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HISTORICAL DEVELOPMENT OF THE NEWTON-RAPHSON METHOD* 
TJALLING J. YPMAt 

Abstract. This expository paper traces the development of the Newton-Raphson method for solving nonlinear 
algebraic equations through the extant notes, letters, and publications of Isaac Newton, Joseph Raphson, and Thomas 
Simpson. It is shown how Newton's formulation differed from the iterative process of Raphson, and that Simpson 
was the first to give a general formulation, in terms of fluxional calculus, applicable to nonpolynomial equations. 
Simpson's extension of the method to systems of equations is exhibited. 

Key words. nonlinear equations, iteration, Newton-Raphson method, Isaac Newton, Joseph Raphson, Thomas 
Simpson 

AMS subject classifications. 01A45, 65H105, 65H10 

1. Introduction. The iterative algorithm 

(1 . 1) x Xi= -f (xi)/f-(xi) 

for solving a nonlinear algebraic equation f(x) = 0 is generally called Newton's method. 
Occasionally it is referred to as the Newton-Raphson method. The method (1.1), and its 
extension to the solution of systems of nonlinear equations, forms the basis for the most 
frequently used techniques for solving nonlinear algebraic equations. In this expository paper 
we trace the development of the method (1.1) by exhibiting and analyzing relevant extracts 
from the preserved notes, letters, and publications of Isaac Newton, Joseph Raphson, and 
Thomas Simpson. Much of the sequence of events recounted here is familiar to historians, 
and the materials on which this paper is based are fairly readily available; hence we make 
no claims to originality. Our purpose is simply to provide a comprehensive account of the 
historical roots of the ubiquitous process (1.1), assembling a number of previously published 
accounts into a readily accessible whole. 

In ??2 and 3 we show that methods which may be viewed as replacing the term f'(xi) in 
(1.1) by a finite difference approximation of the form 

(1.2) f'(xi) ; ht1[f (xi + hi)-f (xi-], 

and also the secant method in which 

(1.3) f'(xi) f(Xi)-f 
Xi-Xi-l 

were precursors to the method (1.1). From a modem perspective each of the methods described 
by (1. 1)-(1.3) arises naturally from a linearization of the equation f (x) = 0. In ?4 we review 
Newton's original presentation of his method, contrasting this with the current formulation 
(1.1) and with Raphson's iterative formulation for polynomial equations discussed in ?7. There 
is no clear evidence that Newton used any fluxional calculus in deriving his method, though 
we show in ?6 that in the Principia Mathematica Newton applied his technique in an iterative 
manner to a nonpolynomial equation. Simpson's general formulation for nonlinear equations 
in terms of the fluxional calculus is presented in ?8, and we discuss there Simpson's extension 
of the process to systems of nonlinear equations. 
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532 TJALLING J. YPMA 

In the absence of direct access to source materials we have based this paper on a recent 
translation of the relevant works of Viete [19], the invaluable volumes of Newton's mathemat- 
ical papers collected and annotated by Whiteside [21], Newton's correspondence reproduced 
by Rigaud [14] and Tumbull [18], the third edition of Newton's Principia Mathematica in the 
edition by Cajori [4] with commentary by Koyre and Cohen [11], and copies of Raphson's text 
[12] and Simpson's book [16]. For references to the work and influences of other mathemati- 
cians we have relied on the notes in [13], [21] and related commentary in the concise summary 
of this material by Goldstine [6, pp. 64-68]. In our comments on the work of Newton we are 
heavily indebted to the notes in [21], while the recent papers [17] and [7] provide much insight 
into the contributions of Raphson and Simpson, respectively. The references, particularly [6] 
and [21], provide detailed bibliographic references to relevant source materials. 

The biography by Westfall [20] includes incisive discussions of Newton's general math- 
ematical development in addition to his many significant achievements-scientific and other- 
wise. The few verifiable facts concerning the life of Joseph Raphson are presented in [17]. 
The life of Thomas Simpson is described in [5], while a severely critical commentary on his 
character and achievements appears in [11]. 

2. The method of Viete. By late 1664, soon after his interest had been drawn to math- 
ematics, Isaac Newton was acquainted with the work of the French algebraist Fran9ois Viete 
(1540-1603) (often latinized to "Vieta"). Viete's work concerning the numerical solution 
of nonlinear algebraic equations, De numerosa potestatum, published in Paris in 1600, sub- 
sequently reappeared in a collection of Viete's works assembled and published as Francisci 
Vietae Opera Mathematica by Frans van Schooten in Leiden in 1646. A summary of that 
material, incorporating notational simplifications and some additional material, appeared in 
various editions of William Oughtred's Clavis Mathematicae from 1647 onward. A recent 
translation of the relevant work appears in [19], which includes a biography of Viete. New- 
ton had access to both Schooten's collection and the third Latin edition of Oughtred's book, 
published in Oxford in 1652, and made extensive notes from them. These notes constitute a 
first sign of Newton's interest in the numerical solution of nonlinear equations. 

Viete restricted his attention to monic polynomial equations. In modern functional nota- 
tion we may write Viete's equations in the form 

(2.1) p(x) = N 

in which the constant term N appears on the right of the equation. Viete's technique can be 
regarded as yielding individual digits of the solution x*. of (2.1) one by one as follows. Let the 
successive significant decimal digits of x* be ao, a,, a2, . . ., so that x* = a0 10k + a I0k- 1 + 
a2 10k-2 +.. , and let the ith estimate xi of x* be given by xi = ao 10k +a, a 10k- + . +ai 10k-i. 
Assuming xi is given, we have xi+, = xi + ai+l 10k-i+1), and Vi&te's technique amounts to 
computing ai+I as the integer part of 

(2.2) 
N - .5 (p(xi + 10k-i-1) + p(X,)) 

p(X, + lOk-i-1) - p(X,) - 10(k-i-I)n' 

where n is the degree ofthe polynomial. Occasionally the quantity .5 (p(X, + 1ok-i-l)+p(X,)) 
in the numerator of (2.2) is replaced by the value of p(Xi) . As noted by Maas [10], the integer 
aji+ may in fact be negative or have several digits, thus permitting the correction of earlier 
estimates xi of x*. 

Rewriting (2.1) as f(x) = 0 where f(x) = p(x) - N, the expression (2.2) can be 
reformulated as 

-.5(f(X, + 1Ok-i-1) + f(x,)) 

f(X; + lOk-i-1) - f(xi) - 10(k-i-I)n' 
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HISTORY OF THE NEWTON-RAPHSON METHOD 533 

hence Viete's method is almost equivalent to 

(2.3) xi+1 = xi1-1 Lf(xi + ioki--)f f(x()] 

This closely parallels the expression produced by substitution of (1.2) into (1.1) with hi = 
10k-i-I. In this sense the method of Viete is a forerunner of the finite difference scheme 
(1. 1)-(1.2), which is often presented as a modification of (1.1). The subtra6ton of the term 
10(k-i-1)n in the denominator of (2.2) can be motivated in the case that p(x) = Xn by consid- 
ering the binomial expansion of (xi + l0k-i-l),; for monic quadratic equations the resulting 
method corresponds exactly to the Newton-Raphson method (1.1), but in practice this term 
is negligible and was often omitted [21, I]. An interesting comparison between this technique 
and the Newton-Raphson method for the case p(x) = Xn is given in [10]. This technique was 
widely used until supplanted by the Newton-Raphson method. 

In a portion of an unpublished notebook tentatively dated to late 1664, reproduced in [21, 
I, pp. 63-71], Newton made extensive notes on Viete's method. Figure 1 is a reproduction 
from [21] of Newton's modified transcript of Viete's solution of x3 + 30x = 14356197. The 
exact solution x*. = 243 is computed. Here Newton used the "modified cossic" notation 
of Oughtred, in which A and E represent algebraic variables, while their nth powers for 
n = 1, 2, 3, 4, 5, . . . are represented by adjoining the symbols 1, q, c, qq, qc, . . . respectively 
to the variables; thus A5 is represented as Aqc. The line-by-line analysis below, based on 
(2.2) with p(x) = x3 + 30x and N = 14356197, amplifies the discussion of this extract in 
[21, I, pp. 66 -67] and [6, p. 67]. Binomial expansions are used repeatedly to simplify the 
computational task. 

(1) Line 1. x = L, 30 = C2, N = 14356197 = P3, hence the phrases on the next two 
lines, a relic of Viete's insistence that all terms in a given equation must be of the same degree. 

(2) Line 3. "pointing" (the lower dots), a technique developed by Oughtred [21], is used 
to obtain the initial estimate x0 = 200; subsequently computed digits are adjoined to the 
initial 2. 

(3) Lines 4-6. p(xo) = 8006000 evaluated termwise as 2003 + 30(200) . 
(4) Lines 7, 9. N - p(xo) = 6350197. 
(5) Lines 8, 10-12. evaluation of p(210) - p(200) - 103 = 1260300 (cf. (2.2) with 

k = 2, i = 0, n = 3) using binomial expansions: [(200 + 10)3 + 30(200 + 10)] - [(200)3 + 
30(200)] -103 - 3(200)210+3(200)102 +30(10) = 12(105) +6(104) +3(102) = 1260300. 

(6) In an unrecorded computation the next digit of x*. is computed as 4, being the integer 
part of (N - .5(p(210) + p(200)))/1260300 = 5719547/1260300 = 4.538 .., producing 
x1 = 240. 

(7) Lines 13-17,19. evaluationof N-p(240) = 524997: N-p(240) = [N-p(200)]- 
[p(240)-p(200)] = 6350197-[p(240)-p(200)] and the latter term is evaluated by binomial 
expansion as [(200 + 40)3 + 30(200 + 40)] - [(200)3 + 30(200)] = 3(200)240 + 3(200)402 + 
403 + 30(40) - 48(105) + 96(104) + 64(103) + 12(102) = 5825200. 

(8) Lines 18, 20-22. p(241) -p(240) - 1 = 173550 (cf. (2.2) with k = 2, i = 1, n = 3) 
computed similarly to lines 8, 10-12. 

(9) In another unrecorded computation (N - p(240))/173550 = 524997/173550 = 
3.025. . . has integer part 3 SO X2 = 243. 

(10) Line 28. N -p(243) = 0 is computed from N - p(240) just as N - p(240) was 
computed from N - p(200) in lines 13-19. 

In the final paragraph of his notes on the method of Viete [21, I, p. 71] Newton uses the 
Cartesian notation of lower-case symbols for algebraic variables and superscripts to represent 
powers (for example x5); he used the latter notation in most of his subsequent work. He also 
briefly shifts the constant term in the equation to the left of the equality symbol, leaving zero on 
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534 TJALLING J. YPMA 

The analysis of Cubick Equations. 
The equation supposed Lc *+ 30L = 14356197. Lc + CqL =Pc. 

The square coefficient 3 0 

The cube affected to be 14 356 197 (243 

{8 0 =AC 
Solids to be substracted 6 =Ac 

Theire suffie 8 006 0 

Rests 6 350 197 for finding ye 2d side. 

The extraction of y seacon.d side 
Coefficient 30 or superior divisor. 

The rest of ye cube to be 6 350 197 resolved 

The inferior divisors {1 2 3Aq 

Their sufme 1| 260 |30 
48l - =3AqE 

Sollids to be subtracted f 96 = 3AEq 
64 = Ec 
1 20| - =ECq 

Their sufmne 5 j 825120 

[The extraction of ye 3d side] 
The superior part of ye divisor 30 or ye square coefficient 

The remainder for finding 524 997 ye third side 

The inferior part of ye I 1 2 1 8 3Aq that is 3 x 24 x 24 
divisor | 72 3A or 3 x24 

The suie of ye divisors 173 1 550 
51814 3AqE 

Solids to be taken f 6 48 3AEq 
away 27 Ec 

90 Ecq 

Theire sufine - 524 997 

Remaines - 000 000 

FIG. 1. Newton's transcript of Viete 's solution of x3 + 30x - 14356197 0. 

the right, thus adopting the now conventional zero-finding formulation for solving nonlinear 
equations. 

The general idea of solving an equation by improving an estimate of the solution by the 
addition of a correction term had been in use in many cultures for millenia prior to this time 
[6], [10]. Certain ancient Greek and Babylonian methods for extracting roots have this form, 
as do some methods of Arabic algebraists from at least the time of al-Khayyam (1048-1131). 
The precise origins of Viete's method are not clear, although its essence can be found in the 
work of the 12th century Arabic mathematician Sharaf al-Din al-T.iisi [13]. It is possible that 
the Arabic algebraic tradition of al-Khayyam, al-Tisli, and al-Kashi survived and was known 
to 16th century algebraists, of whom Viete was the most important. 
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HISTORY OF THE NEWTON-RAPHSON METHOD 535 

3. The secant method. In a collection of unpublished notes termed "Newton's Waste 
Book" ([21, I, pp. 489- 491] and there tentatively dated to early 1665) Newton demonstrates an 
iterative technique that we can identify as the "secant method" for solving nonlinear equations. 
In modem notation, this method for solving an equation f (x) = 0 is (1.1) with f '(xi) replaced 
by (1.3), that is 

(3.1) Xi+i = xi - f (xi)/[X(Xi - f(Xi) 
Xi- Xi- 

An interesting historical discussion of this technique, and its relationship to the closely related 
method now commonly referred to as Regula Falsi, is given by Maas [10]. Several different 
arguments, all from a modem perspective essentially based on a linearization of the underlying 
function f (x), yield this technique. The approach based on Fig. 2 below is consistent with 
Newton's computations. In both of the instances shown in Fig. 2 we note that, by similarity 
of the labelled triangles, a/b = c/d, that is (f (xi) - f (xi1))/(xi - xi -1) F f (xi )/d; thus 
with d e ?(x - xi), we get (with the appropriate choice of signs in each case) the formula 
Q3.1) for xi+ I -x, 

f 
Zi-i xi Zi+1 : S 

f~~~~~~~~~ 

b / 

f 

FIG.2.Thesecantmethodusingml tr 

f/ 

FIG. 2. The secant method using similar triangles. 
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536 TJALLING J. YPMA 

The resolsion of y'affected Equation x3+pxx+qx+r=- 0.r A+ lOx2- 7x=44. 

First having found two or 3 of ye first figures of ye desired roote viz 2L2 
(wCh may bee done either by rationall or Logaridunical tryalls as Mr Oughtred 
hath tought, or Geometrically by descriptions of lines, or by an instrument 
consisting of 4 or 5 or more lines of numbers made to slide by one another wd 
may be oblong but better circular) this knowne pte of ye root I call g, ye other 
unknowne pte I call y[,] then is g+y=x. Then I prosecute ye Resolution after 
this manner (making x+p in x=a. a+q in x=b. b+r in x=c. &c.) 

x 12=x+p a+q=17 x r -b=10=h. bysupposingx=2. 
x=2, 24=a b=34 2=x yupsig- 

Againe supposing x= 21. x+p=12,2 a+q=19,841 
24412 3968j2 

244 2 3968 2 

26,84=a 43,648=b 

r -b=00,352=k. h-k=9,648. That is ye 

Jlatter r-b substracted from the former r-b there remainesi 9648 
{difference twixt this & ye former valor of r-b is I 9 

& yedifference twixt this & ye former valor of x is 0,2. Therefore make 

9,648:0,2:: 0,352 :y. 

isY0,0704= Then is y= 9,648 =0,00728 &c. the first figure of w'- being added to ye last 

valor of x makes 2,207 =x. Then WIh this valor of x prosecuting ye operacon as 
before tis 

X+p= 12,207_ a+ q= 19,94084. r -b=-0,00943388. 
85449 7 13958588t7 

2 44140 02 39881680 02 
24414 2 3988168 2 
26,940849 =a 44,00943388 = b 

wch valor of r-b substracted from ye precedent valor of r-b ye diff: is 
+0,36143388. Also ye diff[:] twixt this & ye precedent valor of x is 0,007. 
Therefore I make 0,36143388:0,007::-0,00943388:y. That is 

Y = -5,9037416 -0,0001633 &c. 36143388 

2 figures of vc (because negatve) I substract from ye formner value of x & there 
rests x-= ,20684. And so might ye Resolution be prosecuted. 

FIG. 3. Newton uses the secant method to solve x3 + lox - 7x - 44 = 0. 

We now give a detailed analysis of Newton's computations, reproduced in Fig. 3 from [211, 
to solve x3 + lOX2 - 7x = 44 using this method. We write p(x) = x3 + 1OX2 - 7x, N = 44, 
and f(x) = p(x)- N. 
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HISTORY OF THE NEWTON-RAPHSON METHOD 537 

Assume given (by one of a variety of means) two initial estimates xo = 2 and xl = 
2.2 of the exact solution x* = 2.2068173.... First p(2) = 34 is evaluated (by nested 
multiplication), producing N -p(2) = 10 = -f(2). Similarly p(2.2) = 43.648 and 
-f (2.2) = .352 are computed. Thus f (2.2) -f (2) = 9.648, hence from the proportionality 
9.648/.2 = .352/y , that is (f(2.2) - f(2))/(2.2 - 2) = -f(2.2)/y, where y is the correc- 
tion to be added to the current estimate of x*, we obtain the exact value y = .0072968 ..., 
given by Newton as .00728 and truncated to .007, thus producing x2 = 2.207. Then 
p(2.207) = 44.00945374 is evaluated (with truncation of one intermediate digit, using nested 
and long multiplication) as 44.00943388, producing -f(2.207) = -.00943388. Hence 
f(2.207) - f(2.2) = .36143388, so that from .36143388/0.007 = -.00943388/y, that 
is (f(2.207) - f(2.2))/(2.207 - 2.2) = -f(2.207)/y, we obtain (apparently with an er- 
ror in transcription) y = (.007)(-.00843388)/(.36143388) = -5.903716/36143.388 = 
-.0001633 .., truncated to -.00016. Thus X3 = 2.207 - .00016 = 2.20684. 

Clearly Newton had progressed beyond Vi&te's method in no longer constructing x* 
digitwise, but the influence of that process is still evident in that Newton truncates y to only 
its first one or two significant digits to obtain the next correction term. 

4. Newton's method-first formulation. Newton's tract De analysi per aequationes 
numero terminorum infinitas (henceforth De analysi for brevity), probably dating from mid 
1669, is noted chiefly for its initial announcement of the principle of fluxions. The ex- 
tract from that tract quoted below, in the translation into English of [21, II, pp. 218-223], 
is the first recorded discussion by Newton of what we may recognize as an instance of the 
Newton-Raphson method (1.1), although the formulation differs considerably from the now 
conventional form, the computations are much more tedious than in the current formulation, 
and the method is given only in the context of solving a polynomial equation. No calculus 
is used in the presentation, and references to fluxional derivatives first appear later in that 
tract, suggesting that Newton regarded this as a purely algebraic procedure. In several other 
instances Newton is known to have used more traditional methods and notations in an effort 
to make his ideas more accessible to a wider audience, but there is no clear evidence that at 
that time he perceived this particular technique as an application of the calculus or derived it 
using the techniques of calculus. The general role of calculus in the historical development 
of (1.1) is surveyed in [7]. 

Newton's technique may be described in modem functional notation as follows. Let xo 
be a given first estimate of the solution x* of f (x) = 0. Write go(x) = f (x), and suppose 
go(X) = En=0 aix'. Writing eo = x- xO we obtain by binomial expansion about the given 
xo a new polynomial equation in the variable eo: 

(4. 1) 0 = go(x.) = go(xo + eo)= ai(xo + eo)'= a, [ ( )xie:i] = gI(eo). 
i =o i=o 'J7o J _ 

Neglecting terms involving higher powers of eo (effectively linearizing the explicitly computed 
polynomial gi) produces 

n n n 

0 = gl(eo) L Eai[x6 + ix'-leo] = [ aix] + eo [ aiixi-i 
i=O i=O i=O 

from which we deduce that 

eo = - [Eaix x] /[ ai ixo'] 

and set xi = xo + co. Formally this correction can be written co = -go(xo)/g'(xo) = 
-f(xo)/f'(xo). Now repeat the process, but instead of expanding the original polynomial 
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go about xl expand the polynomial gI obtained explicitly in (4.1) about the point co, i.e., co 
is considered to be a first estimate of the solution eo of the new equation gI (x) = 0. Thus 
similarly obtain 0 = gI (eo) = gI (co + e1 ) = g2 (ei ), where the polynomial g2 is explicitly 
computed. Linearizing again produces as before a correction formally equivalent to el 1 
c =-gI(co)/gj(co), corresponding to c = -go(xo + co)/g'(xo + co) = -(xI)/f'(x ) 
and x2 = XI + Cl . The process continues by expanding g2 about cl, and so on. 

In Fig. 4 we reproduce the English translation of [21, II, pp.219-220] of Newton's solution 
of g(x) = X3- 2x -5 = 0 (a standard test problem of the era [6, p. 64]) by this method. Our 
analysis of this passage uses the notation introduced above. 

(1) Line 1. take x0 = 2; the successive estimates of the solution x* = 2.09455148 ... are 
accumulated here. 

(2) Lines 2-5. expand go as go(x*) = go(2 + p) = p3 + 6p2 + lOp - 1 = gi (p) = 0 
using the binomial expansion; omitting higher order terms leaves 10p - 1 0 hence p .1 
and xl = 2.1. 

(3) Lines 6-10. expand gi(p) = gl(.1 + q) = q3 + 6.3q2 + 11.23q + .061 = g2(q); 
truncated to 1 1.23q + .061 ; 0 this gives q ;-.00543 ..., which is rounded to -.0054, 
hence X2 = 2.0946. 

(4) Lines 11-14. expandg2(q) = g2(-.0054+r) = 6.3r2+11.16196r+.000541708 = 
g3 (r) (where the term q 3 in g2, being small, has been omitted), which produces after lineariza- 
tion r -.00004853 ... and hence X3 = 2.09455147 after truncation. 

The process described by Newton requires the explicit computation of the successive 
polynomials gi, 92, . . ., which makes it laborious. Clearly calculus is not used by Newton in 
his presentation, which is based entirely on retention of the lowest order terms in a binomial 
expansion. Also note that the final estimate of x* is only computed at the end of the process as 
x* = x0 + co + cl + * * instead of successive estimates xi being updated and used successively. 
Clearly this process is significantly different from the iterative technique currently in use. This 
extract hints that Newton was already aware of the quadratic convergence of the technique, 
as characterized by the approximate doubling of the number of correct significant digits in 
successive steps: observe that the number of digits retained by Newton in successive steps 
doubles. 

Newton gave no further explanation of his method, though he used it in an analytic form 
a few pages later in his tract and, as we shall see in ??5 and 6, it reappears in a later letter 
and in his Principia Mathematica. A slightly revised version of the passage quoted above 
was incorporated in the opening pages of Newton's more comprehensive tract De methodis 
fluxionum et serierum infinitarum written in 1671. The unfinished manuscript of De methodis 
was initially intended for publication, but the unprofitable nature of mathematical publishing 
combined with Newton's reluctance to publish following the controversy surrounding his 
"New Theory about Light and Colors" suppressed the work at the time. De analysi was 
not published until 1711, in Analysis per quantitatum series, fluxiones, ac differentias... by 
William Jones, by which time its status was largely historical. De methodis was not published 
until 1736 in translation by John Colson [21, III, p. 13]. Nevertheless various copies of 
Newton's manuscripts circulated among leading mathematicians. Newton gave a copy of De 
analysi to Isaac Barrow, who sent a copy to John Collins, who circulated news of the work 
among his international correspondents, some of whom were privileged to make their own 
copies of portions of the work. Among the most interesting of these are the extracts made by 
Leibniz in 1676 during a visit to London, reproduced in [21, II, pp. 248-259], which include the 
passage analyzed above almost verbatim while omitting much of the material on calculus. The 
earliest printed account of Newton's method, including essentially the content of Fig. 4, is in 
chapter 94 of John Wallis' A Treatise ofAlgebra both Historical and Practical, London, 1685. 
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HISTORY OF THE NEWTON-RAPHSON METHOD 539 

EXAMPLES BY THE RESOLUTION OF AFFECTED EQUATIONS. Since the The 
difficulty here lies wholly in the resolution technique, I wil first elucidate the 'uteical 
method I use in a numerical equation. affrected 

Suppose y3- 2y-5 = 0 is to be resolved: and let 2 be the number which equations. 

+2-10000000 differs from the root sought by less than 
{-0-00544853 its tenth part. Then I set 2+P = y and 

2-09455147 substitute this valueforit in the equation, 
and in consequence there arises 

2p= y y3 +8+ 12p+t62+p3 he new equation 
-2y -4-2p p3+6p2+ lop-I = 0 

-5 -5 0-- whose root p must be sought for 
Sum -1+lOp+6p2+p3 it to be added to the 

01 +q =p +p3 +0-001 +0-03q+0-3q2+q3 quotient: specficaly 
+ 6p2 + 0-06 + 1-2 + 6-0 (when p3+ 6p2 are 
+ lop + 1 + 10 neglected on account 

-1 -1 of their smallness) 
Sum +0-061+11 23q+6-3q2+q3 lOp-I = 0 

-0-0054+r = q 6-3q2 +0-000183708-0-06804r+6'3r2 or p=0*1 very 
+11-23q-0-060642 +11-23 nearly true; 
+0-061 +0-061 and so I write 

Sum + 0-000541708 + 11-16196r+ 6&3r2 i1 n the quo- a~~~~~tent anld sup- 
-0-00004853 ose0'1+q=p, 
and on substituting this value for it, as before, there arises in consequence 

q3+6 3q2+ 11F23q+0'061 =0. 

And, since 11*23q+0*061[= 0] approaches the truth closely or there is almost 
q= -00054 (by'dividing, that is, undl as many figures are elicited as the 
number of places by which the first figures of this and of the principal quotient 
are distant one from the other), I write -0-0054 in the lower part of the 
quotient since it is negative. Again, supposing -0-0054+r = q, I substitute 
this as before, and in this way continue the operation as far as I please. But if 
I desire to continue working merely to twvice as many figures, less one, as are 
noNw found in the quotient, in place of q in this equation 

6-3q2+1123q+0 061[= 0] 
I substitute -0-0054+r, neglecting its first term q3 by reason of its insignifi- 
cance, and there arises 6 3r2+ 11 16196r+0-000541708 = 0 nearly, or (when 

rejcte)r- 0-000541708 6-3r2 is rejected) r = 1696 = 000004853 nearly. This I write in the 

negative part of the quotient. Finally, on taking the negative portion of the 
quotent from the positive part, I have the required quotient 2-09455147. 

FIG. 4. Newton 's methodfor solving x - 2x - 5 = 0. 

A method algebraically equivalent to Newton's method was known to the 12th century 
algebraist Sharaf al-Din al-Tiisli [13], and the 15th century Arabic mathematician Al-Kdshi 
used a form of it in solving xP - N = 0 to find roots of N. In western Europe a similar method 
was used by Henry Briggs in his Trigonometria Britannica, published in 1633, though Newton 
appears to have been unaware of this [21, II, pp. 221-222]. 
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540 TJALLING J. YPMA 

But yet I conceive these roots may be easilier extracted by logarithmes. 
Suppose c as nearly as you can guesse equall to ye root z: & if ye aquaton be 

zn=bz+R make VIbc+R (or ?c xb)=d. Rin xb=e 

?e+ R x b-f $If+R x b =g &c. Or if ye acquation be zn ? bz- = R, 

make l? Rk=,d. + ?b = +d-e I(DJ Re=f &c. And so shall ye last found b-i-c \'~-'d b -e 
terme e,f, or g &c be ye desired root z. 

For instance if z`=-8z-5: suppose c=1, & ye work will be this 

/() 8 x 1-5, or V() 3=1 0373-d. 0)3 =2984-1 !7=e, 
VC(o)393256 1t040894=f etc 

Therefore ye root z is 1i040894 
So if z=+120z21=3748000 suppose c=1, & ye work will be 

3748000 1 6363 =d 3748000 
=163587-e &c. {2)121 12~191 6363 

Therefore ye root z is lI63587 

FIG. 5. Newton 's use offixed point iterations. 

5. Further methods for nonlinear equations. Newton displayed a continued interest 
in methods for the numerical solution of nonlinear equations during the years following 1671. 
Some of his activities are summarized in [6, pp. 65-66]. For example, in a letter to Michael 
Dary dated 6 October 1674 [18, I, pp. 319-322] Newton proposed schemes, which we may 
write as 

xi+l - (bxi + c)(l/n) and xi+l = ( 

for solving the equations x' = bx + c and x ? bxn-I = c, respectively. Equations of this sort 
arise in the analysis of annuities. We now recognize these schemes as examples of fixed point 
(or functional) iteration. Similar schemes were previously proposed by James Gregory and 
communicated in letters to John Collins to solve the equations bnc + X,+I = bnx (8 November 
1672) and bnc + x"+1 - bn-1 (b + c)x (2 April 1674) [18, I, pp. 321-322] and [6, pp. 65-66]. 

In Fig. 5 we reproduce from [18] a portion of Newton's letter to Michael Dary, giving 
these iterative schemes and applying them to the equations x30 = 8x -5 and x22 + 120X21 = 
3748000, respectively, in each case with xo = 1. The text is largely self-explanatory once it is 
understood that the notation V/ 0 denotes taking the indicated root of the subsequent quantity, 
and that the symbol L is used instead of the decimal point. There are minor errors in the fifth 
and subsequent significant digits in Newton's computations. 

Also of interest are two letters by Newton addressed to John Smith, dated 24 July and 27 
August 1675. Smith was preparing a table of square, cube, and quartic roots of all the integers 
from 1 through 10000; in a letter dated 8 May 1675 [18, I, pp. 342-345] Newton suggested 
that he do this by computing only the roots of every hundredth integer to a sufficient number of 
digits (10), followed by interpolation to produce all the other desired quantities to the required 
accuracy (8 digits). Newton presented in his letters to Smith several schemes, which we may 
synthesize as 

(5.1) X1 = (1/n)[(n - 1)xo + a/x1n-], n = 2,3,4, 
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1. When you have extracted any X by common Arithmetick to 5 Decimal 
places, you may get the figures of the other 6 places by Dividing only the 
Residuum by 

double the Quotient square 
triple the q of Quotient F for the RI cube 
quadruple the c of Quotient) square square 

Suppose B. the Quotient or R extracted to 5 Decimal places, and C. the last 
Residuum, by the Division of wch you are to get the next figure of the Quo- 

tient, and D the Divisor (that is 2B or 3BB or 4B'c=D) & B+D shall be 

the R desired. That is, the same Division, by wch you would finde the 
6th decimal figure, if prosecuted, will give you all to the 11th decimal figure. 
2. You may seek the R if you will, to 5 Decimal places by the logarithm's, 

But then you must finde the rest thus. Divide the propounded number 
once 
twice by yt 1 prosecuting the Division alvayes to 11 Decimal places, and 
thrice 
to the Quotient add 

once, & halfe square 
ye said R twice, & a third part- of the summj Cube R desired. 

thrice, & a quarter shall be the square square 
For instance 

IQ 
Let A be the number, and B. its C R extracted by Logarithms unto 3 decimal 

QQ places: 
A 

2) B+ , Q 

and 3) 2B+ A, shall be the C root desired 

4) 3B+ A, QQ 

FIG. 6. Newton's methodfor extracting roots of numbers. 

for finding the second, third, and fourth roots of a given positive scalar a, intending them to 
be used to compute the required roots of every hundredth integer to the required accuracy. 
Formula (5.1) is (1.1) with i = 0 used to solve f(x) = Xn- a = 0 for arbitrary n. This 
technique had previously been used by the Arabic mathematician al-Kash1 [13], and forms of 
it appear in earlier writings. This formula may also be obtained by applying just the first step 
of the technique of ?4 to the polynomial equation xn - a = 0. We reproduce in Fig. 6, and 
analyze below, an extract from [18, I, pp. 348-349] of the letter dated 24 July 1675 in which 
Newton discusses this technique for finding roots. Further discussion of this material appears 
in [21, IV, pp. 663-665]. 

Here Newton is solving the equation Xn - A = 0, for n = 2, 3, 4 starting from an initial 
estimate xo = B and writing C = A - Bn = a - xn. He partly reverts to the modified cossic 
notation described in ?2. In the first paragraph he gives the method in a form corresponding 
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542 TJALLING J. YPMA 

to xl = x0 + co, where 

C a-x0 x -f(xo) 
nBn-1 nx I f ' (xo) 

and notes that one should retain all the computed digits for use as the correction term rather than 
truncate after the first few significant digits. In the next paragraph the method is reformulated 
corresponding to (5.1), with the symbol n) denoting division by n. Newton shows no sign of 
using his formulae iteratively, given his instructions to select a first estimate of the solution with 
five correct significant digits to get eleven correct digits after one application of the formula, 
rather than indicating that any desired accuracy can be obtained from an appropriate initial 
estimate by simply applying the formula repeatedly. This passage again shows that Newton 
was aware of the rough doubling of the number of correct significant digits in one step of his 
process, characteristic of the quadratic convergence of the process (1.1). 

For completeness we mention also a letter from Newton to John Collins, dated 20 August 
1672 [18, I, pp. 229-234] in which he describes the use of "Gunters line" (that is, a logarith- 
mically graduated ruler) to solve polynomial equations. Since this ingenious method is not 
iterative, we refer the interested reader to [17] and [21, III, pp. 559-561] for further details. 

6. Newton's method. The first published use by Newton of the method (1.1) in an it- 
erative form and applied to a nonpolynomial equation is in the second and third editions of 
his Philosophiae Naturalis Principia Mathematica, whose first edition was published in Lon- 
don in 1687. In each successive edition he described techniques for the solution of Kepler's 
equation 

(6.1) x - esin(x) = M. 

To understand Newton's geometrical technique and relate it to the conventional analytic form 
of the Newton-Raphson method it is necessary to have an understanding of the terms involved 
in (6.1). Our description below is based on [15, pp. 72-85]. 

The origins of the problem lie in determining the position of a planet moving in an elliptical 
orbit around the sun, given the length of time since perihelion passage. With reference to Fig. 7, 
let the ellipse (the orbit) ABA'B' centered at the origin 0 be defined by the canonical equation 

(6.2) (y2/a2) + (z2/b2) = 1. 

Then the ellipse has a semimajor axis AO of length a and a focus (the sun) at S = -b = -ae, 
where e = b/a is the eccentricity of the ellipse. Let ACA'C' be a circle centered on the 
origin with radius a circumscribing the ellipse. Let P (the planet) be a point on the ellipse 
whose Cartesian coordinates are to be determined, and let QPR be a line perpendicular to AO 
passing through P and intercepting the circumscribed circle and the line AO at the points Q 
and R, respectively. Then the Cartesian coordinates of P are defined by the lengths IPRI and 
IOR!. Given the readily proved fact that IPRI/IQRI = e, so that we need find only IQRI and 
IORI, it is easy to see that knowledge of the eccentric anomaly, i.e., the angle x = ZAOQ, is 
sufficient to locate P: sin(x) = IQRj/IQOI = IQRI/a and cos(x) = IROI/IQOI = IROj/a, 
thus IPRI = ea sin(x) and JOR! = a cos(x). The eccentric anomaly x is to be computed. 

Suppose that P represents the position of a planet in an elliptic orbit about the sun S, at 
a time t after passing through the point A (perihelion passage) at time 0. If the planet has 
orbital period T, then since the radius vector SP turns through an angle of 2w radians in the 
course of one orbit, the mean angular velocity of the planet is n = 27/ T. During the time 
t the angle swept out by a radius vector rotating about S with angular velocity n is the mean 
anomaly M = nt. A clever argument [15, pp. 83-85] exploiting Kepler's laws of planetary 
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C 

R S 0 A' 

FIG. 7. Locating the position of a planet in an elliptical orbit. 

A S R r 0 H B 

FIG. 8. Diagram to accompany Newton 's solution of Kepler's equation. 

motion reveals that the eccentric anomaly x, the mean anomaly M and the eccentricity of the 
ellipse e are related through (6.1), where both M and x are in radian measure. Thus in (6.1) 
we are to solve for x, being the angle ZAOQ, given M and e, where M is computed from t as 
M = 2rt/ T. 

The historical origins of this problem are discussed in [21, IV, pp. 668-669]. Newton's 
interest in Kepler's problem is first revealed in a letter to Henry Oldenburg dated 13 June 1676 
[18, II, pp. 20- 47] in which he derives a series expansion for the quantity I P R I but gives no 
numerical algorithm for solving (6.1). 

We reproduce here the text and accompanying figure (Fig. 8) of Book 1, Proposition 31, 
Scholium, from Cajori's edition of 1934 [4, pp. 113-114] of the third edition of the Principia, 
published in Latin in 1726 and translated by Andrew Motte into English in 1729. Here Newton 
presents his technique for solving (6.1) numerically. 

"But since the description of this curve is difficult, a solution by approxi- 
mation will be preferable. First, then, let there be found a certain angle B 
which may be to an angle of 57.29578 degrees, which an arc equal to the 
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radius subtends, as SH, the distance of the foci, to AB, the diameter of the 
ellipse. Secondly, a certain length L, which may be to the radius in the same 
ratio inversely. And these being found, the Problem may be solved by the 
following analysis. By any construction (or even by conjecture), suppose 
we know P the place of the body near its true place p. Then letting fall on 
the axis of the ellipse the ordinate PR from the proportion of the diameters 
of the ellipse, the ordinate RQ of the cicumscribed circle AQB will be given; 
which ordinate is the sine of the angle AOQ, supposing AO to be the radius, 
and also cuts the ellipse in P. It will be sufficient if that angle is found by a 
rude calculus in numbers near the truth. Suppose we also know the angle 
proportional to the time, that is, which is to four right angles as the time in 
which the body described the arc Ap to the time of one revolution in the 
ellipse. Let this angle be N. Then take an angle D, which may be to the 
angle B as the sine of the angle AOQ to the radius; and an angle E which 
may be to the angle N - AOQ + D as the length L to the same length L 
diminished by the cosine of the angle AOQ, when that angle is less than a 
right angle, or increased thereby when greater. In the next place, take an 
angle F that may be to the angle B as the sine of the angle AOQ + E to 
the radius, and an angle G, that may be to the angle N - AOQ - E + F 
as the length L to the same length L diminished by the cosine of the angle 
AOQ + E when that angle is less than a right angle, or increased thereby 
when greater. For the third time take an angle H, that may be to the angle 
B as the sine of the angle AOQ + E + G to the radius; and an angle I to 
the angle N - AOQ - B - G + H, as the length L is to the same length 
L diminished by the cosine of the angle AOQ + E + G, when that angle is 
less than a right angle, or increased thereby when greater. And so we may 
proceed in infinitum. Lastly, take the angle AOq equal to the angle AOQ 
+ E + G + I +, etc., and from its cosine Or and the ordinate pr, which is 
to its sine qr as the lesser axis of the ellipse to the greater, we shall have p 
the correct place of the body. When the angle N - AOQ + D happens to 
be negative, the sign + of the angle E must be everywhere changed into -, 
and the sign - into + . And the same thing is to be understood of the signs 
of the angles G and I, when the angles N - AOQ - E + F, and N - AOQ - 
E - G + H come out negative. But the infinite series AOQ + E + G + I + 
etc., converges so very fast, that it will be scarcely ever needful to proceed 
beyond the second term E. And the calculus is founded upon this Theorem, 
that the area APS varies as the difference between the arc AQ and the right 
line let fall from the focus S perpendicularly upon the radius OQ." 

This passage may be understood as follows. Implicitly assume that the horizontal axis has 
been scaled so that "the radius" a = 1. Let the angle ZB equal e radians (the ratio of the angle 
ZB to 57.29578 degrees is set equal to 2b/2a = e, and 57.29578 is approximately one radian, 
as Newton notes, since the "angle . . . which an arc equal to the radius subtends" (in degrees 
on the circle) is 360a/(2ra) = 360/(2w) = 1 radian). Let L be such that L/a = l/e (thus 
L-1 = e). Let p be the position of the planet, and P be a first estimate of p. Note (as above) 
that to locate p it suffices to compute the angle ZAOq, the eccentric anomaly. Let the angle 
ZAOQ = xo be our first estimate of ZAOq. Determine ZAOq as follows. Let the angle ZN 
be such that ZN/(2w) = t/ T (thus ZN = 2wrt/ T = M, the mean anomaly). Let the angle 
ZD be such that ZD/ZB = sin(ZAOQ)/a (thus ZD = e sin(xo)), and let the angle ZE (the 
correction c0 to x0 = Z AOQ) be such that 
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ZE L 
ZN-ZAOQ+Z/D L-cos(ZAOQ) 

equivalently 

(6.3) co = ZE - L(ZN-xo + ZD) M-xo + e sin(xo) 
L - cos(xo) 1 - e cos(xo) 

which produces xi = xo + co = ZAOQ + ZE. Similarly determine, using the same formula, 
successively ZG = c1, ZI = c2, etc. from xl = ZAOQ+ ZE and x2 ZAOQ+ ZE + ZG, 
etc., respectively, and set ZAOq ZAOQ + ZE + ZG + ZI + ,i.e., x* = xo + c0 + 
Cl +C2 + - ' " 

Equation (6.3) is precisely c0 =-f (xo)/f'(xo) with f (x) = x - e sin(x) - M, and the 
subsequent corrections ci are similarly equivalent to applications of (1.1). 

Apparently the first to recognize this passage as an instance of the Newton-Raphson 
method was John Couch Adams in 1882 [1]. Newton's method is used here for the first time 
in an iterative process to solve a nonpolynomial equation. This contrasts with the frequently 
repeated claim [3] that Newton used his method only for rational integral polynomial equations, 
with the extension to irrational and transcendental equations being made first by Thomas 
Simpson as described in ?8 below. However, given the geometrical obscurity of the argument, 
it seems unlikely that this passage exerted any influence on the historical development of the 
Newton-Raphson technique in general. 

There is again no clear evidence that Newton associated his technique with the use of 
the calculus. There are numerous ways to derive this process that do not require the use 
of calculus; for example, a purely geometric derivation is given in the third of Simpson's 
Essays [16]. The passage just quoted from the third edition of the Principia duplicates the 
corresponding passage from the second edition of 1713. This passage is a modification of the 
corresponding passage from the first edition of 1687. These different versions are discussed 
in [3], [21, VI, pp. 314-318] and [8, I, pp. 191-196] and suggest a derivation of this method 
consistent with the approach previously presented by Newton in De analysi discussed in ?4. 
Following [21, VI, pp. 314 -317], set ;x* = xi + ei, so that (6.1) is rewritten 

M = xi + ei - e sin(xi + ei) = xi + ei - e(sin(xi) cos(ei) + cos(xi) sin(ei)) 

= xi + ei - e(sin(xi)[1 - e2 ... ] + cos(xi)[ei - . .1) 

from which 

M - xi + esin(xi) = ei(I - e[cos(xi) - ei sin(xi).. ..) ei(1 - ecos(xi + lei)), 

which leads to the iteration xi+ = xi + ci, where 

M -xi +esin(xi) 
(6.4) ei ' ci= 1 - ecos(xi + ci- 1) 

The latter form was apparently intended by Newton in the corresponding passage in the first 
edition of the Principia, but as pointed out by Fatio de Duillier in an annotation dating from 
about 1690 [21, VI, pp. 315-316] Newton's form there was flawed. Rather than correct the 
passage to reflect the form (6.4), Newton adopted the simpler alternative of omitting the term 
2ci l to arrive at the form (6.3) in the subsequent editions. It is not clear what role, if any, 
was played by calculus in this revision. 
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PROBLEMA. IX. 

Proponatur a a a - b a = c Aequatio secundae Formulae 
Numeris a a a - 2 a = 5 

Theor. x = c + bg - ggg 

3gg - b 

2 = g 5 = c 2,1 =g 2,1000 
4 = bg 2,1 -,0054 

-8 = ggg 
3gg = 12 +9 9 21 2,0946= g 

b = -2 - 42 2,0946 

10)+1,0(+,1 = x 4,41 = gg 125676 
2,1 83784 

188514 
441 418920 

882 
4,38734916 gg 

3gg = 13,23 -9,261 = ggg 2,0946 
b = -2, +9,200 

2632409496 
+11,23) -, 06100(-,0054 - x 1754939664 

3948614244 
13,16204748 = 3gg 4,1892 = bg 8774698320 
-2, = b 5, = c 

-9,189741550536 = ggg 
+11,16204748 9,1892 +9,1892 = bg + c 

+11,16205) -,000541550536 
(-,000048517 = x 

2,0946 
-,000048517 

2,094551483 = g 

FIG. 9. Raphson 's methodfor solving x3 - 2x - 5 = 0. 

7. Raphson's formulation. In 1690 Joseph Raphson (1648-1712 ?) published a tract 
Analysis aequationum universalis [12] in which he presented a new method for solving poly- 
nomial equations. A second edition of this tract was published as a book in 1697, with an 
appendix with references to Newton, but omitting a preface with different references to Newton 
that had appeared in the original tract. 

A copy of Raphson's tract, including a handwritten dedication from the author to John 
Wallis, corrections to the text that appear to be in the same handwriting, and including the 
preface but without the appendix described in [7] and [17], is available on microfilm [12] 
and is the basis for our comments. A general description of the book is given in [17], while 
[2] contains a reproduction of the title page and Raphson's Problem IX. The latter passage is 
reproduced in Fig. 9. 

Here Raphson considers equations of the form a3 -ba - c = 0 in the unknown a, and 
indicates that, if g is an estimate of the solution x*, a better estimate can be obtained as g + x, 
where 

(7.1) x c + bg -g (7.1) X 
~~~~~~3g2 -b 

Formally this is of the form g + x = g -f (g)/f'(g) with f (a) = a3 - ba - c. Raphson then 
applies this formula iteratively to the equation a 3-2a -5 = 0. Starting from an initial estimate 
g = 2, Raphson computes successively the corrections x = 0.1, -0.0054, -0.000048517 and 
-.0000000014572895859 and the corresponding estimates g = 2, 2.1, 2.0946, 2.094551483 
and 2.0945514815427104141 of x*. 
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The equation x3 - 2x -5 = 0 was previously discussed in ?4, where we analyzed Newton's 
technique for its solution. The two methods are mathematically equivalent; the distinction 
between Raphson's computations and those of Newton is that Raphson uses (7.1) repeatedly, 
applied to successively more accurate estimates g of the solution and without the need to 
generate intermediate polynomials as Newton did. The discrepancies between the numbers 
computed by Newton and those computed by Raphson are partly due to the deliberate omission 
by Newton of a term in the polynomial expansion for g3 defined in ?4. Raphson also retains 
all the significant digits computed in successive iterations, while Newton uses only the first 
few significant digits generated by each step of his method. 

Raphson presented more than 30 examples and formulae in his book. In each case they 
involve polynomials, up to degree 10. His derivation of the expressions for the correcting 
terms x, such as that given in (7.1), is described in the opening passages of the tract, and is 
precisely that used by Newton described in ?4 above, using binomial expansions, but with 
the first correction formula derived for a particular equation being used iteratively. Thus 
Raphson essentially used (1.1), but as in Newton's presentation, Raphson proceeded purely 
algebraically rather than using the rules of calculus to form a derivative term, and in every 
case he wrote out the expressions corresponding to f (x) and f'(x) in full as polynomials. 
The book concludes with a long set of tables giving the appropriate correction formula for a 
variety of polynomial equations. Despite Raphson's subsequent extensive work concerning 
fluxions, it is convincingly argued in [7] that he never associated the calculus with his iterative 
technique for polynomial equations, and he never extended it to other classes of equations. It 
is nevertheless appropriate to consider Raphson's formulation to be a significant development 
of Newton's method, with the iterative formulation substantially improving the computational 
convenience. 

The following comments on Raphson's technique, recorded in the Journal Book of the 
Royal Society and quoted from [17], are noteworthy. 

"30 July 1690: Mr Halley related that Mr Ralphson [sic] had Invented a 
method of Solving all sorts of Aquations, and giving their Roots in Infinite 
Series, which Converge apace, and that he had desired of him an Equation 
of the fifth power to be proposed to him, to which he return'd Answers true 
to Seven Figures in much less time than it could have been effected by the 
Known methods of Vieta." 

"17 December 1690: Mr Ralphson's Book was this day produced by E 
Halley, wherein he gives a Notable Improvemt of ye method of Resolution 
of all sorts of Equations Shewing, how to Extract their Roots by a General 
Rule, which doubles the known figures of the Root known by each Operation, 
So yt by repeating 3 or 4 times he finds them true to Numbers of 8 or 10 
places." 

Thus Raphson's technique is compared to that of Viete, while Newton's method is not 
mentioned although it had now appeared in Wallis' Algebra. The significance of the reference 
to the solution of a polynomial equation of degree 5 is that while analytic solutions in radicals 
for all polynomial equations up to degree 4 were known, no general formula was known for 
degree 5 (indeed none exists); Raphson demonstrated that numerical solutions were neverthe- 
less attainable. Finally it is remarkable that the property of quadratic convergence was again 
noted from the outset. 

The few verifiable details of the life of Joseph Raphson are discussed in [17]. Contact 
between Newton and Raphson seems to have been very limited, although it appears that 
Newton exploited the circumstances of Raphson's death to attach a self-serving appendix to 
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Raphson's last book, the Historia fluxionum [17]. In the Preface to his tract of 1690, Raphson 
refers to Newton's work but states that his own method is "not only, I believe, not of the same 
origin, but also, certainly, not with the same development" [2], [12]. References to Newton in 
the Appendix to his book of 1697 apparently refer to Newton's use of the binomial expansion, 
rather than his method for solving equations [7], [17]. The two methods were long regarded 
by users as distinct, though in 1798 Lagrange [9] observed that "ces deux methodes ne sont au 
fond que le meme presentee diff6remment" although Raphson's technique was "plus simple 
que celle de Newton" because "on peut se dispenser de faire continuellement de nouvelles 
transformees." Further historical details, particularly concerning comparisons between the 
methods of Newton and Raphson and the failure to recognize the role of calculus in these 
methods, appear in [7]. 

8. Simpson's contributions. The life and some of the significant mathematical achieve- 
ments of Thomas Simpson (1710-1761) are described in his biography [5] and with much 
critical commentary in [1 1]. In his Essays ... in ... Mathematicks, published in London in 
1740 [16], Simpson describes "A new Method for the Solution of Equations in Numbers." He 
makes no reference to the work of any predecessors, and in the Preface (p. vii) contrasts his 
technique based on the use of calculus with the algebraic methods then current: 

"The Sixth [Essay], contains a new Method for the Solution of all Kinds of 
Algebraical Equations in Numbers; which, as it is more general than any 
hitherto given, cannot but be of considerable Use, though it perhaps may be 
objected, that the Method of Fluxions, whereon it is founded, being a more 
exalted Branch of the Mathematicks, cannot be so properly applied to what 
belongs to common Algebra." 

Simpson's instructions are as follows [16, p. 81]: 

CASE I 
When only one Equation is given, and one Quantity (x) to be determined. 

"Take the fluxion of the given Equation (be it what it will) supposing x, the 
unknown, to be the variable Quantity; and having divided the whole by x, 
let the Quotient be represented by A. Estimate the value of x pretty near the 
Truth, substituting the same in the Equation, as also in the Value of A, and 
let the Error, or resulting Number inthe fornwe, b dWiskddby tWis nramerical 
Value of A, and the Quotient be subtracted from the said former Value of x; 
and from thence will arise a new Value of that Quantity much nearer to the 
Truth than the former, wherewith proceeding as before, another new Value 
may be had, and so another, etc. 'till we arrive to any Degree of Accuracy 
desired." 

In addition to applying his technique to a polynomial equation, Simpson gives an example 
of this technique applied to the nonpolynomial equation 1 x + 1- 2x2 + 1 - 3x3 -2 - 

0 [16, pp. 83-84]: 

"This in Fluxions will be 2x 2x2x , , and therefore A, here, 21 -x v1-2xx 2 13x 

=- 21a=;2x 
_ 99 

; wherefore if x be supposed = .5, it will 2 1 -x 1 -2 xx 2 /I1-3 x 3 

become -3.545: And, by substituting 0.5 instead of x in the given Equation, 
the Error will be found .204; therefore 3204 (equal -.057) subtracted from 
.5, gives .557 for the next Value of x; from whence, by proceeding as before, 
the next following will be found .5516, etc.." 
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Following [7], in these instructions fluxions were to be taken as described by Newton in 
now-lost letters to Wallis in August 1692 and reported by Wallis in 1693. In modem terms i is 
essentially equivalent to dx/dt; implicit differentiation is used to obtain dy/dt, subsequently 
dividing through by dx/dt as instructed produces the derivative A = dy/dx of the function. 
Thus Simpson's instructions closely resemble, and are mathematically equivalent to, the use 
of (1.1). This is the first formulation of the iterative method for general nonlinear equations, 
based on the use of fluxional calculus. Simpson's application of fluxions in the context of 
solving general nonlinear equations was certainly highly innovative. This significant contri- 
bution by Simpson received little recognition, except in [3] and [6], until the recent publication 
of [7]. 

The formulation of the method using the now familiar f'(x) calculus notation of (1.1) was 
published by Lagrange in 1798 [9], though it probably appeared in earlier lectures; it is given 
in Note XI of that book (Sur les formules d'approximation pour les racines des equations), 
rather than Note V (Sur la Methode dApproximation donnee par Newton). By this time the 
familiar geometric motivation for the method was well known. Lagrange makes no reference 
to Simpson's work, though Newton and Raphson are both mentioned. In Fourier's 1831 
Analyse des Equations Determinees the method is described as "le m&thode newtonienne," 
and no mention is made of the contributions of either Raphson or Simpson. This attribution in 
the influential book by Fourier is probably a major source of the subsequent lack of recognition 
given to the contributions of either Raphson or Simpson [3], [7], [17]. 

The previous extract from Simpson's Sixth Essay referred to CASE I. Simpson's CASE 
II is equally remarkable [16, p. 82]: 

CASE II 
When there are two Equations given, and as many Quantities (x and y) to 
be determined. 

"Take the Fluxions of both the Equations, considering x and y as variable, 
and in the former collect all the Terms, affected with x, under their proper 
Signs, and having divided by x, put the Quotient = A; and let the remaining 
Terms, divided by y, be represented by B: In like manner, having divided the 
Terms in the latter, affected with x, by x, let the Quotient be put =a, and the 
rest, divided by y, = b. Assume the Values of x and y pretty near the Truth, 
and substitute in both the Equations, marking the Error in each, and let these 
Errors, whether positive or negative, be signified by R and r respectively: 
Substitute likewise in the values of A, B, a, b, and let Br-B and AR-ar be 
converted into Numbers, and respectively added to the former Values of x 
and y; and thereby new Values of those Quantities will be obtained; from 
whence, by repeating the Operation, the true Values may be approximated 
ad libitum." 

Simpson is here describing the technique now generally referred to as "Newton's Method" for 
systems of nonlinear equations, restricted to the case of two such equations. In modem terms, 
this involves solving the system of equations F(x) = 0; F : Rn-* WR' by the iterative process 
xi+1 = xi - di where di is the solution of the system of linear equations F'(xi)di = F(x-) 
in which F'(xi) is the Jacobian matrix of F evaluated at xi. In the above passage Simpson 
describes the construction of the entries of the matrix F'(x) for the case n = 2 and then 
gives the explicit formula (Cramer's Rule) for the solution of the resulting system of linear 
equations. His book contains three examples of this method; we quote the first [16, p. 84]: 

"Let there be given the Equations y+/2 -x2-10 = O and x + +x- 
12 = 0; to find x and y. The Fluxions here being y + . and x ? FX+-- 
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or , andi + 2 + we have A equal -__ _ x 
B equal 1 + [sic], a = 1 + 2, and b = Case I. 
Let x be supposed equal 5, and y equal 6; then will R equal -.68, r equal -.6, 
A equal - 1.5, B equal 2.8, a equal 1.1, b equal 9 [sic]; therefore BrbR = .23, Ab-aB= 
and aRAr= .37, and the new Values of x and y equal to 5.23, and 6.37 
respectively; which are as near the Truth as can be exhibited in three places 
only, the next Values coming out 5.23263 and 6.36898." 

This extension by Simpson of the familiar technique for a single equation to the equally 
fundamental technique for systems of equations appears to have been overlooked in the liter- 
ature. It is a significant achievement. 

In passing it seems appropriate to note also a contribution by Simpson to the closely 
related problem of multivariable unconstrained optimization. In A New Treatise of Fluxions, 
published in 1737, he gives what may be the first example of maximizing a function of several 
variables, obtaining the maximum by essentially setting the gradient of the function equal to 
zero. We quote from that text. 

"Note, When in any Expression representing the Value of a Maximum, or a 
Minimum there are two or more variable Quantities, flowing independent on 
each other, the Value of those Quantities may be determined, by making them 
to flow one by one, whilst the rest are considered as invariable, according 
to the Methods used in this and the following Examples. 

EXAMPLE XVII 
Required to find three such Values of x, y, z as shall make the given Expres- 
sion (b3 - x3)(x2z - z3)(xy - yy) the greatest possible. 
First considering y as a variable, we have x -2yy = 0, or y =x 
therefore xy - yy = X. By making z variable, we have x2z - 3z2z = 0, 
or z = x therefore x2z - z3 = , and substituting these Values in the 

given Expression it will become (Xx x 3 )x(b3 x3) = (h -X therefore 

5b3x4k-8xUx = O, or x = b24b5, therefore y = l bV5 and z =b 253 

N.B. The Reason for this Process is evident, for unless the Fluxion of the 
given Expression, when any of the three Quantities (x, y, z) be made vari- 
able, be equal to Nothing, the same expression may become greater, with- 
out varying the Values of the other two, which are considered as constant; 
therefore when it is the greatest possible, each of those Fluxions must then 
become equal to Nothing." 

The idea of setting the gradient equal to zero, combined with the use of "Newton's Method" 
to solve the resulting system of nonlinear equations, is a key ingredient of many techniques 
for solving unconstrained optimization problems. 

9. Conclusions. We have traced the evolution of the method (1.1) from the appearance 
of forerunners in the work of the Arabic algebraists and Vi&te to its formulation in the modern 
functional form by Lagrange, focusing on the contributions of Isaac Newton, Joseph Raphson, 
and Thomas Simpson. In the light of this historical development it would seem that the 
Newton-Raphson-Simpson method is a designation more nearly representing the facts of 
history in reference to this method which "lurks inside millions of modem computer programs, 
and is printed with Newton's name attached in so many textbooks" [17]. 
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