must not assume
any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value
within the shaded area at that time. The actual level is unimportant and does not affect
normal operation.

Key to timing diagram conventions

Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is
active-HIGH or active-LOW. Asserted means HIGH for
active-HIGH signals and LOW for active-LOW signals.

Lower-case n Denotes an active-LOW signal.

Prefix H Denotes Advanced High-performance Bus (AHB) signals.

Prefix P Denotes Advanced Peripheral Bus (APB) signals.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. xxi

Preface
Numbering

The numbering convention is:

<size in bits>'<base><number>

This is a Verilog method of abbreviating constant numbers. For example:

• 'h7B4 is an unsized hexadecimal value.

• 'o7654 is an unsized octal value.

• 8'd9 is an eight-bit wide decimal value of 9.

• 8'h3F is an eight-bit wide hexadecimal value of 0x3F. This is
equivalent to b00111111.

• 8'b1111 is an eight-bit wide binary value of b00001111.

Further reading

This section lists publications by ARM Limited and by third parties.

ARM Limited periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets, addenda, and the ARM Limited
Frequently Asked Questions list.

ARM publications

This manual contains information that is specific to the Cortex-M3 processor. See the
following documents for other relevant information:

• ARM Architecture Reference Manual (ARM DDI 0100)

• ARM Architecture Reference Manual, Thumb-2® Supplement (ARM DDI 0308)

• ARMv7-M Architecture Reference Manual (ARM DDI 0403)

• ARM AMBA® 3 AHB-Lite Protocol (v1.0) (ARM IHI 0033)

• ARM CoreSight™ Components Technical Reference Manual (ARM DDI 0314)

• ARM Debug Interface v5, Architecture Specification (ARM IHI 0031)

• ARM Embedded Trace Macrocell Architecture Specification (ARM IHI 0014).

Other publications

This section lists relevant documents published by third parties:

• IEEE Standard, Test Access Port and Boundary-Scan Architecture specification
1149.1-1990 (JTAG).
xxii Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Preface
Feedback

ARM Limited welcomes feedback both on the Cortex-M3 processor, and on the
documentation.

Feedback on the Cortex-M3 processor

If you have any comments or suggestions about this product, contact your supplier
giving:

• the product name

• a concise explanation of your comments.

Feedback on this manual

If you have any comments on this manual, send email to errata@arm.com giving:

• the title

• the number

• the page number(s) to which your comments refer

• a concise explanation of your comments.

ARM Limited also welcomes general suggestions for additions and improvements.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. xxiii

Preface
xxiv Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Chapter 1
Introduction

This chapter introduces the processor and instruction set. It contains the following
sections:

• About the processor on page 1-2

• Components, hierarchy, and implementation on page 1-4

• Configurable options on page 1-12

• Execution pipeline stages on page 1-13

• Prefetch Unit on page 1-15

• Branch target forwarding on page 1-16

• Store buffers on page 1-19

• Instruction set summary on page 1-20

• Product revisions on page 1-31.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 1-1

Introduction
1.1 About the processor

The processor is a low-power processor that features low gate count, low interrupt
latency, and low-cost debug. It is intended for deeply embedded applications that
require fast interrupt response features. The processor implements the ARM
architecture v7-M.

The processor incorporates:

• Processor core. A low gate count core, with low latency interrupt processing that
features:

— ARMv7-M. A Thumb®-2 Instruction Set Architecture (ISA) subset,
consisting of all base Thumb-2 instructions, 16-bit and 32-bit, and
excluding blocks for media, Single Instruction Multiple Data (SIMD),
enhanced Digital Signal Processor (DSP) instructions (E variants), and
ARM system access.

— Banked Stack Pointer (SP) only.

— Hardware divide instructions, SDIV and UDIV (Thumb-2 instructions).

— Handler and Thread modes.

— Thumb and Debug states.

— Interruptible-continued LDM/STM, PUSH/POP for low interrupt latency.

— Automatic processor state saving and restoration for low latency Interrupt
Service Routine (ISR) entry and exit.

— ARM architecture v6 style BE8/LE support.

— ARMv6 unaligned accesses.

• Nested Vectored Interrupt Controller (NVIC) closely integrated with the
processor core to achieve low latency interrupt processing. Features include:

— External interrupts of 1 to 240 configurable size.

— Bits of priority of 3 to 8 configurable size.

— Dynamic reprioritization of interrupts.

— Priority grouping. This enables selection of pre-empting interrupt levels
and non pre-empting interrupt levels.

— Support for tail-chaining and late arrival of interrupts. This enables
back-to-back interrupt processing without the overhead of state saving and
restoration between interrupts.

— Processor state automatically saved on interrupt entry, and restored on
interrupt exit, with no instruction overhead.
1-2 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Introduction
• Memory Protection Unit (MPU). An optional MPU for memory protection:

— Eight memory regions.

— Sub Region Disable (SRD), enabling efficient use of memory regions.

— You can enable a background region that implements the default memory
map attributes.

• Bus interfaces:

— Advanced High-performance Bus-Lite (AHB-Lite) ICode, DCode and
System bus interfaces.

— Advanced Peripheral Bus (APB) and Private Peripheral Bus (PPB)
Interface.

— Bit band support that includes atomic bit band write and read operations.

— Memory access alignment.

— Write buffer for buffering of write data.

• Low-cost debug solution that features:

— Debug access to all memory and registers in the system, including
Cortex-M3 register bank when the core is running, halted, or held in reset.

— Serial Wire Debug Port (SW-DP) or Serial Wire JTAG Debug Port
(SWJ-DP) debug access, or both.

— Flash Patch and Breakpoint (FPB) unit for implementing breakpoints and
code patches.

— Data Watchpoint and Trace (DWT) unit for implementing watchpoints,
data tracing, and system profiling.

— Instrumentation Trace Macrocell (ITM) for support of printf style
debugging.

— Trace Port Interface Unit (TPIU) for bridging to a Trace Port Analyzer
(TPA).

— Optional Embedded Trace Macrocell (ETM) for instruction trace.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 1-3

Introduction
1.2 Components, hierarchy, and implementation

This section describes the components, hierarchy, and implementation of the processor.
The main blocks are:

• Processor core on page 1-7

• NVIC on page 1-8

• Bus Matrix on page 1-8

• FPB on page 1-9

• DWT on page 1-9

• ITM on page 1-10

• MPU on page 1-10

• ETM on page 1-10

• TPIU on page 1-10.

Figure 1-1 on page 1-5 shows the structure of the processor.
1-4 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Introduction
Figure 1-1 Cortex-M3 block diagram

Note
 The ETM and the MPU are optional components and might not exist in your
implementation.

1.2.1 Cortex-M3 hierarchy and implementation options

Figure 1-1 shows that the processor components exist in two levels of hierarchy. This
represents the RTL hierarchy of the design. Four components, ETM, TPIU,
SW/SWJ-DP, and ROM table, exist outside the Cortex-M3 level because these
components are either optional, or there is flexibility in their implementation and use.
Your implementation might differ from that shown in Figure 1-1. The possible
implementation options are shown in:

• TPIU on page 1-6
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 1-5

Introduction
• SW/SWJ-DP

• ROM table.

TPIU

The implementation options for the TPIU are:

• If the ETM is present in your system, both of the input ports to the TPIU are
present. Otherwise, only one port is used, saving the gate cost of one input FIFO.

• Single or multiple TPIUs can trace a multi-core implementation.

• You can replace the ARM TPIU block with a partner-specific CoreSight™
compliant TPIU.

• In a production device, the TPIU might have been removed.

Note
 There is no Cortex-M3 trace capability if the TPIU is removed.

SW/SWJ-DP

The implementation options for the SW/SWJ-DP are:

• Your implementation might contain either SW-DP or SWJ-DP.

• You can replace the ARM SW-DP with a partner-specific CoreSight compliant
SW-DP.

• You can replace the ARM SWJ-DP with a partner-specific CoreSight compliant
SWJ-DP.

• You can include a partner-specific test interface in parallel with SW-DP or
SWJ-DP.

ROM table

The ROM table is modified from that described in ROM memory table on page 4-7 if:

• Additional debug components have been added into the system.
1-6 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Introduction
1.2.2 Processor core

The processor core implements the ARMv7-M architecture. It has the following main
features:

• Thumb-2 (ISA) subset consisting of all base Thumb-2 instructions, 16-bit and
32-bit.

• Harvard processor architecture enabling simultaneous instruction fetch with data
load/store.

• Three-stage pipeline.

• Single cycle 32-bit multiply.

• Hardware divide.

• Thumb and Debug states.

• Handler and Thread modes.

• Low latency ISR entry and exit.

— Processor state saving and restoration, with no instruction fetch overhead.
Exception vector is fetched from memory in parallel with the state saving,
enabling faster ISR entry.

— Support for late arriving interrupts.

— Tightly coupled interface to interrupt controller enabling efficient
processing of late-arriving interrupts.

— Tail-chaining of interrupts, enabling back-to-back interrupt processing
without the overhead of state saving and restoration between interrupts.

• Interruptible-continued LDM/STM, PUSH/POP.

• ARMv6 style BE8/LE support.

• ARMv6 unaligned.

Registers

The processor contains:

• 13 general purpose 32-bit registers

• Link Register (LR)

• Program Counter (PC)

• Program Status Register, xPSR

• two banked SP registers.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 1-7

Introduction
Memory interface

The processor has a Harvard interface to enable simultaneous instruction fetches with
data load/stores. Memory accesses are controlled by:

• A separate Load Store Unit (LSU) that decouples load and store operations from
the Arithmetic and Logic Unit (ALU).

• A 3-word entry Prefetch Unit (PFU). One word is fetched at a time. This can be
two Thumb instructions, one word-aligned Thumb-2 instruction, or the
upper/lower halfword of a halfword-aligned Thumb-2 instruction with one
Thumb instruction, or the lower/upper halfword of another halfword-aligned
Thumb-2 instruction. All fetch addresses from the core are word aligned. If a
Thumb-2 instruction is halfword aligned, two fetches are necessary to fetch the
Thumb-2 instruction. However, the 3-entry prefetch buffer ensures that a stall
cycle is only necessary for the first halfword Thumb-2 instruction fetched.

1.2.3 NVIC

The NVIC is tightly coupled to the processor core. This facilitates low latency exception
processing. The main features include:

• a configurable number of external interrupts, from 1 to 240

• a configurable number of bits of priority, from three to eight bits

• level and pulse interrupt support

• dynamic reprioritization of interrupts

• priority grouping

• support for tail-chaining of interrupts

• processor state automatically saved on interrupt entry, and restored on interrupt
exit, with no instruction overhead.

Chapter 8 Nested Vectored Interrupt Controller describes the NVIC in detail.

1.2.4 Bus Matrix

The bus matrix connects the processor and debug interface to the external buses. The
bus matrix interfaces to the following external buses:

• ICode bus. This is for instruction and vector fetches from code space. This is a
32-bit AHB-Lite bus.

• DCode bus. This is for data load/stores and debug accesses to code space. This is
a 32-bit AHB-Lite bus.
1-8 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Introduction
• System bus. This is for instruction and vector fetches, data load/stores and debug
accesses to system space. This is a 32-bit AHB-Lite bus.

• PPB. This is for data load/stores and debug accesses to PPB space. This is a 32-bit
APB (v2.0) bus.

The bus matrix also controls the following:

• Unaligned accesses. The bus matrix converts unaligned processor accesses into
aligned accesses.

• Bit-banding. The bus matrix converts bit-band alias accesses into bit-band region
accesses. It performs:

— bit field extract for bit-band loads

— atomic read-modify-write for bit-band stores.

• Write buffering. The bus matrix contains a one-entry write buffer to decouple bus
stalls from the processor core.

Chapter 14 Bus Interface describes the bus interfaces.

1.2.5 FPB

The FPB unit implements hardware breakpoints and patches accesses from code space
to system space. The FPB has eight comparators as follows:

• You can individually configure six instruction comparators to either remap
instruction fetches from code space to system space, or perform a hardware
breakpoint.

• Two literal comparators that can remap literal accesses from code space to system
space.

Chapter 11 System Debug describes the FPB.

1.2.6 DWT

The DWT unit incorporates the following debug functionality:

• Four comparators that you can configure either as a hardware watchpoint, an
ETM trigger, a PC sampler event trigger, or a data address sampler event trigger.

• Several counters or a data match event trigger for performance profiling.

• Configurable to emit PC samples at defined intervals, and to emit interrupt event
information.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 1-9

Introduction
Chapter 11 System Debug describes the DWT.

1.2.7 ITM

The ITM is a an application driven trace source that supports application event trace and
printf style debugging.

The ITM provides the following sources of trace information:

• Software trace. Software can write directly to ITM stimulus registers. This causes
packets to be emitted.

• Hardware trace. These packets are generated by the DWT, and emitted by the
ITM.

• Time stamping. Timestamps are emitted relative to packets.

Chapter 11 System Debug describes the ITM.

1.2.8 MPU

An optional MPU is available for the processor to provide memory protection. The
MPU checks access permissions and memory attributes. It contains eight regions, and
an optional background region that implements the default memory map attributes.

Chapter 9 Memory Protection Unit describes the MPU.

1.2.9 ETM

The ETM is a low-cost trace macrocell that supports instruction trace only.

Chapter 15 Embedded Trace Macrocell describes the ETM.

1.2.10 TPIU

The TPIU acts as a bridge between the Cortex-M3 trace data from the ITM, an ETM if
present, and an off-chip Trace Port Analyzer. You can configure the TPIU to support
either serial pin trace for low-cost debug, or multi-pin trace for higher bandwidth trace.
The TPIU is CoreSight compatible.

Chapter 13 Trace Port Interface Unit describes the TPIU.
1-10 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Introduction
1.2.11 SW/SWJ-DP

You can configure the processor to have SW-DP or SWJ-DP debug port interfaces. The
debug port provides debug access to all registers and memory in the system, including
the processor registers.

Chapter 12 Debug Port describes the SW/SWJ-DP.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 1-11

Introduction
1.3 Configurable options

This section shows the configuration options for the processor. Contact your
implementor to confirm the configuration of your implementation.

1.3.1 Interrupts

You can configure the number of external interrupts at implementation from 1 to 240.
You can configure the number of bits of interrupt priority at implementation from three
to eight bits.

1.3.2 MPU

You can configure the implementation to include an MPU.

Chapter 9 Memory Protection Unit describes the MPU.

1.3.3 DWT

You can configure the DWT implementation to include data matching or not.

DWT on page 11-13 describes the DWT.

1.3.4 ETM

You can configure the system at implementation to include an ETM.

Chapter 15 Embedded Trace Macrocell describes the ETM.

1.3.5 AHB Trace Macrocell interface

You can configure the Cortex-M3 system at implementation to include an AHB Trace
Macrocell (HTM) interface. If you do not enable this option at the time of
implementation, the HTM interface does not function because the required logic is not
included.
1-12 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Introduction
1.4 Execution pipeline stages

The following stages make up the pipeline:

• the Fetch stage

• the Decode stage

• the Execute stage.

Figure 1-2 shows the pipeline stages of the processor, and the pipeline operations that
take place at each stage.

Figure 1-2 Cortex-M3 pipeline stages
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 1-13

Introduction
The names of the pipeline stages and their functions are:

Fe Instruction fetch where data is returned from the instruction memory.

De Instruction decode, generation of LSU address using forwarded register
ports, and immediate offset or LR register branch forwarding.

Ex Instruction execute, single pipeline with multi-cycle stalls, LSU
address/data pipelining to AHB interface, multiply/divide, and ALU with
branch result.

The pipeline structure provides a pipelined 2-cycle memory access with no ALU usage
penalty, address generation forwarding for pointer indirection.
1-14 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Introduction
1.5 Prefetch Unit

The purpose of the Prefetch Unit (PFU) is to:

• Fetch instructions in advance and forward PC relative branch instructions.
Fetches are speculative in the case of conditional branches

• Detect Thumb-2 instructions and present these as a single instruction word.

• Perform vector loads.

The PFU fetches instructions from the memory system that can supply one word each
cycle. The PFU buffers up to three word fetches in its FIFO, which means that it can
buffer up to three Thumb-2 instructions or six Thumb instructions.

The majority of branches that are generated as the ALU addition of PC plus immediate
are generated no later than the decode phase of the branch opcode. In the case of
conditionally executed branches, the address is speculatively presented (consuming a
fetch slot on the bus), and the forwarded result determines if the branch path flushes the
fetch queue or is preserved.

Short subroutine returns are optimized to take advantage of the forwarding behavior in
the case of BX LR.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 1-15

Introduction
1.6 Branch target forwarding

The processor forwards certain branch types, by which the memory transaction of the
branch is presented at least a cycle earlier than when the opcode reaches execute.
Branch forwarding increases the performance of the core, because branches are a
significant part of embedded controller applications. Branches affected are PC relative
with immediate offset, or use LR as the target register. For conditional branches, by
opcode definition or within IT block, that are forwarded, the address must be presented
speculatively as the condition evaluation in an internal critical path.

Branch forwarding loses a fetch opportunity if speculated on a conditional opcode, but
is mitigated by a three-entry fetch queue and a mix of 16/32-bit opcodes and single
cycle ALU. The additional penalty is a cycle of pipeline stalling. The worst case is three
32-bit load/store single opcodes, the instructions word-unaligned, with no data
waitstates. The BRCHSTAT interface provides information on forwarded branches to
conditional execution, the direction if conditional, and a trailing registered evaluation
of success of the preceding conditional opcode. For more information on BRCHSTAT
see Branch status interface on page 16-6.

The performance of the core with ICODE registered with prefetch is effectively the
same as the core without the branch forwarding interface, around 10% slower. Branch
forwarding can be thought of as the internal address generation logic pre-registration to
the address interface, increasing flexibility to the memory controller if you have the
timing budget to make use of the information a cycle sooner. For example lower MHz
power sensitive targets, in 0.13u down to 65nm. Otherwise, you have the flexibility of
having access to this early address in your memory controller for lookups before
registration to the system.

Branch speculation is more costly against a wait-stated memory because of
mispredictions. To avoid this overhead, a rule in the controller that conditional branches
are not speculated but instead registered gives subroutine calls and returns the benefits
of branch forwarding without the mispredictions penalty. A refinement is to only predict
backward conditional branches to accelerate loops. Alternatively, with ARM compilers
favouring loops with unconditional branch backwards at the bottom and then
conditional branch forward tests on the loop limit, the core fetch queue being ahead at
the start of the loop yields good behavior.

The BRCHSTAT also includes other information about the next opcode to reach
execute. Unlike the forwarded branches where BRCHSTAT is incident with the
transaction, BRCHSTAT with respect to execute opcodes is a hint unrelated to any
transaction and can be asserted for multiple cycles. The controller can use this
information to suppress additional prefetching because it knows a branch is taken
shortly. This helps to avoid any trailing waitstates of the controller prefetch from
impacting the branch target when it is generated in execute.
1-16 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Introduction
The following scenarios show how you can use branch forwarding and the BRCHSTAT
control to get the best performance from your memory system. The scenarios focus on
the ideal Harvard setup, where instructions execute from ICODE, literals execute from
DCODE (unified to ICODE), and stack/heap/application data executes from SYSTEM.

• Zero waitstate

• Zero waitstate, registered fetch interface (ICODE)

• One wait state flash

• One wait state flash, registered fetch interface (ICODE)

• Two wait states flash on page 1-18.

1.6.1 Zero waitstate

Branch prediction provides approximately 10% gain over not having the feature, and
except for extreme cases, the processor has all the benefits of 100% branch prediction
but with no penalty from branch speculation.

1.6.2 Zero waitstate, registered fetch interface (ICODE)

Branch forwarding results in more aggressive timing on the ICODE interface. If this bus
is a critical path in the system, the ICODE interface might be registered. To avoid an
approximate 25% penalty of adding a wait state, you can add a circuit that acts as a
single-entry prefetcher to avoid the push-pull problems of the registered interface.

1.6.3 One wait state flash

Adding wait states to the flash impacts performance of any core. You can use a cache to
lessen this penalty, but this has a dramatic effect on determinism and silicon area. A line
prefetcher with two line entries can provide comparable performance to a cache using
many less gates. 128-bits is a common prefetch width for ARM7 targets because of the
32-bit instruction set. The processor has the benefit of Thumb-2, a mixed 16/32-bit
instruction set. This means that a 64-bit prefetch width provides comparable benefits to
a 128-bit interface.

1.6.4 One wait state flash, registered fetch interface (ICODE)

If the ICODE interface must be registered, you can reduce the cost of mispredictions to
just the slave side of the prefetch controller. The core still loses the opportunity of the
fetch queue request on the ICODE interface, as in the zero wait state case. However, the
trailing registered BRCHSTAT[3] status of the conditional execution can mask the
external mispredict on the output of the controller's registered system interface,
appearing as an idle cycle.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 1-17

Introduction
1.6.5 Two wait states flash

This is the same as one waitstate cases, but with more penalties for branches. The extent
to which the compiler tools reduce the overhead of branches, conditioning loops
towards the strengths of the hardware, the less the effects of the mismatch between core
and memory system speeds. A 128-bit interface is better at this point.
1-18 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Introduction
1.7 Store buffers

The processor contains two store buffers:

• Cortex-M3 core LSU store buffer for immediate offset opcode.

• Bus-matrix store buffer for wait states and unaligned transactions.

The core store buffer optimizes the case of STR rx,[ry,#imm] which is common in
compiled code. This means that the next opcode can overlap the store's data phase,
reducing the opcode to a single cycle from the perspective of the pipeline.

The bus-matrix interconnect within the processor manages the unaligned behavior of
the core and bit-banding. The bus-matrix store buffer is useful for resolving system
wait-states and unaligned accesses that are split over multiple transactions.

Only transactions marked as bufferable use the store buffers. Stacking operations are
inherently non-bufferable and therefore also do not use either of the buffers.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 1-19

Introduction
1.8 Instruction set summary

This section provides:

• a summary of the processor 16-bit instructions

• a summary of the processor 32-bit instructions.

Table 1-1 lists the 16-bit Cortex-M3 instructions.

Table 1-1 16-bit Cortex-M3 instruction summary

Operation Assembler

Add register value and C flag to register value ADC <Rd>, <Rm>

Add immediate 3-bit value to register ADD <Rd>, <Rn>, #<immed_3>

Add immediate 8-bit value to register ADD <Rd>, #<immed_8>

Add low register value to low register value ADD <Rd>, <Rn>, <Rm>

Add high register value to low or high register value ADD <Rd>, <Rm>

Add 4* (immediate 8-bit value) with PC to register ADD <Rd>, PC, #<immed_8> * 4

Add 4* (immediate 8-bit value) with SP to register ADD <Rd>, SP, #<immed_8> * 4

Add 4* (immediate 7-bit value) to SP ADD SP, #<immed_7> * 4

Bitwise AND register values AND <Rd>, <Rm>

Arithmetic shift right by immediate number ASR <Rd>, <Rm>, #<immed_5>

Arithmetic shift right by number in register ASR <Rd>, <Rs>

Branch conditional B<cond> <target address>

Branch unconditional B <target_address>

Bit clear BIC <Rd>, <Rm>

Software breakpoint BKPT <immed_8>

Branch with link BL <Rm>

Branch with link and exchange BLX <Rm>

Compare not zero and branch CBNZ <Rn>,<label>

Compare zero and branch CBZ <Rn>,<label>

Compare negation of register value with another register value CMN <Rn>, <Rm>
1-20 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Introduction
Compare immediate 8-bit value CMP <Rn>, #<immed_8>

Compare registers CMP <Rn>, <Rm>

Compare high register to low or high register CMP <Rn>, <Rm>

Change processor state CPS <effect>, <iflags>

Copy high or low register value to another high or low register CPY <Rd> <Rm>

Bitwise exclusive OR register values EOR <Rd>, <Rm>

Condition the following instruction, Condition the following two instructions,
Condition the following three instructions, Condition the following four
instructions

IT <cond>

IT<x> <cond>

IT<x><y> <cond>

IT<x><y><z> <cond>

Multiple sequential memory word loads LDMIA <Rn>!, <registers>

Load memory word from base register address + 5-bit immediate offset LDR <Rd>, [<Rn>, #<immed_5> * 4]

Load memory word from base register address + register offset LDR <Rd>, [<Rn>, <Rm>]

Load memory word from PC address + 8-bit immediate offset LDR <Rd>, [PC, #<immed_8> * 4]

Load memory word from SP address + 8-bit immediate offset LDR, <Rd>, [SP, #<immed_8> * 4]

Load memory byte [7:0] from register address + 5-bit immediate offset LDRB <Rd>, [<Rn>, #<immed_5>]

Load memory byte [7:0] from register address + register offset LDRB <Rd>, [<Rn>, <Rm>]

Load memory halfword [15:0] from register address + 5-bit immediate offset LDRH <Rd>, [<Rn>, #<immed_5> * 2]

Load halfword [15:0] from register address + register offset LDRH <Rd>, [<Rn>, <Rm>]

Load signed byte [7:0] from register address + register offset LDRSB <Rd>, [<Rn>, <Rm>]

Load signed halfword [15:0] from register address + register offset LDRSH <Rd>, [<Rn>, <Rm>]

Logical shift left by immediate number LSL <Rd>, <Rm>, #<immed_5>

Logical shift left by number in register LSL <Rd>, <Rs>

Logical shift right by immediate number LSR <Rd>, <Rm>, #<immed_5>

Logical shift right by number in register LSR <Rd>, <Rs>

Move immediate 8-bit value to register MOV <Rd>, #<immed_8>

Table 1-1 16-bit Cortex-M3 instruction summary (continued)

Operation Assembler
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 1-21

Introduction
Move low register value to low register MOV <Rd>, <Rn>

Move high or low register value to high or low register MOV <Rd>, <Rm>

Multiply register values MUL <Rd>, <Rm>

Move complement of register value to register MVN <Rd>, <Rm>

Negate register value and store in register NEG <Rd>, <Rm>

No operation NOP <c>

Bitwise logical OR register values ORR <Rd>, <Rm>

Pop registers from stack POP <registers>

Pop registers and PC from stack POP <registers, PC>

Push registers onto stack PUSH <registers>

Push LR and registers onto stack PUSH <registers, LR>

Reverse bytes in word and copy to register REV <Rd>, <Rn>

Reverse bytes in two halfwords and copy to register REV16 <Rd>, <Rn>

Reverse bytes in low halfword [15:0], sign-extend, and copy to register REVSH <Rd>, <Rn>

Rotate right by amount in register ROR <Rd>, <Rs>

Subtract register value and C flag from register value SBC <Rd>, <Rm>

Send event SEV <c>

Store multiple register words to sequential memory locations STMIA <Rn>!, <registers>

Store register word to register address + 5-bit immediate offset STR <Rd>, [<Rn>, #<immed_5> * 4]

Store register word to register address STR <Rd>, [<Rn>, <Rm>]

Store register word to SP address + 8-bit immediate offset STR <Rd>, [SP, #<immed_8> * 4]

Store register byte [7:0] to register address + 5-bit immediate offset STRB <Rd>, [<Rn>, #<immed_5>]

Store register byte [7:0] to register address STRB <Rd>, [<Rn>, <Rm>]

Store register halfword [15:0] to register address + 5-bit immediate offset STRH <Rd>, [<Rn>, #<immed_5> * 2]

Store register halfword [15:0] to register address + register offset STRH <Rd>, [<Rn>, <Rm>]

Table 1-1 16-bit Cortex-M3 instruction summary (continued)

Operation Assembler
1-22 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Introduction
Table 1-2 lists the 32-bit Cortex-M3 instructions.

Subtract immediate 3-bit value from register SUB <Rd>, <Rn>, #<immed_3>

Subtract immediate 8-bit value from register value SUB <Rd>, #<immed_8>

Subtract register values SUB <Rd>, <Rn>, <Rm>

Subtract 4 (immediate 7-bit value) from SP SUB SP, #<immed_7> * 4

Operating system service call with 8-bit immediate call code SVC <immed_8>

Extract byte [7:0] from register, move to register, and sign-extend to 32 bits SXTB <Rd>, <Rm>

Extract halfword [15:0] from register, move to register, and sign-extend to 32 bits SXTH <Rd>, <Rm>

Test register value for set bits by ANDing it with another register value TST <Rn>, <Rm>

Extract byte [7:0] from register, move to register, and zero-extend to 32 bits UXTB <Rd>, <Rm>

Extract halfword [15:0] from register, move to register, and zero-extend to 32 bits UXTH <Rd>, <Rm>

Wait for event WFE <c>

Wait for interrupt WFI <c>

Table 1-1 16-bit Cortex-M3 instruction summary (continued)

Operation Assembler

Table 1-2 32-bit Cortex-M3 instruction summary

Operation Assembler

Add register value, immediate 12-bit value, and C bit ADC{S}.W <Rd>, <Rn>, #<modify_constant(immed_12>

Add register value, shifted register value, and C bit ADC{S}.W <Rd>, <Rn>, <Rm>{, <shift>}

Add register value and immediate 12-bit value ADD{S}.W <Rd>, <Rn>, #<modify_constant(immed_12)>

Add register value and shifted register value ADD{S}.W <Rd>, <Rm>{, <shift>}

Add register value and immediate 12-bit value ADDW.W <Rd>, <Rn>, #<immed_12>

Bitwise AND register value with immediate 12-bit value AND{S}.W <Rd>, <Rn>, #<modify_constant(immed_12>

Bitwise AND register value with shifted register value AND{S}.W <Rd>, <Rn>, Rm>{, <shift>}

Arithmetic shift right by number in register ASR{S}.W <Rd>, <Rn>, <Rm>

Conditional branch B{cond}.W <label>
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 1-23

Introduction
Clear bit field BFC.W <Rd>, #<lsb>, #<width>

Insert bit field from one register value into another BFI.W <Rd>, <Rn>, #<lsb>, #<width>

Bitwise AND register value with complement of immediate
12-bit value

BIC{S}.W <Rd>, <Rn>, #<modify_constant(immed_12)>

Bitwise AND register value with complement of shifted
register value

BIC{S}.W <Rd>, <Rn>, <Rm>{, <shift>}

Branch with link BL <label>

Branch with link (immediate) BL<c> <label>

Unconditional branch B.W <label>

Clear exclusive clears the local record of the executing
processor that an address has had a request for an exclusive
access.

CLREX <c>

Return number of leading zeros in register value CLZ.W <Rd>, <Rn>

Compare register value with two’s complement of immediate
12-bit value

CMN.W <Rn>, #<modify_constant(immed_12)>

Compare register value with two’s complement of shifted
register value

CMN.W <Rn>, <Rm>{, <shift>}

Compare register value with immediate 12-bit value CMP.W <Rn>, #<modify_constant(immed_12)>

Compare register value with shifted register value CMP.W <Rn>, <Rm>{, <shift>}

Data memory barrier DMB <c>

Data synchronization barrier DSB <c>

Exclusive OR register value with immediate 12-bit value EOR{S}.W <Rd>, <Rn>, #<modify_constant(immed_12)>

Exclusive OR register value with shifted register value EOR{S}.W <Rd>, <Rn>, <Rm>{, <shift>}

Instruction synchronization barrier ISB <c>

Load multiple memory registers, increment after or decrement
before

LDM{IA|DB}.W <Rn>{!}, <registers>

Memory word from base register address + immediate 12-bit
offset

LDR.W <Rxf>, [<Rn>, #<offset_12>]

Table 1-2 32-bit Cortex-M3 instruction summary (continued)

Operation Assembler
1-24 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Introduction
Memory word to PC from register address + immediate 12-bit
offset

LDR.W PC, [<Rn>, #<offset_12>]

Memory word to PC from base register address immediate
8-bit offset, postindexed

LDR.W PC, [Rn], #<+/-<offset_8>

Memory word from base register address immediate 8-bit
offset, postindexed

LDR.W <Rxf>, [<Rn>], #+/–<offset_8>

Memory word from base register address immediate 8-bit
offset, preindexed

LDR.W <Rxf>, [<Rn>, #<+/–<offset_8>]!

LDRT.W <Rxf>, [<Rn>, #<offset_8>]

Memory word to PC from base register address immediate
8-bit offset, preindexed

LDR.W PC, [<Rn>, #+/–<offset_8>]!

Memory word from register address shifted left by 0, 1, 2, or 3
places

LDR.W <Rxf>, [<Rn>, <Rm>{, LSL #<shift>}]

Memory word to PC from register address shifted left by 0, 1,
2, or 3 places

LDR.W PC, [<Rn>, <Rm>{, LSL #<shift>}]

Memory word from PC address immediate 12-bit offset LDR.W <Rxf>, [PC, #+/–<offset_12>]

Memory word to PC from PC address immediate 12-bit offset LDR.W PC, [PC, #+/–<offset_12>]

Memory byte [7:0] from base register address + immediate
12-bit offset

LDRB.W <Rxf>, [<Rn>, #<offset_12>]

Memory byte [7:0] from base register address immediate 8-bit
offset, postindexed

LDRB.W <Rxf>. [<Rn>], #+/-<offset_8>

Memory byte [7:0] from register address shifted left by 0, 1, 2,
or 3 places

LDRB.W <Rxf>, [<Rn>, <Rm>{, LSL #<shift>}]

Memory byte [7:0] from base register address immediate 8-bit
offset, preindexed

LDRB.W <Rxf>, [<Rn>, #<+/–<offset_8>]!

Memory byte from PC address immediate 12-bit offset LDRB.W <Rxf>, [PC, #+/–<offset_12>]

Memory doubleword from register address 8-bit offset 4,
preindexed

LDRD.W <Rxf>, <Rxf2>, [<Rn>, #+/–<offset_8> * 4]{!}

Memory doubleword from register address 8-bit offset 4,
postindexed

LDRD.W <Rxf>, <Rxf2>, [<Rn>], #+/–<offset_8> * 4

Table 1-2 32-bit Cortex-M3 instruction summary (continued)

Operation Assembler
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 1-25

Introduction
Load register exclusive calculates an address from a base
register value and an immediate offset, loads a word from
memory, writes it to a register

LDREX<c> <Rt>,[<Rn>{,#<imm>}]

Load register exclusive halfword calculates an address from a
base register value and an immediate offset, loads a halfword
from memory, writes it to a register

LDREXH<c> <Rt>,[<Rn>{,#<imm>}]

Load register exclusive byte calculates an address from a base
register value and an immediate offset, loads a byte from
memory, writes it to a register

LDREXB<c> <Rt>,[<Rn>{,#<imm>}]

Memory halfword [15:0] from base register address +
immediate 12-bit offset

LDRH.W <Rxf>, [<Rn>, #<offset_12>]

Memory halfword [15:0] from base register address immediate
8-bit offset, preindexed

LDRH.W <Rxf>, [<Rn>, #<+/–<offset_8>]!

Memory halfword [15:0] from base register address immediate
8-bit offset, postindexed

LDRH.W <Rxf>. [<Rn>], #+/-<offset_8>

Memory halfword [15:0] from register address shifted left by
0, 1, 2, or 3 places

LDRH.W <Rxf>, [<Rn>, <Rm>{, LSL #<shift>}]

Memory halfword from PC address immediate 12-bit offset LDRH.W <Rxf>, [PC, #+/–<offset_12>]

Memory signed byte [7:0] from base register address +
immediate 12-bit offset

LDRSB.W <Rxf>, [<Rn>, #<offset_12>]

Memory signed byte [7:0] from base register address
immediate 8-bit offset, postindexed

LDRSB.W <Rxf>. [<Rn>], #+/-<offset_8>

Memory signed byte [7:0] from base register address
immediate 8-bit offset, preindexed

LDRSB.W <Rxf>, [<Rn>, #<+/–<offset_8>]!

Memory signed byte [7:0] from register address shifted left by
0, 1, 2, or 3 places

LDRSB.W <Rxf>, [<Rn>, <Rm>{, LSL #<shift>}]

Memory signed byte from PC address immediate 12-bit offset LDRSB.W <Rxf>, [PC, #+/–<offset_12>]

Memory signed halfword [15:0] from base register address +
immediate 12-bit offset

LDRSH.W <Rxf>, [<Rn>, #<offset_12>]

Memory signed halfword [15:0] from base register address
immediate 8-bit offset, postindexed

LDRSH.W <Rxf>. [<Rn>], #+/-<offset_8>

Table 1-2 32-bit Cortex-M3 instruction summary (continued)

Operation Assembler
1-26 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Introduction
Memory signed halfword [15:0] from base register address
immediate 8-bit offset, preindexed

LDRSH.W <Rxf>, [<Rn>, #<+/–<offset_8>]!

Memory signed halfword [15:0] from register address shifted
left by 0, 1, 2, or 3 places

LDRSH.W <Rxf>, [<Rn>, <Rm>{, LSL #<shift>}]

Memory signed halfword from PC address immediate 12-bit
offset

LDRSH.W <Rxf>, [PC, #+/–<offset_12>]

Logical shift left register value by number in register LSL{S}.W <Rd>, <Rn>, <Rm>

Logical shift right register value by number in register LSR{S}.W <Rd>, <Rn>, <Rm>

Multiply two signed or unsigned register values and add the
low 32 bits to a register value

MLA.W <Rd>, <Rn>, <Rm>, <Racc>

Multiply two signed or unsigned register values and subtract
the low 32 bits from a register value

MLS.W <Rd>, <Rn>, <Rm>, <Racc>

Move immediate 12-bit value to register MOV{S}.W <Rd>, #<modify_constant(immed_12)>

Move shifted register value to register MOV{S}.W <Rd>, <Rm>{, <shift>}

Move immediate 16-bit value to top halfword [31:16] of
register

MOVT.W <Rd>, #<immed_16>

Move immediate 16-bit value to bottom halfword [15:0] of
register and clear top halfword [31:16]

MOVW.W <Rd>, #<immed_16>

Move to register from status MRS<c> <Rd>, <psr>

Move to status register MSR<c> <psr>_<fields>,<Rn>

Multiply two signed or unsigned register values MUL.W <Rd>, <Rn>, <Rm>

No operation NOP.W

Logical OR NOT register value with immediate 12-bit value ORN{S}.W <Rd>, <Rn>, #<modify_constant(immed_12)>

Logical OR NOT register value with shifted register value ORN[S}.W <Rd>, <Rn>, <Rm>{, <shift>}

Logical OR register value with immediate 12-bit value ORR{S}.W <Rd>, <Rn>, #<modify_constant(immed_12)>

Logical OR register value with shifted register value ORR{S}.W <Rd>, <Rn>, <Rm>{, <shift>}

Reverse bit order RBIT.W <Rd>, <Rm>

Reverse bytes in word REV.W <Rd>, <Rm>

Table 1-2 32-bit Cortex-M3 instruction summary (continued)

Operation Assembler
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 1-27

Introduction
Reverse bytes in each halfword REV16.W <Rd>, <Rn>

Reverse bytes in bottom halfword and sign-extend REVSH.W <Rd>, <Rn>

Rotate right by number in register ROR{S}.W <Rd>, <Rn>, <Rm>

Rotate right with extend RRX{S}.W <Rd>, <Rm>

Subtract a register value from an immediate 12-bit value RSB{S}.W <Rd>, <Rn>, #<modify_constant(immed_12)>

Subtract a register value from a shifted register value RSB{S}.W <Rd>, <Rn>, <Rm>{, <shift>}

Subtract immediate 12-bit value and C bit from register value SBC{S}.W <Rd>, <Rn>, #<modify_constant(immed_12)>

Subtract shifted register value and C bit from register value SBC{S}.W <Rd>, <Rn>, <Rm>{, <shift>}

Copy selected bits to register and sign-extend SBFX.W <Rd>, <Rn>, #<lsb>, #<width>

Signed divide SDIV<c> <Rd>,<Rn>,<Rm>

Send event SEV<c>

Multiply signed words and add signed-extended value to
2-register value

SMLAL.W <RdLo>, <RdHi>, <Rn>, <Rm>

Multiply two signed register values SMULL.W <RdLo>, <RdHi>, <Rn>, <Rm>

Signed saturate SSAT.W <c> <Rd>, #<imm>, <Rn>{, <shift>}

Multiple register words to consecutive memory locations STM{IA|DB}.W <Rn>{!}, <registers>

Register word to register address + immediate 12-bit offset STR.W <Rxf>, [<Rn>, #<offset_12>]

Register word to register address immediate 8-bit offset,
postindexed

STR.W <Rxf>, [<Rn>], #+/–<offset_8>

Register word to register address shifted by 0, 1, 2, or 3 places STR.W <Rxf>, [<Rn>, <Rm>{, LSL #<shift>}]

Register word to register address immediate 8-bit offset,
preindexed Store, preindexed

STR.W <Rxf>, [<Rn>, #+/-<offset_8>]{!}

STRT.W <Rxf>, [<Rn>, #<offset_8>]

Register byte [7:0] to register address immediate 8-bit offset,
preindexed

STRB{T}.W <Rxf>, [<Rn>, #+/–<offset_8>]{!}

Register byte [7:0] to register address + immediate 12-bit
offset

STRB.W <Rxf>, [<Rn>, #<offset_12>]

Table 1-2 32-bit Cortex-M3 instruction summary (continued)

Operation Assembler
1-28 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Introduction
Register byte [7:0] to register address immediate 8-bit offset,
postindexed

STRB.W <Rxf>, [<Rn>], #+/–<offset_8>

Register byte [7:0] to register address shifted by 0, 1, 2, or 3
places

STRB.W <Rxf>, [<Rn>, <Rm>{, LSL #<shift>}]

Store doubleword, preindexed STRD.W <Rxf>, <Rxf2>, [<Rn>, #+/–<offset_8> * 4]{!}

Store doubleword, postindexed STRD.W <Rxf>, <Rxf2>, [<Rn>, #+/–<offset_8> * 4]

Store register exclusive calculates an address from a base
register value and an immediate offset, and stores a word from
a register to memory if the executing processor has exclusive
access to the memory addressed.

STREX <c> <Rd>,<Rt>,[<Rn>{,#<imm>}]

Store register exclusive byte derives an address from a base
register value, and stores a byte from a register to memory if
the executing processor has exclusive access to the memory
addressed

STREXB <c> <Rd>,<Rt>,[<Rn>]

Store register exclusive halfword derives an address from a
base register value, and stores a halfword from a register to
memory if the executing processor has exclusive access to the
memory addressed.

STREXH <c> <Rd>,<Rt>,[<Rn>]

Register halfword [15:0] to register address + immediate 12-bit
offset

STRH.W <Rxf>, [<Rn>, #<offset_12>]

Register halfword [15:0] to register address shifted by 0, 1, 2,
or 3 places

STRH.W <Rxf>, [<Rn>, <Rm>{, LSL #<shift>}]

Register halfword [15:0] to register address immediate 8-bit
offset, preindexed

STRH{T}.W <Rxf>, [<Rn>, #+/–<offset_8>]{!}

Register halfword [15:0] to register address immediate 8-bit
offset, postindexed

STRH.W <Rxf>, [<Rn>], #+/–<offset_8>

Subtract immediate 12-bit value from register value SUB{S}.W <Rd>, <Rn>, #<modify_constant(immed_12)>

Subtract shifted register value from register value SUB{S}.W <Rd>, <Rn>, <Rm>{, <shift>}

Subtract immediate 12-bit value from register value SUBW.W <Rd>, <Rn>, #<immed_12>

Sign extend byte to 32 bits SXTB.W <Rd>, <Rm>{, <rotation>}

Sign extend halfword to 32 bits SXTH.W <Rd>, <Rm>{, <rotation>}

Table 1-2 32-bit Cortex-M3 instruction summary (continued)

Operation Assembler
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 1-29

Introduction
Table branch byte TBB [<Rn>, <Rm>]

Table branch halfword TBH [<Rn>, <Rm>, LSL #1]

Exclusive OR register value with immediate 12-bit value TEQ.W <Rn>, #<modify_constant(immed_12)>

Exclusive OR register value with shifted register value TEQ.W <Rn>, <Rm>{, <shift}

Logical AND register value with 12-bit immediate value TST.W <Rn>, #<modify_constant(immed_12)>

Logical AND register value with shifted register value TST.W <Rn>, <Rm>{, <shift>}

Copy bit field from register value to register and zero-extend to
32 bits

UBFX.W <Rd>, <Rn>, #<lsb>, #<width>

Unsigned divide UDIV<c> <Rd>,<Rn>,<Rm>

Multiply two unsigned register values and add to a 2-register
value

UMLAL.W <RdLo>, <RdHi>, <Rn>, <Rm>

Multiply two unsigned register values UMULL.W <RdLo>, <RdHi>, <Rn>, <Rm>

Unsigned saturate USAT <c> <Rd>, #<imm>, <Rn>{, <shift>}

Copy unsigned byte to register and zero-extend to 32 bits UXTB.W <Rd>, <Rm>{, <rotation>}

Copy unsigned halfword to register and zero-extend to 32 bits UXTH.W <Rd>, <Rm>{, <rotation>}

Wait for event WFE.W

Wait for interrupt WFI.W

Table 1-2 32-bit Cortex-M3 instruction summary (continued)

Operation Assembler
1-30 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Introduction
1.9 Product revisions

This section summarizes the differences in functionality between the different releases
of this processor:

• Differences in functionality between r0p0 and r1p0

• Differences in functionality between r1p0 and r1p1 on page 1-32.

1.9.1 Differences in functionality between r0p0 and r1p0

In summary, the differences in functionality include:

• Addition of configurable data value comparison to the DWT module. See DWT
on page 11-13.

• Addition of a MATCHED bit to DWT_FUNCTION. See DWT on page 11-13.

• Addition of ETMFIFOFULL as an input to Cortex-M3. See ETM interface on
page A-13.

• Addition of ETMISTALL as an output to Cortex-M3. See ETM interface on
page A-13.

• Addition of SWVMode to the ITM. To support SWVMode, TPIUEMIT and
TPIUBAUD have been added as outputs from the TPIU and are inputs to the
processor. See ITM on page 11-29.

• CPUID Base Register VARIANT field changed to indicate Rev1. See NVIC
register descriptions on page 8-7.

• Cortex-M3 Rev0 Bit-band accesses in BE8 mode required access sizes to be byte.
Cortex-M3 Rev1 has been changed so that BE8 bit-band accesses function with
any access size.

• Addition of a configuration bit called STKALIGN to ensure that all exceptions
have eight-byte stack alignment. See NVIC register descriptions on page 8-7.

• Addition of the Auxiliary Fault Status Register at address 0xE000ED3C. To set this
register, a 32-bit input bus called AUXFAULT has been added. See NVIC
register descriptions on page 8-7.

• Addition of HTM support. See Chapter 17 AHB Trace Macrocell Interface.

• I-Code and D-Code cacheable and bufferable HPROT values permanently tied to
write-through. See ICode bus interface on page 14-4 and DCode bus interface on
page 14-6.

• Addition of a new input called IFLUSH. See Miscellaneous on page A-4.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 1-31

Introduction
• Addition of HMASTER ports. See DCode interface on page A-8 and System bus
interface on page A-9.

• Addition of the SWJ-DP. This is the standard CoreSight™ debug port that
combines JTAG-DP and SW-DP. See About the DP on page 12-2.

• Addition of DWT_PCSR Register at address 0xE000101C. See DWT on
page 11-13.

• Addition of a new input called DNOTITRANS. See Unifying the code buses on
page 14-9.

• Errata fixes to the r0p0 release.

1.9.2 Differences in functionality between r1p0 and r1p1

In summary, the differences in functionality include:

• Data value matching for watchpoint generation has been made implementation
time configurable. See DWT on page 11-13.

• A define has been added to optionally implement architectural clock gating in the
ETM. For previous releases the architectural clock gate in the ETM was always
present.

• DAPCLKEN was required to be a static signal in r0p0 and r1p0. This
requirement has been removed for r1p1.

• SLEEPING signal now suppressed until current outstanding instruction fetch has
completed.

• Errata fixes to the r1p0 release.
1-32 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Chapter 2
Programmer’s Model

This chapter describes the processor programmer’s model. It contains the following
sections:

• About the programmer’s model on page 2-2

• Privileged access and user access on page 2-3

• Registers on page 2-4

• Data types on page 2-10

• Memory formats on page 2-11

• Instruction set on page 2-13.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 2-1

Programmer’s Model
2.1 About the programmer’s model

The processor implements the ARM v7-M architecture. This includes the entire 16-bit
Thumb instruction set and the base Thumb-2 32-bit instruction set architecture. The
processor cannot execute ARM instructions.

The Thumb instruction set is a subset of the ARM instruction set, re-encoded to 16 bits.
It supports higher code density and systems with memory data buses that are 16 bits
wide or narrower.

Thumb-2 is a major enhancement to the Thumb Instruction Set Architecture (ISA).
Thumb-2 enables higher code density than Thumb and offers higher performance with
16/32-bit instructions.

2.1.1 Operating modes

The processor supports two modes of operation, Thread mode and Handler mode:

• Thread mode is entered on Reset, and can be entered as a result of an exception
return. Privileged and User (Unprivileged) code can run in Thread mode.

• Handler mode is entered as a result of an exception. All code is privileged in
Handler mode.

2.1.2 Operating states

The processor can operate in one of two operating states:

• Thumb state. This is normal execution running 16-bit and 32-bit halfword aligned
Thumb and Thumb-2 instructions.

• Debug State. This is the state when in halting debug.
2-2 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Programmer’s Model
2.2 Privileged access and user access

Code can execute as privileged or unprivileged. Unprivileged execution limits or
excludes access to some resources. Privileged execution has access to all resources.
Handler mode is always privileged. Thread mode can be privileged or unprivileged.

Thread mode is privileged out of reset, but you can change it to user or unprivileged by
clearing the CONTROL[0] bit using the MSR instruction. User access prevents:

• use of some instructions such as CPS to set FAULTMASK and PRIMASK

• access to most registers in System Control Space (SCS).

When Thread mode has been changed from privileged to user, it cannot change itself
back to privileged. Only a Handler can change the privilege of Thread mode. Handler
mode is always privileged.

2.2.1 Main stack and process stack

Out of reset, all code uses the main stack. An exception handler such as SVC can change
the stack used by Thread mode from main stack to process stack by changing the
EXC_RETURN value it uses on exit. All exceptions continue to use the main stack. The
stack pointer, r13, is a banked register that switches between SP_main and SP_process.
Only one stack, the process stack or the main stack, is visible, using r13, at any time.

It is also possible to switch from main stack to process stack while in Thread mode by
writing to CONTROL[1] using the MSR instruction, in addition to being selectable
using the EXC_RETURN value from an exit from Handler mode.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 2-3

Programmer’s Model
2.3 Registers

The processor has the following 32-bit registers:

• 13 general-purpose registers, r0-r12

• stack point alias of banked registers, SP_process and SP_main

• link register, r14

• program counter, r15

• one program status register, xPSR.

Figure 2-1 shows the processor register set.

Figure 2-1 Processor register set

2.3.1 General-purpose registers

The general-purpose registers r0-r12 have no special architecturally-defined uses. Most
instructions that can specify a general-purpose register can specify r0-r12.

Low registers Registers r0-r7 are accessible by all instructions that specify a
general-purpose register.

High registers Registers r8-r12 are accessible by all 32-bit instructions that
specify a general-purpose register.

Registers r8-r12 are not accessible by all 16-bit instructions.
2-4 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Programmer’s Model
The r13, r14, and r15 registers have the following special functions:

Stack pointer Register r13 is used as the Stack Pointer (SP). Because the SP
ignores writes to bits [1:0], it is autoaligned to a word, four-byte
boundary.

Handler mode always uses SP_main, but you can configure
Thread mode to use either SP_main or SP_process.

Link register Register r14 is the subroutine Link Register (LR).

The LR receives the return address from PC when a Branch and
Link (BL) or Branch and Link with Exchange (BLX) instruction is
executed.

The LR is also used for exception return.

At all other times, you can treat r14 as a general-purpose register.

Program counter Register r15 is the Program Counter (PC).

Bit [0] is always 0, so instructions are always aligned to word or
halfword boundaries.

2.3.2 Special-purpose Program Status Registers (xPSR)

Processor status at the system level breaks down into three categories:

• Application PSR

• Interrupt PSR on page 2-6

• Execution PSR on page 2-7.

They can be accessed as individual registers, a combination of any two from three, or a
combination of all three using the Move to Register from Status (MRS) and MSR
instructions.

Application PSR

The Application PSR (APSR) contains the condition code flags. Before entering an
exception, the processor saves the condition code flags on the stack. You can access the
APSR with the MSR(2) and MRS(2) instructions.

Figure 2-2 on page 2-6 shows the fields of the APSR.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 2-5

Programmer’s Model
Figure 2-2 Application Program Status Register bit assignments

Table 2-1 describes the fields of the APSR.

Interrupt PSR

The Interrupt PSR (IPSR) contains the Interrupt Service Routine (ISR) number of the
current exception activation.

Figure 2-2 shows the fields of the IPSR.

Figure 2-3 Interrupt Program Status Register bit assignments

Table 2-1 Application Program Status Register bit assignments

Field Name Definition

[31] N Negative or less than flag:

1 = result negative or less than

0 = result positive or greater than.

[30] Z Zero flag:

1 = result of 0

0 = nonzero result.

[29] C Carry/borrow flag:

1 = carry or borrow

0 = no carry or borrow.

[28] V Overflow flag:

1 = overflow

0 = no overflow.

[27] Q Sticky saturation flag.

[26:0] - Reserved.
2-6 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Programmer’s Model
Table 2-2 describes the fields of the IPSR.

Execution PSR

The Execution PSR (EPSR) contains two overlapping fields:

• the Interruptible-Continuable Instruction (ICI) field for interrupted load multiple
and store multiple instructions

• the execution state field for the If-Then (IT) instruction, and the Thumb state bit
(T-bit).

Interruptible-continuable instruction field

Load Multiple (LDM) operations and Store Multiple (STM) operations are interruptible.
The ICI field of the EPSR holds the information required to continue the load or store
multiple from the point that the interrupt occurred.

If-then state field

The IT field of the EPSR contain the execution state bits for the If-Then instruction.

Table 2-2 Interrupt Program Status Register bit assignments

Field Name Definition

[31:9] - Reserved.

[8:0] ISR NUMBER Number of pre-empted exception.

Base level = 0

NMI = 2

SVCall = 11

INTISR[0] = 16

INTISR[1] = 17

.

.

.

INTISR[15] = 31

.

.

.

INTISR[239] = 255
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 2-7

Programmer’s Model
Note
 Because the ICI field and the IT field overlap, load or store multiples within an If-Then
block cannot be interrupt-continued.

Figure 2-4 shows the fields of the EPSR.

Figure 2-4 Execution Program Status Register

The EPSR is not directly accessible. Two events can modify the EPSR:

• an interrupt occurring during an LDM or STM instruction

• execution of the If-Then instruction.

Table 2-3 describes the fields of the EPSR.

Table 2-3 Bit functions of the EPSR

Field Name Definition

[31:27] - Reserved.

[26:25], [15:10] ICI Interruptible-continuable instruction bits. When an interrupt occurs
during an LDM or STM operation, the multiple operation stops
temporarily. The EPSR uses bits [15:12] to store the number of the next
register operand in the multiple operation. After servicing the interrupt,
the processor returns to the register pointed to by [15:12] and resumes
the multiple operation. If the ICI field points to a register that is not in
the register list of the instruction, the processor continues with the next
register in the list, if any.

[26:25], [15:10] IT If-Then bits. These are the execution state bits of the If-Then instruction.
They contain the number of instructions in the if-then block and the
conditions for their execution.

[24] T The T-bit can be cleared using an interworking instruction where bit [0]
of the written PC is 0. It can also be cleared by unstacking from an
exception where the stacked T bit is 0.

Executing an instruction while the T bit is clear causes an INVSTATE
exception.

[23:16] - Reserved.

[9:0] - Reserved.
2-8 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Programmer’s Model
Base register update in LDM and STM operations

There are cases when an LDM or STM updates the base register:

• When the instruction specifies base register write-back, the base register changes
to the updated address. An abort restores the original base value.

• When the base register is in the register list of an LDM, and is not the last register
in the list, the base register changes to the loaded value.

An LDM/STM is restarted rather than continued if:

• the LDM/STM faults

• the LDM/STM is inside an IT.

If an LDM has completed a base load, it is continued from before the base load.

Saved xPSR bits

On entering an exception, the processor saves the combined information from the three
status registers on the stack.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 2-9

Programmer’s Model
2.4 Data types

The processor supports the following data types:

• 32-bit words

• 16-bit halfwords

• 8-bit bytes.

Note
 Memory systems are expected to support all data types. In particular, the system must
support subword writes without corrupting neighboring bytes in that word.
2-10 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Programmer’s Model
2.5 Memory formats

The processor views memory as a linear collection of bytes numbered in ascending
order from 0. For example:

• bytes 0-3 hold the first stored word

• bytes 4-7 hold the second stored word.

The processor can access data words in memory in little-endian format or big-endian
format. It always accesses code in little-endian format.

Note
 Little-endian is the default memory format for ARM processors.

In little-endian format, the byte with the lowest address in a word is the least-significant
byte of the word. The byte with the highest address in a word is the most significant.
The byte at address 0 of the memory system connects to data lines 7-0.

In big-endian format, the byte with the lowest address in a word is the most significant
byte of the word. The byte with the highest address in a word is the least significant. The
byte at address 0 of the memory system connects to data lines 31-24.

Figure 2-5 on page 2-12 shows the difference between little-endian and big-endian
memory formats.

The processor contains a configuration pin, BIGEND, that enables you to select either
the little-endian or BE-8 big-endian format. This configuration pin is sampled on reset.
You cannot change endianness when out of reset.

Note
 • Accesses to System Control Space (SCS) are always little endian.

• Attempts to change endianness while not in reset are ignored.

• Private Peripheral Bus (PPB) space is little-endian, irrespective of the setting of
BIGEND.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 2-11

Programmer’s Model
Figure 2-5 Little-endian and big-endian memory formats

Halfword 0 at address E Halfword 1 at address C

Halfword 0 at address A Halfword 1 at address 8

Halfword 0 at address 6 Halfword 1 at address 4

Halfword 0 at address 2 Halfword 1 at address 0

Big-endian data format

31 24 23 16 15 8 7 0

Word at address 0
Byte 3 at

address 0

Byte 2 at

address 1

Byte 1 at

address 2

Byte 0 at

address 3

Word at address 4
Byte 3 at

address 4

Byte 2 at

address 5

Byte 1 at

address 6

Byte 0 at

address 7

Word at address 8
Byte 3 at

address 8

Byte 2 at

address 9

Byte 1 at

address A

Byte 0 at

address B

Word at address C
Byte 3 at

address C

Byte 2 at

address D

Byte 1 at

address E

Byte 0 at

address F

Halfword 1 at address E Halfword 0 at address C

Halfword 1 at address A Halfword 0 at address 8

Halfword 1 at address 6 Halfword 0 at address 4

Halfword 1 at address 2 Halfword 0 at address 0

Little-endian data format

31 24 23 16 15 8 7 0

Word at address 0
Byte 0 at

address 0

Byte 1 at

address 1

Byte 2 at

address 2

Byte 3 at

address 3

Word at address 4
Byte 0 at

address 4

Byte 1 at

address 5

Byte 2 at

address 6

Byte 3 at

address 7

Word at address 8
Byte 0 at

address 8

Byte 1 at

address 9

Byte 2 at

address A

Byte 3 at

address B

Word at address C
Byte 0 at

address C

Byte 1 at

address D

Byte 2 at

address E

Byte 3 at

address F
2-12 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Programmer’s Model
2.6 Instruction set

The processor does not support ARM instructions.

The processor supports all ARMv6 Thumb instructions except those listed in Table 2-4.

The processor supports the Thumb-2 instructions listed in Table 2-5.

Table 2-4 Nonsupported Thumb instructions

Instruction Action if executed

BLX(1) Branch with link and exchange BLX(1) always faults.

SETEND Set endianness SETEND always faults. A configuration pin selects Cortex-M3
endianness.

Table 2-5 Supported Thumb-2 instructions

Instruction type Size Instructions

Data operations 16 ADC, ADD, AND, ASR, BIC, CMN, CMP, CPY, EOR, LSL, LSR, MOV, MUL, MVN,
NEG, ORR, ROR, SBC, SUB, TST, REV, REVH, REVSH, SXTB, SXTH, UXTB, and
UXTH.

Branches 16 B<cond>, B, BL, BX, and BLX. Note, no BLX with immediate.

Load-store single 16 LDR, LDRB, LDRH, LDRSB, LDRSH, STR, STRB, STRH.

Load-store multiple 16 LDMIA, POP, PUSH, and STMIA.

Exception
generating

16 BKPT stops in debug if debug enabled, fault if debug disabled. SVC faults to the SVCall
handler.

Data operations
with immediate

32 ADC{S}. ADD{S}, CMN, RSB{S}, SBC{S}, SUB{S}, CMP, AND{S}, TST, BIC{S},
EOR{S}, TEQ, ORR{S}, MOV{S}, ORN{S}, and MVN{S}.

Data operations
with large
immediate

32 MOVW, MOVT, ADDW, and SUBW.

MOVW and MOVT have a 16-bit immediate. This means they can replace literal loads
from memory.

ADDW and SUBW have a 12-bit immediate. This means they can replace many from
memory literal loads.

Bit-field operations 32 BFI, BFC, UBFX, and SBFX. These are bitwise operations enabling control of position
and size in bits. These both support C/C++ bit fields, in structs, in addition to many
compare and some AND/OR assignment expressions.

Data operations
with three registers

32 ADC{S}. ADD{S}, CMN, RSB{S}, SBC{S}, SUB{S}, CMP, AND{S}, TST, BIC{S},
EOR{S}, TEQ, ORR{S}, MOV{S}, ORN{S}, and MVN{S}. No PKxxx instructions.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 2-13

Programmer’s Model
Shift operations 32 ASR{S}, LSL{S}, LSR{S}, RRX {S}, and ROR {S}.

Miscellaneous 32 REV, REVH, REVSH, RBIT, CLZ, SXTB, SXTH, UXTB, and UXTH.

Extension instructions same as corresponding v6 16-bit instructions.

Table branch 32 TBB and TBH table branches for switch/case use. These are LDR with shifts and then
branch.

Multiply 32 MUL, MLA, and MLS.

Multiply with
64-bit result

32 UMULL, SMULL, UMLAL, and SMLAL.

Load-store
addressing

32 Supports Format PC+/-imm12, Rbase+imm12, Rbase+/-imm8, and adjusted register
including shifts.

T variants used when in Privilege mode.

Load-store single 32 LDR, LDRB, LDRSB, LDRH, LDRSH, STR, STRB, STRH, and T variants. PLD and
PLI are both hints and so act as a NOP.

Load-store multiple 32 STM, LDM, LDRD, and STRD.

Load-store
exclusive

32 LDREX, STREX, LDREXB, LDREXH, STREXB, STREXH, CLREX.

Fault if no local monitor. This is IMP DEF.

LDREXD and STREXD are not included in this profile.

Branches 32 B, BL, and B<cond>. No BLX (1) because always changes state. No BXJ.

System 32 MSR(2) and MRS(2) replace MSR/MRS but also do more. These access the other stacks
and also the status registers.

CPSIE/CPSID 32-bit forms are not supported.

No RFE or SRS.

System 16 CPSIE and CPSID are quick versions of MSR(2) instructions and use the standard
Thumb-2 encodings, but only permit use of i and f and not a.

Extended32 32 NOP (all forms), Coprocessor (MCR, MCR2, MCRR, MRC, MRC2, and MRRC), and
YIELD (hinted NOP). Note, no MRS(1), MSR(1), or SUBS (PC return link).

Combined branch 16 CBZ and CBNZ (Compare and Branch if register is Zero or Non-Zero).

Extended 16 IT and NOP. This includes YIELD.

Divide 32 SDIV and UDIV. 32/32 divides both signed and unsigned with 32-bit quotient result, no
remainder, it can be derived by subtraction. Early out is permitted.

Table 2-5 Supported Thumb-2 instructions (continued)

Instruction type Size Instructions
2-14 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Programmer’s Model
Note
 All coprocessor instructions generate a NO CoProcessor (NOCP) fault.

Sleep 16, 32 WFI, WFE, and SEV are in the class of hinted NOP instructions that control sleep
behavior.

Barriers 32 ISB, DSB, and DMB are barrier instructions that ensure certain actions have taken place
before the next instruction is executed.

Saturation 32 SSAT and USAT perform saturation on a register. They perform the following:

Normalize the value using shift test for overflow from a selected bit position, the Q value.

Set the xPSR Q bit if so, saturate the value if overflow detected.

Saturation refers to the largest unsigned value or the largest/smallest signed value for the
size selected.

Table 2-5 Supported Thumb-2 instructions (continued)

Instruction type Size Instructions
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 2-15

Programmer’s Model
2-16 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Chapter 3
System Control

This chapter describes the registers that program the processor. It contains the following
section:

• Summary of processor registers on page 3-2.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 3-1

System Control
3.1 Summary of processor registers

This section describes the registers that control functionality. It contains the following:

• Nested Vectored Interrupt Controller registers

• Core debug registers on page 3-5

• System debug registers on page 3-6

• Debug interface port registers on page 3-11

• Memory Protection Unit registers on page 3-11

• Trace Port Interface Unit registers on page 3-12

• Embedded Trace Macrocell registers on page 3-13.

3.1.1 Nested Vectored Interrupt Controller registers

Table 3-1 gives a summary of the Nested Vectored Interrupt Controller (NVIC)
registers. For a detailed description of the NVIC registers, see Chapter 8 Nested
Vectored Interrupt Controller.

Table 3-1 NVIC registers

Name of register Type Address Reset value

Interrupt Control Type Register Read-only 0xE000E004 a

SysTick Control and Status Register Read/write 0xE000E010 0x00000000

SysTick Reload Value Register Read/write 0xE000E014 Unpredictable

SysTick Current Value Register Read/write
clear

0xE000E018 Unpredictable

SysTick Calibration Value Register Read-only 0xE000E01C STCALIB

Irq 0 to 31 Set Enable Register Read/write 0xE000E100 0x00000000

. . . .

. . . .

. . . .

Irq 224 to 239 Set Enable Register Read/write 0xE000E11C 0x00000000

Irq 0 to 31 Clear Enable Register Read/write 0xE000E180 0x00000000

. . . .

. . . .
3-2 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

System Control
. . . .

Irq 224 to 239 Clear Enable Register Read/write 0xE000E19C 0x00000000

Irq 0 to 31 Set Pending Register Read/write 0xE000E200 0x00000000

. . . .

. . . .

. . . .

Irq 224 to 239 Set Pending Register Read/write 0xE000E21C 0x00000000

Irq 0 to 31 Clear Pending Register Read/write 0xE000E280 0x00000000

. . . .

. . . .

. . . .

Irq 224 to 239 Clear Pending Register Read/write 0xE000E29C 0x00000000

Irq 0 to 31 Active Bit Register Read-only 0xE000E300 0x00000000

. . . .

. . . .

. . . .

Irq 224 to 239 Active Bit Register Read-only 0xE000E31C 0x00000000

Irq 0 to 31 Priority Register Read/write 0xE000E400 0x00000000

. . . .

. . . .

. . . .

Irq 236 to 239 Priority Register Read/write 0xE000E4F0 0x00000000

CPUID Base Register Read-only 0xE000ED00 0x411FC231

Interrupt Control State Register Read/write
or read-only

0xE000ED04 0x00000000

Table 3-1 NVIC registers (continued)

Name of register Type Address Reset value
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 3-3

System Control
Vector Table Offset Register Read/write 0xE000ED08 0x00000000

Application Interrupt/Reset Control Register Read/write 0xE000ED0C 0x00000000

System Control Register Read/write 0xE000ED10 0x00000000

Configuration Control Register Read/write 0xE000ED14 0x00000000

System Handlers 4-7 Priority Register Read/write 0xE000ED18 0x00000000

System Handlers 8-11 Priority Register Read/write 0xE000ED1C 0x00000000

System Handlers 12-15 Priority Register Read/write 0xE000ED20 0x00000000

System Handler Control and State Register Read/write 0xE000ED24 0x00000000

Configurable Fault Status Registers Read/write 0xE000ED28 0x00000000

Hard Fault Status Register Read/write 0xE000ED2C 0x00000000

Debug Fault Status Register Read/write 0xE000ED30 0x00000000

Mem Manage Address Register Read/write 0xE000ED34 Unpredictable

Bus Fault Address Register Read/write 0xE000ED38 Unpredictable

Auxiliary Fault Status Register Read/write 0xE000ED3C 0x00000000

PFR0: Processor Feature register0 Read-only 0xE000ED40 0x00000030

PFR1: Processor Feature register1 Read-only 0xE000ED44 0x00000200

DFR0: Debug Feature register0 Read-only 0xE000ED48 0x00100000

AFR0: Auxiliary Feature register0 Read-only 0xE000ED4C 0x00000000

MMFR0: Memory Model Feature register0 Read-only 0xE000ED50 0x00000030

MMFR1: Memory Model Feature register1 Read-only 0xE000ED54 0x00000000

MMFR2: Memory Model Feature register2 Read-only 0xE000ED58 0x00000000

MMFR3: Memory Model Feature register3 Read-only 0xE000ED5C 0x00000000

ISAR0: ISA Feature register0 Read-only 0xE000ED60 0x01141110

ISAR1: ISA Feature register1 Read-only 0xE000ED64 0x02111000

ISAR2: ISA Feature register2 Read-only 0xE000ED68 0x21112231

Table 3-1 NVIC registers (continued)

Name of register Type Address Reset value
3-4 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

System Control
3.1.2 Core debug registers

Table 3-2 gives a summary of the core debug registers. For a detailed description of the
core debug registers, see Chapter 10 Core Debug.

ISAR3: ISA Feature register3 Read-only 0xE000ED6C 0x01111110

ISAR4: ISA Feature register4 Read-only 0xE000ED70 0x01310102

Software Trigger Interrupt Register Write Only 0xE000EF00 -

Peripheral identification register (PID4) Read-only 0xE000EFD0 0x04

Peripheral identification register (PID5) Read-only 0xE000EFD4 0x00

Peripheral identification register (PID6) Read-only 0xE000EFD8 0x00

Peripheral identification register (PID7) Read-only 0xE000EFDC 0x00

Peripheral identification register Bits [7:0] (PID0) Read-only 0xE000EFE0 0x00

Peripheral identification register Bits [15:8] (PID1) Read-only 0xE000EFE4 0xB0

Peripheral identification register Bits [23:16] (PID2) Read-only 0xE000EFE8 0x1B

Peripheral identification register Bits [31:24] (PID3) Read-only 0xE000EFEC 0x00

Component identification register Bits [7:0] (CID0) Read Only 0xE000EFF0 0x0D

Component identification register Bits [15:8] (CID1) Read-only 0xE000EFF4 0xE0

Component identification register Bits [23:16] (CID2) Read-only 0xE000EFF8 0x05

Component identification register Bits [31:24] (CID3) Read-only 0xE000EFFC 0xB1

a. Reset value depends on the number of interrupts defined.

Table 3-1 NVIC registers (continued)

Name of register Type Address Reset value

Table 3-2 Core debug registers

Name of register Type Address Reset Value

Debug Halting Control and Status Register Read/Write 0xE000EDF0 0x00000000a
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 3-5

System Control
3.1.3 System debug registers

This section lists the system debug registers.

Flash Patch and Breakpoint registers

Table 3-3 gives a summary of the Flash Patch and Breakpoint (FPB) registers. For a
detailed description of the FPB registers, see Chapter 11 System Debug.

Debug Core Register Selector Register Write-only 0xE000EDF4 -

Debug Core Register Data Register Read/Write 0xE000EDF8 -

Debug Exception and Monitor Control Register. Read/Write 0xE000EDFC 0x00000000b

a. Bits [5], [3], [2], [1], [0] are reset by PORESETn. Bit [1] is also reset by SYSRESETn and by writing a 1 to
the VECTRESET bit of the Application Interrupt and Reset Control Register.

b. Bits [16], [17], [18], [19] are also reset by SYSRESETn and by writing a 1 to the VECTRESET bit of the
Application Interrupt and Reset Control Register.

Table 3-2 Core debug registers (continued)

Name of register Type Address Reset Value

Table 3-3 Flash patch register summary

Name Type Address Reset value Description

FP_CTRL Read/write 0xE0002000 Bit [0] is reset to 1'b0 Flash Patch Control Register

FP_REMAP Read/write 0xE0002004 - Flash Patch Remap Register

FP_COMP0 Read/write 0xE0002008 Bit [0] is reset to 1'b0 Flash Patch Comparator Registers

FP_COMP1 Read/write 0xE000200C Bit [0] is reset to 1'b0 Flash Patch Comparator Registers

FP_COMP2 Read/write 0xE0002010 Bit [0] is reset to 1'b0 Flash Patch Comparator Registers

FP_COMP3 Read/write 0xE0002014 Bit [0] is reset to 1'b0 Flash Patch Comparator Registers

FP_COMP4 Read/write 0xE0002018 Bit [0] is reset to 1'b0 Flash Patch Comparator Registers

FP_COMP5 Read/write 0xE000201C Bit [0] is reset to 1'b0 Flash Patch Comparator Registers

FP_COMP6 Read/write 0xE0002020 Bit [0] is reset to 1'b0 Flash Patch Comparator Registers

FP_COMP7 Read/write 0xE0002024 Bit [0] is reset to 1'b0 Flash Patch Comparator Registers

PID4 Read-only 0xE0002FD0 - Value 0x04
3-6 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

System Control
Data Watchpoint and Trace registers

Table 3-4 gives a summary of the Data Watchpoint and Trace (DWT) registers. For a
detailed description of the DWT registers, see Chapter 11 System Debug.

PID5 Read-only 0xE0002FD4 - Value 0x00

PID6 Read-only 0xE0002FD8 - Value 0x00

PID7 Read-only 0xE0002FDC - Value 0x00

PID0 Read-only 0xE0002FE0 - Value 0x03

PID1 Read-only 0xE0002FE4 - Value 0xB0

PID2 Read-only 0xE0002FE8 - Value 0x0B

PID3 Read-only 0xE0002FEC - Value 0x00

CID0 Read-only 0xE0002FF0 - Value 0x0D

CID1 Read-only 0xE0002FF4 - Value 0xE0

CID2 Read-only 0xE0002FF8 - Value 0x05

CID3 Read-only 0xE0002FFC - Value 0xB1

Table 3-3 Flash patch register summary (continued)

Name Type Address Reset value Description

Table 3-4 DWT register summary

Name Type Address
Reset
value

Description

DWT_CTRL Read/write 0xE0001000 0x00000000 DWT Control Register

DWT_CYCCNT Read/write 0xE0001004 0x00000000 DWT Current PC Sampler Cycle Count Register

DWT_CPICNT Read/write 0xE0001008 - DWT Current CPI Count Register

DWT_EXCCNT Read/write 0xE000100C - DWT Current Interrupt Overhead Count Register

DWT_SLEEPCNT Read/write 0xE0001010 - DWT Current Sleep Count Register

DWT_LSUCNT Read/write 0xE0001014 - DWT Current LSU Count Register

DWT_FOLDCNT Read/write 0xE0001018 - DWT Current Fold Count Register
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 3-7

System Control
DWT_PCSR Read-only 0xE000101C - DWT PC Sample Register

DWT_COMP0 Read/write 0xE0001020 - DWT Comparator Register

DWT_MASK0 Read/write 0xE0001024 - DWT Mask Registers

DWT_FUNCTION0 Read/write 0xE0001028 0x00000000 DWT Function Registers

DWT_COMP1 Read/write 0xE0001030 - DWT Comparator Register

DWT_MASK1 Read/write 0xE0001034 - DWT Mask Registers

DWT_FUNCTION1 Read/write 0xE0001038 0x00000000 DWT Function Registers

DWT_COMP2 Read/write 0xE0001040 - DWT Comparator Register

DWT_MASK2 Read/write 0xE0001044 - DWT Mask Registers

DWT_FUNCTION2 Read/write 0xE0001048 0x00000000 DWT Function Registers

DWT_COMP3 Read/write 0xE0001050 - DWT Comparator Register

DWT_MASK3 Read/write 0xE0001054 - DWT Mask Registers

DWT_FUNCTION3 Read/write 0xE0001058 0x00000000 DWT Function Registers

PID4 Read-only 0xE0001FD0 0x04 Value 0x04

PID5 Read-only 0xE0001FD4 0x00 Value 0x00

PID6 Read-only 0xE0001FD8 0x00 Value 0x00

PID7 Read-only 0xE0001FDC 0x00 Value 0x00

PID0 Read-only 0xE0001FE0 0x02 Value 0x02

PID1 Read-only 0xE0001FE4 0xB0 Value 0xB0

PID2 Read-only 0xE0001FE8 0x0B0 Value 0x1B

PID3 Read-only 0xE0001FEC 0x00 Value 0x00

CID0 Read-only 0xE0001FF0 0x0D Value 0x0D

Table 3-4 DWT register summary (continued)

Name Type Address
Reset
value

Description
3-8 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

System Control
Instrumentation Trace Macrocell registers

Table 3-5 gives a summary of the Instrumentation Trace Macrocell (ITM) registers. For
a detailed description of the ITM registers, see Chapter 11 System Debug

CID1 Read-only 0xE0001FF4 0xE0 Value 0xE0

CID2 Read-only 0xE0001FF8 0x05 Value 0x05

CID3 Read-only 0xE0001FFC 0xB1 Value 0xB1

Table 3-4 DWT register summary (continued)

Name Type Address
Reset
value

Description

Table 3-5 ITM register summary

Name Type Address Reset value

Stimulus Ports 0-31 Read/write 0xE0000000-0xE000007C -

Trace Enable Read/write 0xE0000E00 0x00000000

Trace Privilege Read/write 0xE0000E40 0x00000000

Trace Control Register Read/write 0xE0000E80 0x00000000

Integration Write Write-only 0xE0000EF8 0x00000000

Integration Read Read-only 0xE0000EFC 0x00000000

Integration Mode Control Read/write 0xE0000F00 0x00000000

Lock Access Register Write-only 0xE0000FB0 0x00000000

Lock Status Register Read-only 0xE0000FB4 0x00000003

PID4 Read-only 0xE0000FD0 0x00000004

PID5 Read-only 0xE0000FD4 0x00000000

PID6 Read-only 0xE0000FD8 0x00000000

PID7 Read-only 0xE0000FDC 0x00000000

PID0 Read-only 0xE0000FE0 0x00000001

PID1 Read-only 0xE0000FE4 0x000000B0

PID2 Read-only 0xE0000FE8 0x0000001B
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 3-9

System Control
Advanced High Performance Bus Access Port registers

Table 3-6 gives a summary of the Advanced High-performance Bus Access Port
(AHB-AP) registers. For a detailed description of the AHB-AP registers, see Chapter 11
System Debug.

PID3 Read-only 0xE0000FEC 0x00000000

CID0 Read-only 0xE0000FF0 0x0000000D

CID1 Read-only 0xE0000FF4 0x000000E0

CID2 Read-only 0xE0000FF8 0x00000005

CID3 Read-only 0xE0000FFC 0x000000B1

Table 3-6 AHB-AP register summary

Name Type Address
Reset
value

Control and Status Word Read/write 0x00 See Register

Transfer Address Read/write 0x04 0x00000000

Data Read/write Read/write 0x0C -

Banked Data 0 Read/write 0x10 -

Banked Data 1 Read/write 0x14 -

Banked Data 2 Read/write 0x18 -

Banked Data 3 Read/write 0x1C -

Debug ROM Address Read-only 0xF8 0xE000E000

Identification Register Read-only 0xFC 0x14770011

Table 3-5 ITM register summary (continued)

Name Type Address Reset value
3-10 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

System Control
3.1.4 Debug interface port registers

Table 3-7 gives a summary of the debug interface port registers. For a detailed
description of the debug interface port registers, see Chapter 12 Debug Port.

3.1.5 Memory Protection Unit registers

Table 3-8 gives a summary of the Memory Protection Unit (MPU) registers. For a
detailed description of the MPU registers, see Chapter 9 Memory Protection Unit.

Table 3-7 Summary of Debug interface port registers

Name SWJ-DP SW-DP Description

ABORT Yes Yes The Abort Register

IDCODE Yes Yes The Identification Code Register

CTRL/STAT Yes Yes The Control/Status Register

SELECT Yes Yes The AP Select Register

RDBUFF Yes Yes The Read Buffer Register

WCR No Yes The Wire Control Register

RESEND No Yes The Read Resend Register

Table 3-8 MPU registers

Name Type Address Reset value

MPU Type Register Read Only 0xE000ED90 0x00000800

MPU Control Register Read/Write 0xE000ED94 0x00000000

MPU Region Number register Read/Write 0xE000ED98 -

MPU Region Base Address register Read/Write 0xE000ED9C -

MPU Region Attribute and Size registers Read/Write 0xE000EDA0 -

MPU Alias 1 Region Base Address register Alias of D9C 0xE000EDA4 -

MPU Alias 1 Region Attribute and Size register Alias of DA0 0xE000EDA8 -

MPU Alias 2 Region Base Address register Alias of D9C 0xE000EDAC -
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 3-11

System Control
3.1.6 Trace Port Interface Unit registers

Table 3-9 gives a summary of the Trace Port Interface Unit (TPIU) registers. For a
detailed description of the TPIU registers, see Chapter 13 Trace Port Interface Unit.

MPU Alias 2 Region Attribute and Size register Alias of DA0 0xE000EDB0 -

MPU Alias 3 Region Base Address register Alias of D9C 0xE000EDB4 -

MPU Alias 3 Region Attribute and Size register Alias of DA0 0xE000EDB8 -

Table 3-8 MPU registers (continued)

Name Type Address Reset value

Table 3-9 TPIU registers

Name of register Type Address Reset value

Supported Sync Port Sizes Register Read-only 0xE0040000 0bxx0x

Current Sync Port Size Register Read/write 0xE0040004 0x01

Async Clock Prescaler Register Read/write 0xE0040010 0x0000

Selected Pin Protocol Register Read/write 0xE00400F0 0x01

Formatter and Flush Status Register Read/write 0xE0040300 0x08

Formatter and Flush Control Register Read-only 0xE0040304 0x00 or 0x102

Formatter Synchronization Counter Register Read-only 0xE0040308 0x00

Integration Register: ITATBCTR2 Read-only 0xE0040EF0 0x0

Integration Register: ITATBCTR0 Read-only 0xE0040EF8 0x0
3-12 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

System Control
3.1.7 Embedded Trace Macrocell registers

Table 3-10 gives a summary of the Embedded Trace Macrocell (ETM) registers. For a
detailed description of the ETM registers, see Chapter 15 Embedded Trace Macrocell.

Table 3-10 ETM registers

Name Type Address Present

ETM Control Read/write 0xE0041000 Yes

Configuration Code Read-only 0xE0041004 Yes

Trigger event Write-only 0xE0041008 Yes

ASIC Control Write-only 0xE004100C No

ETM Status Read-only or read/write 0xE0041010 Yes

System Configuration Read-only 0xE0041014 Yes

TraceEnable Write-only 0xE0041018, 0xE004101C No

TraceEnable Event Write-only 0xE0041020 Yes

TraceEnable Control 1 Write-only 0xE0041024 Yes

FIFOFULL Region Write-only 0xE0041028 No

FIFOFULL Level Write-only or read/write 0xE004102C Yes

ViewData Write-only 0xE0041030-0xE004103C No

Address Comparators Write-only 0xE0041040- 0xE004113C No

Counters Write-only 0xE0041140-0xE004157C No

Sequencer Read/write 0xE0041180-

0xE0041194, 0xE0041198

No

External Outputs Write-only 0xE00411A0-0xE00411AC No

CID Comparators Write-only 0xE00411B0-0xE00411BC No

Implementation specific Write-only 0xE00411C0-0xE00411DC No

Synchronization Frequency Write-only 0xE00411E0 No

ETM ID Read-only 0xE00411E4 Yes

Configuration Code Extension Read-only 0xE00411E8 Yes

Extended External Input Selector Write-only 0xE00411EC No
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 3-13

System Control
TraceEnable Start/Stop Embedded ICE Read/write 0xE00411F0 Yes

Embedded ICE Behavior Control Write-only 0xE00411F4 No

CoreSight Trace ID Read/write 0xE0041200 Yes

OS Save/Restore Write-only 0xE0041304-0xE0041308 No

ITMISCIN Read-only 0xE0041EE0 Yes

ITTRIGOUT Write-only 0xE0041EE8 Yes

ITATBCTR2 Read-only 0xE0041EF0 Yes

ITATBCTR0 Write-only 0xE0041EF8 Yes

Integration Mode Control Read/write 0xE0041F00 Yes

Claim Tag Read/write 0xE0041FA0-0xE0041FA4 Yes

Lock Access Write-only 0xE0041FB0-0xE0041FB4 Yes

Authentication Status Read-only 0xE0041FB8 Yes

Device Type Read-only 0xE0041FCC Yes

Peripheral ID 4 Read-only 0xE0041FD0 Yes

Peripheral ID 5 Read-only 0xE0041FD4 Yes

Peripheral ID 6 Read-only 0xE0041FD8 Yes

Peripheral ID 7 Read-only 0xE0041FDC Yes

Peripheral ID 0 Read-only 0xE0041FE0 Yes

Peripheral ID 1 Read-only 0xE0041FE4 Yes

Peripheral ID 2 Read-only 0xE0041FE8 Yes

Peripheral ID 3 Read-only 0xE0041FEC Yes

Component ID 0 Read-only 0xE0041FF0 Yes

Component ID 1 Read-only 0xE0041FF4 Yes

Component ID 2 Read-only 0xE0041FF8 Yes

Component ID 3 Read-only 0xE0041FFC Yes

Table 3-10 ETM registers (continued)

Name Type Address Present
3-14 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Chapter 4
Memory Map

This chapter describes the processor fixed memory map and its bit-banding feature. It
contains the following sections:

• About the memory map on page 4-2

• Bit-banding on page 4-5

• ROM memory table on page 4-7.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 4-1

Memory Map
4.1 About the memory map

Figure 4-1 shows the fixed memory map.

Figure 4-1 Processor memory map
4-2 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Memory Map
Table 4-1 shows the processor interfaces that are addressed by the different memory
map regions

Table 4-1 Memory interfaces

Memory Map Interface

Code Instruction fetches are performed over the ICode bus. Data accesses are performed over the
DCode bus.

SRAM Instruction fetches and data accesses are performed over the system bus.

SRAM_bitband Alias region. Data accesses are aliases. Instruction accesses are not aliases.

Peripheral Instruction fetches and data accesses are performed over the system bus.

Periph_bitband Alias region. Data accesses are aliases. Instruction accesses are not aliases.

External RAM Instruction fetches and data accesses are performed over the system bus.

External Device Instruction fetches and data accesses are performed over the system bus.

Private Peripheral Bus Accesses to:

• Instrumentation Trace Macrocell (ITM)

• Nested Vectored Interrupt Controller (NVIC)

• Flashpatch and Breakpoint (FPB)

• Data Watchpoint and Trace (DWT)

• Memory Protection Unit (MPU)

are performed to the processor internal Private Peripheral Bus (PPB).

Accesses to:

• Trace Point Interface Unit (TPIU)

• Embedded Trace Macrocell (ETM)

• System areas of the PPB memory map

are performed over the external PPB interface.

This memory region is Execute Never (XN), and so instruction fetches are prohibited. An MPU,
if present, cannot change this.

System System segment for vendor system peripherals. This memory region is XN, and so instruction
fetches are prohibited. An MPU, if present, cannot change this.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 4-3

Memory Map
Table 4-2 shows the permissions of the processor memory regions.

Note
 Private Peripheral Bus and System space at 0xE0000000 - 0xFFFFFFFF are permanently
XN. The MPU cannot change this.

For a description of the processor bus interfaces, see Chapter 14 Bus Interface.

Table 4-2 Memory region permissions

Name Region Device type XN Cache

Code 0x00000000-0x1FFFFFFF Normal - WT

SRAM 0x20000000-0x3FFFFFFF Normal - WBWA

SRAM_1M +0000000 - - -

SRAM_31M +0100000 - -

SRAM_bitband +2000000 Internal - -

SRAM +4000000 - - -

Peripheral 0x40000000-0x5FFFFFFF Device XN -

Periph_1IM +0000000 - - -

Periph_31IM +0100000 - - -

Periph_bit band +2000000 Internal - -

Peripheral +4000000 - - -

External RAM 0x60000000-0x7FFFFFFF Normal - WBWA

External RAM 0x80000000-0x9FFFFFFF Normal - WT

External Device 0xA0000000-0xBFFFFFFF Device XN -

External Device 0xC0000000-0xDFFFFFFF Device XN -

Private Peripheral
Bus

+4000000 SO XN -

System +0100000 - XN -
4-4 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Memory Map
4.2 Bit-banding

The processor memory map includes two bit-band regions. These occupy the lowest
1MB of the SRAM and Peripheral memory regions respectively. These bit-band regions
map each word in an alias region of memory to a bit in a bit-band region of memory.

The memory map has two 32-MB alias regions that map to two 1-MB bit-band regions:

• Accesses to the 32-MB SRAM alias region map to the 1-MB SRAM bit-band
region.

• Accesses to the 32-MB peripheral alias region map to the 1-MB peripheral
bit-band region.

A mapping formula shows how to reference each word in the alias region to a
corresponding bit, or target bit, in the bit-band region. The mapping formula is:

bit_word_offset = (byte_offset x 32) + (bit_number × 4)

bit_word_addr = bit_band_base + bit_word_offset

where:

• Bit_word_offset is the position of the target bit in the bit-band memory region.

• Bit_word_addr is the address of the word in the alias memory region that maps to
the targeted bit.

• Bit_band_base is the starting address of the alias region.

• Byte_offset is the number of the byte in the bit-band region that contains the
targeted bit.

• Bit_number is the bit position (0-7) of the targeted bit.

Figure 4-2 on page 4-6 shows examples of bit-band mapping between the SRAM
bit-band alias region and the SRAM bit-band region:

• The alias word at 0x23FFFFE0 maps to bit [0] of the bit-band byte at 0x200FFFFF:
0x23FFFFE0 = 0x22000000 + (0xFFFFF*32) + 0*4.

• The alias word at 0x23FFFFFC maps to bit [7] of the bit-band byte at 0x200FFFFF:
0x23FFFFFC = 0x22000000 + (0xFFFFF*32) + 7*4.

• The alias word at 0x22000000 maps to bit [0] of the bit-band byte at 0x20000000:
0x22000000 = 0x22000000 + (0*32) + 0 *4.

• The alias word at 0x2200001C maps to bit [7] of the bit-band byte at 0x20000000:
0x2200001C = 0x22000000 + (0*32) + 7*4.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 4-5

Memory Map
Figure 4-2 Bit-band mapping

4.2.1 Directly accessing an alias region

Writing to a word in the alias region has the same effect as a read-modify-write
operation on the targeted bit in the bit-band region.

Bit [0] of the value written to a word in the alias region determines the value written to
the targeted bit in the bit-band region. Writing a value with bit [0] set writes a 1 to the
bit-band bit, and writing a value with bit [0] cleared writes a 0 to the bit-band bit.

Bits [31:1] of the alias word have no effect on the bit-band bit. Writing 0x01 has the same
effect as writing 0xFF. Writing 0x00 has the same effect as writing 0x0E.

Reading a word in the alias region returns either 0x01 or 0x00. A value of 0x01 indicates
that the targeted bit in the bit-band region is set. A value of 0x00 indicates that the
targeted bit is clear. Bits [31:1] are zero.

4.2.2 Directly accessing a bit-band region

You can directly access the bit-band region with normal reads and writes, and writes to
that region.
4-6 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Memory Map
4.3 ROM memory table

Table 4-3 describes the ROM memory.

Table 4-3 ROM table

Offset Value Name Description

0x000 0xFFF0F003 NVIC Points to the NVIC at 0xE000E000.

0x004 0xFFF02003 DWT Points to the Data Watchpoint and Trace block at 0xE0001000.

0x008 0xFFF03003 FPB Points to the Flash Patch and Breakpoint block at 0xE0002000.

0x00C 0xFFF01003 ITM Points to the Instrumentation Trace block at 0xE0000000.

0x010 0xFFF41002 or 003 if present TPIU Points to the TPIU. Value has bit [0] set to 1 if TPIU is fitted.
TPIU is at 0xE0040000.

0x014 0xFFF42003 ETM Points to the ETM. Value has bit [0] set to 1 if ETM is fitted.
ETM is at 0xE0041000.

0x018 0 End Marks the end of the ROM table. If CoreSight components are
added, they are added starting from this location and the End
marker is moved to the next location after the additional
components.

0xFCC 0x1 MEMTYPE Bits [31:1] RAZ. Bit [0] is set when the system memory map is
accessible using the DAP. Bit [0] is clear when only debug
resources are accessible using the DAP.

0xFD0 0x0 PID4 -

0xFD4 0x0 PID5 -

0xFD8 0x0 PID6 -

0xFDC 0x0 PID7 -

0xFE0 0x0 PID0 -

0xFE4 0x0 PID1 -

0xFE8 0x0 PID2 -

0xFEC 0x0 PID3 -

0xFF0 0x0D CID0 -
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 4-7

Memory Map
0xFF4 0x10 CID1 -

0xFF8 0x05 CID2 -

0xFFC 0xB1 CID3 -

Table 4-3 ROM table (continued)

Offset Value Name Description
4-8 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Chapter 5
Exceptions

This chapter describes the exception model of the processor. It contains the following
sections:

• About the exception model on page 5-2

• Exception types on page 5-4

• Exception priority on page 5-6

• Privilege and stacks on page 5-9

• Pre-emption on page 5-11

• Tail-chaining on page 5-14

• Late-arriving on page 5-15

• Exit on page 5-17

• Resets on page 5-20

• Exception control transfer on page 5-24

• Setting up multiple stacks on page 5-25

• Abort model on page 5-27

• Activation levels on page 5-32

• Flowcharts on page 5-34.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 5-1

Exceptions
5.1 About the exception model

The processor and the Nested Vectored Interrupt Controller (NVIC) prioritize and
handle all exceptions. All exceptions are handled in Handler mode. Processor state is
automatically stored to the stack on an exception, and automatically restored from the
stack at the end of the Interrupt Service Routine (ISR). The vector is fetched in parallel
to the state saving, enabling efficient interrupt entry. The processor supports
tail-chaining that enables back-to-back interrupts without the overhead of state saving
and restoration. The following features enable efficient, low latency exception handling:

• Automatic state saving and restoring. The processor pushes state registers on the
stack before entering the ISR, and pops them after exiting the ISR with no
instruction overhead.

• Automatic reading of the vector table entry that contains the ISR address in code
memory or data SRAM. This is performed in parallel to the state saving.

Note
 Vector table entries are ARM/Thumb interworking compatible.

This causes bit [0] of the vector value to load into the EPSR T-bit on exception
entry. Creating a table entry with bit [0] clear generates an INVSTATE fault on
the first instruction of the handler corresponding to this vector.

• Support for tail-chaining. In tail-chaining, the processor handles back-to-back
interrupts without popping and pushing registers between ISRs.

• Dynamic reprioritization of interrupts.

• Closely-coupled interface between the processor core and the NVIC to enable
early processing of interrupts and processing of late-arriving interrupts with
higher priority.

• Configurable number of interrupts, from 1 to 240.

• Configurable number of interrupt priorities, from 3 to 8 bits (8 to 256 levels).

• Separate stacks and privilege levels for Handler and Thread modes.

• ISR control transfer using the calling conventions of the C/C++ standard ARM
Architecture Procedure Call Standard (AAPCS).

• Priority masking to support critical regions.
5-2 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Exceptions
Note
 The number of interrupts, and bits of interrupt priority, are configured during
implementation. Software can choose only to enable a subset of the configured number
of interrupts, and can choose how many bits of the configured priorities to use.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 5-3

Exceptions
5.2 Exception types

Various types of exceptions exist in the processor. A fault is an exception that results
from an error condition because of instruction execution. Faults can be reported
synchronously or asynchronously to the instruction that caused them. In general, faults
are reported synchronously. The Imprecise Bus Fault is an asynchronous fault
supported in the ARMv7-M profile. A synchronous fault is always reported with the
instruction that caused the fault. An asynchronous fault does not guarantee how it is
reported with respect to the instruction that caused the fault.

For more information on exceptions, see the ARMv7-M Architecture Reference Manual.

Table 5-1 shows the exception type, position, and priority. Position refers to the word
offset from the start of the vector table. The lower numbers shown in the Priority column
of the table are higher priority. How the types are activated, synchronously or
asynchronously, is also shown. The exact meaning and use of priorities is explained in
Exception priority on page 5-6.

Table 5-1 Exception types

Exception type Position Priority Description

- 0 - Stack top is loaded from first entry of vector table on reset.

Reset 1 –3 (highest) Invoked on power up and warm reset. On first instruction,
drops to lowest priority (Thread mode). This is asynchronous.

Non-maskable Interrupt 2 –2 Cannot be stopped or pre-empted by any exception but reset.
This is asynchronous.

Hard Fault 3 –1 All classes of Fault, when the fault cannot activate because of
priority or the Configurable Fault handler has been disabled.
This is synchronous.

Memory Management 4 Configurablea Memory Protection Unit (MPU) mismatch, including access
violation and no match. This is synchronous. This is used
even if the MPU is disabled or not present, to support the
Executable Never (XN) regions of the default memory map.

Bus Fault 5 Configurableb Pre-fetch fault, memory access fault, and other
address/memory related. This is synchronous when precise
and asynchronous when imprecise.

Usage Fault 6 Configurable Usage fault, such as Undefined instruction executed or illegal
state transition attempt. This is synchronous.

- 7-10 - Reserved
5-4 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Exceptions
SVCall 11 Configurable System service call with SVC instruction. This is
synchronous.

Debug Monitor 12 Configurable Debug monitor, when not halting. This is synchronous, but
only active when enabled. It does not activate if lower priority
than the current activation.

- 13 - Reserved

PendSV 14 Configurable Pendable request for system service. This is asynchronous
and only pended by software.

SysTick 15 Configurable System tick timer has fired. This is asynchronous.

External Interrupt 16 and
above

Configurable Asserted from outside the core, INTISR[239:0], and fed
through the NVIC (prioritized). These are all asynchronous.

a. You can change the priority of this exception. See System Handler Priority Registers bit assignments on page 8-28. Settable
is an NVIC priority value of 0 to N, where N is the largest priority value implemented. Internally, the highest user-settable
priority (0) is treated as 4.

b. You can enable or disable this fault. See System Handler Control and State Register bit assignments on page 8-29.

Table 5-1 Exception types (continued)

Exception type Position Priority Description
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 5-5

Exceptions
5.3 Exception priority

Table 5-2 shows how priority affects when and how the processor takes an exception. It
lists the actions an exception can take based on priority.

In the processor exception model, priority determines when and how the processor takes
exceptions. You can:

• assign software priority levels to interrupts

• group priorities by splitting priority levels into pre-emption priorities and
subpriorities.

Table 5-2 Priority-based actions of exceptions

Action Description

Pre-emption New exception has higher priority than current exception priority or thread and interrupts current flow.

This is the response to a pended interrupt, causing entry to an ISR if the pended interrupt is higher priority
than the active ISR or thread. When one ISR pre-empts another, the interrupts are nested.

On exception entry the processor automatically saves processor state, which is pushed on to the stack. In
parallel with this, the vector corresponding to the interrupt is fetched. Execution of the first instruction of
the ISR starts when processor state is saved and the first instruction of the ISR enters the execute stage of
the processor pipeline. The state saving is performed over the System bus and DCode bus. The vector
fetch is performed over either the System bus or the ICode bus depending on where the vector table is
located, see Vector Table Offset Register on page 8-20.

Tail-chain A mechanism used by the processor to speed up interrupt servicing. On completion of an ISR, if there is
a pending interrupt of higher priority than the ISR or thread that is being returned to, the stack pop is
skipped and control is transferred to the new ISR.

Return With no pending exceptions or no pending exceptions with higher priority than a stacked ISR, the
processor pops the stack and returns to stacked ISR or Thread Mode.

On completion of an ISR the processor automatically restores the processor state by popping the stack to
the state prior to the interrupt that caused the ISR to be entered. If a new interrupt arrives during the state
restoration, and that interrupt is of higher priority than the ISR or thread that is being returned to, then the
state restoration is abandoned and the new interrupt is handled as a tail-chain.

Late-arriving A mechanism used by the processor to speed up pre-emption. If a higher priority interrupt arrives during
state saving for a previous pre-emption, the processor switches to handling the higher priority interrupt
instead and initiates the vector fetch for that interrupt. The state saving is not effected by late arrival
because the state saved is the same for both interrupts, and the state saving continues uninterrupted. Late
arriving interrupts are managed until the first instruction of the ISR enters the execute stage of the
processor pipeline. On return, the normal tail-chaining rules apply.
5-6 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Exceptions
5.3.1 Priority levels

The NVIC supports software-assigned priority levels. You can assign a priority level
from 0 to 255 to an interrupt by writing to the eight-bit PRI_N field in an Interrupt
Priority Register, see Interrupt Priority Registers on page 8-16. Hardware priority
decreases with increasing interrupt number. Priority level 0 is the highest priority level,
and priority level 255 is the lowest. The priority level overrides the hardware priority.
For example, if you assign priority level 1 to IRQ[0] and priority level 0 to IRQ[31],
then IRQ[31] has higher priority than IRQ[0].

Note
 Software prioritization does not affect reset, Non-Maskable Interrupt (NMI), and hard
fault. They always have higher priority than the external interrupts.

When multiple interrupts have the same priority number, the pending interrupt with the
lowest interrupt number takes precedence. For example, if both IRQ[0] and IRQ[1] are
priority level 1, then IRQ[0] has higher priority than IRQ[1].

For more information on the PRI_N fields, see Interrupt Priority Registers on
page 8-16.

5.3.2 Priority grouping

To increase priority control in systems with large numbers of interrupts, the NVIC
supports priority grouping. You can use the PRIGROUP field in the Application
Interrupt and Reset Control Register on page 8-21 to split the value in every PRI_N
field into a pre-emption priority field and a subpriority field. The pre-emption priority
group is referred to as the group priority. Where multiple pending exceptions share the
same group priority, the sub-priority bit field resolves the priority within a group. This
is referred to as the sub-priority within the group. The combination of the group priority
and the sub-priority is referred to generally as the priority. Where two pending
exceptions have the same priority, the lower pending exception number has priority over
the higher pending exception number. This is consistent with the priority precedence
scheme.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 5-7

Exceptions
Table 5-3 shows how writing to PRIGROUP splits an eight bit PRI_N field into a
pre-emption priority field (x) and a subpriority field (y).

Note
 • Table 5-3 shows the priorities for the processor configured with eight bits of

priority.

• For a processor configured with less than eight bits of priority, the lower bits of
the register are always 0. For example, if four bits of priority are implemented,
PRI_N[7:4] sets the priority, and PRI_N[3:0] is 4'b0000.

An interrupt can pre-empt another interrupt in progress only if its pre-emption priority
is higher than that of the interrupt in progress.

For more information on priority optimizations, priority level grouping, and priority
masking, see the ARMv7-M Architecture Reference Manual.

Table 5-3 Priority grouping

Interrupt priority level field, PRI_N[7:0]

PRIGROUP[2:0]
Binary point
position

Pre-emption
field

Subpriority
field

Number of
pre-emption
priorities

Number of
subpriorities

b000 bxxxxxxx.y [7:1] [0] 128 2

b001 bxxxxxx.yy [7:2] [1:0] 64 4

b010 bxxxxx.yyy [7:3] [2:0] 32 8

b011 bxxxx.yyyy [7:4] [3:0] 16 16

b100 bxxx.yyyyy [7:5] [4:0] 8 32

b101 bxx.yyyyyy [7:6] [5:0] 4 64

b110 bx.yyyyyyy [7] [6:0] 2 128

b111 b.yyyyyyyy None [7:0] 0 256
5-8 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Exceptions
5.4 Privilege and stacks

The processor supports two separate stacks:

Process stack

You can configure Thread mode to use the process stack. Thread mode
uses the main stack out of reset. SP_process is the Stack Pointer (SP)
register for the process stack.

Main stack

Handler mode uses the main stack. SP_main is the SP register for the
main stack.

Only one stack, the process stack or the main stack, is visible at any time. After pushing
the eight registers, the ISR uses the main stack, and all subsequent interrupt
pre-emptions use the main stack. The stack that saves context is as follows:

• Thread mode uses either the main stack or the process stack, depending on the
value of the CONTROL bit [1] that Move to Status Register (MSR) or Move to
Register from Status (MRS) can access. Appropriate EXC_RETURN values can
also set this bit when exiting an ISR. An exception that pre-empts a user thread
saves the context of the user thread on the stack that the Thread mode is using.

• All exceptions use the main stack for their own local variables.

Using the process stack for the Thread mode and the main stack for exceptions supports
Operating System (OS) scheduling. To reschedule, the kernel only requires to save the
eight registers not pushed by hardware, r4-r11, and to copy SP_process into the Thread
Control Block (TCB). If the processor saved the context on the main stack, the kernel
would have to copy the 16 registers to the TCB.

Note
 MSR and MRS instructions have visibility of both stacks.

5.4.1 Stacks

The stack model is independent of privileged mode, that is, Thread mode can use the
process or main stack and be in user or privileged mode. All four combinations of stack
and privilege are possible. For a basic protected thread model, the user threads run in
Thread mode using the process stack, and the kernel and the interrupts run privileged
using the main stack.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 5-9

Exceptions
Note
 Privilege alone does not prevent corruption of stacks, whether malicious or accidental.
A memory protection scheme of one form or another is required to isolate the user code.
That is, you must prevent the user code from writing to memory it does not own,
including other stacks.

5.4.2 Privilege

Privilege controls access rights, and is decoupled from all other concepts in ARMv7-M.
Code can be privileged, with full access rights, or unprivileged, with limited access
rights. Access rights affect ability to:

• Use or not use certain instructions such as MSR fields.

• Access System Control Space (SCS) registers.

• Access memory or peripherals, based on system design. The processor indicates
to the system whether the code making an access is privileged and so the system
can enforce restrictions on non-privileged access.

• Access rules to memory locations based on an MPU. When fitted with an MPU,
the access restrictions can control what memory can be read, written, and
executed.

Only Thread mode can be unprivileged. All exceptions are privileged.
5-10 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Exceptions
5.5 Pre-emption

The following sections describe the behavior of the processor when it takes an
exception:

• Stacking

• Late-arriving on page 5-15

• Tail-chaining on page 5-14.

5.5.1 Stacking

When the processor invokes an exception, it automatically pushes the following eight
registers to the SP in the following order:

• Program Counter (PC)

• Processor Status Register (xPSR)

• r0-r3

• r12

• Link Register (LR).

The SP is decremented by eight words by the completion of the stack push. Figure 5-1
shows the contents of the stack after an exception pre-empts the current program flow.

Figure 5-1 Stack contents after a pre-emption

Note
 • Figure 5-1 shows the order on the stack.

• If STKALIGN is set in the Configuration Control Register then an extra word can
be inserted before the stacking takes place. See Configuration Control Register
on page 8-25.

After returning from the ISR, the processor automatically pops the eight registers from
the stack. Interrupt return is passed as a data field in the LR, so ISR functions can be
normal C/C++ functions, and do not require a veneer.

Old SP

SP

xPSR

PC

LR

r12

r3

r2

r1

r0

<previous>
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 5-11

Exceptions
Table 5-4 describes the steps that the processor takes before it enters an ISR.

Figure 5-2 on page 5-13 shows an example of exception entry timing.

Table 5-4 Exception entry steps

Action Restartable? Description

Push eight
registersa

No. Pushes xPSR, PC, r0, r1, r2, r3, r12, and LR on selected stack.

Read vector table Yes. Late-arriving
exception can cause
restart.

Reads vector table from memory based on
table base + (exception number 4). Read on the ICode bus can be
done simultaneously with register pushes on the DCode bus.

Read SP from
vector table

No. On Reset only, updates SP to top of stack from vector table. Other
exceptions do not modify SP except to select stack, push, and pop.

Update PC No. Updates PC with vector table read location. Late-arriving exceptions
cannot be processed until the first instruction starts to execute.

Load pipeline Yes. Pre-emption
reloads pipeline from
new vector table read.

Loads instructions from location pointed to by vector table. This is
done in parallel with register push.

Update LR No. LR is set to EXC_RETURN to exit from exception. EXC_RETURN is
one of 16 values as defined in ARMv7-M Architecture Reference
Manual.

a. When tail-chaining, this step is skipped.
5-12 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Exceptions
Figure 5-2 Exception entry timing

The NVIC indicates to the processor core, in the cycle after INTISR[2] was received,
that an interrupt has been received, and the processor initiates the stack push and vector
fetch in the following cycle.

When the stack push has completed, the first instruction of the ISR enters the execute
stage of the pipeline. In the cycle that the ISR enters execute:

• ETMINSTAT[2:0] indicates that the ISR has been entered (3'b001). This is a
1-cycle pulse.

• CURRPRI[7:0] indicates the priority of the active interrupt. CURRPRI remains
asserted throughout the duration of the ISR. CURRPRI becomes valid when
ETMINTSTAT indicates that the ISR has been entered (3'b001).

• ETMINTNUM[8:0] indicates the number of the active interrupt.
ETMINTNUM remains asserted throughout the duration of the ISR.
ETMINTNUM becomes valid when ETMINTSTAT indicates that the ISR has
been entered (3'b001). Prior to that it indicates which ISR is being fetched.

Figure 5-2 shows that there is a 12-cycle latency from asserting the interrupt to the first
instruction of the ISR executing.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 5-13

Exceptions
5.6 Tail-chaining

Tail-chaining is back-to-back processing of exceptions without the overhead of state
saving and restoration between interrupts. The processor skips the pop of eight registers
and push of eight registers when exiting one ISR and entering another because this has
no effect on the stack contents.

The processor tail-chains if a pending interrupt has higher priority than all stacked
exceptions.

Figure 5-3 shows an example of tail-chaining. If a pending interrupt has higher priority
than the highest-priority stacked exception, the stack push or pop is omitted, and the
processor immediately fetches the vector for the pending interrupt. The ISR that is
tail-chained into starts execution six cycles after exiting the previous ISR.

Figure 5-3 Tail-chaining timing

On return from the last ISR, INTISR[2] is of higher priority than any stacked ISR, or
other pended interrupt, and so the processor tail-chains to the ISR corresponding to
INTISR[2]. In the cycle that the ISR for INTISR[2] enters execute:

• ETMINSTAT[2:0] indicates that the ISR has been entered (3'b001). This is a
1-cycle pulse.

• CURRPRI[7:0] indicates the priority of the active interrupt. CURRPRI remains
asserted throughout the duration of the ISR.

• ETMINTNUM[8:0] indicates the number of the active interrupt.
ETMINTNUM remains asserted throughout the duration of the ISR.

Figure 5-3 shows that there is a 6-cycle latency when returning from the last ISR to
executing the new ISR.
5-14 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Exceptions
5.7 Late-arriving

A late-arriving interrupt can pre-empt a previous interrupt if the first instruction of the
previous ISR has not entered the Execute stage, and the late-arriving interrupt has a
higher priority than the previous interrupt.

A late-arriving interrupt causes a new vector address fetch and ISR prefetch. State
saving is not performed for the late-arriving interrupt because it has already been
performed for the initial interrupt and so does not have to be repeated.

Figure 5-4 shows an example of late-arriving interrupts.

Figure 5-4 Late-arriving exception timing

In Figure 5-4, INTISR[8] pre-empts INTISR[2]. The state saving for INTISR[2] is
already done and is not required to be repeated. Figure 5-4 shows the latest point at
which INTISR[8] can pre-empt before the first instruction of the ISR for INTISR[2]
enters Execute stage. A higher priority interrupt after that point is managed as a
pre-emption.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 5-15

Exceptions
Figure 5-4 on page 5-15 shows the latest point at which INTISR[9] can pre-empt
before the first instruction of the ISR for INTISR[8] enters Fetch stage. The ISR fetch
for INTISR[8] is aborted when INTISR[9] is received, and the processor then initiates
the vector fetch for INTISR[9]. A higher priority interrupt after that point is managed
as pre-emption.

In the cycle that the ISR for INTISR[9] enters execute:

• ETMINSTAT[2:0] indicates that the ISR has been entered (3'b001). This is a
1-cycle pulse.

• CURRPRI[7:0] indicates the priority of the active interrupt. CURRPRI remains
asserted throughout the duration of the ISR.

• ETMINTNUM[8:0] indicates the number of the active interrupt.
ETMINTNUM remains asserted throughout the duration of the ISR.
5-16 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Exceptions
5.8 Exit

The last instruction of an ISR loads the PC with value 0xFFFFFFFX that was LR on
exception entry. This indicates to the processor that the ISR is complete, and the
processor initiates the exception exit sequence. See Returning the processor from an
ISR on page 5-18 for the instructions that you can use to return the processor from an
ISR.

5.8.1 Exception exit

When returning from an exception, the processor is either:

• tail-chaining to a pending exception if the pending exception is of higher priority
than all stacked exceptions

• returning to the last stacked ISR if there are no pending exceptions or if the
highest priority stacked exception is of higher priority than the highest priority
pending exception

• returning to the Thread mode if there are no pending or stacked exceptions.

Table 5-5 describes the postamble sequence.

Figure 5-5 on page 5-18 shows an example of exception exit timing.

Table 5-5 Exception exit steps

Action Description

Pop eight registers Pops PC, xPSR, r0, r1, r2, r3, r12 and LR from stack selected by EXC_RETURN
and adjusts SP, if not pre-empted.

Load current active interrupt numbera
and reverse stack-alignment
adjustment

Loads current active interrupt number from bits [8:0] of stacked IPSR word. The
processor uses this to track which exception to return to and to clear the
activation bit on return. When bits [8:0] are zero, the processor returns to Thread
Mode.

Select SP If returning to an exception, SP is SP_main. If returning to Thread Mode, SP can
be SP_main or SP_process.

a. Because of dynamic priority changes, the NVIC uses interrupt numbers instead of interrupt priorities to determine which ISR
is current.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 5-17

Exceptions
Figure 5-5 Exception exit timing

ETMINSTAT indicates:

• 3'b010 to show that the ISR has exited. ETMINTNUM shows the number of the
ISR that exited.

• 3'b011 in the cycle after interrupt exit if a previous stacked ISR is being returned
to. ETMINTNUM shows the number of the interrupt that is being returned to.

Note
 If a higher priority exception occurs during the stack pop, the processor abandons the
stack pop, rewinds the stack pointer, and services the exception as a tail-chain case.

5.8.2 Returning the processor from an ISR

Exception returns occur when one of the following instructions loads a value of
0xFFFFFFFX into the PC:

• POP/LDM which includes loading the PC

• LDR with PC as a destination

• BX with any register.
5-18 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Exceptions
When used in this way, the value written to the PC is intercepted and is referred to as
the EXC_RETURN value. EXC_RETURN[3:0] provides return information as defined in
Table 5-6.

Reserved entries in this table result in a chained exception to a Usage Fault.

If an EXC_RETURN value is loaded into the PC when in Thread mode, or from the
vector table, or by any other instruction, the value is treated as an address, not as a
special value. This address range is defined to have Execute Never (XN) permissions,
and results in a MemManage fault.

Table 5-6 Exception return behavior

EXC_RETURN[3:0] Description

0bXXX0 Reserved.

0b0001 Return to Handler mode.

Exception return gets state from the main stack.

On return execution uses the main stack.

0b0011 Reserved.

0b01X1 Reserved.

0b1001 Return to Thread mode.

Exception return gets state from the main stack.

On return execution uses the main stack.

0b1101 Return to Thread mode.

Exception return gets state from the process stack.

On return execution uses the process stack.

0b1X11 Reserved.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 5-19

Exceptions
5.9 Resets

The NVIC is reset at the same time as the core and controls the release of reset into the
core. As a result, the behavior of reset is predictable. Table 5-7 shows the reset behavior.

For more information about resets, see Chapter 6 Clocking and Resets.

5.9.1 Vector Table and Reset

The vector table at location 0 is only required to have four values:

• stack top address

• reset routine location

• NMI ISR location

• Hard Fault ISR location.

When interrupts are enabled, the vector table regardless of location, points to all
mask-enabled exceptions. Also, the SVCall ISR location is populated if the SVC
instruction is used.

An example of a full vector table:

unsigned int stack_base[STACK_SIZE];
void ResetISR(void);
void NmiISR(void);
…
ISR_VECTOR_TABLE vector_table_at_0
{
 stack_base + sizeof(stack_base),
 ResetISR,
 NmiSR,
FaultISR,
0, // Populate if using MemManage (MPU)

Table 5-7 Reset actions

Action Description

NVIC resets, holds core in reset NVIC clears most of its registers. The processor is in Thread mode, priority is
privileged, and the stack is set to Main.

NVIC releases core from reset NVIC releases core from reset.

Core sets stack Core reads the start SP, SP_main, from vector-table offset 0.

Core sets PC and LR Core reads the start PC from vector-table offset. LR is set to 0xFFFFFFFF.

Reset routine runs NVIC has interrupts disabled, and NMI and Hard Fault are not disabled.
5-20 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Exceptions
0, // Populate if using Bus fault
0, // Populate if using Usage Fault
0, 0, 0, 0, // reserved slots
SVCallISR,
0, // Populate if using a debug monitor
0, // Reserved
0, // Populate if using pendable service request
0, // Populate if using SysTick
// external interrupts start here
 Timer1ISR,
 GpioInISR
 GpioOutISR,
 I2CIsr
};

5.9.2 Intended boot-up sequence

A normal reset routine follows the steps shown in Table 5-8. A C/C++ runtime can
perform the first three steps and then call main().

Table 5-8 Reset boot-up behavior

Action Description

Initialize variables Any global/static variables must be setup. This includes initializing the BSS variable to 0,
and copying initial values from ROM to RAM for non-constant variables.

[Setup stacks] If more than one stack is be used, the other banked SPs must be initialized. The current SP
can also be changed to Process from Main.

Initialize any runtime Optionally make calls to C/C++ runtime init code to enable use of heap, floating point, or
other features. This is normally done by __main from the C/C++ library.

[Initialize any peripherals] Setup peripherals before interrupts are enabled. This can call to setup each peripheral to be
used in the application.

[Switch ISR vector table] Optionally change vector table from Code area, @0, to a location in SRAM. This is only
done to optimize performance or enable dynamic changes.

[Setup Configurable Faults] Enable Configurable faults and set their priorities.

Setup interrupts Setup priority levels and masks.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 5-21

Exceptions
Note
 Entries in Table 5-8 on page 5-21 that are bracketed are optional actions.

Example of reset routine

The reset routine is responsible for starting up the application and then enabling
interrupts. There are three methods for involving the reset ISR after interrupt processing
is performed. This is called the main loop part of the Reset ISR and the three examples
are shown in Example 5-1, Example 5-2 on page 5-23, and Example 5-3 on page 5-23.

Example 5-1 Reset routine with pure sleep on exit (Reset routine does no main
loop work)

void reset()
{

// do setup work (initialize variables, initialize runtime if wanted,
setup peripherals, etc)
nvic[INT_ENA] = 1; // enable interrupts
nvic_regs[NV_SLEEP] |= NVSLEEP_ON_EXIT; // will not normally come back after

 1st exception
while (1)
wfi();

}

Enable interrupts Enable interrupts. Enable the interrupt processing in the NVIC. It is not desirable to have
these occur as they are being enabled. If there are more than 32 interrupts, it takes more than
one Set-Enable Register. PRIMASK can be used through CPS or MSR to mask interrupts
until ready.

[Change Privilege] [Change Privilege]. The Thread mode privilege can be changed to user if required. This
must normally be handled by invoking the SVCall handler.

Loop If sleep-on-exit is enabled, control never returns after the first interrupt/exception is taken.
If sleep-on-exit is selectively enabled/disabled, this loop can manage cleanup and executive
tasks. If sleep-on-exit is not used, the loop is free and can use WFI (sleep-now) when
required.

Table 5-8 Reset boot-up behavior (continued)

Action Description
5-22 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Exceptions
Example 5-2 Reset routine with selected Sleep model using WFI

void reset()
{

extern volatile unsigned exc_req;
// do setup work (initialize variables, initialize runtime if wanted,
setup peripherals, etc)
nvic[INT_ENA] = 1; // enable interrupts
while (1)
{

// do some work for (exc_req = FALSE; exc_req == FALSE;)
wfi(); // sleep now - wait for interrupt

// do some post exception checking/cleanup
}

}

Example 5-3 Reset routine with selected Sleep on exit cancelled by ISRs that
require attention

void reset()
{

// do setup work (initialize variables, initialize runtime if wanted,
setup peripherals, etc)
nvic[INT_ENA] = 1; // enable interrupts
while (1)
{

// We are slept until an exception clears sleep on exit state so that we
can post-process/cleanup.
nvic_regs[NV_SLEEP] |= NVSLEEP_ON_EXIT;
while (nvic_regs[NV_SLEEP] & NVSLEEP_ON_EXIT)
wfi(); // sleep now - wait for interrupt which clears
// do some post exception checking/cleanup

}
}

Note
 An executive is not required in the Reset routine because an ISR activation can enact
priority level changes. This ensures faster response to changing loads, and uses priority
boosting, to solve priority inversions, to ensure fine grain support. Thread mode is used
for the user code for Real Time Operating System (RTOS) models using threads and
privilege.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 5-23

Exceptions
5.10 Exception control transfer

The processor transfers control to an ISR following the rules shown in Table 5-9.

Table 5-9 Transferring to exception processing

Processor activity at
assertion of exception Transfer to exception processing

Non-memory instruction Takes exception on completion of cycle, before the next instruction.

Load/store single Completes or abandons depending on bus status. Takes exception on the next cycle,
depending on the bus wait states.

Load/store multiple Completes or abandons current register and sets continuation counter into EPSR. Takes
exception on the next cycle, depending on bus permission and Interruptible-Continuable
Instruction (ICI) rules. For more information on ICI rules, see the ARMv7-M Architecture
Reference Manual.

Exception entry This is a late-arriving exception. If it has higher priority than the exception being entered,
then the processor cancels the exception entry actions and takes the late-arriving
exception. Late arriving results in a decision change (vector table) at interrupt processing
time. When you enter a new handler, that is the first ISR instruction, normal pre-emption
rules apply, and it is no longer classed as a late-arrival.

Tail-chaining This is a late-arriving exception. If it has higher priority than the one being tail-chained,
the processor cancels the preamble and takes the late-arriving exception.

Exception postamble If the new exception has higher priority than the stacked exception to which the processor
is returning, the processor tail-chains the new exception.
5-24 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Exceptions
5.11 Setting up multiple stacks

To implement multiple stacks, the application must take these actions:

• use the MSR instruction to set up the Process_SP register

• if using an MPU, protect the stacks appropriately

• initialize the stack and privilege of the Thread mode.

If the privilege of Thread mode is changed from privileged to user, only another ISR,
such as SVCall, can change the privilege back from user to privileged.

The stack in Thread mode can be changed from main to process or from process to
main, but doing so affects its access to the local variables of the thread. It is better to
have another ISR change the stack used in Thread mode. The following shows an
example boot sequence:

1. Call setup routine to:

a. Set up other stacks using MSR.

b. Enable the MPU to support base regions, if any.

c. Invoke all boot routines.

d. Return from setup routine.

2. Change Thread mode to unprivileged.

3. Use SVC to invoke the kernel. Then the kernel:

a. Starts threads.

b. Uses MRS to read the SP for the current user thread and save it in its TCB.

c. Uses MSR to set the SP for the next thread. This is usually SP_process.

d. Sets up the MPU for the newly current thread, if necessary.

e. Returns into the newly current thread.

Example 5-4 shows a modification to the EXC_RETURN value in the ISR to return
using PSP.

Example 5-4 Modification to the EXC_RETURN value in the ISR

; First time use of PSP, run from a Handler with RETTOBASE == 1

 LDR r0, PSPValue ; acquire value for new Process stack
 MSR PSP, r0 ; set Process stack value
 ORR lr, lr, #4 ; change EXC_RETURN for return on PSP
 BX lr ; return from Handler to Thread

Example 5-5 on page 5-26 shows how to implement a simple context switcher after the
switch to Thread on PSP.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 5-25

Exceptions
Example 5-5 Implement a simple context switcher

 ; Example Context Switch (Assumes Thread is already on PSP)

 MRS r12, PSP ; Recover PSP into R12
 STMDB r12!, {r4-r11, LR} ; Push non-stack registers
 LDR r0, =OldPSPValue ; Get pointer to old Thread Control Block
 STR r12, [r0] ; Store SP into Thread Control Block

LDR r0, =NewPSPValue ; Get pointer to new Thread Control Block
 LDR r12, [r0] ; Acquire new Process SP

LDMIA r12!, {r4-r11, LR} ; Restore non-stacked registers
 MSR PSP, r12 ; Set PSP to R12
 BX lr ; Return back to Thread

Note
 In Example 5-4 on page 5-25 and Example 5-5, the only time the decision to move
Thread from MSP to PSP can be made, or the non-stacked registers can be guaranteed
not to have been modified by a stacked Handler, is when there is only one active
ISR/Handler.
5-26 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Exceptions
5.12 Abort model

Four events can generate a fault:

• An instruction fetch or vector table load bus error.

• A data access bus error.

• Internally-detected error such as an undefined instruction or an attempt to change
state with a BX instruction. Fault status registers in the NVIC indicate the causes
of the faults.

• MPU fault as a result of privilege violation or unmanaged region.

There are two kinds of fault handler:

• the fixed-priority Hard Fault

• the settable-priority local faults.

5.12.1 Hard Fault

Only Reset and NMI can pre-empt the fixed priority Hard Fault. A Hard Fault can
pre-empt any other exception other than Reset NMI or another Hard Fault.

Note
 Code that uses FAULTMASK acts as a Hard Fault and so follows the same rules as a
Hard Fault.

Secondary bus faults do not escalate because a pre-empting fault of the same type
cannot pre-empt itself. This means that if a corrupted stack causes a fault, the fault
handler still executes even though the stack pushes for the handler failed. The fault
handler can operate, but the stack contents are corrupted.

5.12.2 Local faults and escalation

Local faults are categorized according to their cause. See Table 5-10 on page 5-28.
When enabled, local fault handlers process all normal faults. However, a local fault
escalates to a Hard Fault when:

• A local fault handler causes the same kind of fault as the one it is servicing.

• A local fault handler causes a fault with the same or higher priority.

• An exception handler causes a fault with the same or higher priority.

• The local fault is not enabled.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 5-27

Exceptions
Table 5-10 lists the local faults.

Table 5-10 Faults

Fault Bit name Handler Notes Trap enable bit

Reset Reset cause Reset Any form of reset. RESETVCATCH

Vector Read error VECTTBL HardFault Bus error returned when reading
the vector table entry.

INTERR

uCode stack push error STKERR BusFault Failure when saving context using
hardware - bus error returned.

INTERR

uCode stack push error MSTKERR MemManage Failure when saving context using
hardware - MPU access violation.

INTERR

uCode stack pop error UNSTKERR BusFault Failure when restoring context
using hardware - bus error
returned.

INTERR

uCode stack pop error MUNSKERR MemManage Failure when restoring context
using hardware - MPU access
violation.

INTERR

Escalated to Hard Fault FORCED HardFault Fault occurred and handler is equal
or higher priority than current,
including fault within fault when
priority does not enable, or
Configurable fault disabled.
Includes SVC, BKPT and other
kinds of faults.

HARDERR

MPU mismatch DACCVIOL MemManage Violation or fault on MPU as a
result of data access.

MMERR

MPU mismatch IACCVIOL MemManage Violation or fault on MPU as a
result of instruction address.

MMERR

Pre-fetch error IBUSERR BusFault Bus error returned because of
instruction fetch. Faults only if
makes it to execute. Branch
shadow can fault and be ignored.

BUSERR

Precise data bus error PRECISERR BusFault Bus error returned because of data
access, and was precise, points to
instruction.

BUSERR
5-28 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Exceptions
Imprecise data bus error IMPRECISERR BusFault Late bus error because of data
access. Exact instruction is no
longer known. This is pended and
not synchronous. It does not cause
FORCED.

BUSERR

No Coprocessor NOCP UsageFault Truly does not exist, or not present
bit.

NOCPERR

Undefined Instruction UNDEFINSTR UsageFault Unknown instruction. STATERR

Attempt to execute an
instruction when in an
invalid ISA state. For
example, not Thumb

INVSTATE UsageFault Attempt to execute in an invalid
EPSR state. For example, after a
BX type instruction has changed
state. This includes states after
return from exception including
inter-working states.

STATERR

Return to
PC=EXC_RETURN
when not enabled or with
invalid magic number

INVPC UsageFault Illegal exit, caused either by an
illegal EXC_RETURN value, an
EXC_RETURN and stacked EPSR
value mismatch, or an exit while
the current EPSR is not contained
in the list of currently active
exceptions.

STATERR

Illegal unaligned load or
store

UNALIGNED UsageFault This occurs when any load-store
multiple instruction attempts to
access a non-word aligned
location. It can be enabled to occur
for any load-store that is unaligned
to its size using the
UNALIGN_TRP bit.

CHKERR

Divide By 0 DIVBYZERO UsageFault This can be enabled to occur when
SDIV or UDIV is executed with a
divisor of 0, and the DIV_0_TRP
bit is set.

CHKERR

SVC - SVCall System request (Service Call). -

Table 5-10 Faults (continued)

Fault Bit name Handler Notes Trap enable bit
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 5-29

Exceptions
Table 5-11 shows debug faults.

5.12.3 Fault status registers and fault address registers

Each fault has a fault status register with a flag for that fault.

There are:

• three configurable fault status registers that correspond to the three configurable
fault handlers

• one hard fault status register

• one debug fault status register.

Depending on the cause, one of the five status registers has a bit set.

There are two Fault Address Registers (FAR):

• Bus Fault Address Register (BFAR)

• Memory Fault Address Register (MFAR).

A flag in the corresponding fault status register indicates when the address in the fault
address register is valid.

Note
 BFAR and MFAR are the same physical register. Because of this, the BFARVALID and
MFARVALID bits are mutually exclusive.

Table 5-12 on page 5-31 shows the fault status registers and two fault address registers.

Table 5-11 Debug faults

Fault Flag Notes Trap enable bit

Internal halt request HALTED NVIC request from, for example, step, core halt -

Breakpoint BKPT SW breakpoint from patched instruction or FPB -

Watchpoint DWTTRAP Watchpoint match in DWT -

External EXTERNAL EDBGRQ line asserted -

Vector catch VCATCH Vector catch triggered. Corresponding FSR
contains the primary cause of the exception.

VC_xxx bit(s) or
RESETVCATCH set
5-30 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Exceptions
Table 5-12 Fault status and fault address registers

Status Register name Handler Address Register name Description

HFSR Hard Fault - Escalation and Special

MMSR Mem Manage MMAR MPU faults

BFSR Bus Fault BFAR Bus faults

UFSR Usage Fault - Usage fault

DFSR Debug Monitor or Halt - Debug traps
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 5-31

Exceptions
5.13 Activation levels

When no exceptions are active, the processor is in Thread mode. When an ISR or fault
handler is active, the processor enters Handler mode. Table 5-13 lists the privilege and
stacks of the activation levels.

Table 5-14 summarizes the transition rules for all exception types and how they relate
to the access rules and stack model.

Table 5-13 Privilege and stack of different activation levels

Active exception Activation level Privilege Stack

None Thread mode Privileged or user Main or process

ISR active Asynchronous pre-emption level Privileged Main

Fault handler active Synchronous pre-emption level Privileged Main

Reset Thread mode Privileged Main

Table 5-14 Exception transitions

Active Exception Triggering event Transition type Privilege Stack

Reset Reset signal Thread
Privileged
or user

Main or
process

ISRa or NMIb Set-pending software instruction
or hardware signal

Asynchronous
pre-emption

Privileged Main

Fault:

Synchronous
pre-emption

Privileged Main
Hard fault

Bus fault

No CPc fault

Undefined instruction fault

Escalation

Memory access error

Absent CP access

Undefined instruction

Debug monitor
Debug event when halting not
enabled

Synchronous Privileged Main

SVCd SVC instruction

External interrupt

a. Interrupt service routine.
b. Nonmaskable interrupt.
c. Coprocessor.
d. Software interrupt.
5-32 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Exceptions
Table 5-15 shows exception subtype transitions.

Table 5-15 Exception subtype transitions

Intended
activation
subtype Triggering event Activation Priority effect

Thread Reset signal Asynchronous Immediate, thread is lowest

ISR/NMI HW signal or set-pend Asynchronous Pre-empt or tail-chain according to priority

Monitor Debug eventa Synchronous If priority less than or equal to current, hard fault

SVCall SVC instruction Synchronous If priority less than or equal to current, hard fault

PendSV Software pend request Chain Pre-empt or tail-chain according to priority

UsageFault Undefined instruction Synchronous If priority greater than or equal to current, hard fault

NoCpFault Access to absent CP Synchronous If priority greater than or equal to current, hard fault

BusFault Memory access error Synchronous If priority greater than or equal to current, hard fault

MemManage MPU mismatch Synchronous If priority greater than or equal to current, hard fault

HardFault Escalation Synchronous Higher than all except NMI

FaultEscalate Escalate request from
Configurable fault
handler

Chain Boosts priority of local handler to same as hard fault so it can
return and chain to Configurable Fault handler

a. While halting not enabled.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 5-33

Exceptions
5.14 Flowcharts

This section summarizes interrupt flow with:

• Interrupt handling

• Pre-emption on page 5-35

• Return on page 5-35.

5.14.1 Interrupt handling

Figure 5-6 shows how instructions execute until pre-empted by a higher-priority
interrupt.

Figure 5-6 Interrupt handling flowchart
5-34 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Exceptions
5.14.2 Pre-emption

Figure 5-7 shows what happens when an exception pre-empts the current ISR.

Figure 5-7 Pre-emption flowchart

5.14.3 Return

Figure 5-8 on page 5-36 shows how the processor restores the stacked ISR or tail-chains
to a late-arriving interrupt with higher priority than the stacked ISR.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 5-35

Exceptions
Figure 5-8 Return from interrupt flowchart
5-36 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Chapter 6
Clocking and Resets

This chapter describes the processor clocking and resets. It contains the following
sections:

• Clocking on page 6-2

• Resets on page 6-4

• Cortex-M3 reset modes on page 6-5.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 6-1

Clocking and Resets
6.1 Clocking

The processor has three functional clock inputs. Table 6-1 describes the processor
clocks.

FCLK and HCLK are synchronous to each other. FCLK is a free running version of
HCLK. For more information, see Chapter 7 Power Management. FCLK and HCLK
must be balanced with respect to each other, with equal latencies into the processor.

The processor is integrated with components for debug and trace. Your macrocell might
contain some, or all, of the clocks shown in Table 6-2.

SWCLKTCK is the clock for the debug interface domain of the SWJ-DP. In JTAG
mode this is equivalent to TCK. In Serial Wire Mode this is the Serial Wire clock. It is
asynchronous to all other clocks. DBGCLK is the clock for the debug interface domain
of SW-DP. It is asynchronous to the other clocks.

TRACECLKIN is the reference clock for the Trace Port Interface Unit (TPIU). It is
asynchronous to the other clocks.

Table 6-1 Cortex-M3 processor clocks

Clock Domain Description

FCLK Processor Free running processor clock, used for sampling interrupts and clocking debug blocks. FCLK
ensures that interrupts can be sampled, and sleep events can be traced, while the processor is
sleeping.

HCLK Processor Processor clock.

DAPCLK Processor Debug port Advanced High-performance Bus Access Port (AHB-AP) clock.

Table 6-2 Cortex-M3 macrocell clocks

Clock Domain Description

TRACECLKIN TPIU Clocks the output of the TPIU

DBGCLK SW-DP Debug clock

SWCLKTCK SWJ-DP Debug clock
6-2 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Clocking and Resets
Note
 SWCLKTCK, DBGCLK, and TRACECLKIN only require to be driven if your
implementation contains Serial Wire JTAG Debug Port (SWJ-DP), Serial Wire Debug
Port (SW-DP), and TPIU blocks respectively. Otherwise, the clock inputs must be tied
off.

Note
 The processor also contains a STCLK input. This port is not a clock. It is a reference
input for the SysTick counter, and it must be less than half the frequency of FCLK.
STCLK is synchronized internally by the processor to FCLK.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 6-3

Clocking and Resets
6.2 Resets

The processor has three reset inputs. Table 6-3 describes the reset inputs.

Note
 nTRST resets SWJ-DP. If your implementation does not contain SWJ-DP, this reset
must be tied off.

Table 6-3 Reset inputs

Reset input Description

PORESETn Resets the entire processor system with the exception of SWJ-DP

SYSRESETn Resets the entire processor system with the exception of debug logic in the:

• Nested Vectored Interrupt Controller (NVIC)

• Flash Patch and Breakpoint (FPB)

• Data Watchpoint and Trace (DWT)

• Instrumentation Trace Macrocell (ITM)

• AHB-AP.

nTRST SWJ-DP reset
6-4 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Clocking and Resets
6.3 Cortex-M3 reset modes

The reset signals present in the processor design enable you to reset different parts of
the design independently. Table 6-4 shows the reset signals, and the combinations and
possible applications that you can use them in.

Note
 PORESETn resets a superset of the SYSRESETn logic.

6.3.1 Power-on reset

Figure 6-1 on page 6-6 shows the reset signals for the macrocell.

Table 6-4 Reset modes

Reset mode SYSRESETn nTRST PORESETn Application

Power-on reset x 0 0 Reset at power up, full system reset. Cold reset.

System reset 0 x 1 Reset of processor core and system components,
excluding debug.

SWJ-DP reset 1 0 1 Reset of SWJ-DP logic.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 6-5

Clocking and Resets
Figure 6-1 Reset signals

You must apply power-on or cold reset to the processor when power is first applied to
the system. In the case of power-on reset, the falling edge of the reset signal,
PORESETn, does not have to be synchronous to HCLK. Because PORESETn is
synchronized within the processor, you do not have to synchronize this signal.
Figure 6-2 shows the application of power-on reset. Figure 6-3 on page 6-7 shows the
reset synchronizers within the processor.

Figure 6-2 Power-on reset

It is recommended that you assert the reset signals for at least three HCLK cycles to
ensure correct reset behavior. Figure 6-3 on page 6-7 shows the internal reset
synchronization.
6-6 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Clocking and Resets
Note
 You must consider LOCKUP from the Cortex-M3 system for inclusion in any external
watchdog circuitry when an external debugger is not attached.

Figure 6-3 Internal reset synchronization

6.3.2 System reset

A system or warm reset initializes the majority of the macrocell, excluding the NVIC
debug logic, FPB, DWT, and ITM. System reset typically resets a system that has been
operating for some time, for example, watchdog reset.

SYSRESETn must be synchronized external to the processor. Figure 6-3 shows the
example reset synchronization provided in CortexM3Integration.

Cortex-M3 exports a signal, SYSRESETREQ, that is asserted when the
SYSRESETREQ bit of the Application Interrupt and Reset Control Register is set. For
example, you can use this as an input to a watchdog timer as shown in Figure 6-1 on
page 6-6.

6.3.3 SWJ-DP reset

nTRST reset initializes the state of the SWJ-DP controller. nTRST reset is typically
used by the RealView™ ICE module for hot-plug connection of a debugger to a system.

nTRST enables initialization of the SWJ-DP controller without affecting the normal
operation of the processor.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 6-7

Clocking and Resets
The nTRST signal must be asserted with regard to the SWCLKTCK clock because the
SWJ-DP performs no synchronization.

6.3.4 SW-DP reset

SW-DP is reset with DBGRESETn. This reset must be synchronized to DBGCLK.

6.3.5 Normal operation

During normal operation, neither processor reset nor power-on reset is asserted. If the
SWJ-DP port is not being used, the value of nTRST does not matter.
6-8 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Chapter 7
Power Management

This chapter describes the processor power management functions. It contains the
following sections:

• About power management on page 7-2

• System power management on page 7-3.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 7-1

Power Management
7.1 About power management

The processor extensively uses gated clocks to disable unused functionality, and
disables inputs to unused functional blocks, so that only actively used logic consumes
any dynamic power.

The ARMv7-M architecture supports system sleep modes that can stop the Cortex-M3
and system clocks for greater power reductions. These are described in System power
management on page 7-3.
7-2 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Power Management
7.2 System power management

Writing to the System Control Register (see System Control Register on page 8-24)
controls the Cortex-M3 system power states. Table 7-1 shows the supported sleep
modes.

The processor exports the following signals to indicate when the processor is sleeping:

SLEEPING This signal is asserted when in Sleep-now or Sleep-on-exit modes, and
indicates that the clock to the processor can be stopped. On receipt of a
new interrupt, the NVIC de-asserts this signal, releasing the core from
sleep. SLEEPING on page 7-4 shows an example of SLEEPING usage.

SLEEPDEEP

This signal is asserted when in Sleep-now or Sleep-on-exit modes when
the SLEEPDEEP bit of the System Control Register is set. This signal is
routed to the clock manager and can gate the processor and system
components including the Phase Locked Loop (PLL) to achieve greater
power savings. On receipt of a new interrupt, the Nested Vectored
Interrupt Controller (NVIC) deasserts this signal, and release core sleep
when the clock manager indicates that the clock is stable. SLEEPDEEP
on page 7-4 shows an example of SLEEPDEEP usage.

Table 7-1 Supported sleep modes

Sleep mechanism Description

Sleep-now The Wait For Interrupt (WFI) or the Wait For Event (WFE) instructions request the sleep-now
model. These instructions cause the Nested Vectored Interrupt Controller (NVIC) to put the
processor into the low-power state pending another exception.a

Sleep-on-exit When the SLEEPONEXIT bit of the System Control Register is set, the processor enters the
low-power state as soon as it exits the lowest priority ISR. The processor enters the low-power
state without popping registers and a following exception is taken without having to push
registers. The core stays in sleep state until another exception is pended. This is an automated
WFI mode.

Note
 Sleep-on-exit might return to base under various situations such as debug. Therefore, you must
provide base code such as an idle loop or idle thread.

Deep-sleep Deep-sleep is used in conjunction with Sleep-now and Sleep-on-exit. When the SLEEPDEEP
bit of the System Control Register is set, the processor indicates to the system that deeper sleep
is possible.

a. The WFI instruction can complete even if no exception becomes active. Do not use it to detect the occurrence of an exception.
WFI is normally used in an idle loop in the Thread mode. For more information on WFI, WFE, BASEPRI, and PRIMASK see
the ARMv7-M Architecture Reference Manual.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 7-3

Power Management
7.2.1 SLEEPING

Figure 7-1 shows an example of how to reduce power consumption by gating the
HCLK clock to the processor with SLEEPING in the low-power state. If necessary,
you can also use SLEEPING to gate other system components.

Figure 7-1 SLEEPING power control example

To detect interrupts, the processor must receive the free-running FCLK at all times.
FCLK clocks:

• A small amount of logic in the NVIC that detects interrupts.

• The Data Watchpoint and Trace (DWT) and Instrumentation Trace Macrocell
(ITM) blocks. These blocks can generate trace packets during sleep when so
enabled. If the TRCENA bit of the Debug Exception and Monitor Control
Register is enabled then the power consumption of those blocks is minimized. See
Debug Exception and Monitor Control Register on page 10-8.

FCLK frequency can be reduced during SLEEPING assertion.

Note
 Suppressing HCLK using the clock-gating scheme in Figure 7-1 prevents debug
accesses. The CoreSight Debug Ports (DPs) provide a power up signal that enables the
system to bypass the clock-gating logic in Figure 7-1.

7.2.2 SLEEPDEEP

Figure 7-2 on page 7-5 shows an example of how to reduce power consumption by
stopping the clock controller with SLEEPDEEP in the low-power state. When exiting
low-power state, the LOCK signal indicates that the PLL is stable, and it is safe to
enable the Cortex-M3 clock, ensuring that the processor is not re-started until the clocks
are stable.
7-4 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Power Management
Figure 7-2 SLEEPDEEP power control example

To detect interrupts, the processor must receive the free-running FCLK in the
low-power state. FCLK frequency can be reduced during SLEEPDEEP assertion.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 7-5

Power Management
7-6 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Chapter 8
Nested Vectored Interrupt Controller

This chapter describes the Nested Vectored Interrupt Controller (NVIC). It contains the
following sections:

• About the NVIC on page 8-2

• NVIC programmer’s model on page 8-3

• Level versus pulse interrupts on page 8-41.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 8-1

Nested Vectored Interrupt Controller
8.1 About the NVIC

The NVIC:

• facilitates low-latency exception and interrupt handling

• controls power management

• implements System Control Registers.

The NVIC supports up to 240 dynamically reprioritizable interrupts each with up to 256
levels of priority. The NVIC and the processor core interface are closely coupled, which
enables low latency interrupt processing and efficient processing of late arriving
interrupts. The NVIC maintains knowledge of the stacked (nested) interrupts to enable
tail-chaining of interrupts.

You can only fully access the NVIC from privileged mode, but you can pend interrupts
in user-mode if you enable the Configuration Control Register (see Configuration
Control Register on page 8-25). Any other user-mode access causes a bus fault.

All NVIC registers are accessible using byte, halfword, and word unless otherwise
stated.

All NVIC registers and system debug registers are little endian regardless of the
endianness state of the processor.

Processor exception handling is described in Chapter 5 Exceptions.
8-2 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Nested Vectored Interrupt Controller
8.2 NVIC programmer’s model

This section lists and describes the NVIC registers. It contains the following:

• NVIC register map

• NVIC register descriptions on page 8-7.

8.2.1 NVIC register map

Table 8-1 lists the NVIC registers. The System Control space includes the NVIC. The
NVIC space is split as follows:

• 0xE000E000 - 0xE000E00F. Interrupt Type Register

• 0xE000E010 - 0xE000E0FF. System Timer

• 0xE000E100 - 0xE000ECFF. NVIC

• 0xE000ED00 - 0xE000ED8F. System Control Block, including:

— CPUID

— System control, configuration, and status

— Fault reporting

• 0xE000EF00 - 0xE000EF0F. Software Trigger Exception Register

• 0xE000EFD0 - 0xE000EFFF. ID space.

Table 8-1 NVIC registers

Name of register Type Address
Reset
value

Page

Interrupt Control Type Register Read-only 0xE000E004 a page 8-7

SysTick Control and Status Register Read/write 0xE000E010 0x00000000 page 8-8

SysTick Reload Value Register Read/write 0xE000E014 Unpredictable page 8-9

SysTick Current Value Register Read/write clear 0xE000E018 Unpredictable page 8-10

SysTick Calibration Value Register Read-only 0xE000E01C STCALIB page 8-11

Irq 0 to 31 Set Enable Register Read/write 0xE000E100 0x00000000 page 8-12

.

.

.

Irq 224 to 239 Set Enable Register Read/write 0xE000E11C 0x00000000 page 8-12

Irq 0 to 31 Clear Enable Register Read/write 0xE000E180 0x00000000 page 8-13
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 8-3

Nested Vectored Interrupt Controller
.

.

.

Irq 224 to 239 Clear Enable Register Read/write 0xE000E19C 0x00000000 page 8-13

Irq 0 to 31 Set Pending Register Read/write 0xE000E200 0x00000000 page 8-14

.

.

.

Irq 224 to 239 Set Pending Register Read/write 0xE000E21C 0x00000000 page 8-14

Irq 0 to 31 Clear Pending Register Read/write 0xE000E280 0x00000000 page 8-14

.

.

.

Irq 224 to 239 Clear Pending Register Read/write 0xE000E29C 0x00000000 page 8-14

Irq 0 to 31 Active Bit Register Read-only 0xE000E300 0x00000000 page 8-15

.

.

.

Irq 224 to 239 Active Bit Register Read-only 0xE000E31C 0x00000000 page 8-15

Irq 0 to 31 Priority Register Read/write 0xE000E400 0x00000000 page 8-16

.

.

.

Irq 236 to 239 Priority Register Read/write 0xE000E4F0 0x00000000 page 8-15

Table 8-1 NVIC registers (continued)

Name of register Type Address
Reset
value

Page
8-4 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Nested Vectored Interrupt Controller
CPUID Base Register Read-only 0xE000ED00 0x411FC231 page 8-17

Interrupt Control State Register Read/write or read-only 0xE000ED04 0x00000000 page 8-18

Vector Table Offset Register Read/write 0xE000ED08 0x00000000 page 8-20

Application Interrupt/Reset Control Register Read/write 0xE000ED0C 0x00000000b page 8-21

System Control Register Read/write 0xE000ED10 0x00000000 page 8-24

Configuration Control Register Read/write 0xE000ED14 0x00000000 page 8-25

System Handlers 4-7 Priority Register Read/write 0xE000ED18 0x00000000 page 8-27

System Handlers 8-11 Priority Register Read/write 0xE000ED1C 0x00000000 page 8-27

System Handlers 12-15 Priority Register Read/write 0xE000ED20 0x00000000 page 8-27

System Handler Control and State Register Read/write 0xE000ED24 0x00000000 page 8-28

Configurable Fault Status Registers Read/write 0xE000ED28 0x00000000 page 8-31

Hard Fault Status Register Read/write 0xE000ED2C 0x00000000 page 8-36

Debug Fault Status Register Read/write 0xE000ED30 0x00000000 page 8-37

Mem Manage Address Register Read/write 0xE000ED34 Unpredictable page 8-38

Bus Fault Address Register Read/write 0xE000ED38 Unpredictable page 8-39

Auxiliary Fault Status Register Read/write 0xE000ED3C 0x00000000 page 8-39

PFR0: Processor Feature register0 Read-only 0xE000ED40 0x00000030 -

PFR1: Processor Feature register1 Read-only 0xE000ED44 0x00000200 -

DFR0: Debug Feature register0 Read-only 0xE000ED48 0x00100000 -

AFR0: Auxiliary Feature register0 Read-only 0xE000ED4C 0x00000000 -

MMFR0: Memory Model Feature register0 Read-only 0xE000ED50 0x00000030 -

MMFR1: Memory Model Feature register1 Read-only 0xE000ED54 0x00000000 -

MMFR2: Memory Model Feature register2 Read-only 0xE000ED58 0x00000000 -

MMFR3: Memory Model Feature register3 Read-only 0xE000ED5C 0x00000000 -

Table 8-1 NVIC registers (continued)

Name of register Type Address
Reset
value

Page
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 8-5

Nested Vectored Interrupt Controller
ISAR0: ISA Feature register0 Read-only 0xE000ED60 0x01141110 -

ISAR1: ISA Feature register1 Read-only 0xE000ED64 0x02111000 -

ISAR2: ISA Feature register2 Read-only 0xE000ED68 0x21112231 -

ISAR3: ISA Feature register3 Read-only 0xE000ED6C 0x01111110 -

ISAR4: ISA Feature register4 Read-only 0xE000ED70 0x01310102 -

Software Trigger Interrupt Register Write Only 0xE000EF00 - page 8-40

Peripheral identification register (PID4) Read-only 0xE000EFD0 0x04 -

Peripheral identification register (PID5) Read-only 0xE000EFD4 0x00 -

Peripheral identification register (PID6) Read-only 0xE000EFD8 0x00 -

Peripheral identification register (PID7) Read-only 0xE000EFDC 0x00 -

Peripheral identification register Bits 7:0 (PID0) Read-only 0xE000EFE0 0x00 -

Peripheral identification register Bits 15:8
(PID1)

Read-only 0xE000EFE4 0xB0 -

Peripheral identification register Bits 23:16
(PID2)

Read-only 0xE000EFE8 0x1B -

Peripheral identification register Bits 31:24
(PID3)

Read-only 0xE000EFEC 0x00 -

Component identification register Bits 7:0
(CID0)

Read Only 0xE000EFF0 0x0D -

Component identification register Bits 15:8
(CID1)

Read-only 0xE000EFF4 0xE0 -

Component identification register Bits 23:16
(CID2)

Read-only 0xE000EFF8 0x05 -

Component identification register Bits 31:24
(CID3)

Read-only 0xE000EFFC 0xB1 -

a. Reset value depends on the number of interrupts defined.
b. Bits [10:8] are reset. The ENDIANESS bit, bit [15], is set at reset by the sampling of BIGEND.

Table 8-1 NVIC registers (continued)

Name of register Type Address
Reset
value

Page
8-6 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Nested Vectored Interrupt Controller
8.2.2 NVIC register descriptions

The sections that follow describe how to use the NVIC registers.

Note
 The Memory Protection Unit (MPU) registers, and the debug registers are described in
Chapter 9 Memory Protection Unit and Chapter 10 Core Debug respectively.

Interrupt Controller Type Register

Read the Interrupt Controller Type Register to see the number of interrupt lines that the
NVIC supports.

The register address, access type, and Reset state are:

Address 0xE000E004

Access Read-only

Reset state Depends on the number of interrupts defined in this processor
implementation.

Figure 8-1 shows the fields of the Interrupt Controller Type Register.

Figure 8-1 Interrupt Controller Type Register bit assignments

31 5 4 0

INTLINESNUMReserved
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 8-7

Nested Vectored Interrupt Controller
Table 8-2 describes the fields of the Interrupt Controller Type Register.

SysTick Control and Status Register

Use the SysTick Control and Status Register to enable the SysTick features.

The register address, access type, and Reset state are:

Address 0xE000E010

Access Read/write

Reset state 0x00000000

Figure 8-2 shows the fields of the SysTick Control and Status Register.

Figure 8-2 SysTick Control and Status Register bit assignments

Table 8-2 Interrupt Controller Type Register bit assignments

Bits Field Function

[31:5] - Reserved.

[4:0] INTLINESNUM Total number of interrupt lines in groups of 32:

b00000 = 0...32a

b00001 = 33...64

b00010 = 65...96

b00011 = 97...128

b00100 = 129...160

b00101 = 161...192

b00110 = 193...224

b00111 = 225...256a

a. The processor only supports between 1 and 240 external interrupts.
8-8 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Nested Vectored Interrupt Controller

B

[3

[1

[2

[1

[0
Table 8-3 describes the fields of the SysTick Control and Status register.

SysTick Reload Value Register

Use the SysTick Reload Value Register to specify the start value to load into the current
value register when the counter reaches 0. It can be any value between 1 and 0x00FFFFFF.
A start value of 0 is possible, but has no effect because the SysTick interrupt and
COUNTFLAG are activated when counting from 1 to 0.

Therefore, as a multi-shot timer, repeated over and over, it fires every N+1 clock pulse,
where N is any value from 1 to 0x00FFFFFF. So, if the tick interrupt is required every 100
clock pulses, 99 must be written into the RELOAD. If a new value is written on each
tick interrupt, so treated as single shot, then the actual count down must be written. For
example, if a tick is next required after 400 clock pulses, 400 must be written into the
RELOAD.

The register address, access type, and Reset state are:

Address 0xE000E014

Access Read/write

Reset state Unpredictable

Table 8-3 SysTick Control and Status Register bit assignments

its Field Function

1:17] - Reserved.

6] COUNTFLAG Returns 1 if timer counted to 0 since last time this was read. Clears on read by application of any
part of the SysTick Control and Status Register. If read by the debugger using the DAP, this bit is
cleared on read-only if the MasterType bit in the AHB-AP Control Register is set to 0. Otherwise,
the COUNTFLAG bit is not changed by the debugger read.

] CLKSOURCE 0 = external reference clock.

1 = core clock.

If no reference clock is provided, it is held at 1 and so gives the same time as the core clock. The
core clock must be at least 2.5 times faster than the reference clock. If it is not, the count values
are Unpredictable.

] TICKINT 1 = counting down to 0 pends the SysTick handler.

0 = counting down to 0 does not pend the SysTick handler. Software can use the COUNTFLAG
to determine if ever counted to 0.

] ENABLE 1 = counter operates in a multi-shot way. That is, counter loads with the Reload value and then
begins counting down. On reaching 0, it sets the COUNTFLAG to 1 and optionally pends the
SysTick handler, based on TICKINT. It then loads the Reload value again, and begins counting.

0 = counter disabled.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 8-9

Nested Vectored Interrupt Controller
Figure 8-3 shows the fields of the SysTick Reload Value Register.

Figure 8-3 SysTick Reload Value Register bit assignments

Table 8-4 describes the fields of the SysTick Reload Value Register.

SysTick Current Value Register

Use the SysTick Current Value Register to find the current value in the register.

The register address, access type, and Reset state are:

Address 0xE000E018

Access Read/write clear

Reset state Unpredictable

Figure 8-4 shows the fields of the SysTick Current Value Register.

Figure 8-4 SysTick Current Value Register bit assignments

Table 8-4 SysTick Reload Value Register bit assignments

Bits Field Function

[31:24] - Reserved

[23:0] RELOAD Value to load into the SysTick Current Value Register when the counter reaches 0.
8-10 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Nested Vectored Interrupt Controller
Table 8-5 describes the fields of the SysTick Current Value Register.

SysTick Calibration Value Register

Use the SysTick Calibration Value Register to enable software to scale to any required
speed using divide and multiply.

The register address, access type, and Reset state are:

Address 0xE000E01C

Access Read

Reset state STCALIB

Figure 8-5 describes the fields of the SysTick Calibration Value Register.

Figure 8-5 SysTick Calibration Value Register bit assignments

Table 8-6 describes the fields of the SysTick Calibration Value Register.

Table 8-5 SysTick Current Value Register bit assignments

Bits Field Function

[31:24] - Reserved

[23:0] CURRENT Current value at the time the register is accessed. No read-modify-write protection is provided,
so change with care.

This register is write-clear. Writing to it with any value clears the register to 0. Clearing this
register also clears the COUNTFLAG bit of the SysTick Control and Status Register.

Table 8-6 SysTick Calibration Value Register bit assignments

Bits Field Function

[31] NOREF 1 = the reference clock is not provided.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 8-11

Nested Vectored Interrupt Controller
Interrupt Set-Enable Registers

Use the Interrupt Set-Enable Registers to:

• enable interrupts

• determine which interrupts are currently enabled.

Each bit in the register corresponds to one of 32 interrupts. Setting a bit in the Interrupt
Set-Enable Register enables the corresponding interrupt.

When the enable bit of a pending interrupt is set, the processor activates the interrupt
based on its priority. When the enable bit is clear, asserting its interrupt signal pends the
interrupt, but it is not possible to activate the interrupt, regardless of its priority.
Therefore, a disabled interrupt can serve as a latched general-purpose I/O bit. You can
read it and clear it without invoking an interrupt.

Clear an Interrupt Set-Enable Register bit by writing a 1 to the corresponding bit in the
Interrupt Clear-Enable Register (see Interrupt Clear-Enable Registers on page 8-13).

Note
 Clearing an Interrupt Set-Enable Register bit does not affect currently active interrupts.
It only prevents new activations.

The register address, access type, and Reset state are:

Address 0xE000E100-0xE000E11C

Access Read/write

Reset state 0x00000000

[30] SKEW 1 = the calibration value is not exactly 10ms because of clock frequency. This could affect its
suitability as a software real time clock.

[29:24] - Reserved

[23:0] TENMS This value is the Reload value to use for 10ms timing. Depending on the value of SKEW, this might
be exactly 10ms or might be the closest value.

If this reads as 0, then the calibration value is not known. This is probably because the reference
clock is an unknown input from the system or scalable dynamically.

Table 8-6 SysTick Calibration Value Register bit assignments (continued)

Bits Field Function
8-12 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Nested Vectored Interrupt Controller
Table 8-7 describes the field of the Interrupt Set-Enable Register.

Interrupt Clear-Enable Registers

Use the Interrupt Clear-Enable Registers to:

• disable interrupts

• determine which interrupts are currently disabled.

Each bit in the register corresponds to one of the 32 interrupts. Setting an Interrupt
Clear-Enable Register bit disables the corresponding interrupt.

The register address, access type, and Reset state are:

Address 0xE000E180-0xE000E19C

Access Read/write

Reset state 0x00000000

Table 8-8 describes the field of the Interrupt Clear-Enable Register.

Table 8-7 Interrupt Set-Enable Register bit assignments

Bits Field Function

[31:0] SETENA Interrupt set enable bits. For write operation:

1 = enable interrupt

0 = no effect.

For read operation:

1 = enable interrupt

0 = disable interrupt

Writing 0 to a SETENA bit has no effect. Reading the bit returns its current enable state. Reset
clears the SETENA fields.

Table 8-8 Interrupt Clear-Enable Register bit assignments

Bits Field Function

[31:0] CLRENA Interrupt clear-enable bits. For write operation:

1 = disable interrupt

0 = no effect.

For read operation:

1 = enable interrupt

0 = disable interrupt.

Writing 0 to a CLRENA bit has no effect. Reading the bit returns its current enable state.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 8-13

Nested Vectored Interrupt Controller
Interrupt Set-Pending Register

Use the Interrupt Set-Pending Register to:

• force interrupts into the pending state

• determine which interrupts are currently pending.

Each bit in the register corresponds to one of the 32 interrupts. Setting an Interrupt
Set-Pending Register bit pends the corresponding interrupt.

Clear an Interrupt Set-Pending Register bit by writing a 1 to the corresponding bit in the
Interrupt Clear-Pending Register (see Interrupt Clear-Pending Register). Clearing the
Interrupt Set-Pending Register bit puts the interrupt into the non-pended state.

Note
 Writing to the Interrupt Set-Pending Register has no affect on an interrupt that is already
pending or is disabled.

The register address, access type, and Reset state are:

Address 0xE000E200-0xE000E21C

Access Read/write

Reset state 0x00000000

Table 8-9 describes the field of the Interrupt Set-Pending Register.

Interrupt Clear-Pending Register

Use the Interrupt Clear-Pending Register to:

• clear pending interrupts

• determine which interrupts are currently pending.

Each bit in the register corresponds to one of the 32 interrupts. Setting an Interrupt
Clear-Pending Register bit puts the corresponding pending interrupt in the inactive
state.

Table 8-9 Interrupt Set-Pending Register bit assignments

Bits Field Function

[31:0] SETPEND Interrupt set-pending bits:

1 = pend the corresponding interrupt

0 = corresponding interrupt not pending.

Writing 0 to a SETPEND bit has no effect. Reading the bit returns its current state.
8-14 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Nested Vectored Interrupt Controller
Note
 Writing to the Interrupt Clear-Pending Register has no effect on an interrupt that is
active unless it is also pending.

The register address, access type, and Reset state are:

Address 0xE000E280-0xE000E29C

Access Read/write

Reset state 0x00000000

Table 8-10 describes the field of the Interrupt Clear-Pending Registers.

Active Bit Register

Read the Active Bit Register to determine which interrupts are active. Each flag in the
register corresponds to one of the 32 interrupts.

The register address, access type, and Reset state are:

Address 0xE000E300-0xE00031C

Access Read-only

Reset state 0x00000000

Table 8-11 describes the field of the Active Bit Register.

Table 8-10 Interrupt Clear-Pending Registers bit assignments

Bits Field Function

[31:0] CLRPEND Interrupt clear-pending bits:

1 = clear pending interrupt

0 = do not clear pending interrupt.

Writing 0 to a CLRPEND bit has no effect. Reading the bit returns its current state.

Table 8-11 Active Bit Register bit assignments

Bits Field Function

[31:0] ACTIVE Interrupt active flags:

1 = interrupt active or pre-empted and stacked

0 = interrupt not active or stacked.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 8-15

Nested Vectored Interrupt Controller
Interrupt Priority Registers

Use the Interrupt Priority Registers to assign a priority from 0 to 255 to each of the
available interrupts. 0 is the highest priority, and 255 is the lowest.

The priority registers are stored with the Most Significant Bit (MSB) first. This means
that if there are four bits of priority, the priority value is stored in bits [7:4] of the byte.
However, if there are three bits of priority, the priority value is stored in bits [7:5] of the
byte. This means that an application can work even if it does not know how many
priorities are possible.

The register address, access type, and Reset state are:

Address 0xE000E400-0xE000E41F

Access Read/write

Reset state 0x00000000

Figure 8-6 shows the fields of Interrupt Priority Registers 0-7.

Figure 8-6 Interrupt Priority Registers 0-31 bit assignments

The lower PRI_n bits can specify subpriorities for priority grouping. See Exception
priority on page 5-6.
8-16 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Nested Vectored Interrupt Controller
Table 8-12 describes the fields of the Interrupt Priority Registers.

CPU ID Base Register

Read the CPU ID Base Register to determine:

• the ID number of the processor core

• the version number of the processor core

• the implementation details of the processor core.

The register address, access type, and Reset state are:

Address 0xE000ED00

Access Read-only

Reset state 0x411FC231

Figure 8-7 shows the fields of the CPUID Base Register.

Figure 8-7 CPUID Base Register bit assignments

Table 8-13 describes the fields of the CPUID Base Register.

Table 8-12 Interrupt Priority Registers 0-31 bit assignments

Bits Field Function

[7:0] PRI_n Priority of interrupt n

31 16 15 4 3 0

IMPLEMENTER REVISIONPARTNO

24 23 20 19

VARIANT Constant

Table 8-13 CPUID Base Register bit assignments

Bits Field Function

[31:24] IMPLEMENTER Implementer code. ARM is 0x41

[23:20] VARIANT Implementation defined variant number.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 8-17

Nested Vectored Interrupt Controller
Interrupt Control State Register

Use the Interrupt Control State Register to:

• set a pending Non-Maskable Interrupt (NMI)

• set or clear a pending SVC

• set or clear a pending SysTick

• check for pending exceptions

• check the vector number of the highest priority pended exception

• check the vector number of the active exception.

The register address, access type, and Reset state are:

Address 0xE000ED04

Access Read/write or read-only

Reset state 0x00000000

Figure 8-8 on page 8-19 shows the fields of the Interrupt Control State Register.

[19:16] Constant Reads as 0xF

[15:4] PARTNO Number of processor within family:

[11:10] b11 = Cortex family

[9:8] b00 = version

[7:6] b00 = reserved

[5:4] b10 = M (v7-M)

[3:0] X = family member. Cortex-M3 family is b0011.

[3:0] REVISION Implementation defined revision number.

Table 8-13 CPUID Base Register bit assignments (continued)

Bits Field Function
8-18 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Nested Vectored Interrupt Controller
Figure 8-8 Interrupt Control State Register bit assignments

Table 8-14 describes the fields of the Interrupt Control State Register.

Table 8-14 Interrupt Control State Register bit assignments

Bits Field Type Function

[31] NMIPENDSET Read/write Set pending NMI bit:

1 = set pending NMI

0 = do not set pending NMI.

NMIPENDSET pends and activates an NMI. Because NMI is the
highest-priority interrupt, it takes effect as soon as it registers.

[30:29] - - Reserved.

[28] PENDSVSET Read/write Set pending pendSV bit:

1 = set pending pendSV

0 = do not set pending pendSV.

[27] PENDSVCLR Write-only Clear pending pendSV bit:

1 = clear pending pendSV

0 = do not clear pending pendSV.

[26] PENDSTSET Read/write Set a pending SysTick bit

1 = set pending SysTick

0 = do not set pending SysTick.

[25] PENDSTCLR Write-only Clear pending SysTick bit:

1 = clear pending SysTick

0 = do not clear pending SysTick.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 8-19

Nested Vectored Interrupt Controller
Vector Table Offset Register

Use the Vector Table Offset Register to determine:

• if the vector table is in RAM or code memory

• the vector table offset.

The register address, access type, and Reset state are:

Address 0xE000ED08

Access Read/write

Reset state 0x00000000

Figure 8-9 on page 8-21 shows the fields of the Vector Table Offset Register.

[24] - - Reserved

[23] ISRPREEMPT Read-only You must only use this at debug time. It indicates that a pending interrupt
becomes active in the next running cycle. If C_MASKINTS is clear in the
Debug Halting Control and Status Register, the interrupt is serviced.

[22] ISRPENDING Read-only Interrupt pending flag. Excludes NMI and Faults:

1 = interrupt pending

0 = interrupt not pending.

[21:12] VECTPENDING Read-only Pending ISR number field. VECTPENDING contains the interrupt number
of the highest priority pending ISR.

[11] RETTOBASE Read-only This bit is 1 when the set of all active exceptions minus the
IPSR_current_exception yields the empty set.

[10] - - Reserved.

[9] - - Reserved

[8:0] VECTACTIVE Read-only Active ISR number field. VECTACTIVE contains the interrupt number of
the currently running ISR, including NMI and Hard Fault. A shared handler
can use VECTACTIVE to determine which interrupt invoked it. You can
subtract 16 from the VECTACTIVE field to index into the Interrupt
Clear/Set Enable, Interrupt Clear Pending/SetPending and Interrupt Priority
Registers. INTISR[0] has vector number 16.

Reset clears the VECTACTIVE field.

Table 8-14 Interrupt Control State Register bit assignments (continued)

Bits Field Type Function
8-20 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Nested Vectored Interrupt Controller
Figure 8-9 Vector Table Offset Register bit assignments

Table 8-15 describes the fields of the Vector Table Offset Register.

The Vector Table Offset Register positions the vector table in CODE or SRAM space.
The default, on reset, is 0 (CODE space). When setting a position, the offset must be
aligned based on the number of exceptions in the table. This means that the minimal
alignment is 32 words that you can use for up to 16 interrupts. For more interrupts, you
must adjust the alignment by rounding up to the next power of two. For example, if you
require 21 interrupts, the alignment must be on a 64-word boundary because table size
is 37 words, next power of two is 64.

Application Interrupt and Reset Control Register

Use the Application Interrupt and Reset Control Register to:

• determine data endianness

• clear all active state information for debug or to recover from a hard failure

• execute a system reset

• alter the priority grouping position (binary point).

The register address, access type, and Reset state are:

Address 0xE000ED0C

Access Read/write

Reset state 0x00000000

Table 8-15 Vector Table Offset Register bit assignments

Bits Field Function

[31:30] - Reserved

[29] TBLBASE Table base is in Code (0) or RAM (1)

[28:7] TBLOFF Vector table base offset field. Contains the offset of the table base from the bottom of the SRAM
or CODE space.

[6:0] - Reserved.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 8-21

Nested Vectored Interrupt Controller
Figure 8-10 shows the fields of the Application Interrupt and Reset Control Register.

Figure 8-10 Application Interrupt and Reset Control Register bit assignments

Table 8-16 describes the fields of the Application Interrupt and Reset Control Register.

Table 8-16 Application Interrupt and Reset Control Register bit assignments

Bits Field Function

[31:16] VECTKEY Register key. Writing to this register requires 0x5FA in the VECTKEY field. Otherwise
the write value is ignored.

[31:16] VECTKEYSTAT Reads as 0xFA05.

[15] ENDIANESS Data endianness bit:

1 = big endian

0 = little endian.

ENDIANESS is sampled from the BIGEND input port during reset. You cannot
change ENDIANESS outside of reset.

[14:11] - Reserved

[10:8] PRIGROUP Interrupt priority grouping field:

PRIGROUP
0

1

2

3

4

5

6

7

Split of pre-emption priority from subpriority

7.1 indicates seven bits of pre-emption priority, one bit of subpriority

6.2 indicates six bits of pre-emption priority, two bits of subpriority

5.3 indicates five bits of pre-emption priority, three bits of subpriority

4.4 indicates four bits of pre-emption priority, four bits of subpriority

3.5 indicates three bits of pre-emption priority, five bits of subpriority

2.6 indicates two bits of pre-emption priority, six bits of subpriority

1.7 indicates one bit of pre-emption priority, seven bits of subpriority

0.8 indicates no pre-emption priority, eight bits of subpriority.
8-22 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Nested Vectored Interrupt Controller
Note
 SYSRESETREQ is cleared by a system reset, which means that asserting
VECTRESET at the same time may cause SYSRESETREQ to be cleared in the same
cycle as it is written to. This may prevent the external system from seeing
SYSRESETREQ. It is therefore recommended that VECTRESET and
SYSRESETREQ be used exclusively and never both written to 1 at the same time.

PRIGROUP field is a binary point position indicator for creating subpriorities for
exceptions that share the same pre-emption level. It divides the PRI_n field in the
Interrupt Priority Register into a pre-emption level and a subpriority level. The binary
point is a left-of value. This means that the PRIGROUP value represents a point
starting at the left of the Least Significant Bit (LSB). This is bit [0] of 7:0.

The lowest value might not be 0 depending on the number of bits allocated for
priorities, and implementation choices.

[7:3] - Reserved.

[2] SYSRESETREQ Causes a signal to be asserted to the outer system that indicates a reset is requested.
Intended to force a large system reset of all major components except for debug.
Setting this bit does not prevent Halting Debug from running.

[1] VECTCLRACTIVE Clear active vector bit:

1 = clear all state information for active NMI, fault, and interrupts

0 = do not clear.

It is the responsibility of the application to reinitialize the stack.

The VECTCLRACTIVE bit is for returning to a known state during debug. The
VECTCLRACTIVE bit self-clears.

IPSR is not cleared by this operation. So, if used by an application, it must only be
used at the base level of activation, or within a system handler whose active bit can be
set.

[0] VECTRESET System Reset bit. Resets the system, with the exception of debug components:

1 = reset system

0 = do not reset system.

The VECTRESET bit self-clears. Reset clears the VECTRESET bit.

For debugging, only write this bit when the core is halted.

Table 8-16 Application Interrupt and Reset Control Register bit assignments (continued)

Bits Field Function
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 8-23

Nested Vectored Interrupt Controller
System Control Register

Use the System Control Register for power-management functions:

• signal to the system when the processor can enter a low power state

• control how the processor enters and exits low power states.

The register address, access type, and Reset state are:

Address 0xE000ED10

Access Read/write

Reset state 0x00000000

Figure 8-11 shows the fields of the System Control Register.

Figure 8-11 System Control Register bit assignments

Table 8-17 describes the fields of the System Control Register.

Table 8-17 System Control Register bit assignments

Bits Field Function

[31:5] - Reserved.

[4] SEVONPEND When enabled, this causes WFE to wake up when an interrupt moves from inactive to
pended. Otherwise, WFE only wakes up from an event signal, external and SEV instruction
generated. The event input, RXEV, is registered even when not waiting for an event, and so
effects the next WFE.
8-24 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Nested Vectored Interrupt Controller
Configuration Control Register

Use the Configuration Control Register to:

• enable NMI, Hard Fault and FAULTMASK to ignore bus fault

• trap divide by zero, and unaligned accesses

• enable user access to the Software Trigger Exception Register

• control entry to Thread Mode.

The register address, access type, and Reset state are:

Address 0xE000ED14

Access Read/write

Reset state 0x00000000

Figure 8-12 on page 8-26 shows the fields of the Configuration Control Register.

[2] SLEEPDEEP Sleep deep bit:

1 = indicates to the system that Cortex-M3 clock can be stopped. Setting this bit causes the
SLEEPDEEP port to be asserted when the processor can be stopped.

0 = not OK to turn off system clock.

For more information about the use of SLEEPDEEP, see Chapter 7 Power Management.

[1] SLEEPONEXIT Sleep on exit when returning from Handler mode to Thread mode:

1 = sleep on ISR exit.

0 = do not sleep when returning to Thread mode.

Enables interrupt driven applications to avoid returning to empty main application.

[0] - Reserved.

Table 8-17 System Control Register bit assignments (continued)

Bits Field Function
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 8-25

Nested Vectored Interrupt Controller
Figure 8-12 Configuration Control Register bit assignments

Table 8-18 describes the fields of the Configuration Control Register.

Table 8-18 Configuration Control Register bit assignments

Bits Field Function

[9] STKALIGN 1 = on exception entry, the SP used prior to the exception is adjusted to be 8-byte
aligned and the context to restore it is saved. The SP is restored on the associated
exception return.

0 = only 4-byte alignment is guaranteed for the SP used prior to the exception on
exception entry.

[8] BFHFNMIGN When enabled, this causes handlers running at priority -1 and -2 (Hard Fault, NMI,
and FAULTMASK escalated handlers) to ignore Data Bus faults caused by load and
store instructions. When disabled, these bus faults cause a lock-up. You must only
use this enable with extreme caution. All data bus faults are ignored – you must only
use it when the handler and its data are in absolutely safe memory. Its normal use is
to probe system devices and bridges to detect control path problems and fix them.

[4] DIV_0_TRP Trap on Divide by 0. This enables faulting/halting when an attempt is made to divide
by 0. The relevant Usage Fault Status Register bit is DIVBYZERO, see Usage
Fault Status Register on page 8-34.
8-26 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Nested Vectored Interrupt Controller
System Handler Priority Registers

Use the three System Handler Priority Registers to prioritize the following system
handlers:

• memory manage

• bus fault

• usage fault

• debug monitor

• SVC

• SysTick

• PendSV.

System handlers are a special class of exception handler that can have their priority set
to any of the priority levels. Most can be masked on (enabled) or off (disabled). When
disabled, the fault is always treated as a Hard Fault.

The register addresses, access types, and Reset states are:

Address 0xE000ED18, 0xE000ED1C , 0xE000ED20

Access Read/write

Reset state 0x00000000

Figure 8-13 on page 8-28 shows the fields of the System Handler Priority Registers.

[3] UNALIGN_TRP Trap for unaligned access. This enables faulting/halting on any unaligned half or
full word access. Unaligned load-store multiples always fault. The relevant Usage
Fault Status Register bit is UNALIGNED, see Usage Fault Status Register on
page 8-34.

[1] USERSETMPEND If written as 1, enables user code to write the Software Trigger Interrupt register to
trigger (pend) a Main exception, which is one associated with the Main stack
pointer.

[0] NONEBASETHRDENA When 0, default, It is only possible to enter Thread mode when returning from the
last exception. When set to 1, Thread mode can be entered from any level in Handler
mode by controlled return value.

Table 8-18 Configuration Control Register bit assignments (continued)

Bits Field Function
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 8-27

Nested Vectored Interrupt Controller
Figure 8-13 System Handler Priority Registers bit assignments

Table 8-19 describes the fields of the System Handler Priority Registers.

System Handler Control and State Register

Use the System Handler Control and State Register to:

• enable or disable the system handlers

• determine the pending status of bus fault, mem manage fault, and SVC

• determine the active status of the system handlers.

If a fault condition occurs while its fault handler is disabled, the fault escalates to a Hard
Fault.

The register address, access type, and Reset state are:

Address 0xE000ED24

Access Read/write

Reset state 0x00000000

Figure 8-14 on page 8-29 shows the fields of the System Handler and State Control
Register.

Table 8-19 System Handler Priority Registers bit assignments

Bits Field Function

[31:24] PRI_N3 Priority of system handler 7, 11, and 15. Reserved, SVCall, and SysTick.

[23:16] PRI_N2 Priority of system handler 6, 10, and 14. Usage Fault, reserved, and PendSV.

[15:8] PRI_N1 Priority of system handler 5, 9, and 13, Bus Fault, reserved, and reserved.

[7:0] PRI_N Priority of system handler 4, 8, and 12. Mem Manage, reserved, and Debug Monitor.
8-28 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Nested Vectored Interrupt Controller
Figure 8-14 System Handler Control and State Register bit assignments

Table 8-20 describes the fields of the System Handler Control Register.

Table 8-20 System Handler Control and State Register bit assignments

Bits Field Function

[31:19] - Reserved

[18] USGFAULTENA Set to 0 to disable, else 1 for enabled.

[17] BUSFAULTENA Set to 0 to disable, else 1 for enabled.

[16] MEMFAULTENA Set to 0 to disable, else 1 for enabled.

[15] SVCALLPENDED Reads as 1 if SVCall is pended.

[14] BUSFAULTPENDED Reads as 1 if BusFault is pended.

[13] MEMFAULTPENDED Reads as 1 if MemManage is pended.

[12] USGFAULTPENDED Read as 1 if usage fault is pended

[11] SYSTICKACT Reads as 1 if SysTick is active.

[10] PENDSVACT Reads as 1 if PendSV is active.

[9] - Reserved
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 8-29

Nested Vectored Interrupt Controller
The active bits indicate if any of the system handlers are active, running now, or stacked
because of pre-emption. This information is used for debugging and is also used by the
application handlers. The pend bits are only set when a fault that cannot be retried has
been deferred because of late arrival of a higher priority interrupt.

Caution
 You can write, clear, or set the active bits, but you must only do this with extreme
caution. Clearing and setting these bits does not repair stack contents nor clean up other
data structures. It is intended that context switchers use clearing and setting to save a
thread’s context, even when in a fault handler. The most common case is to save the
context of a thread that is in an SVCall handler or UsageFault handler, for undefined
instruction and coprocessor emulation.

The model for doing this is to save the current state, switch out the stack containing the
handler’s context, load the state of the new thread, switch in the new thread’s stacks, and
then return to the thread. The active bit of the current handler must never be cleared,
because the IPSR is not changed to reflect this. Only use it to change stacked active
handlers.

As indicated, the SVCALLPENDED and BUSFAULTPENDED bits are set when the
corresponding handler is held off by a late arriving interrupt. These bits are not cleared
until the underlying handler is actually invoked. That is, if a stack error or vector read
error occurs before the SVCall or BusFault handler is started, the bits are not cleared.
This enables the push-error or vector-read-error handler to choose to clear them or retry.

[8] MONITORACT Reads as 1 if the Monitor is active.

[7] SVCALLACT Reads as 1 if SVCall is active.

[6:4] - Reserved

[3] USGFAULTACT Reads as 1 if UsageFault is active.

[2] - Reserved

[1] BUSFAULTACT Reads as 1 if BusFault is active.

[0] MEMFAULTACT Reads as 1 if MemManage is active.

Table 8-20 System Handler Control and State Register bit assignments (continued)

Bits Field Function
8-30 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Nested Vectored Interrupt Controller
Configurable Fault Status Registers

Use the three Configurable Fault Status Registers to obtain information about local
faults. These registers include:

• Memory Manage Fault Status Register

• Bus Fault Status Register on page 8-32

• Usage Fault Status Register on page 8-34.

The flags in these registers indicate the causes of local faults. Multiple flags can be set
if more than one fault occurs. These register are read/write-clear. This means that they
can be read normally, but writing a 1 to any bit clears that bit.

The register addresses, access types, and Reset states are:

Address 0xE000ED28 Memory Manage Fault Status Register

0xE000ED29 Bus Fault Status Register

0xE000ED2A Usage Fault Status Register

Access Read/write-one-to-clear

Reset state 0x00000000

Figure 8-15 shows the fields of the Configurable Fault Status Registers.

Figure 8-15 Configurable Fault Status Registers bit assignments

Memory Manage Fault Status Register

The flags in the Memory Manage Fault Status Register indicate the cause of memory
access faults.

The register address, access type, and Reset state are:

Address 0xE000ED28

Access Read/write-one-to-clear

Reset state 0x00000000

Figure 8-16 on page 8-32 shows the fields of the Memory Manage Fault Status
Register.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 8-31

Nested Vectored Interrupt Controller
Figure 8-16 Memory Manage Fault Register bit assignments

Table 8-21 describes the fields of the Memory Manage Fault Status Register.

Bus Fault Status Register

The flags in the Bus Fault Status Register indicate the cause of bus access faults.

Table 8-21 Memory Manage Fault Status Register bit assignments

Bits Field Function

[7] MMARVALID Memory Manage Address Register (MMAR) address valid flag:

1 = valid fault address in MMAR. A later-arriving fault, such as a bus fault, can clear a
memory manage fault.

0 = no valid fault address in MMAR.

If a MemManage fault occurs that is escalated to a Hard Fault because of priority, the Hard
Fault handler must clear this bit. This prevents problems on return to a stacked active
MemManage handler whose MMAR value has been overwritten.

[4] MSTKERR Stacking from exception has caused one or more access violations. The SP is still adjusted
and the values in the context area on the stack might be incorrect. The MMAR is not written.

[3] MUNSTKERR Unstack from exception return has caused one or more access violations. This is chained to
the handler, so that the original return stack is still present. SP is not adjusted from failing
return and new save is not performed. The MMAR is not written.

[1] DACCVIOL Data access violation flag. Attempting to load or store at a location that does not permit the
operation sets the DACCVIOL flag. The return PC points to the faulting instruction. This
error loads MMAR with the address of the attempted access.

[0] IACCVIOL Instruction access violation flag. Attempting to fetch an instruction from a location that does
not permit execution sets the IACCVIOL flag. This occurs on any access to an XN region,
even when the MPU is disabled or not present. The return PC points to the faulting
instruction. The MMAR is not written.
8-32 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Nested Vectored Interrupt Controller
The register address, access type, and Reset state are:

Address 0xE000ED29

Access Read/write-one-to-clear

Reset state 0x00000000

Figure 8-17 shows the fields of the Bus Fault Status Register.

Figure 8-17 Bus Fault Status Register bit assignments

Table 8-22 describes the fields of the Bus Fault Status Register.

Table 8-22 Bus Fault Status Register bit assignments

Bits Field Function

[7] BFARVALID This bit is set if the Bus Fault Address Register (BFAR) contains a valid address. This is true
after a bus fault where the address is known. Other faults can clear this bit, such as a Mem
Manage fault occurring later.

If a Bus fault occurs that is escalated to a Hard Fault because of priority, the Hard Fault
handler must clear this bit. This prevents problems if returning to a stacked active Bus fault
handler whose BFAR value has been overwritten.

[6:5] - Reserved.

[4] STKERR Stacking from exception has caused one or more bus faults. The SP is still adjusted and the
values in the context area on the stack might be incorrect. The BFAR is not written.

[3] UNSTKERR Unstack from exception return has caused one or more bus faults. This is chained to the
handler, so that the original return stack is still present. SP is not adjusted from failing return
and new save is not performed. The BFAR is not written.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 8-33

Nested Vectored Interrupt Controller
Usage Fault Status Register

The flags in the Usage Fault Status Register indicate the following errors:

• illegal combination of EPSR and instruction

• illegal PC load

• illegal processor state

• instruction decode error

• attempt to use a coprocessor instruction

• illegal unaligned access.

The register address, access type, and Reset state are:

Address 0xE000ED2B

Access Read/write clear

Reset state 0x00000000

Figure 8-18 on page 8-35 shows the fields of the Usage Fault Status Register.

[2] IMPRECISERR Imprecise data bus error. It is a BusFault, but the Return PC is not related to the causing
instruction. This is not a synchronous fault. So, if detected when the priority of the current
activation is higher than the Bus Fault, it only pends. Bus fault activates when returning to
a lower priority activation. If a precise fault occurs before returning to a lower priority
exception, the handler detects both IMPRECISERR set and one of the precise fault status
bits set at the same time. The BFAR is not written.

[1] PRECISERR Precise data bus error return.

[0] IBUSERR Instruction bus error flag:

1 = instruction bus error

0 = no instruction bus error.

The IBUSERR flag is set by a prefetch error. The fault stops on the instruction, so if the error
occurs under a branch shadow, no fault occurs. The BFAR is not written.

Table 8-22 Bus Fault Status Register bit assignments (continued)

Bits Field Function
8-34 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Nested Vectored Interrupt Controller
Figure 8-18 Usage Fault Status Register bit assignments

Table 8-23 describes the fields of the Usage Fault Status Register.

Note
 The fault bits are additive if more than one fault occurs before this register is cleared.

Table 8-23 Usage Fault Status Register bit assignments

Bits Field Function

[9] DIVBYZERO When DIV_0_TRP (see Configuration Control Register on page 8-25) is enabled and an
SDIV or UDIV instruction is used with a divisor of 0, this fault occurs The instruction is
executed and the return PC points to it. If DIV_0_TRP is not set, then the divide returns a
quotient of 0.

[8] UNALIGNED When UNALIGN_TRP is enabled (see Configuration Control Register on page 8-25), and
there is an attempt to make an unaligned memory access, then this fault occurs.

Unaligned LDM/STM/LDRD/STRD instructions always fault irrespective of the setting of
UNALIGN_TRP.

[7:4] - Reserved.

[3] NOCP Attempt to use a coprocessor instruction. The processor does not support coprocessor
instructions.

[2] INVPC Attempt to load EXC_RETURN into PC illegally. Invalid instruction, invalid context, invalid
value. The return PC points to the instruction that tried to set the PC.

[1] INVSTATE Invalid combination of EPSR and instruction, for reasons other than UNDEFINED
instruction. Return PC points to faulting instruction, with the invalid state.

[0] UNDEFINSTR The UNDEFINSTR flag is set when the processor attempts to execute an undefined
instruction. This is an instruction that the processor cannot decode. The return PC points to
the undefined instruction.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 8-35

Nested Vectored Interrupt Controller
Hard Fault Status Register

Use the Hard Fault Status Register (HFSR) to obtain information about events that
activate the Hard Fault handler.

The register address, access type, and Reset state are:

Address 0xE000ED2C

Access Read/write-one-to-clear

Reset state 0x00000000

The HFSR is a write-clear register. This means that writing a 1 to a bit clears that bit.
Figure 8-19 shows the fields of the Hard Fault Status Register.

Figure 8-19 Hard Fault Status Register bit assignments

Table 8-24 describes the fields of the Hard Fault Status Register.

Table 8-24 Hard Fault Status Register bit assignments

Bits Field Function

[31] DEBUGEVT This bit is set if there is a fault related to debug.

This is only possible when halting debug is not enabled. For monitor enabled debug, it only
happens for BKPT when the current priority is higher than the monitor. When both halting and
monitor debug are disabled, it only happens for debug events that are not ignored (minimally,
BKPT). The Debug Fault Status Register is updated.

[30] FORCED Hard Fault activated because a Configurable Fault was received and cannot activate because
of priority or because the Configurable Fault is disabled.

The Hard Fault handler then has to read the other fault status registers to determine cause.

[29:2] - Reserved.

[1] VECTTBL This bit is set if there is a fault because of vector table read on exception processing (Bus
Fault). This case is always a Hard Fault. The return PC points to the pre-empted instruction.

[0] - Reserved.
8-36 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Nested Vectored Interrupt Controller
Debug Fault Status Register

Use the Debug Fault Status Register to monitor:

• external debug requests

• vector catches

• data watchpoint match

• BKPT instruction execution

• halt requests.

Multiple flags in the Debug Fault Status Register can be set when multiple fault
conditions occur. The register is read/write clear. This means that it can be read
normally. Writing a 1 to a bit clears that bit.

Note
 These bits are not set unless the event is caught. This means that it causes a stop of some
sort. If halting debug is enabled, these events stop the processor into debug. If debug is
disabled and the debug monitor is enabled, then this becomes a debug monitor handler
call, if priority permits. If debug and the monitor are both disabled, some of these events
are Hard Faults, and the DBGEVT bit is set in the Hard Fault status register, and some
are ignored.

The register address, access type, and Reset state are:

Address 0xE000ED30

Access Read/write-one-to-clear

Reset state 0x00000000

Figure 8-20 shows the fields of the Debug Fault Status Register.

Figure 8-20 Debug Fault Status Register bit assignments
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 8-37

Nested Vectored Interrupt Controller
Table 8-25 describes the fields of the Debug Fault Status Register.

Memory Manage Fault Address Register

Use the Memory Manage Fault Address Register to read the address of the location that
caused a Memory Manage Fault.

The register address, access type, and Reset state are:

Address 0xE000ED34

Access Read/write

Reset state Unpredictable

Table 8-25 Debug Fault Status Register bit assignments

Bits Field Function

[31:5] - Reserved

[4] EXTERNAL External debug request flag:

1 = EDBGRQ signal asserted

0 = EDBGRQ signal not asserted.

The processor stops on next instruction boundary.

[3] VCATCH Vector catch flag:

1 = vector catch occurred

0 = no vector catch occurred.

When the VCATCH flag is set, a flag in one of the local fault status registers is also set to
indicate the type of fault.

[2] DWTTRAP Data Watchpoint and Trace (DWT) flag:

1 = DWT match

0 = no DWT match.

The processor stops at the current instruction or at the next instruction.

[1] BKPT BKPT flag:

1 = BKPT instruction execution

0 = no BKPT instruction execution.

The BKPT flag is set by a BKPT instruction in flash patch code, and also by normal code.
Return PC points to breakpoint containing instruction.

[0] HALTED Halt request flag:

1 = halt requested by NVIC, including step. The processor is halted on the next instruction.

0 = no halt request.
8-38 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Nested Vectored Interrupt Controller
Table 8-26 describes the field of the Memory Manage Fault Address Register.

Bus Fault Address Register

Use the Bus Fault Address Register to read the address of the location that generated a
Bus Fault.

The register address, access type, and Reset state are:

Address 0xEEE0ED38

Access Read/write

Reset state Unpredictable

Table 8-27 describes the fields of the Bus Fault Address Register.

Auxiliary Fault Status Register

Use the Auxiliary Fault Status Register (AFSR) to determine additional system fault
information to software.

The AFSR flags map directly onto the AUXFAULT inputs of the processor, and a
single-cycle high level on an external pin causes the corresponding AFSR bit to become
latched as one. The bit can only be cleared by writing a one to the corresponding AFSR
bit.

When an AFSR bit is written or latched as one, an exception does not occur. If you
require an exception, you must use an interrupt.

Table 8-26 Memory Manage Fault Address Register bit assignments

Bits Field Function

[31:0] ADDRESS Mem Manage fault address field. ADDRESS is the data address of a faulted load or store attempt.
When an unaligned access faults, the address is the actual address that faulted. Because an access
can be split into multiple parts, each aligned, this address can be any offset in the range of the
requested size. Flags in the Memory Manage Fault Status Register indicate the cause of the fault.
See Memory Manage Fault Status Register on page 8-31.

Table 8-27 Bus Fault Address Register bit assignments

Bits Field Function

[31:0] ADDRESS Bus fault address field. ADDRESS is the data address of a faulted load or store attempt. When an
unaligned access faults, the address is the address requested by the instruction, even if that is not
the address that faulted. Flags in the Bus Fault Status Register indicate the cause of the fault. See
Bus Fault Status Register on page 8-32.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 8-39

Nested Vectored Interrupt Controller
The register address, access type, and Reset state are:

Address 0xEEE0ED3C

Access Read/write-clear

Reset state 0x00000000

describes the field of the AFSR.

Software Trigger Interrupt Register

Use the Software Trigger Interrupt Register to pend an interrupt to trigger.

The register address, access type, and Reset state are:

Address 0xE000EF00

Access Write-only

Reset state 0x00000000

Figure 8-21 shows the fields of the Software Trigger Interrupt Register.

Figure 8-21 Software Trigger Interrupt Register bit assignments

Table 8-29 describes the fields of the Software Trigger Interrupt Register.

Table 8-28 Auxiliary Fault Status Register bit assignments

Bits Field Function

[31:0] IMPDEF Implementation defined. The bits map directly onto the
signal assignment to the AUXFAULT inputs. See
Miscellaneous on page A-4.

Table 8-29 Software Trigger Interrupt Register bit assignments

Bits Field Function

[31:9] - Reserved.

[8:0] INTID Interrupt ID field. Writing a value to the INTID field is the same as manually pending an interrupt
by setting the corresponding interrupt bit in an Interrupt Set Pending Register.
8-40 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Nested Vectored Interrupt Controller
8.3 Level versus pulse interrupts

The processor supports both level and pulse interrupts. A level interrupt is held asserted
until it is cleared by the ISR accessing the device. A pulse interrupt is a variant of an
edge model. The edge must be sampled on the rising edge of the Cortex-M3 clock,
HCLK, instead of being asynchronous.

For level interrupts, if the signal is not deasserted before the return from the interrupt
routine, the interrupt repends and re-activates. This is particularly useful for FIFO and
buffer-based devices because it ensures that they drain either by a single ISR or by
repeated invocations, with no extra work. This means that the device holds the signal in
assert until the device is empty.

A pulse interrupt can be reasserted during the ISR so that the interrupt can be pended
and active at the same time. The application design must ensure that a second pulse does
not arrive before the first pulse is activated. The second pend has no affect because it is
already pended. However, if the interrupt is asserted for at least one cycle, the NVIC
latches the pend bit. When the ISR activates, the pend bit is cleared. If the interrupt
asserts again while it is activated, it can latch the pend bit again.

Pulse interrupts are mostly used for external signals and for rate or repeat signals.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 8-41

Nested Vectored Interrupt Controller
8-42 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Chapter 9
Memory Protection Unit

This chapter describes the processor Memory Protection Unit (MPU). It contains the
following sections:

• About the MPU on page 9-2

• MPU programmer’s model on page 9-3

• Interrupts and updating the MPU on page 9-19

• MPU access permissions on page 9-13

• MPU aborts on page 9-15

• Updating an MPU region on page 9-16.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 9-1

Memory Protection Unit
9.1 About the MPU

The MPU is a component for memory protection. The processor supports the standard
ARMv7 Protected Memory System Architecture (PMSAv7) model. The MPU provides
full support for:

• protection regions

• overlapping protection regions

• access permissions

• exporting memory attributes to the system.

MPU mismatches and permission violations invoke the programmable-priority
MemManage fault handler. For more information, see Memory Manage Fault Address
Register on page 8-38.

You can use the MPU to:

• enforce privilege rules

• separate processes

• enforce access rules.
9-2 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Memory Protection Unit
9.2 MPU programmer’s model

This sections describes the registers that control the MPU. It contains the following:

• Summary of the MPU registers

• Description of the MPU registers.

9.2.1 Summary of the MPU registers

Table 9-1 provides a summary of the MPU registers.

9.2.2 Description of the MPU registers

This section contains a description of the MPU registers.

MPU Type Register

Use the MPU Type Register to see how many regions the MPU supports. Read bits
[15:8] to determine if an MPU is present.

The register address, access type, and Reset state are:

Address 0xE000ED90

Access Read-only

Table 9-1 MPU registers

Name of register Type Address Reset value Page

MPU Type Register Read Only 0xE000ED90 0x00000800 page 9-3

MPU Control Register Read/Write 0xE000ED94 0x00000000 page 9-4

MPU Region Number register Read/Write 0xE000ED98 - page 9-6

MPU Region Base Address register Read/Write 0xE000ED9C - page 9-7

MPU Region Attribute and Size register(s) Read/Write 0xE000EDA0 - page 9-8

MPU Alias 1 Region Base Address register Alias of D9C 0xE000EDA4 - page 9-11

MPU Alias 1 Region Attribute and Size register Alias of DA0 0xE000EDA8 - page 9-11

MPU Alias 2 Region Base Address register Alias of D9C 0xE000EDAC - page 9-11

MPU Alias 2 Region Attribute and Size register Alias of DA0 0xE000EDB0 - page 9-11

MPU Alias 3 Region Base Address register Alias of D9C 0xE000EDB4 - page 9-11

MPU Alias 3 Region Attribute and Size register Alias of DA0 0xE000EDB8 - page 9-11
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 9-3

Memory Protection Unit
Reset state 0x00000800

Figure 9-1 shows the fields of the MPU Type Register.

Figure 9-1 MPU Type Register bit assignments

Table 9-2 describes the fields of the MPU Type Register.

MPU Control Register

Use the MPU Control Register to:

• enable the MPU

• enable the default memory map (background region)

• enable the MPU when in Hard Fault, Non-maskable Interrupt (NMI), and
FAULTMASK escalated handlers.

When the MPU is enabled, at least one region of the memory map must be enabled for
the MPU to function unless the PRIVDEFENA bit is set. If the PRIVDEFENA bit is set
and no regions are enabled, then only privileged code can operate.

When the MPU is disabled, the default address map is used, as if no MPU is present.

When the MPU is enabled, only the system partition and vector table loads are always
accessible. Other areas are accessible based on regions and whether PRIVDEFENA is
enabled.

Reserved

31 24 23 16 15 8 7 1 0

IREGION DREGION Reserved

SEPARATE

Table 9-2 MPU Type Register bit assignments

Bits Field Function

[31:24] - Reserved.

[23:16] IREGION Because the processor core uses only a unified MPU, IREGION always contains 0x00.

[15:8] DREGION Number of supported MPU regions field. DREGION contains 0x08 if the implementation
contains an MPU indicating eight MPU regions, otherwise it contains 0x00.

[7:0] - Reserved.

[0] SEPARATE Because the processor core uses only a unified MPU, SEPARATE is always 0.
9-4 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Memory Protection Unit
Unless HFNMIENA is set, the MPU is not enabled when the exception priority is –1 or
–2. These priorities are only possible when in Hard fault, NMI, or when FAULTMASK
is enabled. The HFNMIENA bit enables the MPU when operating with these two
priorities.

The register address, access type, and Reset state are:

Address 0xE000ED94

Access Read/write

Reset state 0x00000000

Figure 9-2 shows the fields of the MPU Control Register.

Figure 9-2 MPU Control Register bit assignments
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 9-5

Memory Protection Unit
Table 9-3 describes the fields of the MPU Control Register.

MPU Region Number Register

Use the MPU Region Number Register to select which protection region is accessed.
Then write to the MPU Region Base Address Register or the MPU Attributes and Size
Register to configure the characteristics of the protection region.

The register address, access type, and Reset state are:

Address 0xE000ED98

Access Read/write

Reset state Unpredictable

Figure 9-3 on page 9-7 shows the fields of the MPU Region Number Register.

Table 9-3 MPU Control Register bit assignments

Bits Field Function

[31:2] - Reserved.

[2] PRIVDEFENA This bit enables the default memory map for privileged access, as a background region, when
the MPU is enabled. The background region acts as if it was region number 1 before any
settable regions. Any region that is set up overlays this default map, and overrides it.

If this bit = 0, the default memory map is disabled, and memory not covered by a region
faults.

When the MPU is enabled and PRIVDEFENA is enabled, the default memory map is as
described in Chapter 4 Memory Map. This applies to memory type, Execute Never (XN),
cache and shareable rules. However, this only applies to privileged mode (fetch and data
access). User mode code faults unless a region has been set up for its code and data.

When the MPU is disabled, the default map acts on both privileged and user mode code.

XN and SO rules always apply to the System partition whether this enable is set or not.

If the MPU is disabled, this bit is ignored.

Reset clears the PRIVDEFENA bit.

[1] HFNMIENA This bit enables the MPU when in Hard Fault, NMI, and FAULTMASK escalated handlers.
If this bit = 1 and the ENABLE bit = 1, the MPU is enabled when in these handlers. If this
bit = 0, the MPU is disabled when in these handlers, regardless of the value of ENABLE. If
this bit =1 and ENABLE = 0, behavior is Unpredictable.

Reset clears the HFNMIENA bit.

[0] ENABLE MPU enable bit:

1 = enable MPU

0 = disable MPU.

Reset clears the ENABLE bit.
9-6 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Memory Protection Unit
Figure 9-3 MPU Region Number Register bit assignments

Table 9-4 describes the fields of the MPU Region Number Register.

MPU Region Base Address Register

Use the MPU Region Base Address Register to write the base address of a region. The
Region Base Address Register also contains a REGION field that you can use to
override the REGION field in the MPU Region Number Register, if the VALID bit is
set.

The Region Base Address register sets the base for the region. It is aligned by the size.
So, a 64-KB sized region must be aligned on a multiple of 64KB, for example,
0x00010000 or 0x00020000.

The region always reads back as the current MPU region number. VALID always reads
back as 0. Writing with VALID = 1 and REGION = n changes the region number to n.
This is a short-hand way to write the MPU Region Number Register.

This register is Unpredictable if accessed other than as a word.

The register address, access type, and Reset state are:

Address 0xE000ED9C

Access Read/write

Reset state Unpredictable

Figure 9-4 on page 9-8 shows the fields of the MPU Region Base Address Register.

Reserved

31 8 7 0

REGION

Table 9-4 MPU Region Number Register bit assignments

Bits Field Function

[31:8] - Reserved.

[7:0] REGION Region select field. Selects the region to operate on when using the Region Attribute and Size
Register and the Region Base Address Register. It must be written first except when the address
VALID + REGION fields are written, which overwrites this.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 9-7

Memory Protection Unit
Figure 9-4 MPU Region Base Address Register bit assignments

Table 9-5 describes the fields of the MPU Region Base Address Register.

MPU Region Attribute and Size Register

Use the MPU Region Attribute and Size Register to control the MPU access
permissions. The register is made up of two part registers, each of halfword size. These
can be accessed using the individual size, or they can both be simultaneously accessed
using a word operation.

The sub-region disable bits are Unpredictable for region sizes of 32 bytes, 64 bytes, and
128 bytes.

The register address, access type, and Reset state are:

Address 0xE000EDA0

Access Read/write

Reset state Unpredictable

Figure 9-5 on page 9-9 shows the fields of the MPU Region Attribute and Size Register.

31 0

ADDR REGION

4 3

VALID

N

Table 9-5 MPU Region Base Address Register bit assignments

Bits Field Function

[31:N] ADDR Region base address field. The value of N depends on the region size, so that the base address is
aligned according to an even multiple of size. The power of 2 size specified by the SZENABLE field
of the MPU Region Attribute and Size Register defines how many bits of base address are used.

[4] VALID MPU Region Number valid bit:

1 = MPU Region Number Register is overwritten by bits 3:0 (the REGION value).

0 = MPU Region Number Register remains unchanged and is interpreted.

[3:0] REGION MPU region override field.
9-8 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Memory Protection Unit
Figure 9-5 MPU Region Attribute and Size Register bit assignments

Table 9-6 describes the fields of the MPU Region Attribute and Size Register. For more
information, see MPU access permissions on page 9-13.

Table 9-6 MPU Region Attribute and Size Register bit assignments

Bits Field Function

[31:29] - Reserved.

[28] XN Instruction access disable bit:

1 = disable instruction fetches

0 = enable instruction fetches.

[27] - Reserved.

[26:24] AP Data access permission field:

Value Privileged
permissions

User
permissions

b000

b001

b010

b011

b100

b101

b110

b111

No access

Read/write

Read/write
Read/write

Reserved

Read-only

Read-only

Read-only.

No access

No access

Read-only

Read/write

Reserved

No access

Read-only

Read-only.

[23:22] - Reserved.

[21:19] TEX Type extension field.

[18] S Shareable bit:

1 = shareable

0 = not shareable.

[17] C Cacheable bit:

1 = cacheable

0 = not cacheable.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 9-9

Memory Protection Unit
For information about access permission, see MPU access permissions on page 9-13.

[16] B Bufferable bit:

1 = bufferable

0 = not bufferable.

[15:8] SRD Sub-Region Disable (SRD) field. Setting an SRD bit disables the corresponding sub-region.
Regions are split into eight equal-sized sub-regions. Sub-regions are not supported for
region sizes of 128 bytes and less. For more information, see Sub-Regions on page 9-12.

[7:6] - Reserved.

[5:1] SIZE MPU Protection Region Size Field. See Table 9-7.

[0] ENABLE Region enable bit.

Table 9-6 MPU Region Attribute and Size Register bit assignments (continued)

Bits Field Function

Table 9-7 MPU protection region size field

Region Size

b00000 Reserved

b00001 Reserved

b00010 Reserved

b00011 Reserved

b00100 32B

b00101 64B

b00110 128B

b00111 256B

b01000 512B

b01001 1KB

b01010 2KB

b01011 4KB

b01100 8KB

b01101 16KB
9-10 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Memory Protection Unit
9.2.3 Accessing the MPU using the alias registers

You can optimize the loading speed of the MPU registers using register aliasing. There
are three sets of Nested Vectored Interrupt Controller (NVIC) alias registers. These are
described in NVIC register descriptions on page 8-7.

The aliases access the registers in exactly the same way, and they exist to enable the use
of sequential writes (STM) to update between one and four regions. This is used when
disable/change/enable is not required.

b01110 32KB

b01111 64KB

b10000 128KB

b10001 256KB

b10010 512KB

b10011 1MB

b10100 2MB

b10101 4MB

b10110 8MB

b10111 16MB

b11000 32MB

b11001 64MB

b11010 128MB

b11011 256MB

b11100 512MB

b11101 1GB

b11110 2GB

b11111 4GB

Table 9-7 MPU protection region size field (continued)

Region Size
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 9-11

Memory Protection Unit
You cannot use these aliases to read the contents of the regions because the region
number must be written.

An example code sequence for updating four regions is

; R1 = 4 region pairs from process control block (8 words)
MOV R0, #NVIC_BASE
ADD R0, #MPU_REG_CTRL
LDM R1, [R2-R9] ; load region information for 4 regions
STM R0, [R2-R9] ; update all 4 regions at once

Note
 You can normally use the memcpy() function in a C/C++ compiler for this sequence.
However, you must verify that the compiler uses word transfers.

9.2.4 Sub-Regions

The eight Sub-Region Disable (SRD) bits of the Region Attribute and Size Register
divide a region into eight equal-sized units based on the region size. This enables
selectively disabling some of the 1/8th sub-regions. The least significant bit affects the
first 1/8th sub-region, and the most significant bits affects the last 1/8th sub-region. A
disabled sub-region enables any other region overlapping that range to be matched
instead. If no other region overlaps the sub-region, the default behavior is used, no
match – a fault. Sub-regions cannot be used with the three smallest regions of size: 32,
64, and 128. If these sub-regions are used, the results are Unpredictable.

Example of SRD use

Two regions with the same base address overlap. One region is 64KB, and the other is
512KB. The bottom 64KB of the 512KB region is disabled so that the attributes from
the 64KB apply. This is achieved by setting SRD for the 512KB region to b11111110.
9-12 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Memory Protection Unit
9.3 MPU access permissions

This section describes the MPU access permissions. The access permission bits, TEX,
C, B, AP, and XN, of the Region Access Control Register (see MPU Region Attribute
and Size Register on page 9-8) control access to the corresponding memory region. If
an access is made to an area of memory without the required permissions, then a
permission fault is raised.

Table 9-8 describes the TEX, C, and B encoding.

Note
 In Table 9-8, S is the S bit [2] from the MPU Region Attributes and Size Register.

Table 9-8 TEX, C, B encoding

TEX C B Description Memory type Region shareability

b000 0 0 Strongly ordered. Strongly ordered Shareable

b000 0 1 Shared device. Device Shareable

b000 1 0 Outer and inner write-through. No write allocate. Normal S

b000 1 1 Outer and inner write-back. No write allocate. Normal S

b001 0 0 Outer and inner noncacheable. Normal S

b001 0 1 Reserved. Reserved Reserved

b001 1 0 Implementation-defined.

b001 1 1 Outer and inner write-back. Write and read allocate. Normal S

b010 0 0 Nonshared device. Device Not shareable

b010 0 1 Reserved. Reserved Reserved

b010 1 X Reserved. Reserved Reserved

b1BB A A Cached memory BB = outer policy.

AA = inner policy.

Normal S
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 9-13

Memory Protection Unit
Table 9-9 describes the cache policy for memory attribute encoding.

Note
 All cache policies presented by HPROT and MEMATTR relate to an outer cache.

Table 9-10 describes the AP encoding.

Table 9-11 describes the XN encoding.

Table 9-9 Cache policy for memory attribute encoding

Memory attribute encoding (AA and BB) Cache policy

00 Non-cacheable

01 Write back, write and read allocate

10 Write through, no write allocate

11 Write back, no write allocate

Table 9-10 AP encoding

AP[2:0] Privileged permissions User permissions Descriptions

000 No access No access All accesses generate a permission fault

001 Read/write No access Privileged access only

010 Read/write Read only Writes in user mode generate a permission fault

011 Read/write Read/write Full access

100 Unpredictable Unpredictable Reserved

101 Read only No access Privileged read only

110 Read only Read only Privileged/user read only

111 Read only Read only Privileged/user read only

Table 9-11 XN encoding

XN Description

0 All instruction fetches enabled

1 No instruction fetches enabled
9-14 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Memory Protection Unit
9.4 MPU aborts

For information about MPU aborts, see Memory Manage Fault Address Register on
page 8-38.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 9-15

Memory Protection Unit
9.5 Updating an MPU region

There are three registers consisting of three memory mapped words that program the
MPU regions. These are part registers that you can individually program and access.
This means that you can port existing ARMv6, ARMv7, and CP15 code. This replaces
MRC and MCR with LDRx and STRx operations.

You can also access these registers as three words, and program them using only two
words. Aliases are provided to enable programming a set of regions simultaneously
using an STM instruction.

9.5.1 Updating an MPU region using CP15 equivalent code

Using CP15 equivalent code:

; R1 = region number
; R2 = size/enable
; R3 = attributes
; R4 = address
MOV R0,#NVIC_BASE
ADD R0,#MPU_REG_CTRL
STR R1,[R0,#0]; region number
STR R4,[R0,#4]; address
STRHR2,[R0,#8]; size and enable
STRHR3,[R0,#10]; attributes

Note
 If interrupts could pre-empt during this period, this region could affect them. This
means that the region must be disabled, written, and then enabled. This is usually not
necessary for a context switcher, but would be necessary if updated elsewhere.

; R1 = region number
; R2 = size/enable
; R3 = attributes
; R4 = address
MOV R0,#NVIC_BASE
ADD R0,#MPU_REG_CTRL
STR R1,[R0,#0]; region number
BIC R2,R2, #1; disable
STRHR2,[R0,#8]; size and enable
STR R4,[R0,#4]; address
STRHR3,[R0,#10]; attributes
ORR R2,#1 ; enable
STRHR2,[R0,#8]; size and enable
9-16 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Memory Protection Unit
DMB/DSB is not necessary because the Private Peripheral Bus is a strongly ordered
memory area. However, a DSB is necessary before the effect on the MPU takes place,
such as the end of a context switcher.

An ISB is necessary if the code that programs the MPU region or regions is entered
using a branch or call. If the code is entered using a return from exception, or by taking
an exception, then an ISB is not necessary.

9.5.2 Updating an MPU region using two or three words

You can program directly using two or three words, depending on how the information
is divided:

; R1 = region number
; R2 = address
; R3 = size, attributes in one
MOV R0,#NVIC_BASE
ADD R0,#MPU_REG_CTRL
STR R1,[R0,#0]; region number
STR R2,[R0,#4]; address
STR R3,[R0,#8]; size, attributes

An STM can optimize this:

; R1 = region number
; R2 = address
; R3 = size, attributes in one
MOV R0,#NVIC_BASE
ADD R0,#MPU_REG_CTRL
STM R0,{R1-R3}; region number, address, size, and attributes

You can do this in two words for pre-packed information. This means that the base
address register contains the region number in addition to a region-valid bit. This is
useful when the data is statically packed, for example in a boot list or a Process Control
Block (PCB).

; R1 = address and region number in one
; R2 = size and attributes in one
MOV R0,#NVIC_BASE
ADD R0,#MPU_REG_CTRL
STR R1,[R0,#4]; address and region number
STR R2,[R0,#8]; size and attributes

An STM can optimize this:

; R1 = address and region number in one
; R2 = size and attributes in one
MOV R0,#NVIC_BASE
ADD R0,#MPU_REG_CTRL
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 9-17

Memory Protection Unit
STM R0,{R1-R2}; address, region number, size

For information about interrupts and updating the MPU, see Interrupts and updating the
MPU on page 9-19.
9-18 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Memory Protection Unit
9.6 Interrupts and updating the MPU

An MPU region can contain critical data. This is because it takes more than one bus
transaction to update. This is normally two words. As a result, it is not thread safe. That
is, an interrupt can split the two words, leaving the region with incoherent information.
There are two different issues:

• An interrupt can come in that would also update the MPU. This is not only a
read-modify-write issue, it also affects cases where the interrupt routine is
guaranteed not to modify the same region. This is because the programming relies
on the region number being written into a register so that it knows which region
to update. So in this case, you must disable interrupts around each update routine.

• An interrupt can come in that would use the region being updated or would be
affected because only the base or size fields had been updated. If the new size field
is changed, but the base is not, the base+new_size might overlap into an area
normally handled by another region. In this case, the disable-modify-enable
approach is required.

But for standard OS context switch code, which would change user regions, there is no
risk, because these regions would be preset to user privilege and a user area address.
This means that even an interrupt would cause no side effect. Therefore the
disable/enable code is not required nor is interrupt disable.

The most common approach is to only program the MPU from boot code and context
switcher. If these are the only two places, and the context switcher is only updating user
regions, then disable is not required because the context switcher is already a critical
region and the boot code runs with interrupts disabled.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 9-19

Memory Protection Unit
9-20 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Chapter 10
Core Debug

This chapter describes how to debug and test the processor. It contains the following
sections:

• About core debug on page 10-2

• Core debug registers on page 10-3

• Core debug access example on page 10-12

• Using application registers in core debug on page 10-13.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 10-1

Core Debug
10.1 About core debug

Core debug is accessed through the core debug registers. Debug access to these registers
is by means of the Advanced High-performance Bus (AHB-AP) port, see AHB-AP on
page 11-38. The processor can access these registers directly over the internal Private
Peripheral Bus (PPB).

Table 10-1 shows the core debug registers.

Also used is the Debug Fault Status Register see Debug Fault Status Register on
page 8-37 for more information

10.1.1 Halt mode debugging

The debugger can halt the core by setting the C_DEBUGEN and C_HALT bits of the
Debug Halting Control and Status Register. The core acknowledges when halted by
setting the S_HALT bit of the Debug Halting Control and Status Register.

The core can be single stepped by halting the core, setting the C_STEP bit to 1, and
then clearing the C_HALT bit to 0. The core acknowledges completion of the step and
re-halt by setting the S_HALT bit of the Debug Halting Control and Status Register.

10.1.2 Exiting core debug

The core can exit Halting debug by clearing the C_DEBUGEN bit in the Debug Halting
and Status Register.

Table 10-1 Core debug registers

Address Type Reset Value Description

0xE000EDF0 Read/Write 0x00000000a

a. Bits 5, 3, 2, 1, 0 are reset by PORESETn. Bit [1] is also reset by SYSRESETn and writing a 1
to the VECTRESET bit of the Application Interrupt and Reset Control Register.

Debug Halting Control and Status Register

0xE000EDF4 Write-only - Debug Core Register Selector Register

0xE000EDF8 Read/Write - Debug Core Register Data Register

0xE000EDFC Read/Write 0x00000000b

b. Bits 16,17,18,19 are also reset by SYSRESETn and writing a 1 to the VECTRESET bit of the
Application Interrupt and Reset Control Register.

Debug Exception and Monitor Control Register.
10-2 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Core Debug
10.2 Core debug registers

The registers that provide debug operations are:

• Debug Halting Control and Status Register

• Debug Exception and Monitor Control Register on page 10-8.

• Debug Core Register Data Register on page 10-7

• Debug Exception and Monitor Control Register on page 10-8.

10.2.1 Debug Halting Control and Status Register

The purpose of the Debug Halting Control and Status Register (DHCSR) is to:

• provide status information about the state of the processor

• enable core debug

• halt and step the processor.

The DHCSR:

• is a 32-bit read/write register

• address is 0xE000EDF0.

Note
 The DHCSR is only reset from a system reset, including power on. Bit 16 of DHCSR
is Unpredictable on reset.

Figure 10-1 on page 10-4 shows the arrangement of bits in the register.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 10-3

Core Debug
Figure 10-1 Debug Halting Control and Status Register format

Table 10-2 shows the bit functions of the Debug ID Register.

Table 10-2 Debug Halting Control and Status Register

Bits Type Field Function

[31:16] Write DBGKEY Debug Key. 0xA05F must be written whenever this register is written. Reads
back as status bits [25:16]. If not written as Key, the write operation is
ignored and no bits are written into the register.

[31:26] - - Reserved, RAZ.

[25] Read S_RESET_ST Indicates that the core has been reset, or is now being reset, since the last
time this bit was read. This a sticky bit that clears on read. So, reading twice
and getting 1 then 0 means it was reset in the past. Reading twice and getting
1 both times means that it is being reset now (held in reset still).

[24] Read S_RETIRE_ST Indicates that an instruction has completed since last read. This is a sticky
bit that clears on read. This determines if the core is stalled on a load/store
or fetch.

[23:20] - - Reserved, RAZ.

[19] Read S_LOCKUP Reads as one if the core is running (not halted) and a lockup condition is
present.
10-4 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Core Debug
If not enabled for Halting mode, C_DEBUGEN = 1, all other fields are disabled.

[18] Read S_SLEEP Indicates that the core is sleeping (WFI, WFE or SLEEP-ON-EXIT). Must
use C_HALT to gain control or wait for interrupt to wake-up. For more
information on SLEEP-ON-EXIT see Table 7-1 on page 7-3.

[17] Read S_HALT The core is in debug state when S_HALT is set.

[16] Read S_REGRDY Register Read/Write on the Debug Core Register Selector register is
available. Last transfer is complete.

[15:6] - - Reserved.

[5] Read/write C_SNAPSTALL If the core is stalled on a load/store operation the stall ceases and the
instruction is forced to complete. This enables Halting debug to gain control
of the core. It can only be set if:

C_DEBUGEN = 1

C_HALT = 1

The core reads S_RETIRE_ST as 0. This indicates that no instruction has
advanced. This prevents misuse.

The bus state is Unpredictable when this is used.

S_RETIRE can detect core stalls on load/store operations.

[4] - - Reserved.

[3] Read/write C_MASKINTS Mask interrupts when stepping or running in halted debug. Does not affect
NMI, which is not maskable. Must only be modified when the processor is
halted (S_HALT == 1).

[2] Read/write C_STEP Steps the core in halted debug. When C_DEBUGEN = 0, this bit has no
effect. Must only be modified when the processor is halted (S_HALT == 1).

[1] Read/write C_HALT Halts the core. This bit is set automatically when the core Halts. For
example Breakpoint. This bit clears on core reset. This bit can only be
written if C_DEBUGEN is 1, otherwise it is ignored. When setting this bit
to 1, C_DEBUGEN must also be written to 1 in the same value (value[1:0]
is 2’b11). The core can halt itself, but only if C_DEBUGEN is already 1
and only if it writes with b11).

[0] Read/write C_DEBUGEN Enables debug. This can only be written by AHB-AP and not by the core. It
is ignored when written by the core, which cannot set or clear it.

The core must write a 1 to it when writing C_HALT to halt itself.

Table 10-2 Debug Halting Control and Status Register (continued)

Bits Type Field Function
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 10-5

Core Debug
This register is not reset on a system reset. It is reset by a power-on reset. However, the
C_HALT bit always clears on a system reset.

To halt on a reset, the following bits must be enabled:

• bit [0], VC_CORERESET, of the Debug Exception and Monitor Control
Register

• bit [0],C_DEBUGEN, of the Debug Halting Control and Status Register.

Note
 Writes to this register in any size other than word are Unpredictable. It is acceptable to
read in any size, and you can use it to avoid or intentionally change a sticky bit.

10.2.2 Debug Core Register Selector Register

The purpose of the Debug Core Register Selector Register (DCRSR) is to select the
processor register to transfer data to or from.

The DCRSR:

• is a 17-bit write-only register

• address is 0xE000EDF4.

Figure 10-2 shows the arrangement of bits in the register.

Figure 10-2 Debug Core Register Selector Register format

Table 10-3 shows the bit functions of the Debug Core Selector Register.

Table 10-3 Debug Core Register Selector Register

Bits Type Field Function

[31:17] - - Reserved
10-6 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Core Debug
This write-only register generates a handshake to the core to transfer data to or from
Debug Core Register Data Register and the selected register. Until this core transaction
is complete, bit [16], S_REGRDY, of the DHCSR is 0.

Note
 • Writes to this register in any size but word are Unpredictable.

• PSR registers are fully accessible this way, whereas some read as 0 when using
MRS instructions.

• All bits can be written, but some combinations cause a fault when execution is
resumed.

• IT might be written and behaves as though in an IT block.

• ICI can be written, though invalid values or when not used on an LDM/STM
causes a fault, as would on return from exception. Changing ICI from a value to
0 causes the underlying LDM/STM to start, not continue.

10.2.3 Debug Core Register Data Register

The purpose of the Debug Core Register Data Register (DCRDR) is to hold data for
reading and writing registers to and from the processor.

[16] Write REGWnR Write = 1

Read = 0

[15:5] - - -

[4:0] Write REGSEL 5b00000 = R0

5b00001 = R1

 …

5b01111 = DebugReturnAddress()

5b10000 = xPSR/Flags, Execution Number, and state information

5b10001 = MSP (Main SP)

5b10010 = PSP (Process SP)

5b10011 = RAZ/WI

All unused values reserved

Table 10-3 Debug Core Register Selector Register (continued)

Bits Type Field Function
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 10-7

Core Debug
The DCRDR:

• is a 32-bit read/write register

• address 0xE000EDF8.

This is the data value written to the register selected by the Debug Register Selector
Register.

When the processor receives a request from the Debug Core Register Selector, this
register is read or written by the processor using a normal load-store unit operation.

If core register transfers are not being performed, software-based debug monitors can
use this register for communication in non-halting debug. For example, OS RSD and
Real View Monitor. This enables flags and bits to acknowledge state and indicate if
commands have been accepted to, replied to, or accepted and replied to.

10.2.4 Debug Exception and Monitor Control Register

The purpose of the Debug Exception and Monitor Control Register (DEMCR) is:

• Vector catching. That is, to cause debug entry when a specified vector is
committed for execution.

• Debug monitor control.

The DEMCR:

• is a 32-bit read/write register

• address 0xE000EDFC

Figure 10-2 on page 10-6 shows the arrangement of bits in the register.

Figure 10-3 Debug Exception and Monitor Control Register format
10-8 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Core Debug
Table 10-4 shows the bit functions of the Debug Exception and Monitor Control
Register.

Table 10-4 Debug Exception and Monitor Control Register

Bits Type Field Function

[31:25] - - Reserved, SBZP

[24] Read/write TRCENA This bit must be set to 1 to enable use of the trace and debug blocks:

• Data Watchpoint and Trace (DWT)

• Instrumentation Trace Macrocell (ITM)

• Embedded Trace Macrocell (ETM)

• Trace Port Interface Unit (TPIU).

This enables control of power usage unless tracing is required. The
application can enable this, for ITM use, or use by a debugger.

Note
 If the TIEOFF_TRCENA define is uncommented in CM3Defs.v during
implementation it is not possible to set TRCENA.

[23:20] - - Reserved, SBZP

[19] Read/write MON_REQa This enables the monitor to identify how it wakes up:

1 = woken up by MON_PEND

0 = woken up by debug exception.

[18] Read/write MON_STEPa When MON_EN = 1, this steps the core. When MON_EN = 0, this bit
is ignored. This is the equivalent to C_STEP. Interrupts are only
stepped according to the priority of the monitor and settings of
PRIMASK, FAULTMASK, or BASEPRI.

[17] Read/write MON_PENDa Pend the monitor to activate when priority permits. This can wake up
the monitor through the AHB-AP port. It is the equivalent to C_HALT
for Monitor debug.

This register does not reset on a system reset. It is only reset by a
power-on reset. Software in the reset handler or later, or by the DAP
must enable the debug monitor.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 10-9

Core Debug
This register manages exception behavior under debug.

Vector catching is only available to halting debug. The upper halfword is for monitor
controls and the lower halfword is for halting exception support.

[16] Read/write MON_ENa Enable the debug monitor. When enabled, the System handler priority
register controls its priority level. If disabled, then all debug events go
to Hard fault. C_DEBUGEN in the Debug Halting Control and Statue
register overrides this bit.

Vector catching is semi-synchronous. When a matching event is seen, a
Halt is requested. Because the processor can only halt on an instruction
boundary, it must wait until the next instruction boundary. As a result,
it stops on the first instruction of the exception handler. However, two
special cases exist when a vector catch has triggered:

• If a fault is taken during vectoring, vector read or stack push
error, the halt occurs on the corresponding fault handler, for the
vector error or stack push.

• If a late arriving interrupt comes in during vectoring, it is not
taken. That is, an implementation that supports the late arrival
optimization must suppress it in this case.

[15:11] - - Reserved, SBZP

[10] Read/write VC_HARDERRb Debug trap on Hard Fault.

[9] Read/write VC_INTERRb Debug Trap on interrupt/exception service errors. These are a subset of
other faults and catches before BUSERR or HARDERR.

[8] Read/write VC_BUSERRb Debug Trap on normal Bus error.

[7] Read/write VC_STATERRb Debug trap on Usage Fault state errors.

[6] Read/write VC_CHKERRb Debug trap on Usage Fault enabled checking errors.

[5] Read/write VC_NOCPERRb Debug trap on Usage Fault access to Coprocessor which is not present
or marked as not present in CAR register.

[4] Read/write VC_MMERRb Debug trap on Memory Management faults.

[3:1] - - Reserved, SBZP

[0] Read/write VC_CORERESETb Reset Vector Catch. Halt running system if Core reset occurs.

a. This bit clears on a Core Reset.
b. Only usable when C_DEBUGEN = 1.

Table 10-4 Debug Exception and Monitor Control Register (continued)

Bits Type Field Function
10-10 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Core Debug
This register is not reset on a system reset.

This register is reset by a power-on reset. Bits [19:16] are always cleared on a core reset.
The debug monitor is enabled by software in the reset handler or later, or by the
AHB-AP port.

Vector catching is semi-synchronous. When a matching event is seen, a Halt is
requested. Because the processor can only halt on an instruction boundary, it must wait
until the next instruction boundary. As a result, it stops on the first instruction of the
exception handler. However, two special cases exist when a vector catch has triggered:

1. If a fault is taken during a vector read or stack push error the halt occurs on the
corresponding fault handler for the vector error or stack push.

2. If a late arriving interrupt detected during a vector read or stack push error it is not
taken. That is, an implementation that supports the late arrival optimization must
suppress it in this case.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 10-11

Core Debug
10.3 Core debug access example

If you want to halt the processor and write a value into one of the registers, perform the
following sequence:

1. Write 0xA05F0003 to the Debug Halting Control and Status register. This enables
debug and halts the core.

2. Wait for the S_HALT bit of the Debug Halting and Status Register to be set. This
indicates that the core is halted.

3. Write the value that you want to be written to the Debug Core Register Data
Register.

4. Write the register number that you want to write to into the Debug Core Register
Selector Register.
10-12 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Core Debug
10.4 Using application registers in core debug

You can also use the application registers for status access and to effect change on the
system.

If you intend to use the application registers for core debug, be aware that:

• There are read-modify-write issues if both AHB-AP and the application are
modifying these registers.

• For the write registers like PENDSET and PENDCLR, there are
read-modify-write issues because these are not read first.

• For registers containing priority and other read-write registers, the register can
change between the read and the write when performing a read-modify-write
operation. In some cases the registers enable byte access to alleviate this situation,
and the debugger must be aware of these issues when the processor is running.

Table 10-5 shows the application registers and the register bits that are most useful for
use in core debug. For a complete list of the application registers see the ARMv7-M
Architecture Reference Manual.

Table 10-5 Application registers for use in core debug

Register
Bits or fields for
use in core debug

Interrupt Control State ISRPREEMPT

ISRPENDING

VECTPENDING.

Vector Table Offset To find vector table

Application Interrupt/Reset Control VECTCLRACTIVE

ENDIANESS

Configuration Control DIV_0_TRP

UNALIGN_TRP.

System Handler Control and State ACTIVE
PENDED
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 10-13

Core Debug
10-14 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Chapter 11
System Debug

This chapter describes the processor system debug. It contains the following sections:

• About system debug on page 11-2

• System debug access on page 11-3

• System debug programmer’s model on page 11-5

• FPB on page 11-6

• DWT on page 11-13

• ITM on page 11-29

• AHB-AP on page 11-38.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 11-1

System Debug
11.1 About system debug

The processor contains several system debug components that facilitate:

• low-cost debug

• trace and profiling

• breakpoints

• watchpoints

• code patching.

The system debug components are:

• Flash Patch and Breakpoint (FPB) unit to implement breakpoints and code
patches.

• Data Watchpoint and Trace (DWT) unit to implement watchpoints, trigger
resources, and system profiling.

• Instrumentation Trace Macrocell (ITM) for application-driven trace source that
supports printf style debugging.

• Embedded Trace Macrocell (ETM) for instruction trace. The processor is
supported in versions with and without the ETM.

All the debug components exist on the internal Private Peripheral Bus (PPB) and can
be accessed using privileged code.

Note
 • For a description of the Core debug, see Chapter 10 Core Debug.
11-2 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

System Debug
11.2 System debug access

Debug control and data access occurs through the Advanced High-performance
Bus-Access Port (AHB-AP) interface. This interface is driven by either the Serial Wire
Debug Port (SW-DP) or Serial Wire JTAG Debug Port (SWJ-DP) components. See
Chapter 12 Debug Port for information on the SW-DP and SWJ-DP components.
Access includes:

• The internal PPB. Through this bus, the debugger can access components,
including:

— Nested Vectored Interrupt Controller (NVIC). Debug access to the
processor core is made through the NVIC. For details, see Chapter 10 Core
Debug.

— DWT unit.

— FPB unit.

— ITM.

— Memory Protection Unit (MPU).

Note
 During a system reset the debugger can read all registers within the PPB space. It

can also write to registers within the PPB space that are only reset by a power on
reset.

• The External Private Peripheral Bus. Through this bus, debug can access:

— ETM. A low-cost trace macrocell that supports instruction trace only. See
Chapter 15 Embedded Trace Macrocell for more information.

— Trace Port Interface Unit (TPIU). This component acts as a bridge between
the Cortex-M3 trace data (from the ITM, and ETM if present) and an
off-chip Trace Port Analyzer. See Chapter 13 Trace Port Interface Unit for
more information.

— ROM table.

• The DCode bus. Through this bus, debug can access memory located in code
space.

• The System bus. Provides access to bus, memory, and peripherals located in
system bus space.

Figure 11-1 on page 11-4 shows the structure of the system debug access, and shows
how the AHB-AP can access each of the system components and external buses.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 11-3

System Debug
Figure 11-1 System debug access block diagram
11-4 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

System Debug
11.3 System debug programmer’s model

This section lists and describes the debug registers for all the system debug components.
It contains:

• FPB on page 11-6

• DWT on page 11-13

• ITM on page 11-29

• AHB-AP on page 11-38.

Note
 • For a description of the Core debug registers, see Core debug registers on

page 10-3.

• For a description of the SWJ-DP and SW-DP registers see Chapter 12 Debug
Port.

• For a description of the TPIU, see Chapter 13 Trace Port Interface Unit.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 11-5

System Debug
11.4 FPB

The FPB:

• implements hardware breakpoints

• patches code and data from code space to system space.

The FPB unit contains:

• Two literal comparators for matching against literal loads from Code space, and
remapping to a corresponding area in System space.

• Six instruction comparators for matching against instruction fetches from Code
space, and remapping to a corresponding area in System space. Alternatively, you
can individually configure the comparators to return a Breakpoint Instruction
(BKPT) to the processor core on a match, so providing hardware breakpoint
capability.

The FPB contains a global enable, but also individual enables for the eight comparators.
If the comparison for an entry matches, the address is remapped to the address set in the
remap register plus an offset corresponding to the comparator that matched, or is
remapped to a BKPT instruction if that feature is enabled. The comparison happens on
the fly, but the result of the comparison occurs too late to stop the original instruction
fetch or literal load taking place from the Code space. The processor ignores this
transaction however, and only the remapped transaction is used.

If an MPU is present, the MPU lookups are performed for the original address, not the
remapped address.

Note
 • Unaligned literal accesses are not remapped. The original access to the DCode

bus takes place in this case.

• Load exclusives are Unpredictable to the FPB. The address is remapped but the
access does not take place as an exclusive load.

• Remapping to the bit-band alias directly accesses the alias address, and does not
remap to the bit-band region.
11-6 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

System Debug
11.4.1 FPB programmer’s model

Table 11-1 lists the flash patch registers.

Table 11-1 FPB register summary

Name Type Address Description

FP_CTRL Read/write 0xE0002000 See Flash Patch Control Register on page 11-8

FP_REMAP Read/write 0xE0002004 See Flash Patch Remap Register on page 11-9

FP_COMP0 Read/write 0xE0002008 See Flash Patch Comparator Registers on page 11-11

FP_COMP1 Read/write 0xE000200C See Flash Patch Comparator Registers on page 11-11

FP_COMP2 Read/write 0xE0002010 See Flash Patch Comparator Registers on page 11-11

FP_COMP3 Read/write 0xE0002014 See Flash Patch Comparator Registers on page 11-11

FP_COMP4 Read/write 0xE0002018 See Flash Patch Comparator Registers on page 11-11

FP_COMP5 Read/write 0xE000201C See Flash Patch Comparator Registers on page 11-11

FP_COMP6 Read/write 0xE0002020 See Flash Patch Comparator Registers on page 11-11

FP_COMP7 Read/write 0xE0002024 See Flash Patch Comparator Registers on page 11-11

PID4 Read-only 0xE0002FD0 Value 0x04

PID5 Read-only 0xE0002FD4 Value 0x00

PID6 Read-only 0xE0002FD8 Value 0x00

PID7 Read-only 0xE0002FDC Value 0x00

PID0 Read-only 0xE0002FE0 Value 0x03

PID1 Read-only 0xE0002FE4 Value 0xB0

PID2 Read-only 0xE0002FE8 Value 0x0B

PID3 Read-only 0xE0002FEC Value 0x00

CID0 Read-only 0xE0002FF0 Value 0x0D

CID1 Read-only 0xE0002FF4 Value 0xE0

CID2 Read-only 0xE0002FF8 Value 0x05

CID3 Read-only 0xE0002FFC Value 0xB1
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 11-7

System Debug
Flash Patch Control Register

Use the Flash Patch Control Register to enable the flash patch block.

The register address, access type, and Reset state are:

Address 0xE0002000

Access Read/write

Reset state Bit [0] (ENABLE) is reset to 1'b0.

Figure 11-2 shows the fields of the Flash Patch Control Register.

Figure 11-2 Flash Patch Control Register bit assignments

Table 11-2 describes the fields of the Flash Patch Control Register.

Table 11-2 Flash Patch Control Register bit assignments

Bits Field Function

[31:15] - Reserved. Read As Zero. Write Ignored.

[14:12] NUM_CODE2 Number of full banks of code comparators, sixteen comparators per bank. Where
less than sixteen code comparators are provided, the bank count is zero, and the
number present indicated by NUM_CODE. This read only field contains 3'b000 to
indicate 0 banks for Cortex-M3 processor.

[11:8] NUM_LIT Number of literal slots field. This read only field contains b0010 to indicate that
there are two literal slots.

[7:4] NUM_CODE1 Number of code slots field. This read only field contains b0110 to indicate that there
are six code slots.
11-8 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

System Debug
Flash Patch Remap Register

Use the Flash Patch Remap Register to provide the location in System space where a
matched address is remapped. The REMAP address is 8-word aligned, with one word
allocated to each of the eight FPB comparators.

A comparison match remaps to:

{3’b001, REMAP, COMP[2:0], HADDR[1:0]}

where:

• 3’b001 hardwires the remapped access to system space

• REMAP is the 24-bit, 8-word aligned remap address

[3:2] - Reserved.

[1] KEY Key field. To write to the Flash Patch Control Register, you must write a 1 to this
write-only bit.

[0] ENABLE Flash patch unit enable bit:

1 = flash patch unit enabled

0 = flash patch unit disabled.

Reset clears the ENABLE bit.

Note
 If the TIEOFF_FPBEN define is uncommented in CM3Defs.v during
implementation, it is not possible to set ENABLE.

Table 11-2 Flash Patch Control Register bit assignments (continued)

Bits Field Function
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 11-9

System Debug
• COMP is the matching comparator. See Table 11-3.

• HADDR[1:0] is the two Least Significant Bits (LSBs) of the original address.
HADDR[1:0] is always 2’b00 for instruction fetches.

The register address, access type, and Reset state are:

Address 0xE0002004

Access Read/write

Reset state This register is not reset

Figure 11-3 shows the fields of the Flash Patch Remap Register.

Figure 11-3 Flash Patch Remap Register bit assignments

Table 11-3 COMP mapping

COMP[2:0] Comparator Description

000 FP_COMP0 Instruction comparator

001 FP_COMP1 Instruction comparator

010 FP_COMP2 Instruction comparator

011 FP_COMP3 Instruction comparator

100 FP_COMP4 Instruction comparator

101 FP_COMP5 Instruction comparator

110 FP_COMP6 Literal comparator

111 FP_COMP7 Literal comparator
11-10 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

System Debug
Table 11-4 describes the fields of the Flash Patch Remap Register.

Flash Patch Comparator Registers

Use the Flash Patch Comparator Registers to store the values to compare with the PC
address.

The register address, access type, and Reset state are:

Access Read/write

Address 0xE0002008, 0xE000200C, 0xE0002010, 0xE0002014, 0xE0002018, 0xE000201C,
0xE0002020, 0xE0002024

Reset state Bit [0] (ENABLE) is reset to 1'b0.

Figure 11-4 shows the fields of the Flash Patch Comparator Registers.

Figure 11-4 Flash Patch Comparator Registers bit assignments

Table 11-5 on page 11-12 describes the fields of the Flash Patch Comparator Registers.

Table 11-4 Flash Patch Remap Register bit assignments

Bits Field Function

[31:29] - Reserved. Read as b001. Hardwires the remap to the system space.

[28:5] REMAP Remap base address field.

[4:0] - Reserved. Read As Zero. Write Ignored.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 11-11

System Debug
Table 11-5 Flash Patch Comparator Registers bit assignments

Bits Field Function

[31:30] REPLACE This selects what happens when the COMP address is matched.

It is interpreted as:

b00 = remap to remap address. See FP_REMAP

b01 = set BKPT on lower halfword, upper is unaffected

b10 = set BKPT on upper halfword, lower is unaffected

b11 = set BKPT on both lower and upper halfwords.

Settings other than b00 are only valid for instruction comparators. Literal comparators ignore
non-b00 settings.

Address remapping only takes place for the b00 setting.

[29] - Reserved

[28:2] COMP Comparison address.

[1] - Reserved.

[0] ENABLE Compare and remap enable for Flash Patch Comparator Register n:

1 = Flash Patch Comparator Register n compare and remap enabled

0 = Flash Patch Comparator Register n compare and remap disabled.

The ENABLE bit of FP_CTRL must also be set to enable comparisons.

Reset clears the ENABLE bit.
11-12 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

System Debug
11.5 DWT

The DWT unit performs the following debug functionality:

• It contains four comparators that you can configure as a hardware watchpoint, an
ETM trigger, a PC sampler event trigger, or a data address sampler event trigger.
The first comparator, DWT_COMP0, can also compare against the clock cycle
counter, CYCCNT. The second comparator, DWT_COMP1, can also be used as
a data comparator.

• The DWT contains counters for:

— clock cycles (CYCCNT)

— folded instructions

— Load Store Unit (LSU) operations

— sleep cycles

— CPI (all instruction cycles except for the first cycle)

— interrupt overhead.

Note
 An event is emitted each time a counter overflows.

• You can configure the DWT to emit PC samples at defined intervals, and to emit
interrupt event information.

11.5.1 Summary and description of the DWT registers

Table 11-6 lists the DWT registers.

Table 11-6 DWT register summary

Name Type Address Reset value Description

DWT_CTRL Read/write 0xE0001000 0x00000000 See DWT Control Register on page 11-15

DWT_CYCCNT Read/write
0xE0001004

0x00000000 See DWT Current PC Sampler Cycle Count
Register on page 11-18

DWT_CPICNT Read/write 0xE0001008 - See DWT CPI Count Register on page 11-19

DWT_EXCCNT Read/write 0xE000100C - See DWT Exception Overhead Count Register on
page 11-20

DWT_SLEEPCNT Read/write 0xE0001010 - See DWT Sleep Count Register on page 11-21

DWT_LSUCNT Read/write 0xE0001014 - See DWT LSU Count Register on page 11-21
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 11-13

System Debug
DWT_FOLDCNT Read/write 0xE0001018 - See DWT Fold Count Register on page 11-22

DWT_PCSR Read-only 0xE000101C - See DWT Program Counter Sample Register on
page 11-23

DWT_COMP0 Read/write 0xE0001020 - See DWT Comparator Registers on page 11-23

DWT_MASK0 Read/write 0xE0001024 - See DWT Mask Registers 0-3 on page 11-24

DWT_FUNCTION0 Read/write 0xE0001028 0x00000000 See DWT Function Registers 0-3 on page 11-25

DWT_COMP1 Read/write 0xE0001030 - See DWT Comparator Registers on page 11-23

DWT_MASK1 Read/write 0xE0001034 - See DWT Mask Registers 0-3 on page 11-24

DWT_FUNCTION1 Read/write 0xE0001038 0x00000000 See DWT Function Registers 0-3 on page 11-25

DWT_COMP2 Read/write 0xE0001040 - See DWT Comparator Registers on page 11-23

DWT_MASK2 Read/write 0xE0001044 - See DWT Mask Registers 0-3 on page 11-24

DWT_FUNCTION2 Read/write 0xE0001048 0x00000000 See DWT Function Registers 0-3 on page 11-25

DWT_COMP3 Read/write 0xE0001050 - See DWT Comparator Registers on page 11-23

DWT_MASK3 Read/write 0xE0001054 - See DWT Mask Registers 0-3 on page 11-24

DWT_FUNCTION3 Read/write 0xE0001058 0x00000000 See DWT Function Registers 0-3 on page 11-25

PID4 Read-only 0xE0001FD0 0x04 Value 0x04

PID5 Read-only 0xE0001FD4 0x00 Value 0x00

PID6 Read-only 0xE0001FD8 0x00 Value 0x00

PID7 Read-only 0xE0001FDC 0x00 Value 0x00

PID0 Read-only 0xE0001FE0 0x02 Value 0x02

PID1 Read-only 0xE0001FE4 0xB0 Value 0xB0

PID2 Read-only 0xE0001FE8 0x1B Value 0x1B

PID3 Read-only 0xE0001FEC 0x00 Value 0x00

CID0 Read-only 0xE0001FF0 0x0D Value 0x0D

Table 11-6 DWT register summary (continued)

Name Type Address Reset value Description
11-14 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

System Debug
DWT Control Register

Use the DWT Control Register to enable the DWT unit.

The register address, access type, and Reset state are:

Address 0xE0001000

Access Read/write

Reset state 0x40000000

Figure 11-5 shows the fields of the DWT Control Register.

Figure 11-5 DWT Control Register bit assignments

CID1 Read-only 0xE0001FF4 0xE0 Value 0xE0

CID2 Read-only 0xE0001FF8 0x05 Value 0x05

CID3 Read-only 0xE0001FFC 0xB1 Value 0xB1

Table 11-6 DWT register summary (continued)

Name Type Address Reset value Description
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 11-15

System Debug
Table 11-7 describes the fields of the DWT Control Register.

Table 11-7 DWT Control Register bit assignments

Bits Field Function

[31:28] NUMCOMP Number of comparators field. This read-only field contains b0100 to indicate four
comparators.

[27:23] - Reserved.

[22] CYCEVTEN Enables Cycle count event. Emits an event when the POSTCNT counter triggers it. See
CYCTAP (bit [9]) and POSTPRESET, bits [4:1], for details.

1 = Cycle count events enabled

0 = Cycle count events disabled.

This event is only emitted if PCSAMPLENA, bit [12], is disabled.

PCSAMPLENA overrides the setting of this bit.

Reset clears the CYCEVTENA bit.

[21] FOLDEVTENA Enables Folded instruction count event. Emits an event when DWT_FOLDCNT
overflows (every 256 cycles of folded instructions). A folded instruction is one that does
not incur even one cycle to execute. For example, an IT instruction is folded away and so
does not use up one cycle.

1 = Folded instruction count events enabled.

0 = Folded instruction count events disabled.

Reset clears the FOLDEVTENA bit.

[20] LSUEVTENA Enables LSU count event. Emits an event when DWT_LSUCNT overflows (every 256
cycles of LSU operation). LSU counts include all LSU costs after the initial cycle for the
instruction.

1 = LSU count events enabled.

0 = LSU count events disabled.

Reset clears the LSUEVTENA bit.

[19] SLEEPEVTENA Enables Sleep count event. Emits an event when DWT_SLEEPCNT overflows (every
256 cycles that the processor is sleeping).

1 = Sleep count events enabled.

0 = Sleep count events disabled.

Reset clears the SLEEPEVTENA bit.

[18] EXCEVTENA Enables Interrupt overhead event. Emits an event when DWT_EXCCNT overflows
(every 256 cycles of interrupt overhead).

1 = Interrupt overhead event enabled.

0 = Interrupt overhead event disabled.

Reset clears the EXCEVTENA bit.
11-16 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

System Debug
[17] CPIEVTENA Enables CPI count event. Emits an event when DWT_CPICNT overflows (every 256
cycles of multi-cycle instructions).

1 = CPI counter events enabled.

0 = CPI counter events disabled.

Reset clears the CPIEVTENA bit.

[16] EXCTRCENA Enables Interrupt event tracing:

1 = interrupt event trace enabled

0 = interrupt event trace disabled.

Reset clears the EXCEVTENA bit.

[15:13] - Reserved

[12] PCSAMPLEENA Enables PC Sampling event. A PC sample event is emitted when the POSTCNT counter
triggers it. See CYCTAP, bit [9], and POSTPRESET, bits [4:1], for details. Enabling this
bit overrides CYCEVTENA (bit [20]).

1 = PC Sampling event enabled.

0 = PC Sampling event disabled.

Reset clears the PCSAMPLENA bit.

[11:10] SYNCTAP Feeds a synchronization pulse to the ITM SYNCENA control. The value selected here
picks the rate (approximately 1/second or less) by selecting a tap on the DWT_CYCCNT
register. To use synchronization (heartbeat and hot-connect synchronization),
CYCCNTENA must be set to 1, SYNCTAP must be set to one of its values, and
SYNCENA must be set to 1.

0b00 = Disabled. No synch counting.

0b01 = Tap at CYCCNT bit 24.

0b10 = Tap at CYCCNT bit 26.

0b11 = Tap at CYCCNT bit 28.

[9] CYCTAP Selects a tap on the DWT_CYCCNT register. These are spaced at bits [6] and [10]:

CYCTAP = 0 selects bit [6] to tap

CYCTAP = 1 selects bit [10] to tap.

When the selected bit in the CYCCNT register changes from 0 to 1 or 1 to 0, it emits into
the POSTCNT, bits [8:5], post-scalar counter. That counter then counts down. On a bit
change when post-scalar is 0, it triggers an event for PC sampling or CYCEVTCNT.

Table 11-7 DWT Control Register bit assignments (continued)

Bits Field Function
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 11-17

System Debug
Note
 The TRCENA bit of the Debug Exception and Monitor Control Register must be set
before you can use the DWT. See Debug Exception and Monitor Control Register on
page 10-8.

Note
 The DWT is enabled independently from the ITM. If you enable the DWT to emit
events, you must also enable the ITM.

DWT Current PC Sampler Cycle Count Register

Use the DWT Current PC Sampler Cycle Count Register to count the number of core
cycles. This count can measure elapsed execution time.

The register address, access type, and Reset state are:

Address 0xE0001004

Access Read-only

Reset state 0x00000000

[8:5] POSTCNT Post-scalar counter for CYCTAP.

When the selected tapped bit changes from 0 to 1 or 1 to 0, the post scalar counter is
down-counted when not 0.

If 0, it triggers an event for PCSAMPLENA or CYCEVTENA use. It also reloads with
the value from POSTPRESET (bits [4:1]).

[4:1] POSTPRESET Reload value for POSTCNT, bits [8:5], post-scalar counter.

 If this value is 0, events are triggered on each tap change (a power of 2, such as 1<<6 or
1<<10).

If this field has a non-0 value, this forms a count-down value, to be reloaded into
POSTCNT each time it reaches 0. For example, a value 1 in this register means an event
is formed every other tap change.

[0] CYCCNTENA Enable the CYCCNT counter. If not enabled, the counter does not count and no event is
generated for PS sampling or CYCCNTENA. In normal use, the debugger must initialize
the CYCCNT counter to 0.

Table 11-7 DWT Control Register bit assignments (continued)

Bits Field Function
11-18 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

System Debug
Table 11-8 describes the fields of the DWT Current PC Sampler Cycle Count Register.

This is a free-running counter. The counter has three functions:

• When PCSAMPLENA is set, the PC is sampled and emitted when the selected
tapped bit changes value (0 to 1 or 1 to 0) and any post-scalar value counts to 0.

• When CYCEVTENA is set (and PCSAMPLENA is clear), an event is emitted
when the selected tapped bit changes value (0 to 1 or 1 to 0) and any post-scalar
value counts to 0.

• Applications and debuggers can use the counter to measure elapsed execution
time. By subtracting a start and an end time, an application can measure time
between in-core clocks (other than when Halted in debug). This is valid to 232
core clock cycles (for example, almost 86 seconds at 50MHz).

DWT CPI Count Register

Use the DWT CPI Count Register to count the total number of instruction cycles beyond
the first cycle.

The register address, access type, and Reset state are:

Address 0xE0001008

Access Read-write

Reset state -

Figure 11-6 shows the fields of the DWT CPI Count Register.

Figure 11-6 DWT CPI Count Register bit assignments

Table 11-8 DWT Current PC Sampler Cycle Count Register bit assignments

Bits Field Function

[31:0] CYCCNT Current PC Sampler Cycle Counter count value. When enabled, this counter counts the number of
core cycles, except when the core is halted.

CYCCNT is a free running counter, counting upwards. It wraps around to 0 on overflow.

The debugger must initialize this to 0 when first enabling.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 11-19

System Debug
Table 11-9 describes the fields of the DWT CPI Count Register.

DWT Exception Overhead Count Register

Use the DWT Exception Overhead Count Register to count the total cycles spent in
interrupt processing.

The register address, access type, and Reset state are:

Address 0xE000100C

Access Read-write

Reset state -

Figure 11-7 shows the fields of the DTW Exception Overhead Count Register.

Figure 11-7 DWT Exception Overhead Count Register bit assignments

Table 11-10 describes the fields of the DWT Exception Overhead Count Register.

Table 11-9 DWT CPI Count Register bit assignments

Bits Field Function

[31:8] - Reserved.

[7:0] CPICNT Current CPI counter value. Increments on the additional cycles (the first cycle is not counted)
required to execute all instructions except those recorded by DWT_LSUCNT. This counter also
increments on all instruction fetch stalls.

If CPIEVTENA is set, an event is emitted when the counter overflows.

Clears to 0 on enabling.

Table 11-10 DWT Exception Overhead Count Register bit assignments

Bits Field Function

[31:8] - Reserved.

[7:0] EXCCNT Current interrupt overhead counter value. Counts the total cycles spent in interrupt processing (for
example entry stacking, return unstacking, pre-emption). An event is emitted on counter overflow
(every 256 cycles). This counter initializes to 0 when enabled.

Clears to 0 on enabling.
11-20 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

System Debug
DWT Sleep Count Register

Use the DWT Sleep Count Register to count the total number of cycles during which
the processor is sleeping.

The register address, access type, and Reset state are:

Address 0xE0001010

Access Read-write

Reset state -

Figure 11-8 shows the fields of the DTW Sleep Count Register.

Figure 11-8 DWT Sleep Count Register bit assignments

Table 11-11 describes the fields of the DWT Sleep Count Register.

Note
 SLEEPCNT is clocked using FCLK. It is possible that the frequency of FCLK might
be reduced while the processor is sleeping to minimize power consumption. This means
that sleep duration must be calculated with the frequency of FCLK during sleep.

DWT LSU Count Register

Use the DWT LSU Count Register to count the total number of cycles during which the
processor is processing an LSU operation beyond the first cycle.

The register address, access type, and Reset state are:

Address 0xE0001014

Access Read/write

Reset state -

Reserved

31 8 7 0

SLEEPCNT

Table 11-11 DWT Sleep Count Register bit assignments

Bits Field Function

[31:8] - Reserved.

[7:0] SLEEPCNT Sleep counter. Counts the number of cycles during which the processor is sleeping. An event is
emitted on counter overflow (every 256 cycles). This counter initializes to 0 when enabled.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 11-21

System Debug
Figure 11-9 describes the fields of the DWT LSU Count Register.

Figure 11-9 DWT LSU Count Register bit assignments

Table 11-12 describes the fields of the DWT LSU Count Register.

DWT Fold Count Register

Use the DWT Fold Count Register to count the total number of folded instructions. This
counts 1 for each instruction that takes 0 cycles.

The register address, access type, and Reset state are:

Address 0xE0001018

Access Read/write

Reset state -

Figure 11-10 describes the fields of the DWT Fold Count Register.

Figure 11-10 DWT Fold Count Register bit assignments

Table 11-12 DWT LSU Count Register bit assignments

Bits Field Function

[31:8] - Reserved.

[7:0] LSUCNT LSU counter. This counts the total number of cycles that the processor is processing an LSU
operation. The initial execution cost of the instruction is not counted.

For example, an LDR that takes two cycles to complete increments this counter one cycle.
Equivalently, an LDR that stalls for two cycles (and so takes four cycles), increments this counter
three times. An event is emitted on counter overflow (every 256 cycles).

Clears to 0 on enabling.
11-22 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

System Debug
Table 11-13 describes the fields of the DWT Fold Count Register.

DWT Program Counter Sample Register

Use the DWT Program Counter Sample Register (PCSR) to enable coarse-grained
software profiling using a debug agent, without changing the currently executing code.

If the core is not in debug state, the value returned is the instruction address of a recently
executed instruction.

If the core is in debug state, the value returned is 0xFFFFFFFF.

The register address, access type, and Reset state are:

Address 0xE000101C

Access Read-only

Reset state Unpredictable

DWT Program Counter Sample Register bit assignments describes the field of the DWT
PCSR.

DWT Comparator Registers

Use the DWT Comparator Registers 0-3 to write the values that trigger watchpoint
events.

The register address, access type, and Reset state are:

Address 0xE0001020, 0xE0001030, 0xE0001040, 0xE0001050

Access Read/write

Reset state -

Table 11-13 DWT Fold Count Register bit assignments

Bits Field Function

[31:8] - Reserved.

[7:0] FOLDCNT This counts the total number folded instructions. This counter initializes to 0 when enabled.

Table 11-14 DWT Program Counter Sample Register bit assignments

Bits Field Function

[31:0] EIASAMPLE Execution instruction address sample, or 0xFFFFFFFF if the
core is halted.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 11-23

System Debug
Table 11-15 describes the field of DWT Comparator Registers 0-3.

DWT Mask Registers 0-3

Use the DWT Mask Registers 0-3 to apply a mask to data addresses when matching
against COMP.

The register address, access type, and Reset state are:

Address 0xE0001024, 0xE0001034, 0xE0001044, 0xE0001054

Access Read/write

Reset state -

Figure 11-11 shows the fields of DWT Mask Registers 0-3.

Figure 11-11 DWT Mask Registers 0-3 bit assignments

Table 11-16 describes the fields of DWT Mask Registers 0-3.

Table 11-15 DWT Comparator Registers 0-3 bit assignments

Field Name Definition

[31:0] COMP Data value to compare against PC and the data address as given by DWT_FUNCTIONx.

DWT_COMP0 can also compare against the value of the PC Sampler Counter (DWT_CYCCNT).

DWT_COMP1 can also compare against data values so that data matching can be performed
(DATAVMATCH).

Table 11-16 DWT Mask Registers 0-3 bit assignments

Bits Field Function

[31:4] - Reserved.

[3:0] MASK Mask on data address when matching against COMP. This is the size of the ignore mask.

So, ~0<<MASK forms the mask against the address to use. That is, DWT matching is performed
as:(ADDR & (~0 << MASK)) == COMP

However, the actual comparison is slightly more complex to enable matching an address wherever it
appears on a bus. So, if COMP is 3, this matches a word access of 0, because 3 would be within the
word.
11-24 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

System Debug
DWT Function Registers 0-3

Use the DWT Function Registers 0-3 to control the operation of the comparator. Each
comparator can:

• Match against either the PC or the data address. This is controlled by
CYCMATCH. This function is only available for comparator 0 (DWT_COMP0).

• Perform data value comparisons if associated address comparators have
performed an address match. This function is only available for comparator 1
(DWT_COMP1).

• Emit data or PC couples, trigger the ETM, or generate a watchpoint depending on
the operation defined by FUNCTION.

The register address, access type, and Reset state are:

Address 0xE0001028, 0xE0001038, 0xE0001048, 0xE0001058

Access Read/write

Address 0x00000000

Figure 11-12 shows the fields of DWT Function Registers 0-3.

Figure 11-12 DWT Function Registers 0-3 bit assignments

Table 11-17 describes the fields of DWT Function Registers 0-3.

Table 11-17 Bit functions of DWT Function Registers 0-3

Bits Field Function

[31:25] - Reserved.

[24] MATCHED This bit is set when the comparator matches, and indicates that the operation defined
by FUNCTION has occurred since this bit was last read. This bit is cleared on read.

[23:20] - Reserved.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 11-25

System Debug
[19:16] DATAVADDR1 Identity of a second linked address comparator for data value matching when
DATAVMATCH == 1 and LNK1ENA == 1.

[15:12] DATAVADDR0 Identity of a linked address comparator for data value matching when DATAVMATCH
== 1.

[11:10] DATAVSIZE Defines the size of the data in the COMP register that is to be matched:

00 = byte

01 = halfword

10 = word

11 = Unpredictable.

[9] LNK1ENA Read-only:

0 = DATAVADDR1 not supported

1 = DATAVADDR1 supported (enabled).

[8] DATAVMATCH This bit is only available in comparator 1. When DATAVMATCH is set, this
comparator performs data value compares.

The comparators given by DATAVADDR0 and DATAVADDR1provide the address for
the data comparison. If DATAVMATCH is set in DWT_FUNCTION1, the
FUNCTION setting for the comparators given by DATAVADDR0 and DATAVADDR1
are overridden and those comparators only provide the address match for the data
comparison.

[7] CYCMATCH Only available in comparator 0. When set, this comparator compares against the clock
cycle counter.

[6] - Reserved.

[5] EMITRANGE Emit range field. Reserved to permit emitting offset when range match occurs. Reset
clears the EMITRANGE bit. PC sampling is not supported when EMITRANGE is
enabled.

EMITRANGE only applies for:

FUNCTION = b0001, b0010, and b0011.

[4] - Reserved.

[3:0] FUNCTION See Table 11-18 on page 11-27 for FUNCTION settings.

Table 11-17 Bit functions of DWT Function Registers 0-3 (continued)

Bits Field Function
11-26 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

System Debug
Table 11-18 describes the function settings of the DWT Function Registers.

Note
 • If the ETM is not fitted, then ETM trigger is not possible.

• Data value is only sampled for accesses that do not fault (MPU or bus fault). The
PC is sampled irrespective of any faults. The PC is only sampled for the first
address of a burst.

Table 11-18 Settings for DWT Function Registers

Value Function

b0000 Disabled

b0001 EMITRANGE = 0, sample and emit PC through ITM

EMITRANGE = 1, emit address offset through ITM

b0010 EMITRANGE = 0, emit data through ITM on read and write.

EMITRANGE = 1, emit data and address offset through ITM on read or write.

b0011 EMITRANGE = 0, sample PC and data value through ITM on read or write.

EMITRANGE = 1, emit address offset and data value through ITM on read or write.

b0100 Watchpoint on PC match.

b0101 Watchpoint on read.

b0110 Watchpoint on write.

b0111 Watchpoint on read or write.

b1000 ETM trigger on PC match

b1001 ETM trigger on read

b1010 ETM trigger on write

b1011 ETM trigger on read or write

b1100 Reserved

b1101 Reserved

b1110 Reserved

b1111 Reserved
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 11-27

System Debug
• FUNCTION is overridden for comparators given by DATAVADDR0 and
DATAVADDR1 in DWT_FUNCTION1if DATAVMATCH is also set in
DWT_FUNCTION1. The comparators given by DATAVADDR0 and
DATAVADDR1 can then only perform address comparator matches for
comparator 1 data matches.

• If the TIEOFF_DMATCH define is uncommented in CM3Defs.v during
implementation it is not possible to set DATAVADDR0, DATAVADDR1, or
DATAVMATCH in DWT_FUNCTION1. This means that the data matching
functionality is not available in the implementation. Test the availability of data
matching by writing and reading the DATAVMATCH bit in DWT_FUNCTION1.
If it is not settable then data matching is unavailable.

• PC match is not recommended for watchpoints because it stops after the
instruction. It mainly guards and triggers the ETM.
11-28 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

System Debug
11.6 ITM

The ITM is a an application driven trace source that supports printf style debugging to
trace Operating System (OS) and application events, and emits diagnostic system
information. The ITM emits trace information as packets. There are three sources that
can generate packets. If multiple sources generate packets at the same time, the ITM
arbitrates the order in which packets are output. The three sources in decreasing order
of priority are:

• Software trace. Software can write directly to ITM stimulus registers. This emits
packets.

• Hardware trace. The DWT generates these packets, and the ITM emits them.

• Time stamping. Timestamps are emitted relative to packets. The ITM contains a
21-bit counter to generate the timestamp. The Cortex-M3 clock or the bitclock
rate of the Serial Wire Viewer (SWV) output clocks the counter.

11.6.1 Summary and description of the ITM registers

Note
 TRCENA of the Debug Exception and Monitor Control Register must be enabled
before you program or use the ITM, see Debug Exception and Monitor Control Register
on page 10-8.

Table 11-19 lists the ITM registers.

Table 11-19 ITM register summary

Name Type Address Reset value Description

Stimulus Ports 0-31 Read/write 0xE0000000-

0xE000007C

- See ITM Stimulus Ports 0-31 on
page 11-31

Trace Enable Read/write
0xE0000E00

0x00000000 See ITM Trace Enable Register on
page 11-31

Trace Privilege Read/write
0xE0000E40

0x00000000 See ITM Trace Privilege Register on
page 11-32

Trace Control Register Read/write 0xE0000E80 0x00000000 See ITM Trace Control Register on
page 11-33

Integration Write Write-only 0xE0000EF8 0x00000000 See ITM Integration Write Register on
page 11-34
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 11-29

System Debug
Note
 ITM registers are fully accessible in privileged mode. In user mode, all registers can be
read, but only the Stimulus Registers and Trace Enable Registers can be written, and
only when the corresponding Trace Privilege Register bit is set. Invalid user mode
writes to the ITM registers are discarded.

Integration Read Read-only 0xE0000EFC 0x00000000 See ITM Integration Read Register on
page 11-35

Integration Mode Control Read/write 0xE0000F00 0x00000000 See ITM Integration Mode Control
Register on page 11-35

Lock Access Register Write-only
0xE0000FB0 0x00000000 See ITM Lock Access Register on

page 11-36

Lock Status Register Read-only
0xE0000FB4 0x00000003 See ITM Lock Status Register on

page 11-36

PID4 Read-only 0xE0000FD0 0x00000004 Value 0x04

PID5 Read-only 0xE0000FD4 0x00000000 Value 0x00

PID6 Read-only 0xE0000FD8 0x00000000 Value 0x00

PID7 Read-only 0xE0000FDC 0x00000000 Value 0x00

PID0 Read-only 0xE0000FE0 0x00000001 Value 0x01

PID1 Read-only 0xE0000FE4 0x000000B0 Value 0xB0

PID2 Read-only 0xE0000FE8 0x0000001B Value 0x1B

PID3 Read-only 0xE0000FEC 0x00000000 Value 0x00

CID0 Read-only 0xE0000FF0 0x0000000D Value 0x0D

CID1 Read-only 0xE0000FF4 0x000000E0 Value 0xE0

CID2 Read-only 0xE0000FF8 0x00000005 Value 0x05

CID3 Read-only 0xE0000FFC 0x000000B1 Value 0xB1

Table 11-19 ITM register summary (continued)

Name Type Address Reset value Description
11-30 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

System Debug
ITM Stimulus Ports 0-31

Each of the 32 stimulus ports has its own address. A write to one of these locations
causes data to be written into the FIFO if the corresponding bit in the Trace Enable
Register is set. Reading from any of the stimulus ports returns the FIFO status in bit [0]:

• 0 = full

• 1 = not full.

The polled FIFO interface does not provide an atomic read-modify-write, so you must
use the Cortex-M3 exclusive monitor if a polled printf is used concurrently with ITM
usage by interrupts or other threads. The following polled code guarantees stimulus is
not lost by polled access to the ITM:

; r0 = Value to write to port

; r1 and r2 = Temporary scratch registers

MOV r1, #0xE0000000 ; r1 = Stimulus port base

Retry LDREX r2, [r1, #Port*4] ; Load FIFO full status

CMP r2, #0 ; Compare with full

ITT NE ; If (not full)

STREXNE r2, [r1, #Port*4]; Try sending value to port

CMPNE r2, #1 ; and check for failure

BEQ Retry ; If full or failed then retry

ITM Trace Enable Register

Use the Trace Enable Register to generate trace data by writing to the corresponding
stimulus port.

The register address, access type, and Reset state are:

Access Read/write

Address 0xE0000E00

Reset 0x00000000

Table 11-20 describes the field of the ITM Trace Enable Register.

Table 11-20 ITM Trace Enable Register bit assignments

Bits Field Function

[31:0] STIMENA Bit mask to enable tracing on ITM stimulus ports. One bit per stimulus port.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 11-31

System Debug
Note
 Privileged writes are accepted to this register if ITMENA is set. User writes are
accepted to this register if ITMENA is set and the appropriate privilege mask is cleared.
Privileged access to the stimulus ports enables an RTOS kernel to guarantee
instrumentation slots or bandwidth as required.

ITM Trace Privilege Register

Use the ITM Trace Privilege Register to enable an operating system to control which
stimulus ports are accessible by user code.

Note
 You can only write to this register in privileged mode.

The register address, access type, and Reset state are:

Access Read/write

Address 0xE0000E40

Reset 0x00000000

Figure 11-13 shows the ITM Trace Privilege Register bit assignments.

Figure 11-13 ITM Trace Privilege Register bit assignments

Table 11-21 describes the fields of the ITM Trace Privilege Register.

Table 11-21 ITM Trace Privilege Register bit assignments

Bits Field Function

[31:4] - Reserved.

[3:0] PRIVMASK Bit mask to enable tracing on ITM stimulus ports:

bit [0] = stimulus ports [7:0]

bit [1] = stimulus ports [15:8]

bit [2] = stimulus ports [23:16]

bit [3] = stimulus ports [31:24].
11-32 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

System Debug
ITM Trace Control Register

Use this register to configure and control ITM transfers.

Note
 You can only write to this register in privilege mode.

The register address, access type, and Reset state are:

Access Read/write

Address 0xE0000E80

Reset 0x00000000

Figure 11-14 shows the ITM Control Register bit assignments.

Figure 11-14 ITM Trace Control Register bit assignments

Table 11-22 describes the fields of the ITM Control Register.

Table 11-22 ITM Trace Control Register bit assignments

Bits Field Function

[31:24] - 0b00000000.

[23] BUSY Set when ITM events present and being drained

[22:16] ATBID ATB ID for CoreSight system.

[15:10] - 0b000000.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 11-33

System Debug
Note
 DWT is not enabled in the ITM block. However, DWT stimulus entry into the FIFO is
controlled by DWTENA. If DWT requires timestamping, the TSSEN bit must be set.

ITM Integration Write Register

Use this register to determine the behavior of the ATVALIDM bit.

Figure 11-15 shows the ITM Integration Write Register bit assignments.

Figure 11-15 ITM Integration Write Register bit assignments

[9:8] TSPrescale Timestamp prescaler:

0b00 = no prescaling

0b01 = divide by 4

0b10 = divide by 16

0b11 = divide by 64.

[7:5] - Reserved.

[4] SWOENA Enable SWV behavior – count on TPIUEMIT and TPIUBAUD.

[3] DWTENA Enables the DWT stimulus.

[2] SYNCENA Enables sync packets for TPIU.

[1] TSENA Enables differential timestamps. Differential timestamps are emitted when a packet is written
to the FIFO with a non-zero timestamp counter, and when the timestamp counter overflows.

Timestamps are emitted during idle times after a fixed number of cycles. This provides a time
reference for packets and inter-packet gaps.

[0] ITMENA Enable ITM. This is the master enable, and must be set before ITM Stimulus and Trace Enable
registers can be written.

Table 11-22 ITM Trace Control Register bit assignments (continued)

Bits Field Function
11-34 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

System Debug
Table 11-23 describes the fields of the ITM Integration Write Register.

Note
 Bit [0] drives ATVALIDM when mode is set.

ITM Integration Read Register

Use this register to read the value on ATREADYM

Figure 11-16 shows the ITM Integration Read Register bit assignments.

Figure 11-16 ITM Integration Read Register bit assignments

Table 11-24 describes the fields of the ITM Integration Read Register.

ITM Integration Mode Control Register

Use this register to enable write accesses to the Control Register.

Table 11-23 ITM Integration Write Register bit assignments

Bits Field Function

[31:1] - Reserved

[0] ATVALIDM When the integration mode is set:

0 = ATVALIDM clear

1 = ATVALIDM set.

Table 11-24 ITM Integration Read Register bit assignments

Bits Field Function

[31:1] - Reserved

[0] ATREADYM Value on ATREADYM
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 11-35

System Debug
Figure 11-17 on page 11-36 shows the ITM Integration Mode Control Register bit
assignments.

Figure 11-17 ITM Integration Mode Control bit assignments

Table 11-25 describes the fields of the ITM Integration Mode Control Register

ITM Lock Access Register

Use this register to prevent write accesses to the Control Register.

Table 11-26 describes the fields of the ITM Lock Access Register

ITM Lock Status Register

Use this register to enable write accesses to the Control Register.

Figure 11-18 on page 11-37 shows the ITM Lock Status Register bit assignments.

Table 11-25 ITM Integration Mode Control Register bit assignments

Bits Field Function

[31:1] - Reserved

[0] INTEGRATION 0 = ATVALIDM normal

1 = ATVALIDM driven from Integration Write Register

Table 11-26 ITM Lock Access Register bit assignments

Bits Field Function

[31:0] Lock Access A privileged write of 0xC5ACCE55 enables more write access to Control Register 0xE00::0xFFC. An
invalid write removes write access.
11-36 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

System Debug
Figure 11-18 ITM Lock Status Register bit assignments

Table 11-27 describes the fields of the ITM Lock Status Register

Table 11-27 ITM Lock Status Register bit assignments

Bits Field Function

[31:3] - Reserved.

[2] ByteAcc You cannot implement 8-bit lock accesses.

[1] Access Write access to component is blocked. All writes are ignored, reads are permitted.

[0] Present Indicates that a lock mechanism exists for this component.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 11-37

System Debug
11.7 AHB-AP

AHB-AP is a debug access port into the Cortex-M3 system, and provides access to all
memory and registers in the system, including processor registers through the NVIC.
System access is independent of the processor status. Either SW-DP or SWJ-DP
accesses AHB-AP.

AHB-AP is a master into the Bus Matrix. Transactions are made using the AHB-AP
programmer’s model, which generates AHB-Lite transactions into the Bus Matrix. See
Summary and description of the AHB-AP registers.

11.7.1 AHB-AP transaction types

AHB-AP does not do back-to-back transactions on the bus, and so all transactions are
non-sequential. AHB-AP can perform unaligned and bit-band transactions. The Bus
Matrix handles these. AHB-AP transactions are not subject to MPU lookups. AHB-AP
transactions bypass the FPB, and so the FPB cannot remap AHB-AP transactions.

SWJ/SW-DP initiated transaction aborts drive an AHB-AP supported sideband signal
called HABORT. This signal is driven into the Bus Matrix, which resets the Bus Matrix
state, so that AHB-AP can access the Private Peripheral Bus for last ditch debugging
such as read/stop/reset the core.

AHB-AP transactions are little endian.

11.7.2 Summary and description of the AHB-AP registers

Table 11-28 lists the AHB-AP registers.

Table 11-28 AHB-AP register summary

Name Type Address Reset value Description

Control and Status Word Read/
write

0x00 See Register See AHB-AP Control and Status Word
Register on page 11-39

Transfer Address Read/
write

0x04 0x00000000 See AHB-AP Transfer Address Register on
page 11-41

Data Read/write Read/
write

0x0C - See AHB-AP Data Read/Write Register on
page 11-41

Banked Data 0 Read/
write

0x10 - See AHB-AP Banked Data Registers 0-3
on page 11-41

Banked Data 1 Read/
write

0x14 - See AHB-AP Banked Data Registers 0-3
on page 11-41
11-38 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

System Debug
AHB-AP Control and Status Word Register

Use this register to configure and control transfers through the AHB interface.

Figure 11-19 shows the fields of the AHB-AP Control and Status Word Register.

Figure 11-19 AHB-AP Control and Status Word Register

Table 11-29 describes the fields of the AHB-AP Control and Status Word Register.

Banked Data 2 Read/
write

0x18 - See AHB-AP Banked Data Registers 0-3
on page 11-41

Banked Data 3 Read/
write

0x1C - See AHB-AP Banked Data Registers 0-3
on page 11-41

Debug ROM Address
Read
only

0xF8 0xE00FF003 See AHB-AP Debug ROM Address
Register on page 11-42

Identification Register
Read
only

0xFC 0x14770011 See AHB-AP ID Register on page 11-42

Table 11-28 AHB-AP register summary (continued)

Name Type Address Reset value Description

Table 11-29 AHB-AP Control and Status Word Register bit assignments

Bits Field Function

[31:30] - Reserved. Read as b010.

[29] MasterTypea 0 = core.

1 = debug.

This bit cannot be cleared if COREACCEN = 0. Read back to confirm if accepted. It cannot be
changed if transaction is outstanding. Debugger must first check TransinProg.

Reset value = 0b1.

[28:26] - Reserved, 0b000.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 11-39

System Debug
[25] Hprot1 User/Privilege control - HPROT[1].

Reset value = 0b1.

[24] - Reserved, 0b1.

[23:12] - Reserved, 0x000.

[11:8] Mode Mode of operation bits:

b0000 = normal download/upload mode

b0001-b1111 are reserved.

Reset value = 0b0000.

[7] TransINProg Transfer in progress. This field indicates if a transfer is in progress on the APB master port.

[6] DbgStatus Indicates the status of the DBGEN port. If DbgStatus is LOW, no AHB transfers carried out.

1 = AHB transfers permitted.

0 = AHB transfers not permitted.

[5:4] AddrInc Auto address increment and pack mode on Read or Write data access. Only increments if the
current transaction completes with no error.

Auto address incrementing and packed transfers are not performed on access to Banked Data
registers 0x10 - 0x1C. The status of these bits is ignored in these cases.

Increments and wraps within a 4-KB address boundary, for example for word incrementing
from 0x1000 to 0x1FFC. If the start is at 0x14A0, then the counter increments to 0x1FFC, wraps to
0x1000, then continues incrementing to 0x149C.

0b00 = auto increment off.

0b01 = increment single. Single transfer from corresponding byte lane.

0b10 = increment packed.

0b11 = reserved. No transfer.

Size of address increment is defined by the Size field [2:0].

Reset value: 0b00.

[3] - Reserved.

[2:0] SIZE Size of access field:

b000 = 8 bits

b001 = 16 bits

b010 = 32 bits

b011-111 are reserved.

Reset value: b000.

Table 11-29 AHB-AP Control and Status Word Register bit assignments (continued)

Bits Field Function
11-40 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

System Debug
AHB-AP Transfer Address Register

Use this register to program the address of the current transfer.

Table 11-30 describes the fields of the AHB-AP Transfer Address Register.

AHB-AP Data Read/Write Register

Use this register to read and write data for the current transfer.

Table 11-31 describes the fields of the AHB-AP Data Read/Write Register.

AHB-AP Banked Data Registers 0-3

Use these registers to directly map AHB-AP accesses to AHB transfers without
rewriting the AHB-AP Transfer Address Register (TAR).

a. When clear, this bit prevents the debugger from setting the C_DEBUGEN bit in the Debug Halting Control and Status
Register, and so prevent the debugger from being able to halt the core.

Table 11-30 AHB-AP Transfer Address Register bit assignments

Bits Field Function

[31:0] ADDRESS Current transfer address.

Reset value = 0x00000000.

Table 11-31 AHB-AP Data Read/Write Register bit assignments

Bits Field Function

[31:0] DATA Write mode: data value to write for the current transfer

Read mode: data value to read for the current transfer

Reset value = 0x00000000
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 11-41

System Debug
Table 11-32 describes the field of the AHB-AP Banked Data Registers.

AHB-AP Debug ROM Address Register

This register specifies the base address of the debug interface. It is read-only.

Table 11-33 describes the fields of the AHB-AP Debug ROM Address Register.

AHB-AP ID Register

This register defines the external interface on the access port.

Figure 11-20 on page 11-43 shows the fields of the AHB-AP ID Register.

Table 11-32 AHB-AP Banked Data Register bit assignments

Bits Field Function

[31:0] DATA BD0-BD3 provide a mechanism for directly mapping through DAP accesses to AHB transfers
without having to rewrite the TAR within a four location boundary, so for example BD0 reads/write
from TAR, BD1 from TAR+4.

If DAPADDR[7:4] == 0x0001, so accessing AHB-AP registers in the range 0x10-0x1C, then the
derived HADDR[31:0] is as follows:

Read mode: Data value read from the current transfer from external address TAR[31:4] +
DAPADDR[3:0]. Auto address incrementing is not performed on DAP accesses to BD0-BD3.

Write mode: data value to write for the current transfer to external address TAR[31:4] +
DAPADDR[3:0].

Banked transfers are only supported for word transfers. Non-word banked transfer size is currently
ignored, assumed word access.

Reset value - 0x00000000.

Table 11-33 AHB-AP Debug ROM Address Register bit assignments

Bits Field Function

[31:0] Debug ROM address Base address of debug interface.
11-42 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

System Debug
Figure 11-20 AHB-AP ID Register

Table 11-34 describes the fields of the AHB-AP ID Register.

Table 11-34 AHB-AP ID Register bit assignments

Bits Field Function

[31:28] Revision This field is zero for the first implementation of an AP design, and is updated
for each major revision of the design.

[27:24] JEP-106 continuation code For an ARM-designed AP, this field has value 0b0100, 0x4.

[23:17] JEP-106 identity code For an ARM-designed AP, this field has value 0b0111011, 0x3B.

[16] Class 0b1: This AP is a Memory Access Port

[15:8] - Reserved. SBZ.

[7:4] AP Variant 0x1: Cortex-M3 variant

[3:0] AP Type 0x1: AMBA AHB bus
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 11-43

System Debug
11-44 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Chapter 12
Debug Port

This chapter describes the processor Debug Port (DP). It contains:

• About the DP on page 12-2.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 12-1

Debug Port
12.1 About the DP

The processor contains an Advanced High-performance Bus Access Port (AHB-AP)
interface for debug accesses. An external DP component accesses this interface. The
Cortex-M3 system supports two possible DP implementations:

• The Serial Wire JTAG Debug Port (SWJ-DP). The SWJ-DP is a standard
CoreSight debug port that combines JTAG-DP and Serial Wire Debug Port
(SW-DP).

• The SW-DP. This provides a two-pin (clock + data) interface to the AHB-AP port.

Note
 The SWJ-DP is designed to permit pin sharing of JTAG-TDO and JTAG-TDI when
they are not being used for JTAG debug access. When used together with a Cortex-M3
TPIU, there are different options for the connection of Serial Wire Output (SWO), see
Serial wire output connection on page 13-17.

These two DP implementations provide different mechanisms for debug access to the
processor. Your implementation must contain only one of these components.

Note
 Your implementation might contain an alternative implementor-specific DP instead of
SW-DP or SWJ-DP. See your implementor for details.

For more detailed information on the DP components, see the CoreSight Components
Technical Reference manual.

For more information on the AHB-AP, see AHB-AP on page 11-38.

The DP and AP together are referred to as the Debug Access Port (DAP).

For more detailed information on the debug interface, see the ARM Debug Interface v5,
Architecture Specification.
12-2 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Chapter 13
Trace Port Interface Unit

This chapter describes the Trace Port Interface Unit (TPIU). It contains the following
sections:

• About the TPIU on page 13-2

• TPIU registers on page 13-8

• Serial wire output connection on page 13-17.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 13-1

Trace Port Interface Unit
13.1 About the TPIU

The TPIU acts as a bridge between the on-chip trace data from the Embedded Trace
Macrocell (ETM) and the Instrumentation Trace Macrocell (ITM), with separate IDs,
to a data stream, encapsulating IDs where required, that is then captured by a Trace Port
Analyzer (TPA).

The TPIU is specially designed for low-cost debug. It is a special version of the
CoreSight TPIU, and you can replace it with CoreSight components if system
requirements demand the additional features of the CoreSight TPIU.

There are two configurations of the TPIU:

• A configuration that supports ITM debug trace.

• A configuration that supports both ITM and ETM debug trace.

Note
 If your Cortex-M3 system uses the optional ETM component, you must use the TPIU
configuration that supports both ITM and ETM debug trace. For a full description of the
ETM, see Chapter 15 Embedded Trace Macrocell.

13.1.1 TPIU block diagrams

Figure 13-1 on page 13-3 and Figure 13-2 on page 13-4 show the component layout of
the TPIU for both configurations.
13-2 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Trace Port Interface Unit
Figure 13-1 Block diagram of the TPIU (non-ETM version)
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 13-3

Trace Port Interface Unit
Figure 13-2 Block diagram of the TPIU (ETM version)

13.1.2 TPIU components

A description of the main components of the TPIU is given in the following sections:

• Asynchronous FIFO

• Formatter

• Trace out on page 13-5

• AMBA Trace Bus interface on page 13-5

• Advanced Peripheral Bus interface on page 13-5.

Asynchronous FIFO

The asynchronous FIFO enables trace data to be driven out at a speed that is not
dependent on the speed of the core clock.

Formatter

The formatter inserts source ID signals into the data packet stream so that trace data can
be re-associated with its trace source. The formatter is always active when the
TRACEPORT mode is active.
13-4 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Trace Port Interface Unit
Trace out

The trace out block serializes formatted data before it goes off-chip.

AMBA Trace Bus interface

The TPIU accepts trace data from a trace source, either direct from a trace source (ETM
or ITM) or using a Trace Funnel. For more information, see AMBA Trace Bus interface.

Advanced Peripheral Bus interface

The APB interface is the programming interface for the TPIU. For more information,
see Advanced Peripheral Bus interface.

13.1.3 TPIU inputs and outputs

This section describes the TPIU inputs and outputs. It contains the following:

• Trace out port

• AMBA Trace Bus interface

• Miscellaneous configuration inputs on page 13-6.

Trace out port

Table 13-1 describes the trace out port signals.

Table 13-1 Trace out port signals

Name Type Description

TRACECLKIN Input Decoupled clock from ATB to enable easy control of the trace port speed. Typically this
is derived from a controllable clock source on chip, but an external clock generator
could drive it if a high speed pin is used. Data changes on the rising edge only.

TRESETn Input This is a reset signal for the TRACECLKIN domain. This signal is typically driven
from Power on Reset, and must be synchronized to TRACECLKIN.

TRACECLK Output TRACEDATA changes on both edges of TRACECLK.

TRACEDATA[3:0] Output Output data for clocked modes.

TRACESWO Output Output data for asynchronous modes.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 13-5

Trace Port Interface Unit
ATB interface

There is one or two ATB interfaces depending on the TPIU configuration. Table 13-2
describes the ATB port signals. The signals for port 2 are not used when the TPIU is
configured with a single ATB interface.

Miscellaneous configuration inputs

Table 13-3 describes the miscellaneous configuration inputs.

Table 13-2 ATB port signals

Name Type Description

CLK Input Trace bus and APB interface clock.

nRESET Input Reset for the CLK domain (ATB/APB interface).

CLKEN Input Clock enable for CLK domain.

ATVALID1S Input Data from trace source 1 is valid in this cycle.

ATREADY1S Output If this signal is asserted (ATVALID high), then the data was accepted this cycle from trace
source 1.

ATDATA1S[7:0] Input Trace data input from source 1.

ATID1S[6:0] Input Trace source ID for source 1. This must not change dynamically.

ATVALID2S Input Data from trace source 2 is valid in this cycle.

ATREADY2 Output If this signal is asserted (ATVALID high), then the data was accepted this cycle from trace
source 2.

ATDATA2S[7:0] Input Trace data input from source 2.

ATID2S[6:0] Input Trace source ID for source 2. This must not change dynamically.

Table 13-3 Miscellaneous configuration inputs

Name Type Description

MAXPORTSIZE
[1:0]

Input Defines the maximum number of pins available for synchronous trace output.

SyncReq Input Global trace synchronization trigger. Inserts synchronization packets into the formatted
data stream. Only used when the formatter is active. This signal must be connected to the
DSYNC output from Cortex-M3.

TRIGGER Input Causes a trigger packet to be inserted into the trace stream when the formatter is active.
13-6 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Trace Port Interface Unit
SWOACTIVE Output SWO mode selected (use for pin muxing).

TPIUACTIV Output Indicates that the TPIU has data which is in the process of being output.

TPIUBAUD Output Toggles at baud frequency (in TRACECLKIN domain).

Table 13-3 Miscellaneous configuration inputs (continued)

Name Type Description
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 13-7

Trace Port Interface Unit
13.2 TPIU registers

This section describes the TPIU registers. It contains the following:

• Summary of the TPIU registers

• Description of the TPIU registers.

13.2.1 Summary of the TPIU registers

Table 13-4 provides a summary of the TPIU registers.

13.2.2 Description of the TPIU registers

This section describes the TPIU registers.

Table 13-4 TPIU registers

Name of register Type Address Reset value Page

Supported Sync Port Sizes Register Read-only 0xE0040000 0bxx0x page 13-9

Current Sync Port Size Register Read/write 0xE0040004 0x01 page 13-9

Async Clock Prescaler Register Read/write 0xE0040010 0x0000 page 13-9

Selected Pin Protocol Register Read/write 0xE00400F0 0x01 page 13-10

Trigger control registers Read-only 0xE0040100
to
0xE0040108

- page 13-11

EXTCTL port registers Read-only - - page 13-11

Test pattern registers Read-only 0xE0040200
to
0xE0040208

- page 13-11

Formatter and Flush Status Register Read-only 0xE0040300 0x08 page 13-11

Formatter and Flush Control Register Read/write 0xE0040304 0x102 page 13-12

Formatter Synchronization Counter Register Read-only 0xE0040308 0x00 page 13-14

Integration Register: ITATBCTR2 Read-only 0xE0040EF0 0x0 page 13-15

Integration Register: ITATBCTR0 Read-only 0xE0040EF8 0x0 page 13-15
13-8 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Trace Port Interface Unit
Supported Sync Port Sizes Register

This register is read/write. Each bit location represents a single port size that is
supported on the device, that is, 4, 2 or 1 in bit locations [3:0]. If the bit is set then that
port size is permitted. By default the RTL is designed to support all port sizes, set to
0x0000000B. This register is constrained by the input tie-off MAXPORTSIZE. The
external tie-off, MAXPORTSIZE, must be set during finalization of the ASIC to
reflect the actual number of TRACEDATA signals wired to physical pins. This is to
ensure that tools do not attempt to select a port width that an attached TPA cannot
capture. The value on MAXPORTSIZE causes bits within the Supported Port Size
register that represent wider widths to be clear, that is, unsupported.

Figure 13-3 shows the bit assignments.

Figure 13-3 Supported Sync Port Size Register bit assignments

Current Sync Port Size Register

This register is read/write. The Current Sync Port Size Register has the same format as
the Supported Sync Port Sizes Register but only one bit is set, and all others must be
zero. Writing values with more than one bit set, or setting a bit that is not indicated as
supported is not supported and causes Unpredictable behavior.

It is more convenient to use the same format as the Supported Sync Port Sizes Register
because it saves on having to decode the sizes later on in the device, and also maintains
the format from the other register bank for checking for valid assignments.

On reset this defaults to the smallest possible port size, 1 bit, and so reads as 0x00000001.

Async Clock Prescaler Register

Use the Async Clock Prescaler Register to scale the baud rate of the asynchronous
output.

Figure 13-4 on page 13-10 shows the fields of the Async Clock Prescaler Register.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 13-9

Trace Port Interface Unit
Figure 13-4 Async Clock Prescaler Register bit assignments

Table 13-5 describes the fields of the Async Clock Prescaler Register.

Selected Pin Protocol Register

Use the Selected Pin Protocol Register to select which protocol to use for trace output.

The register address, access type, and Reset state are:

Address 0xE00400F0

Access Read/write

Reset state 0x01

Figure 13-5 shows the fields of the Selected Pin Protocol Register.

Figure 13-5 Selected Pin Protocol Register bit assignments

Table 13-5 Async Clock Prescaler Register bit assignments

Bits Field Function

[31:13] - Reserved. RAZ/SBZP.

[12:0] PRESCALER Divisor for TRACECLKIN is Prescaler + 1.
13-10 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Trace Port Interface Unit
Table 13-6 describes the fields of the Selected Pin Protocol Register.

Note
 If this register is changed while trace data is being output, data corruption occurs.

Trigger control registers

This TPIU does not support trigger delay. To indicate this, the trigger control registers
read zero.

EXTCTL port registers

This TPIU does not support EXTCTL ports. To indicate this, the EXTCTL port registers
read zero.

Test pattern registers

This TPIU has no built in test pattern generator. To indicate this, the test pattern
generator registers read zero.

Formatter and Flush Status Register

Use the Formatter and Flush Status Register to read the status of TPIU formatter.

The register address, access type, and Reset state are:

Address 0xE0040300

Access Read only

Reset state 0x08

Figure 13-6 on page 13-12 shows the fields of the Formatter and Flush Status Register.

Table 13-6 Selected Pin Protocol Register bit assignments

Bits Field Function

[31:2] - Reserved

[1:0] PROTOCOL 00 - TracePort mode

01 - SerialWire Output (Manchester). This is the reset value.
10 - SerialWire Output (NRZ)

11 - Reserved.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 13-11

Trace Port Interface Unit
Figure 13-6 Formatter and Flush Status Register bit assignments

Table 13-7 describes the fields of the Formatter and Flush Status Register.

Formatter and Flush Control Register

The Formatter and Flush Control Register.

The register address, access type, and Reset state are:

Address 0xE0040304

Access Read/write

Reset state 0x102

Figure 13-7 on page 13-13 shows the fields of the Formatter and Flush Control Register.

Table 13-7 Formatter and Flush Status Register bit assignments

Bits Field Function

[31:4] - Reserved

[3] FtNonStop Formatter cannot be stopped

[2] TCPresent This bit always reads zero

[1] FtStopped This bit always reads zero

[0] FlInProg This bit always reads zero
13-12 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Trace Port Interface Unit
Figure 13-7 Formatter and Flush Control Register bit assignments

Table 13-8 describes the fields of the Formatter and Flush Control Register.

Table 13-8 Formatter and Flush Control Register bit assignments

Bits Field Function

[31:14] - Reserved.

[13] StopTrig Stop the formatter after a Trigger Event is observed.

[12] StopFI Stop the formatter after a flush completes.

[11] - Reserved.

[10] TrigFI Indicates a trigger on Flush completion.

[9] TrigEVT Indicate a trigger on a Trigger Event.

[8] TrigIN Indicate a trigger on TRIGIN being asserted.

[7] - Reserved.

[6] FOnMan Manually generate a flush of the system.

[5] FOnTrig Generate flush using Trigger event.

[4] FOnFlln Generate flush using the FLUSHIN interface.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 13-13

Trace Port Interface Unit
Bit [8] of this register is always set to indicate that triggers are indicated when
TRIGGER is asserted.

When one of the two single wire output modes is selected, bit [1] of this register enables
the formatter to be bypassed. If the formatter is bypassed, only the ITM/DWT trace
source (ATDATA2) passes through. The TPIU accepts and discards data that is
presented on the ETM port (ATDATA1). This function is intended to be used when it is
necessary to connect a device containing an ETM to a trace capture device that is only
able to capture Serial Wire Output data. Enabling or disabling the formatter causes
momentary data corruption.

Note
 If the selected pin protocol register is set to 0x00 (TracePort mode), the Formatter and
Flush Control Register always reads 0x102, because the formatter is automatically
enabled. If one of the serial wire modes is then selected, the register reverts to its
previously programmed value.

Formatter Synchronization Counter Register

The global synchronization trigger is generated by the Program Counter (PC) Sampler
block. This means that there is no synchronization counter in the TPIU.

The register address, access type, and Reset state are:

Address 0xE0040308

Access Read only

Reset state 0x00

[3:2] - Reserved.

[1] EnFCont Continuous Formatting, no TRACECTL. This bit is set on reset.

[0] EnFTC Enable Formatting. Because TRACECTL is never present, this bit reads as zero.

Table 13-8 Formatter and Flush Control Register bit assignments (continued)

Bits Field Function
13-14 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Trace Port Interface Unit
Integration Test Registers

Use the Integration Test Registers to perform topology detection of the TPIU with other
devices in a Cortex-M3 system. These registers enable direct control of outputs and the
ability to read the value of inputs. The processor provides two Integration Test
Registers:

• Integration Test Register - ITATBCTR2

• Integration Test Register - ITATBCTR0.

Integration Test Register-ITATBCTR2

The register address, access type, and Reset state are:

Address 0xE0040EF0

Access Read only

Reset state 0x0

Figure 13-8 shows the fields of the Integration Test Register bit assignments.

Figure 13-8 Integration Test Register-ITATBCTR2 bit assignments

Table 13-9 describes the fields of the Integration Test Register bit assignments.

Integration Test Register-ITATBCTR0

The register address, access type, and Reset state are:

Address 0xE0040EF8

Access Read only

Reset state 0x0

Figure 13-9 shows the fields of the Integration Test Register bit assignments.

Table 13-9 Integration Test Register-ITATBCTR2 bit assignments

Bits Field Function

[31:1] - Reserved.

[0] ATREADY1 This bit reads or sets the value of ATREADYS1 and ATREADYS2.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 13-15

Trace Port Interface Unit
Figure 13-9 Integration Test Register-ITATBCTR0 bit assignments

Table 13-10 describes the fields of the Integration Test Register bit assignments.

Table 13-10 Integration Test Register-ITATBCTR0 bit assignments

Bits Field Function

[31:1] - Reserved

[0] ATVALID1, ATVALID2 This bit reads or sets the value of ATVALIDS1 OR-ed with ATVALIDS2.
13-16 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Trace Port Interface Unit
13.3 Serial wire output connection

The Cortex-M3 TPIU provides a serial wire output mode, which requires a single
external pin. There are three options which are available for the connection of this pin:

• A dedicated pin can be used for TRACESWO

• SWO shared with TRACEPORT

• SWO Shared with JTAG-TDO on page 13-18.

13.3.1 A dedicated pin can be used for TRACESWO

This is the simplest option, but it requires an extra package pin. Figure 13-10 shows the
dedicated pin option.

Figure 13-10 Dedicated pin used for TRACESWO

13.3.2 SWO shared with TRACEPORT

A pin can be shared between TRACEDATA[0] and TRACESWO. Because only one
of these two pins can be in use at any one time, there is no loss of functionality using
this option, and this is the preferred option when a dedicated trace port is present on the
package.

To implement this option, the SWOACTIVE output from Cortex-M3 TPIU is used to
control the multiplexor. Figure 13-11 on page 13-18 shows the SWO shared with
TRACEPORT option.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 13-17

Trace Port Interface Unit
Figure 13-11 SWO shared with TRACEPORT

13.3.3 SWO Shared with JTAG-TDO

For minimal pin count, it is possible to overlay JTAG debug and SWO on the same
package pin. This approach is only recommended where there is no provision for a
conventional trace port, or for use with more complex system-level debug configuration
controls.

If this option is chosen, the Instrumentation Trace is not accessible while the debug port
is being used in a JTAG configuration. Serial wire debug and SWO can be used together
at the same time.

In order to implement this option, the JTAGNSW output from SWJ-DP is used to
control the multiplexor. Figure 13-12 shows the SWO shared with JTAG-TDO option.

Figure 13-12 SWO shared with JTAG-TDO
13-18 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Chapter 14
Bus Interface

This chapter describes the processor bus interface. It contains the following sections:

• About bus interfaces on page 14-2

• AMBA 3 compliance on page 14-3

• ICode bus interface on page 14-4

• DCode bus interface on page 14-6

• System interface on page 14-7

• Unifying the code buses on page 14-9

• External private peripheral interface on page 14-10

• Access alignment on page 14-11

• Unaligned accesses that cross regions on page 14-12

• Bit-band accesses on page 14-13

• Write buffer on page 14-14

• Memory attributes on page 14-15

• AHB timing characteristics on page 14-16.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 14-1

Bus Interface
14.1 About bus interfaces

The processor contains four bus interfaces:

• The ICode memory interface. Instruction fetches from Code memory space
(0x0000000 - 0x1FFFFFFF) are performed over this 32-bit Advanced
High-performance Bus (AHB)-Lite bus. For more information, see ICode bus
interface on page 14-4.

• The DCode memory interface. Data and debug accesses to Code memory space
(0x0000000 - 0x1FFFFFFF) are performed over this 32-bit AHB-Lite bus. For more
information, see DCode bus interface on page 14-6.

• The System interface. Instruction fetches, and data and debug accesses, to System
space (0x20000000 - 0xDFFFFFFF, 0xE0100000 - 0xFFFFFFFF) are performed over
this 32-bit AHB-Lite bus. For more information, see System interface on
page 14-7.

• The External Private Peripheral Bus (PPB). Data and debug accesses to External
PPB space (0xE0040000 - 0xE00FFFFF) are performed over this 32-bit Advanced
Peripheral Bus (APB) (AMBA v2.0) bus. The Trace Port Interface Unit (TPIU)
and vendor specific peripherals are on this bus. For more information, see
External private peripheral interface on page 14-10.

Note
 The processor contains an internal PPB for accesses to the Nested Vectored Interrupt
Controller (NVIC), Data Watchpoint and Trace (DWT), Instrumentation Trace
Macrocell (ITM), Flash Patch and Breakpoint (FPB), and Memory Protection Unit
(MPU).
14-2 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Bus Interface
14.2 AMBA 3 compliance

The processor matches the AMBA 3 specification except for maintaining control
information during waited transfers. AMBA 3 AHB-Lite Protocol states that when the
slave is requesting wait states the master must not change the transfer type, except for
the following cases:

• IDLE transfer - the master is permitted to change the transfer type from IDLE to
NONSEQ.

• BUSY transfer, fixed length burst - the master is permitted to change the transfer
type from BUSY to SEQ.

• BUSY transfer, undefined length burst - the master is permitted to change from
BUSY to any other transfer type.

The processor does not match the above definition as it may change the access type from
SEQ or NONSEQ to IDLE during a waited transfer. In effect this cancels the
outstanding transfer which has not yet occurred due to the previous access being
wait-stated and awaiting completion. This allows the processor to have a lower interrupt
latency and higher performance in wait-stated systems.

Note
 Logic can be implemented external to Cortex-M3 if necessary to achieve total
compliance, but this is only needed if peripherals require the control information to be
maintained through a waited transfer. One way of implementing this is to mask the
control information, such as HTRANS, whilst HREADY is low.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 14-3

Bus Interface
14.3 ICode bus interface

The ICode interface is a 32-bit AHB-Lite bus interface. Instruction fetches and vector
fetches from Code memory space (0x00000000 - 0x1FFFFFFF) are performed over this
bus.

Only the CM3Core instruction fetch bus can access the ICode interface, enabling
optimal code fetch performance. All fetches are word wide. The number of instructions
fetched per word depends on the code running and the alignment of the code in memory.
Table 14-1 describes this.

Note
 It is strongly recommended that any external arbitration between the I-Code and
D-Code AHB bus interfaces ensures that D-Code has a higher priority than I-Code.

All ICode instruction fetches are marked as cacheable and non-bufferable,
HPROTI[3:2] = 2'b10, and as allocate and non-shareable, MEMATTRI = 2'b01.
These attributes are hard wired. If an MPU is fitted, the MPU region attributes are
ignored for the ICode bus.

HPROTI[0] indicates what is being fetched:

• 0 - instruction fetch

Table 14-1 Instruction fetches

32-bit
instruction
fetch [31:16]

32-bit
instruction
fetch [15:0]

Description

Thumb[15:0] Thumb[15:0] All Thumb instructions are halfword aligned in memory, so two Thumb
instructions are fetched at a time. For sequential code, an instruction fetch is
performed every second cycle. Instruction fetches can be performed on
back-to-back cycles if there is an interrupt or a branch.

Thumb-2[31:16] Thumb-2[15:0] If Thumb-2 code is word-aligned in memory, then a complete Thumb-2
instruction is fetched each cycle.

Thumb-2[15:0] Thumb-2[31:16] If Thumb-2 code is halfword aligned, then the first 32-bit fetch only returns the
first halfword of the Thumb-2 instruction. A second fetch must be performed
to fetch the second halfword. This scenario creates a wait cycle (a cycle where
CM3Core is not able to execute an instruction) depending on the instruction in
play. The additional cycle of latency only occurs for the first halfword aligned
Thumb-2 instruction fetch. CM3Core contains a 3-entry fetch buffer, and so the
upper halfword of halfword aligned Thumb-2 instructions exist in the fetch
buffer for subsequent sequential Thumb-2 instructions.
14-4 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Bus Interface
• 1 - vector fetch.

All ICode transactions are performed as non-sequentials.

14.3.1 Branch status signal

A branch status signal, BRCHSTAT, is exported on the Embedded Trace Macrocell
(ETM) interface that indicates if there are any branches in the pipeline. A prefetcher, for
example, can use this to prevent prefetching if a branch is about to be fetched. For more
information about the branch status signal, see Chapter 16 Embedded Trace Macrocell
Interface.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 14-5

Bus Interface
14.4 DCode bus interface

The DCode interface is a 32-bit AHB-Lite bus. Data and debug accesses to Code
memory space (0x00000000 - 0x1FFFFFFF) are performed over this bus. Core data
accesses have a higher priority than debug accesses. This means that debug accesses are
waited until core accesses have completed when there are simultaneous core and debug
access to this bus.

Control logic in this interface converts unaligned data and debug accesses into two or
three (depending on the size and alignment of the unaligned access) aligned accesses.
This stalls any subsequent data or debug access until the unaligned access has
completed.

See Access alignment on page 14-11 for a description of unaligned accesses.

Note
 It is strongly recommended that any external arbitration between the I-Code and
D-Code AHB bus interfaces ensures that D-Code has a higher priority than I-Code.

14.4.1 Exclusives

The DCode bus supports exclusive accesses. This is carried out using two sideband
signals, EXREQD and EXRESPD. For more information, see DCode interface on
page A-8.

14.4.2 Memory attributes

All DCode memory accesses are marked as cacheable and non-bufferable,
HPROTD[3:2] = 2'b10, and as allocate and non-shareable, MEMATTRD = 2'b01.

These attributes are hard wired. If an MPU is fitted, the MPU region attributes are
ignored for the DCode bus.
14-6 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Bus Interface
14.5 System interface

The system interface is a 32-bit AHB-Lite bus. Instruction and vector fetches, and data
and debug accesses to the System memory space, 0x20000000 - 0xDFFFFFFF,
0xE0100000 - 0xFFFFFFFF, are performed over this bus.

For simultaneous accesses to this bus, the arbitration order in decreasing priority is:

• data accesses

• instruction and vector fetches

• debug.

The System bus interface contains control logic to handle unaligned accesses, FPB
remapped accesses, bit-band accesses, and pipelined instruction fetches.

14.5.1 Unaligned accesses

Unaligned data and debug accesses are converted into two or three aligned accesses,
depending on the size and alignment of the unaligned access. This stalls any subsequent
accesses until the unaligned access has completed. For a description of unaligned
accesses, see Access alignment on page 14-11.

14.5.2 Bit-band accesses

Accesses to the bit-band alias region are converted into accesses to the bit-band region.
Bit-band writes take two cycles, they are converted into read-modify-write operations,
and so bit-band write accesses stall any subsequent accesses until the bit-band access
has completed. For a description of bit-band accesses, see Bit-band accesses on
page 14-13.

14.5.3 Flash Patch remapping

Accesses to the Code memory space that are remapped to System memory space incur
a cycle penalty to be remapped. This stalls any subsequent accesses until the Flash Patch
access has completed. See FPB on page 11-6 for a description of Flash Patch.

14.5.4 Exclusives

The System bus supports exclusive accesses. This is carried out using two sideband
signals, EXREQS and EXRESPS. For more information, see System bus interface on
page A-9.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 14-7

Bus Interface
14.5.5 Memory attributes

The processor exports memory attributes on the System bus by using a sideband bus
called MEMATTRS. For more information, see Memory attributes on page 14-15.

14.5.6 Pipelined instruction fetches

To provide a clean timing interface on the System bus, instruction and vector fetch
requests to this bus are registered. This results in an additional cycle of latency because
instructions fetched from the System bus take two cycles. This also means that
back-to-back instruction fetches from the System bus are not possible.

Note
 Instruction fetch requests to the ICode bus are not registered. Performance critical code
must run from the ICode interface.
14-8 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Bus Interface
14.6 Unifying the code buses

For some systems you might want to combine the processor core’s ICode and DCode
buses into a single, unified Code bus. To support this for high-speed operation, the
processor has the DNOTITRANS input which suppresses the HTRANSI line when
HTRANSD becomes active. With DNOTITRANS asserted, if HTRANSI and
HTRANSD are to be active simultaneously in corresponding single-cycle address
phases, then only HTRANSD is asserted. The ICode transaction is waited internal to
the processor. In other words, the external ICode bus is forced into an idle state. The two
HTRANS signals are therefore guaranteed never to be simultaneously active, which
permits the bus multiplexer to be a very simple device.

Note
 DNOTITRANS is a static input that must be tied high to enforce this behavior.

The external ICode/DCode bus multiplexer can be integrated into a Cortex-M3 system
as shown in Figure 14-1.

Figure 14-1 ICode/DCode multiplexer
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 14-9

Bus Interface
14.7 External private peripheral interface

The external private peripheral interface is an APB (AMBA v2.0) bus. Data and debug
accesses to the External Peripheral memory space (0xE0040000 - 0xE00FFFFF) are
performed over this bus. Wait states are not supported on this bus. The TPIU and any
vendor specific components populate this bus. Core data accesses have higher priority
than debug accesses, so debug accesses are waited until core accesses have completed
when there are simultaneous core and debug access to this bus. Only the address bits
necessary to decode the External PPB space are supported on this interface. These
address bits are bits [19:2] of PADDR.

PADDR31 is driven as a sideband signal on this bus. When the signal is HIGH, it
indicates that the AHB-AP debug is the requesting master. When the signal is LOW, it
indicates that the core is the requesting master.

Unaligned accesses to this bus are architecturally Unpredictable and are not supported.
The processor drives out the original HADDR[1:0] request from the core and does not
convert the request into multiple aligned accesses.
14-10 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Bus Interface

U

S

H

H

H

H

W

W

W

W

14.8 Access alignment

The processor supports unaligned data accesses using the ARMv6 model. The DCode
and System bus interfaces contain logic that converts unaligned accesses to aligned
accesses.

The unaligned data accesses are described in Table 14-2. The table shows the unaligned
access in the first column, with the remaining columns showing what the access is
converted into. Depending on the size and alignment of the unaligned access, it is
converted into two or three aligned accesses.

Note
 Unaligned accesses that cross into the bit-band alias region are not treated as bit-band
requests, and the access is not remapped to the bit-band region. Instead, they are treated
as a halfword or byte access to the bit-band alias region.

Table 14-2 Bus mapper unaligned accesses

naligned access Aligned access

Cycle 1 Cycle 2 Cycle 3

ize
ADDR
[1:0]

HSIZE
HADDR
[1:0]

HSIZE HADDR[1:0] HSIZE HADDR[1:0]

alfword 00 Halfword 00 - - - -

alfword 01 Byte 01 Byte 10 - -

alfword 10 Halfword 10 - - - -

alfword 11 Byte 11 Byte {(Addr+4)[31:2],2b00} - -

ord 00 Word 00 - - - -

ord 01 Byte 01 Halfword 10 Byte {(Addr+4)[31:2],2b00}

ord 10 Halfword 10 Halfword {(Addr+4)[31:2],2b00} - -

ord 11 Byte 11 Halfword {(Addr+4)[31:2],2b00} Byte {(Addr+4)[31:2],2b10}
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 14-11

Bus Interface
14.9 Unaligned accesses that cross regions

The CM3Core supports ARMv6 unaligned accesses, and performs all accesses as
single, unaligned accesses. They are converted into two or more aligned accesses by the
DCode and System bus interfaces.

Note
 All Cortex-M3 external accesses are aligned.

Unaligned support is only available for load/store singles (LDR, STR). Load/store
double already supports word aligned accesses, but does not permit other unaligned
accesses, and generates a fault if this is attempted.

Unaligned accesses that cross memory map boundaries are architecturally
Unpredictable. The processor behavior is boundary dependent, as follows:

• DCode accesses wrap within the region. For example, an unaligned halfword
access to the last byte of Code space (0x1FFFFFFF) is converted by the DCode
interface into a byte access to 0x1FFFFFFF followed by a byte access to 0x00000000.

• System accesses that cross into PPB space do not wrap within System space. For
example, an unaligned halfword access to the last byte of System space
(0xDFFFFFFF) is converted by the System interface into a byte access to 0xDFFFFFFF
followed by a byte access to 0xE0000000. 0xE0000000 is not a valid address on the
System bus.

• System accesses that cross into Code space do not wrap within System space. For
example, an unaligned halfword access to the last byte of System space
(0xFFFFFFFF) is converted by the System interface into a byte access to 0xFFFFFFFF
followed by a byte access to 0x00000000. 0x00000000 is not a valid address on the
System bus.

• Unaligned accesses are not supported to PPB space, and so there are no boundary
crossing cases for PPB accesses.

Unaligned accesses that cross into the bit-band alias regions are also architecturally
Unpredictable. The processor performs the access to the bit-band alias address, but this
does not result in a bit-band operation. For example, an unaligned halfword access to
0x21FFFFFF is performed as a byte access to 0x21FFFFFF followed by a byte access to
0x22000000 (the first byte of the bit-band alias).

Unaligned loads that match against a literal comparator in the FPB are not remapped.
FPB only remaps aligned addresses.
14-12 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Bus Interface
14.10 Bit-band accesses

The System bus interface contains logic that controls bit-band accesses as follows:

• It remaps bit-band alias addresses to the bit-band region.

• For reads, it extracts the requested bit from the read byte, and returns this in the
Least Significant Bit (LSB) of the read data returned to the core.

• For writes, it converts the write to an atomic read-modify-write operation.

For more information about bit-banding, see Bit-banding on page 4-5.

Note
 • The CM3Core does not stall during bit-band operations unless it attempts to

access the System bus while the bit-band operation is being carried out.

• Big endian accesses to the bit-band alias region must be byte-sized. Otherwise,
the accesses are Unpredictable.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 14-13

Bus Interface
14.11 Write buffer

To prevent bus wait cycles from stalling the processor during data stores, buffered stores
to the DCode and System buses go through a one-entry write buffer. If the write buffer
is full, subsequent accesses to the bus stall until the write buffer has drained. The write
buffer is only used if the bus waits the data phase of the buffered store, otherwise the
transaction completes on the bus.

DMB and DSB instructions wait for the write buffer to drain before completing. If an
interrupt comes in while DMB/DSB is waiting for the write buffer to drain, the opcode
after the DMB/DSB is returned to on the completion of the interrupt. This is because
interrupt processing is a memory barrier operation.
14-14 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Bus Interface
14.12 Memory attributes

The processor exports memory attributes on the System bus by the addition of a
sideband bus, MEMATTR.

Table 14-3 shows the relationship between MEMATTR[0] and HPROT[3:2].

Table 14-3 Memory attributes

MEMATTR[0] HPROT[3] HPROT[2] Description

0 0 0 Strongly ordered

0 0 1 Device

0 1 0 L1 cacheable, L2 not cacheable

1 0 0 Invalid

1 0 1 Invalid

1 1 0 Cache WT, allocate on read

0 1 1 Cache WB, allocate on read and write

1 1 1 Cache WB, allocate on read
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 14-15

Bus Interface
14.13 AHB timing characteristics

The processor does not contain memories within the macrocell. To achieve high system
performance, and to give the implementor complete flexibility in their memory
architecture, memory requests from the processor are presented directly to the AHB
interfaces unregistered.

Because of this, the Cortex-M3 AHB outputs are valid approximately 50% into the
cycle, and the AHB inputs have a setup requirement of approximately 50% of the clock
period.

Table 14-4 describes the timing characteristics of each of the interfaces.

Table 14-4 Interface timing characteristics

interface Timing characteristics

ICODE Instruction address and control signals are generated from the ALU, and as a result are valid
approximately 50% into the clock cycle. Read data (HRDATAI) and read response (HRESPI) are
presented directly to the processor and have approximately 50% of clock period setup.

DCODE Core data and debug requests are presented over this bus. Both data and debug requests are
presented relatively early in the cycle, and they are generated from registers with a small amount
of combinatorial logic after the register. Requests on this bus have more slack than those presented
on the ICODE bus. Write data (HWDATAD) is presented directly from the ALU and is valid
approximately 50% into the clock cycle. Read data (HRDATAD) and read response (HRESPD)
are presented directly to the processor and have approximately 50% of clock period setup.

SYSTEM Instruction fetches from this bus are pipelined, as described in Pipelined instruction fetches on
page 14-8, and data and debug requests to this bus are presented early in the cycle, so requests on
this bus have more slack than those presented on the ICODE bus. Write data (HWDATAS) is
presented directly from the ALU and is valid approximately 50% into the clock cycle. Read data
(HRDATAS) and read response (HRESPS) are presented directly to the processor and have
approximately 50% of clock period setup.

PPB Data and debug requests to this bus are presented early in the cycle, so requests on this bus have
more slack than those presented on the ICODE bus. Write data (PWDATA) is presented directly
from the ALU and is valid approximately 50% into the clock cycle. Read data (PRDATA) is
presented directly to the processor and has approximately 50% of clock period setup
14-16 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Chapter 15
Embedded Trace Macrocell

This chapter describes the Embedded Trace Macrocell (ETM). It contains the following
sections:

• About the ETM on page 15-2

• Data tracing on page 15-7

• ETM resources on page 15-8

• Trace output on page 15-11

• ETM architecture on page 15-12

• ETM programmer’s model on page 15-16.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 15-1

Embedded Trace Macrocell
15.1 About the ETM

The ETM is an optional debug component that enables reconstruction of program
execution. The ETM is designed as a high-speed, low-power debug tool that only
supports instruction trace. This ensures that area is minimized, and that gate count is
reduced.

15.1.1 ETM block diagram

Figure 15-1 on page 15-3 shows a block diagram of the ETM, and shows how the ETM
interfaces to the Trace Port Interface Unit (TPIU).
15-2 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Embedded Trace Macrocell
Figure 15-1 ETM block diagram

15.1.2 ETM inputs and outputs

This section describes the ETM inputs and outputs:

• ETM core interface. See Table 15-1 on page 15-4.

• Miscellaneous configuration inputs. See Table 15-2 on page 15-4.

• Trace port signals. See Table 15-2 on page 15-4.

• Other signals. See Table 15-4 on page 15-5.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 15-3

Embedded Trace Macrocell
• Clocks and resets. See Table 15-5 on page 15-6.

• Advanced Peripheral Bus (APB) interface signals. See Table 15-6 on page 15-6.

Table 15-1 ETM core interface inputs and outputs

Name Description Qualified by Direction

ETMIA[31:1] Core instruction address bus. ETMIVALID Input

ETMIVALID Current instruction data represents an instruction. - Input

ETMDVALID Current instruction data represents an instruction. - Input

ETMICCFAIL Instruction failed its condition code. ETMIVALID Input

ETMIBRANCH Instruction is a branch target. ETMIVALID Input

ETMIINDBR Instruction is an indirect branch target. ETMIBRANCH Input

ETMFLUSH PC modified before next instruction. - Input

ETMISTALL Indicates that the last instruction signalled by the core has not
yet entered execute.

- Input

ETMFINDBR PC modified by an indirect operation. ETMFLUSH Input

ETMINTSTAT[2:0] Exception entry and exit. - Input

ETMINTNUM[8:0] Exception type. ETMINTSTAT Input

ETMCANCEL Exception is a canceling exception. ETMINTSTAT Input

COREHALT Core is halted. - Input

DWTMATCH [3:0] Indicates that the Data Watchpoint and Trace (DWT) trigger
units have matched the conditions currently present on the
address, data and control buses.

- Input

DWTINOTD[3:0] Indicates that the DWT trigger units are performing
comparisons on PC value (set) or data address (clear).

- Input

Table 15-2 Miscellaneous configuration inputs

Name Description Direction Clock domain

NIDEN Non invasive debug enable Input HCLK

EXTIN[1:0] External input resource Input HCLK
15-4 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Embedded Trace Macrocell
Note
 One of the EXTIN inputs to the ETM could be driven from the LOCKUP output from
the core to enable trace capture to stop, or trigger if a lockup condition occurs. The
EXTIN inputs are not synchronized in the ETM. If they are not driven from the ETM
clock, then you must synchronize them outside the ETM.

MAXEXTIN[1:0] Maximum supported external inputs Input HCLK

CGBYPASS Bypass architectural clock gating
cell

Input CLK

FIFOFULLEN Enable ETMFIFOFULL Input CLK

Table 15-2 Miscellaneous configuration inputs (continued)

Name Description Direction Clock domain

Table 15-3 Trace port signals

Name Description Direction Clock domain

ATDATAM[7:0] Eight-bit trace data Output HCLK

ATVALIDM ATDATA is valid Output HCLK

ATIDM[6:0] Trace Source ID Output HCLK

ATREADYM Indicates that the Trace Port is able to accept the Data on ATDATA Input HCLK

AFREADYM Indicates that the ETM FIFO is empty Output HCLK

Table 15-4 Other signals

Name Description Direction Clock domain

FIFOPEEK[9:0] For validation purposes only Output HCLK

ETMPWRUP Indicates that the ETM is powered up Output HCLK

ETMTRIGOUT Trigger occurred status signal Output HCLK

ETMDBGRQ Debug request to core Output HCLK

ETMEN ETM traceport enabled Output HCLK
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 15-5

Embedded Trace Macrocell
Table 15-5 Clocks and resets

Name Description Direction

HCLK Clock for ETM logic which should be connected to the same FCLK as Cortex-M3. Input

HRESETn Power on reset for the HCLK domain. Must not be the same as core HCLK reset
(SYSRESETn).

Input

Table 15-6 APB interface signals

Name Description Direction Clock domain

PSEL APB device select Input CLK

PENABLE APB control signal Input CLK

PADDR[11:2] APB Address Bus Input CLK

PWRITE APB Transfer direction (!Read/Write) Input CLK

PWDATA[31:0] APB Write Data Bus Input CLK

PRDATA[31:0] APB Read Data Bus Output CLK
15-6 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Embedded Trace Macrocell
15.2 Data tracing

The Cortex-M3 system can perform low-bandwidth data tracing using the Data
Watchpoint and Trace (DWT) and Instruction Trace Macrocell (ITM) components. To
enable support of instruction trace with a low pin-count, data trace is not included in the
ETM. This considerably reduces gate count for the ETM, because the triggering
resources are simplified.

When the ETM is implemented in the processor, the two trace sources, ITM and ETM,
both feed into the TPIU, where they are combined and usually output over the trace port.
DWT is able to provide either focused data trace, or global data trace, subject to FIFO
overflow issues. The TPIU is optimized for the requirements of a single core Cortex-M3
system.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 15-7

Embedded Trace Macrocell
15.3 ETM resources

Because the ETM does not generate data trace information, the lower bandwidth
reduces the requirement for complex triggering capabilities. This means that the ETM
does not include the following:

• internal comparators

• counters

• sequencers.

Table 15-7 lists the Cortex-M3 resources.

Table 15-7 Cortex-M3 resources

Feature Present on Cortex-M3 ETM

Architecture version ETMv3.4

Address comparator pairs 0

Data comparators 0

Context ID comparators 0

MMDs 0

Counters 0

Sequencer No

Start/stop block Yes

Embedded ICE comparators 4

External inputs 2

External outputs 0

Extended external inputs 0

Extended external input selectors 0

FIFOFULL Yes

FIFOFULL level setting Yes

Branch broadcasting Yes

ASIC Control Register No

Data suppression No
15-8 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Embedded Trace Macrocell
15.3.1 Periodic synchronization

The ETM uses a fixed synchronization packet generation frequency of every 1024 bytes
of trace.

15.3.2 Data and instruction address compare resources

The DWT provides four address comparators on the data bus that provide debug
functionality. Within the DWT unit, it is possible to specify the functions triggered by
a match, and one of these functions is to generate an ETM match input. These inputs are
presented to the ETM as Embedded In Circuit Emulator (ICE) comparator inputs.

A single DWT resource can trigger an ETM event and also generate instrumentation
trace directly from the same event.

Software access to registers Yes

Readable registers Yes

FIFO size 24 bytes

Minimum port size 8 bytes

Maximum port size 8 bytes

Normal port mode -

Normal half-rate clocking/1:1 Yes - asynchronous

Demux port mode -

Demux half-rate clocking/1:2 No

Mux port mode/2:1 No

1:4 port mode No

Dynamic port mode (including stalling) No. Supported by asynchronous port mode.

CPRT data No

Load PC first No

Fetch comparisons No

Load data traced No

Table 15-7 Cortex-M3 resources (continued)

Feature Present on Cortex-M3 ETM
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 15-9

Embedded Trace Macrocell
You can also individually configure the four DWT comparators to compare with the
execute PC to permit the ETM access to a PC compare resource. These inputs are
presented to the ETM as Embedded ICE comparator inputs.

Note
 Using a DWT comparator as a PC comparator reduces the number of available data
address comparisons.

See DWT on page 11-13 for more information about the DWT unit.

External inputs

Two external inputs, ETMEXTIN[1:0], enable additional on-chip IP to generate
trigger/enable signals for the ETM.

Start/stop block

The start/stop block controls start/stop behavior by using the embedded ICE inputs to
the ETM. The DWT controls these inputs.

15.3.3 FIFO functionality

The FIFO size is 24 bytes.

A FIFOFULL output is provided to enable the core to be stalled when the FIFO reaches
a specific depth. Although stalling the core in a typical application is unlikely to be
acceptable, it provides a mechanism for enabling 100% trace that could be compared
with the partial trace obtained for a non-stalled run.
15-10 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Embedded Trace Macrocell
15.4 Trace output

The ETM outputs data 8 bits at a time, at the core clock speed. It does not support
different trace port sizes and trace port modes. The TPIU exports trace output off chip.
This output is compatible with the AMBA Trace Bus (ATB) protocol.

Because AFVALID functionality is not supported, the trace port cannot flush data from
the ETM FIFO. However, with an 8-bit ATB port the FIFO always drains, which makes
AFVALID unnecessary.

The Cortex-M3 system is equipped with an optimized TPIU that is designed for use
with the ETM and ITM. This TPIU does not support additional trace sources. However,
you can add additional trace sources if the TPIU has been replaced with a more complex
version, and more trace infrastructure.

Note
 A trace ID register and output are provided for systems that use multiple trace sources.

The TPIU uses the formatted trace output protocol. This means that there is no
requirement for an extra pin for TRACECTL signal.

Trace output from the ETM is synchronous to the core clock. There is an asynchronous
FIFO in the trace port interface. If you want to integrate the ETM into a multi-core
system, you might have to use an asynchronous ATB bridge.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 15-11

Embedded Trace Macrocell
15.5 ETM architecture

The ETM is an instruction only ETM that implements ARM ETM architecture v3.4. It
is based on the ARM ETM Architecture Specification. For full details, see the ARM
Embedded Trace Macrocell Architecture Specification.

All Thumb-2 instructions are traced as a single instruction. Instructions following an IT
instruction are traced as normal conditional instructions. The decompressor does not
have to refer to the IT instruction.

15.5.1 Restartable instructions

The ARMv7-M architecture can restart LSM instructions that are interrupted by an
exception. The ETM traces an instruction that has been interrupted by an exception by
indicating that it has been cancelled. On return from the exception, the ETM traces the
same instruction again, regardless of the instruction being restarted or resumed.

15.5.2 Exception return

The ETM explicitly indicates return from an exception in the trace stream. This is
because exception return functionality is encoded in a data-dependent manner, and an
exception return behaves differently from a simple branch.

The packet encoding indicates a return from an exception. Figure 15-2 shows this.

Figure 15-2 Return from exception packet encoding

If a new, higher priority exception pre-empts the stack pop, the branch to the exception
handler must indicate that the last instruction was cancelled. This indicates that the
return from exception packet was cancelled, but the return from exception instruction
was not cancelled. If the return from exception packet is present, then this means that
the previous instruction did complete.

15.5.3 Exception tracing

To trace exceptions, an optional field is added to a branch packet. This extra field
specifies the exception information. A normal branch packet is encoded in 1-5 bytes of
trace data, while the exception branch is as follows:

• 2-5 bytes of address
15-12 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Embedded Trace Macrocell
• 1-2 bytes of exception.

The exception mapping is designed to enable the most frequent exceptions to be
encoded within one byte. The ETM exception tracing mapping is described in
Table 15-8.

Table 15-8 Exception tracing mapping

Number of bytes Exception ETMINTNUM Traced value

1 byte exception None - 0

1 byte exception IRQ1 17 1

1 byte exception IRQ2 18 2

1 byte exception IRQ3 19 3

1 byte exception IRQ4 20 4

1 byte exception IRQ5 21 5

1 byte exception IRQ6 22 6

1 byte exception IRQ7 23 7

1 byte exception IRQ0 16 8

1 byte exception Usage Fault 6 9

1 byte exception NMI 2 10

1 byte exception SVC 11 11

1 byte exception DebugMon 12 12

1 byte exception MemManage 4 13

1 byte exception PendSV 14 14

1 byte exception SysTick 15 15

2 bytes exception Reserved 8 16

2 bytes exception Reset 0 17

2 bytes exception Reserved 10 18

2 bytes exception HardFault 3 19

2 bytes exception Reserved 9 20

2 bytes exception BusFault 5 21
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 15-13

Embedded Trace Macrocell
Figure 15-3 shows the full branch with exception packet.

Figure 15-3 Exception encoding for branch packet

2 bytes exception Reserved 7 22

2 bytes exception Reserved 13 23

2 bytes exception IRQ8 24 24

2 bytes exception IRQ9 25 25

2 bytes exception IRQ10 26 26

. . . .

. . . .

. . . .

2 bytes exception IRQ239 512 512

Table 15-8 Exception tracing mapping (continued)

Number of bytes Exception ETMINTNUM Traced value
15-14 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Embedded Trace Macrocell
The final address byte uses bits [7:6] set to 0b01 to indicate the end of the address field.
Exception data follows this field. Exception byte 0 sets bit [7] to 1 if a second exception
byte follows. If there is no exception present, and only address bits [6:1] change, then a
single byte is used. If an exception is present, then at least two bytes signal the address.

When turning off trace immediately before entry to an exception handler, the ETM
remains enabled until the exception is taken. This enables it to trace the branch address,
exception type and resume information.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 15-15

Embedded Trace Macrocell
15.6 ETM programmer’s model

The ETM programmer’s model is described in detail in the ARM Embedded Trace
Macrocell Architecture Specification. This section defines the implementation-specific
features of the ETM programmer’s model.

15.6.1 Advanced Peripheral Bus interface

The ETM contains an APB slave interface that can read and write to the ETM registers.
This interface is synchronous to the processor clock. The core and the external debug
interface can access it through the Serial Wire Debug Port/JTAG Debug Port
(SW-DP/JTAG-DP).

15.6.2 List of ETM registers

The ETM registers are listed in Table 15-9. For full details, see the ARM Embedded
Trace Macrocell Architecture Specification.

Table 15-9 ETM registers

Name Type Address Present Description

ETM Control Read/write 0xE0041000 Yes For a description, see page 15-19.

Configuration Code Read only 0xE0041004 Yes For a description, see page 15-19.

Trigger event Write only 0xE0041008 Yes Defines the event that controls the
trigger.

ASIC Control - 0xE004100C No -

ETM Status Read only
or
Read/write

0xE0041010 Yes Provides information on the
current status of the trace and
trigger logic.

System Configuration Read only 0xE0041014 Yes For a description, see page
page 15-19.

TraceEnable - 0xE0041018,
0xE004101C

No -

TraceEnable Event Write only 0xE0041020 Yes Describes the TraceEnable
enabling event.

TraceEnable Control 1 Write only 0xE0041024 Yes For a description, see page 15-20.

FIFOFULL Region Write only 0xE0041028 No -
15-16 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Embedded Trace Macrocell
FIFOFULL Level Write only
or
Read/write

0xE004102C Yes Holds the level below which the
FIFO is considered full.

ViewData - 0xE0041030-
0xE004103C

No -

Address Comparators - 0xE0041040-
0xE004113C

No -

Counters - 0xE0041140-
0xE004157C

No -

Sequencer - 0xE0041180-
0xE0041194,
0xE0041198

No -

External Outputs - 0xE00411A0-
0xE00411AC

No -

CID Comparators - 0xE00411B0-
0xE00411BC

No -

Implementation specific - 0xE00411C0-
0xE00411DC

No All RAZ. Ignore writes.

Synchronization Frequency Read only 0xE00411E0 Yes Reads as 0x00000400.

ETM ID Read only 0xE00411E4 Yes For a description, see page 15-20.

Configuration Code Extension Read only 0xE00411E8 Yes For a description, see page 15-20.

Extended External Input Selector - 0xE00411EC No No extended external inputs
implemented.

TraceEnable Start/Stop Embedded ICE Read/write 0xE00411F0 Yes Bits [19:16] configure E-ICE
inputs to use as stop resources.
Bits [3:0] configure E-ICE inputs
to use as start resources.

Embedded ICE Behavior Control - 0xE00411F4 No Embedded ICE inputs use the
default behavior.

CoreSight Trace ID Read/write 0xE0041200 Yes Implemented as normal.

OS Save/Restore - 0xE0041304-
0xE0041308

No OS Save/Restore not
implemented. RAZ, ignore writes.

Table 15-9 ETM registers (continued)

Name Type Address Present Description
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 15-17

Embedded Trace Macrocell
Power Down Status Register Read only 0xE0041314 Yes For a description, see page 15-20.

ITMISCIN Read only 0xE0041EE0 Yes Sets [1:0] to EXTIN[1:0], [4] to
COREHALT.

ITTRIGOUT Write only 0xE0041EE8 Yes Sets [0] to TRIGGER.

ITATBCTR2 Read only 0xE0041EF0 Yes Sets [0] to ATREADY.

ITATBCTR0 Write only 0xE0041EF8 Yes Sets [0] to ATVALID.

Integration Mode Control Read/write 0xE0041F00 Yes Implemented as normal.

Claim Tag Read/write 0xE0041FA0-
0xE0041FA4

Yes Implements the 4-bit claim tag.

Lock Access Write only 0xE0041FB0-
0xE0041FB4

Yes Implemented as normal.

Authentication Status Read only 0xE0041FB8 Yes Implemented as normal.

Device Type Read only 0xE0041FCC Yes Reset value: 0x13.

Peripheral ID 4 Read only 0xE0041FD0 Yes 0x04

Peripheral ID 5 Read only 0xE0041FD4 Yes 0x00

Peripheral ID 6 Read only 0xE0041FD8 Yes 0x00

Peripheral ID 7 Read only 0xE0041FDC Yes 0x00

Peripheral ID 0 Read only 0xE0041FE0 Yes 0x24

Peripheral ID 1 Read only 0xE0041FE4 Yes 0xB9

Peripheral ID 2 Read only 0xE0041FE8 Yes 0x1B

Peripheral ID 3 Read only 0xE0041FEC Yes 0x00

Component ID 0 Read only 0xE0041FF0 Yes 0x0D

Component ID 1 Read only 0xE0041FF4 Yes 0x90

Component ID 2 Read only 0xE0041FF8 Yes 0x05

Component ID 3 Read only 0xE0041FFC Yes 0xB1

Table 15-9 ETM registers (continued)

Name Type Address Present Description
15-18 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Embedded Trace Macrocell
15.6.3 Description of ETM registers

An additional description of some of the ETM registers is given in the following
sections. See the ARM Embedded Trace Macrocell Architecture Specification for more
information.

ETM Control Register

The ETM Control Register controls general operation of the ETM, such as whether
tracing is enabled.

Reset value: 0x00002411

Implemented bits: [21], [17:16], [13], [11:4], [0]

All other bits RAZ, ignore writes.

Configuration Code Register

The ETM Configuration Code Register enables the debugger to read the
implementation-specific configuration of the ETM.

Reset value: 0x8C800000

Bits [22:20] are fixed at 0 and not supplied by the ASIC. Bits [18:17] are supplied by
the MAXEXTIN[1:0] input bus, and read the lower value of MAXEXTIN and the
number 2 (the number of EXTINs). This indicates:

• software accesses supported

• trace start/stop block present

• no CID comparators

• FIFOFULL logic is present

• no external outputs

• 0-2 external inputs (controlled by MAXEXTIN)

• no sequencer

• no counters

• no MMDs

• no data comparators

• no address comparator pairs.

System Configuration Register

The System Configuration Register shows the ETM features supported by the ASIC.

Reset value: 0x00020D09
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 15-19

Embedded Trace Macrocell
Bits [11:10] are implemented as normal. Bits [9], [2:0] are fixed as 4’b0001.

TraceEnable Control 1 Register

The TraceEnable Control 1 Register is one of the registers that configures TraceEnable.

Only bit [25] is implemented. It controls the start/stop resource controls tracing.

ETM ID Register

The ETM ID Register holds the ETM architecture variant, and precisely defines the
programmer’s model for the ETM.

Reset value: 0x4114F241

This indicates:

• ARM implementor

• special branch encoding, affects bits [7:6] of each byte

• Thumb-2 supported

• core family is found elsewhere

• ETMv3.4

• implementation revision 1.

Configuration Code Extension Register

The Configuration Code Extension Register holds additional bits for ETM
configuration code. It describes the extended external inputs.

Reset value: 0x00018800

This register indicates:

• start/stop block uses embedded In Circuit Emulator (ICE) inputs

• four embedded ICE inputs

• no data comparisons supported

• all registers are readable

• no extended external input supported.

Power Down Status Register

The Power Down Status Register (PDSR) indicates whether the ETM is powered up or
not.

Reset value: 0x00000001
15-20 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Embedded Trace Macrocell
Only bit [0] is implemented. It indicates whether the ETM debug power domain is
powered up or not:

• 0 = ETM debug power domain not powered up

• 1 = ETM debug power domain powered up.

Note
 If the ETM is not powered up, the ETM registers are not accessible.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 15-21

Embedded Trace Macrocell
15-22 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Chapter 16
Embedded Trace Macrocell Interface

This chapter describes the Embedded Trace Macrocell (ETM) interface. It contains the
following sections:

• About the ETM interface on page 16-2

• CPU ETM interface port descriptions on page 16-3

• Branch status interface on page 16-6.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 16-1

Embedded Trace Macrocell Interface
16.1 About the ETM interface

The ETM interface enables simple connection of an ETM to the processor. It provides
a channel for instruction trace to the ETM.
16-2 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Embedded Trace Macrocell Interface
16.2 CPU ETM interface port descriptions

 The processor has a port that enables the ETM to determine the instruction execution
sequence. These port descriptions are described in Table 16-1.

Table 16-1 ETM interface ports

Port name Direction Qualified by Description

ETMIVALID Output No qualifier Instruction in execute is valid. Marks that an opcode has
entered the first cycle of execute.

ETMIBRANCH Output ETMIVALID Opcode is a branch target. Marks that current code is the
destination of a Program Counter (PC) modifying event
(branch, interrupt processing).

ETMIINDBR Output ETMIBRANCH Opcode branch target is indirect. Marks that the current
opcode is a branch target whose destination the PC
contents cannot deduce. For example, LSU, register
move, or interrupt processing.

ETMDVALID Output No qualifier Signals that the current data address as seen by the Data
Watchpoint and Trace (DWT) is valid on this cycle.

ETMICCFAIL Output ETMIVALID Opcode condition code fail or pass. Marks if the current
opcode has failed or passed its conditional execution
check. An opcode is conditionally executed if it is a
conditional branch, or for all other opcode found in an IT
block.

ETMINTSTAT[2:0] Output No qualifier Interrupt status. Marks the interrupt status of the current
cycle:

000 no status

001 interrupt entry

010 interrupt exit

011 interrupt return

100 - Vector fetch and stack push. ETMINTSTAT
Entry/Return is asserted in the first cycle of the new
interrupt context. Exit occurs without ETMIVALID.

ETMINTNUM[8:0] Output ETMINTSTAT Interrupt number. Marks the interrupt number of the
current execution context.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 16-3

Embedded Trace Macrocell Interface
ETMIA[31:1] Output No qualifier Instruction address. Indicates the current fetch address of
the opcode in execution, or of the last opcode executed.
You can determine the context by examining:

ETMIVALID

HALTED
SLEEPING.

The ETM examines this net when ETMIVALID is
asserted. The DWT examines this net for PC samples and
bus watching.

ETMFOLD Output ETMIVALID Opcode fold. Indicates that an IT opcode has been folded
in this cycle. PC advances past the current (16-bit) opcode
and the IT instruction (16 bits). This affects the ETMIA.

ETMFLUSH Output No qualifier Flush marker of PC event. A PC modifying opcode has
executed or an interrupt push/pop has started. The ETM
can use this control to complete outstanding packets in
preparation for an ETMIBRANCH event.

ETMFINDBR Output ETMFLUSH Flush is indirect. Marks that the PC cannot deduce the
flush hint destination.

ETMCANCEL Output No qualifier Current opcode in execute has been cancelled. Opcodes
that are interrupted restart or continue on return to this
execution context. These include:

LDR/STR

LDRD/STRD

LDM/STM

U/SMULL

MLA

U/SDIV

MSR

CPSID

Table 16-1 ETM interface ports (continued)

Port name Direction Qualified by Description
16-4 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Embedded Trace Macrocell Interface
ETMISTALL Output No qualifier Indicates that the last instruction signalled by the core has
not yet entered execute. If ETMICANCEL is asserted
with ETMISTALL, it indicates that the stalled
instruction did not execute, and the previous instruction
was cancelled.

ETMTRIGGER[3:0] Output No qualifier Output trigger from DWT. One bit for each of the four
DWT comparators.

ETMTRIGINOTD[3:0] Output No qualifier Output indicates if the ETM is triggered on an instruction
or data match.

Table 16-1 ETM interface ports (continued)

Port name Direction Qualified by Description
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 16-5

Embedded Trace Macrocell Interface
16.3 Branch status interface

The branch status signal, BRCHSTAT, gives fetch time information about the opcode
in decode and the next execute. Decode time branches implicitly have a fetch cycle
associated with them, so BRCHSTAT is only incident with the memory transaction in
question. Execute time branches might have multicycle BRCHSTAT, which is
dependent on the stall of the preceding opcode in execute. Table 16-2 describes the
signal function.

Note
 • T1B1 and T2B0 are conditional branches

• T1B2 and T2BL are unconditional branches

• T1CBZ is a compare zero and branch.

Note
 • The encoding b1000 is only asserted in the cycle after conditional decode

branches if the branch is taken. This is a registered output, so could be used to
drive a mux of addresses in the memory controller.

• The ALU register based branches and LSU PC modifying opcodes fall under
b0101, except in IT blocks where they fall under b0011.

Table 16-2 Branch status signal function

Name Direction Description

BRCHSTAT Output 0000 = No hint

0001 = Conditional branch backwards in decodea

0010 = Conditional branch in decodeb

0011 = Conditional branch in executec

0100 = Unconditional branch in decoded

0101 = Unconditional branch in executee

0110 = Reserved

0111 = Reserved

1000 = Conditional branch in decode taken, cycle after IHTRANS of b0001 or b0010f

a. T1B1 backwards or T2B0 backwards, not in IT block.
b. T1B1 forwards or T2B0 forwards, not in IT block. T1B1 or T2B0 in IT block. T1B2 or T1MOV LR or T2BLX LR in IT

block.
c. T1CBZ. T1BLX !LR in IT block. T1MOV !LR in IT block.
d. T1B2 or T2BL or T1MOV LR or T2BLX LR not in IT block.
e. T1BLX !LR not in IT block. T1MOV !LR not in IT block.
f. Asserted only in the cycle after b0001 and b0010.
16-6 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Embedded Trace Macrocell Interface
• Multicycle LSU in the b0101 encoding suppresses fetches during execute.

• Execute encodings are present for the multicycle duration of the decode.

Figure 16-1 and Figure 16-2 show a conditional branch backwards not taken and taken.
The branch occurs speculatively in the decode phase of the opcode. The branch target
is a halfword unaligned 16-bit opcode.

Figure 16-1 Conditional branch backwards not taken

Figure 16-2 Conditional branch backwards taken

Note
 HADDRICore and HTRANSICore are the address and transaction request signals
from the processor, and not the signals on the external Cortex-M3 interface.

Figure 16-3 on page 16-8 and Figure 16-4 on page 16-8 show a conditional branch
forwards not taken and taken. The branch occurs speculatively in the decode phase of
the opcode. The branch target is a halfword unaligned 16-bit opcode.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 16-7

Embedded Trace Macrocell Interface
Figure 16-3 Conditional branch forwards not taken

Figure 16-4 Conditional branch forwards taken

Figure 16-5 and Figure 16-6 on page 16-9 show an unconditional branch in this cycle,
during the execute phase of the preceding opcode without and with pipeline stalls. The
branch occurs in the decode phase of the opcode. The branch target is an aligned 32-bit
opcode.

Figure 16-5 Unconditional branch without pipeline stalls
16-8 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Embedded Trace Macrocell Interface
Figure 16-6 Unconditional branch with pipeline stalls

Figure 16-7 and Figure 16-8 show an unconditional branch in the next opcode. The
branch occurs in the execute phase of the opcode. The branch target is an aligned and
unaligned 32-bit ALU opcode.

Figure 16-7 Unconditional branch in execute aligned

Figure 16-8 Unconditional branch in execute unaligned
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 16-9

Embedded Trace Macrocell Interface
Table 16-3 shows an example of an opcode sequence.

Figure 16-9 on page 16-11shows the timing sequence for the example opcode sequence
in Table 16-3.

Table 16-3 Example of an opcode sequence

Execute cycle Fetch address Opcode

1 0x1020 ADD r1,#1

2 0x1022 LDR r3,[r4]

3 0x1024 ADD r2,#3

4 0x1026 CMP r3,r2

5 0x1028 BEQ = Target1

6 0x1040 CMP r1,r2

7 0x1042 ITE // folded

8 0x1044 LDR r3,[r4,r1]

9 0x1046 LDR r3,[r4,r2] // not taken

10 0x1048 ADD r6,r3

11 0x104A NOP // folded

12 0x104C BX r14

13 0x0FC4 CMP

14 0x0FC6 BEQ = Target2 // not taken

15 0x0FC8 BX r5
16-10 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Embedded Trace Macrocell Interface
Figure 16-9 Example of an opcode sequence
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 16-11

Embedded Trace Macrocell Interface
16-12 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Chapter 17
AHB Trace Macrocell Interface

This chapter describes the Advanced High-performance Bus (AHB) trace macrocell
interface. It contains the following sections:

• About the AHB trace macrocell interface on page 17-2

• CPU AHB trace macrocell interface port descriptions on page 17-3.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 17-1

AHB Trace Macrocell Interface
17.1 About the AHB trace macrocell interface

The AHB Trace Macrocell (HTM) interface enables a simple connection of the AHB
trace macrocell to the processor. It provides a channel for the data trace to the HTM.

To use the HTM interface, the HTM_PORT_ENABLE define must be uncommented in
CM3Defs.v before implementation. TRCENA must also be set to 1 before you enable the
HTM to enable the HTM port to supply trace data.
17-2 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

AHB Trace Macrocell Interface
17.2 CPU AHB trace macrocell interface port descriptions

Table 17-1 list the AHB interface ports.

Table 17-1 AHB interface ports

Port name Direction Description

HTMDHADDR[31:0] Output 32-bit address.

HTMDHTRANS[1:0] Output Output indicates the type of the current data transfer. Can
be IDLE, NONSEQUENTIAL, OR SEQUENTIAL.

HTMDHSIZE[1:0] Output Indicates the size of the access. Can be 8, 16, or 32 bits.

HTMDHBURST[2:0] Output Output indicates if the transfer is part of a burst.

HTMDHPROT[3:0] Output Provides information on the access.

HTMDHWDATA[31:0] Output 32-bit write data bus.

HTMDHWRITE Output Write not read.

HTMDHRDATA[31:0] Output Read data bus.

HTMDHREADY Output When HIGH indicates that a transfer has completed on
the bus. The signal is driven LOW to extend a transfer.

HTMDHRESP[1:0] Output The transfer response status. OKAY or ERROR.

HTMDHADDR[31:0] Output 32-bit address.

HTMDHTRANS[1:0] Output Output indicates the type of the current data transfer. Can
be IDLE, NONSEQUENTIAL, OR SEQUENTIAL.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 17-3

AHB Trace Macrocell Interface
17-4 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Chapter 18
Instruction Timing

This chapter describes the instruction timings of the processor. It contains the following
sections:

• About instruction timing on page 18-2

• Processor instruction timings on page 18-3

• Load-store timings on page 18-7.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 18-1

Instruction Timing
18.1 About instruction timing

The timing information in this chapter covers each instruction in addition to interactions
between instructions. It also contains information about factors that influence timings.

When looking at timings, it is important to understand the role that the system
architecture plays. Every instruction must be fetched and every load/store must go out
to the system. These factors are described along with intended system design, and the
implications for timing.
18-2 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Instruction Timing
18.2 Processor instruction timings

Table 18-1 shows the Thumb-2 subset supported in the ARMv7-M architecture. It
provides cycle information including annotations to explain how instruction stream
interactions affect timing. System effects, such as running code from slower memory,
are also considered.

Table 18-1 Instruction timings

Instruction type Size Cycles count Description

Data operations 16 1 (+Pa if PC is destination) ADC, ADD, AND, ASR, BIC, CMN, CMP, CPY, EOR,
LSL, LSR, MOV, MUL, MVN, NEG, ORR, ROR, SBC,
SUB, TST, REV, REVH, REVSH, SXTB, SXTH, UXTB,
and UXTH. MUL is one cycle.

Branches 16 1+Pa B<cond>, B, BL, BX, and BLX. No BLX with immediate.
If branch taken, pipeline reloads (two cycles are added).

Load-store Single 16 2b (+Pa if PC is destination) LDR, LDRB, LDRH, LDRSB, LDRSH, STR, STRB, and
STRH, and T variants.

Load-store
Multiple

16 1+Nb (+Pa if PC loaded) LDMIA, POP, PUSH, and STMIA.

Exception
generating

16 - BKPT stops in debug if debug enabled, fault if debug
disabled.

SVC faults to SVCall handler (see ARMv7-M architecture
specification for details).

Data operations
with immediate

32 1 (+Pa if PC is destination) ADC{S}. ADD{S}, CMN, RSB{S}, SBC{S}, SUB{S},
CMP, AND{S}, TST, BIC{S}, EOR{S}, TEQ, ORR{S},
MOV{S}, ORN{S}, and MVN{S}.

Data operations
with large
immediate

32 1 MOVW, MOVT, ADDW, and SUBW. MOVW and MOVT
have a 16-bit immediate (so can replace literal loads from
memory). ADDW and SUBW have a 12-bit immediate (so
also can replace many from memory literal loads).

Bit-field
operations

32 1 BFI, BFC, UBFX, and SBFX. These are bitwise operations
that enable control of position and size in bits. These both
support C/C++ bit fields (in structs) in addition to many
compare and some AND/OR assignment expressions.

Data operations
with 3 register

32 1 (+Pa if PC is destination) ADC{S}. ADD{S}, CMN, RSB{S}, SBC{S}, SUB{S},
CMP, AND{S}, TST, BIC{S}, EOR{S}, TEQ, ORR{S},
MOV{S}, ORN{S}, and MVN{S}. No PKxxx
instructions.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 18-3

Instruction Timing
Shift operations 32 1 ASR{S}, LSL{S}, LSR{S}, ROR{S}, and RRX{S}.

Miscellaneous 32 1 REV, REVH, REVSH, RBIT, CLZ, SXTB, SXTH, UXTB,
and UXTH. Extension instructions same as corresponding
ARM v6 16-bit instructions.

Table Branch 16 4+Pa Table branches for switch/case use. These are LDR with
shifts and then branch.

Multiply 32 1 or 2 MUL, MLA, and MLS. MUL is one cycle and MLA and
MLS are two cycles.

Multiply with
64-bit result

32 3-7c UMULL, SMULL, UMLAL, and SMLAL. Cycle count
based on input sizes. That is, ABS(inputs) < 64K
terminates early.

Load-store
addressing

32 - Supports Format PC+/-imm12, Rbase+imm12,
Rbase+/-imm8, and adjusted register including shifts. T
variants used when in Privilege mode.

Load-store Single 32 2b (+Pa if PC is destination) LDR, LDRB, LDRSB, LDRH, LDRSH, STR, STRB, and
STRH, and T variants. PLD and PLI are both hints and so
act as a NOP.

Load-store
Multiple

32 1+Nb (+Pa if PC is loaded) STM, LDM, LDRD, and STRD.

Load-store Special 32 1+Nb LDREX, STREX, LDREXB, LDREXH, STREXB,
STREXH, CLREX. These fault if no local monitor (is IMP
DEF). LDREXD and STREXD are not included in this
profile.

Branches 32 1+Pa B, BL, and B<cond>. No BLX (1) because it always
changes state. No BXJ.

System 32 1-2 MSR(2) and MRS(2) replace MSR/MRS but also do more.
These access the other stacks and also the status registers.

CPSIE/CPSID 32-bit forms are not supported.

No RFE or SRS.

System 16 1-2 CPSIE and CPSID are quick versions of MSR(2)
instructions and use the standard Thumb-2 encodings, but
only permit use of i and f and not a.

Extended32 32 1 NOP and YIELD (hinted NOP). No MRS (1), MSR (1), or
SUBS (PC return link).

Table 18-1 Instruction timings (continued)

Instruction type Size Cycles count Description
18-4 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Instruction Timing
Cycle count information:

• P = pipeline reload

• N = count of elements

Combined Branch 16 1+Pa CBZ.

Extended 16 0-1d IT and NOP (includes YIELD).

Divide 32 2-12e SDIV and UDIV. 32/32 divides both signed and unsigned
with 32-bit quotient result (no remainder, it can be derived
by subtraction). This earlies out when dividend and divisor
are close in size.

Sleep 32 1+Wf WFI, WFE, and SEV are in the class of hinted NOP
instructions that control sleep behavior.

Barriers 16 1+Bg ISB, DSB, and DMB are barrier instructions that ensure
certain actions have taken place before the next instruction
is executed.

Saturation 32 1 SSAT and USAT perform saturation on a register. They
perform three tasks. They normalize the value using shift,
test for overflow from a selected bit position (the Q value)
and set the xPSR Q bit. Saturation refers to the largest
unsigned value or the largest/smallest signed value for the
size selected.

a. Branches take one cycle for instruction and then pipeline reload for target instruction. Non-taken branches are 1 cycle total.
Taken branches with an immediate are normally 1 cycle of pipeline reload (2 cycles total). Taken branches with register
operand are normally 2 cycles of pipeline reload (3 cycles total). Pipeline reload is longer when branching to unaligned 32-bit
instructions in addition to accesses to slower memory. A branch hint is emitted to the code bus that permits a slower system
to pre-load. This can reduce the branch target penalty for slower memory, but never less than shown here.

b. Generally, load-store instructions take two cycles for the first access and one cycle for each additional access. Stores with
immediate offsets take one cycle.

c. UMULL/SMULL/UMLAL/SMLAL use early termination depending on the size of source values. These are interruptible
(abandoned/restarted), with worst case latency of one cycle. MLAL versions take four to seven cycles and MULL versions
take three to five cycles. For MLAL, the signed version is one cycle longer than the unsigned.

d. IT instructions can be folded.
e. DIV timings depend on dividend and divisor. DIV is interruptible (abandoned/restarted), with worst case latency of one cycle.

When dividend and divisor are similar in size, divide terminates quickly. Minimum time is for cases of divisor larger than
dividend and divisor of zero. A divisor of zero returns zero (not a fault), although a debug trap is available to catch this case.

f. Sleep is one cycle for the instruction plus as many sleep cycles as appropriate. WFE only uses one cycle when event has
passed. WFI is normally more than one cycle unless an interrupt happens to pend exactly when entering WFI.

g. ISB takes one cycle (acts as branch). DMB and DSB take one cycle unless data is pending in the write buffer or LSU. If an
interrupt comes in during a barrier, it is abandoned/restarted.

Table 18-1 Instruction timings (continued)

Instruction type Size Cycles count Description
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 18-5

Instruction Timing
• W = sleep wait

• B = barrier clearance.

In general, each instruction takes one cycle (one core clock) to start executing as shown
in Table 18-1 on page 18-3. Additional cycles can be taken because of fetch stalls.
18-6 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Instruction Timing
18.3 Load-store timings

This section describes how best to pair instructions. This achieves more reductions in
timing.

• STR Rx,[Ry,#imm] is always one cycle. This is because the address generation is
performed in the initial cycle, and the data store is performed at the same time as
the next instruction is executing. If the store is to the store buffer, and the store
buffer is full, the next instruction is delayed until the store can complete. If the
store is not to the store buffer (such as to the Code segment) and that transaction
stalls, the impact on timing is only felt if another load or store operation is
executed before completion.

• LDR Rx!,[any] is not normally pipelined. That is, base update load is generally at
least a two-cycle operation (more if stalled). However, if the next instruction does
not require to read from a register, the load is reduced to one cycle. Non register
reading instructions include CMP, TST, NOP, and non-taken IT controlled
instructions.

• LDR PC,[any] is always a blocking operation. This means minimally two cycles
for the load, and three cycles for the pipeline reload. So at least five cycles (more
if stalled on the load or the fetch).

• LDR Rx,[PC,#imm] might add a cycle because of contention with the fetch unit.

• TBB and TBH are also blocking operations. These are minimally two cycles for
the load, one cycle for the add, and three cycles for the pipeline reload. This
means at least six cycles (more if stalled on the load or the fetch).

• LDR any are pipelined when possible. This means that if the next instruction is
an LDR or non-base updating STR, and the destination of the first LDR is not
used to compute the address for the next instruction, then one cycle is removed
from the cost of the next instruction. So, an LDR might be followed by an STR,
so that the STR writes out what the LDR loaded. More multiple LDRs can be
pipelined together. Some optimized examples:

— LDR R0,[R1]; LDR R1,[R2] - normally three cycles total

— LDR R0,[R1,R2]; STR R0,[R3,#20] - normally three cycles total

— LDR R0,[R1,R2]; STR R1,[R3,R2] - normally three cycles total

— LDR R0,[R1,R5]; LDR R1,[R2]; LDR R2,[R3,#4] - normally four cycles
total.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 18-7

Instruction Timing
• STR with register offset cannot be pipelined after. STR can only be pipelined
when after an LDR, but nothing can be pipelined after the store. Even a stalled
STR normally only take two cycles, because of the store buffer (bit band, data
segment, and unaligned).

• LDREX and STREX can be pipelined exactly as LDR. Because STREX is treated
more like an LDR, it can be pipelined as explained for LDR. Equally LDREX is
treated exactly as an LDR and so can be pipelined.

• LDRD, STRD cannot be pipelined with preceding or following instructions.
However, the two words are pipelined together. So, three cycles when not stalled.

• LDM, STM cannot be pipelined with preceding or following instructions.
However, all elements after the first are pipelined together. So, a three element
LDM takes 2+1+1 or 5 cycles when not stalled. Similarly, an eight element store
takes nine cycles when not stalled. When interrupted, LDM and STM instructions
continue from where left off when returned to. The continue operation adds one
or two cycles to the first element to get started.

• Unaligned Word or Halfword Loads or stores add penalty cycles. A byte aligned
halfword load or store adds one extra cycle to perform the operation as two bytes.
A halfword aligned word load or store adds one extra cycle to perform the
operation as two halfwords. A byte-aligned word load or store adds two extra
cycles to perform the operation as a byte, a halfword, and a byte. These numbers
increase if the memory stalls. A STR or STRH cannot delay the processor because
of the store buffer.
18-8 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Chapter 19
AC Characteristics

This chapter gives the timing parameters for the processor. It contains the following
sections:

• Processor timing parameters on page 19-2.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 19-1

AC Characteristics
19.1 Processor timing parameters

This section describes the input and output port timing parameters for the processor.
The maximum timing parameter or constraint delay for each processor signal applied to
the SoC is given as a percentage in Table 19-1 on page 19-3 to Table 19-14 on
page 19-10. The input and output delay columns provide the maximum and minimum
time as a percentage of the processor clock cycle given to the SoC for that signal.
19-2 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

AC Characteristics
19.2 Processor timing parameters

19.2.1 Input port timing parameters

Table 19-1 shows the timing parameters for the miscellaneous input ports.

Table 19-2 shows the timing parameters for the interrupt input ports.

Table 19-1 Miscellaneous input ports timing parameters

Input delay Min. Input delay Max. Signal name

Clock uncertainty 10% PORESETn

Clock uncertainty 10% SYSRESETn

Clock uncertainty 50% BIGEND

Clock uncertainty 50% EDBGRQ

Clock uncertainty 50% STCLK

Clock uncertainty 50% STCALIB[25:0]

Clock uncertainty 50% RXEV

Clock uncertainty 50% AUXFAULT[31:0]

Clock uncertainty 50% IFLUSH

Clock uncertainty 50% PPBLOCK[5:0]

Table 19-2 Interrupt input ports timing parameters

Input delay Min. Input delay Max. Signal name

Clock uncertainty 50% INTISR[239:0]

Clock uncertainty 50% INTNMI

Clock uncertainty 20% VECTADDR[9:0]

Clock uncertainty 20% VECTADDREN
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 19-3

AC Characteristics
Table 19-3 shows the timing parameters for the Advanced High-performance Bus
(AHB) ports.

Table 19-4 shows the timing parameter for the Private Peripheral Bus (PPB) port.

Table 19-3 AHB input ports timing parameters

Input delay Min. Input delay Max. Signal name

Clock uncertainty 10% DNOTITRANS

Clock uncertainty 50% HRDATAI[31:0]

Clock uncertainty 50% HREADYI

Clock uncertainty 50% HRESPI[1:0]

Clock uncertainty 50% HRDATAD[31:0]

Clock uncertainty 50% HREADYD

Clock uncertainty 50% HRESPD[1:0]

Clock uncertainty 50% EXRESPD

Clock uncertainty 50% HRDATAS[31:0]

Clock uncertainty 50% HREADYS

Clock uncertainty 50% HRESPS[1:0]

Clock uncertainty 50% EXRESPS

Table 19-4 PPB input port timing parameters

Input delay Min. Input delay Max. Signal name

Clock uncertainty 50% PRDATA[31:0]
19-4 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

AC Characteristics
Table 19-5 shows the timing parameters for the debug input ports.

Table 19-6 shows the timing parameters for the test input ports.

Table 19-5 Debug input ports timing parameters

Input delay Min. Input delay Max. Signal name

Clock uncertainty 10% nTRST

Clock uncertainty 50% SWDITMS

Clock uncertainty 50% TDI

Clock uncertainty 50% DAPRESETn

Clock uncertainty 50% DAPSEL

Clock uncertainty 50% DAPEN

Clock uncertainty 50% DAPENABLE

Clock uncertainty 50% DAPCLKEN

Clock uncertainty 50% DAPWRITE

Clock uncertainty 50% DAPABORT

Clock uncertainty 50% DAPADDR[31:0]

Clock uncertainty 50% DAPWDATA[31:0]

Clock uncertainty 50% ATREADY

Table 19-6 Test input ports timing parameters

Input delay Min. Input delay Max. Signal name

Clock uncertainty 10% SE

Clock uncertainty 10% SI

Clock uncertainty 10% RSTBYPASS

Clock uncertainty 10% CGBYPASS

Clock uncertainty 10% WSII

Clock uncertainty 10% WSOI
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 19-5

AC Characteristics
Table 19-7 shows the timing parameters for the Embedded Trace Macrocell (ETM).

Table 19-8 shows the timing parameters for the miscellaneous output ports.

Table 19-9 shows the timing parameters for the AHB output ports.

Table 19-7 ETM input port timing parameters

Input delay Min. Input delay Max. Signal name

Clock uncertainty 30% ETMPWRUP

Table 19-8 Miscellaneous output ports timing parameters

Input delay Min. Input delay Max. Signal name

Clock uncertainty 50% LOCKUP

Clock uncertainty 50% SLEEPING

Clock uncertainty 50% SLEEPDEEP

Clock uncertainty 50% SYSRESETREQ

Clock uncertainty 50% BRCHSTAT[3:0]

Clock uncertainty 50% HALTED

Clock uncertainty 50% TXEV

Clock uncertainty 50% ATIDITM[6:0]

Clock uncertainty 50% CURRPRI[7:0]

Clock uncertainty 70% TRCENA

Table 19-9 AHB output ports timing parameters

Input delay Min. Input delay Max. Signal name

Clock uncertainty 50% HTRANSI[1:0]

Clock uncertainty 50% HSIZEI[2:0]

Clock uncertainty 50% HPROTI[3:0]

Clock uncertainty 50% MEMATTRI[1:0]

Clock uncertainty 50% HBURSTI[2:0]
19-6 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

AC Characteristics
Clock uncertainty 50% HADDRI[31:0]

Clock uncertainty 50% HMASTERD[1:0]

Clock uncertainty 50% HTRANSD[1:0]

Clock uncertainty 50% HSIZED[2:0]

Clock uncertainty 50% HPROTD[3:0]

Clock uncertainty 50% MEMATTRD[1:0]

Clock uncertainty 50% EXREQD

Clock uncertainty 50% HBURSTD[2:0]

Clock uncertainty 50% HADDRD[31:0]

Clock uncertainty 50% HWDATAD[31:0]

Clock uncertainty 50% HWRITED

Clock uncertainty 50% HMASTERS[1:0]

Clock uncertainty 50% HTRANSS[1:0]

Clock uncertainty 50% HSIZES[2:0]

Clock uncertainty 50% HPROTS[3:0]

Clock uncertainty 50% MEMATTRS[1:0]

Clock uncertainty 50% EXREQS

Clock uncertainty 50% HBURSTS[2:0]

Clock uncertainty 50% HMASTLOCKS

Clock uncertainty 50% HADDRS[31:0]

Clock uncertainty 50% HWDATAS[31:0]

Clock uncertainty 50% HWRITES

Table 19-9 AHB output ports timing parameters (continued)

Input delay Min. Input delay Max. Signal name
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 19-7

AC Characteristics
Table 19-10 shows the timing parameters for the PPB output ports.

Table 19-11 shows the timing parameters for the debug interface output ports.

Table 19-10 PPB output ports timing parameters

Input delay Min. Input delay Max. Signal name

Clock uncertainty 50% PADDR31

Clock uncertainty 50% PADDR[19:2]

Clock uncertainty 50% PSEL

Clock uncertainty 50% PENABLE

Clock uncertainty 50% PWRITE

Clock uncertainty 50% PWDATA[31:0]

Table 19-11 Debug interface output ports timing parameters

Input delay Min. Input delay Max. Signal name

Clock uncertainty 50% SWV

Clock uncertainty 50% TRACECLK

Clock uncertainty 50% TRACEDATA[3:0]

Clock uncertainty 50% TDO

Clock uncertainty 50% SWDO

Clock uncertainty 50% nTDOEN

Clock uncertainty 50% SWDOEN

Clock uncertainty 50% DAPREADY

Clock uncertainty 50% DAPSLVERR

Clock uncertainty 50% DAPRDATA[31:0]

Clock uncertainty 50% ATVALID

Clock uncertainty 50% AFREADY

Clock uncertainty 50% ATDATA[7:0]
19-8 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

AC Characteristics
Table 19-12 shows the timing parameters for the ETM interface output ports.

Table 19-13 shows the timing parameters for the AHB Trace Macrocell (HTM) interface
output ports.

Table 19-12 ETM interface output ports timing parameters

Input delay Min. Input delay Max. Signal name

Clock uncertainty 30% ETMTRIGGER[3:0]

Clock uncertainty 30% ETMTRIGINOTD[3:0]

Clock uncertainty 30% ETMIVALID

Clock uncertainty 30% ETMDVALID

Clock uncertainty 30% ETMFOLD

Clock uncertainty 30% ETMCANCEL

Clock uncertainty 30% ETMIA[31:1]

Clock uncertainty 30% ETMICCFAIL

Clock uncertainty 30% ETMIBRANCH

Clock uncertainty 30% ETMIINDBR

Clock uncertainty 30% ETMFLUSH

Clock uncertainty 30% ETMFINDBR

Clock uncertainty 30% ETMINTSTAT[2:0]

Clock uncertainty 30% ETMINTNUM[8:0]

Clock uncertainty 30% ETMISTALL

Clock uncertainty 30% DSYNC

Table 19-13 HTM interface output ports timing parameters

Input delay Min. Input delay Max. Signal name

Clock uncertainty 50% HTMDHADDR[31:0]

Clock uncertainty 50% HTMDHTRANS[1:0]

Clock uncertainty 50% HTMDHSIZE[2:0]
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 19-9

AC Characteristics
Table 19-14 shows the timing parameters for the test output ports.

Clock uncertainty 50% HTMDHBURST[2:0]

Clock uncertainty 50% HTMDHPROT[3:0]

Clock uncertainty 50% HTMDHWDATA[31:0]

Clock uncertainty 50% HTMDHWRITE

Clock uncertainty 50% HTMDHRDATA[31:0]

Clock uncertainty 50% HTMDHREADY

Clock uncertainty 50% HTMDHRESP[1:0]

Table 19-14 Test output ports timing parameters

Input delay Min. Input delay Max. Signal name

Clock uncertainty 10% SO

Clock uncertainty 10% WSOO

Clock uncertainty 10% WSIO

Table 19-13 HTM interface output ports timing parameters (continued)

Input delay Min. Input delay Max. Signal name
19-10 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Appendix A
Signal Descriptions

This appendix lists and describes the processor interface signals. It contains the
following sections:

• Clocks on page A-2

• Resets on page A-3

• Miscellaneous on page A-4

• Interrupt interface on page A-6

• ICode interface on page A-7

• DCode interface on page A-8

• System bus interface on page A-9

• Private Peripheral Bus interface on page A-10

• ITM interface on page A-11

• AHB-AP interface on page A-12

• ETM interface on page A-13

• AHB Trace Macrocell interface on page A-15

• Test interface on page A-16.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. A-1

Signal Descriptions
A.1 Clocks

Table A-1 lists the clock signals.

Table A-1 Clock signals

Name Direction Description

HCLK Input Main Cortex-M3 clock

FCLK Input Free-running Cortex-M3 clock

DAPCLK Input AHB-AP clock
A-2 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Signal Descriptions
A.2 Resets

Table A-2 lists the reset signals.

Table A-2 Reset signals

Name Direction Description

PORESETn Input Power-on reset. Resets entire Cortex-M3 system.

SYSRESETn Input System reset. Resets processor, non-debug portion of NVIC, Bus Matrix, and MPU.
Debug components are not reset.

SYSRESETREQ Output System reset request.

DAPRESETn Input AHB-AP reset.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. A-3

Signal Descriptions
A.3 Miscellaneous

Table A-3 lists the leftover signals.

Table A-3 Miscellaneous signals

Name Direction Description

LOCKUP Output LOCKUP gives immediate indication of seriously errant kernel software. This is
the result of the core being locked up due to an unrecoverable exception
following the activation of the processor’s built in system state protection
hardware. For more information about the ARMv7-M architectural lock up
conditions see the ARMv7-M Architecture Reference Manual.

SLEEPDEEP Output Indicates that the Cortex-M3 clock can be stopped.

SLEEPING Output Indicates that the Cortex-M3 clock can be stopped.

CURRPRI[7:0] Output Indicates what priority interrupt (or base boost) is currently used. CURRPRI
represents the pre-emption priority, and does not indicate the secondary priority.

HALTED Output In halting debug mode. HALTED remains asserted while the core is in debug.

TXEV Output Event transmitted as a result of SEV instruction. This is a single cycle pulse.

TRCENA Output Trace Enable. This signal reflects the setting of bit [24] of the Debug Exception
and Monitor Control Register. This signal gate the clock to the TPIU and ETM
blocks to reduce power consumption when trace is disabled.

BIGEND Input Static endian select:

1 = big-endian

 0 = little-endian

This signal is sampled at reset, and cannot be changed when reset is inactive.

EDBGRQ Input External debug request.

PPBLOCK[5:0] Input Reserved. Must be tied to 6’b000000.

STCLK Input System Tick Clock.

STCALIB[25:0] Input System Tick Calibration.

RXEV Input Causes a wakeup from a WFE instruction.

VECTADDR[9:0] Input Reserved. Must be tied to 10'b0000000000.

VECTADDREN Input Reserved. Must be tied to 1'b0.
A-4 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Signal Descriptions
DNOTITRANS Input Static tie-off which forces the processor to not permit I-Code and D-Code AHB
transactions to occur at the same time. This permits a simple bus multiplexer to
be instantiated externally to the processor.

AUXFAULT[31:0] Input Auxiliary fault status information from the system.

IFLUSH Input Reserved. Instruction flush, must be tied to 0.

Table A-3 Miscellaneous signals (continued)

Name Direction Description
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. A-5

Signal Descriptions
A.4 Interrupt interface

Table A-4 lists the signals of the external interrupt interface.

Table A-4 Interrupt interface

Name Direction Description

INTISR[239:0] Input External interrupt signals

INTNMI Input Non-maskable interrupt
A-6 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Signal Descriptions
A.5 ICode interface

Table A-5 lists the signals of the ICode interface.

Table A-5 ICode interface

Name Direction Description

HADDRI[31:0] Output 32-bit instruction address bus

HTRANSI[1:0] Output Indicates whether the current transfer is IDLE or NONSEQUENTIAL.

HSIZEI[2:0] Output Indicates the size of the instruction fetch. All instruction fetches are 32-bit on
Cortex-M3.

HBURSTI[2:0] Output Indicates if the transfer is part of a burst. All instruction fetches and literal loads are
performed as SINGLE on Cortex-M3.

HPROTI[3:0] Output Provides information on the access. Always indicates cacheable and non-bufferable
on this bus.

HPROTI[0] = 0 indicates instruction fetch

HPROTI[0] = 1 indicates vector fetch

MEMATTRI[1:0] Output Memory attributes. Always 01 for this bus (non-shareable, allocate).

BRCHSTAT[3:0] Output Provides hint information on the current or coming AHB fetch requests. Conditional
opcodes could be a speculation and subsequently discarded.

0000 No hint

0001 Conditional branch backwards in decode

0010 Conditional branch in decode

0011 Conditional branch in execute

0100 Unconditional branch in decode

0101 Unconditional branch in execute

0110 Reserved

0111 Reserved

1000 Conditional branch in decode taken (cycle after IHTRANS)

1001 ... 1111 Reserved

HRDATAI[31:0] Input Instruction read bus.

HREADYI Input When HIGH indicates that a transfer has completed on the bus. This signal is driven
LOW to extend a transfer.

HRESPI[1:0] Input The transfer response status. OKAY or ERROR.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. A-7

Signal Descriptions
A.6 DCode interface

Table A-6 lists the signals of the DCode interface.

Table A-6 DCode interface

Name Direction Description

HADDRD[31:0] Output 32-bit data address bus

HTRANSD[1:0] Output Indicates whether the current transfer is IDLE, NONSEQUENTIAL, or
SEQUENTIAL.

HWRITED Output Write not read

HSIZED[2:0] Output Indicates the size of the access. Can be 8, 16, or 32 bits.

HBURSTD[2:0] Output Indicates if the transfer is part of a burst. Data accesses are performed as INCR on
Cortex-M3.

HPROTD[3:0] Output Provides information on the access. Always indicates cacheable and non-bufferable
on this bus.

EXREQD - Exclusive request.

MEMATTRD[1:0] Output Memory attributes.

Always 01 for this bus (non-shareable, allocate).

HMASTERD[1:0] Output Indicates the current D-Code bus master:

• 0 = Core data side accesses.

• 1 = DAP accesses.

• 2 = Core instruction side accesses. These include vector fetches that are
marked as data by HPROTD[0]. This value cannot appear on HMASTERD.

• 3 = Reserved. This value cannot appear on HMASTERD.

HWDATAD[31:0] Input Data read bus.

HREADYD Input When HIGH indicates that a transfer has completed on the bus. This signal is driven
LOW to extend a transfer.

HRESPD[1:0] Input The transfer response status. OKAY or ERROR.

HRDATAD[31:0] Input Read data.

EXRESPD Input Exclusive response.
A-8 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Signal Descriptions
A.7 System bus interface

Table A-7 lists the signals of the system bus interface.

Table A-7 System bus interface

Name Direction Description

HADDRS[31:0] Output 32-bit address.

HTRANSS[1:0] Output Indicates the type of the current transfer. Can be IDLE, NONSEQUENTIAL, OR
SEQUENTIAL.

HSIZES[2:0] Output Indicates the size of the access. Can be 8, 16, or 32 bits.

HBURSTS[2:0] Output Indicates if the transfer is part of a burst.

HPROTS[3:0] Output Provides information on the access.

HWDATAS[31:0] Output 32-bit write data bus.

HWRITES Output Write not read.

HMASTLOCKS Output Indicates a transaction that must be atomic on the bus. This is only for bit-band
writes (performed as read-modify-write).

EXREQS Output Exclusive request.

MEMATTRS[1:0] Output Memory attributes. Bit 0 = Allocate, Bit 1 = shareable.

HMASTERS[1:0] Output Indicates the current system bus master:

• 0 = Core data side accesses or DAP access with master type set to 0.

• 1 = DAP accesses with master type set to 1.

• 2 = Core instruction side accesses. These include vector fetches that are
marked as data by HPROTS[0].

• 3 = Reserved. This value cannot appear on HMASTERS.

HRDATAS[31:0] Input Read data bus.

HREADYS Input When HIGH indicates that a transfer has completed on the bus. The signal is driven
LOW to extend a transfer.

HRESPS[1:0] Input The transfer response status. OKAY or ERROR.

EXRESPS Input Exclusive response.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. A-9

Signal Descriptions
A.8 Private Peripheral Bus interface

Table A-8 lists the signals of the PPB interface.

Table A-8 Private Peripheral Bus interface

Name Direction Description

PADDR[19:2] Output 17-bit address. Only the bits that are relevant to the External Private Peripheral Bus are
driven.

PADDR31 Output This signal is driven HIGH when the AHB-AP is the requesting master. It is driven
LOW when DCore is the requesting master.

PSEL Output Indicates that a data transfer is requested.

PENABLE Output Strobe to time all accesses. Indicates the second cycle of an APB transfer.

PWDATA[31:0] Output 32-bit write data bus.

PWRITE Output Write not read.

PRDATA[31:0] Input Read data bus.
A-10 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Signal Descriptions
A.9 ITM interface

Table A-9 lists the signals of the ITM interface.

Table A-9 ITM interface

Name Direction Description

ATVALID Output ATB valid.

AFREADY Output ATB flush.

ATDATA[7:0] Output ATB data.

ATIDITM[6:0] Output ITM ID for TPIU.

ATREADY Input ATB ready.

TPIUEMIT Input Holds the timestamp count at zero until the first packet
enters the emitter FIFO.

TPIUBAUD Input Reference for the timestamp counter, so that
timestamps are at the observable baud rate of the
external protocol.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. A-11

Signal Descriptions
A.10 AHB-AP interface

Table A-10 lists the signals of the AHB-AP interface.

Table A-10 AHB-AP interface

Name Direction Description

DAPRDATA[31:0] Output The read bus is driven by the selected AHB-AP during read cycles when
DAPWRITE is LOW.

DAPREADY Output The AHB-AP uses this signal to extend a DAP transfer.

DAPSLVERR Output The error response is because of:

• Master port produced an error response, or transfer not initiated because of
DAPEN preventing a transfer.

• Access to AP register not accepted after a DAPABORT operation.

DAPCLKEN Input DAP clock enable (power saving).

DAPEN Input AHB-AP enable.

DAPADDR[31:0] Input DAP address bus.

DAPSEL Input Select signal generated from the DAP decoder to each AP. This signal indicates that
the slave device is selected, and a data transfer is required. There is a DAPSEL
signal for each slave. The signal is not generated by the driving DP. The decoder
monitors the address bus and asserts the relevant DAPSEL.

DAPENABLE Input This signal indicates the second and subsequent cycles of a DAP transfer from DP
to AHB-AP.

DAPWRITE Input When HIGH indicates a DAP write access from DP to AHB-AP. When LOW
indicates a read access.

DAPWDATA[31:0] Input The write bus is driven by the DP block during write cycles when DAPWRITE is
HIGH.

DAPABORT Input Aborts the current transfer. The AHB-AP returns DAPREADY HIGH without
affecting the state of the transfer in progress in the AHB Master Port.
A-12 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Signal Descriptions
A.11 ETM interface

Table A-11 lists the signals of the ETM interface.

Table A-11 ETM interface

Name Direction Description

ETMTRIGGER[3:0] Output Trigger from DWT. One bit for each of the four DWT comparators.

ETMTRIGINOTD[3:0] Output Indicates if the ETM is triggered on an instruction or data match.

ETMIVALID Output Instruction valid.

ETMIA[31:1] Output PC of the instruction being executed.

ETMICCFAIL Output Condition Code fail. Indicates if the current instruction has failed or passed its
conditional execution check.

ETMIBRANCH Output Opcode is a branch target.

ETMIINDBR Output Opcode is an indirect branch target.

ETMINTSTAT[2:0] Output Interrupt status. Marks interrupt status of current cycle.

000 - no status

001 - interrupt entry

010 - interrupt exit

011 - interrupt return

100 - vector fetch and stack push.

ETMINTSTAT entry/return is asserted in the first cycle of the new interrupt
context. Exit occurs without ETMIVALID.

ETMINTNUM[8:0] Output Marks the interrupt number of the current execution context.

ETMISTALL Output Indicates that the last instruction signalled by the core has not yet entered
execute.

ETMFLUSH Output A PC modifying opcode has executed, or an interrupt push/pop has started.

ETMPWRUP Input ETM is enabled

ETMDVALID Output Data valid

ETMCANCEL Output Instruction cancelled

ETMFINDBR Output Flush is indirect. Marks flush hint destination cannot be inferred from the PC.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. A-13

Signal Descriptions
ETMFOLD Output Opcode fold. An IT opcode has been folded in this cycle. PC advances past the
current (16-bit) opcode plus the IT instruction (16 bits). This is reflected in the
ETMIA.

ETMFIFOFULL Input Driven by the ETM (if connected). ETMFIFOFULL is asserted when the
ETM FIFO is full, and causes the processor to stall until the FIFO has drained,
so ensuring that no trace is lost.

DSYNC Output Synchronization pulse from DWT.

Table A-11 ETM interface (continued)

Name Direction Description
A-14 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Signal Descriptions
A.12 AHB Trace Macrocell interface

Table A-12 lists the signals of the AHB Trace Macrocell (HTM) interface

Table A-12 HTM interface

Name Direction Description

HTMDHADDR[31:0] Output 32-bit address

HTMDHTRANS[1:0] Output Output indicates the type of the current data
transfer. Can be IDLE, NONSEQUENTIAL, OR
SEQUENTIAL.

HTMDHSIZE[1:0] Output Indicates the size of the access. Can be 8, 16, or 32
bits.

HTMDHBURST[2:0] Output Output indicates if the transfer is part of a burst.

HTMDHPROT[3:0] Output Provides information on the access.

HTMDHWDATA[31:0] Output 32-bit write data bus.

HTMDHWRITE Output Write not read.

HTMDHRDATA[31:0] Output Read data bus.

HTMDHREADY Output Ready signal.

HTMDHRESP[1:0] Output The transfer response status. OKAY or ERROR.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. A-15

Signal Descriptions
A.13 Test interface

Table A-13 lists the signals of the test interface.

Table A-13 Test interface

Name Direction Description

SE Input Scan enable.

RSTBYPASS Input Reset bypass for scan testing. PORESETn is the only reset used during scan testing.

CGBYPASS Input Architectural clock gate bypass for scan testing.
A-16 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Glossary

This glossary describes some of the terms used in technical documents from ARM
Limited.

Abort A mechanism that indicates to a core that the attempted memory access is invalid or not
allowed or that the data returned by the memory access is invalid. An abort can be
caused by the external or internal memory system as a result of attempting to access
invalid or protected instruction or data memory.

See also Data Abort, External Abort and Prefetch Abort.

Addressing modes Various mechanisms, shared by many different instructions, for generating values used
by the instructions.

Advanced High-performance Bus (AHB)
A bus protocol with a fixed pipeline between address/control and data phases. It only
supports a subset of the functionality provided by the AMBA AXI protocol. The full
AMBA AHB protocol specification includes a number of features that are not
commonly required for master and slave IP developments and ARM Limited
recommends only a subset of the protocol is usually used. This subset is defined as the
AMBA AHB-Lite protocol.

See also Advanced Microcontroller Bus Architecture and AHB-Lite.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. Glossary-1

Glossary
Advanced Microcontroller Bus Architecture (AMBA)
A family of protocol specifications that describe a strategy for the interconnect. AMBA
is the ARM open standard for on-chip buses. It is an on-chip bus specification that
details a strategy for the interconnection and management of functional blocks that
make up a System-on-Chip (SoC). It aids in the development of embedded processors
with one or more CPUs or signal processors and multiple peripherals. AMBA
complements a reusable design methodology by defining a common backbone for SoC
modules.

Advanced Peripheral Bus (APB)
A simpler bus protocol than AXI and AHB. It is designed for use with ancillary or
general-purpose peripherals such as timers, interrupt controllers, UARTs, and I/O ports.
Connection to the main system bus is through a system-to-peripheral bus bridge that
helps to reduce system power consumption.

AHB See Advanced High-performance Bus.

AHB Access Port (AHB-AP)
An optional component of the DAP that provides an AHB interface to a SoC.

AHB-AP See AHB Access Port.

AHB-Lite A subset of the full AMBA AHB protocol specification. It provides all of the basic
functions required by the majority of AMBA AHB slave and master designs,
particularly when used with a multi-layer AMBA interconnect. In most cases, the extra
facilities provided by a full AMBA AHB interface are implemented more efficiently by
using an AMBA AXI protocol interface.

AHB Trace Macrocell
A hardware macrocell that, when connected to a processor core, outputs data trace
information on a trace port.

Aligned A data item stored at an address that is divisible by the number of bytes that defines the
data size is said to be aligned. Aligned words and halfwords have addresses that are
divisible by four and two respectively. The terms word-aligned and halfword-aligned
therefore stipulate addresses that are divisible by four and two respectively.

AMBA See Advanced Microcontroller Bus Architecture.

Advanced Trace Bus (ATB)
A bus used by trace devices to share CoreSight capture resources.

APB See Advanced Peripheral Bus.

Application Specific Integrated Circuit (ASIC)
An integrated circuit that has been designed to perform a specific application function.
It can be custom-built or mass-produced.
Glossary-2 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Glossary
Application Specific Standard Part/Product (ASSP)
An integrated circuit that has been designed to perform a specific application function.
Usually consists of two or more separate circuit functions combined as a building block
suitable for use in a range of products for one or more specific application markets.

Architecture The organization of hardware and/or software that characterizes a processor and its
attached components, and enables devices with similar characteristics to be grouped
together when describing their behavior, for example, Harvard architecture, instruction
set architecture, ARMv7-M architecture.

ARM instruction An instruction of the ARM Instruction Set Architecture (ISA). These cannot be
executed by the Cortex-M3.

ARM state The processor state in which the processor executes the instructions of the ARM ISA.
The processor only operates in Thumb state, never in ARM state.

ASIC See Application Specific Integrated Circuit.

ASSP See Application Specific Standard Part/Product.

ATB See Advanced Trace Bus.

ATB bridge A synchronous ATB bridge provides a register slice to facilitate timing closure through
the addition of a pipeline stage. It also provides a unidirectional link between two
synchronous ATB domains.

An asynchronous ATB bridge provides a unidirectional link between two ATB domains
with asynchronous clocks. It is intended to support connection of components with ATB
ports residing in different clock domains.

Base register A register specified by a load or store instruction that is used to hold the base value for
the instruction’s address calculation. Depending on the instruction and its addressing
mode, an offset can be added to or subtracted from the base register value to form the
address that is sent to memory.

Base register write-back
Updating the contents of the base register used in an instruction target address
calculation so that the modified address is changed to the next higher or lower
sequential address in memory. This means that it is not necessary to fetch the target
address for successive instruction transfers and enables faster burst accesses to
sequential memory.

Beat Alternative word for an individual data transfer within a burst. For example, an INCR4
burst comprises four beats.

BE-8 Big-endian view of memory in a byte-invariant system.

See also BE-32, LE, Byte-invariant and Word-invariant.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. Glossary-3

Glossary
BE-32 Big-endian view of memory in a word-invariant system.

See also BE-8, LE, Byte-invariant and Word-invariant.

Big-endian Byte ordering scheme in which bytes of decreasing significance in a data word are
stored at increasing addresses in memory.

See also Little-endian and Endianness.

Big-endian memory Memory in which:

• a byte or halfword at a word-aligned address is the most significant byte or
halfword within the word at that address

• a byte at a halfword-aligned address is the most significant byte within the
halfword at that address.

See also Little-endian memory.

Boundary scan chain
A boundary scan chain is made up of serially-connected devices that implement
boundary scan technology using a standard JTAG TAP interface. Each device contains
at least one TAP controller containing shift registers that form the chain connected
between TDI and TDO, through which test data is shifted. Processors can contain
several shift registers to enable you to access selected parts of the device.

Branch folding Branch folding is a technique where the branch instruction is completely removed from
the instruction stream presented to the execution pipeline.

Breakpoint A breakpoint is a mechanism provided by debuggers to identify an instruction at which
program execution is to be halted. Breakpoints are inserted by the programmer to enable
inspection of register contents, memory locations, variable values at fixed points in the
program execution to test that the program is operating correctly. Breakpoints are
removed after the program is successfully tested.

See also Watchpoint.

Burst A group of transfers to consecutive addresses. Because the addresses are consecutive,
there is no requirement to supply an address for any of the transfers after the first one.
This increases the speed at which the group of transfers can occur. Bursts over AMBA
are controlled using signals to indicate the length of the burst and how the addresses are
incremented.

See also Beat.

Byte An 8-bit data item.
Glossary-4 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Glossary
Byte-invariant In a byte-invariant system, the address of each byte of memory remains unchanged
when switching between little-endian and big-endian operation. When a data item
larger than a byte is loaded from or stored to memory, the bytes making up that data item
are arranged into the correct order depending on the endianness of the memory access.
The ARM architecture supports byte-invariant systems in ARMv6 and later versions.
When byte-invariant support is selected, unaligned halfword and word memory
accesses are also supported. Multi-word accesses are expected to be word-aligned.

See also Word-invariant.

Clock gating Gating a clock signal for a macrocell with a control signal and using the modified clock
that results to control the operating state of the macrocell.

Clocks Per Instruction (CPI)
See Cycles Per Instruction (CPI).

Cold reset Also known as power-on reset.

See also Warm reset.

Context The environment that each process operates in for a multitasking operating system.

See also Fast context switch.

Core A core is that part of a processor that contains the ALU, the datapath, the
general-purpose registers, the Program Counter, and the instruction decode and control
circuitry.

Core reset See Warm reset.

CoreSight The infrastructure for monitoring, tracing, and debugging a complete system on chip.

CPI See Cycles per instruction.

Cycles Per instruction (CPI)
Cycles per instruction (or clocks per instruction) is a measure of the number of
computer instructions that can be performed in one clock cycle. This figure of merit can
be used to compare the performance of different CPUs that implement the same
instruction set against each other. The lower the value, the better the performance.

Data Abort An indication from a memory system to the core of an attempt to access an illegal data
memory location. An exception must be taken if the processor attempts to use the data
that caused the abort.

See also Abort.

DCode Memory Memory space at 0x00000000 to 0x1FFFFFFFF.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. Glossary-5

Glossary
Debug Access Port (DAP)
A TAP block that acts as an AMBA, AHB or AHB-Lite, master for access to a system
bus. The DAP is the term used to encompass a set of modular blocks that support system
wide debug. The DAP is a modular component, intended to be extendable to support
optional access to multiple systems such as memory mapped AHB and CoreSight APB
through a single debug interface.

Debugger A debugging system that includes a program, used to detect, locate, and correct software
faults, together with custom hardware that supports software debugging.

Embedded Trace Macrocell (ETM)
A hardware macrocell that, when connected to a processor core, outputs instruction
trace information on a trace port.

Endianness Byte ordering. The scheme that determines the order that successive bytes of a data
word are stored in memory. An aspect of the system’s memory mapping.

See also Little-endian and Big-endian

ETM See Embedded Trace Macrocell.

Exception An error or event which can cause the processor to suspend the currently executing
instruction stream and execute a specific exception handler or interrupt service routine.
The exception could be an external interrupt or NMI, or it could be a fault or error event
that is considered serious enough to require that program execution is interrupted.
Examples include attempting to perform an invalid memory access, external interrupts,
and undefined instructions. When an exception occurs, normal program flow is
interrupted and execution is resumed at the corresponding exception vector. This
contains the first instruction of the interrupt service routine to deal with the exception.

Exception handler
See Interrupt service routine.

Exception vector See Interrupt vector.

External PPB PPB memory space at 0xE0040000 to 0xE00FFFFF.

Flash Patch and Breakpoint unit (FPB)
A set of address matching tags, that reroute accesses into flash to a special part of
SRAM. This permits patching flash locations for breakpointing and quick fixes or
changes.

Formatter The formatter is an internal input block in the ETB and TPIU that embeds the trace
source ID within the data to create a single trace stream.

Halfword A 16-bit data item.
Glossary-6 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Glossary
Halt mode One of two mutually exclusive debug modes. In halt mode all processor execution halts
when a breakpoint or watchpoint is encountered. All processor state, coprocessor state,
memory and input/output locations can be examined and altered by the JTAG interface.

See also Monitor debug-mode.

Host A computer that provides data and other services to another computer. Especially, a
computer providing debugging services to a target being debugged.

HTM See AHB Trace Macrocell.

ICode Memory Memory space at 0x00000000 to 0x1FFFFFFF.

Illegal instruction An instruction that is architecturally Undefined.

Implementation-defined
The behavior is not architecturally defined, but is defined and documented by individual
implementations.

Implementation-specific
The behavior is not architecturally defined, and does not have to be documented by
individual implementations. Used when there are a number of implementation options
available and the option chosen does not affect software compatibility.

Instruction cycle count
The number of cycles for which an instruction occupies the Execute stage of the
pipeline.

Instrumentation trace
A component for debugging real-time systems through a simple memory-mapped trace
interface, providing printf style debugging.

Intelligent Energy Management (IEM)
A technology that enables dynamic voltage scaling and clock frequency variation to be
used to reduce power consumption in a device.

Internal PPB PPB memory space at 0xE0000000 to 0xE003FFFF.

Interrupt service
routine

A program that control of the processor is passed to when an interrupt occurs.

Interrupt vector One of a number of fixed addresses in low memory that contains the first instruction of
the corresponding interrupt service routine.

Joint Test Action Group (JTAG)
The name of the organization that developed standard IEEE 1149.1. This standard
defines a boundary-scan architecture used for in-circuit testing of integrated circuit
devices. It is commonly known by the initials JTAG.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. Glossary-7

Glossary
JTAG See Joint Test Action Group.

JTAG Debug Port (JTAG-DP)
An optional external interface for the DAP that provides a standard JTAG interface for
debug access.

JTAG-DP See JTAG Debug Port.

LE Little endian view of memory in both byte-invariant and word-invariant systems. See
also Byte-invariant, Word-invariant.

Little-endian Byte ordering scheme in which bytes of increasing significance in a data word are stored
at increasing addresses in memory.

See also Big-endian and Endianness.

Little-endian memory
Memory in which:

• a byte or halfword at a word-aligned address is the least significant byte or
halfword within the word at that address

• a byte at a halfword-aligned address is the least significant byte within the
halfword at that address.

See also Big-endian memory.

Load/store architecture
A processor architecture where data-processing operations only operate on register
contents, not directly on memory contents.

Load Store Unit (LSU)
The part of a processor that handles load and store transfers.

LSU See Load Store Unit.

Macrocell A complex logic block with a defined interface and behavior. A typical VLSI system
comprises several macrocells (such as a processor, an ETM, and a memory block) plus
application-specific logic.

Memory coherency A memory is coherent if the value read by a data read or instruction fetch is the value
that was most recently written to that location. Memory coherency is made difficult
when there are multiple possible physical locations that are involved, such as a system
that has main memory, a write buffer and a cache.

Memory Protection Unit (MPU)
Hardware that controls access permissions to blocks of memory. Unlike an MMU, an
MPU does not modify addresses.
Glossary-8 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Glossary
Microprocessor See Processor.

Monitor debug-mode
One of two mutually exclusive debug modes. In Monitor debug-mode the processor
enables a software abort handler provided by the debug monitor or operating system
debug task. When a breakpoint or watchpoint is encountered, this enables vital system
interrupts to continue to be serviced while normal program execution is suspended.

See also Halt mode.

MPU See Memory Protection Unit.

Multi-layer An interconnect scheme similar to a cross-bar switch. Each master on the interconnect
has a direct link to each slave, The link is not shared with other masters. This enables
each master to process transfers in parallel with other masters. Contention only occurs
in a multi-layer interconnect at a payload destination, typically the slave.

Penalty The number of cycles in which no useful Execute stage pipeline activity can occur
because an instruction flow is different from that assumed or predicted.

PFU See Prefetch Unit.

Power-on reset See Cold reset.

PPB See Private Peripheral Bus.

Prefetching In pipelined processors, the process of fetching instructions from memory to fill up the
pipeline before the preceding instructions have finished executing. Prefetching an
instruction does not mean that the instruction has to be executed.

Prefetch Abort An indication from a memory system to the core that an instruction has been fetched
from an illegal memory location. An exception must be taken if the processor attempts
to execute the instruction. A Prefetch Abort can be caused by the external or internal
memory system as a result of attempting to access invalid instruction memory.

See also Data Abort, Abort.

Prefetch Unit (PFU) The PFU fetches instructions from the memory system that can supply one word each
cycle. The PFU buffers up to three word fetches in its FIFO, which means that it can
buffer up to three Thumb-2 instructions or six Thumb instructions.

Private Peripheral Bus
Memory space at 0xE0000000 to 0xE00FFFFF.

Processor A processor is the circuitry in a computer system required to process data using the
computer instructions. It is an abbreviation of microprocessor. A clock source, power
supplies, and main memory are also required to create a minimum complete working
computer system.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. Glossary-9

Glossary
RealView ICE A system for debugging embedded processor cores using a JTAG interface.

Reserved A field in a control register or instruction format is reserved if the field is to be defined
by the implementation, or produces Unpredictable results if the contents of the field are
not zero. These fields are reserved for use in future extensions of the architecture or are
implementation-specific. All reserved bits not used by the implementation must be
written as 0 and read as 0.

SBO See Should Be One.

SBZ See Should Be Zero.

SBZP See Should Be Zero or Preserved.

Scan chain A scan chain is made up of serially-connected devices that implement boundary scan
technology using a standard JTAG TAP interface. Each device contains at least one TAP
controller containing shift registers that form the chain connected between TDI and
TDO, through which test data is shifted. Processors can contain several shift registers
to enable you to access selected parts of the device.

Should Be One (SBO)
Should be written as 1 (or all 1s for bit fields) by software. Writing a 0 produces
Unpredictable results.

Should Be Zero (SBZ)
Should be written as 0 (or all 0s for bit fields) by software. Writing a 1 produces
Unpredictable results.

Should Be Zero or Preserved (SBZP)
Should be written as 0 (or all 0s for bit fields) by software, or preserved by writing the
same value back that has been previously read from the same field on the same
processor.

Serial-Wire Debug Port
An optional external interface for the DAP that provides a serial-wire bidirectional
debug interface.

Serial-Wire JTAG
Debug Port

A standard debug port that combines JTAG-DP and SW-DP.

SW-DP See Serial-Wire Debug Port.

SWJ-DP See Serial-Wire JTAG Debug Port.

Synchronization primitive
The memory synchronization primitive instructions are those instructions that are used
to ensure memory synchronization. That is, the LDREX and STREX instructions.
Glossary-10 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Glossary
System memory Memory space at 0x20000000 to 0xFFFFFFFF, excluding PPB space at 0xE0000000 to
0xE00FFFFF.

TAP See Test access port.

Test Access Port (TAP)
The collection of four mandatory and one optional terminals that form the input/output
and control interface to a JTAG boundary-scan architecture. The mandatory terminals
are TDI, TDO, TMS, and TCK. The optional terminal is TRST. This signal is
mandatory in ARM cores because it is used to reset the debug logic.

Thread Control
Block

A data structure used by an operating system kernel to maintain information specific to
a single thread of execution.

Thumb instruction A halfword that specifies an operation for an ARM processor in Thumb state to
perform. Thumb instructions must be halfword-aligned.

Thumb state A processor that is executing Thumb (16-bit) halfword aligned instructions is operating
in Thumb state.

TPA See Trace Port Analyzer.

TPIU See Trace Port Interface Unit.

Trace Port Interface Unit (TPIU)
Drains trace data and acts as a bridge between the on-chip trace data and the data stream
captured by a TPA.

Unaligned A data item stored at an address that is not divisible by the number of bytes that defines
the data size is said to be unaligned. For example, a word stored at an address that is not
divisible by four.

UNP See Unpredictable.

Unpredictable For reads, the data returned when reading from this location is unpredictable. It can have
any value. For writes, writing to this location causes unpredictable behavior, or an
unpredictable change in device configuration. Unpredictable instructions must not halt
or hang the processor, or any part of the system.

Warm reset Also known as a core reset. Initializes the majority of the processor excluding the debug
controller and debug logic. This type of reset is useful if you are using the debugging
features of a processor.

Watchpoint A watchpoint is a mechanism provided by debuggers to halt program execution when
the data contained by a particular memory address is changed. Watchpoints are inserted
by the programmer to enable inspection of register contents, memory locations, and
variable values when memory is written to test that the program is operating correctly.
Watchpoints are removed after the program is successfully tested. See also Breakpoint.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. Glossary-11

Glossary
Word A 32-bit data item.

Word-invariant In a word-invariant system, the address of each byte of memory changes when
switching between little-endian and big-endian operation, in such a way that the byte
with address A in one endianness has address A EOR 3 in the other endianness. As a
result, each aligned word of memory always consists of the same four bytes of memory
in the same order, regardless of endianness. The change of endianness occurs because
of the change to the byte addresses, not because the bytes are rearranged.

The ARM architecture supports word-invariant systems in ARMv3 and later versions.
When word-invariant support is selected, the behavior of load or store instructions that
are given unaligned addresses is instruction-specific, and is in general not the expected
behavior for an unaligned access. It is recommended that word-invariant systems use
the endianness that produces the required byte addresses at all times, apart possibly
from very early in their reset handlers before they have set up the endianness, and that
this early part of the reset handler must use only aligned word memory accesses.

See also Byte-invariant.

Write buffer A pipeline stage for buffering write data to prevent bus stalls from stalling the processor.
Glossary-12 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

	Cortex-M3 Technical Reference Manual
	Contents
	List of Tables
	List of Figures
	Preface
	About this manual
	Product revision status
	Intended audience
	Using this manual
	Conventions
	Typographical
	Timing diagrams
	Signals
	Numbering

	Further reading
	ARM publications
	Other publications

	Feedback
	Feedback on the Cortex-M3 processor
	Feedback on this manual

	Introduction
	1.1 About the processor
	1.2 Components, hierarchy, and implementation
	1.2.1 Cortex-M3 hierarchy and implementation options
	TPIU
	SW/SWJ-DP
	ROM table

	1.2.2 Processor core
	Registers
	Memory interface

	1.2.3 NVIC
	1.2.4 Bus Matrix
	1.2.5 FPB
	1.2.6 DWT
	1.2.7 ITM
	1.2.8 MPU
	1.2.9 ETM
	1.2.10 TPIU
	1.2.11 SW/SWJ-DP

	1.3 Configurable options
	1.3.1 Interrupts
	1.3.2 MPU
	1.3.3 DWT
	1.3.4 ETM
	1.3.5 AHB Trace Macrocell interface

	1.4 Execution pipeline stages
	1.5 Prefetch Unit
	1.6 Branch target forwarding
	1.6.1 Zero waitstate
	1.6.2 Zero waitstate, registered fetch interface (ICODE)
	1.6.3 One wait state flash
	1.6.4 One wait state flash, registered fetch interface (ICODE)
	1.6.5 Two wait states flash

	1.7 Store buffers
	1.8 Instruction set summary
	1.9 Product revisions
	1.9.1 Differences in functionality between r0p0 and r1p0
	1.9.2 Differences in functionality between r1p0 and r1p1

	Programmer’s Model
	2.1 About the programmer’s model
	2.1.1 Operating modes
	2.1.2 Operating states

	2.2 Privileged access and user access
	2.2.1 Main stack and process stack

	2.3 Registers
	2.3.1 General-purpose registers
	2.3.2 Special-purpose Program Status Registers (xPSR)
	Application PSR
	Interrupt PSR
	Execution PSR
	Saved xPSR bits

	2.4 Data types
	2.5 Memory formats
	2.6 Instruction set

	System Control
	3.1 Summary of processor registers
	3.1.1 Nested Vectored Interrupt Controller registers
	3.1.2 Core debug registers
	3.1.3 System debug registers
	Flash Patch and Breakpoint registers
	Data Watchpoint and Trace registers
	Instrumentation Trace Macrocell registers
	Advanced High Performance Bus Access Port registers

	3.1.4 Debug interface port registers
	3.1.5 Memory Protection Unit registers
	3.1.6 Trace Port Interface Unit registers
	3.1.7 Embedded Trace Macrocell registers

	Memory Map
	4.1 About the memory map
	4.2 Bit-banding
	4.2.1 Directly accessing an alias region
	4.2.2 Directly accessing a bit-band region

	4.3 ROM memory table

	Exceptions
	5.1 About the exception model
	5.2 Exception types
	5.3 Exception priority
	5.3.1 Priority levels
	5.3.2 Priority grouping

	5.4 Privilege and stacks
	5.4.1 Stacks
	5.4.2 Privilege

	5.5 Pre-emption
	5.5.1 Stacking

	5.6 Tail-chaining
	5.7 Late-arriving
	5.8 Exit
	5.8.1 Exception exit
	5.8.2 Returning the processor from an ISR

	5.9 Resets
	5.9.1 Vector Table and Reset
	5.9.2 Intended boot-up sequence
	Example of reset routine

	5.10 Exception control transfer
	5.11 Setting up multiple stacks
	5.12 Abort model
	5.12.1 Hard Fault
	5.12.2 Local faults and escalation
	5.12.3 Fault status registers and fault address registers

	5.13 Activation levels
	5.14 Flowcharts
	5.14.1 Interrupt handling
	5.14.2 Pre-emption
	5.14.3 Return

	Clocking and Resets
	6.1 Clocking
	6.2 Resets
	6.3 Cortex-M3 reset modes
	6.3.1 Power-on reset
	6.3.2 System reset
	6.3.3 SWJ-DP reset
	6.3.4 SW-DP reset
	6.3.5 Normal operation

	Power Management
	7.1 About power management
	7.2 System power management
	7.2.1 SLEEPING
	7.2.2 SLEEPDEEP

	Nested Vectored Interrupt Controller
	8.1 About the NVIC
	8.2 NVIC programmer’s model
	8.2.1 NVIC register map
	8.2.2 NVIC register descriptions
	Interrupt Controller Type Register
	SysTick Control and Status Register
	SysTick Reload Value Register
	SysTick Current Value Register
	SysTick Calibration Value Register
	Interrupt Set-Enable Registers
	Interrupt Clear-Enable Registers
	Interrupt Set-Pending Register
	Interrupt Clear-Pending Register
	Active Bit Register
	Interrupt Priority Registers
	CPU ID Base Register
	Interrupt Control State Register
	Vector Table Offset Register
	Application Interrupt and Reset Control Register
	System Control Register
	Configuration Control Register
	System Handler Priority Registers
	System Handler Control and State Register
	Configurable Fault Status Registers
	Hard Fault Status Register
	Debug Fault Status Register
	Memory Manage Fault Address Register
	Bus Fault Address Register
	Auxiliary Fault Status Register
	Software Trigger Interrupt Register

	8.3 Level versus pulse interrupts

	Memory Protection Unit
	9.1 About the MPU
	9.2 MPU programmer’s model
	9.2.1 Summary of the MPU registers
	9.2.2 Description of the MPU registers
	MPU Type Register
	MPU Control Register
	MPU Region Number Register
	MPU Region Base Address Register
	MPU Region Attribute and Size Register

	9.2.3 Accessing the MPU using the alias registers
	9.2.4 Sub-Regions
	Example of SRD use

	9.3 MPU access permissions
	9.4 MPU aborts
	9.5 Updating an MPU region
	9.5.1 Updating an MPU region using CP15 equivalent code
	9.5.2 Updating an MPU region using two or three words

	9.6 Interrupts and updating the MPU

	Core Debug
	10.1 About core debug
	10.1.1 Halt mode debugging
	10.1.2 Exiting core debug

	10.2 Core debug registers
	10.2.1 Debug Halting Control and Status Register
	10.2.2 Debug Core Register Selector Register
	10.2.3 Debug Core Register Data Register
	10.2.4 Debug Exception and Monitor Control Register

	10.3 Core debug access example
	10.4 Using application registers in core debug

	System Debug
	11.1 About system debug
	11.2 System debug access
	11.3 System debug programmer’s model
	11.4 FPB
	11.4.1 FPB programmer’s model
	Flash Patch Control Register
	Flash Patch Remap Register
	Flash Patch Comparator Registers

	11.5 DWT
	11.5.1 Summary and description of the DWT registers
	DWT Control Register
	DWT Current PC Sampler Cycle Count Register
	DWT CPI Count Register
	DWT Exception Overhead Count Register
	DWT Sleep Count Register
	DWT LSU Count Register
	DWT Fold Count Register
	DWT Program Counter Sample Register
	DWT Comparator Registers
	DWT Mask Registers 0-3
	DWT Function Registers 0-3

	11.6 ITM
	11.6.1 Summary and description of the ITM registers
	ITM Stimulus Ports 0-31
	ITM Trace Enable Register
	ITM Trace Privilege Register
	ITM Trace Control Register
	ITM Integration Write Register
	ITM Integration Read Register
	ITM Integration Mode Control Register
	ITM Lock Access Register
	ITM Lock Status Register

	11.7 AHB-AP
	11.7.1 AHB-AP transaction types
	11.7.2 Summary and description of the AHB-AP registers
	AHB-AP Control and Status Word Register
	AHB-AP Transfer Address Register
	AHB-AP Data Read/Write Register
	AHB-AP Banked Data Registers 0-3
	AHB-AP Debug ROM Address Register
	AHB-AP ID Register

	Debug Port
	12.1 About the DP

	Trace Port Interface Unit
	13.1 About the TPIU
	13.1.1 TPIU block diagrams
	13.1.2 TPIU components
	Asynchronous FIFO
	Formatter
	Trace out
	AMBA Trace Bus interface
	Advanced Peripheral Bus interface

	13.1.3 TPIU inputs and outputs
	Trace out port
	ATB interface
	Miscellaneous configuration inputs

	13.2 TPIU registers
	13.2.1 Summary of the TPIU registers
	13.2.2 Description of the TPIU registers
	Supported Sync Port Sizes Register
	Current Sync Port Size Register
	Async Clock Prescaler Register
	Selected Pin Protocol Register
	Trigger control registers
	EXTCTL port registers
	Test pattern registers
	Formatter and Flush Status Register
	Formatter and Flush Control Register
	Formatter Synchronization Counter Register
	Integration Test Registers

	13.3 Serial wire output connection
	13.3.1 A dedicated pin can be used for TRACESWO
	13.3.2 SWO shared with TRACEPORT
	13.3.3 SWO Shared with JTAG-TDO

	Bus Interface
	14.1 About bus interfaces
	14.2 AMBA 3 compliance
	14.3 ICode bus interface
	14.3.1 Branch status signal

	14.4 DCode bus interface
	14.4.1 Exclusives
	14.4.2 Memory attributes

	14.5 System interface
	14.5.1 Unaligned accesses
	14.5.2 Bit-band accesses
	14.5.3 Flash Patch remapping
	14.5.4 Exclusives
	14.5.5 Memory attributes
	14.5.6 Pipelined instruction fetches

	14.6 Unifying the code buses
	14.7 External private peripheral interface
	14.8 Access alignment
	14.9 Unaligned accesses that cross regions
	14.10 Bit-band accesses
	14.11 Write buffer
	14.12 Memory attributes
	14.13 AHB timing characteristics

	Embedded Trace Macrocell
	15.1 About the ETM
	15.1.1 ETM block diagram
	15.1.2 ETM inputs and outputs

	15.2 Data tracing
	15.3 ETM resources
	15.3.1 Periodic synchronization
	15.3.2 Data and instruction address compare resources
	External inputs
	Start/stop block

	15.3.3 FIFO functionality

	15.4 Trace output
	15.5 ETM architecture
	15.5.1 Restartable instructions
	15.5.2 Exception return
	15.5.3 Exception tracing

	15.6 ETM programmer’s model
	15.6.1 Advanced Peripheral Bus interface
	15.6.2 List of ETM registers
	15.6.3 Description of ETM registers
	ETM Control Register
	Configuration Code Register
	System Configuration Register
	TraceEnable Control 1 Register
	ETM ID Register
	Configuration Code Extension Register
	Power Down Status Register

	Embedded Trace Macrocell Interface
	16.1 About the ETM interface
	16.2 CPU ETM interface port descriptions
	16.3 Branch status interface

	AHB Trace Macrocell Interface
	17.1 About the AHB trace macrocell interface
	17.2 CPU AHB trace macrocell interface port descriptions

	Instruction Timing
	18.1 About instruction timing
	18.2 Processor instruction timings
	18.3 Load-store timings

	AC Characteristics
	19.1 Processor timing parameters
	19.2 Processor timing parameters
	19.2.1 Input port timing parameters

	Signal Descriptions
	A.1 Clocks
	A.2 Resets
	A.3 Miscellaneous
	A.4 Interrupt interface
	A.5 ICode interface
	A.6 DCode interface
	A.7 System bus interface
	A.8 Private Peripheral Bus interface
	A.9 ITM interface
	A.10 AHB-AP interface
	A.11 ETM interface
	A.12 AHB Trace Macrocell interface
	A.13 Test interface

	Glossary

